
 
 

Delft University of Technology

ACDC-OpFlow
A unified, cross-language framework for AC/DC optimal power flow solutions
Li, Haixiao; Kermansaravi, Azadeh; Dimitrovski, Robert; Lekić, Aleksandra

DOI
10.1016/j.softx.2025.102324
Publication date
2025
Document Version
Final published version
Published in
SoftwareX

Citation (APA)
Li, H., Kermansaravi, A., Dimitrovski, R., & Lekić, A. (2025). ACDC-OpFlow: A unified, cross-language
framework for AC/DC optimal power flow solutions. SoftwareX, 32, Article 102324.
https://doi.org/10.1016/j.softx.2025.102324

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.softx.2025.102324
https://doi.org/10.1016/j.softx.2025.102324


O

A
p
H
a

b

A

K
C
A
M

C

 
 
 
 
 
 
 

 
 

1

g
d
m
a
l
p
V

h
R

SoftwareX 32 (2025) 102324 

A
2

 

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx  

riginal software publication

CDC-OpFlow: A unified, cross-language framework for AC/DC optimal 
ower flow solutions
aixiao Li a,∗, Azadeh Kermansaravi a, Robert Dimitrovski a,b, Aleksandra Lekić a
Faculty of Electrical Engineering, Mathematics, and Computer Science, TU Delft, Mekelweg 4, 2618 CD, Delft, Netherlands
TenneT TSO GmbH, Bernecker Str. 70, 95448 Bayreuth, Germany

 R T I C L E  I N F O

eywords:
ross-language framework
C/DC optimal power flow
ulti-terminal DC

 A B S T R A C T

Hybrid AC/voltage source converter-based multi-terminal DC (VSC-MTDC) power grids play a crucial role in 
enabling long-distance power transmission and flexible interconnection between AC grids. To fully leverage the 
functional advantages of such systems, it is essential that they operate in or close to optimal power flow (OPF) 
conditions. To address this, ACDC-OpFlow is developed as an open-source and cross-language framework for 
solving AC/DC OPF problems. Its core innovation lies in a unified modeling structure that supports MATLAB, 
Python, Julia, and C++, with Gurobi used as a consistent solver backend. This framework is beginner-friendly 
and allows users to work in their preferred programming languages. Both text-based and graph-topology results 
are provided to help users understand the system-wide power flow distribution and operational status. This 
work presents the design concept of ACDC-OpFlow, showcases representative example results, and discusses 
the performance differences observed in multiple programming language implementations.

ode metadata

Current code version v0.1.2  
Permanent link to code/repository https://github.com/ElsevierSoftwareX/SOFTX-D-25-00355  
Code Ocean compute capsule N/A  
Legal code license MIT  
Code versioning system used Git  
Software languages, tools, and services MATLAB, Python, Julia, C++  
Compilation requirements, operating environments & dependencies MATLAB requires: YALMIP toolbox. Python requires: numpy, pandas, scipy, pyomo, 

networkx, matplotlib, gurobipy. Julia requires: CSV, DataFrames, JuMP, Gurobi, 
Graphs, GraphPlot, GLMakie, ColorSchems, Colors. C++ requires: Eigen, Matplot++, 
Gurobi C++ API.

 

Link to developer documentation/manual https://github.com/CRESYM/ACDC_OPF/blob/main/Manual_v0.1.2.pdf  
Support email for questions haixiaoli.ee@gmail.com  

. Motivation and significance

AC/voltage source converter-based multi-terminal DC (VSC-MTDC) 
rids play a crucial role in modern power systems by enhancing long-
istance power transmission, renewable energy sources (RESs) accom-
odation, and interconnection of regional power grids. VSC-MTDC 
llows independent active and reactive power control, enabling seam-
ess connection of AC grids in different regions. The scheduling of a 
ower system consisting of multiple interconnected AC grids and a 
SC-MTDC grid is significant [1,2]. As depicted in Fig.  1, we need a 

∗ Corresponding author.
E-mail address: haixiaoli.ee@gmail.com (H. Li).

technique to help enhance the rationality and optimality of scheduling, 
which involves solving the problems known as the AC/DC optimal 
power flow (OPF).

OPF solution can be broadly classified into data-driven and model-
based methods. Data-driven OPF techniques have become a research 
hot spot in recent times [3–5]. They typically use large and diverse 
datasets to train neural networks that generate optimal decisions. In 
contrast, model-based OPF is a more conventional solution path, where 
OPF decisions are obtained by solving mathematical programming 
ttps://doi.org/10.1016/j.softx.2025.102324
eceived 28 May 2025; Received in revised form 3 August 2025; Accepted 18 August 2025
vailable online 15 September 2025 
352-7110/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/softx
https://www.elsevier.com/locate/softx
https://github.com/ElsevierSoftwareX/SOFTX-D-25-00355
https://github.com/CRESYM/ACDC_OPF/blob/main/Manual_v0.1.2.pdf
mailto:haixiaoli.ee@gmail.com
mailto:haixiaoli.ee@gmail.com
https://doi.org/10.1016/j.softx.2025.102324
https://doi.org/10.1016/j.softx.2025.102324
http://creativecommons.org/licenses/by/4.0/


H. Li et al. SoftwareX 32 (2025) 102324 
Fig. 1. Overview of the AC/DC OPF problem used to schedule AC/VSC-MTDC grids.

models that explicitly describe the power system operation. Undoubt-
edly, data-driven OPF methods hold great promise for future applica-
tions. However, this does not mean that model-based OPF approaches 
are obsolete. They offer distinct advantages that data-driven methods 
often lack. For example, model-based OPF provides strong theoretical 
guarantees and strict adherence to operational constraints. More impor-
tantly, the power flow data required to train data-driven OPF models 
fundamentally relies on model-based OPF solutions.

