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Abstract

Current autonomous steering controllers are designed based on either optimal control strate-
gies or on average human driver steering behavior. Individual drivers may wish to steer dif-
ferently than those controllers do. Such conflicts can be mitigated by customizing individual
steering behavior. This thesis aims to develop a method to individualize human-like steering
controllers, using a parameter estimation technique for a human-like steering model based on
a global optimization algorithm. With this technique, the accuracy of estimated parameters
is investigated in order to help to understand the nature of driver steering behavior.

A linear human-like cybernetic steering model inspired by human physical steering control
actions is used in this thesis. In this steering model, seven parameters relate vehicles states to
steering activity, of which the parameter values can be interpreted in a physically meaningful
way. Preliminary research has demonstrated that this model structure enables parameter es-
timation of model parameters. But the current implemented parameter estimation technique
of the steering model still needs requirements on initial guesses of the parameters and the
accuracy of estimated parameters is under-investigated. In this study, parameter estimation
of the steering model is investigated by formulating an optimization problem to minimize
the prediction error. To deal with the nonlinearity of the optimization problem, a genetic
algorithm is complemented with the Levenberg-Marquardt algorithm. This thesis presents
the parameter estimation process in two steps. In the first step, the steering model generates
a data set by simulating it with known parameters. This data set is used to estimate the
steering model parameters and the results are compared with the known parameter set. Ac-
curate parameter estimation results could not be reached in this first step, which is shown to
be caused by over-parameterization of the steering model. Two parameters in the neuromus-
cular system of the steering model are then simplified to mitigate the over-parameterization
problem and the other five parameters are remained. These five parameters can be estimated
accurately by examining the metrics of VAF and Euclidean distance after the model simpli-
fication. In the second step, a simulation data set from a different validated human-vehicle
model is used for parameter estimation to demonstrate the algorithm. It is shown that with
the simplified steering model, the proposed parameter estimation technique can estimate con-
sistent parameter values with good VAFs. A cross-validation test is also implemented to give
the corroborative evidence to indicate over-parameterization of the steering model.
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Chapter 1

Introduction

Over the last decades, the automotive industry has achieved important developments in the
autonomous vehicle research and the autonomous steering system has been a crucial part of
it. Researchers are studying and validating the autonomous steering system due to its huge
marketing and research potential [5].

1-1 Background

In autonomous vehicle systems and driver support systems, one perspective is to make the
systems behave like a human driver. This is expected to promote trust and understanding,
and ultimately driving comfort and safety [6]. One significant issue is to let the autonomous
vehicle mimic human driver driving styles [7]. However, the autonomous steering system has
not yet been designed under those considerations. Current steering controllers are mainly de-
signed in two different ways. One way is that by comparing the real vehicles states with high-
definition mapping data, the steering controllers determine the most optimal track [8, 9, 10].
But these steering controllers usually would not take human-like driving details into account
while controlling the car. The other way is that the steering controllers are designed based on
average human driver steering behavior [11]. However, one problem of this design mechanism
is that the steering controllers do not customize the steering preference of individual human
drivers. In reality, individual drivers may wish to steer differently than those steering con-
trollers do. In Fig. 1-1, an illustration is given to show that those two individual drivers have
totally different steering behavior compared with the steering controller. Acceptable safety
margins are individual and drivers may feel “comfortable when driven by some people, and
uncomfortable by others” [12]. Those differences and uncomfort can be regarded as driving
conflicts [6, 13]. Driving conflicts influence human drivers’ acceptance of the autonomous sys-
tem. Most drivers would like to recover control from autonomous systems if they did not like
the way those controllers drive [14]. Moreover, conflicts influence automation use, resulting
in failures of monitoring or decision making [15]. Since human driver steering behavior and
acceptance to the autonomous steering system should be considered appropriately during the
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2 Introduction

steering controller design process, it is important and necessary to understand and differen-
tiate individual human driver steering behavior. At the same time, only limited research has
been done for this purpose and the results are still inconclusive due to their limitations (i.e.,
the use of a highly simplified model [16]).

Second driver path 

First driver path 

(a) Two individual human driver steering be-
havior

Controller path  

(b) Steering controllers behavior

Figure 1-1: Illustration between the steering behavior of individual human driver and the behavior
of steering controllers.

1-2 Problem Motivation

The model-based parameter estimation methods can be used to identify different human
driver behaviors [17]. A human-like steering model can be used to reflect different modalities
of human steering control actions. The steering model parameters can be used to quantify
human control effects and describe human steering behavior [4, 18]. Parameter estimation
is a tool for estimating model parameters and can be used to understand and individualize
human steering control behavior. In the parameter estimation process, a suitable steering
model that enables parameter estimation needs to be investigated and a suitable parameter
estimation technique needs to be developed to accurately estimate parameters. However, due
to limited research, some problems remain open.

A. Individualizing steering controllers only based on highly simplified models
Currently, research on individualizing steering behavior uses simple steering models
[16, 19, 20]. These studies only consider steering control actions as a simple control
process (i.e., future lateral error correction) and do not consider human characteristics
for steering. As a result, human driver steering behavior cannot be described correctly
and conflicts occur.

B. Limitations on parameter estimation technique
Frequency domain parameter identification techniques have been employed for steering
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1-3 Goals of Master Thesis 3

system identification [21, 22]. In the frequency domain techniques, nonparametric fre-
quency response functions need to be estimated as the first step. Then parameters of a
parametric model are optimized to fit to the frequency response functions. The accuracy
of the parameter estimation is affected by the biases that originate from both identifica-
tion steps [23]. On the other hand, although the time domain identification techniques
need less requirements compared with the frequency domain techniques, only a few
studies have been done in the literature to apply the time domain parameter estimation
techniques for the steering system. Meanwhile, the implemented time domain param-
eter estimation techniques still have limitations (i.e., they need good initial guesses in
the estimated parameters [24]).

C. Inconclusive on accuracy of parameter estimation results
Different degrees of control actions are represented by different parameters values in the
human steering mechanism [18]. For example, during the steering process, the visual
compensation is always used by human drivers to keep the vehicle in lane and this
compensation induces jerky steering actions [25]. A high compensation gain can be
explained by the fact that a human driver has more reliance on near visual information
and vice versa. Parameter values are hence significant since they can be interpreted in a
physically meaningful way. Understanding how drivers use different control modalities
is useful for researchers to understand the nature of driver steering behavior. Hence, it
is important to estimate those parameters accurately, although under some conditions
different parameter combinations may give the same response. This problem is under
investigation. The relative parameter estimation studies at this moment do not focus
on the accuracy of the estimated parameters, but only focus on the performance of
replicating the desired behavior [23, 26].

1-3 Goals of Master Thesis

The conflicts between the individual human drivers and steering controllers influence the ac-
ceptance of human drivers on the autonomous steering system and it is important to customize
individual steering behavior to mitigate those conflicts. To investigate the way to individ-
ualize human driver steering behavior and related proposed research problems, this master
thesis aims to develop a parameter estimation technique for the human steering model and
evaluate to what extent this technique can estimate individual steering behavior.

A. Model selection
Many researchers have proposed human-like steering models. Based on the previous
research and proposed steering model selection criteria [27], this study selects a suitable
structured human-vehicle steering model.

B. Parameter estimation technique
This study develops a time domain parameter estimation technique to identify the spec-
ified parameters of the selected model. The technique seeks to need less requirements
and steps for parameter estimation.

C. Accuracy of parameter estimation
This study investigates to what extent the parameter estimation technique can estimate
the true parameter set.
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4 Introduction

1-4 Research Approach and Process

This study starts with the development of a human-vehicle steering model. A human-like
cybernetic steering model which incorporates human steering control actions is used in this
thesis [4]. In this model, seven parameters relate vehicle states to steering activity, of which
the parameter values can be interpreted in a physically meaningful way to represent the
nature of the driver steering behavior. This model structure has been adopted by preliminary
research for identification and it is demonstrated to enable parameter estimation of model
parameters [21]. A vehicle dynamics model with two degrees of freedom is built [2]. These
two models are combined as a whole human-vehicle steering model.

This study is presented in two steps. In the first step, a known parameter set is given as
the parameter reference to investigate how accurate the model parameters can be estimated.
A time domain data for parameter estimation is generated from the selected steering model
with this known parameter set.

A time domain parameter estimation algorithm based on the global optimization technique
is used to decrease the parameter estimation bias. The parameter estimation results are
compared with the known parameter set. The accuracy of the estimated parameters is in-
vestigated both for the full steering model and the simplified steering model to overcome the
over-parameterization problem. Global sensitivity analysis is implemented to give a quanti-
tative analysis to indicate parameter interactions.

Simulation data can get rid of uncertainties compared with real experimental data. Therefore
in the second step, a different validated human-vehicle model generating data is used for
parameter estimation.

The thesis is organized as follows. The human-vehicle steering model selection is introduced
along with the data generated in Chapter 2. The parameter estimation technique development
and implementation details are introduced in Chapter 3. Parameter retrieval analysis of the
known parameters is done as the first step in this chapter. In Chapter 4, parameter estimation
based on a simulated data set is intended to validate the theory in Chapter 3 as the second
step. Final conclusions and recommendations for future work and final conclusions are given
in Chapter 5.
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Chapter 2

Human-Vehicle Steering Model

The steering task represents a human-machine interface between the driver and the vehicle.
The knowledge of the vehicle lateral dynamics and how drivers interact with the vehicle states
are essential to design vehicle lateral control strategies. Human drivers use the knowledge of
perceptual abilities, physical skills and understanding for steering. In order to capture human
drivers’ steering behavior and increase human drivers’ acceptance of the steering controllers,
those factors should be considered in autonomous steering systems and driver support systems
design process [28]. Although many researchers have applied classic control methods (i.e.,
optimal control) to synthesize the steering control process [8, 10], human factors are not
considered in those studies which could lead to misuse of automation [29]. As a result, it is
important to model the steering controllers in a human-like way. Also, to mimic the steering
task, the vehicle lateral dynamics is often complemented to build closed loop simulation
scenarios. A typical human-vehicle steering system is depicted in Fig. 2-1. It is shown
that the haptic sensation through the steering wheel is the way to represent the interactions
between human drivers and vehicle lateral dynamics and human drivers use perceptions as
well as the vehicle states feedback to make decisions on steering actions.

