

Delft University of Technology

SCA Strikes Back
Reverse Engineering Neural Network Architectures using Side Channels
Batina, Lejla; Bhasin, Shivam; Jap, Dirmanto; Picek, Stjepan

DOI
10.1109/MDAT.2021.3128436
Publication date
2022
Document Version
Final published version
Published in
IEEE Design and Test

Citation (APA)
Batina, L., Bhasin, S., Jap, D., & Picek, S. (2022). SCA Strikes Back: Reverse Engineering Neural Network
Architectures using Side Channels. IEEE Design and Test, 39(4), 7-14. Article 9615240.
https://doi.org/10.1109/MDAT.2021.3128436

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/MDAT.2021.3128436
https://doi.org/10.1109/MDAT.2021.3128436

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

72168-2364/21©2021 IEEECopublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTCJuly/August 2022

Digital Object Identifier 10.1109/MDAT.2021.3128436

Date of publication:16 November 2021; date of current version:

22 June 2022.

SCA Strikes Back:
Reverse-Engineering
Neural Network
Architectures Using Side
Channels

 Machine learning, and, more recently, deep
learning have become mainstream research and
development directions due to their unquestionable
practicality and effectiveness. The ever increasing
computational capabilities of modern computers
and huge amounts of available data result in ever
more complex and effective machine learning archi-
tectures. Deep learning algorithms gain popularity in
edge devices such as sensors or actuators, as they
are indispensable for real-time processing. Conse-
quently, there is an increasing interest in deploying
neural networks on low-power processors found in
always-on systems like ARM Cortex-M microcon-

trollers. It is expected
that by 2024, the number
of edge-based artificial
intelligence chips to be
doubled [1].

With increasing num-
ber of design strategies

and machine learning algorithms in use, fine-tuning
algorithm’s hyperparameters are emerging as one of
the main challenges. The design and training of a
machine learning model is a challenging procedure
and an expensive one, so a well-trained model has
a monetary value. For instance, the cost of training
a machine learning model can be more than $1 mil-
lion [2].

We are also witnessing an increase in intellectual
property (IP) model strategies. In cases when opti-
mized neural networks are of commercial interest,
their details must be kept undisclosed. IP thefts of
trained machine learning models through side-chan-
nel attacks are becoming a major threat. Setting
aside privacy issues, obtaining valuable information
from neural network architectures can help acquire
trade secrets from the competition, leading to losses

Lejla Batina
Radboud University,
6500 GL Nijmegen, The Netherlands

Shivam Bhasin and Dirmanto Jap
Nanyang Technological University,
Singapore 637553

Stjepan Picek
Delft University of Technology,
2628 XE Delft, The Netherlands

Editor’s notes:
This article proposes an attack that steals a neural network using
side-channel attacks.

—Jeyavijayan “JV” Rajendran, Texas A&M University

Authorized licensed use limited to: TU Delft Library. Downloaded on August 22,2022 at 09:29:36 UTC from IEEE Xplore. Restrictions apply.

8 IEEE Design&Test

2021 Top Picks in Hardware and Embedded Security

in competitive advantage. Despite the advantages
of using machine learning-enabled edge devices,
it becomes harder to ensure the confidentiality of
the developed model as the devices operate in an
environment where physical side-channels analysis
becomes a real threat.

This work was originally published in USENIX
Security 2019 [3]. Since then, several new results
have been published, inspiring this line of research
on side-channel and fault attacks on neural net-
works. Prior to this work, reverse-engineering attacks
on neural networks mostly relied on observing the
outputs of the neural network and training a sub-
stitute model or exploiting specific design choices.
This work shows that it is possible to recover the
layout of unknown neural networks by exploiting
the available physical (side-channel) information.
Our approach does not need access to training data
and allows for neural network recovery by feeding
known random inputs.

Background

Machine learning
Machine learning, in general, is based on the idea

that a system can “learn” from examples by extract-
ing patterns or discovering information without
human intervention [4]. There are many different
machine learning algorithms. Today, the most popu-
lar algorithms come from the neural network family
and are based on the deep learning paradigm.