As such, model-based OPF research remains of significant interest. 
Currently, several open-source tools have been developed to support 
model-based AC/DC OPF analysis. PowerModelsACDC.jl [6] developed 
on top of PowerModels.jl [7] is one of the most widely used. It pro-
vides flexible options for AC/DC OPF formulation. Subsequently, sev-
eral extensions based on PowerModelsACDC.jl, such as PowerModelsM-
CDC.jl [8] and PowerModelsACDCsecurityconstrained.jl [9], have been 
developed to address specific AC/DC OPF challenges, including unbal-
anced operation, 𝑁 − 1 security constraints, and more. In addition to 
Julia-based tools, a Python-based tool named pyflow_acdc.py [10] has 
recently been released. It features constructing the enhanced AC/DC 
OPF formulation that supports the heterogeneous MTDC grid.

Despite the success of the aforementioned tools, our work does 
not aim to develop a more comprehensive or feature-rich toolkit. 
Instead, we target a practical yet often overlooked issue: researchers 
and educators, particularly those new to AC/DC OPF, often have dif-
ferent preferred programming languages. To this end, we design ACDC-
OpFlow, a beginner-friendly unified framework that supports MATLAB, 
C++, Julia, and Python, which are four of the most commonly used 
programming languages in the research and engineering practice of 
power system analysis. All implementations share the same core coding 
logic: data preparation, parameter processing, OPF model construction, 
and OPF result display. For each programming language, the AC/DC 
OPF model is formulated as a convex second-order cone program-
ming (SOCP) problem by appropriate relaxation of non-convex AC 
and DC power flow equations [11,12]. Compared to traditional non-
linear programming (NLP) OPF models, SOCP-based OPF models are 
more scalable and extensible, especially when integrating additional 
operational constraints such as topology reconfiguration [13,14] or 
unit commitment decisions [15]. These extensions can often be rep-
resented as mixed-integer SOCP (MISOCP), which can still be solved 
efficiently using off-the-shell mathematical programming solvers. In 
contrast, adding integer variables to an already NLP model results 
in mixed-integer NLP (MINLP), which is computationally intractable. 
To ensure consistent solutions in all programming languages, ACDC-
OpFlow employs Gurobi,1 a powerful solver, as the unified solver 
back-end in all language implementations. To respect the conventions 
of each supported language, language-specific dependencies are care-
fully selected and used for OPF model construction and result display. 
This structure-unified and dependency-aware design enables users to 
start with the programming language they are most comfortable with, 
and later transition smoothly to other versions as needed. ACDC-OpFlow

1 https://www.gurobi.com/

makes it easier to analyze differences in modeling syntax, solver behav-
ior, and computational performance. ACDC-OpFlow is now available on 
GitHub as an open-source repository [16].

To introduce ACDC-OpFlow, this paper is organized as follows: In 
Section 2, a description of ACDC-OpFlow is detailed. The aspects, such 
as the architecture and functionalities of this framework, as well as the 
defining approaches of parameters and variables in the AC/DC OPF 
problem are presented. Later, in Section 3, the results of solving the 
AC/DC OPF problems are presented. It includes both printed textual 
outputs and visualized plotting results and efficiency of each program-
ming language. The impact of ACDC-OpFlow is discussed in 4. Finally, 
the conclusions and future work are drawn in Section 5.

2. Software description

2.1. Software architecture

As presented in Fig.  2, under the framework of ACDC-OpFlow, every 
programming language follows a unified workflow: Firstly, we prepare 
input data related to AC and MTDC grids, which are all saved in 
structured comma-separated value (CSV) files. Secondly, extracting key 
parameter information from CSV data files and handling it to form 
the specific parameter vectors (matrices). Thirdly, based on prede-
fined parameter vectors (matrices), the AC/DC OPF model with SOCP 
formulation is constructed and subsequently solved via the Gurobi 
solver, which supports the solution of SOCP problems by using its built-
in interior-point method. Lastly, the OPF results are organized and 
output in text format, accompanied by a visual presentation to facilitate 
observation of the results. For each programming language, the core 
functions involved are shown in Fig.  3. In the following, a detailed 
description of each step in the workflow is provided.

2.1.1. Data preparation
The data required for AC/DC OPF are listed and shown in Fig.  4, and 

all data are stored in the CSV file due to its compatibility with various 
programming language environments.

The fundamental data related to the MTDC grid are: Base power 
of the MTDC grid saved in baseMW_dc.csv; Polarity of the MTDC 
grid saved in pol_dc.csv; Bus orders and allowable nodal voltage 
bounds saved in branch_dc.csv; From/To nodes and resistances of DC 
branches saved in branch_dc.csv; Bus orders of the connected AC and 
DC terminals of converters, equivalent AC-side impedances, converter 
control modes, saved in conv_dc.csv.

The fundamental data related to the interconnected AC grid
are: Unified base power of interconnected AC grids saved in
baseMVA_ac.csv; Bus orders, nodal shunt admittances, nodal voltage 
bounds, saved in bus_ac.csv; From/To nodes and impedances of AC 
branches saved in branch_ac.csv; Bus order of generators connected 
to and generator power output bounds saved in gen_ac.csv; Coeffi-
cients of generation costs saved in gencost_ac.csv; Bus order of RESs 
connected to, power capacity limits, and coefficients of generation costs 
saved in res_ac.csv.
2 

https://www.gurobi.com/


H. Li et al.

 
 
 
 

 
 
 
 

 

 
 

 
 

SoftwareX 32 (2025) 102324 
Fig. 2. Unified work flow of ACDC-OpFlow across programming languages.

Fig. 3. Core functions across programming languages.

Fig. 4. Data sheets of AC and MTDC grids.