Driver 
Steering 

Column 

Vehicle 

Dynamics 
Perception 

Human Vehicle 

Vehicle states 

Road info  

Human 

operations 

Steering 

wheel 

Figure 2-1: Schematic of human-vehicle steering systems [1].
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6 Human-Vehicle Steering Model

Before studying the parameter estimation technique, a suitable choice of the human-vehicle
model is needed to reflect steering process of human drivers. In this chapter, details of the
selected human-vehicle steering model are discussed.

2-1 Vehicle Model

2-1-1 Vehicle dynamics model

The vehicle lateral dynamics model is built based on a single track model [2]. Figure 2-2
represents the vehicle dynamics model with two degrees of freedom. The lateral dynamics
model of the vehicle is built from the local reference frame on a horizontal plane. The two
degrees of freedom are represented by the lateral position of the vehicle and the yaw angle of
the vehicle. The lateral position of the vehicle is measured along the lateral axis of the vehicle
to the center of rotation of the vehicle. The yaw angle of the vehicle ψ (rad) is measured with
respect to the global axis XI . The longitudinal velocity and lateral velocity of the vehicle at
the center of gravity are denoted by Vx (m/s) and Vy (m/s) along with the local coordinate
axes of the vehicle Xv and Yv, respectively. The variables Fyf (N) and Fyr (N) are the lateral
tire forces of the front and rear tires, respectively. The variable m (kg) is the vehicle mass.
The distances of the front tire and rear tire to the center gravity of the vehicle are denoted as
lf (m) and lr (m), respectively. The notation cog is the center of gravity of the vehicle. The
vehicle side slip angle is denoted as β (rad). The radius of the road bend is denoted as Rref
(m). The steering angle of front tire is denoted as δ. The current lateral error is denoted as
e (m) and defined as the difference between the lateral position of the vehicle and the center
of the lane. Then the future lateral error is defined as yL (m). The calculations of e and yL
are given in Section 2-2-2.

The vehicle lateral dynamics is given by Newton’s second law of motion along the axis Yv:

may = m(V̇y + Vxψ̇) = Fyf + Fyr (2-1)

where ay (m/s2) is the inertial acceleration of the vehicle at the center of gravity.

The moment balance for the yaw dynamics is given by

Izψ̈ = Iz ṙ = lfFyf − lrFyr (2-2)

where r (rad/s) is the yaw rate and Iz (kg ·m2) is the moment of inertia of the vehicle about
the yaw axis.

Experimental results have shown that the lateral force of a tire is proportional to the slip
angle when the slip angle is small [30]. These results are used to model the lateral tire forces
Fyf and Fyr. Figure 2-3 gives the illustration of the slip angle of a tire and it is shown to be
defined as the angle between the orientation of the tire and the orientation of the tire velocity
vector.

Considering the vehicle as a front-wheel-drive vehicle, the slip angles of the front tire and the
rear tire are given by

αf = δ − θvf (2-3)
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2-1 Vehicle Model 7





vX


vY

e

Ly

rl

fl

refR

IX

IY

yrF

yfF

cog

V

Figure 2-2: Schematic of the single track vehicle model [2].

Tire 



vf

V 

Slip angle 

Figure 2-3: Illustration of front tire slip angle [2].

αr = −θvr (2-4)

where θvr (rad) and θvf (rad) are the angles between the tire velocity vector and the longi-
tudinal axis of the vehicle.

The front and rear tire lateral forces are given by

Fyf = 2Cαfαf (2-5)

Fyr = 2Cαrαr (2-6)

where Cαf (N/rad) and Cαr (N/rad) are the front and rear tire cornering stiffness, respec-
tively.
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8 Human-Vehicle Steering Model

Using small angle approximation [31], the two angles θvf and θvr are given by

θvf = Vy + lf ψ̇

Vx
(2-7)

θvr = Vy − lf ψ̇
Vx

(2-8)

The linearized models which represent vehicle lateral dynamics are consequently given by

V̇y = −2Cαf + 2Cαr
mVx

Vy + (−Vx −
2Cαf lf
mVx

+ 2Cαrlr
mVx

)r + 2Cαf
mSr

δSW (2-9)

ṙ = −2lfCαf + 2lrCαr
IzVx

Vy + −2lf 2Cαf − 2lr2Cαr
IzVx

r + 2lfCαf
IzSr

δSW (2-10)

where δSW (rad) is the steering wheel angle and Sr is the steering transmission ratio from
the steering wheel to the front tire.

2-1-2 Steering column dynamics model

The steering column system plays a significant role to capture interactions between the driver
and vehicle. It provides haptic feedback to deliver the information of the vehicle lateral dy-
namics to the driver. Here the steering column dynamics is modeled as a spring-mass-damper
system [11], with the torque being applied by the driver. The steering column dynamics is
given by

δ̈sw = −Kw

Jw
δsw −

Bw
Jw

δ̇sw + 1
Jw
T (2-11)

where T (N ·m) is the torque that the human drvier implements on the steering wheel. The
variable Jw (kg ·m2) is the steering wheel rotational inertia. The variable Kw (N ·m/rad) is
the steering wheel stiffness and the variable Bw (N ·m · s/rad) is the damping of the steering
wheel.

2-2 Human-Like Steering Control Model

To replace human drivers in steering control tasks, steering controllers should be modeled in
the human-like way. Human factors should be considered while designing autonomous steering
controllers to make the steering controller behave like real human drivers and increase human
drivers’ acceptance of the autonomous steering system. Multiple human-like steering models
have been proposed in literature. A suitable human-like steering model is selected here based
on the criteria as detailed below.

2-2-1 Human-like steering control model selection criteria

Specified human-like steering model selection criteria have been proposed in the literature
[27]. The steering model should be evaluated according to the following criteria,
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2-2 Human-Like Steering Control Model 9

A. Reflection of human characteristics
Important human steering characteristics should be considered appropriately in the
steering model. For example, research on human factors indicates that visual compen-
sation and anticipation are commonly observed in the guidance and control level of
human steering for vehicle lateral control [32].

B. Demonstrated model performance
The human-like steering model should demonstrate the ability to replicate the steering
process of human drivers.

C. Identification feasibility
The model structure should enable system identification and parameter estimation of
the model parameters.

The steering process of a human driver can be regarded as a process of multiple tasks. Various
schemes have been proposed in literature. McRuer and Krendel [33] used a crossover driver
steering model which assumes human drivers take steering actions to correct lateral errors.
However, it was shown that the primary sensory channel which is used by divers for the
steering task is visual preview information [34]. A brief and straightforward demonstration
of effects of using preview information for the human steering process was introduced in
the literature [35]. Donges [32] proposed significant understanding of various visual control
strategies in which the steering task is divided into two visual levels. One is the anticipatory
control mode and this control mode provides smooth steering control actions for tracking the
future curvature which serves the purpose of the guidance. The other control mode is the
compensatory control mode and this control mode is used for the lane keeping of the vehicle,
which serves the purpose of stabilization of the steering process [36]. The importance of
those two levels has been confirmed by several pioneering studies [37, 38]. Modjtahedzadeh
and Hess [39] have used the anticipatory module as the steering controller and McRuer and
Krendel [40] has used the compensation module as the steering controller. More recently,
Salvucci and Gray [16] explored the results of Donges and developed a PI controller to model
the two-level control scheme.

However, these models are limited as-

i) The steering models only consider parts of human preview information and do not
combine these two visual control modules together.

ii) The structures of the steering models give little information on how drivers operate the
vehicle.

iii) The identification feasibility of the steering models has not been investigated.

Mars, Saleh et al. [4] proposed the human-like cybernetic two-point visual steering model with
the Neuromuscular System (NMS) and this steering model contains the preview information of
both the anticipation module and the compensation module. Moreover, it considers physical
operations of drivers. The steering model incorporates road information to present visual
scenes of drivers which are known as a far point and a near point. Also, it was demonstrated
that this steering model is a prime candidate model for parameter estimation in curve steering
tasks [21]. As a result, this steering model, which satisfies the selection criteria and overcomes
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10 Human-Vehicle Steering Model

disadvantages of previous models, is used for this parameter estimation study. Details of this
steering model are given as follows.

2-2-2 Human visual perception and road geometry

The couplings between the vehicle and the human driver are through visual perception and
road geometry. The steering model in the literature [4] uses a two-point control scheme. A far
point is often at the tangent point. A near point is at a small distance ahead. Several studies
have proven that human drivers focus their attention on these two points in their visual field
of view [27]. Geometric expressions of visual observations on these two points are given by
two angles: θfar and θnear. These two angles can be determined from the road geometry and
they are illustrated in Fig. 2-4. The angles θfar and θnear correspond to those two visual
points, where θfar is the visual angle between the vehicle heading direction and the tangent
point of the road curve and θnear is the visual angle between the near view point and the
vehicle heading direction.

far
near

L

far
pl

Tangent Point 

Gaze Direction 
Lane Centerline 

Near Point 

farD
Car heading 

Ly

O

1
r




Figure 2-4: Relations between drivers’ vision and road geometry [3].

In Fig. 2-4, the variable ψL (rad/s) is the yaw angle error and defined as the difference
between the vehicle yaw angle and desired orientation of the vehicle. The variable lp (m) is
the look ahead distance for a near point. The variable ρ (1/m) is the road curvature, which
is defined to be the reciprocal of the road curve radius. The variable Dfar is the distance
between the vehicle and the tangent point.

The change rate of the vehicle desired orientation is defined as [2]:

ϕ̇des = Vx
R

= Vxρ (2-12)

Using small angle approximation, the future lateral error yL (m) is given by

yL = e+ lpψL = e+ lp(ψ − ψdes) (2-13)
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2-2 Human-Like Steering Control Model 11

The far angle and near angle are given using small angle approximation by

θfar = Dfar

Vx
ρ (2-14)

θnear = yL
lp

+ ψL (2-15)

2-2-3 Human-like cybernetic steering control model

The steering model in the literature [4] contains four main parts: visual anticipatory module,
visual compensatory module, visual processing delay module and NMS module. The related
block diagram is depicted in Fig. 2-5. The inputs to the driver model are the two visual
angles θfar, θnear and the steering wheel angle δSW . The steering model uses the anticipatory
module and the compensatory module for steering control and uses the haptic feedback to
model the NMS which represents the physical operations of drivers to the vehicle. The relative
implemented torque is denoted as Tdr.

