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SCA Strikes Back: 
Reverse-Engineering 
Neural Network 
Architectures Using Side 
Channels

 Machine learning, and, more recently, deep 
learning have become mainstream research and 
development directions due to their unquestionable 
practicality and effectiveness. The ever increasing 
computational capabilities of modern computers 
and huge amounts of available data result in ever 
more complex and effective machine learning archi-
tectures. Deep learning algorithms gain popularity in 
edge devices such as sensors or actuators, as they 
are indispensable for real-time processing. Conse-
quently, there is an increasing interest in deploying 
neural networks on low-power processors found in 
always-on systems like ARM Cortex-M microcon-

trollers. It is expected 
that by 2024, the number 
of edge-based artificial 
intelligence chips to be 
doubled [1].

With increasing num-
ber of design strategies 

and machine learning algorithms in use, fine-tuning 
algorithm’s hyperparameters are emerging as one of 
the main challenges. The design and training of a 
machine learning model is a challenging procedure 
and an expensive one, so a well-trained model has 
a monetary value. For instance, the cost of training 
a machine learning model can be more than $1 mil-
lion [2].

We are also witnessing an increase in intellectual 
property (IP) model strategies. In cases when opti-
mized neural networks are of commercial interest, 
their details must be kept undisclosed. IP thefts of 
trained machine learning models through side-chan-
nel attacks are becoming a major threat. Setting 
aside privacy issues, obtaining valuable information 
from neural network architectures can help acquire 
trade secrets from the competition, leading to losses 
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in competitive advantage. Despite the advantages 
of using machine learning-enabled edge devices, 
it becomes harder to ensure the confidentiality of 
the developed model as the devices operate in an 
environment where physical side-channels analysis 
becomes a real threat.

This work was originally published in USENIX 
Security 2019 [3]. Since then, several new results 
have been published, inspiring this line of research 
on side-channel and fault attacks on neural net-
works. Prior to this work, reverse-engineering attacks 
on neural networks mostly relied on observing the 
outputs of the neural network and training a sub-
stitute model or exploiting specific design choices. 
This work shows that it is possible to recover the 
layout of unknown neural networks by exploiting 
the available physical (side-channel) information. 
Our approach does not need access to training data 
and allows for neural network recovery by feeding 
known random inputs.

Background

Machine learning
Machine learning, in general, is based on the idea 

that a system can “learn” from examples by extract-
ing patterns or discovering information without 
human intervention [4]. There are many different 
machine learning algorithms. Today, the most popu-
lar algorithms come from the neural network family 
and are based on the deep learning paradigm.

Side-channel analysis
Side-channel analysis (SCA) exploits the vulnera-

bilities of implementations. It was first demonstrated 
on cryptographic implementations [5]. SCA shows 
that even for theoretically secure algorithms, observ-
ing the unintentional physical or side-channel leak-
ages (such as timing, power, electromagnetic (EM) 
emanation) from their implementations could lead 
to the potential recovery of secret information. Next, 
we describe some of the most common methods 
used in SCA, which we will also use in our attacks. 
We discuss timing analysis, simple power analysis 
(SPA), and differential power analysis (DPA).1

1Note that despite the attack name (power analysis), it could also be used on 
another side-channel leakage, such as the EM emanation.

1. Timing analysis: When the algorithm is imple-
mented, different operations lead to different 
timing execution. If the execution time depends 
on sensitive parameters, it leaks sensitive infor-
mation to the adversary. In our attack, we exploit 
the unique timing behavior of various activation 
functions.

2. Simple power analysis: In SPA, one learns sensi-
tive information from one or a few traces, with 
basic techniques like a visual inspection sup-
ported by signal processing. In the context of 
neural network reverse engineering, SPA can 
determine the number of neurons and even the 
number of layers in some cases.

3. Differential power analysis: The attack applies 
statistical techniques for the secret recovery. 
The general idea is to test or identify statistical 
dependencies between the physical leakage and 
the hypothetical intermediate value (secret-de-
pendent). For example, the adversary could com-
pute a (nonlinear) function between the known 
value and hypothetical secret. The adversary then 
applies a leakage model on the output, which is 
generally device-dependent (e.g., the Hamming 
weight (HW) and Hamming distance model). 
Statistical tests are then used to compare dif-
ferent hypothetical values (influenced by the 
different hypotheses of the secret) with the phys-
ical leakage. The most commonly used statistical 
method is correlation, as used, for example, in 
correlation power analysis (CPA). It computes the 
Pearson correlation between each hypothetical 
output and the physical leakages. The hypothet-
ical secret that leads to the highest absolute cor-
relation value is then deemed the right guess. We 
use CPA to recover the secret weights as well as to 
determine the layer boundaries.