Users can manually fill in custom values in the CSV files mentioned 
above.2 In general, entering parameter values related to the MTDC grid 
is a moderately simple task, as the number of MTDC terminals is quite 
limited, typically ranging from three to five [18]. In the case of a five-
terminal MTDC network, the number of associated DC buses is 5, with 
the maximum number of DC branches being (52

)

= 10. In addition, the 
file associated with RES is also very easy to create, as the number of 
grid-connected renewable energy sources is typically limited in prac-
tice, the required parameters are few, and the format is well-suited for 
manual entry. However, when dealing with interconnected AC grids, 
manual entry of parameter values can be considerably labour-intensive. 
Consequently, we suggest that users make use of the existing single-
area AC test cases in MATPOWER3 to build interconnected AC grids 

2 In CSV files, each column corresponds to a parameter item. The specific 
rules can be found in [17].

in multiple areas. In ACDC-OpFlow, mpc_merged.m and save_csv.m
can be utilized to facilitate this process, and an example step is shown 
below: 

1 merged_ac = mpc_merged('case9', 'case14'); % 
mpc_merged('case_a', 'case_b', ...)↪

2 save_csv(merged_ac); % If no path is provided, saved in 
the current path.↪

A message will be displayed in the terminal window once the code 
has been successfully executed: 

1 >> Reordered bus IDs for case9
2 >> Reordered bus IDs for case14
3 >> Enter a prefix for the CSV filenames: ac9ac14
4 >> Merged AC grid data has already been saved to:
5 >>  D:\acdcopf\Tests\ac9ac14_baseMVA_ac.csv
6 >>  D:\acdcopf\Tests\ac9ac14_bus_ac.csv
7 >>  D:\acdcopf\Tests\ac9ac14_gen_ac.csv
8 >>  D:\acdcopf\Tests\ac9ac14_branch_ac.csv
9 >>  D:\acdcopf\Tests\ac9ac14_gencost_ac.csv

2.1.2. Parameter processing
Language-specific functions create_ac  and create_dc  read

data from the CSV file associated with the interconnected AC grids and
the MTDC grid. Depending on the programming environment, different
handling approaches are used to read and organize these CSV files, as
listed in Table  1.

Then, language-specific functions params_ac  and params_dc
are further utilized to extract the essential parameters required to build
the AC/DC OPF model. During this process, different language-specific
conventions are adopted to define one-dimensional, two-dimensional,
and three-dimensional parameters, which are listed in Table  2.

Having passed through this phase, all necessary parameters for the
interconnected AC grids and MTDC grid have been fully defined, form-
ing sufficient support for the subsequent AC/DC OPF computations.

2.1.3. Core OPF solving
The core OPF solver can be found in solve_opf , where the

AC/DC OPF model is formulated and solved. The power flow equations
for both AC and DC grids are inherently strong non-linear and non-
convex, whereas NLP often suffers from convergence to local optima,
numerical instability, and high computational complexity. From this

3 https://matpower.org/
3 

https://matpower.org/


H. Li et al. SoftwareX 32 (2025) 102324 
Table 1
CSV file data handling approaches across programming languages.
Language Read .csv files Data structure for storage
MATLAB readmatrix  (built-in) Uses a struct  where each named field maps to a numeric matrix or a scalar.
Python pandas.read_csv Uses a dict  where each string key maps to a NumPy  array or a scalar.
Julia CSV.File  + DataFrame Uses a Dict{String, Any}  where each string key maps to a numeric array or 

a scalar.
C++ ifstream  + csv_reader  (cus-

tom)
Uses an unordered_map<std::string, Eigen::MatrixXd>  where each 
string key maps to an Eigen  matrix.

Table 2
Parameter definition approaches across programming languages.
Language 1D Parameter (fbus_dc , nbuses_ac , 

etc.)
2D Parameter (bus_dc , pd_ac , etc.) 3D Parameter (bus_entire_ac , 

etc.)

MATLAB vector /x(i) , cell /x{n} matrix /x(i, j) , cell /x{n}(i) cell /x{n}(i, j)
Python np.ndarray /x[i] , list /x[n] np.ndarray /x[i, j] , 

list /x[n][i]
list /x[n][i, j]

Julia Vector /x[i] , Vector /x[n] Matrix /x[i, j] , 
Vector /x[n][i]

Vector /x[n][i, j]

C++ Eigen::Vector /x(i) , 
std::vector /x[i]

Eigen::Matrix /x(i, j) , 
std::vector /x[n](i)

std::vector /x[n](i, j)

G The mark means type /syntax . Here, n  refers to the interconnected AC area index, i  and j  refers to the system bus index.

Fig. 5. Operational constraints considered in the constructed AC/DC OPF 
model.

perspective, ACDC-OpFlow emphasizes the importance of convex relax-
ation and reformulates the AC/DC OPF model as a SOCP model, which 
allows off-the-shelf convex solver to achieve globally optimal solutions. 
The detailed SCOP formulation, on which our AC/DC OPF model is 
based, can be found in [17].

In implementations across MATLAB, Python, Julia, and C++, ACDC-
OpFlow utilizes Gurobi that supports SOCP solving and offers academic 
licenses free of charge for research and educational use,4 as the unified 
solver backend. To facilitate AC/DC OPF modeling and solver invo-
cation, ACDC-OpFlow integrates each language with a widely adopted 
modeling interface and the corresponding solver bridge. Table  3 sum-
marizes the dependencies used for optimization in each programming 
environment.

4 https://www.gurobi.com/academia/academic-program-and-licenses/

To further support optimization modeling, each implementation 
explicitly defines optimization decision variables and adds optimiza-
tion constraints, where variables and constraints are constructed in 
compatible formats with each modeling framework, as shown in Table 
4.

Similarly to parameter definition, optimization variable definition 
also conforms to language-specific conventions, and the summary of 
representative expressions for defining one-dimensional, two-
dimensional, and three-dimensional variables in across programming 
languages can be found in Appendix.

The operational constraints considered in the constructed AC/DC 
OPF model are presented in Fig.  5. Among these constraints, the 
converter control constraint is optional. In solve_opf , users can set 
the attribute vscControl  as true  to enable this constraint. It means 
the pre-defined VSC control settings in conv_dc.csv are included in 
the formed AC/DC OPF model. Conversely, setting vscControl  as 
false  allows the optimization to treat the control settings as decision 
variables, and the converter control constraint is excluded accordingly.

Upon completion of this phase, the optimal values of key electrical 
variables can be obtained and ready to be displayed.

