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A B S T R A C T

In this thesis we present a computational framework, which allows simulating resi-
dential location choice. The specific application of the model focuses on represent-
ing populations under disaster risk. The aim of the tool is to enable public planning
agencies to explore the synthesized households’ location choice under risk and dif-
ferent spatial, financial policy scenarios. The simulated urban system is represented
as an agent-based model, where the households are the agents choosing between
discrete options to relocate from one house to another. Their choice behavior is built
upon a notion, that people make decisions based on regret. This is done with the
help of Random Regret Minimization (RRM) model, allowing to capture varying
levels of regret (profundity) and enabling incorporating multiple attributes of dif-
ferent dimensionality. Given the agent heterogeneity and the changing availability
of the building stock, the choice sets are dynamic. Therefore, the traditional RRM
approach would not return stable results: with every new option housing avail-
able it would have to be re-calibrated. As a solution, we propose re-interpreting
the classical RRM model by scaling the beta values by the choice set attribute vari-
ance. This allows to represent β as a unit-less preference weight, associated with a
homogeneous population group.

We apply the framework to two different scale case-studies in an earthquake-
prone area in Groningen province, The Netherlands. The data used for simulation
includes several public and private spatial datasets, as well as aggregate level sta-
tistical data to synthesize the properties of the households. As a showcase, we
applied the simulation assuming homogeneous and equal preference weights for 7

optimization criteria. These criteria relate to static properties of the building stock
and household-related dependencies to the network (job, school locations). To fur-
ther exhibit model usability within public sector agencies, we also apply the model
on several financial policy scenarios. The output of which is captured on both aggre-
gate and semi-disaggregate levels, allowing for interactive exploration of the effects
of the proposed scenarios. The model outcomes correspond to the expectations set
prior to simulation. It showcases convergence, anticipated optimization behavior
and spatial patterns, corresponding to the building stock properties of the region.

iii





A C K N O W L E D G E M E N T S

Firstly, I would like to thank all my supervisors, Pirouz Nourian & Geertje Beke-
brede from TU Delft, and Michele Palmieri & Alex Christodoulou from Arup. Ad-
ditionally, as well as thesis co-reader, who chose to remain anonymous. They gave
me possibility to step away from my project and see it from new perspectives.

Moreover, I need to extend my gratitude to Arup Amsterdam in general. The
company not only provided funding for my research, but also allowed realistic fram-
ing, the case-study, for the thesis. Apart from my company supervisors dr. Palmieri
and Alex Christodoulou, I need to give extra thank you for Laurens Versluis, who
was willing to discuss and give feedback on sometimes rather vague subjects or
products. Additionally, I am grateful to Rinke Kluwer and Kubilay Hicyilmaz, who
showed me how to make my presentations more approachable and interesting.

Furthermore, I have to thank my partner Marijn Tiggelman, who has been super-
humanly patient during the hard periods. With his expertise in the field of mathe-
matics, programming and numerical modeling he always had a good tip on how to
circumvent the issues. Additionally, he is solely responsible for the success of the
optimization and model execution times reasonable with the days I had left to run
them. This work would have never reached its potential without your help!

Lastly, thank you to my family who has been supportive throughout my 5-year
journey in TU Delft: it is amazing to always have somebody to talk to on the other
end of the line, as well as the safety net to fall back on when the hard times hit.

v





C O N T E N T S

1 introduction 1

1.1 Why model? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Disasters and regional models . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Framing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Scope and research questions . . . . . . . . . . . . . . . . . . . . . . . . 4

1.6 Reading guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 problem definition 7

2.1 Hypothetical problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Computational scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Framing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 theoretical background 13

3.1 Policy-making and planning . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Urban and regional systems . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Residential Location Choice Models . . . . . . . . . . . . . . . . . . . . 15

3.3.1 Considered criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3.2 Rationality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Agent-Based Models in urban contexts . . . . . . . . . . . . . . . . . . 19

3.4.1 Practical considerations . . . . . . . . . . . . . . . . . . . . . . . 20

3.4.2 Residential mobility . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5 Discrete choice modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5.1 Utility-based models . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5.2 Regret-based models . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5.3 Limitations and alternatives . . . . . . . . . . . . . . . . . . . . . 26

3.5.4 Other considerations . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 methodology 33

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Data collection & processing . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.1 Data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.2 Data preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 The model definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3.1 Run function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.2 Step function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.3 Building evaluation function . . . . . . . . . . . . . . . . . . . . 41

4.3.4 Attribute value calculation . . . . . . . . . . . . . . . . . . . . . 44

4.3.5 Output and communication . . . . . . . . . . . . . . . . . . . . . 44

4.4 Experiments and interventions . . . . . . . . . . . . . . . . . . . . . . . 45

4.4.1 Spatial extents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4.2 Interventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5 Verification and validation . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 implementation details 49

5.1 Data sources and processing . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1.1 Data overview, origin and retrieval . . . . . . . . . . . . . . . . 49

5.1.2 Building class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

vii



viii contents

5.1.3 Network class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1.4 Households . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2.1 Acquiring and processing the data . . . . . . . . . . . . . . . . . 55

5.2.2 Modeling software . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2.3 Visualization and interaction . . . . . . . . . . . . . . . . . . . . 57

5.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6 results 61

6.1 Synthesizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.2 ’Toy’ run: Huizinge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.2.1 Financial intervention . . . . . . . . . . . . . . . . . . . . . . . . 64

6.3 Scaling: Middelstum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.3.1 Financial interventions . . . . . . . . . . . . . . . . . . . . . . . . 68

6.3.2 Subsidizing structural upgrades . . . . . . . . . . . . . . . . . . 74

6.4 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7 conclusion & discussion 77

7.1 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.2.1 On simulation and results . . . . . . . . . . . . . . . . . . . . . . 80

7.2.2 On risk and upgrading . . . . . . . . . . . . . . . . . . . . . . . 80

7.2.3 Usability aspect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Appendices 95

a implementation 97

a.1 (Pseudo-)code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

a.1.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . 98

a.1.2 Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

a.2 Code verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

a.3 Computer specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

b additional results 101

b.1 Base run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

b.2 Dynamic risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101



L I S T O F F I G U R E S

Figure 1.1 The intersecting time-line: from 19th to 21st century (based
on [13]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Figure 1.2 Number of reported natural disaster events per decade [138] . 2

Figure 1.3 The disaster management cycle (adapted from [6]) . . . . . . . 3

Figure 2.1 Toy problem: top left building to be upgraded (in blue) is
referred to as household 1, the other- household 2 (own archive) 7

Figure 2.2 From the base to an alternative scenario– each household
evaluates a residential location on a set of attributes, which
are collected in a vector. A scenario is identified as a summa-
tion of all of those vectors . . . . . . . . . . . . . . . . . . . . . 8

Figure 2.3 Starting and three alternative situations, scenarios (S1-3), com-
pared on aggregate household access to jobs (aj) and shops
(as) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Figure 2.4 Hypothetical Pareto front (dashed line) of the “toy” problem,
expanded with imaginary alternatives . . . . . . . . . . . . . . 9

Figure 2.5 The municipal boundaries and the highest hazard zone with
corresponding Peak Ground Acceleration (PGA) contours (own
archive) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Figure 3.1 A general model of creative strategy [45] . . . . . . . . . . . . 14

Figure 3.2 A general model of creative strategy [170] . . . . . . . . . . . . 16

Figure 3.3 Conceptual model of the household’s housing decision-making
process ([174] in [44]) . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 3.4 Random Regret Minimization decision process principle (solid
arrows represent summations, dashed arrows represent com-
parisons) [36] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 3.5 Example of the optimal location choice given the travel dis-
tance on a network of a single edge . . . . . . . . . . . . . . . 25

Figure 3.6 Attribute level regret function [158] . . . . . . . . . . . . . . . 25

Figure 3.7 The impact of µ on the binary variable level regret function,
Rµ

im = µ · ln(1 + exp( 1
µ [∆xm])), where ∆xm ∈ [−2, 3] . . . . . . 26

Figure 3.8 The impact of σ (standard deviation of m) on the binary vari-
able level regret function shape, Rim = ln(1 + exp( [∆xm ]

σim
)),

where ∆xm ∈ [−1, 2.5] . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 3.9 Demonstration of the scaling issue for the classical RRM,
RRMσ and RRMPLW . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 4.1 Framework overview with chapter numbers (lines show pro-
cedural flow, with dashed line representing a thought pro-
cess; people getting ideas based on the visualizations) . . . . 33

Figure 4.2 Simplified UML diagram of the project, hard-coded classes
are marked in blue (full version in appendix A) . . . . . . . . 36

Figure 4.3 Network class processing . . . . . . . . . . . . . . . . . . . . . 36

Figure 4.4 Parcel class processing . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 4.5 Buildings class processing . . . . . . . . . . . . . . . . . . . . . 38

Figure 4.6 Synthesizing of households . . . . . . . . . . . . . . . . . . . . 39

Figure 4.7 The model code flowchart with 3 major functions in the code,
in blue– data pre-processing, orange– simulation . . . . . . . 40

Figure 4.8 Subsets for experiments . . . . . . . . . . . . . . . . . . . . . . 46

Figure 4.9 Preview of Huizinge ’buurt’ with building, flat and network
geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

ix



x list of figures

Figure 5.1 The output of parcel processing . . . . . . . . . . . . . . . . . . 51

Figure 5.2 Building structural systems in the Middelstum case-study
area; types in orange include buildings under risk . . . . . . . 53

Figure 5.3 A comparison of NWB and OSM datasets, with an aerial pic-
ture in the background . . . . . . . . . . . . . . . . . . . . . . . 54

Figure 5.4 A comparison of network data overlays on bike- and foot-
paths datasets, with an aerial picture in the background . . . 55

Figure 5.5 Centraal Bureau voor Statistiek (CBS) dataset spatial extents
and coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 5.6 The run times box-plot for the base run with 1000 alternative
sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 6.1 Population box-plot distributions adults versus children . . . 61

Figure 6.2 Adult population box-plot distributions by occupation, CS–
case-study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 6.3 The mean and standard deviation of the capital of all house-
holds per synthesized set . . . . . . . . . . . . . . . . . . . . . 62

Figure 6.4 The number of steps before convergence histogram for the
100 synthesized household sets for the base run . . . . . . . . 63

Figure 6.5 Distributions of final model step attribute aggregates for the
Huizinge scale base run for 100 synthesized household sets . 63

Figure 6.6 Product of all final model step attribute aggregates for the
Huizinge scale for 100 synthesized household sets . . . . . . . 64

Figure 6.7 Average changes per step per subsidy (intervention) for the
Huizinge scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Figure 6.8 Total changes (relocations) per step for base run and +40k
subsidy, given the 100 synthesized household sets for Huizinge
scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Figure 6.9 Number of changes (relocations) for income bin groups for
the base and +40k financial run for 100 synthesized house-
hold sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Figure 6.10 Criteria optimization for the base and +40k financial run . . . 65

Figure 6.11 Aggregate number of changes (relocations) for each model
step for all 1000 synthesized datasets for Middelstum scale . . 66

Figure 6.12 Histogram of the amount of steps it takes for the model to
terminate. This data is taken over 1000 household set runs
for Middelstum scale. . . . . . . . . . . . . . . . . . . . . . . . . 66

Figure 6.13 Distributions of final model step attribute aggregates and
their product (h) for 1000 synthesized household sets for
Middelstum scale . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Figure 6.14 Average changes per step per subsidy (intervention) for Mid-
delstum scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 6.15 Total changes for all 100 household sets per income bin for
base, static +40k and progressive +10k simulations . . . . . . 69

Figure 6.16 Relative aggregate criteria optimization in relation to the start-
ing condition for base and +40k subsidy for 100 household
sets, Middelstum scale . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 6.17 The spatial patterns of the household relocations for a 100

synthesized sets in the base run and a scenario of a subsidy
of 40 thousand euros for the 2 lowest income bins . . . . . . . 71

Figure 6.18 The spatial patterns of the household (2 lowest bins) reloca-
tions for a 100 synthesized sets in the base run and a scenario
of a subsidy of 40 thousand euros for the 2 lowest income bins 71

Figure 6.19 Average changes per step per progressive subsidy (interven-
tion) for Middelstum scale . . . . . . . . . . . . . . . . . . . . . 72



list of figures xi

Figure 6.20 Aggregate criteria optimization in relation to the starting con-
dition for progressive +10k (bins 1-3) and static +40k sub-
sidy(bins 1-2) for 100 household sets, Middelstum scale . . . . 72

Figure 6.21 The spatial patterns of the household relocations for a 100

synthesized sets in the base run and a scenario of a progres-
sive subsidy of 10 thousand euros for the 3 lowest income
bins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Figure 6.22 The spatial patterns of the household (2 lowest bins) reloca-
tions for a 100 synthesized sets in the base run and a scenario
of a progressive subsidy of 10 thousand euros for the 3 lowest
income bins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Figure 6.23 Number of upgrades per grid cell given different risk prefer-
ence weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Figure 6.24 The run times boxplot for the base run with 30 alternative
sets given two different machines . . . . . . . . . . . . . . . . . 75

Figure 6.25 Overlay of the comparative run results . . . . . . . . . . . . . . 75