NMS 

 
 

far

near

+ -
SW

( )cG s

( )aG s

+ 
+ 

 
 1( )kG s

2( )kG s

+

+ ( )nmG s
drT

Anticipation 

Compensation 

Delay 

( )LG s

Figure 2-5: Schematic of the human-like cybernetic steering model [4].

In the visual anticipatory module, the model uses a proportional term to track the future
reference trajectory:

Ga = Kp (2-16)

The visual compensatory module is used for correcting instantaneous variations based on the
perceived visual near angle and these corrections are related to the vehicle speed. A driver
uses the near point information to keep the vehicle on the center lane. The corresponding
transfer function is given by

Gc = Kc

Vx

TLs+ 1
TIs+ 1 (2-17)

where TL and TI are the lead and lag time constants, respectively. The variable Kc is the
proportional gain for correcting variations.
The human central nervous system and peripheral delay are incorporated in visual processing
delay module. This delay is represented by Padé approximation

GL = e−τps ≈
1− τp

2 s

1 + τp
2 s

(2-18)
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12 Human-Vehicle Steering Model

where τp is the delay time.

The NMS is modeled by considering drivers’ adaption to the feedback force and it considers
that the adaption is through an internal model of steering system compliance. Transfer
functions Gk1 and Gk2 represent the internal model of steering column stiffness and human
haptic feedback control action, respectively. They are given by

Gk1 = Kr · Vx (2-19)

Gk2 = Kt (2-20)

The NMS of a driver’s arm GNM is a first order transfer function as follows:

GNM = 1
TNs+ 1 (2-21)

2-2-4 Combined human-vehicle steering model

The vehicle dynamics model and human steering model can be combined as a closed loop
model and it is depicted in Fig. 2-6. The inputs of the model come from the road information.
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Figure 2-6: Structure of the combined human-vehicle steering model, selected for the current
study [4].

The closed loop model depicted in Fig. 2-6 can be written in a state space formulation as
follows:

ẋ(t) = Ax(t) +Bu(t) (2-22)
y(t) = Cx(t) +Du(t) (2-23)
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2-2 Human-Like Steering Control Model 13

with the state vector [Vy r ψL δSW δ̇SW x1 x2 x3]T , the inputs road curvature ρ and
lateral error e.
Here the states x1, x2 and x3 are selected and represented into the state space form in the
analytical way as follows:

x1
x2
x3

 =


θnear
TIs+1

1
( τp2 s+1)

[
Kpθfar − Kc

Vx
(1 + TLs)x1

]
Tdr


Details of the mathematical derivations of x1, x2 and x3 are given in the Appendix A.
The state-space matrices A and B of the continuous model in Eq. 2-22 are given as follows:

A =



−2
Cαf+Cαr
mVx

−Vx−2
Cαf lf−Cαrlr

mVx
0

2Cαf
mSr

0 0 0 0

2
−lfCαf+lrCαr

IzVx
2

−lf
2Cαf−lr2Cαr

IzVx
0

2lfCαf
IzSr

0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 −Kw

Jw
−Bw
Jw

0 0 1
Jw

0 0 2
TI

0 0 − 1
TI

0 0

0 0 − 4KcTL
VxτpTI

0 0 2Kc(TL−TI )
VxτpTI

− 2
τp

0

0 0 2(KrVx+Kt)KcTL
TnVxTI

−Kt
Tn

0 − (KrVx+Kt)Kc(TL−TI )
TnVxTI

− 2(KrVx+Kt)
Tn

− 1
Tn



B =



0 0
0 0
−Vx 0

0 0
0 0
0 1

lp
2KpDfar

τp
− 2KcTL
τpVxTI lp

−Kp(KrVx+Kt)Dfar
Tn

Kc(KrVx+Kt)TL
TnVxTI lp


The matrix C in Eq. 2-23 are used to output the torque and the steering wheel angle and
given as follows:

C =
[
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0

]

The D matrix is a zero matrix here.
Parameters which reflect human driver perceptual and control modalities are given as follows:[

Kp Kc TI TL τp Kr Kt TN
]

TN is fixed during the simulations (TN = 0.1), depending on many precedent works that have
led to the same value [4]. Another seven parameters are regarded as unknown parameters
and they need to be estimated in order to individualize human steering behavior.
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14 Human-Vehicle Steering Model

2-3 Parameter Estimation Data Choice

In order to investigate to what extent the selected model can be used for parameter estimation
on measured data, several possible data sets can be employed:

A. Real vehicle and real human experimental data
Real life data sets contain too many real world uncertainties and are not available for
this research.

B. Simulator and real human experimental data
In simulator studies the vehicle dynamics and environment are known exactly, but the
data set still captures the variability within and between drivers.

C. Simulation data
A simulation with an assumed driver model and known parameters can also be used to
generate a data set. The main benefit is that a ground truth for the parameters is now
available.

In this study, the data set C is chosen in order to get rid of uncertainties of the real exper-
imental data and evaluate the parameter estimation algorithm, by comparing the estimated
parameters to the ground truth of the known parameters.

In the first step of this study, a known parameter set is used to generate time domain data to
investigate the accuracy of estimated parameters. By this means, the estimated parameter
set can be compared with the known parameter set. In the second step, a different validated
human-vehicle model in the literature [41] is used to generate the time domain data for the
parameter estimation and it is chosen because it uses the preview information and does not
contain real human uncertainties. The vehicle dynamics parameters are given in Table 2-1
[41]. Road information (near and far point distance) is fixed [24].

Table 2-1: The parameters of the vehicle dynamics model

Parameter Symbol Value Unit
Longitudinal speed Vx 25 m/s

Vehicle mass m 1600 kg
Front tire cornering stiffness Cαf 30000 N/rad
Rear tire cornering stiffness Cαf 30000 N/rad

Vehicle yaw moment of inertia Iz 3136 kg ·m3

Front axis distance lf 1.4 m
Rear axis distance lr 1.4 m

Steering wheel rotational inertia Jw 0.2 kg ·m2

Steering wheel stiffness Kw 4.2 N.A
Steering wheel damping Bw 1 kg ·m

Steering gear ratio Sr 15 N.A
Near point distance lp 5 m
Far point distance Dfar 20 m

The known parameter set is chosen from multiple simulations to guarantee the performance of
the generated data by comparing the generated data with the existed data from the validated
model in the literature [41]. The reason why the known parameter set is not directly selected
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2-3 Parameter Estimation Data Choice 15

from the literature [24] is that there are a few changes in the model structure. Using those
parameters directly induces unstable dynamic response and hence the parameters need to be
re-tuned.

Saleh, Chevrel et al. [24] used the torque for parameter estimation and the steering wheel
angle for validation. The same strategy is consistently used here as a starting parameter
estimation strategy. The known parameter set is given in Table 2-2 and the related generated
data is given in Fig. 2-7. The simulation time is 50 seconds. In this study, the positive
lateral deviation means that the vehicle is at the left side of the center lane. The positive
road curvature means that the vehicle turns left.

Table 2-2: The known parameter set

Parameter Kp Kc TI TL τp Kr Kt

Value 0.11 7.78 2.96 1.53 0.001 2.46 6.15
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Figure 2-7: The simulation data for parameter estimation from the known parameter set.

To show that the inputs signal are rich enough, the persistently exciting of the inputs signal
is examined. It shows that the inputs signal are persistently exciting of order n of the steering
model if and only if there exists an integer N such that the matrix


u(0) u(1) · · · u(N − 1)
u(1) u(2) · · · u(N)
...

... . . . ...
u(n− 1) u(n) · · · u(N + n− 2)
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16 Human-Vehicle Steering Model

has full rank n [42]. Here it is shown that when the length of N is selected as the length of
whole data, the inputs are persistently exciting of the order of the steering model (which is
eight). So the inputs signal are shown to be rich enough for parameter estimation.

2-4 Sub-conclusion

This chapter motivates the selection of a human-vehicle steering model, which can serve for
our goal to capture differences in individual driving behavior. The human-like cybernetic
steering model is chosen, based on the following criteria: 1) It captures driving behavior in
meaningful physiological parameters. 2) It is shown in literature to be able to be used for
parameterization of average driver behavior. The selected model and its parameters have
been explained in detail.

This chapter also motivates the procedure followed to validate the model’s capabilities using
data generated by driver models in simulation, using two steps. In the first step of this
study, the data is initially generated from a known parameter set to examine the accuracy of
estimated parameter results. In the second step, simulation data generated from the validated
model is used for parameter estimation. The known parameter set and related data for the
first step are given in this chapter.
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Chapter 3

Parameter Estimation Results of
Known Parameters

This chapter presents the first step of this study. A parameter estimation technique is de-
veloped and implemented to the human-like cybernetic model based on the generated data
of the known parameter set. The accuracy of the estimated parameters is investigated by
comparing the estimated parameters with the known parameter set.

3-1 Parameter Estimation Technique

Parameter estimation of the selected cybernetic steering model is a nonlinear problem since
the parameters of the model have nonlinear interactions. Saleh, Chevrel et al. [24] used this
steering model and minimized the prediction error to estimate the parameters, but required
good initial guesses of the initial parameter set. This is a severe weakness for a parameter
estimation technique intended to capture individual differences.

Many different techniques can be applied for parameter estimation purposes. In general, two
groups of parameter estimation can be used: parameter estimation in the frequency domain
and time domain [23].

Parameter estimation in the frequency domain can be done in a two-step approach. In the first
step, the frequency response functions are identified using Fourier coefficient method or linear
time invariant models (i.e., ARMAX) [42]. In the second step, these nonparametric frequency
response functions are used to fit a parametric model. One advantage of this technique is that
the first step contributes as a data reduction step and the parameter optimization process
becomes more efficient [23]. However, this two-step strategy increases the bias and variance
in the estimated parameters. On the other hand, this method is always used in the case that
a model structure is unknown beforehand [21, 22].