Model recovery techniques overview
This section provides a brief introduction to the 

machine learning model recovery attack in embed-
ded devices using EM side-channels. Interested read-
ers are referred to [3] for extensive technical details 
of the attack process.

Threat model
The threat model for the attack assumes an 

adversary interested in recovering the architecture 
(hyperparameters) and parameters of the target 
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model. The target is a pretrained neural network 
model executed on an embedded device while run-
ning inference. The adversary can query the model 
with known/chosen inputs and passively observe 
side-channel information corresponding to the exe-
cuted inference. For the following experiment, we 
observe EM side-channel signatures, thus requiring 
physical access to the device. While most model 
extraction attacks need access to the original train-
ing data set (or similar data set), the attack proposed 
in the following does not need access to training 
data. As shown later, an adversary can feed ran-
dom known inputs to extract the model. To be as 
generic as possible, we work with randomly chosen 
real numbers as inputs. Finally, the target model is 
assumed to have no side-channel countermeasures 
implemented, which is (unfortunately) true almost 
everywhere in practice today.

Experimental setup
The experimental setup comprises of the target 

embedded device (e.g., 8-bit Atmel ATmega328P 
and 32-bit ARM Cortex-M3), executing the model, an 
EM probe to monitor side-channel activity, a digital 
oscilloscope to capture measured side-channel activ-
ity, and an optional pre-amplifier to boost the meas-
ured signal. The side-channel activity is captured 
using the Lecroy WaveRunner 610zi oscilloscope 
using an RF-U 5-2 near-field EM probe from Langer 
and a 30-dB preamplification. We use available 
handshaking signals like the start/stop of computa-
tion to synchronize the measurements. Each meas-
urement (or trace) corresponds to one randomly 
chosen input. Every trace is composed of several 
samples (or points), where the number of samples 
can go in the range of millions when measuring a 
complete inference. Since we use a microcontroller, 
the neurons are executed sequentially. The attack 
targets leakage corresponding to the loading of sen-
sitive parameters in the data bus, which is known to 
leak with the HW model, that is, proportional to the 
number of bits equal to “1” in the sensitive variable 
[5]. The target models are implemented in C lan-
guage and pretrained offline.

Recovering neural network parameters
First, we implement a simple multilayer percep-

tron (MLP) as a toy example. MLP is a feedforward 
neural network that maps sets of inputs onto sets of 
appropriate outputs. It consists of multiple layers of 

nodes in a directed graph. Each node in a layer is 
connected to every node in the subsequent layer, 
and each connection is associated with a certain 
weight parameter.

The implemented architecture consists of one 
hidden layer with six neurons. Each neuron imple-
ments the input multiplication followed by the Sig-
moid activation function. The execution sequence 
as captured on the side-channel trace is shown in 
Figure 1. Notice that the multiplication and activa-
tion are clearly distinguishable (separated by the red 
line for readability).

1) Recovering activation function: Activation func-
tions are the main nonlinear component of a neural 
network [4].

As the activation function is clearly distinguisha-
ble on the captured EM trace, one can easily meas-
ure the timing execution from the EM trace and be 
precise to a nanosecond scale. We observed that all 
activation functions have a unique timing behavior, 
which leaks information about the function used. 
We analyze the timing behavior of four commonly 
used activation functions: ReLU, sigmoid, tanh, and 
Softmax. The timing behavior for 2,000 random 
inputs is shown in Figure 2 and allows distinguish-
ing each activation function. To recover activation 
functions for the whole network, an adversary feeds 
random inputs and records the execution timing 
for each activation function in each neuron. For a 

Figure 1. Observing pattern and timing of 
multiplication and activation function.
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modern oscilloscope, side-channel activity for all 
the neurons can be captured at once for one input, 
and the same traces can be used to recover activa-
tion functions for the whole network.

2) Recovering neural network weights: The 
weights of a pretrained model make the core of the 
IP. In many cases, the architecture might be known 
publicly, but it is the weights resulting from detailed 
training that distinguishes a good model from a 
bad one. We target weight recovery with CPA. It is 
assumed that the adversary can synchronize the 
weight multiplication from one input to another, 
using widely available techniques in the side-chan-
nel literature [5].