Figure A.1 Model classes, their properties and most important methods . 97

Figure B.1 Pairwise attribute scatter plots for the base run with 1000

household sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Figure B.2 Pairwise attribute correlation heat-map for the base run with
1000 household sets . . . . . . . . . . . . . . . . . . . . . . . . . 102

Figure B.3 Parallel coordinate plot for all attributes (in standard errors)
for the base run with 1000 household sets. Colored by the
value of the attribute v_house. Filter is to show the distribu-
tions of other attribute values . . . . . . . . . . . . . . . . . . . 102

Figure B.4 Aggregate criteria optimization in relation to the starting con-
dition for base and dynamic risk runs (β = 1) for 100 house-
hold sets, Middelstum scale . . . . . . . . . . . . . . . . . . . . 103

Figure B.5 Differences between total number of upgrades per each house-
hold set (1 to 100), given βrisk = 1 or 4 . . . . . . . . . . . . . . 103





L I S T O F TA B L E S

Table 2.1 Categories of facility location problems (based on [71, 89]) . . 12

Table 3.1 The seven elements of the Overview-Design-Details (ODD)
protocol [69] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Table 3.2 Uncertainty types (adapted from [60]) . . . . . . . . . . . . . . 21

Table 4.1 Criteria evaluated in the simulation for different spatial scales,
corresponding to model development cycles (S: small, B: big) 45

Table 4.2 Attributes given as the output for the model . . . . . . . . . . 45

Table 5.1 Datasets, their sources and classes they contribute to in the
model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Table 5.2 Building tags as a workplace, based on two datasets in rela-
tion to workplace counts . . . . . . . . . . . . . . . . . . . . . . 52

Table 5.3 The result of the doubly-constrained gravity model for es-
timating the zonal dependencies between working popula-
tions and their jobs . . . . . . . . . . . . . . . . . . . . . . . . . 55

Table 6.1 Relative difference between dynamic and base model runs
average final step result . . . . . . . . . . . . . . . . . . . . . . 74

xiii





List of Algorithms
4.1 Run function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Step function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Building evaluation function, using RRMσ . . . . . . . . . . . . . . . . 44

A.1 Distance matrix construction [171] . . . . . . . . . . . . . . . . . . . . . . 98

A.2 Distance to jobs or schools calculation, based on the distance matrix . . 98

A.3 N closest amenity identification and distance calculation based on the
distance matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

xv





A C R O N Y M S

ABM Agent-Based Model

ABMS Agent-Based Modeling and Simulation

AH Agent Heterogeneity

BAG Basisregistratie Adressen en Gebouwen

BGT Basisregistratie Grootschalige Topografie

BRK Basisregistratie Kadaster

CBS Centraal Bureau voor Statistiek

CTC Complexity Theories of Cities

CVW Centrum Veilig Wonen (Center for Safe Living)

DCM Discrete Choice Model(ing)

DES Discrete Event Simulation

DRM Disaster Risk Management

DF Data Frame

ETL Extract, Transform, Load

EV Extreme Value

FME Feature Manipulation Engine

FW Floyd-Warshall

GIS Geographic Information System

GEM Global Earthquake Model

GESU Groningen Earthquakes Structural Upgrading

id identification (number)

IPF Iterative Proportional Fitting

LAW Lange Afstands-Wandelpaden (Long Distance Walking Paths)

LISA Landelijk Informatiesysteem van Arbeidsplaatsen (National Information
System of Workplaces)

LMR Land-market representation

LMS Landelijk Model Systeem (National Modeling System)

LUT Land-Use Transport

LUTI Land-Use and Transport Integrated

MADM Multi-Attribute Decision Making

MAS Multi-Agent Systems

xvii



xviii LIST OF ALGORITHMS

MCDA Multi-Criteria Decision Analysis

MNL Multinomial Logit

MODM Multi-Objective Decision Making

MSM Microsimulation

NAM Nederlandse Aardolie Maatschappij (Dutch Petroleum Company)

NWB Nationaal Wegen Bestand (National Road Dataset)

NRM Nederlands Regionaal Model (Dutch regional model)

NP Nondeterministic Polynomial time

ODD Overview-Design-Details

OSM OpenStreetMap

PGA Peak Ground Acceleration

PS Public Sector

PSS Planning Support System

PC4 Post Code level 4

RP Ruimtelijkeplannen (spatial plans)])

RRM Random Regret Minimization

RUM Random Utility Maximization

SDSS Spatial Decision Support System

VBO Verblijfsobject

VV Verification & Validation

WFS Web Feature Service

WOZ Waarde Onroerende Zaken



1 I N T R O D U C T I O N

Models are theoretical abstractions, representing systems, such that their essential
features and applications are identified [14]. This enables them to act as tools for
experimentation, allowing testing theories in a controlled laboratory. In the con-
text of urban modeling, they are essentially computer simulations (ibid.). Models
digitally represent phenomena and enable testing of theories without them being
implemented in the real world [14]. The first constructs of this kind appeared in the
1960s [167, 13, 5, 173]. They came as a response to the growing need to go beyond
the abstract theoretical models, which had not direct value for informing Public
Sector (PS) decision making processes [167]. According to Batty [14],since their ad-
vent, urban models have gone through series of changes Figure 1.1– starting from
static and aggregate Land-Use Transport (LUT) model approach, and progressing
to the more recent disaggregate and dynamic, Agent-Based Model (ABM) approach
(more in Chapter 3). As the latter gained ground, the discourse moved away from
the traditional role of models as tools for scenario testing, as it became nearly im-
possible to calibrate or validate them. Batty [14] further elaborates by stating, that
due to this role of models shifted to frameworks for informing and structuring the
formal and informal dialogs, allowing for participatory decision support.

1.1 why model?
But why would one consider modeling a city or a region? When introduced into the
decision-making process in a controlled way, models can bring scientific knowledge
and structure to the planners or policy makers’ table [159]. In fact, these decision
makers constantly ’run’ models. That is to say, they imagine specific aspects of
urban dynamics in relation to their intervention. Epstein [54] calls these mental ex-
ercises implicit models– their assumptions are hidden, internal consistency untested,
logical consequences and relation to data unknown. However, once these aspects
are reversed a model becomes explicit, allowing others to replicate the results. How-
ever, the goals of a model often go beyond the often expected prediction. Epstein
[54] identifies 16 additional reasons, including: explaining the phenomena, guiding
data collection, illuminating core dynamics, educating general public and disciplin-

Figure 1.1: The intersecting time-line: from 19th to 21st century (based on [13])
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2 introduction

Figure 1.2: Number of reported natural disaster events per decade [138]

ing policy dialogue. When it comes to cities, Pumain and Reuillon [125] expand this
list with the need of: (1) tools for large scale problem solving due to extreme urban-
ization; (2) keeping track of interactions between different urban systems, as they
develop co-dependently; (3) exploration of regulation capabilities in self-organized
dynamics to determine the plausible evolution and growth scenarios; (4) means for
monitoring and evaluating the system for resilience and sustainability.

1.2 disasters and regional models

Modeling also plays an important role in Disaster Risk Management (DRM). The
main goal of this field is to minimize the impact of disasters by strengthening the
population’s coping capabilities and reducing the possibility of disasters occurring
[24]. Within the disaster management cycle (Figure 1.3) models come into play
in the preparation phase, allowing for understanding the processes of disasters
and vulnerabilities [6]. Paradoxically, environmental impacts are rarely considered
in general operational urban models [5]. In rare cases, that it is part of it (e.g.
ILUMASS [168], TRESIS [75]), it is defined as a hindrance related to air or noise
pollution. We also observe, that disaster risk is also not considered. Among many
of these examples fall TIGRIS XL [178], an aggregate model used for land-use mod-
eling in the Netherlands; microsimulation-based models PUMA [55] and UrbanSim
[164] (more on the subject in Section 3.2). This is particularly important in the light
of ever-increasing occurrence of natural disaster events (Figure 1.2). The data from
International Disaster Database [138] shows, that even though the DRM efforts are
bearing fruit (i.e. the casualty numbers have been diminishing), the damage costs
have only been increasing. With this in mind, we see the urgent need to combine
the knowledge of DRM with general urban and regional models. In this project
we approach this gap, by focusing on one of the urban sub-systems- residential
mobility.
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Figure 1.3: The disaster management cycle (adapted from [6])

1.3 framing

Our project focuses on the smallest unit in urban environment connected to a res-
idential building– a household. We are interested in their behavior relating to the
residence choice, as this is one of the core mechanisms underlining the emergent
patterns of cities [115, 93, 17, 4]. Within this perspective, we choose to inspect a
single crisis situation– one point in time, when people are faced with an immi-
nent risk, relating to their location and housing unit properties. This setting can
be constructed by defining a system of households as heterogeneous agents, where
they are faced with a variety of options to improve/optimize their living conditions.
Namely, they pertain to households’ perception of (1) residence properties (e.g. size,
collapse risk), (2) location (e.g. proximity to school, job, amenities) and (3) social
networks (e.g. socio-economic status of the vicinity, proximity to friends). Models
dealing focusing on this part of urban system are called residential mobility and
housing choice models. Thus this research strives to contribute to the field of urban
modeling, by explicitly handling disaster risk as a variable influencing the behavior
of the population of the area. Namely, risk becomes an attribute associated with a
specific building in the region, as it not only depends on the location, but also the
structural properties.

1.4 challenges

Housing choice and residential mobility models form an integral part of major-
ity general urban models (see Section 3.2). Despite their long history [13]– Land-
Use and Transport Integrated (LUTI) being the gold standard for regional planning
[166]– they still face significant challenges. Most notably, many of the existent mod-
els are difficult to use and adapt [57, 165]. This can be attributed both to the lack
of transparency [19, 118, 124, 165] and validation [142, 165], and to the ad-hoc na-
ture of modeling solutions [70, 13]. This plays a role in the fact, that many of the
operational models are psychologically inaccurate [38, 165]. Another key point is
that large number of models are still grounded in the aggregate traditional urban
economics and gravity approaches, rather than disaggregate, focused on the behav-
ior of individuals [13, 5]. The latter approach, allows one to explore new dynamics
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and transitions in complex, self-organizing systems [78]. This comes at the cost of
computational complexity and large requirements for data [165, 14]. All of these
issues block wide-spread adoption of the integrated models within the PS planning
organizations [163, 63, 159, 151].

1.5 scope and research questions
In this project we primarily strive to contribute to the field of urban modeling,
by explicitly handling disaster risk as a variable influencing the behavior of the
population of an area. Nonetheless, this thesis also addresses each of the challenges
presented, with the goal to create a computational framework for a usable tool. By
usability we imply, that it should be easy to adapt and expand, be transparent and
show the capabilities to answer questions posed by the focus user. In our case the
focus user is Public Sector (PS) organizations. Thus, conscious of this duality in
perspectives, we formulate the goal and questions of the research as following:

objective To define a usable computational framework, allowing for large scale
spatial and disaggregate simulation of household location choice behavior under
disaster risk.

main research question How to build a computational framework examining
the residential choice behavior of households within a regional, disaster situation,
given public sector agency-defined policy scenarios?

sub-questions

• How to abstract housing choice behavior of households in a disaster situation
on a regional scale?

• What modeling approach would be suitable for such abstraction, given a PS
planning or policy making process?

• What (type of) data could be used to generate model optimization criteria
values and what is their relation to the data available for the case-study?

• What output should the model have and how to communicate it to the PS
organization given a disaster mitigation or preparation situation?

• What are the uncertainties and limitations of the model how to circumvent
them?

• What type of data would be necessary in order to calibrate such a model?

The research case-study area is in Groningen, the Netherlands. The region is
affected by human-induced seismicity [160], whilst the building stock largely con-
sists of structures with no anti-seismic regulations ([10] in [116]). This creates a
seismic risk, paving way for a large scale (around 250.000 affected buildings) struc-
tural upgrading project. Given the thesis scope, we focus on a subset of the area
with around 1000 households and 1400 building nodes.

The focus group of the show-case tool– PS organizations– are chosen due the
available access to PS consultants. The framework for residential mobility is created
to answer questions specific for this group, but due to time limitations only allows
for pre-defined input or ’what-if’ scenarios. Other deliverables and features are
summarized using a simplified version of the MoSCoW methodology [51]. The
minimal product requirements are mentioned within "Must". "Should" paragraph
documents highly wanted features, whilst what falls beyond the scope is covered
in the "Could and Won’t" sections.
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within scope - must Research existing models and modeling techniques; in-
ventory, evaluate and process data; research and define model attributes, bringing
special attention to the aspect of risk; identify model uncertainties; create at least
2 ’what-if’ scenarios, which would allow to explore the questions posed by PS or-
ganizations; define the data collection requirements for calibration; identify the
algorithm performance in the context of near-real-time usability.

within scope - should Create a proof-of-concept tool showcasing the usability
of the framework; validate the framework usability with a series of semi-structured
interviews; test the model on different spatial scales; implement a dynamic set of
rules to capture the mechanism of structural upgrading.

outside scope - could and won’t Create a predictive model; collect the real
behavior data and calibrate the model; create a general urban model or integrate it
in an existing framework; optimize the code for near-real-time usability.