Parameter estimation in the time domain directly fits a parametric model on the time domain
data. One disadvantage of this method is that more computational power is required since
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18 Parameter Estimation Results of Known Parameters

time domain data contains more points than the frequency response functions. However, the
one-step fitting characteristic decreases the bias and variance of the estimated parameters
compared with the frequency domain method [23]. Since one goal in this study is to examine
the accuracy of estimated parameters and the steering model structure is known beforehand,
a time domain technique is used for this study.
In this study, the parameter estimation problem is formulated as an optimization problem
and the objective is to minimize the prediction error. The objective function is given by

min
N∑
k=1

(yest − y)2 (3-1)

Here N is the total amount of data. The symbol yest is the estimated output from the steering
model and y is the raw data for parameter estimation. The nonlinearity of objective function
results in additional local minima.
In the first step, the data set used for parameter estimation comes from the known parameter
set. To increase the probability of finding the global optimum of the optimization problem,
the Levenberg-Marquardt algorithm used to minimize the prediction error is complemented
with a genetic algorithm.

3-1-1 Global optimization technique–Genetic algorithm

Global optimization algorithm can yield promising solutions on finding global optimum [43].
Among the existing algorithms, genetic algorithm is widely used to solve parameter estimation
problems in many applications [44, 45]. Unlike gradient-based optimization algorithms, a
genetic algorithm searches the optimum by mimicking the process of biological evolution.
The algorithm begins with setting a collection of parameters and the parameters need to be
coded. Two common used coding methods are binary coding and real coding [46]. The binary
coding codes the parameters in the binary representation. It has been shown that the binary
representation have difficulties to deal with continuous search spaces when the numerical
precision of estimation is required [47]. On the other hand, the real coding represents the
genes as real numbers for optimization problems with parameters in continuous domains and
it could increase the accuracy of estimated parameters. In this coding method, a chromosome
is a vector of floating point numbers, the precision of the numbers depends on the precision
of the computer calculating ability [46]. So in this study, real coding method is used for
coding the parameters. The real-coded mechanism is shown as follows. Considering that the
Wl is the chromosome where l = 1, ..., n and n is the population size, Wl can be represented
as (wl1 , wl2 ,...,wlk) where w is one of the parameters that need to be estimated and k is
total number of parameters. In other words, each gene within a chromosome represents a
parameter in the optimization problem. Then the algorithm solves the given minimization
task through random genetic functions such as selection, mating, crossover and mutation [43].
These functions cause the population to evolve towards better solutions (i.e, more fit) and
the asymptotic convergence of the estimation error has been proved [44].
The genetic algorithm in this study is used to solve the optimization problem in Eq. 3-1 to find
the steering model parameters. The algorithm starts by generating a uniformly distributed
population within the certain ranges. The population fitness is calculated and iterations are
performed in the following way [43].
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3-1 Parameter Estimation Technique 19

• “Parents” selection. Two solutions are selected as “parents” through fitness proportion-
ate selection [48]. The fitness is used to associate a probability of selection with each
individual solution. If fi is the fitness of individual i in the population, its probability
of being selected is pi = fi

M∑
k=1

fi

, where M is the population size. These two solutions will

mate and produce off-springs.

• After the parents are selected, off-springs are generated using crossover with a certain
probability. Here the scattered crossover method is used since the asymptotic conver-
gence of the error has been shown by using this method [49]. This type of crossover
creates a random binary vector whose length equals to the number of parameters. Then
the genes are selected from the first parent if the element in this vector is a 1, or from
the second parent if the element in this vector is a 0. Then the selected genes are com-
bined to form the first child, and vice versa to form the second child. The procedure is
illustrated as follows:
consider two chromosomes with four parameters are selected as parents to apply the
scattered crossover to them

Parent 1 P1 = (p1
1, p

1
2, p

1
3, p

1
4)

Parent 2 P2 = (p2
1, p

2
2, p

2
3, p

2
4)

with a random vector 1001

Child 1 C1 = (p1
1, p

2
2, p

2
3, p

1
4)

Child 2 C2 = (p2
1, p

1
2, p

1
3, p

2
4)

• Consider that Wl = (wl1 ,..., wli ,...,wlk) is a chromosome with k parameters and wli is in
the domain [ci, di]. Then wli has a certain probability to mutate to a random number in
[ci, di] [50]. The mutation provides genetic diversity and enables the genetic algorithm
to search a broader space.

• The algorithm will stop if the number of generations reaches the limitation.

A genetic algorithm can avoid converging to local minima using a population that represents
many possible solutions and it provides a high probability to approach the global optimum.
On the other hand, a genetic algorithm is not deterministic and could give different results
every time they are run [23]. A local optimization technique can be used to refine the results
of parameter estimation.

3-1-2 Levenberg-Marquardt algorithm

The solutions of the genetic algorithm have a high probability to approach the global optimum.
Since the solutions have approached to the global optimal point, the solutions of the genetic
algorithm are used as the initial parameter estimations for the Levenberg-Marquardat opti-
mization to refine those solutions. Since the solutions have been close to the global optimum,
the parameter refining process is considered here to be a unconstrained optimization problem
to find the global optimum. It is concluded that for unconstrained nonlinear non-convex
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20 Parameter Estimation Results of Known Parameters

optimization problems, the Levenberg-Marquardt algorithm is considered as the highest pref-
erence since it converge fast to the optimal point [43]. The algorithm is developed from the
Newton algorithm with a refined Hessian matrix and given by

xk+1 = xk − (λI +H(xk))−1∇f(xk) (3-2)

where λ is selected appropriately to avoid that the inversion of Hessian matrix is numerically
ill-conditioned.

The termination of the algorithm is given as follows:

‖∇f(xk)‖2 ≤ ε (3-3)

where ε is the stopping tolerance.

3-1-3 Metrics for parameter estimation

Two metrics are used for evaluation of parameter estimation results.

• Variance Accounted For (VAF) [42]. VAF is a criterion for evaluating the data fitness
degree and it ranges from 0% to 100%. The higher the VAF is, the lower the prediction
error is and the better the data fitting is. The formula is given by

V AF (y, yest) = max(0, (1−

1
N

N∑
k=1
‖y − yest‖22

1
N

N∑
k=1
‖y‖22

) · 100%) (3-4)

• Euclidean distance [51]. In mathematics, Euclidean distance is the distance between
two points in Euclidean space. Considering two points P = (p1, p2, ..., pn) and Q =
(q1, q2, ..., qn) in n dimension of Euclidean space in Cartesian coordinates, the distance
between P and Q is given by

d(P,Q) =

√√√√ n∑
i=1

(qi − pi)2 (3-5)

3-2 Parameter Estimation Results of Known Parameters

The data set in Fig. 2-7 is used to estimate the parameters of the cybernetic steering model.
The seven parameters of the steering model need to be estimated since they reflect the human
drivers steering control actions and operations. The parameters ranges for a genetic algorithm
are given in Table 3-1. Here the ranges in literature [4] are softened since the parameters
values are sensitive to the vehicle structure and parameters. Since the self-aligning torque
is not considered and different vehicle parameters are used in this model, the upper bounds
are softened to guarantee those bounds large enough to account for all relevant solutions of
the estimation problem and the lower bounds of parameters are set to 0 according to the
conclusions in the literature [4].
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3-2 Parameter Estimation Results of Known Parameters 21

Table 3-1: Lower and upper parameter bounds used in the genetic algorithm

Parameter Anti.
gain

Comp.
gain

Comp. lag
time constant

Comp. lead
time constant

Processing
time delay

Angle to
torque

coefficient

Neuromuscular
reflex gain

Symbol Kp Kc TI TL τp Kr Kt

Lower bound 0 0 0 0 0 0 0
Upper bound 30 35 15 15 0.1 30 30

Typically, the population size for the genetic algorithm is 200 and 100 iterations with the
genetic algorithm are performed. Those are selected to increase the possibilities that the
genetic algorithm could search the solution space thoroughly, thereby reducing the chance
that the algorithm returns a local minimum. Crossover probability is set to 0.7 and mutation
probability is set to 0.01. Those parameters are selected according to the suggestions in the
literature [23]. Then the solution of the genetic algorithm is used as the initial parameter set
for the Levenberg-Marquardt optimization. The factor λ and tolerance ε are set to 0.01 and
10−6 by trail and error, respectively. 10 repetitions of whole algorithm chain are performed
on the data set for estimated parameters comparison. The torque is used for parameter
estimation and the steering wheel angle is used for validation. An illustration of one repetition
of the genetic algorithm iterations are given in Fig. 3-1. The upper plot gives the parameter
estimation progress and the lower plot gives the the values of the estimated parameters.
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Figure 3-1: An illustration of the genetic algorithm iteration.

It is shown in Figure 3-1 that the prediction error shows asymptotic characteristic of conver-
gence to estimate the parameters and the first several points fitness values are not shown in
the plot since they are very large. Details of the data fitting and parameter estimation results
are given in Table B-1. Figure 3-2 gives one illustration of the good data fitting results for
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torque and steering wheel angle. The satisfactory data fitting results are expected since the
data originates from the model.
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Figure 3-2: The time domain data fitting results of the full steering model.

A straightforward illustration of the distributions of the estimated parameters are given in
Fig. 3-3. The plot shows the distributions of the seven estimated parameters from the 10
repetitions. For each individual parameter, 10 sets of the estimated parameters distribute
differently compared with the known parameters and large interactions have occurred among
those parameters. In Table B-1, the results of Euclidean distance also demonstrate that the
estimated parameter sets are not close to the known parameter set if the estimated parameter
sets are considered to be the points of the seven dimensional space. It is shown that the
parameter estimation results need to be improved since the estimated parameters are not
accurate compared with the known parameters.