2.1.4. Result display
ACDC-OpFlow designs two approaches to display results. The first 

approach directly prints the optimized results in the terminal window, 
following a style close to that of MATPOWER. The printed outputs in-
clude optimized node and branch information for both interconnected 
AC grids and the MTDC grid. In addition, users can set the attribute 
writeTxt  as true  in solve_opf  to write the printed results into 
a TXT file. The second approach provides a graphical visualization of 
power flow results. Such visualization function relies on viz_opf , 
which is integrated and called within solve_opf . This feature 
can be enabled by setting the attribute plotResult  as true  in 
solve_opf . Required plotting tools for programming languages are 
summarized in Table  5.

2.2. Software functionalities

ACDC-OpFlow is a unified framework developed for conducting 
AC/DC OPF analysis in hybrid AC/VSC-MTDC power systems. The 
framework integrates the entire OPF workflow, from data preparation 

and parameter extraction to model formulation and result presentation, 

4 

https://www.gurobi.com/academia/academic-program-and-licenses/


H. Li et al.

1

2

3

4

SoftwareX 32 (2025) 102324 
Table 3
Optimization modeling dependencies across programming languages.
 Language Dependencies (functionalities)  
 MATLAB YALMIPa (modeling interface + solver bridge)  
 Python Pyomob (modeling interface) + gurobipy (solver bridge) 
 Julia JuMPc (modeling interface) + Gurobi.jl (solver bridge)  
 C++ Gurobi C++ APId (modeling interface + solver bridge)  
a https://yalmip.github.io/.
b https://www.pyomo.org/.
c https://jump.dev/.
d https://docs.gurobi.com/projects/optimizer/en/current/reference/cpp.html.

Table 4
Optimization variable and constraint definition across programming languages.
Language Define variables Add constraints
MATLAB sdpvar(...) Cons = [Cons; expr]
Python Var(..., domain = Reals) model.addconstraints = ConstraintList()

model.addconstraints.add(expr)
Julia @variable(model, ...) @constraint(model, expr)
C++ model.addVar(..., GRB_CONTINUOUS) model.addConstr(expr)  (for linear constraints), 

model.addQConstr(expr)  (for quadratic constraints)

Table 5
Plotting tools across programming languages.
 Language Visualization tools  
 MATLAB Graph, plot, scatter, etc. (built-in plotting + network layout tools)  
 Python matplotlib (plotting tool) + networkx (network layout tool)  
 Julia GLMakie, ColorScehmes.jl, Colors.jl (plotting tool) + Graphs.jl, GraphPlot.jl (network layout tool) 
 C++ Matplot++ (plotting + network layout tools)  

supporting implementations in MATLAB, Python, Julia, and C++. A 
key feature of ACDC-OpFlow is its consistent use of Gurobi as a unified 
AC/DC OPF solver across all environments. By aligning with language-
specific conventions for data structures and mathematical modeling, 
the framework ensures high familiarity for researchers and developers. 
This design philosophy make the framework extensible in both research 
and education related to AC/DC OPF studies.

3. Illustrative examples

3.1. Running AC/dc OPF

MATLAB, Python, Julia, and C++ follows a unified running proce-
dure. As mentioned earlier, before running the AC/DC OPF, we need 
to prepare the required CSV files to save the parameter data related to 
interconnected AC grids and the MTDC grid. A custom set of CSV files 
related to the MTDC grid has been created, uniformly named under 
the prefix mtdc3slack_a . Also, a set of interconnected AC grid data 
has been created, uniformly named under the prefix ac9ac14 . In each 
programming language, users can execute AC/DC OPF through the code 
snippet as below: 

solve_opf('mtdc3slack_a', 'ac9ac14',
 'vscControl', true,
 'writeTxt', false,
 'plotResult', true)

Then, users will see the optimized AC/DC OPF results printed on 
the terminal window such that (see top of next page):

Subsequently, the results of the AC/DC OPF will be visualized, as 
shown in Fig.  6. The graphical representation allows users to intuitively 
learn the entire system-wide power flow distribution. Furthermore, for 
each programming language, the generated plots support interactive 
zooming, allowing users to check specific regions of interest in detail.

3.2. Comparing computation performances

To evaluate the performance of different programming languages 
in solving AC/DC OPF problems, we developed equivalent bench-
mark scripts in MATLAB, Python, Julia, and C++, each implemen-
tation was tested under the identical hardware condition.5 We pro-
vide four test cases, ranging in scale from relative small to relative 
large. Each case involves two main parts: the MTDC grid and the 
interconnected AC grids. In the test cases, the MTDC grid is shared 
and is named mtdc3slack_a  which represents a three-terminal 
MTDC grid in which one VSC station maintains a constant DC volt-
age as the slack node. The detailed parameter settings is originally 
from ‘‘case5_stagg_MTDCslack’’ in MATACDC.6 The interconnected AC 
grids in the test cases are ac9ac14 , ac14ac57 , ac57ac118 , 
and ac118ac300 , originally from the dataset in MATPOWER. For 
example, ac9ac14  indicates an interconnected AC network composed 
of a 9-bus AC system and a 14-bus AC system, whose detailed parameter 
setting are identical to ‘‘case9’’ and ‘‘case14’’ of MATPOWER. Each 
script was executed five times per case following three warmup runs to 
mitigate just-in-time (JIT) compilation and caching effects. Execution 
time and memory usage were recorded using language-specific timing 
and memory monitoring approaches, which are summarized in Table 
6.

Post-processing recorded the median runtime, runtime variation
(min–max), peak memory usage, and relative memory use normalized 
against the smallest test case as the baseline for each language. The 
benchmarking results are summarized in Table  7. For each case, we 
report the median execution time, run-time range, peak memory usage, 
and relative memory usage normalized to the smallest test case within 
each language. The presented results reveal clear trade-offs among the 
four programming languages in terms of the implementation of AC/DC 
OPF:

5 Benchmark scripts was executed on a laptop equipped with a 12th Gen 
Intel(R) Core(TM) i9 Processor, 32 GB of RAM, Windows environment.