1.6 reading guide
The thesis document is organized as follows:

• Chapter 2 presents formulation of the problem, which helps us introduce the
basic terms. This is followed by showcasing the complexity of the problem in
computational terms. We conclude the chapter by providing argumentation
for model constraints given a problem framework from the field of location
science.

• Chapter 3 presents a selection of related works, that helped us define the
model framework. Three major fields of studies are covered: spatial decision
and planning support tools, urban and regional models and discrete choice
models.

• Chapter 4 explains the methodology. Here you can find the data structure,
pseudo-codes and algorithms. Additionally, the chapter discusses the Verification
& Validation (VV) methods, as well as procedures for usability validation.

• Chapter 5 delves into implementation details, covering subjects of data sources,
collection and processing, software choice, including code performance and
optimization issues.

• Chapter 6 gives an overview of the model and VV outcomes. This section of
work also includes a discussion, which covers the requirements and uncertain-
ties of the model.

• Chapter 7 concludes the research, discusses the results and lists future recom-
mendations.





2 P R O B L E M D E F I N I T I O N

In this chapter we delve into the details of the definition and complexity of the
phenomenon at hand. We begin with explaining this from the perspective of a hy-
pothetical or a ’toy’ problem, in the manner of Batty [16]. Then we define the basic
mathematical representation and consequently on what it means in computational
terms. As last we discuss the specifics of the building stock and population in the
research area, based on which we can create simplified aspect representations for
the model.

2.1 hypothetical problem

We explain the problem, firstly, as a hypothetical or a “toy” problem (Figure 1). In
this case, we focus only on finding the best locations for two households. They can
either stay in the current residence (in blue, 2.1) or change their location (marked in
yellow, 2.1). If household 1 chooses one of the alternatives, household 2 is excluded
from attaining it. These location-bound choices can be described as a collection
of attributes (an, 2.2) or a vector, based on which a decision can be made. Both
households in this toy problem would have a unique feature vector. This is due to
that household 1 only has one job relation to the network, whilst household 2 has
job relations (blue links, 2.1-2.3). These location relations are identified by attribute
aj or the travel time to work (2.3), where each link cost 1 unit of time to traverse to
each location. This attribute inexplicitly captures the size of the working population
as well. The travel times to each work location are not averaged, but simply added
together. Additionally, each household’s access to a closest shopping facility (as) is
assessed with the same unit and way as aj, where the travel time is multiplied by
the household size.

A scenario in our case is represented by a 1× n feature vector (2.2), or, if we
look only at aj and as, as a 1× 2 vector. Consequently, each of the scenarios can
be represented as a column in a matrix or a data point in a Rn space, where n
corresponds to the amount of criteria based on which we evaluate an option (2.3).

Figure 2.1: Toy problem: top left building to be upgraded (in blue) is referred to as house-
hold 1, the other- household 2 (own archive)
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Figure 2.2: From the base to an alternative scenario– each household evaluates a residential
location on a set of attributes, which are collected in a vector. A scenario is
identified as a summation of all of those vectors

Figure 2.3: Starting and three alternative situations, scenarios (S1-3), compared on aggregate
household access to jobs (aj) and shops (as)

If we only evaluate 2 criteria and 3 alternatives (2.3), the decision can be easily
made by visualizing it as a scatter plot. In the exemplary case, we care to minimize
the travel times to shops and job locations (aj and as). In Figure 2.3 sub-figure a,
we see 4 scenarios where the household can potentially move. In sub-figure b, the
same 4 scenarios are shown as points in a two-dimensional solution space. One
scenario (Figure 2.3, Scenario 3 (S3)) stands out from the many, as it is less in each
dimension (attribute) than any other alternative. However, if one would generate
more alternatives (2.4), it is likely, that rather than finding one “best” solution, a
set of solutions would be found, where one of the attributes cannot be further
improved without deteriorating the other. This type of solution is called a Pareto
optimal and their collection is a Pareto front. Any of the alternatives on this front
can be identified as equally “good” and thus it is up to user to define the best
solution, based on their personal preference.

2.2 definitions

The problem as we described above can be summarized as the following:
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Figure 2.4: Hypothetical Pareto front (dashed line) of the “toy” problem, expanded with
imaginary alternatives

• every household location h has a cost vector (e.g travel time to a facility, inter-
vention cost), with number of locations h being l, such that h ∈ {1, 2, ..., l};

• each cost type c in the cost vector is a criterion to be minimized, with number
of cost types c being m, such that c ∈ {1, 2, ..., m};

• a scenario i is a unique permutation of all l households’ at available locations
d, represented by a collection of l households’ cost vectors, with number of
scenarios i being n and number of available locations d being k, such that
i ∈ {1, 2, ..., n} and d ∈ {1, 2, ..., k};

• to compare scenarios, we aggregate the households cost vectors per cost type
c: Cc

i,h = f (i, h)

• the number of aggregate cost vector j corresponds to the number of scenarios
i, so i, j ∈ {1, 2, ..., n}

• a scenario cost vector jx is (globally) Pareto optimal if there is not another
scenario cost vector jy, such that fm(jy) ≤ fm(jx) for all m and fp(jy) < fp(jx)
for at least one index p (for more see [104, 105])

2.3 computational scope
Returning to the project’s case-study, as of December 2017, there were around 6000

active building portfolios within the highest hazard zone (Figure 2.5), each corre-
sponding to one household. Assuming, that each household can only stay or ex-
change their living location to another affected building would lead to 6.000! differ-
ent scenarios or location combinations. If we take into account the vacant buildings
in the area, 4.07% as of 2016 (based on municipal data from CBS and the munic-
ipality coverage within the highest hazard zone, Figure 2.5), we have 1260 vacant
residential buildings. Within the ’toy’ problem, we assume that aech household has
5 choices associated with a single location: (1) accept the risk and do nothing, (2)
structurally upgrade the house, (3) demolish the house and rebuild new, (4) move
to another location and buy, or (5) move to another location and build. The three
first choices are associated with the initial household location, whilst the last two
with a new location. This leads to the following scenario amount formulation:

Total number of permutations due to re-location(
k
l

)
=

k!
l!(k− l)!

(2.1)
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Figure 2.5: The municipal boundaries and the highest hazard zone with corresponding PGA
contours (own archive)

Number of permutations (scenarios) with households staying in the original location

nhb = 1 + l(k− l) +
P

∑
p=1

∑
r=0

p((l − r)(k− l + p− r + 1)) (2.2)

Total number of permutations (location and upgrading choice included)

n = 2× (

(
k
l

)
− nhb) + 3× nhb (2.3)

Where:
l – number of original household locations
k – number of available relocation possibilities (sum of l and vacant buildings)
P – upper bound of the sum, P=l

The resulting number of scenarios or all permutations is 7.04E21518. This num-
ber would increase even further, if the empty parcels are added as an option for
households (in this case, only one available) or the prognosis for the portfolio
growth would be taken into account. This amount of options is far beyond what a
human mind (see [106]) can evaluate. Additionally, even computationally, this prob-
lem is intractable (i.e. takes more than a lifetime to solve). More specifically, with
each new criteria the algorithm scales linearly, but with each new household and
building data point quadratically– O(n2). However, it must be noted, that many of
the household and building permutations are far from realistic or satisfactory to the
user. Therefore, the major challenge of this research is transparently reducing the
number of permutations or finding the solution space boundaries, so that only the
most adequate, human perceivable subset is presented to the user of the developed
tool.
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2.4 framing
Given the context of the problem we can further reduce the scope by inspect-
ing it from the location science perspective. This field primarily concerns itself
with location-optimization of public or private sector facilities, rather than houses.
Nonetheless, the publications on location problems relate to many research disci-
plines, such as economics, applied mathematics, computer science, geography and
management [92]. We can observe obvious similarities with residential and facility
location choice problematics. Both of them deal with finding optimal locations in
space and thus share common problems while defining the modeling scope. There-
fore, we decompose the residential location problematic on the basis of the frame-
work proposed by Karabay (Table 2.1).

First thing to consider is the representation of space. The decisions made by
households relate to discrete locations (parcels and houses), which are inter-related
by a network of streets and roads. This suggests a mixed approach: the network can
be used to define the properties of these discrete locations, whilst the simulation is
run on the basis of discrete space.

The objective function approach from the household perspective primarily re-
lates to the minisum problem. In other words, they try to minimize the travel times
or distance to specific destinations in space (e.g. workplaces, schools, health care
institutions, etc.). The minimax or p-center problem [29] in this perspective could
also come in play as households could strive to minimize the longest travel time
to a selection of destinations. This is relevant, as minisum tends to favor clustered
destinations over the ones that are dispersed. In facility terms, this is primarily suit-
able for public services like ambulances or fire brigades, which reduces the negative
impact on remote and poorest served clients. Lastly, the coverage [62] problems do
not have direct application to residential location. These problems focus on finding
a location, that would allow the service to reach the maximum amount of customers
under a specific travel time or distance. Such as food delivery services, that serve
customers only within specific postal code zones.

The solution method to our residential location problem cannot be solved by
finding a single, optimal solution, as explained earlier in the chapter. Thus in this
work, we have to focus on the heuristic approach and the methods relating to it.

The time horizon in our model should be considered as dynamic, as we cannot
decide all the variables simultaneously. With that we mean, that the choice to relo-
cate cannot be imposed on households. Therefore, the building vacancies and thus
the options to relocate change through time.

The input parameters for residential mobility is likely to be a selection of both
deterministic and stochastic variables, depending on which elements of the urban
system we would be talking about. More specifically, anything related to per-
sonal information is most likely to be stochastic, whilst relating only to the built
environment- deterministic.

The number of locations to be chosen for residential mobility is always one in
our case. However, keeping in mind that we are simulating a system of many
households, we are actually optimize the locations of many single facility choices at
once.

The facility type aspect is not relevant within the scope of our research, as the
housing choice in our model does not have negative or positive impacts on the other
households in the area.

The last in the list, sector type, is private, as we are only choosing to inspect the
privately owned building stock, which makes up the majority of the housing market
in the case-study area [31]. Modeling more than one market would go beyond the
time scope of the project, but should be considered as a future improvement.
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Categorization Subject Categorization
Types

Explanation

Space
Continuous In continuous models, demands are

distributed continuously across a ser-
vice region and facilities can be located
anywhere in that region.

Network In network models, there is a network
composed of links and nodes. De-
mands on nodes and facilities can be
located on nodes or links.

Discrete In discrete location models, there are
demands arising on nodes and facili-
ties can be located only on a set of can-
didate nodes.

Objective function
Minisum minimize average/total criteria values
Minimax minimize the maximum criteria values
Coverage maximize the coverage

Solution method Exact algo-
rithms

Algorithms that try to find the optimal
solution.

Heuristics Algorithms that search for an approxi-
mate solution.

Time horizon Static Static models optimize the problem de-
ciding all variables simultaneously.

Dynamic Dynamic models consider different
time periods with data variation
across these periods, and give solu-
tions for each time period adapting to
the different conditions.

Input parameters Deterministic In deterministic models, the parame-
ters are forecast with specific values
and thus the problems are simplified
for easy and quick solutions.

Stochastic Stochastic/probabilistic location mod-
els capture the complexity inherent in
real-world problems through probabil-
ity distributions of random variables
or considering a set of possible future
scenarios for the uncertain parameters.

Number of facilities
One The purpose of the problem is locating

only one facility.
Certain Number of facilities to be located is a

certain number.
Uncertain Number of facilities to be located is un-

certain. Problem also searches for the
number of facilities.

Facility type Desirable Closeness of facility (such as hospital)
to demand center is better.

Undesirable People want these facilities (such as
nuclear reactor) far from demand cen-
ters.

Sector type Private It seeks for maximizing profit while lo-
cating facilities.

Public Optimization of the population’s ac-
cess is the priority.

Table 2.1: Categories of facility location problems (based on [71, 89])



3 T H E O R E T I C A L B A C KG R O U N D

All models are wrong, but some are
useful

G. E. P. Box and N. Draper [26]

Based on the framing presented in the previous chapter, we will inspect the
related concepts and put the model in a more general urban modeling context.
However, we begin the story with some general considerations and applicability
questions within the PS planning agencies.

3.1 policy-making and planning
As mentioned in the introduction, models act as a laboratory for experimentation
on urban fabric. In this section we will cover the types of interventions in which
these experiments take place and when they play a role in policy making and plan-
ning processes. This section will conclude with descriptions of the tools, that are
commonly utilized and the issues related to them.

Decisions within urban contexts

When talk about public agencies in our project we are referring to the fields of urban
planning and policy-making. The first of the two primarily focuses on the design
and regulation of space [58]. The second, as the name suggests, refers to a wider
subject of formulating policies [30]. The term is usually used in political contexts
in relation to, for instance, specific demographic groups, businesses or education in
general. In both cases people deal with complex problems, which have inevitable
reprecussions in space, as we will explain later in the chapter.

However, tn the most abstract sense, decisions in both of these disciplines can
be of spatial or non-spatial nature. To illustrate them we draw inspiration from the
field of transport modeling. Spatial decisions relate to adapting the street network,
creating new parking facilities or public transport routes. Non-spatial decisions
alter the properties of elements in the system: increasing transport tax, parking
tariffs or public transport costs or introducing new travel mode. Of course the line
between them is rather blurred. As for instance, specific pricing policies could be
applied within spatial subsets.