One suggestion to improve the parameter estimation results is to use the steering wheel
angle as the identification data [24]. Another 10 repetitions of parameter estimation are
performed. Table B-2 gives the results of estimated parameters and data fitting. Good
data fitting performance is shown from the results which give collaborative evidences that
the global optimization algorithm has the ability on replicating the output behavior when
the model matches the data. On the other hand, the comparisons of Euclidean distance
between the torque estimated parameters and the steering wheel angle estimated parameters
are given in Fig. 3-5. From the Euclidean distance comparisons, the steering wheel angle
estimated parameter sets are getting closer to the known parameter set comparing with the
torque estimated parameter sets, if the parameter sets are considered as the points of seven
dimensional space. The results indicate that by changing the identified data sets, the accuracy
of estimated parameters could be improved. Furthermore, the distributions of estimated
parameters are given in Fig. 3-4. It can be seen that for each individual parameter, the
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Figure 3-3: The parameter estimation results of full steering model, the torque as identified data.

estimated parameters still distribute differently compared with the known parameter set and
the accuracy of the estimated parameters is still problematic. Large interactions among the
parameters still exist.

Although the output performance can be replicated, accurate parameter estimation is also
important since the parameters values can be interpreted in a physically meaningful way
and reflect the nature of how human use different modalities for steering control. Inaccu-
rate parameter estimations lead to misunderstandings of human steering control behavior.
Analytical ways need to be investigated to improve the accuracy of estimated parameters.

3-3 Steering Model Parameter Interactions Analysis–Global Sensi-
tivity Analysis

Through the two identification results, parameter interactions are shown and they influence
the accuracy of estimated parameters. A tool to analyze the parameter interactions could
contribute to the evaluation of the model quality. Global sensitivity analysis is such a tool
that can reveal the interactions among the parameters.

Global sensitivity analysis uses variance metric to quantify the contribution of input parame-
ters variability to the total variance of the outputs [52]. Assuming that y = f(X) is the model
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Figure 3-4: The parameter estimation results of the full steering model, the steering wheel angle
as identified data.
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Figure 3-5: The Euclidean distance from the estimated parameters to the known parameter set.

function in which y is the output and X = (x1, x2, ..., xn) contains n input parameters, each
parameter has a uniform probability density function in a certain range. A general method to
evaluate the impact of variability of a singe input parameter to the output variance is called
the first order sensitivity index [53] and the formula is given by

Si = var{E[y|xi]}
var{y} i = 1, ..., n (3-6)
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Here E[y|xi] is the conditional expectation of all possible xi. Then the variance of the con-
ditional expectation E[y|xi] can be calculated. Equation 3-6 normalizes this variance with
the unconditional variance of y to get the first order sensitivity index. The index Si ranges
between 0 and 1. The index measures the main contribution of the variability of input xi to
the output variance and does not consider the interactions between xi and other parameters.
If the first order index of the parameters is large, it means that the variance of y mainly
comes from the variability of xi and if the first order index of each parameters is small, the
variance of y mainly comes from the interactions among the parameters [52].

3-3-1 Calculations of the first order sensitivity index of parameters

This section aims to give mathematical implementations about how to solve Equation 3-6, in
order to calculate the first order index which could be used to indicate the degree of parameter
interactions in the steering model [54]. Firstly a decomposition is used to interpret how
Equation 3-6 can be calculated mathematically. Then the Monte Carlo method is introduced
such that the decomposition can be efficiently computed.
Assuming that I is the unit interval [0, 1], In is the n dimensional unit hypercube and x ∈ In.
All the integrals below are from 0 to 1 for each variable and dx = dx1...dxn. Considering
y = f(X) is square-integrable in the unit hypercube In and X is the vector of n inputs
variables (x1, ..., xn). It is possible that f(X) can be written as follows [52]:

f(x) = f0 +
n∑
s=1

n∑
i1<...<is

fi1...is(xi1 , ..., xis) (3-7)

Here 1 ≤ i1 < is ≤ n and the total number of terms in Eq. 3-7 is 2n. This formula is called
ANalysis Of VAriance (ANOVA) of f(X) [54]:∫

fi1...is(xi1 , ..., xis)dxi1 ...dxis = 0 (3-8)

In this condition, terms in Eq. 3-7 can be given as integrals of f(X):∫
f(X)dx =f0 (3-9)∫
f(X)

∏
k 6=ij

dxk =f0 + fij (xij ) (3-10)

∫
f(X)

∏
k 6=ij ,is

dxk =f0 + fij (xij ) + fis(xis) + fijis(xij , xis) (3-11)

Here k = i1, ..., is and 1 ≤ j < s. The variable f0 is the expected value of the model output.
Sobol proposed the idea to calculate the variance of the terms in ANOVA decomposition [54].
Since f(X) is assumed to be square integrable, define

Di1...is =
∫
f2
i1...is(xi1 , ..., xis)dxi1 ...dxis (3-12)

By squaring Equation 3-7 and integrating over In, the results are given as follows [54]:∫
f2(x)dx− f2

0 =
n∑
s=1

n∑
i1<...<is

Di1...is (3-13)
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Define the constant D as follows:

D =
∫
f2(x)dx− f2

0 (3-14)

The variance relation is hence given by

D =
n∑
s=1

n∑
i1<...<is

Di1...is (3-15)

Then considering Sobol’s definition, the first order sensitivity index is given as follows [54]:

Sis = Dis

D
(3-16)

It is shown that calculating the first order index of the parameters xis depends on calculating
the unconditional variance D of y and the conditional expectation Dis , which need to compute
multi-dimensional integrals. The Monte Carlo method uses the probabilistic interpretation to
efficiently approximate the multi-dimensional integral calculations [55] and can be constructed
in the following way.

Consider a set π1 of m variables where 1 ≤ m ≤ n− 1 to be given by

π1 = (xi1 , ..., xim) (3-17)

Then π2 is the complementary set of π1 and contains n −m variables. Then X = (π1, π2)
represent the all the inputs variables.

Define two independent points of X which are uniformly distributed in In as follows

X1 = (π(1)
1 , π

(1)
2 ) X2 = (π(2)

1 , π
(2)
2 ) (3-18)

Assuming there are N independent trials of X1 and X2, it has been proven that the following
four approximations can be given [54]:

1
N

N∑
i=1

f(X1i)
P−→ f0 (3-19)

1
N

N∑
i=1

f2(X1i)
P−→ D + f0

2 (3-20)

1
N

N∑
i=1

f(X1i)f(π(1)
1i , π

(2)
2i ) P−→ D(π1) + f2

0 (3-21)

The sign P−→ in these four equations means the stochastic convergence. Then Dis of Eq. 3-16
can be calculated from Eq. 3-21 when π1 contains one variable xis . The total variance D can
be expressed by Eq. 3-20. Then the first order index in Eq. 3-16 can be calculated.
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3-4 Mitigating Over-Parameterization–Model Simplification 27

3-3-2 Interactions analysis of steering model

It is proven that the global sensitivity analysis can be used for an arbitrary hyperspace
[52, 53, 54]. Then the first order sensitivity index of the seven parameters in the steering model
can be analyzed by Eq. 3-16. Here the ranges of the parameters are set to be 80% ∼ 120%
of the known parameter set (in Table 2-2). The value of the variable N is selected as 2000
to have the stochastic convergence. The first order index of the parameters to the steering
wheel angle fitness are investigated. The analysis results are given in Fig. 3-6.
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Figure 3-6: The full steering morel parameters first order index, seven parameters.

From Fig. 3-6, it can be seen that the interactions among the parameters are very large since
the first order indices are very small. One explanation of the large interactions among those
seven parameters could be that excessive numbers of parameters are used in the steering model
and make the steering model parametrically inefficient. On the other hand, the accuracy of
estimated parameters is influenced by the parameter interactions. It is shown that although
the data can be fitted well, the parameters combinations have a high level of uncertainties
and that can be one characteristic of model over-parameterization [56]. In short, the large
interactions among the parameters could be one explanation to show that the steering model
is over-parameterized.

3-4 Mitigating Over-Parameterization–Model Simplification

One possible way to mitigate the over-parameterization problem is to simplify the steering
model and make the steering model parametrically efficient. In this human-like cybernetic
steering model, the NMS system follows a haptic force feedback law through an internal
model of the steering system compliance [4]. Human operations are correlated with the
vehicle longitudinal speed Vx and the haptic feedback from the steering wheel. Since the
vehicle speed is kept unchanged, a reasonable simplification method is to simplify the NMS
system and tune the steering column dynamics such that the steering wheel angle is kept
unchanged. As a result, the two parameters Kr and Kt are simplified to mitigate the over-
parameterization problem. A schematic of the simplified steering model structure is depicted
in Fig. 3-7.
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Figure 3-7: Schematic of the simplified steering model structure.

Table 3-2: The initial known parameter set of the simplified steering model, the first parameter
set

First set Kp Kc TI τp TL
0.11 7.78 2.96 0.001 1.53

The steering wheel angle of the simplified steering model approximates the steering wheel
angle of the full steering model by tuning the steering column dynamics. The eight states
of the steering model [Vy r ψL yL δSW δ̇SW x1 x2 x3] are compared between the
simplified steering model and the full steering model. The comparison results of those eight
states are given in Fig. 3-8. It is shown that the eight states of the full steering model
and the simplified steering model are almost the same, which demonstrate that the model
simplification is reasonable and the steering model can be modeled in a more parametrically
efficient way.

After the steering model is simplified, the rest of five parameters that need to be estimated
are [Kp Kc TI TL τp]. Staring with the initial known parameter set in Table 2-2, the
parameter estimation technique which has been used for the full steering model parameter
estimation is repeatedly implemented to the simplified steering model. The steering wheel
angle is used for parameter estimation. The initial parameter set is again given in Table 3-2.

The parameter estimation technique is repeated 10 times. Comparisons of the estimated
parameters and the known parameters are given in Fig. 3-9(a). An improvement of the
accuracy of the estimated parameters has been shown. The estimated parameters converge
to the unique value which is near the initial parameter set. It means that when the over-
parameterization of the full steering model is mitigated, the left five parameters of the sim-
plified steering model can be estimated accurately with the developed global optimization
technique. The Euclidean distance of the estimated parameter sets to the known parameter
set is given in Fig. 3-9(b). The Euclidean distance from ten estimated parameter sets to the
known parameter set are almost same and it gives collaborative evidence that the estimated
parameters are near the initial known parameter set. The details of the estimation results
are shown in Table B-3. It can be seen that the data fitting performance is also good with
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Figure 3-8: Comparisons of the model states between the full steering model and the simplified
steering model.

high VAFs which indicate the ability of the algorithm to replicate the output behavior.