Side-channel analysis
Side-channel analysis (SCA) exploits the vulnera-

bilities of implementations. It was first demonstrated
on cryptographic implementations [5]. SCA shows
that even for theoretically secure algorithms, observ-
ing the unintentional physical or side-channel leak-
ages (such as timing, power, electromagnetic (EM)
emanation) from their implementations could lead
to the potential recovery of secret information. Next,
we describe some of the most common methods
used in SCA, which we will also use in our attacks.
We discuss timing analysis, simple power analysis
(SPA), and differential power analysis (DPA).1

1Note that despite the attack name (power analysis), it could also be used on
another side-channel leakage, such as the EM emanation.

1. Timing analysis: When the algorithm is imple-
mented, different operations lead to different
timing execution. If the execution time depends
on sensitive parameters, it leaks sensitive infor-
mation to the adversary. In our attack, we exploit
the unique timing behavior of various activation
functions.

2. Simple power analysis: In SPA, one learns sensi-
tive information from one or a few traces, with
basic techniques like a visual inspection sup-
ported by signal processing. In the context of
neural network reverse engineering, SPA can
determine the number of neurons and even the
number of layers in some cases.

3. Differential power analysis: The attack applies
statistical techniques for the secret recovery.
The general idea is to test or identify statistical
dependencies between the physical leakage and
the hypothetical intermediate value (secret-de-
pendent). For example, the adversary could com-
pute a (nonlinear) function between the known
value and hypothetical secret. The adversary then
applies a leakage model on the output, which is
generally device-dependent (e.g., the Hamming
weight (HW) and Hamming distance model).
Statistical tests are then used to compare dif-
ferent hypothetical values (influenced by the
different hypotheses of the secret) with the phys-
ical leakage. The most commonly used statistical
method is correlation, as used, for example, in
correlation power analysis (CPA). It computes the
Pearson correlation between each hypothetical
output and the physical leakages. The hypothet-
ical secret that leads to the highest absolute cor-
relation value is then deemed the right guess. We
use CPA to recover the secret weights as well as to
determine the layer boundaries.

Model recovery techniques overview
This section provides a brief introduction to the

machine learning model recovery attack in embed-
ded devices using EM side-channels. Interested read-
ers are referred to [3] for extensive technical details
of the attack process.

Threat model
The threat model for the attack assumes an

adversary interested in recovering the architecture
(hyperparameters) and parameters of the target

Authorized licensed use limited to: TU Delft Library. Downloaded on August 22,2022 at 09:29:36 UTC from IEEE Xplore. Restrictions apply.

9July/August 2022

model. The target is a pretrained neural network
model executed on an embedded device while run-
ning inference. The adversary can query the model
with known/chosen inputs and passively observe
side-channel information corresponding to the exe-
cuted inference. For the following experiment, we
observe EM side-channel signatures, thus requiring
physical access to the device. While most model
extraction attacks need access to the original train-
ing data set (or similar data set), the attack proposed
in the following does not need access to training
data. As shown later, an adversary can feed ran-
dom known inputs to extract the model. To be as
generic as possible, we work with randomly chosen
real numbers as inputs. Finally, the target model is
assumed to have no side-channel countermeasures
implemented, which is (unfortunately) true almost
everywhere in practice today.

Experimental setup
The experimental setup comprises of the target

embedded device (e.g., 8-bit Atmel ATmega328P
and 32-bit ARM Cortex-M3), executing the model, an
EM probe to monitor side-channel activity, a digital
oscilloscope to capture measured side-channel activ-
ity, and an optional pre-amplifier to boost the meas-
ured signal. The side-channel activity is captured
using the Lecroy WaveRunner 610zi oscilloscope
using an RF-U 5-2 near-field EM probe from Langer
and a 30-dB preamplification. We use available
handshaking signals like the start/stop of computa-
tion to synchronize the measurements. Each meas-
urement (or trace) corresponds to one randomly
chosen input. Every trace is composed of several
samples (or points), where the number of samples
can go in the range of millions when measuring a
complete inference. Since we use a microcontroller,
the neurons are executed sequentially. The attack
targets leakage corresponding to the loading of sen-
sitive parameters in the data bus, which is known to
leak with the HW model, that is, proportional to the
number of bits equal to “1” in the sensitive variable
[5]. The target models are implemented in C lan-
guage and pretrained offline.