The attack targets multiplication of secret weight 
w with ith known input xi, resulting in product pi. The 
leakage occurs when p is computed and stored back 
in the memory. While the implementation of multi-
plication can vary (schoolbook, software-optimized, 
hardware-accelerated), the storage of p will leak, and 
thus it is easier to target it. On the microcontroller, 
writing p to memory follows the HW leakage. Thus, 
the CPA computes Pearson correlation p[t,HW(p)] 
for all hypotheses of w, corresponding to a set of 
inputs x. Here, t represents the set of side-channel 
traces captured corresponding to inputs x. Given a 
sufficient number of traces, the correlation for cor-
rect w will stand out from other wrong hypotheses. 
This is analogous to secret key recovery in cryptog-
raphy, where the HW leakage of a key-dependent 
intermediate value is targeted for known plaintext to 
find the secret key with the highest correlation. Still, 
there is an important difference. In cryptography, we 
require exact key recovery, but here, some precision 
errors can be tolerated.

The underlying implementation treats weights in 
IEEE 754 representation, where each weight is repre-
sented in 32 bits. The most significant bit represents 
the sign, the next eight bits contain the exponent, and 
the remaining 23 are reserved for the mantissa. We 
recover them as four independent bytes in four inde-
pendent attacks. The traces remain the same as they 
all correspond to the same multiplication, and only 
our hypothesis changes when moving from one byte 
to another. Of course, the first two bytes are more 
important, comprising of sign, exponent, and most 
significant mantissa bits. The attack on the first two 
bytes is shown in Figure 3. The black line represents 
the correlation with the correct weight and the red 
lines for incorrect weight. The y-axis represents abso-
lute correlation and the number of traces (or corre-
sponding inputs queried) on the x-axis. The attack is 
considered successful when the black line depicts a 
higher correlation over the red line in a conclusive 
manner. With around 200 traces, the correct weight 
can be identified. The same attack must be repeated 
on each multiplication to recover other weights.

Recovering neural network architecture
Once the weights and activation functions are 

recovered, only the architecture remains to be 
recovered. This is performed using SPA, which relies 
on visual inspection of side-channel measurements 
to learn sensitive information.

Figure 2. Timing behavior for different activation 
functions. (a) ReLU. (b) Sigmoid. (c) Tanh. (d) Softmax.

Figure 3. Recovery of weights in a neural network. 
(a) First byte recovery (sign and 7-bit exponent). 
(b) Second byte recovery (LSB exponent and mantissa).
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We noticed that the neurons have a very distinct 
side-channel signature in a sequential execution 
setup like ours. Consider Figure 4, which shows the 
execution signature of three neural networks with 
(6), (6, 5), and (6, 5, 5) architectures. Here (a, b, c) 
represents a feedforward neural network with three 
hidden layers and a, b, c neurons in each layer, 
respectively, starting from the input layer. As shown 
in Figure 4, the number of neurons can be easily 
recovered with SPA. Layer boundaries are not clear 
by SPA, and CPA is used for that purpose. Here, CPA 
exploits the fact that neurons in the first layer will 
show a higher correlation with the inputs than the 
second and later layers, allowing the identification 
of neurons in the first layer. The boundaries of differ-
ent layers can be determined similarly. 

Evaluation
A combination of previously discussed techniques 

recovers the full neural network. The recovery is per-
formed layer by layer, and neuron by neuron. The 
recovery of the previous layer allows the adversary 
to compute inputs to the next layer and continue 
the attack to recover the weights and structure. The 
methodology to reverse engineer a neural network is 

displayed in Figure 5. This methodology scales line-
arly with the size of the neural network.

Reverse-engineering MLP
We consider an MLP with (50, 30, 20, 50) archi-

tecture that was previously used for side-channel 
applications in [6]. This neural network is imple-
mented in ARM Cortex-M3 as it allows testing our 
approach with considerably larger neural network 
models than discussed up to now. All the activation 
functions are ReLU except the output layer, which 
uses Softmax. The measurement trace is shown in 
Figure 6(a). The data set is DPAcontest v4 with 50 
samples and 75,000 measurements where the first 
50,000 measurements are used for training and the 
rest for testing. The data set has nine classes.

The four layers and their boundaries are clearly 
distinguishable. Moving forward, we show the 
measurement for one neuron in the third layer in 
Figure 6(b), where 20 multiplication peaks and 
ReLU peaks are visible. We performed the neu-
ral network model extraction with the previously 
described approach. The recovered model has an 
accuracy of 0.6087, compared to 0.6090 for the orig-
inal model.

Figure 4. SPA on hidden layers. (a) (6). (b) (6, 5). (c) (6, 5, 5).