To validate the effect of mitigating over-parameterization on parameter estimation, the initial
known parameters are tuned to formulate four new parameter sets and these four tuned
parameter sets are given in Table 3-3. These four parameter sets can be regarded as another
four known parameter sets. The developed parameter estimation technique is implemented to
estimate those four parameter sets back. The accuracy of estimated parameters is examined
by comparing the results of parameter estimation with those four known parameter sets using
the simplified steering model.

The comparisons of steering model states of these four parameter sets between the full steering
model and the simplified steering model are given from Fig. B-1 to Fig. B-4, respectively.

Table 3-3: The tuned parameter sets for the simplified steering model, the first parameter set
to the fifth parameter set

Parameter set Parameters value
First set 0.11 (Kp) 7.78 (Kc) 2.96 (TI) 0.001 (τp) 1.53 (TL)
Second set 0.17 (1.5Kp) 6.27 (0.8Kc) 1.48 (0.5TI) 0.003 (τp) 1.22 (0.8TL)
Third set 0.44 (4Kp) 3.89 (0.5Kc) 5.92 (2TI) 0.01 (10τp) 0.76 (0.5TL)
Fourth set 0.09 (0.8Kp) 1.68 (1.5Kc) 11.84 (4TI) 0.006 (6τp) 3.06 (2TL)
Fifth set 1.1 (10Kp) 15.56 (2Kc) 4.44 (1.5TI) 0.002 (1.5τp) 2.29 (1.5TL)
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Figure 3-9: The parameter estimation results of the simplified steering model, the first parameter
set.

From the simplification results, it is clearly that the new four parameter sets represent another
four different steering behaviors and the simplification results show that the states are almost
the same comparing between the full steering mode and the simplified steering model, which
shows that the full steering model can be modeled using fewer parameters.

The developed parameter estimation technique is repeated 10 times for parameter estimation
of each parameter set. The comparisons between the estimated parameters and the corre-
sponding known parameter set are given in Figs. 3-10 and 3-11. The second set to the fourth
set represent the satisfactory parameter estimation results. The estimated parameter sets
are accurate compared with the corresponding known parameter set. For the fifth set, the
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parameter estimation results have a little scattering performance. But the estimated param-
eters are still in a small area near the initial known parameter set. One explanation of the
results is that there are still interactions among the parameters. However, the model over-
parameterization has been mitigated and the parameter estimation technique can estimate
the parameters accurately. Moreover, the results of Euclidean distance from the estimated
parameters to the corresponding known parameter set are given in Fig. 3-12. The results
also give collaborative evidences that the estimated parameters are near the corresponding
initial known parameter set. Details of the estimated parameters of each parameter set are
given from Table B-4 to Table B-7. The results have shown that the data fitting results are
good as expected. The parameter estimation validations using these four new parameter sets
show the effects of model simplification.

One may notice that for the parameter τp, there are discrepancies between the estimated
results and the known value. This can be explained by a local sensitivity analysis of τp. When
τp varies in a small range (i.e., from 0 to 0.02) and other parameters are kept unchanged, the
steering wheel fitting results do not change. An example of the local sensitivity analysis of τp
with the first parameter set has been shown in Fig. B-5. The problem can be regarded as a
limitation of current technique: when there are multiple global optimal points, the technique
can only converge to a random one.

Since the over-parametrization of the full steering model has been mitigated, a global sensi-
tivity analysis is implemented again to the simplified steering model to investigate the degree
of interactions. The result is given in Fig. 3-13. The first oder index of the parameters of
the simplified steering model are compared with the parameters of the full steering model. It
shows that interactions among the parameters have decreased.

3-5 Sub-conclusion

This chapter takes the first step to estimate the proposed steering model parameters which are
set to be known in advance. A time domain parameter estimation technique is developed to
increase parameter estimation accuracy. A global optimization technique (a genetic algorithm
complemented with the Levenberg-Marquardt method) is explained in detail and implemented
to estimate the steering model parameters.

The parameter estimation results are examined using the metrics VAF and Euclidean dis-
tance. The data performance can be replicated well. But the estimated parameters are
inaccurate and present large interactions among the parameters which could be from the
over-parameterization of the steering model. Those interactions are analyzed through global
sensitivity analysis.

Model simplification is proposed to solve the over-parameterization problem of the steering
model. By simplifying two parameters in NMS and tuning the steering column dynamics,
the model can be simplified while keeping the steering wheel angle unchanged. Under this
condition, several simulations show that the parameters can be estimated accurately.
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(a) The second parameter set
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(b) The third parameter set

Figure 3-10: The parameter estimation results of the simplified steering model, the second
parameter set and the third parameter set.
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(a) The fourth parameter set
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(b) The fifth parameter set

Figure 3-11: The parameter estimation results of the simplified steering model, the fourth
parameter set and the fifth parameter set.
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(a) The second parameter set
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(b) The third parameter set
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(c) The fourth parameter set
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Figure 3-12: The Euclidean distance of the simplified steering model from the estimated param-
eters to the corresponding known parameter set.
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Figure 3-13: Comparison between the first order index of the simplified steering model parameters
and the full steering model parameters, five parameters.
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Chapter 4

Parameter Estimation of Unknown
Parameters

The time domain parameter estimation algorithm has been proposed to solve the steering
model parameter estimation problem and the estimated parameters have been compared
with the known parameters as the first step. In the second step of this study, the parameter
estimation algorithm is used to identify a parameter set by using a data set which is simulated
from another validated human-vehicle steering control model.

4-1 Parameter Estimation Based on Simulation Data

A new simulated data set is generated to validate the parameter estimation algorithm as
the second step of this study. The data set is generated from the validated human-vehicle
steering control model [41]. The model uses the human future preview information for the
vehicle lateral control and the generated data is considered to represent one category of human
drivers who have similar steering preferences. The collected data set is given in Fig. 4-1. The
same category of data sets is used here which has been used in the previous chapter. The
inputs signal here are also persistently exciting of the steering model order using the same
method in the Chapter 2 and can be used for parameter estimation.
Parameter estimation is started with the full steering model. The torque is used for parameter
estimation and the steering wheel angle is used for validation. The genetic algorithm comple-
mented with the Levenberg-Marquardt algorithm is implemented to minimize the prediction
error. 10 repetitions of the developed algorithm are performed for the parameter estimation.
One illustration of data fitting is given in Fig. 4-2. Satisfactory data fitting results are ob-
tained from the parameter estimation. One may notice that the high frequency components
in the torque could not be captured. This can be regarded as one limitation of the cybernetic
steering model and it shows that the steering model does not have the ability to capture the
high frequency components and the steering model structure should be refined to incorpo-
rate those components before implementing the parameter estimation algorithm to the real
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Figure 4-1: Collection of the simulation data for parameter estimation.

experimental data set. Real human drivers always implement high frequency operations to
the steering wheel. For example, Kolekar [11] has explained some high frequency components
that need to be considered in the human-like steering model design.
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Figure 4-2: Illustration of the simulation data fitting.

The illustration of the estimated parameters of the full steering model is given in Fig. 4-
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4-1 Parameter Estimation Based on Simulation Data 37

3. Details of the results are given in Table B-8. The results show that the data fitting
performance is good and the steering model has the ability to capture most of the information
in this simulation data set. However, the estimated parameters of each individual parameter
have a scattering distribution and do not converge to the unique value. Large parameter
interactions are shown among the estimated parameters. These results are expected since
these large parameter interactions are induced from the steering model over-parameterization
from the analysis in Chapter 3 and the steering model should be simplified to mitigate the
over-parameterization and make the steering model parametrically efficient.
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Figure 4-3: The parameter estimation results of the full steering model based on the simulation
data.

To mitigate the steering model over-parameterization, the method which is indicated in Chap-
ter 3 is used and the NMS system is simplified by approximations. The steering column
dynamics is tuned through a couple of simulations to adapt to the model simplification. For
parameter estimation problem on real experimental data, one challenge could be simplifica-
tion of the NMS. One comparison of the simplification results between the full steering model
and the simplified steering model is given in Fig. B-6. It is shown that the simplification
results are satisfactory that the steering wheel angle of the simplified steering model is almost
same compared with the steering wheel angle of the full steering model.

Parameter estimation results for the simplified steering model are given in Fig. 4-4. Details
of the results are given in Table B-9. The results show that the data fitting results are good
as expected and the parameter estimation results indicate that the estimated parameters for
each parameter are in a small region which has a high possibility to be the place of the real
parameter from the analysis results in Chapter 3. They converge to the unique values and
those results prove again that the model over-parameterization has been mitigated. However,
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38 Parameter Estimation of Unknown Parameters

one important notice is that the accuracy of estimated parameters depends on the accuracy of
NMS approximation. On the other hand, the parameter estimation results can be influenced
by whether the model structure matches the data or not.
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Figure 4-4: Parameter estimation illustration of the simplified model based on the simulation
data.

A cross-validation test is implemented for model validation. The inputs of the steering model
are the curvature and lateral error. The identification data batch is divided into two parts:
the first 2/3 of the total samples is used for the parameter estimation and the final 1/3 is
used for assessing the quality of the model. The cross-validation is implemented for both the
full steering model and the simplified steering model. Results are given in Fig. 4-5. The
results indicate that the simplified steering model has a better fitting than the full steering
model. With less data information, the simplified steering model can replicate the data
information better than the full steering model, which indicates the full steering model is
over-parameterized.