Recovering neural network parameters
First, we implement a simple multilayer percep-

tron (MLP) as a toy example. MLP is a feedforward
neural network that maps sets of inputs onto sets of
appropriate outputs. It consists of multiple layers of

nodes in a directed graph. Each node in a layer is
connected to every node in the subsequent layer,
and each connection is associated with a certain
weight parameter.

The implemented architecture consists of one
hidden layer with six neurons. Each neuron imple-
ments the input multiplication followed by the Sig-
moid activation function. The execution sequence
as captured on the side-channel trace is shown in
Figure 1. Notice that the multiplication and activa-
tion are clearly distinguishable (separated by the red
line for readability).

1) Recovering activation function: Activation func-
tions are the main nonlinear component of a neural
network [4].

As the activation function is clearly distinguisha-
ble on the captured EM trace, one can easily meas-
ure the timing execution from the EM trace and be
precise to a nanosecond scale. We observed that all
activation functions have a unique timing behavior,
which leaks information about the function used.
We analyze the timing behavior of four commonly
used activation functions: ReLU, sigmoid, tanh, and
Softmax. The timing behavior for 2,000 random
inputs is shown in Figure 2 and allows distinguish-
ing each activation function. To recover activation
functions for the whole network, an adversary feeds
random inputs and records the execution timing
for each activation function in each neuron. For a

Figure 1. Observing pattern and timing of
multiplication and activation function.

Authorized licensed use limited to: TU Delft Library. Downloaded on August 22,2022 at 09:29:36 UTC from IEEE Xplore. Restrictions apply.

10 IEEE Design&Test

2021 Top Picks in Hardware and Embedded Security

modern oscilloscope, side-channel activity for all
the neurons can be captured at once for one input,
and the same traces can be used to recover activa-
tion functions for the whole network.

2) Recovering neural network weights: The
weights of a pretrained model make the core of the
IP. In many cases, the architecture might be known
publicly, but it is the weights resulting from detailed
training that distinguishes a good model from a
bad one. We target weight recovery with CPA. It is
assumed that the adversary can synchronize the
weight multiplication from one input to another,
using widely available techniques in the side-chan-
nel literature [5].

The attack targets multiplication of secret weight
w with ith known input xi, resulting in product pi. The
leakage occurs when p is computed and stored back
in the memory. While the implementation of multi-
plication can vary (schoolbook, software-optimized,
hardware-accelerated), the storage of p will leak, and
thus it is easier to target it. On the microcontroller,
writing p to memory follows the HW leakage. Thus,
the CPA computes Pearson correlation p[t,HW(p)]
for all hypotheses of w, corresponding to a set of
inputs x. Here, t represents the set of side-channel
traces captured corresponding to inputs x. Given a
sufficient number of traces, the correlation for cor-
rect w will stand out from other wrong hypotheses.
This is analogous to secret key recovery in cryptog-
raphy, where the HW leakage of a key-dependent
intermediate value is targeted for known plaintext to
find the secret key with the highest correlation. Still,
there is an important difference. In cryptography, we
require exact key recovery, but here, some precision
errors can be tolerated.

The underlying implementation treats weights in
IEEE 754 representation, where each weight is repre-
sented in 32 bits. The most significant bit represents
the sign, the next eight bits contain the exponent, and
the remaining 23 are reserved for the mantissa. We
recover them as four independent bytes in four inde-
pendent attacks. The traces remain the same as they
all correspond to the same multiplication, and only
our hypothesis changes when moving from one byte
to another. Of course, the first two bytes are more
important, comprising of sign, exponent, and most
significant mantissa bits. The attack on the first two
bytes is shown in Figure 3. The black line represents
the correlation with the correct weight and the red
lines for incorrect weight. The y-axis represents abso-
lute correlation and the number of traces (or corre-
sponding inputs queried) on the x-axis. The attack is
considered successful when the black line depicts a
higher correlation over the red line in a conclusive
manner. With around 200 traces, the correct weight
can be identified. The same attack must be repeated
on each multiplication to recover other weights.

Recovering neural network architecture
Once the weights and activation functions are

recovered, only the architecture remains to be
recovered. This is performed using SPA, which relies
on visual inspection of side-channel measurements
to learn sensitive information.

Figure 2. Timing behavior for different activation
functions. (a) ReLU. (b) Sigmoid. (c) Tanh. (d) Softmax.