’Wicked’ problems

Both planning and policy making are fields dealing with ’wicked’ problems [137].
As antithesis to ’tame’, scientific problems, ’wicked’ problems are ill-defined and ill-
structured [137, 45]. For these problems we do not possess or are able to obtain all
the necessary information. Moreover, they cannot be solved by exhaustive analysis,
as there is no guaranteed ’correct’ result. Cross [45] argues, that in such cases
problem solvers tend to shift from problem-focused to solution-focused strategies.
The same can be said about the goal urban planners and policy makers. One can go
on analyzing the problem indefinitely, but their task is to come up with a solution.

13
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Figure 3.1: A general model of creative strategy [45]

Strategies

To deal with this, professionals tend to adapt a strategy presented in Figure 3.1,
coming in line with the policy making process model shown in an article by Wad-
dell and Ulfrarsson [167] and the planning process shown by Bovy et al. [25]. Firstly,
one needs to define the goals of the problem. From the perspective of our research
project, the PS organizations want to achieve a more effective (e.g. fast, less in-
convenient) transition of households from unsafe to safe buildings. Secondly, this
allows us to find the problem frame. In our case, it is finding interventions (e.g.
financial policies, housing development), that would stimulate residential choice to
upgrade or move and also positively impact their final choice. In the third step,
one would start defining the first domain-specific principles, whilst in the fourth–
to start creating the series of possible solutions. For our context, this means prepar-
ing series of hypothetical interventions (discussed in Section 4.4). The last stage is
where one tests them based on specific performance criteria. At this point, urban
simulations can play an essential role. They allow inspecting possible solutions in a
structured manner and compare the impacts between the alternatives. Noteworthy,
is that "there is no formal theory of scenarios and scenario analysis that tell us how
to construct scenarios, how many scenarios to construct and how to reason between
and across their outcomes " ([23], p.61).

Evaluation frameworks and tools

To start of, urban simulations are not the only tools used to support decision makers
in urban contexts. For instance within sustainability perspective alone, Jensen and
Elle [83] (also reinterpreted in [? ]) identify four types of tools:

• Process (design) guides – provide frameworks to manage projects or policies
(e.g. [42])

• Assessment methods – enable prioritizing and comparing different solutions
by weighing specific aspects (i.e. criteria) (as in [10], general reviews of Multi-
Criteria Decision Making in [59, 175, 162, 98])

• Monitoring (rating) tools – facilitate selection of indicators and benchmarks
for formulating policies and monitoring their performance (e.g. [27, 156])

• Calculation tools – allow ex ante analysis of solutions, products and proce-
dures (such as [164, 179] )

Yet even with an ever growing interest and number of tools, little of them are
utilized in practice [159]. Whilst focusing on simulations, the main obstacles have
already been mentioned in Chapter 1. However, the literature on tools in planning
processes indicate, that the information load of the simulation output is a significant
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consideration. In essence, it is considered a type of decision task complexity, which
in our case relates to the number of criteria and locations [82]. Namely, in a simula-
tion working on a municipal or regional scale it would be far from understandable,
if presented in disaggregate manner.

These issues are at the core of the research field of geo-visual analytics, which
aims to support spatial decision making by ’augmenting’ human capabilities with
computational methods [122]. Batty et al. [18] state, that visual language is broadly
recognized as easier to convey information than other forms of communication.
Not only does it help to understand the outputs of a spatial model, but also in
"getting the message across how the model actually works" [18]. This indicates,
that we need to go beyond simple framework definition and output visualization in
a static manner, as this would not communicate the full potential of the work. To
do so we borrow the principles of enhancement through interactive exploration and
discovery [122, 121]. In other words, the end user should be provided the possibility
to explore and filter the outputs of the data, whilst also utilizing techniques as
animation to fully showcase the temporal dimension of the residential mobility and
bottom-up optimization.

3.2 urban and regional systems

Regardless of their issues, urban models, enable the testing of location theories
against data and generating future locational patterns [14, 76]. This is especially
interesting, when evaluating phenomena from a complex systems perspective.

A system is complex if its "elements interact and affect each other so that it is
difficult to separate the behavior of individual elements" [65]. Important to note,
that from this perspective urban environments are often seen as series of subsys-
tems (e.g. residential, commercial, physical infrastructure), reflecting the location
of human activity such as learning, working, living or shopping [4]. A model of
a singular sub-system is called a "partial model", whilst a collection of them (two
or more) are called "general" [12]. Each of these elements are related to each other,
as illustrated by the ‘land-use transport feedback cycle’ [170]. The framework con-
ceptualizes the nature of this as a two-way dynamic relationship between different
sub-systems in the urban environment (Figure 3.2). According to this framework,
the distribution of land use determines the location of activities and vice versa.
This idea is embodied in the field of LUTI (reviewed in [165, 169]), where modeling
households’ residential choices is one of the greatest challenges [44]. From a time
scale perspective, residential mobility falls in one of the slow processes within the
system.

3.3 residential location choice models

These types of models primarily focus on the household level probability of the
move, and the likelihood to move to a specific location and building [84]. These
decisions, which are by definition spatial, are linked to others such as car ownership,
job and school choice. However, even every-day behavior, like what travel mode to
choose and where to go shopping, might have influence on residential location
choice. Each of these have their corresponding transaction costs, relating to the
importance of the stakes associated with each decision. For instance, changing
mode of travel due to traffic congestion would not likely have any impact on the
future of the household or an individual. However, choice to switch to a different
school or change of job, might. The core questions are discussed in a working paper
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Figure 3.2: A general model of creative strategy [170]

of Coulombel [44]. In this chapter we repeat the most important subjects relating to
the scope of this project.

Process

The housing location choice process is often represented as two step structure: de-
cision to move and residential choice[44]. In reality, this involves series of decisions,
as showcased in Figure 3.3. Each of these steps are likely to involve their own
time constraints (e.g. home search and relocation). For abstraction purposes, these
are omitted in our framework, but the integration possibilities should be explicitly
considered while building the simulation.

Motives to move

According to Dieleman [50], in short distance residential mobility the primary mo-
tive to move is the adjustment of housing consumption (e.g. home size, housing
type), which is usually caused by life events (e.g. birth, divorce). However, in our
case we assume, that the relocation is caused by the risk of being injured due to
unsafe building stock. The households, that are not under risk theoretically should
have a threshold of discontent before they choose to move, but the definition of such
properties goes beyond the scope of this work. Nonetheless, an interesting example
of showing the impact of household and housing characteristics are shown in the
work of Kim et al. [90].

3.3.1 Considered criteria

The selection of evaluation criteria can have a considerable effect on the evaluation
process: the results can be skewed by including or excluding certain criteria [123]. In
addition to that, an increased number of criteria may lead to a more realistic model,
but it also leads to increased levels of error through the need to calibrate more pa-
rameter [56]. This phenomenon is called Information Paradox. Determining which
specific properties matter requires identifying stated and revealed preferences of
different population groups [44]. To avoid these whilst depicting choice behavior,
we choose to focus on the latter of the two, as this allows us to objectively and
quantitatively capture the criteria taken into account (see [53]). The techniques com-
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Figure 3.3: Conceptual model of the household’s housing decision-making process ([174] in
[44])
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monly used for this is discrete choice modeling (discussed in later in the chapter)
and hedonic analysis (for a great introduction see [143]).

The choice of the house itself can be coupled to two perspectives: location prop-
erties (e.g. neighborhood type, location-based accessibility [161]) and dwelling char-
acteristics ([108] in [44]). Interestingly, Coulombel [44], identifies this rather as a "a
wall separating the issues of location and dwellings characteristics in academic re-
search" (p.8).

Dwelling and household properties

The dwelling properties, that are commonly considered in residential mobility model
include its floor and parcel areas, type, price in relation to household properties like
size, employment status, nationality, income, gender, marital status among many.
Li [95] (p.32-33) provides an overview of the most popular models (e.g. UrbanSim,
ILUTE, PUMA), covering the major features of each of them. A similar overview,
but focusing on the dis-aggregate residential mobility models is provided in the
paper of Huang et al. [77].

Location-based criteria

Apart from the static house properties (like in [108]), research often considers location-
based accessibility as an important measure in residential choice. In this case, mod-
els interpret this measure in travel times, thus taking mode of travel and congestion
into account, if the measure is part of LUTI (e.g. UrbanSim, MARS). These indi-
cators commonly consider destinations such as parks, shops, jobs, health-care and
education (see e.g. [140], a review in [141]). These variables become dynamic, once
the households have specific relations to space, such as a fixed workplace or schools
locations. In other words, if households are represented individually, the perception
of the house location becomes subjective. This is also applicable for static variables,
but would require identifying household preferences.

What to represent?

However, referring back to the issue of the limited cognition within the decision
making process, we focus on representing only a couple of the afore-mentioned cri-
teria in our model. Just as for visualizations, our goal is to communicate the usabil-
ity and scalability of the framework, rather than create an accurate representation
of the residential mobility processes. Therefore, we identify the need to represent
some core static (i.e. housing-bound) and dynamic (i.e. location-bound) variables,
which are perceived in the light of limited households heterogeneity.

3.3.2 Rationality

Another thing to consider is the bounded rationality of the entities, that are making
the location choice. The theory of bounded rationality suggests, that the actors
have limited "information-processing capacities" [145]. These theories postulate,
that there is risk and uncertainty, associated with decisions and information on the
alternatives can be incomplete (ibid.). Thus models of bounded rationality assume,
that decisions are based on a part of the factors and they do not necessarily give
objectively optimal results [177]. In this project that comes into play in two ways:
that not all attributes are necessarily considered and the reduction of the search
scope for the candidate locations.

The first of the two requires observed choice data, such that variables falling
in the evaluation can be identified. Provided, that the populations are not homo-
geneous, different preferences per demographic group should be identified. For
instance, families with children are more likely to evaluate quality and distance
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to closest schools and kindergarten, whilst that might not be a consideration for
households of elderly people.

Regarding the second aspect, in older research (e.g. [108]) it is common to
assume, that a household can compare a very limited amount of houses at once
(i.e. rarely more than two). However, in our case we identify the advances in
information sharing through real-estate websites. More specifically, we assume that
households can evaluate all houses falling in their interest range (e.g. they can
afford it, sufficient floor area for the number of people) within our research area
(i.e. 1/3 of municipality). In simulations dealing with larger areas, researchers
have adopted various techniques to deal with this. One of such is distance-based
thresholds. For instance, Acheampong [4] introduces a search radius around a
household’s current location, whilst Rashidi et al. [128] propose a property search
model, where properties falling outside the maximum commuting distance are not
included in the evaluation for the choice.

3.3.3 Summary

All in all, at this stage, many of the elements of a fully representative residential
mobility model go beyond the scope of the project. To name a few, we see life events,
economic mechanisms as formation of housing prices, transaction costs, bounded
rationality, demographic heterogeneity and change of job/school location going
beyond the time or spatial constraints of the project, but strongly supports their
integration in future development. Nonetheless, existing research and models allow
us to identify the necessary features for the developed framework, as well as the
types of variables (location-based, static), that need to be incorporated.

3.4 agent-based models in urban contexts
The ever improving computing storage and power has enabled modelers to inspect
systems at extremely fine levels of detail, while capturing complex phenomena in
a way impossible with aggregate, traditional approaches [76]. One of such method-
ologies is Agent-Based Model (ABM). They "are computer simulations designed to
examine the behavior and interactions of autonomous agents" [144]. Agents in our
case would be households, making a decision to move to a location.

This modeling approach has found many applications from supply chain man-
agement to finance, archeology and health-care (recent general review [97]). But
most importantly, from methodological standpoint, these types of models can be
readily applied in complex systems, be it regions or cities [76]. The link between
the two is clear– ABMs creates a laboratory for us to observe individual decision-
making and interactions, from which emergent, macro scale patterns can emerge
(illustrated in[15]). Heppenstal [76] identifies three key advantages these models
have over traditional, statistics-based methods:

1. In contrast to ABM, statistical models can represent individual micro-dynamics
only if the population is homogeneous or it has coordinated interactions;

2. ABMs allow multiple spatial relationships;

3. Their structure is flexible, allowing incorporation of statistical techniques and
mathematical formulations, when the converse is often the opposite.

Nonetheless, most of literature studied dealing with ABM (e.g. [97, 76, 77])
identify similar issues with this modeling technique: the validation, verification and
difficulty comparing the results. Heppenstall et al. [76] even states, that calibration
and validation in ABMs "remains a dark art". Simultaneously, ABMs can be hard
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to communicate due to, among many, complex data structures, modeled entities, or
how processes and events are scheduled [69]. As a response to that Grimm et al.
[68] proposed a protocol for developing these models in a more standardized way.

3.4.1 Practical considerations

The ODD modeling protocol [68]

The Overview-Design-Details (ODD) protocol, as the name and abbreviation sug-
gests, consists of these three groups. They are meant to lead the modeler in both
defining and communicating their model outcomes. Given this framework (Ta-
ble 3.1), we will present our model in the Chapter 4.

ODD ODD element Questions to be answered?