4-2 Sub-conclusion

In this chapter, the simulation data set is collected from the validated model to test the
parameter estimation algorithm. By implementing the parameter estimation technique to
the full steering model, parameters cannot be estimated accurately. The simplified steering
model with an approximation of NMS system is implemented for parameter estimation to
mitigate the over-parameterization of the full steering model. The estimated parameters
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Figure 4-5: The cross-validation with the full steering model and the simplified steering model.

are located in an area where real parameters have a high probability to be. The parameter
estimation results depend on the approximation accuracy of NMS. On the other hand, whether
the model structure matches the data or not also influences the parameter estimation results.
If the steering model lacks the ability on capturing some parts of human characteristics, the
results of estimated parameters could be inaccurate.
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Chapter 5

Conclusions and Recommendations

5-1 Conclusions

The contribution of this study is that this study developed a versatile parameter estimation
technique to estimate a well-structured human-like steering model parameters in order to
help to individualize human steering control behavior. The general literatures on this subject
have limitations on developed parameter estimation techniques. Those literatures are also
inconclusive on whether true parameters are estimated accurately. The developed technique in
this work softens the stringent requirements that current implemented parameter estimation
techniques need for estimating the steering model parameters. This study also investigated
how accurate the steering model parameters can be estimated since the parameters of the
human-like steering model have definite physical meanings reflecting the nature of human
steering control mechanism. The main workload of this thesis is on building the steering model
and related parameter estimation algorithm in MATLAB and doing parameter estimation
simulations based on different types of data.

The main conclusions of this study are:

• When the developed parameter estimation technique was implemented on the simulation
data generated by the full cybernetic steering model itself, it could estimate parameters
from the steering model with high VAFs (over 99%) for steering torque and steering
wheel angle. However, the steering model is over-parameterized and therefore the es-
timated parameters could not converge to the true parameters using this developed
technique.

• A simplified steering model structure mitigated the over-parameterization problem and
allowed the technique to estimate the true parameters with high fitting (VAFs over
99.9%) for the steering wheel angle.

• A second and more strict validation method was used, where parameter estimation of the
simplified model was implemented on the data generated by a different steering model,
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thereby essentially making it less possible for the model to capture data information
perfectly. Again, the developed method yielded consistent parameters values, with high
VAFs (over 99%) for the torque and steering wheel angle fitting. A cross-validation
was also implemented to show that the simplified steering model yielded better VAF
(99.8%) for the steering wheel angle than the full cybernetic steering model (VAF 99%).

In conclusion, the developed approach was promising for the tested model-generated data.
The technique can be used to differentiate different human driver steering characteristics if
the used steering model is not over-parameterized.

5-2 Recommendations

The future work will focus on the human-in-the-loop experimental test. The developed tech-
nique has several main parts that need to be considered before the technique could be applied
to customize steering controllers to drivers on real roads:

A. Model revisions

• A more accurate vehicle dynamics model can be investigated to match the data
obtained by human-in-the-loop experiments instead of using a single track model.
• This steering model assumes the vehicle is operated under a constant longitudinal
velocity. The acceleration and deceleration cases can be considered for human-in-
the-loop experiments.
• High frequency components of human operations and intra-individual differences
(i.e., noise in personal characteristics) can to be considered to refine the steer-
ing model before testing the human-in-the-loop experiments data. For instance,
Kolekar [11] proposed those parts which should be considered in the human-like
steering controllers design.

B. Experimental data validation
Parameter estimation of the data obtained by human-in-the-loop experiments should be
investigated to study real human characteristics with a revised model to individualize
human driver steering behavior.

C. Parameter estimation technique
The parameter estimation technique in this study could not solve the parameter esti-
mation problem with the over-parameterized steering model. A global multi-objective
optimization problem can be formulated to estimate parameters. Furthermore, maxi-
mum likelihood estimation has been proved to have good parameter estimation perfor-
mance [57] and could be considered as a method to overcome the over-parametrization
problem.
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Appendix A

Mathematical Derivations in the
Thesis

This Appendix give mathematical derivations of the differential equations of the steering
model states (see Equations 2-22 and 2-23). The three states x1, x2 and x3 are selected in
the literature [4].

The state x1 is shown in Chapter 2 and the differential equation of x1 is shown as follows:

x1 = 1
TIs+ 1θnear (A-1)

T1ẋ1 + x1 = θnear (A-2)

ẋ1 = − 1
TI
x1 + 1

TI
θnear (A-3)

The state x2 is shown in Chapter 2 and the differential equation of x2 is shown as follows:

x2 = 1
1 + τp

2 s
[Kpθfar −

Kc

Vx
(1 + TLs)x1] (A-4)

τp
2 ẋ2 + x2 = Kpθfar −

Kc

Vx
(1 + TLs)x1 (A-5)

τp
2 ẋ2 + x2 = Kpθfar + Kc

Vx
(−1− TLs+ TL

TI
− TL
TI

)x1 (A-6)

τp
2 ẋ2 + x2 = Kpθfar + Kc

Vx
[(TL
TI
− 1)x1 −

TL
TI

(1 + TLs)x1] (A-7)

τp
2 ẋ2 + x2 = Kpθfar + Kc

Vx
(TL
TI
− 1)x1 −

Kc

Vx

TL
TI
θnear (A-8)

ẋ2 = 2
τp

[Kpθfar + Kc

Vx
(TL
TI
− 1)x1 −

Kc

Vx

TL
TI
θnear − x2] (A-9)
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The state x3 is shown in Chapter 2 and the differential equation of x3 is shown as follows:

Tdr = x3 = 1
Tns+ 1{Krv(1− τp

2 s)x2 +Kt[(1−
τp
2 s)x2 − δsw]} (A-10)

Tnẋ3 + x3 = (KrVx +Kt)(1−
τp
2 s)x2 −Ktδsw (A-11)

Tnẋ3 + x3 = (KrVx +Kt)
(1− τp

2 s)
1 + τp

2 s
[Kpθfar −

Kc

Vx
(1 + TLs)x1]−Ktδsw (A-12)

Tnẋ3 + x3 = (KrVx +Kt)[(
2

1 + τp
2 s
− 1)Kpθfar + (1− 2

1 + τp
2 s

)Kc

Vx
(1 + TLs)x1]−Ktδsw

(A-13)

Tnẋ3 + x3 = (KrVx +Kt)[
2Kpθfar
1 + τp

2 s
+ Kc

Vx
(1 + TLs)x1 −

2Kcx1(1 + TLs)
(1 + τp

2 s)Vx
]−Ktδsw −Kp(KrVx +Kt)θfar

(A-14)

Tnẋ3 + x3 = (KrVx +Kt)[2x2 + Kc

Vx
(1 + TLs)x1]−Ktδsw −Kp(KrVx +Kt)θfar (A-15)

Tnẋ3 + x3 = 2(KrVx +Kt)x2 + (KrVx +Kt)
Kc

Vx
{[(1 + TIs)

TL
TI
− TL
TI

+ 1]x1} −Ktδsw −Kp(KrVx +Kt)θfar
(A-16)

Tnẋ3 + x3 = 2(KrVx +Kt)x2 + (KrVx +Kt)
Kc

Vx
[θnear

TL
TI
− (TL

TI
− 1)x1]−Ktδsw −Kp(KrVx +Kt)θfar

(A-17)

ẋ3 = 1
TN
{2(KrVx +Kt)x2 + (KrVx +Kt)

Kc

Vx
[θnear

TL
TI
− (TL

TI
− 1)x1]−Ktδsw −Kp(KrVx +Kt)θfar − x3}

(A-18)
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Appendix B

Details of the Parameter Estimation
Results

Table B-1: The parameter estimation results (known parameters) of the full steering model using
the torque as identified data

Repetition Kp Kc TI τp Kr Kt Tl
Fit steering
VAF(%)

Euclidean
distance

1 0.224 11.9553 0.5892 0.0016 1.2328 6.0592 0.2953 99.8 5.1
2 0.3802 30.0097 2.7603 1.90 ∗ 10−4 0.5726 5.0026 1.096 99.9 22.3
3 0.0586 5.7414 3.282 6.50 ∗ 10−4 5.0293 6.0728 1.149 99.9 3.3
4 0.2002 20.4889 3.1883 1.10 ∗ 10−2 1.2494 6.1451 1.1047 99.9 12.7
5 0.1941 20.0679 3.1727 8.23 ∗ 10−7 1.2809 6.1484 1.0958 99.9 12.3
6 3.8236 8.3917 1.0524 2.10 ∗ 10−10 0.0829 0.0431 5.2535 99.3 8.6
7 9.5074 30.1504 1.3862 2.24 ∗ 10−9 0.023 0.2723 5.139 99.3 25.3
8 0.0908 4.5888 0.5851 0.0023 3.4902 5.9086 0.2983 99.3 4.2
9 0.366 30.0907 3.6377 1.20 ∗ 10−8 0.6295 4.9066 1.2977 99.9 22.4
10 1.0184 30.0837 3.8129 1.32 ∗ 10−4 0.2339 2.1819 2.3233 99.6 22.8
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46 Details of the Parameter Estimation Results

Table B-2: The parameter estimation (known parameters) results of the full steering model using
the steering wheel angle as identified data

Repetition Kp Kc TI τp Kr Kt TL
Fit steering
VAF(%)

Euclidean
distance

1 0.8575 10.8534 2.3278 1.94 ∗ 10−4 0.3202 1.1558 2.8849 99.1 6.5
2 3.3540 5.4102 1.9774 1.8 ∗ 10−8 0.4838 5.2938 0.9687 99.3 4.7
3 0.1468 15.4208 3.2188 1.29 ∗ 10−6 1.8236 6.4457 1.1078 99.9 7.7
4 0.0657 6.7684 3.3214 1.93 ∗ 10−9 4.4083 6.2801 1.1431 99.9 2.3
5 0.0379 3.5507 3.2904 8.78 ∗ 10−11 7.9678 5.8508 1.1654 99.3 7.0
6 0.2017 20.6636 3.2139 5.85 ∗ 10−8 1.2708 6.3361 1.1137 99.9 12.9
7 0.0554 1.1872 0.4203 3.21 ∗ 10−10 5.8913 2.2451 0.3239 99.5 8.9
8 0.1667 16.5025 3.2752 9.2 ∗ 10−11 1.6056 6.1212 1.1426 99.9 8.8
9 0.0184 4.4384 3.4231 4.19 ∗ 10−10 12.7921 11.3123 0.9482 99.5 12.0
10 0.2639 18.3702 4.0692 6.75 ∗ 10−9 1.0219 4.2661 1.5573 99.9 10.9