Figure 3. Recovery of weights in a neural network.
(a) First byte recovery (sign and 7-bit exponent).
(b) Second byte recovery (LSB exponent and mantissa).

Authorized licensed use limited to: TU Delft Library. Downloaded on August 22,2022 at 09:29:36 UTC from IEEE Xplore. Restrictions apply.

11July/August 2022

We noticed that the neurons have a very distinct
side-channel signature in a sequential execution
setup like ours. Consider Figure 4, which shows the
execution signature of three neural networks with
(6), (6, 5), and (6, 5, 5) architectures. Here (a, b, c)
represents a feedforward neural network with three
hidden layers and a, b, c neurons in each layer,
respectively, starting from the input layer. As shown
in Figure 4, the number of neurons can be easily
recovered with SPA. Layer boundaries are not clear
by SPA, and CPA is used for that purpose. Here, CPA
exploits the fact that neurons in the first layer will
show a higher correlation with the inputs than the
second and later layers, allowing the identification
of neurons in the first layer. The boundaries of differ-
ent layers can be determined similarly.

Evaluation
A combination of previously discussed techniques

recovers the full neural network. The recovery is per-
formed layer by layer, and neuron by neuron. The
recovery of the previous layer allows the adversary
to compute inputs to the next layer and continue
the attack to recover the weights and structure. The
methodology to reverse engineer a neural network is

displayed in Figure 5. This methodology scales line-
arly with the size of the neural network.

Reverse-engineering MLP
We consider an MLP with (50, 30, 20, 50) archi-

tecture that was previously used for side-channel
applications in [6]. This neural network is imple-
mented in ARM Cortex-M3 as it allows testing our
approach with considerably larger neural network
models than discussed up to now. All the activation
functions are ReLU except the output layer, which
uses Softmax. The measurement trace is shown in
Figure 6(a). The data set is DPAcontest v4 with 50
samples and 75,000 measurements where the first
50,000 measurements are used for training and the
rest for testing. The data set has nine classes.

The four layers and their boundaries are clearly
distinguishable. Moving forward, we show the
measurement for one neuron in the third layer in
Figure 6(b), where 20 multiplication peaks and
ReLU peaks are visible. We performed the neu-
ral network model extraction with the previously
described approach. The recovered model has an
accuracy of 0.6087, compared to 0.6090 for the orig-
inal model.

Figure 4. SPA on hidden layers. (a) (6). (b) (6, 5). (c) (6, 5, 5).

Figure 5. Methodology to reverse engineer a neural network.

Authorized licensed use limited to: TU Delft Library. Downloaded on August 22,2022 at 09:29:36 UTC from IEEE Xplore. Restrictions apply.

12 IEEE Design&Test

2021 Top Picks in Hardware and Embedded Security

Reverse-engineering CNN
We finally extend the proposed attack methodol-

ogy to convolutional neural networks (CNNs). CNNs
are inspired by the biological processes of animals’
visual cortex to process data with 2-D convolutions.
CNNs are mainly composed of convolutional layers,

pooling layers, and fully connected layers. Convo-
lutional layers are linear layers that share weights
across space. Pooling layers are nonlinear layers
that reduce the spatial size to limit the number of
neurons. Fully connected layers are layers where
every neuron is connected with all the neurons in
the neighborhood layer.

The target is the CMSIS-NN implementation on
ARM Cortex-M3 with the same measurement setup
as in previous experiments. As input, we target the
CIFAR-10 data set that consists of 60,000 32 × 32 color
images in ten classes. The CNN consists of three convo-
lutional layers, three max-pooling layers, and one fully
connected layer. We choose as target the multiplica-
tion operation from the input with the weight, similar
as before. For this experiment, the operations on real
values are performed using fixed-point arithmetic.

For the pooling layer, once the weights in the
convolution part are recovered, the output can
be calculated. Since the max-pooling layer is
based on the following conditional instruction,
conditional(if(a > max) max = a), it is straightforward
to differentiate it from the average pooling that has
summation and division operations. This technique
is then repeated to reverse engineer any number of
convolutional and pooling layers. Finally, the fully
connected layer is recovered in the same way as
done for MLP. In our experiment, the original accu-
racy of the CNN equals 0.7847, and the accuracy of
the recovered CNN is 0.7811.