6 https://www.esat.kuleuven.be/electa/teaching/matacdc
5 

https://yalmip.github.io/
https://www.pyomo.org/
https://jump.dev/
https://docs.gurobi.com/projects/optimizer/en/current/reference/cpp.html
https://www.esat.kuleuven.be/electa/teaching/matacdc


H. Li et al. SoftwareX 32 (2025) 102324 
===============================================================================================

| AC Grid Bus Data |

===============================================================================================

Area Branch Voltage Generation Load RES

# # Mag [pu] Pg [MW] Qg [MVAr] Pd [MW] Qd [MVAr] Pres [MW] Qres [MVAr]

----- ----- -------- -------- --------- ------- --------- --------- -----------

1 1 1.046* 87.560 118.622 0.000 0.000 - -

1 2 1.094 134.532 299.997 0.000 0.000 - -

1 3 1.037 93.126 91.777 0.000 0.000 - -

1 4 1.009 - - 0.000 0.000 - -

1 5 1.000 - - 90.000 30.000 40.000 -8.082

1 6 1.016 - - 0.000 0.000 - -

1 7 1.002 - - 100.000 35.000 - -

1 8 1.015 - - 0.000 0.000 - -

1 9 0.983 - - 125.000 50.000 - -

2 1 1.053* 168.897 5.726 0.000 0.000 35.000 8.989

2 2 1.027 32.396 26.193 21.700 12.700 - -

2 3 0.990 0.000 25.297 94.200 19.000 - -

2 4 0.997 - - 47.800 -3.900 - -

2 5 1.000 - - 7.600 1.600 - -

2 6 1.042 0.000 21.712 11.200 7.500 - -

2 7 1.034 - - 0.000 0.000 - -

2 8 1.060 0.000 15.435 0.000 0.000 - -

2 9 1.028 - - 29.500 16.600 - -

2 10 1.023 - - 9.000 5.800 - -

2 11 1.029 - - 3.500 1.800 - -

2 12 1.027 - - 6.100 1.600 - -

2 13 1.022 - - 13.500 5.800 - -

2 14 1.007 - - 14.900 5.000 - -

----- ----- -------- -------- --------- ------- --------- --------- -----------

The total generation cost is $10815.00/MWh(€10013.89/MWh)

... ... (omitted)

===================================================================

| MTDC Branch Data |

===================================================================

Branch From To From Branch To Branch Branch Loss

# Bus# Bus# Flow Pij [MW] Flow Pij [MW] Pij_loss [MW]

------ ----- ----- --------- --------- --------

1 1 2 31.986 -31.724 0.262

2 2 3 7.281 -7.268 0.014

3 1 3 28.014 -27.732 0.282

------ ----- ----- --------- --------- --------

The totoal DC network losses is 0.557 MW .

Execution time is 5.295s .

1
Table 6
Timing and memory monitoring methods across programming languages.
Language Timing approach Memory monitoring approach
MATLAB tic / toc et_memory_usage()
Python time.time() psutil.Process().memory_info().rss
Julia @elapsed  (from BenchmarkTools.jl ) wmic
C++ std::chrono::high_resolution_clock GetProcessMemoryInfo()

• Runtime: Julia achieved the fastest execution times across all test 
cases, leveraging JIT compilation and highly optimized numerical 
routines. C++ also exhibited strong performance. Python’s run-
time was acceptable for smaller problems but became less stable 
and slower as problem size increased. MATLAB was consistently 
the slowest, especially in larger cases.

• Memory Usage: C++ had the lowest memory use due to manual 
memory control and low overhead, making it ideal for con-
strained hardware environments. MATLAB also maintained rel-
atively low memory use through in-place operations. Python’s 
memory usage was moderate, but higher relative memory was 

observed in small cases due likely to interpreter or external library 
overhead. Julia consumes the most memory, which likely reflects 
its design choice to have more memory used to enable faster 
execution speed and array ‘‘fusion’’.

• Scalability: Julia demonstrated excellent scalability with sub-
linear growth in execution time, making it highly suitable for 
large-scale AC/DC OPF applications. C++ also scaled well, though 
development complexity increases with problem size. Python 
showed moderate scalability but suffers from too much variability 
in runtime. MATLAB did not scale significantly and failed to 
complete the largest test case.
6 



H. Li et al. SoftwareX 32 (2025) 102324 
Fig. 6. Visualization of AC/DC OPF results across programming languages. The size of   is proportional to the AC load level. The size of   is proportional to 
the AC generator power level. The size of   is proportional to the AC RES power level. The color intensity of  indicates the branch power level.

Table 7
Benchmark results summary across programming languages.
 Case Language Time [s] Time Range [s] Memory [MB] Rel. Mem. [–] 
 
ac9ac14 
+mtdc3slack_a

MATLAB 7.673 7.611–7.732 0.1 1.0x  
 C++ 0.139 0.133–0.142 0.0 0x  
 Julia 0.055 0.052–0.072 0.1 1.0x  
 Python 0.138 0.127–0.182 1.7 17.0x  
 
ac14ac57 
+mtdc3slack_a

MATLAB 157.353 154.715–166.027 5.3 0.14x  
 C++ 1.780 1.478–2.365 0.5 0.013x  
 Julia 0.233 0.202–0.940 36.8 1.0x  
 Python 1.014 0.997–1.054 2.4 0.07x  
 
ac57ac118 
+mtdc3slack_a

MATLAB 177.273 92.259–245.281 14.9 0.12x  
 C++ 3.464 3.299–4.056 0.8 0.006x  
 Julia 0.799 0.783–0.821 129.4 1.0x  
 Python 5.063 4.977–5.240 2.6 0.02x  
 
ac118ac300 
+mtdc3slack_a

MATLAB – – – –  
 C++ 38.431 37.126–38.924 0.5 0x  
 Julia 4.446 4.353–5.343 537.7 1.0x  
 Python 35.976 28.344–96.248 1.9 0.003x  
G The case ac118ac300+mtdc3slack_a is not implemented successfully for MATLAB.