Table B-3: The parameter estimation (known parameters) results of the simplified steering model
using the steering wheel angle as identified data, the first parameter set

Repetition Kp Kc TI τp TL
Fit steering
VAF(%)

Euclidean
distance

1 0.1374 6.9839 3.0471 0.0243 1.6758 99.9 0.82
2 0.1374 6.9839 3.0471 0.0243 1.6758 99.9 0.82
3 0.1374 6.9839 3.0471 0.0243 1.6758 99.9 0.82
4 0.1374 6.9839 3.0471 0.0243 1.6758 99.9 0.82
5 0.1374 6.9839 3.0471 0.0243 1.6758 99.9 0.82
6 0.1374 6.9839 3.0471 0.0243 1.6758 99.9 0.82
7 0.1374 6.9839 3.0471 0.0243 1.6758 99.9 0.82
8 0.1374 6.9839 3.0471 0.0243 1.6758 99.9 0.82
9 0.1374 6.9839 3.0471 0.0243 1.6758 99.9 0.82
10 0.1374 6.9839 3.0471 0.0243 1.6758 99.9 0.82

Table B-4: The parameter estimation (known parameters) results of the simplified steering model
using the steering wheel angle as identified data, the second parameter set

Repetition Kp Kc TI τp TL
Fit steering
VAF(%)

Euclidean
distance

1 0.1977 5.2686 0.6311 0.0174 0.5762 99.9 1.43
2 0.1977 5.2676 0.6286 0.0174 0.5739 99.9 1.44
3 0.1976 5.2702 0.6339 0.0174 0.5787 99.9 1.43
4 0.1977 5.2683 0.6307 0.0174 0.5758 99.9 1.43
5 0.1977 5.2653 0.6237 0.0174 0.5695 99.9 1.44
6 0.1977 5.2672 0.6277 0.0174 0.5731 99.9 1.44
7 0.1977 5.2675 0.6283 0.0174 0.5737 99.9 1.44
8 0.1977 5.2676 0.6285 0.0174 0.5738 99.9 1.44
9 0.1977 5.2696 0.6326 0.0174 0.5775 99.9 1.43
10 0.1977 5.2676 0.6287 0.0174 0.5741 99.9 1.44
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Table B-5: The parameter estimation (known parameters) results of the simplified steering model
using the steering wheel angle as identified data, the third parameter set

Repetition Kp Kc TI τp TL
Fit steering
VAF(%)

Euclidean
distance

1 0.456 3.6708 5.3997 0.007 0.6295 99.9 0.58
2 0.4547 3.7105 5.5046 0.0071 0.65 99.9 0.47
3 0.4546 3.7105 5.5047 0.0071 0.65 99.9 0.47
4 0.4547 3.7104 5.5045 0.0071 0.65 99.9 0.47
5 0.4547 3.7105 5.5045 0.0071 0.65 99.9 0.47
6 0.456 3.6711 5.4003 0.007 0.6297 99.9 0.58
7 0.4547 3.7105 5.5045 0.0071 0.65 99.9 0.47
8 0.4547 3.7105 5.5046 0.0071 0.65 99.9 0.47
9 0.4547 3.7104 5.5043 0.0071 0.6499 99.9 0.47
10 0.4547 3.7104 5.5043 0.0071 0.6499 99.9 0.47

Table B-6: The parameter estimation (known parameters) results of the simplified steering model
using the steering wheel angle as identified data, the fourth parameter set

Repetition Kp Kc TI τp TL
Fit steering
VAF(%)

Euclidean
distance

1 0.1016 11.3582 11.5797 0.0158 2.9671 99.9 0.42
2 0.1016 11.3582 11.5797 0.0158 2.9672 99.9 0.42
3 0.1016 11.3582 11.5796 0.0158 2.9671 99.9 0.42
4 0.1016 11.3582 11.5797 0.0158 2.9671 99.9 0.42
5 0.1016 11.3582 11.5796 0.0158 2.9671 99.9 0.42
6 0.1016 11.3582 11.5797 0.0158 2.9671 99.9 0.42
7 0.1016 11.3582 11.5797 0.0158 2.9671 99.9 0.42
8 0.1016 11.3582 11.5797 0.0158 2.9671 99.9 0.42
9 0.1016 11.3582 11.5797 0.0158 2.9671 99.9 0.42
10 0.1016 11.3582 11.5797 0.0158 2.9672 99.9 0.42

Table B-7: The parameter estimation (known parameters) results of the simplified steering model
using the steering wheel angle as identified data, the fifth parameter set

Repetition Kp Kc TI τp TL
Fit steering
VAF(%)

Euclidean
distance

1 1.1938 14.484 4.5151 10−9 2.4718 99.8 1.11
2 1.2165 12.5291 3.3474 2.5 ∗ 10−9 2.0858 99.8 3.24
3 1.2149 12.0547 3.0271 9.9 ∗ 10−7 1.9678 99.8 3.80
4 1.1987 13.3859 3.7173 1.1 ∗ 10−9 2.1818 99.8 2.30
5 1.1937 13.2792 3.3174 4.32 ∗ 10−10 1.9305 99.6 2.57
6 1.1973 11.9883 2.7542 1.16 ∗ 10−9 1.7998 99.8 3.99
7 1.2035 12.9343 3.4773 6.02 ∗ 10−6 2.1037 99.8 2.81
8 1.1962 12.7107 3.1546 9.23 ∗ 10−10 1.9475 99.8 3.15
9 1.2193 13.2022 3.7463 4.43 ∗ 10−9 2.2226 99.8 2.47
10 1.2018 13.0786 3.299 3.33 ∗ 10−9 1.9703 99.8 2.76
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Table B-8: The parameter estimation (unknown parameters) results of the full steering model
using the torque as identified data

Interation Kp Kc TI τp Kr Kt TL
Fit steering
VAF(%)

1 9.3474 26.5661 1.5875 4.8 ∗ 10−8 0.0061 1.3134 4.3883 99.6
2 0.3882 8.7012 2.7247 3.9 ∗ 10−10 0.9964 3.2585 1.6318 99.8
3 0.5856 16.7655 2.6391 2.4 ∗ 10−4 0.5786 3.8583 1.4389 99.7
4 0.7249 14.8345 0.9746 3.3 ∗ 10−7 0.458 3.5213 0.6603 99.8
5 26.8434 27.0121 0.7491 5.1 ∗ 10−5 0.0128 0.7151 5.0371 99.5
6 0.4484 10.6551 2.4999 1.9 ∗ 10−11 0.8259 3.3588 1.4614 99.8
7 0.6031 9.061 1.7231 8 ∗ 10−7 0.6214 2.7819 1.3359 99.8
8 2.146 23.6069 2.5367 3.8 ∗ 10−10 0.1185 2.158 2.2836 99.8
9 1.1724 6.9188 1.5838 2.9 ∗ 10−4 0.3069 1.6805 2.3061 99.7
10 0.1441 2.7618 2.644 4.7 ∗ 10−10 2.9028 2.9201 1.7124 99.8

Table B-9: The parameter estimation (unknown parameters) results of the simplified steering
model using the steering wheel angle as identified data

Repetition Kp Kc TI τp TL
Fit steering
VAF(%)

1 0.6833 5.3312 1.0132 0.0062 1.2414 99.9
2 0.6833 5.3314 1.0215 0.0062 1.2506 99.9
3 0.6829 5.4138 0.887 0.0062 1.0741 99.9
4 0.6845 5.3072 0.97 0.0066 1.1634 99.9
5 0.6833 5.3359 1.0152 0.0062 1.2438 99.9
6 0.6831 5.3662 0.9693 0.0062 1.1817 99.9
7 0.6835 5.3218 1.0133 0.0062 1.239 99.9
8 0.6835 5.3218 1.0133 0.0062 1.239 99.9
9 0.683 5.4065 0.9072 0.0062 1.1 99.9
10 0.6833 5.3304 1.0198 0.0062 1.2497 99.9
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Figure B-1: States comparisons of the simplified steering model, the second parameter set.

0 10 20 30 40 50

Time (s)

-2

0

2

la
te

ra
l v

el
oc

ity
 (

m
/s

)

fitness : 99.9%

simplified model
real model

0 10 20 30 40 50

Time (s)

-0.5

0

0.5

ya
w

 r
at

e 
(r

ad
/s

) fitness : 99.9%

simplified model
real model

0 10 20 30 40 50

Time (s)

-0.5

0

0.5

he
ad

in
g 

er
ro

r 
(r

ad
)

fitness : 99.9%

simplified model
real model

0 10 20 30 40 50

Time (s)

-0.5

0

0.5

st
ee

rin
g 

an
gl

e 
(r

ad
)

fitness : 99.9%

simplified model
real model

0 10 20 30 40 50

Time (s)

-2

0

2

st
ee

rin
g 

ra
te

 (
ra

d/
s)

fitness : 95.3%

simplified model
real model

0 10 20 30 40 50

Time (s)

-0.5

0

0.5

hu
m

an
 s

ta
te

 1

fitness : 99.9%

simplified model
real model

0 10 20 30 40 50

Time (s)

-0.1

0

0.1

hu
am

n 
st

at
e 

2 fitness : 99.9%

simplified model
real model

0 10 20 30 40 50

Time (s)

-5

0

5

to
rq

ue
 (

N
)

fitness : 88.6%

simplified model
real model

Figure B-2: States comparisons of the simplified steering model, the third parameter set.
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Figure B-3: States comparisons of the simplified steering model, the fourth parameter set.
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Figure B-4: States comparisons of the simplified steering model, the fifth parameter set.
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Figure B-5: The parameter τp local sensitivity analysis (the first parameter set).
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Figure B-6: Illustration of the comparisons of the steering wheel angle and the torque between
the full steering model and the simplified steering model.
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List of Acronyms

3mE Mechanical, Maritime and Materials Engineering

DCSC Delft Center for Systems and Control

TU Delft Delft University of Technology

NMS Neuromuscular System

ARMAX Auto-Regressive Moving Average model with eXogenous inputs

VAF Variance Accounted For

ANOVA ANalysis Of VAriance

PI Proportional-Integral
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