Overview Purpose What is the purpose of the model?
Entities, state vari-
ables, and scales

What kind of entities are in the model? By
what state variables, or attributes, are these
entities characterized? What are the tempo-
ral and spatial resolutions and extents of the
model?

Process overview
and scheduling

Which entities do what, in what order?
When are state variables updated? How is
time modeled — as discrete steps or as a
continuum over which both continuous pro-
cesses and discrete events can occur?

Design concepts Design concepts There are ten design concepts (see [69]). How
have these concepts been taken into account-
ing the model’s design?

Details Initialization What is the initial state of the model, i.e. at
time t = 0?

Input data What input does the model use from external
sources such as data files or other models to
represent processes that change over time?

Sub-models What, in detail, are the sub-models that
represent the processes listed in “Process
overview and scheduling”? What are the
model parameters, their dimensions, and ref-
erence values? How were sub-models de-
signed or chosen, tested, and parameterized?

Table 3.1: The seven elements of the ODD protocol [69]

Data synthesizing

The issue of lack of disaggregate data in this project requires to create synthetic
datasets. This is because within this project we are unlikely to utilize any micro-
census data, but rather several aggregate level datasets. The procedure widely used
to deal with this issue is called Iterative Proportional Fitting (IPF), first proposed in
[49]. Huynh et al. ([79],p.2), give a brief description of it:

In conventional population synthesisers, the requirement for these fully
joint distributions is that they must preserve not only the correlation be-
tween these control variables as observed in the subset of the disaggre-
gated (survey) data associated with the target area, but also the correla-
tion between the marginal distributions of the variables that are specific
to that target area. Once the fully joint distributions between all the
control variables are constructed, records of individuals in a household
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are iteratively drawn from the survey data so that joint distributions of
attributes of the resulting synthetic population match as closely as pos-
sible the distributions obtained from the IPF process. The households,
the residents therein, and their attributes (both at household level and
individual level) are stored as part of the resulting synthetic population.

For a more complete picture on the available methods refer to the recent reviews
[11, 152]

Verification, calibration and validation

This aspect still remains one of the major challenges within the ABM [165, 142, 99].
Keeping in mind, that calibration is beyond the scope of this project, we want to give
a brief overview of it, as one of the sub-questions of the project relate to defining
the requirements for calibration data.

According to Paker [119], key to verification is sensitivity analysis. Namely,
this entails testing incremental parameter changes against mapped model outcomes
in order to ascertain the spatial or temporal limits of a model’s applicability and
identify possible model errors. This sensitivity is described by the spread of the
parameter values, that match specific model results [147]. Once this process is
completed, the calibration process is conducted to identify suitable values for the
model parameters in order to obtain the best fit with the real world. As we will see
in the next section, within the field of Discrete Choice Modeling, this is called model
parameter estimation. As last we validate the model for it’s representativity of a
real-world phenomena. For an introduction in agent based model validation refer
to [9]. Moreover, another aspect is very important when talking about modelling–
the definition and quantification of uncertainties [142]. In this project we focus on
the definitions provided in Table 3.2.

Epistemic uncertainties - “of or relating to knowledge or knowing” [103]
- Resulting from an inadequate understanding.
- With time (e.g., additional observations) these un-
certainties can be reduced and the true value ascer-
tained.

Aleatory uncertainties - “depending on an uncertain event or contingency
as to both profit and loss” [102]
- Due to the intrinsic variability of nature.
- Over time, all values will eventually be sampled.

Table 3.2: Uncertainty types (adapted from [60])

Uncertainty due to stochasticity

Many ABMs have some stochastic variables or inputs [100], which means that a
single model run gives only a small part of the picture. Namely, it is only a specific
realization of the model. To deal with this many ABMs execute many parallel runs
with different parameter values. One example of such is UrbanSim, which utilizes
random number generators to represent uncertainties relating to choices of house-
hold or job location, land-use development [142]. In addition to that, UrbanSim
inputs are also estimated by external models, meaning, that the inputs are also not
exact. Even though the proposed framework is unlikely to have stochastic elements
inside, we do acknowledge the fact, that the inputs are to some extent random.
The models explained later in the chapter, Discrete Choice Model(ing) (DCM), are
inherently stochastic. More precisely, they describe probabilities of choice, rather
than the choices themselves. In addition to that, DCMs include a random error
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term, which reflects "idiosyncrasies and particular tastes of each individuals" ([113],
p.230).

3.4.2 Residential mobility

Considering these advantages, the ABM has been widely applied in the field of res-
idential location choice modeling. Filatova et al. [61] provides a thorough overview
of 51 models. In their work authors identify key elements used within these models:

1. Household agent heterogeneity – these models represent daily activities (travel
to work or shopping) and life events, thus their residential choice depends on
age, marital status and job location among many.

2. Multiple agent types – most models have more than households as agents, as
they simulate location choice of firms and real-estate development;

3. Environmental effects and transport effects (e.g. air pollution, congestion) to
support policy and planning analysis

From our perspective, we choose the daily activity representation as an essential fea-
ture, but leave the life events and thus household composition as static. Moreover,
the functions of the actors beyond households are interpreted twofold. Namely,
building stock development is left as user input. Simultaneously, the job mobility is
interpreted as static. As last, we see a possibility of integrating the environmental
factors in the model by harvesting the values for each of the houses, based on the
continuous or zonal representation of phenomenon (e.g. noise, air pollution, urban
heat island). Transport simulation would potentially go even further on that, al-
lowing dynamic representation both of the environmental factors and of the earlier
mentioned daily activities. Huang et al. [77] also state, that exclusion or limitations
of urban market representation, might lead to significantly biased and conflicting
results. However, the question that this raises is whether traditional land-market
representations can capture the system behavior under disaster risk. Keeping in
mind, that this goes into the field of urban economics, we are conscious about land
market representation integration in the future, but do not attempt to integrate it
ourselves.

3.5 discrete choice modeling
The field of discrete choice modeling has been incepted in the 1970s [101]. Since
then has been applied throughout numerous contexts, such as health care, consumer
choice and transportation [40]. At the core of these studies are quantitative analyses
and predictions of choice behavior. Having data on observed choice behavior and
the properties of the available options, one can derive the underlying preferences
of individuals. More specifically, identify the weights given to each of the property
types during the choice procedure. In this section we will discuss two theories in
DCM, for full overview and application examples refer to [130].

3.5.1 Utility-based models

Majority of discrete choice models are based on the principle of utility maximiza-
tion [40]. These types of rules evaluate the utility or benefit of each of the options
and choose the one with the highest value. The models associated with this are
called Random Utility Maximization (RUM) models, where the ’randomness’ is
represented by the error term added to the evaluation rule. This term is introduced
to account for the uncertainty arising from incomplete information on the decision



3.5 discrete choice modeling 23

process and it elements. Ortuzar and Willumsen [113] state, that the random term
allows the modelers to explain the two ’irrationalities’ inevitable in human behav-
ior. First, that two attribute-wise identical individuals may choose differently when
presented with the same options. Secondly, that some individuals may not choose
the best option from the model perspective.

Ui = Vi + εi = ∑
m

βmj · xim + εi (3.1)

Where:
Ui random/ total utility associated with a considered alternative i
Vi observed utility associated with i
εi unobserved utility associated with i with assumed mean of 0,

βmj constant for all individuals in the homogeneous set, but may vary across alternatives
xim value associated with attribute xm for the considered alternative i

This evaluation can then be used to determine the probability of an option being
chosen. Commonly this is done by utilizing Multinomial Logit (MNL) model, which
is "the simplest and the most popular discrete choice model"([113], p. 232). It can be
generated assuming, that the random residuals (εi) are independent and identically
Extreme Value (EV) type 1 or IID Gumbell distributed (variance of π/

√
6)

Pi =
exp(θVi)

∑j exp(θVj)
(3.2)

where θ indicates the sensitivity for differences (in practice normalized to 1, as it is
simultaneously estimated with β(discussed in [113], p. 232

1)) and is related to the
EV1 deviation by:

θ =
π

σ
√

6
(3.3)

Since their introduction in the 80s [101] these models have been extensively ap-
plied in fields of consumer choice, transport modeling and education, to mention
a few (see [22]). However, with this kind of approach it is assumed that humans
behave rationally. The contrary is evident, in a sense that people have subjective
preferences, limited cognitive abilities and limited time to decide (topic widely
discussed in [146]). The aspect of this problem, in a sense of regret aversion, is
addressed in the next section.

3.5.2 Regret-based models

Regret is a phenomenon, that arises when a decision maker is faced with a situation,
where one or more non-chosen alternatives perform better than the chosen option
on a single or more attributes. The basic notion of RRM models is that regret plays
an important role in choice behavior [88, 176, 43]. More specifically, the decision
makers choose an option, that provides them with smallest regret. Most impor-
tantly, this technique allows one to let go of the underlying differences between the
measures of housing properties and accessibility measures [44].

Regardless of it’s relatively short history (introduced in 2008), RRM has seen
many applications, ranging from departure time and route choices, to on-line dat-
ing [37]. According to Jang et al. [80], the RRM models, introduced by Chorus et
al. [39], were an extension to the seminal work of Bell [20] (management sciences),

1 In this reference they notate the preference weight as β and the θ as a parameter associated with the
individuals in the homogeneous set
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Loomes and Sugden [96] (micro-economics), and Quiggin [127] (general) 2. The im-
provements allowed to move from binary to multinomial logit models and consider
multiple criteria choices, making the models more applicable in practice.

Procedure

The RRM procedure incorporates evaluating alternatives in context of the choice
set Figure 3.4. First these comparisons are done on attribute level and then on
aggregate level. In RUM models, the procedure is similar, but the alternatives are
only compared on the aggregate level (see [36]).

Figure 3.4: Random Regret Minimization decision process principle (solid arrows represent
summations, dashed arrows represent comparisons) [36]

Mathematically it is expressed as Equation 3.4, introduced in [38]. It allows
quantifying the differences between a set of options on several attributes, which
are not necessarily of the same dimensionality (i.e. think of dimensional analysis,
adding pears and apples). This is because, we are creating not a linear-addition of
the ∆xm, but rather a log-sum. Thus the formula below can also be expressed in the
form of Equation 3.5. Additionally, the formula can both deal with minimization
and maximization simultaneously. All it requires is the change of the sign of the β
parameter– for minimization β < 0.

RRi = ∑
j 6=i

∑
m

ln(1 + exp(βm[xjm − xim])) + εi (3.4)

Where:
RRi random regret associated with alternative i
βm estimable parameter associated with the attribute type m
xim value associated with attribute xm for the considered alternative i
xjm value associated with attribute xm for the considered alternative j

εi unobserved regret associated with i

RRi = ∑
j 6=i

ln(∏
m
(1 + exp(βm[xjm − xim]))) + εi (3.5)

2 According to the researchers in the original research group it is not an extension, but a ’new’ model on
regret [38]
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Having the ’observed’ part of regret allows modelers determine which alter-
native is best (i.e. rank on smallest regret). However, just like RUM, the RRM
formulation also includes an ’unobserved’ part of regret εi. Given that it has a inde-
pendent and identically distributed Gumbell distribution, MNL can be applied, but
with slightly different formulation, as we are trying to minimize the values and the
preference parameter βm is already incorporated in the regret function:

Pi =
exp(−Ri)

∑j exp(−Rj)
(3.6)

RUM versus RRM

The biggest difference between the two modeling approaches is their approach to
compensatory behavior or how much rejoice plays a role in compensating the ex-
perienced regret. To illustrate that in spatial terms we investigate a situation of a
household of two individuals selecting a location for their house. The only two
aspects these individuals consider, are their travel distance to their work locations,
which are in two separate cities A and B (Figure 3.5). This implies, that the house-
hold will try to optimize 2 criteria, which are the travel times to A and B. We
assume, that both of these attributes have the same preference weights. If we would
take RUM approach, the location of the house would not matter, as long as it was
between the two cities. This is because the total travel distance or total dis-utility
would remain the same. However, when we take the linear-additive RRM, the opti-
mal location will always be in the middle between the two cities. This is so, because
the reSgret function is not linear, but logarithmic (Figure 3.6). As we will see later in
the chapter, RRM can capture both compensatory and semi-compensatory behavior,
due to the controls built in the model.

A RUM
RRM

B

Figure 3.5: Example of the optimal location choice given the travel distance on a network of
a single edge

Figure 3.6: Attribute level regret function [158]
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3.5.3 Limitations and alternatives

The classical RRM model imposes a behavior, that varies between datasets and
attributes. This is caused by their scale invariance [158], as the taste parameter β
not only reflects the importance of a criteria in the decision, but also the shape of
the attribute level regret function. What it means, is that even while having the
same dataset, but with attributes evenly scaled, it will return completely different
outcomes. In order to capture the attribute importance and the degree of regret
separately, Van Cranenbergh et al. [158] propose µRRM model.

µRRM

The µRRM model generalizes the Classical RRM model by allowing the variance of
the error term to be estimated [158]. More precisely, in the µRRM model the scale
parameter µ is added (Equation 3.7). Noteworthy, is that we are using the formula
found on the website of the authors (advancedrrmmodels.com) and communication
with them, rather than the paper, introducing the theory [158]. There the formula
does not have the first µ parameter.