4. Impact

ACDC-OpFlow is developed with reference to a broad range of 
well-established techniques in power system modeling and optimiza-
tion [1,6,11,12,19]. The computational framework incorporates a part 
of techniques, particularly those related to power flow modeling, con-
vex relaxations, and solver-based optimization, have been previously 
applied and validated in our previous studies [20,21]. Building upon 
this technical foundation, ACDC-OpFlow establishes a unified, exten-
sible framework for cross-language implementation. In pursuit of the 
traceability of the solution process, ACDC-OpFlow considers only the 
fundamental system operational constraints. As a result, its overall 
structure remains simple and is well-suited for early-stage research.

With ACDC-OpFlow, users are able to perform AC/DC OPF analysis 
in the programming language they are most familiar with. The unified 
framework design allows for seamless transition between programming 
languages, enabling users to explore other programming languages 
of interest without significant effort to adapt to unfamiliar syntax. 
Moreover, the framework encourages users to investigate a variety of 
research and engineering questions, including but not limited to:

1. How consistent are the modeling formulations, data types, and 
code structures across different programming languages when 
implementing AC/DC OPF solving?

2. What are the trade-offs between modeling flexibility, runtime 
performance, and memory usage in OPF implementations devel-
oped in different programming environments?

3. If there is any better approach to organizing dependencies and 
structuring OPF solvers across programming languages, how 
might such improvements contribute to more efficient and flex-
ible solution procedure?

At present, ACDC-OpFlow remains at an early stage of development. 
It supports basic OPF functionality aimed at minimizing total genera-
tion costs and offers limited options for modeling detailed operational 
constraints. Future developments will aim to extend the framework 
by incorporating a broader set of system-level constraints. Community 
contributions are also welcome to help enrich the functionalities of
ACDC-OpFlow.
7 



H. Li et al.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

SoftwareX 32 (2025) 102324 
5. Conclusion and future work

This work presents ACDC-OpFlow, a cross-language framework for 
solving AC/DC OPF problems, involved in hybrid AC/VSC-MTDC power 
systems. ACDC-OpFlow distinguishes itself through the key feature: a 
consistent programming modeling structure across MATLAB, Python, 
Julia, and C++, which makes it particularly well-suited for direct 
comparison of modeling syntax, solver behavior, and computational 
performance across different programming environments. The offered 
text output and graph-based visualizations, allowing users to clearly 
observe how generators, RESs, and VSCs collaborate to economically 
meet load demands.

At present, ACDC-OpFlow is in its early stage. Its functionality 
remains relatively limited and the following two aspects, as the primary 
plans, are expected to be further improved in future versions:

1. The current ACDC-OpFlow is limited to single-time-slot AC/DC 
OPF calculations and is expected to be extended to support 
multi-period analysis.

2. More flexible system operation features, such as MTDC recon-
figuration, will also be considered in future versions of ACDC-
OpFlow to better address practical scenarios.

CRediT authorship contribution statement

Haixiao Li: Writing – original draft, Validation, Software, Method-
ology. Azadeh Kermansaravi: Writing – original draft, Validation, 
Formal analysis, Conceptualization. Robert Dimitrovski: Supervision, 
Project administration, Funding acquisition. Aleksandra Lekić: Writ-
ing – review & editing, Supervision, Project administration, Funding 
acquisition, Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests: 
Haixiao Li reports financial support was provided by CRESYM Collabo-
rative Research for Energy SYstem Modelling. If there are other authors, 
they declare that they have no known competing financial interests or 
personal relationships that could have appeared to influence the work 
reported in this paper.

Acknowledgments

This work is supported by the CRESYM project Harmony (https:
//cresym.eu/harmony/).

Appendix. Representative expressions for defining variables
across programming languages

%% Variable Definition in Matlab via YALMIP

% 1D Variable (e.g., vn2_dc)
vn2_dc = sdpvar(nbuses_dc, 1);

% 2D Variable (e.g., pij_dc)
pij_dc = sdpvar(nconvs_dc, nconvs_dc, 'full');

% 2D Variable (e.g., vn2_ac)
vn2_ac = cell(ngrids, 1);
for ng = 1:ngrids

vn2_ac{ng} = sdpvar(nbuses_ac{ng}, 1);
end
% 3D Variable (e.g., pij_ac)
pij_ac = cell(ngrids, 1);
for ng = 1:ngrids

pij_ac{ng} = sdpvar(nbuses_ac{ng}, nbuses_ac{ng},
'full');↪

end

1 # Variable Definition in Python via Pyomo
2

3 # 1D variable (e.g., vn2_dc)
4  model.vn2_dc = Var(range(nbuses_dc), domain=Reals)
5 # 2D variable (e.g., pij_dc)
6  model.pij_dc = Var(range(nbuses_dc), range(nbuses_dc), 

domain=Reals)↪

7 # 2D variable (e.g., vn2_ac)
8  model.vn2_ac = Var(
9  [(ng, i) for ng in range(ngrids) for i in

range(nbuses[ng])],↪

10  domain=Reals)
11 # 3D variable (e.g., pij_ac)
12  model.pij_ac = Var(
13  [(ng, i, j) for ng in range(ngrids) for i in

range(nbuses[ng]) for j in range(nbuses[ng])],↪

14  domain=Reals)