Figure 5. Methodology to reverse engineer a neural network.
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Reverse-engineering CNN
We finally extend the proposed attack methodol-

ogy to convolutional neural networks (CNNs). CNNs 
are inspired by the biological processes of animals’ 
visual cortex to process data with 2-D convolutions. 
CNNs are mainly composed of convolutional layers, 

pooling layers, and fully connected layers. Convo-
lutional layers are linear layers that share weights 
across space. Pooling layers are nonlinear layers 
that reduce the spatial size to limit the number of 
neurons. Fully connected layers are layers where 
every neuron is connected with all the neurons in 
the neighborhood layer.

The target is the CMSIS-NN implementation on 
ARM Cortex-M3 with the same measurement setup 
as in previous experiments. As input, we target the 
CIFAR-10 data set that consists of 60,000 32 × 32 color 
images in ten classes. The CNN consists of three convo-
lutional layers, three max-pooling layers, and one fully 
connected layer. We choose as target the multiplica-
tion operation from the input with the weight, similar 
as before. For this experiment, the operations on real 
values are performed using fixed-point arithmetic.

For the pooling layer, once the weights in the 
convolution part are recovered, the output can 
be calculated. Since the max-pooling layer is 
based on the following conditional instruction, 
conditional(if(a > max) max = a), it is straightforward 
to differentiate it from the average pooling that has 
summation and division operations. This technique 
is then repeated to reverse engineer any number of 
convolutional and pooling layers. Finally, the fully 
connected layer is recovered in the same way as 
done for MLP. In our experiment, the original accu-
racy of the CNN equals 0.7847, and the accuracy of 
the recovered CNN is 0.7811.

Perspectives and long-term impact
Physical attacks on machine learning and deep 

learning implementation have received growing 
interest from the research community. While this 
work [3] is one of the first works highlighting phys-
ical channel vulnerabilities on deep learning, it 
was validated on microcontrollers only. Neverthe-
less, it has motivated several directions for further 
research.

A natural question arises regarding the feasibil-
ity of such attacks on other hardware platforms. 
Dubey et al. [7] presented the first practical model 
recovery attack on FPGA platforms, followed by a 
proposal to integrate masking as a countermeasure. 
Recently, it was also shown that model recovery 
attacks could also be performed remotely on mul-
titenant FPGA [8], thus relaxing the requirement 
for physical access. Attacks on neural networks not 
only threaten the recovery of confidential models, 

Figure 6. Reverse-engineering neural networks on 
ARM CortexM3 (a) showing full execution trace 
allowing identification of each layer and (b) showing 
a zoom-in at one neuron execution in the third layer 
with expected 20 multiplication peaks followed by a 
ReLU execution peak. (a) Full EM trace for MLP (50, 
30, 20, 50). (b) EM trace for one neurons in the third 
layer of MLP (50, 30, 20, 50).
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but the sensitive input can also be recovered with 
a similar approach [9]. Chmielewski and Weissbart 
[10] managed to reverse engineer implemented 
neural networks on Nvidia Jetson Nano, a module 
computer embedding a Tegra X1 SoC combining 
an ARM Cortex-A57 CPU and a 128-core GPU within 
a Maxwell architecture by using simple EM analy-
sis. Furthermore, a side-channel in a server setting 
has threatened cloud-based model execution, as 
demonstrated by Wei et al. [11]. A comprehensive 
survey of SCA-based model recovery attacks is pre-
sented in [12].

The threat of model extraction attacks on neural 
networks has also driven prompt action from the 
industry. Vendors of neural network accelerators 
like Intel and Nvidia also now include features for 
model protection. Intel, under its OpenVINO frame-
work, recommends the use of secure enclaves for 
sensitive model execution and provides features like 
model encryption. Several security add-ons features 
are available for vendors to enable the creation, 
distribution, and application of models in a secure 
setting. Nvidia, with their latest EGX100 platforms, 
have introduced the concept of Confidential AI 
enclaves to prevent IP theft. With the highlighted vul-
nerability from [3] and follow-up action from both 
academia as well as industry, the effort to protect 
sensitive machine learning models has gain momen-
tum. Alongside, we also motivate research in solving 
these vulnerabilities with a holistic approach under 
the security by design paradigm.

Our previOus wOrk [3] selected for Top Picks 
in Hardware and Embedded Security 2020 demon-
strates that it is possible to reverse engineer neural 
networks by using side-channel attacks. We devel-
oped a framework that considers each part of the 
neural network separately and then, by combining 
the information, manages to reverse engineer all rel-
evant hyperparameters and parameters. Our work is 
a proof of concept (but also a realistic demonstra-
tion) that such attacks are possible and warns that 
more effort should be given to developing counter-
measures. While we have used microcontrollers for 
our experiments, the attack applies to other targets 
like FPGAs and GPUs. 
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