Perspectives and long-term impact
Physical attacks on machine learning and deep

learning implementation have received growing
interest from the research community. While this
work [3] is one of the first works highlighting phys-
ical channel vulnerabilities on deep learning, it
was validated on microcontrollers only. Neverthe-
less, it has motivated several directions for further
research.

A natural question arises regarding the feasibil-
ity of such attacks on other hardware platforms.
Dubey et al. [7] presented the first practical model
recovery attack on FPGA platforms, followed by a
proposal to integrate masking as a countermeasure.
Recently, it was also shown that model recovery
attacks could also be performed remotely on mul-
titenant FPGA [8], thus relaxing the requirement
for physical access. Attacks on neural networks not
only threaten the recovery of confidential models,

Figure 6. Reverse-engineering neural networks on
ARM CortexM3 (a) showing full execution trace
allowing identification of each layer and (b) showing
a zoom-in at one neuron execution in the third layer
with expected 20 multiplication peaks followed by a
ReLU execution peak. (a) Full EM trace for MLP (50,
30, 20, 50). (b) EM trace for one neurons in the third
layer of MLP (50, 30, 20, 50).

Authorized licensed use limited to: TU Delft Library. Downloaded on August 22,2022 at 09:29:36 UTC from IEEE Xplore. Restrictions apply.

13July/August 2022

but the sensitive input can also be recovered with
a similar approach [9]. Chmielewski and Weissbart
[10] managed to reverse engineer implemented
neural networks on Nvidia Jetson Nano, a module
computer embedding a Tegra X1 SoC combining
an ARM Cortex-A57 CPU and a 128-core GPU within
a Maxwell architecture by using simple EM analy-
sis. Furthermore, a side-channel in a server setting
has threatened cloud-based model execution, as
demonstrated by Wei et al. [11]. A comprehensive
survey of SCA-based model recovery attacks is pre-
sented in [12].

The threat of model extraction attacks on neural
networks has also driven prompt action from the
industry. Vendors of neural network accelerators
like Intel and Nvidia also now include features for
model protection. Intel, under its OpenVINO frame-
work, recommends the use of secure enclaves for
sensitive model execution and provides features like
model encryption. Several security add-ons features
are available for vendors to enable the creation,
distribution, and application of models in a secure
setting. Nvidia, with their latest EGX100 platforms,
have introduced the concept of Confidential AI
enclaves to prevent IP theft. With the highlighted vul-
nerability from [3] and follow-up action from both
academia as well as industry, the effort to protect
sensitive machine learning models has gain momen-
tum. Alongside, we also motivate research in solving
these vulnerabilities with a holistic approach under
the security by design paradigm.

Our previOus wOrk [3] selected for Top Picks
in Hardware and Embedded Security 2020 demon-
strates that it is possible to reverse engineer neural
networks by using side-channel attacks. We devel-
oped a framework that considers each part of the
neural network separately and then, by combining
the information, manages to reverse engineer all rel-
evant hyperparameters and parameters. Our work is
a proof of concept (but also a realistic demonstra-
tion) that such attacks are possible and warns that
more effort should be given to developing counter-
measures. While we have used microcontrollers for
our experiments, the attack applies to other targets
like FPGAs and GPUs. 

Acknowledgments
This work was supported in part by the National

Research Foundation, Singapore, under its National

Cybersecurity Research and Development Pro-
gramme/Cyber-Hardware Forensic and Assur-
ance Evaluation R&D Programme under Award
NRF2018NCR-NCR009-0001.

 References
 [1] Deloitte Insights. (2020). Bringing AI to the Device:

Edge AI Chips Come Into Their Own. [Online].

Available: https://www2.deloitte.com/us/en/insights/

industry/technology/technology-media-and-telecom-

predictions/2020/ai-chips.html

 [2] E. Strubell, A. Ganesh, and A. McCallum, “Energy and

policy considerations for deep learning in NLP,” CoRR,

vol. abs/1906.02243, pp. 1–6, Jun. 2019. [Online].

Available: http://arxiv.org/abs/1906.02243

 [3] L. Batina et al., “CSINN: Reverse engineering of neural

network architectures through electromagnetic side

channel,” in Proc. 28th USENIX Secur. Symp. (USENIX

Secur.), 2019, pp. 515–532.

 [4] I. Goodfellow, Y. Bengio, and A. Courville, Deep

Learning. Cambridge, MA, USA: MIT Press, 2016.