The parameter is linked to the error variance and allows one to estimate the
shape of the attribute level regret function (Figure 3.7). With this change one can
indicate the levels of profundity of regret. This term refers to the extent the model
imposes regret minimization behavior. Thus the larger µ values, the milder the
regret minimizing behavior. Thus if the parameter is arbitrarily large, it will exhibit
the linear-additive RUM behavior. The other boundary case, when µ → 0, shows
the Pure-RRM behavior, which shows the strongest profundity of regret within the
framework (see [158]). When µ = 1, the model ’collapses’ to the classical RRM
model [38]. However, even though µ is added, it does not remove the influence that
the (scale of the) units have to the decision rule. More specifically, as in the classical
RRM model, the βs and the µs will have to be estimated for each dataset and model
application.

RRi = ∑
j 6=i

∑
m

µm · ln(1 + exp(
βm

µm
[xjm − xim])) + εi (3.7)

Figure 3.7: The impact of µ on the binary variable level regret function, Rµ
im = µ · ln(1 +

exp( 1
µ [∆xm])), where ∆xm ∈ [−2, 3]
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RRMPLW

Another take on the RRM is provided by Jang et al. [80]. The authors propose in-
terpreting regret from the perspective of Weber’s law: "individuals perceive change
in a stimulus as a constant ratio of the original stimulus" (p. 5 of 21). The Paired
Logarithmic Weber’s law (PLW) formula takes the form of the following:

RRPLW
i = ∑

j 6=i
∑
m

ln(1 + exp(βPLW
m [

xjm − xim

xjm
])) + εi (3.8)

The benefit of using this formula is that it makes the calculation dimensionless
without the β estimation and solves the scale invariance issue. I.e. the larger the
attribute size, the smaller the regret with respect to the same attribute-differences.
However, this specific application does not work on datasets with many attribute
values equal to 0. A workaround for that would be to uniformly shift the whole
attribute value set, so that none of the values are 0. However, we consider a different
approach with very similar implications and no need to manipulate the input data.

RRMσ

In this research we propose an alternative that allows us to deal with both the scale
invariance and the dimensionality issues. Instead of dividing by the original value,
we propose scaling the attribute sets by their standard deviation. This measure
captures the spread of the attribute set. The formula then takes the following form:

RRσ
i = ∑

j 6=i
∑
m

ln(1 + exp(βσ
m[

xjm − xim

σim
])) + εi (3.9)

The downside of this method is that calculating the standard deviation of the set
is more computationally intensive. The upside of using this formula compared to
the RRMPLW model, is that the standard deviation of a set of alternatives is rarely
zero and, if it is, then the attribute level regret is identical. This allows us to bring in
easy controls in the scripts whilst utilizing this function. It also retains the benefit
that it makes the calculation dimensionless without β estimation. Meaning, that the
β values can become a more intuitive measure of the importance of an attribute, as
it also can become dimensionless. Potentially, it could also include the µ, which
could further increase the controls of the choice behavior (i.e. the profundity of
regret). However, in our research scope that does not play a role, as we have no
observed behavior data and assume that both the βs and the µs are equal to 1.
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Figure 3.8: The impact of σ (standard deviation of m) on the binary variable level regret
function shape, Rim = ln(1 + exp( [∆xm ]

σim )), where ∆xm ∈ [−1, 2.5]

Comparisons

We examine the unit scale implications of the two alternative models and the clas-
sical RRM in a ’toy’ problem (Figure 3.9). The example choice set has 3 abstract
options/alternatives to choose from, each of them having two properties: distance
and price. However, the price is indicated in two different ways: cents (blue) and
euros (orange). This allows us to form 2 separate datasets, which essentially have
the same information.

We first inspect the regrets experienced for one of the alternatives. The classical
RRM model (No Scaling) shows significant differences in regret, when comparing
the inputs with different units, regardless that they contain the same information.
This was not the case when scaling the choice dataset with either the reference (xi,
Weber’s Law) or the standard deviation of the attribute sets (STD Scaling), as they
are unitless.

When inspecting the experienced regret on all the choices, we see consistency
between the scaled datasets, as they choose the same alternative (i.e. alternative 1).
But we observe that in the classical RRM model the impact on the scale of regret are
not relative. Specifically, the scale of units also have influence which of the options
is chosen: if the price was indicated in cents the regret would be lowest for option
1, but if in euros it would be the lowest for option 2.

On the issue of unit scale

In line with literature [158], this example showcased the importance of the esti-
mated β parameter in scaling the regret. However, this also means, that β is not
transferable through datasets and can only be identified after the estimation. This
is a significant issue when utilizing the model in agent-based residential mobility,
where the choice sets (i.e. numbers of attributes and their scales) differ per agent
and time unit due to the different perception of the building stock. In this case,
we would expect similar choice behavior observed between demographic groups,
which would need to be captured by the β in a sense that is comparable through
different choice sets. Namely, how important is the attribute in the formulation of
regret and consequently making the choice for a specific demographic group.

In the classical RRM the estimated β values will be different for each and every
dataset. This is due to its connection to the scale of the units of the dataset. This is
completely acceptable in the cases where the choice set remains constant and even
allows identifying the effects of changing the variables. Namely, it allows answering
the question of how the regret will change, if an attribute is increased by x amount
of units. This is particularly interesting as an application in transport modeling, as
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this would allow identifying the choice behavior changes in relation to changing
pricing policies.

However, inconsistent with the statements of the researchers [158], a similar situ-
ation can be observed in µRRM, where this is captured in two estimable parameters
of β and µ. These issues become clear, when inspecting the theory from the dimen-
sionality perspective (i.e. units). Keeping in mind, that we are provided conflicting
information on the theory, we inspect both formulas provided (i.e. from [158] and
from author’s website and communication). For the illustration, we drop the error
terms, as they are of the same unit as regret, as they are associated with the ’unob-
served’ part of regret for an alternative i. The first one is the formula provided in
the communication:

Ri = ∑
j 6=i

∑
m

µm · ln(1 + exp(
βm

µm
[xjm − xim])) (3.10)

One of the parameters needs to remove the units associated with the variable.
In classical RRM, that is done by β. In this case, assuming, that µ has units would
be incorrect– the parameter placing outside of logarithm suggests, that these units
would be retained on attribute levels. This implies, that the sums happen on values
of different dimensionality (e.g. number of windows and distance to a closest shop),
which would be incorrect in a mathematical sense. This suggests, that µ is actually
unitless and β still captures the unit scales. This suggests, that even though the µ
allows another level of freedom for defining the shape of the regret function, the
formula is by no means scale invariant, as the definition of β is the same as in
Equation 3.4.

Looking at the µRRM definition in the paper [158] (Equation 3.11), this is poten-
tially not the case.

Ri = ∑
j 6=i

∑
m

ln(1 + exp(
βm

µm
[xjm − xim])) + εi (3.11)

The authors also claim, that "by dividing by the scale, the estimated taste param-
eters are adjusted for the scale of the µRRM model" (p. 97). The authors further
clarify, that this allows to straightforwardly compare the taste parameter estimates
across different models. These statements indicate, that the β becomes a unitless
attribute preference indicator, as the µ is the one that captures the scale of the units.
However, this is contradicted by the definition of the term, where it is linked to

the variance of the error term (σ2
εi

): µ =
√

σ2
εi

/(π2/6) (p. 96). According to this
definition, µ will have the same units as the error term, i.e. the ’unobserved’ part of
the regret. Implying, that in the formula, the β is still the parameter removing the
units within the logarithm. This again showcases, that this model definition is not
unit scale invariant and that the βs could not be compared across different models,
with varying attribute datasets.

3.5.4 Other considerations

Regardless of all the refinements RRM brings in for the behavioral representation,
its computing complexity is inferior to RUM. In other words, while RUM would
scale linearly with the choice set, the RRM scales quadratically (O(n2)) (apart from
P-RRM [158]). This brings a challenge on the application of the theory on large
spatial regions. The proposed σRRM requires even more computations, as for each
evaluation iteration one needs to compute the standard deviation of the set, which
would suggest using RRMPLW . However, the latter approach also does not allow
for easy integration within the scope of residential mobility under disaster risk, as



30 theoretical background

Figure 3.9: Demonstration of the scaling issue for the classical RRM, RRMσ and RRMPLW

many attribute choice sets are likely to contain zeros. Such as, when the building
is not under any risk. Utilizing standard deviation, even if there are no differences
between observed variables can be easily accounted for and thus replaced by the
attribute value itself or even by automatically skipping the evaluation and giving
the attribute regret a constant value of ln(2). Therefore, we select this theory for our
framework presented in the next chapter.

3.6 summary

In this section we discussed the context of this research, relating to a wide range
of scientific fields. We started by showing that models play an important role in
public planning and policy making process and that there are many other tools
apart from simulations to support it. Nonetheless, when talking about cities as
complex systems, models can play an invaluable role as a controlled laboratory
for experimentation. This allows public sector agencies test their proposals in a
controlled manner, showing the possible pitfalls and leading to a more structured
dialog between involved parties.

Next, we gave a brief overview of cities as collections of systems, which are inter-
related to each other– residential mobility being one of the sub- or partial systems.
With this in mind, we continued to the outline of the core concepts and definitions
in the field. Additionally, we strove to relate each of them to the scope of this re-
search and give indications what future improvements should be taken into account
while building the framework.

After this we continued by explaining the reasoning for choosing a disaggregate
modeling approach utilizing agents. We presented the core definitions and pitfalls
of the modeling technique through the prism of the ODD protocol. As last, we
went in depth of discrete choice modeling, which is an essential feature to repli-
cate agent behavior in the perspective of residential mobility. We briefly discussed
the predominant utility maximization modeling approach and gave an alternative,
based on the notion of regret. Given the already existent regret-based models, we
analyzed the difficulties of application given our problem, primarily relating to the
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unit scale-invariance. As an alternative, we proposed a novel approach dealing with
the unit scale issue and allowing for showcasing its application within the field of
agent-based residential mobility.





4 M E T H O D O LO GY

In anything at all, perfection is
finally attained not when there is no
longer anything to add, but when
there is no longer anything to take
away

Antoine de Saint- Exupéry [48]

The framework we are presenting in this thesis can be seen as a process con-
sisting of 4 steps (Figure 4.1). In the first step (Section 4.2), we define the model
input. In the second (Section 4.3)– perform the simulation of household relocation
. The third step (Section 4.4) allows for interventions or input for the model, en-
abling us to provide alternative inputs for the simulation. Finally (Section 4.3.5), we
collect all of the outputs and provide them in the form of an series of interactive
visualizations.

This section will be structured in a similar manner. We will start by giving an
overview of the key features of the framework and then proceed by discussing the
data-related topics: data structure and processing approach. Next, we introduce the
model definition and go into more detail relating to specific methods or functions
in the code. After this we explain the experiment setup: the spatial extents studied
and the interventions chosen for showcasing of the model. The chapter finalizes
with description of the Verification & Validation (VV) methods, which zooms in on
identifying model uncertainties.

Data collection
and processing4.2

Model definition
and simulation4.3

Defining policies
as model

interventions
4.4

Model output
communication4.3.3

Figure 4.1: Framework overview with chapter numbers (lines show procedural flow, with
dashed line representing a thought process; people getting ideas based on the
visualizations)

4.1 overview
The proposed model framework is intended to enhance the strategic planning capa-
bilities of Regional Planning Organizations and other state and local agencies. How-
ever, within this research we are not creating a predictive model, but rather show-
case the possible applications for testing hypothetical or ’What-if’ scenarios for their
proposed policies and spatial interventions. By this we imply, that the framework

33
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would enable decision makers to identify possible pitfalls of planned interventions
in the housing market (zoning) and financial policies to support housing-stock up-
grading. To do so, we introduce an agent-based residential mobility model, which
has the following features (based on the Overview-Design-Details (ODD) protocol):

1. Overview

a) The model simulates one of the key choice makers’ (households’) choices,
underlining bottlenecks in the current configurations of the urban devel-
opment; Households are thus the agents in the model

b) The agents of the system are households, which can relocate to discrete
locations (parcels and houses), connected by a network; the collection of
these elements is a system

c) The time representation of the model is an abstract time unit called step;
during each step households evaluate viable (i.e. affordable, sufficient
in size) building options, which of the best one is bid upon; the bid is
always won by a household with the largest capital; the households then
move to a new location, vacating their old building for evaluation for the
next step; system attributes are collected after each successful bid and the
process repeats until convergence (i.e. no more relocations) is achieved.

2. Design concepts

a) The model is based on random regret theory and uses option ranking for
agent residential choice to relocate and where to relocate.

b) The model addresses re-development/upgrading (intrinsic, built in the
model) and new developments (extrinsic, user input) of the building
stock.

3. Details

a) On initialization the households are moved to semi-random starting loca-
tions (based on aggregate statistical counts); a run without change to this
input is called a base run; making a change to the input data constitutes
an intervention or a scenario;

b) The input data comes from public datasets (i.e. aggregate statistical data,
building stock properties, network geometries) and private host company
datasets (i.e. risk and building functions (result of integration of public
and commercial datasets))

c) The simulation is performed on sets of households, which are synthe-
sized based on aggregate statistical data; the household sets are the same
for all interventions and their properties change only, if specifically indi-
cated in the intervention;

d) With the abstract model time representation, we assume, that the demo-
graphic situation, housing and job markets are static.

e) The user interface focuses on interactive evaluation of pre-defined ’What-
if’ scenarios

f) The model and user interface are written in Python, using object-oriented
programming to maximize software flexibility; the user interface, a dash-
board is browser-based.

g) Data processed, synthesized and produced for and by the model are writ-
ten as HDF5 files (open format) for external use.