1 # Variable Definition in Julia via JuMP
2

3 # 1D Variable (e.g., vn2_dc)
4 vn2_dc = @variable(model, [1:nbuses_dc])
5 # 2D Variable (e.g., pij_dc)
6 @variable(model, pij_dc[1:nbuses_dc, 1:nbuses_dc])
7 # 2D Variable (e.g., vn2_ac)
8 vn2_ac = Vector{Vector{JuMP.VariableRef}}(undef,

ngrids)↪

9 for ng in 1:ngrids
10 vn2_ac[ng] = @variable(model, [1:nbuses_ac[ng]])
11 end
12 # 3D Variable (e.g., pij_ac)
13 pij_ac = Vector{Matrix{JuMP.VariableRef}}(undef,

ngrids)↪

14 for ng in 1:ngrids
15 pij_ac[ng] = @variable(model, [1:nbuses_ac[ng],

1:nbuses_ac[ng]])↪

16 end

1 // Variable Definition in C++ via Gurobi C++ API
2

3 // 1D Variable (e.g., vn2_dc)
4 Eigen::Matrix<GRBVar, Eigen::Dynamic, 1>

vn2_dc(nbuses_dc);↪

5 for (int i = 0; i < nbuses_dc; ++i) {
6 vn2_dc(i) = model.addVar(-GRB_INFINITY,

GRB_INFINITY, 0.0, GRB_CONTINUOUS);↪

7 }
8 // 2D Variable (e.g., pij_dc)
9 Eigen::Matrix<GRBVar, Eigen::Dynamic, Eigen::Dynamic>

pij_dc(nbuses_dc, nbuses_dc);↪

10 for (int i = 0; i < nbuses_dc; ++i) {
11 for (int j = 0; j < nbuses_dc; ++j) {
12 pij_dc(i, j) = model.addVar(-GRB_INFINITY,

GRB_INFINITY, 0.0, GRB_CONTINUOUS);↪

13 }
14 }
15 // 2D Variable (e.g., vn2_ac)
16 std::vector<Eigen::Matrix<GRBVar, Eigen::Dynamic, 1>>

vn2_ac(ngrids);↪

17 vn2_ac[ng].resize(nbuses_ac[ng]);
18 for (int i = 0; i < nbuses_ac[ng]; ++i) {
19 vn2_ac[ng](i) = model.addVar(-GRB_INFINITY,

GRB_INFINITY, 0.0, GRB_CONTINUOUS);↪

20 }
21 // 3D Variable (e.g., pij_ac)
22 std::vector<Eigen::Matrix<GRBVar, Eigen::Dynamic,
Eigen::Dynamic>> pij_ac(ngrids);↪

8 

https://cresym.eu/harmony/
https://cresym.eu/harmony/
https://cresym.eu/harmony/


H. Li et al.

23

24

25

26

27

28

SoftwareX 32 (2025) 102324 
pij_ac[ng] = Eigen::Matrix<GRBVar, Eigen::Dynamic,
Eigen::Dynamic>(nbuses_ac[ng], nbuses_ac[ng]);↪

for (int i = 0; i < nbuses_ac[ng]; ++i) {
for (int j = 0; j < nbuses_ac[ng]; ++j) {

pij_ac[ng](i, j) = model.addVar(-GRB_INFINITY,
GRB_INFINITY, 0.0, GRB_CONTINUOUS);↪

}
}

References

[1] Beerten J, Cole S, Belmans R. Generalized steady-state VSC MTDC model 
for sequential AC/DC power flow algorithms. IEEE Trans Power Syst 
2012;27(2):821–9. http://dx.doi.org/10.1109/TPWRS.2011.2177867.

[2] Van Hertem D, Gomis-Bellmunt O, Liang J. HVDC grids: for offshore and 
supergrid of the future. John Wiley & Sons; 2016, http://dx.doi.org/10.1002/
9781119115243.

[3] Feng B, Zhao J, Huang G, Hu Y, Xu H, Guo C, et al. Safe deep reinforcement 
learning for real-time AC optimal power flow: A near-optimal solution. CSEE J 
Power Energy Syst 2024. http://dx.doi.org/10.17775/CSEEJPES.2023.02070.

[4] Sayed AR, Wang C, Anis HI, Bi T. Feasibility constrained online calculation 
for real-time optimal power flow: A convex constrained deep reinforcement 
learning approach. IEEE Trans Power Syst 2022;38(6):5215–27. http://dx.doi.
org/10.1109/TPWRS.2022.3220799.

[5] Li C, Kies A, Zhou K, Schlott M, El Sayed O, Bilousova M, et al. Optimal 
power flow in a highly renewable power system based on attention neural 
networks. Appl Energy 2024;359:122779. http://dx.doi.org/10.1016/j.apenergy.
2024.122779.

[6] Ergun H, Dave J, Van Hertem D, Geth F. Optimal power flow for AC–DC grids: 
Formulation, convex relaxation, linear approximation, and implementation. IEEE 
Trans Power Syst 2019;34(4):2980–90. http://dx.doi.org/10.1109/TPWRS.2019.
2897835.

[7] Coffrin C, Bent R, Sundar K, Ng Y, Lubin M. PowerModels. JL: An open-
source framework for exploring power flow formulations. In: 2018 power systems 
computation conference. 2018, p. 1–8. http://dx.doi.org/10.23919/PSCC.2018.
8442948.

[8] Jat CK, Dave J, Van Hertem D, Ergun H. Hybrid AC/DC OPF model 
for unbalanced operation of bipolar HVDC grids. IEEE Trans Power Syst 
2024;39(3):4987–97. http://dx.doi.org/10.1109/TPWRS.2023.3329345.

[9] ud din GM, Heidari R, Ergun H, Geth F. AC–DC security-constrained optimal 
power flow for the Australian national electricity market. Electr Power Syst Res 
2024;234:110784. http://dx.doi.org/10.1016/j.epsr.2024.110784.

[10] Valerio BC, Lacerda VA, Cheah-Mane M, Gebraad P, Gomis-Bellmunt O. An 
optimal power flow tool for AC/DC systems, applied to the analysis of the 
north sea grid for offshore wind integration. IEEE Trans Power Syst 2025;1–14. 
http://dx.doi.org/10.1109/TPWRS.2025.3533889.

[11] Gan L, Low SH. Optimal power flow in direct current networks. IEEE Trans Power 
Syst 2014;29(6):2892–904. http://dx.doi.org/10.1109/TPWRS.2014.2313514.

[12] Kocuk B, Dey SS, Sun XA. Strong SOCP relaxations for the optimal power flow 
problem. Oper Res 2016;64(6):1177–96. http://dx.doi.org/10.1287/opre.2016.
1489.