[Online]. Available: http://www.deeplearningbook.org

 [5] S. Mangard, E. Oswald, and T. Popp, Power Analysis

Attacks: Revealing the Secrets of Smart Cards

(Advances in Information Security). Berlin, Germany:

Springer-Verlag, 2007.

 [6] S. Picek et al., “The curse of class imbalance

and conflicting metrics with machine learning for

sidechannel evaluations,” IACR Trans. Cryptograph.

Hardw. Embedded Syst., vol. 2019, no. 1, pp. 1–29,

2019.

 [7] A. Dubey, R. Cammarota, and A. Aysu, “MaskedNet:

The first hardware inference engine aiming power

side-channel protection,” in Proc. IEEE Int. Symp.

Hardw. Oriented Secur. Trust (HOST), Dec. 2020,

pp. 197–208.

 [8] S. Moini et al., “Power side-channel attacks on BNN

accelerators in remote FPGAs,” IEEE J. Emerg. Sel.

Topics Circuits Syst., vol. 11, no. 2, pp. 357–370,

Jun. 2021.

 [9] L. Batina et al., “Recovering the input of neural

networks via single shot side-channel attacks,” in Proc.

ACM SIGSAC Conf. Comput. Commun. Secur., 2019,

pp. 2657–2659.

 [10] Ł. Chmielewski and L. Weissbart, “On reverse

engineering neural network implementation on GPU,”

in Proc. Appl. Cryptogr. Netw. Secur. Workshops

(ACNS), vol. 12809, 2021, pp. 96–113, doi:

10.1007/978-3-030-81645-2_7.

Authorized licensed use limited to: TU Delft Library. Downloaded on August 22,2022 at 09:29:36 UTC from IEEE Xplore. Restrictions apply.

https://www2.deloitte.com/us/en/insights/industry/technology/technology-media-and-telecom-predictions/2020/ai-chips.html
https://www2.deloitte.com/us/en/insights/industry/technology/technology-media-and-telecom-predictions/2020/ai-chips.html
https://www2.deloitte.com/us/en/insights/industry/technology/technology-media-and-telecom-predictions/2020/ai-chips.html
http://arxiv.org/abs/1906.02243
http://www.deeplearningbook.org

14 IEEE Design&Test

2021 Top Picks in Hardware and Embedded Security

 Direct questions and comments about this article
to Dirmanto Jap, Nanyang Technological University,
Singapore 637553; djap@ntu.edu.sg.

 [11] J. Wei et al., “Leaky DNN: Stealing deep-learning

model secret with GPU context-switching side-

channel,” in Proc. 50th Annu. IEEE/IFIP Int. Conf.

Dependable Syst. Netw. (DSN), Jun. 2020,

pp. 125–137.

 [12] H. Chabanne, J.-L. Danger, L. Guiga, and U. Kuhne,

“Side channel attacks for architecture extraction of

neural networks,” CAAI Trans. Intell. Technol., vol. 6,

no. 1, pp. 3–16, 2021. [Online]. Available: https://

ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/

cit2.12026

Lejla Batina is a Professor of embedded systems
security at Radboud University, Nijmegen, The Neth-
erlands. Batina has a PhD from KU Leuven, Leuven,
Belgium. She is a Senior Member of IEEE.

Shivam Bhasin is a Senior Research Scientist
and the Programme Manager of Cryptographic Engi-
neering at Nanyang Technological University, Sin-
gapore. His research interests include embedded
security and trusted computing. Bhasin has a mas-
ter’s degree from Mines Saint-Etienne, France, and a
PhD from Telecom Paristech, France.

Dirmanto Jap is a Research Scientist at PACE
Laboratory, Temasek Laboratories, Nanyang Tech-
nological University (NTU), Singapore. His main
research topics include physical attacks and coun-
termeasures, practical fault injection, and application
of machine learning for security. Jap has a PhD in
mathematics from NTU.

Stjepan Picek is an Assistant Professor at
the Delft University of Technology, Delft, The Neth-
erlands. His research interests include security,
machine learning, and evolutionary algorithms. Picek
has a PhD.

Authorized licensed use limited to: TU Delft Library. Downloaded on August 22,2022 at 09:29:36 UTC from IEEE Xplore. Restrictions apply.