Additionally, within the scope of this thesis we select a minimal number of
required optimization criteria to showcase the functionality of the model. In this
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work we refer to criteria when talking about system objectives, i.e. criteria to be
optimized. The term of attributes refers to the data itself, i.e. the building value.
In relation to each other, an attribute can be a criteria, but it is not always the case
the other way around. Namely, a criteria could be expressed in a function form,
integrating one or more attributes.

4.2 data collection & processing

4.2.1 Data structure

To make the work easy to expand and edit, the model is implemented in an object-
oriented manner (Figure 4.2). That implies, that we are structuring our code in
smaller modules: classes. Each of them have specific attributes, called fields, and
methods, or functions. Our code includes 4 major classes:

• Buildings – stores all variables relating to buildings, as well as their relations
to parcels (abstract class) and thus the network.

• Households – stores all population and household related variables, methods
for population synthesizing.

• Model – iteratively performs the buildings evaluation from each household’s
perspective and relocates households until a termination criteria are met.

• Network – describes the geometry of the network and stores the distance
matrix to every point of the network.

Other classes in Figure 4.2 are abstract. More specifically, they exist as blueprints
for other classes. For instance, Household abstract class would define specific prop-
erties of a single household, which do not work as single entities in code, but form
the Households class (collection of households). Noteworthy are the classes Changelog
and Visualization. The first of the two is defined in the Model class and represents
the storage of the changes that occur during the Model class execution. The second–
Visualization class– is a series of methods used to create the interface to explore and
analyze the model outcomes (i.e. Changelog) for different interventions and the base
run.

4.2.2 Data preparation

The first stage in the pipeline relates to selecting and processing the data. We
select the datasets based on literature review, visual and rounding error inspection
(covered in Chapter 5). Here we provide a flowchart per class with the final selection
of datasets. The color coding in them correspond to the following:

• blue shows the procedures carried out

• gray points to external data sources (overview in Table 5.1);

• green– relations to the other classes;

• red marks the resulting file.

Network class

The space in this model is represented as an undirected network of streets, which
connect all the objects in space. This data is retrieved by using the pipeline identified
in Figure 4.3.
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Figure 4.2: Simplified UML diagram of the project, hard-coded classes are marked in blue
(full version in appendix A)

Figure 4.3: Network class processing
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The first step in our approach is to (1) filter the line geometries falling outside
the case-study extents. This implies, that some of the lines would form disconnected
sections. To circumvent that, we first (2) construct a topological network represen-
tation, where each intersection or point becomes a vertex and lines between those
vertexes become edges. After performing built-in connectedness tests we discard all
but the biggest network. This is acceptable, as we are working in administrative
unit zones and the subsets of disconnected vertexes are relatively small (processing
municipal scale: streets with no objects connecting to them) or non-existent ("buurt"
and "wijk" levels).

After this, we can (3) connect the center points of building and parcel geometries
to the street network. This is done by finding the center of mass of each geometry
at hand and finding the closest point on the edge on the network. These edges and
vertexes are then added to the network.

Next, we (4) renumber each edge and vertex, to ensure consistency and calculate
the length of each edge. The outcome of this step is saved in two files: spatial, which
is used in visualizations; non-spatial, which is used to perform calculations of the
model. This is done to speed up the processing of the Floyd-Warshall (FW) matrix
construction algorithm (see Algorithm A.1), as the spatial data is not needed for it.
The output of this step, also used in the Model class, is the Floyd-Warshall shortest
path matrix or distance look-up table.

Parcels class

Parcel, or plot of land, processing is carried out in order to identify all empty parcels
with the possibility to build residential buildings in them. Following the graph in
Figure 4.4, we begin with (1) filtering by spatial overlaps. We select only parcels
in the area of interest, that overlap with spatial plan zones, allowing for residential
buildings to be built. In this step we also filter out all plots of land that have build-
ings on them. This allows us to create the bindings between parcels and buildings
datasets, adding a key relations between them.

Following this, parcels are (2) intersected with the road network, so that plots
designated for roads are removed. This last operation also removes parcels, which
were recently destined for new construction, but are not yet subdivided. In the
case study area we observed at least one occurrence of this, which is later used to
manually create a new neighborhood intervention scenario, described in Section 4.4.

As the last cleaning operation, we (3) check for parcel geometry circularity: if an
object is close to a square, the value will be close to 1. This filter is necessary, as the
road and parcel geometries do not always align. This step allows us to identify any
free parcels, which are (4) connected to the network as described above.

Figure 4.4: Parcel class processing
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Buildings class

In the presented framework, we interpret buildings as collections of living spaces or
flats, corresponding to the smallest housing unit (Verblijfsobject (VBO)) in the key
registries in the Netherlands (see Figure 5.1.2). The processing of this data starts
with (1) spatial filtering. We first select only the geometries falling within our area
of interest. Then we create relations with the parcel dataset by performing a spatial
join.

Next, we (2) connect the building dataset to the host company databases, giv-
ing us information on building functions, inferred structural types and risk. The
latter data is incomplete and only allows us to tag the buildings with the highest
collapse risk. For showcasing purposes, we extrapolate on the available informa-
tion to quantify and expand the risk tags. In line with the methods used to define
the hazard in the region (explained in the [1]), we assume that the most important
characteristic influencing building’s seismic response are the construction materials
and structural systems. We abstract and simplify the risk estimation by assuming
that these properties are identical for the whole research area. Our interpretation
makes the risk a variable solely dependent on the building’s (most probable) struc-
tural system (explained in [41]). This implies, that the original highest risk batch of
buildings remain at largest risk (unit-less value of 1), whilst the rest of the building
stock having the same structural types are given values of 0.5. Buildings not falling
in the latter two categories are assumed to be under no risk. To circumvent this data
impacting the real-estate market, the proportions of the tags remain accurate, but
the risk attribution is randomized. In the same step, the upgrading costs per m2 are
generated for each building under risk. The values are randomly generated using
indications of expert engineers in the field: we assumed a standard distribution
with a mean of 1500 eur and standard deviation of 500 eur.

After the risk attribution, we (3) connect the geometries to the network, which
allows us to (4) find distances to 3 closest amenities (i.e. ) to each of the residen-
tial buildings and aggregate them. At the current implementation, where facility
locations do not change, this becomes a pre-computed, static variable.

As last, we (5) add the workplace location data. At this stage of the project the
data was only available on aggregate levels (more in Section 5.1.2). Therefore, we
randomly attribute them to the buildings, with identified non-residential functions.
This is done a single time, as workplace number per building is a piece of data,
which is possible to acquire. Just like amenities data, this variable remains static
(i.e. people do not change their workplaces).

Figure 4.5: Buildings class processing
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Households class

The goal of this part of the process is to create synthesized sets of households,
which still correspond to the global statistics in the studied areas. This type of
approach allows us to create semi-realistic datasets without accessing private data
(Figure 4.6).

Just like for all other classes, we first select the zones within the studied subset
and (1) extract the aggregate level statistics on demographics (population counts for
two groups: adults and children). In the same step, we randomly distribute these
people through households, based on the statistics on household types (i.e. counts
of single-person, with children and other households).

Due to incomplete building data (see Figure 5.1.2), we reduce the scope of the
model by removing the buildings with missing values. This consequently requires
to (2) reduce the number of households to ensure realistic vacancy rates.

Once this is done, we proceed with (3) randomly attributing people to houses.
Since the demographic data only identifies income segments (i.e. low, medium,
high and average income per zone), we assume that the household capital should
be in similar ranges as the real-estate they own. As (4) capital we take 110% of the
building price, so that households had the capacity to upgrade and move to differ-
ent locations. This is a simplified approach and would otherwise require complex
economic models (e.g. like in UrbanSim) or more refined data input.

As last, (5) from three closest schools (the capacity and types are unknown at
this stage) we randomly select one for each child. In the same loop we also find job
locations for each of the households, which is based on a job distributions, based
on doubly constrained or gravity model with equal travel costs (see [113], p. 182,
see Figure 5.1.4). This allows us to synthesize data on aggregate level job mobility.
More specifically, the proportions of people working in one of the zones, given their
residence location.

To sum up, in this subsection we describe a pipeline for creating synthetic house-
holds, which still correspond to global system statistics. The household heterogene-
ity is encapsulated in their relations to the network (where people work or study),
age group (i.e. working, pensioneer, child) and income group. This procedure is re-
peated multiple times (number dependent on the researched subset) to create many
alternative sets, which are then run in parallel to create a spectrum of outcomes for
the model runs.

Figure 4.6: Synthesizing of households
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4.3 the model definition
After collecting the data for all input classes (i.e. households, houses and network),
we proceed to the simulation. As seen in the overview Figure 4.7, the preprocessing
step (marked in blue) is also part of the framework. In other words, if the files for
the preprocessed data are not available on a machine the code is running on, it will
be generated. The model class (marked in orange) is initiated by collecting all the
input data and altering it to represent an intervention (i.e. a scenario). If this data
is not provided, such a model instance is called a base run. We use it to compare the
intervention performance and see if any impact (positive or negative) is achieved.

The simulation starts by executing the run function, which contains the step
method and the information of the termination criteria (explained in Section 4.3.1).
The step (Section 4.3.2) method is function a level lower, representing the discrete
time unit of the model. In that function we go through all the households to run
the lowest level building evaluation function (Section 4.3.3). Each time the step
function finalizes, we collect the changes to the system in the changelog class.

Initial system
attribute collection

Data clean-up
& processing

 
Input data

Input Processes Output
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Figure 4.7: The model code flowchart with 3 major functions in the code, in blue– data pre-
processing, orange– simulation
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4.3.1 Run function

This method is the highest level function in the model class. It takes the instantiated
object and controls the simulation. More specifically, it initiates the step function
and terminates the model, when termination criteria are met. In this project we have
used 3 different termination rules: (1) step limit; (2) change threshold with a moving
average; (3) convergence (there is a constant number of changes for x amount of
steps). Each of them can be inspected in the Algorithm 4.1, with comments as
markings for each.

4.3.2 Step function

The step method (Algorithm 4.2) corresponds to the model representation of dis-
crete time. In this function we (1) scan and evaluate the available building stock
from the perspective of each household, (2) select their candidate location and
(3)perform bidding.

The first of the three utilizes the adapted version of RRM (Equation 3.9) and is
explained further in the section. After executing the evaluation step, we can either
perform option ranking (i.e. select house with the smallest regret) or utilize MNL.
This formula is used to calculate the choice probabilities P, which are then used
to select one of the houses from the alternative subset. The last of the three steps
is simplified to the extents, that the household with the most capital always wins.
Once we select the winning households, we update the household and building
class variables, and store the changes changelog.

4.3.3 Building evaluation function

The choice behavior in the model is represented in the form of RRMσ allowing us to
compare different housing alternatives. As discussed in the Section 3.5.1, we utilize
an adapted version of RRMσ formula:

Rσ
i = ∑

j 6=i
∑
m

ln(1 + exp(1 · [
xjm − xim

σim
])) (4.1)

The code form of this is captured in Algorithm 4.3. Important to mention, that
prior to evaluation we first reduce the building alternatives (i.e. houses considered
as candidates for a household). More specifically, we ensure that the people can
afford the house and it has the minimal floor area requirements. This number is
different for each municipality. Not being able to find one for the case-study area,
we select The Hague as reference [64]: 12m2 for each person living in the house,
with 24m2 for the minimal living unit floor area, defined in the building law of the
Netherlands.
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Algorithm 4.1: Run function
Data: Household table H, building table B, changelog table C, choice

model specification M <string>, selection specification SM <string>,
termination indicator T <list>

Result: Changelog table C
1 n← 0 ; // step counter

// Repeat step for T[1] <int>

2 if T[0]==’steps’ then
3 for r from 0 to T[2] do
4 H,B,C← step(H, B, C, M, SM);

5 return C;

// Termination change threshold: moving average length T[1]

<int> and threshold for that averageT[2] <int>

6 else if T[0]==’changes’ then
7 A← 0 ; // Average indicator

// Continue while the average below T[1] OR we have at least

T[2] elements in changelog

8 while A > T[1] or len(C) < T[2] do
9 H,B,C← step(H, B, C, M, SM);

10 n← n + 1;
11 A← mean(C[-T[2]:, ’changes’]);

12 return C;

// Termination by convergence: defining moving average domain

size T[1] <int>, offset for moving average comparision T[2]

<int> and a safeguard of maximum number of steps T[3] <int>

13 else if T[0]==’convergence’ then
14 A← 0 while True do
15 H,B,C← step(H, B, C, M, SM);
16 n← n + 1;
17 A← mean(C[-T[1]:, ’changes’]) ; // calculating the average

number of changes from -T[1] to the last item of the

changelog

18 A_offset← mean(C[(-T[1]-T[2]):-T[2], ’changes’]) ; // calculating

the offset average number of changes from -T[1]-T[2] to

the -T[2] element of the changelog

19 if len(C) > T[1]+1 then
// if average the same, terminate (end) the simulation