[13] Altun T, Madani R, Davoudi A. Topology-cognizant optimal power flow in multi-
terminal DC grids. IEEE Trans Power Syst 2021;36(5):4588–98. http://dx.doi.
org/10.1109/TPWRS.2021.3067025.

[14] Bastianel G, Vanin M, Van Hertem D, Ergun H. Optimal transmission switching 
and busbar splitting in hybrid AC/DC  grids. 2024, arXiv preprint arXiv:2412.
00270.

[15] Jiang Z, Liu Y, Kang Z, Han T, Zhou J. Security-constrained unit commitment 
for hybrid VSC-MTDC/AC power systems with high penetration of wind gener-
ation. IEEE Access 2022;10:14029–37. http://dx.doi.org/10.1109/ACCESS.2022.
3148316.

[16] Acdc_opflow GitHub repository. 2024, https://github.com/CRESYM/ACDC_OPF.
[17] Acdc_opflow GitHub repository manual (PDF). 2024, https://github.com/

CRESYM/ACDC_OPF/blob/main/Manual_v0.1.2.pdf.
[18] Ansari JA, Liu C, Khan SA. MMC based MTDC grids: A detailed review on 

issues and challenges for operation, control and protection schemes. IEEE Access 
2020;8:168154–65. http://dx.doi.org/10.1109/ACCESS.2020.3023544.

[19] Altun T, Madani R, Davoudi A. Topology-cognizant optimal power flow in multi-
terminal DC grids. IEEE Trans Power Syst 2021;36(5):4588–98. http://dx.doi.
org/10.1109/TPWRS.2021.3067025.

[20] Li H, Lekić A. Distributed robust optimization method for AC/MTDC hybrid 
power systems with DC network cognizant. In: 2024 international conference 
on smart energy systems and technologies. 2024, p. 1–6. http://dx.doi.org/10.
1109/SEST61601.2024.10694436.

[21] Li H, Ergun H, Van Hertem D, Lekic A. Scenario-oriented multi-cut generalized 
benders decomposition-based distributed OPF for AC/DC hybrid grids. In: 2024 
IEEE PES innovative smart grid technologies europe. 2024, p. 1–5. http://dx.doi.
org/10.1109/ISGTEUROPE62998.2024.10863082.
9 

http://dx.doi.org/10.1109/TPWRS.2011.2177867
http://dx.doi.org/10.1002/9781119115243
http://dx.doi.org/10.1002/9781119115243
http://dx.doi.org/10.1002/9781119115243
http://dx.doi.org/10.17775/CSEEJPES.2023.02070
http://dx.doi.org/10.1109/TPWRS.2022.3220799
http://dx.doi.org/10.1109/TPWRS.2022.3220799
http://dx.doi.org/10.1109/TPWRS.2022.3220799
http://dx.doi.org/10.1016/j.apenergy.2024.122779
http://dx.doi.org/10.1016/j.apenergy.2024.122779
http://dx.doi.org/10.1016/j.apenergy.2024.122779
http://dx.doi.org/10.1109/TPWRS.2019.2897835
http://dx.doi.org/10.1109/TPWRS.2019.2897835
http://dx.doi.org/10.1109/TPWRS.2019.2897835
http://dx.doi.org/10.23919/PSCC.2018.8442948
http://dx.doi.org/10.23919/PSCC.2018.8442948
http://dx.doi.org/10.23919/PSCC.2018.8442948
http://dx.doi.org/10.1109/TPWRS.2023.3329345
http://dx.doi.org/10.1016/j.epsr.2024.110784
http://dx.doi.org/10.1109/TPWRS.2025.3533889
http://dx.doi.org/10.1109/TPWRS.2014.2313514
http://dx.doi.org/10.1287/opre.2016.1489
http://dx.doi.org/10.1287/opre.2016.1489
http://dx.doi.org/10.1287/opre.2016.1489
http://dx.doi.org/10.1109/TPWRS.2021.3067025
http://dx.doi.org/10.1109/TPWRS.2021.3067025
http://dx.doi.org/10.1109/TPWRS.2021.3067025
http://arxiv.org/abs/2412.00270
http://arxiv.org/abs/2412.00270
http://arxiv.org/abs/2412.00270
http://dx.doi.org/10.1109/ACCESS.2022.3148316
http://dx.doi.org/10.1109/ACCESS.2022.3148316
http://dx.doi.org/10.1109/ACCESS.2022.3148316
https://github.com/CRESYM/ACDC_OPF
https://github.com/CRESYM/ACDC_OPF/blob/main/Manual_v0.1.2.pdf
https://github.com/CRESYM/ACDC_OPF/blob/main/Manual_v0.1.2.pdf
https://github.com/CRESYM/ACDC_OPF/blob/main/Manual_v0.1.2.pdf
http://dx.doi.org/10.1109/ACCESS.2020.3023544
http://dx.doi.org/10.1109/TPWRS.2021.3067025
http://dx.doi.org/10.1109/TPWRS.2021.3067025
http://dx.doi.org/10.1109/TPWRS.2021.3067025
http://dx.doi.org/10.1109/SEST61601.2024.10694436
http://dx.doi.org/10.1109/SEST61601.2024.10694436
http://dx.doi.org/10.1109/SEST61601.2024.10694436
http://dx.doi.org/10.1109/ISGTEUROPE62998.2024.10863082
http://dx.doi.org/10.1109/ISGTEUROPE62998.2024.10863082
http://dx.doi.org/10.1109/ISGTEUROPE62998.2024.10863082

	ACDC-OpFlow: A unified, cross-language framework for AC/DC optimal power flow solutions
	Motivation and significance
	Software description
	Software architecture
	Data preparation
	Parameter processing
	Core OPF solving
	Result display

	Software functionalities

	Illustrative examples
	Running AC/DC OPF
	Comparing computation performances

	Impact
	Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix. Representative expressions for defining variables across programming languages
	References