20 if A == A_offset then
21 return C;

// if number of steps exceeded, terminate (end) the

simulation

22 else if n>T[3] then
23 return C;

24 else
25 ModelError(’Wrong limit inidication T’);
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Algorithm 4.2: Step function
Data: Households table H, buildings table B, changelog table C, choice

model name M <string>, selection method SM <list>
Result: Household table H, building table B, changelog table C

1 for h from 0 to len(H) do
2 if M == ’RRM_SD’ then
3 no_people← H[h,’adults’] + H[h, ’children’];
4 if no_people < 2 then
5 area_threshold← 24;

6 else
7 area_threshold← 24 + (no_people− 2)× 12;

8 B_filtered← B, where B[ : , ’v_building’] < H[h,’capital’] AND B[ :
,’a_building’] > area_threshold ;

9 R← empty regret dictionary with keys as B_filtered indexes;
10 R← evaluate_buildings_RRM_SD(H[h], B);

11 else
12 ModelError(’Wrong choice model specification M’);

13 if SM == ’ranking’ then
14 candidate← key of min(R);

15 else if SM == ’MNL’ then
16 probabilities← exp(R[:]);
17 total← sum(R[:]);
18 probabilities← probabilities[:]/total;
19 candidate← numpy.choice(R.index, probabilities);

20 else
21 ModelError(’Wrong candidate selection specification SM’);

22 bidding← empty dictionary;
23 if candidate != H[h, ’current_location’] then
24 if candidate in bidding.keys then
25 if bidding[candidate][0] < H[ h, ’capital’] then
26 bidding[candidate]← [H[ h, ’capital’], h];

27 else
28 bidding[candidate]=[H[ h, ’capital’], h];

29 foreach bidding.keys as k do
30 household_id← bidding[k][1];
31 old_building_id← H[household_id, ’current_location’];
32 B[old_building_id, ’hh’]← None;
33 B[k, ’hh’]← household_id;
34 H[household_id, ’current_location’]← k;
35 get_household_properties(H[household_id]);

36 collect_to_changelog(C);
37 return H,B,C;
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Algorithm 4.3: Building evaluation function, using RRMσ

Data: Attribute value table A(na × nj + 1), where na is number of criteria
types, nj + 1– number of alternatives, including reference; Criteria
max/min objective list AO(1× nx)

Result: Regret value table R(1× nj + 1)
1 for a from 0 to na do
2 SD[0,a]← σ(A[a]) ; // standard deviation of the attribute

value list A[:,a]

// If the values in the list are the same (no spread) or the

values are NaN

3 if SD[0,a] is NaN or SD[0,a] == 0 then
4 SD[0,a]← A[0, a];

// If the values in the attribute list A[a] are all 0

5 if SD[0,a] == 0 then
6 SD[0,a]← 1;

7 R← table with nj items as 0;
8 for a from 0 to na do
9 for i from 0 to nj do

10 R[i]← 0;
11 for j from 0 to nj do
12 if j != i then
13 regret← log(1 + exp(AO[a]× ((C[c][j]− C[c][i])/SD[a]));
14 R[i]← R[i] + regret;

15 return R;

4.3.4 Attribute value calculation

In our code, these attributes is captured in the get_household_properties function,
which was also part of Algorithm 4.2. The variables and their calculation proce-
dures are summarized in Table 4.1.

We classify the by types relating to properties of: (1) location; (2) location and
household; (3) building. Additionally, we identify which of the criteria are static
throughout the simulation procedure and which become dynamic. While talking
about location related criteria, non-static implies, that the values are calculated for
each alternative building a household evaluates. The only two non-static optimiza-
tion criteria are the risk and real estate price. Risk is an ordinal scale attribute,
which is either 1 (largest risk), 0.5 or 0 (no risk). The last, model run column shows
within which model runs the variables have been incorporated, more on the subject
in Section 4.4.

4.3.5 Output and communication

The output of the simulation process is captured in the changelog class. Throughout
the simulation it is used to both capture the changes to the building stock, mobil-
ity of the households and overall system performance from the perspective of the
evaluated criteria. Therefore, the definition of the code, as well as the class automat-
ically adapts, based on which spatial, criteria and intervention extent is mapped.
Given the criteria presented in the Table 4.1, the model outputs are:
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Type Criteria Static? Procedure Model
run

1 Distance to ameni-
ties

Yes Range search and look-up from
distance matrix (Algorithm A.3)

S, B

2 Distance to job No Look-up from distance matrix
(Algorithm A.2)

S, B

2 Distance to school No Range search and look-up from
FW matrix (Algorithm A.2)

B

3 Real estate price Yes/No Built in property S, B
3 House area Yes Built in property S, B
3 Parcel area Yes Built in property B
3 Risk Yes/No Extrapolated from datasets &

adjusted
B

Table 4.1: Criteria evaluated in the simulation for different spatial scales, corresponding to
model development cycles (S: small, B: big)

System aggregate values of Notation Units

Distance to amenities d_amenities Meters
Distance to jobs d_jobs Meters
Distance to schools d_schools Meters
Real estate price v_house 103×euro
House area a_house m2

Parcel area a_parcel m2

Risk risk unitless

Performance tracking

Changes c steps
Changes per income bin c_bin bins: steps
Empty houses vacant units
Location history per change loc_hist household: start and end vertex

Table 4.2: Attributes given as the output for the model

Given this data, we create series of visualizations, which allow interactively ex-
plore the information. The maps and charts created provide statistical and aggre-
gate summaries for all alternative runs, showing the average outcomes, relating to
each of the interventions, described in Section 4.4.2). When we talk about model
aggregate criteria, we refer to a summation of an attribute for all households in the
simulation.

4.4 experiments and interventions

4.4.1 Spatial extents

Within this research project we focus on two spatial extents (Figure 4.8): (1) a single
statistical zone with a relatively small building and household counts; (2) A multiple
statistical zone extents, which include large numbers of households and buildings.

Our initial runs are generated for the smallest administrative unit, called ’bu-
urt’, of the Dutch National Statistics Agency (CBS). The specific area we choose is
Huizinge village. This area is one of the least populated ’buurten’, but still has a
wide selection of building functions (i.e. not only shops and residential buildings)
and has a network with loops (i.e. streets that form rings) (Figure 4.9). The zone
has 56 buildings, 48 of which have sufficient data to be used as model input. There
are 45 households, leaving 3 buildings vacant. In this model setup we test the ba-
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sic model functionality with 4 optimization criteria (see Table 4.1). Moreover, for
this extent we generate 100 household sets, which are then run in parallel to create
alternative area evaluations. The purpose of the runs is to verify model processes
and outputs on a small, ’toy’ scale. In essence, this scale is a scale up version of the
hypothetical problem shown in Chapter 2. Just in this case we are dealing with 4

rather 2 optimization criteria and 2̃0 times more households.
The second run encompasses 4 ’buurten’, which together form a ’wijk’: level

higher aggregation used in CBS. This subset has 1̃000 households and a similar
amount of houses, which allows us to test the methods on a significantly larger
scale. Additionally, in this run we start incorporating additional attributes to be
evaluated (7 in total). For this extent we generate a 1000 household sets, which like
in the toy problem are run in parallel for base and alternative runs.

Figure 4.8: Subsets for experiments

Figure 4.9: Preview of Huizinge ’buurt’ with building, flat and network geometries

4.4.2 Interventions

The ’What-if’ scenarios or the interventions created for this framework are required
to showcase and test the usability of it. By selecting simplified, but common policy
and spatial interventions, we seek two reach two goals. First, it allows us to create
a platform of communication of model results. Secondly, it provides a medium to
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find errors in the model definition and verify, that the optimization on agent scale
is consistent also on aggregate scale. The cases that we choose relate to two ways
of intervening in the simulation: (1) a change in input data attribute values and (2)
the space representation.

Financial

For the first one we choose to inspect the impact on the simulated system by giv-
ing households financial subsidies. More specifically, we target the lowest income
bins (based on histogram analysis with ‘Sturges’ and ‘Freedman-Diaconis’ estima-
tors (see [153])) and provide them with subsidies for acquiring new buildings. For
selecting the most effective amounts for subsidies, we generate set ranging from 5

to 70 thousand euro: [5, 10, 20, ..., 70]. In addition, we create a progressive sub-
sidy experiment, where we attribute 3 lowest income groups a pre-defined subsidy.
What is different from the static subsidy, is that we target groups with different
subsidies. I.e. being in the lowest bin yields you a 3x of the subsidy, second lowest
2x and third 1x of the financial support. With both of these interventions we hope
to identify whether the increased financial capability of the specific groups can lead
to a better overall system performance (i.e. system-level aggregates for each of the
criteria)

Structural upgrading

The structural upgrading scenario opens up the possibility for the model to become
intrinsically dynamic. That means, that given specific conditions model entities
(i.e. households) can change the properties of the space and themselves. More
specifically, if a household identifies, that their current location is the best from
what is available, they can choose to invest (i.e. reduce their capital) to remove
the risk associated with the building and increase its’ value. We assume, that the
households have to cover 10% of the assigned upgrading cost, whilst the rest has to
be covered by the government.

The primary purpose of this scenario is to showcase the dynamic capabilities of
the ABM and inspect the effect of the preference weights (β) have on the upgrading
counts. Therefore, we are not inspecting ranges of solutions like with the previous
financial subsidies. However, we do change the preference weights for the risk
attribute and observe the effects it has on the model outputs.

4.5 verification and validation
Firstly, to avoid common misconceptions verification and validation terms need to
be explained. Validation is the “assurance that a product, service, or system meets
the needs of the customer and other identified stakeholders” [52]. Verification- “the
evaluation of whether a product, service, or system complies with a regulation,
requirement, specification, or imposed condition. It is often an internal process”
[52].

In a traditional sense, to verify a model means to ensure, that it represents a
real-world phenomenon to a certain level. For this purpose we would first need
to calibrate or estimate our model parameters, based on real behavioral data [74].
Nonetheless, by running the model on identical sets of households under different
interventions, we can talk about model stability and sensitivity to specific inputs.
This should be not mistaken with a sensitivity study, as this would require finding
ranges of the model parameters (i.e. the inputs, β in the choice modeling) under
which specific phenomena arise. This is not feasible within the current implementa-
tion due to long execution times of the simulation (see Section 5.3). This procedure
is commonly followed model parameter estimation or calibration, not possible to
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us due to lacking data on the observed choice behavior. Only then we can ap-
ply validation methods like back-casting [173] or Bayesian melding for uncertainty
quantification [142]. Not having any behavioral data publicly available, the tradi-
tional validation falls outside of the scope of the project. Thus on the one hand,
our primary concern during this research is to verify, that the simulation performs
according to the expectation (i.e. it optimizes and converges). On the other– to
validate, that the model provides sufficient information to be utilized in PS decision
making process.

To verify the framework, we inspect the data processing and synthesizing out-
comes (model input), as well as the modeling process and results. When possible,
we inspect, the input data completeness and whether acquired spatial datasets still
correspond to the non-spatial counterparts. Additionally, when the data is incom-
plete (see Section 5.1), we ensure, that the reduced modeling scope still has the
same statistical properties as the aggregate input data. For example, even if a part
of buildings need to be removed from the model input due to incomplete data,
we ensure that the general vacancy rate remains the same. Similar tests and ad-
justments are built in throughout the code and when adapting data is impossible,
it informs the modeler about the arising issues (for an overview see Section A.2).
Additionally, we compare the model runs with sub-selections of evaluation criteria,
which allows us to spot any further inconsistencies and exceptions in the code.
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We should forget about small
efficiencies, say about 97% of the
time: premature optimization is the root
of all evil

Donald E. Knuth [91]

In this chapter we will discuss the details and choices related to the model imple-
mentation. Firstly, we discuss the datasets, that play a role in the model definition.
We go into detail how we extract the information and if multiple datasets are avail-
able for the same feature, explain the integration and/or selection criteria of them.
Secondly, we provide backing for the software used and introduce the reasoning for
not using ready-made modeling solutions. Lastly, we discuss the code performance
and optimization endeavors.

5.1 data sources and processing
This section covers the details retaining to the acquisition and processing of the
datasets for the case study. The structure of it follows the class definition presented
in the Section 4.2.1.

5.1.1 Data overview, origin and retrieval

The data used in this model (Table 5.1) is predominantly open data (definition
can be found in [149]). The datasets mentioned in the table have been integrated
in the model, but not necessarily utilized– specifically, the public space feature
was planned to be used as a optimization criteria, but was discarded to simplify
the communication of the model. Among the sources of the datasets fall most
Dutch key registers (Basisregistratie Adressen en Gebouwen (BAG), Basisregistratie
Grootschalige Topografie (BGT), Basisregistratie Kadaster (BRK)), statistical data
from CBS, network geometries (Nationaal Wegen Bestand (National Road Dataset)
(NWB)) and spatial plans. These datasets are either available for download at the
Dutch geo-portal [110] or as a Web Feature Service (WFS).

Additionally, we use 2 datasets, which are publicly available and free, but are
more difficult to acquire. The first of the two is the real-estate values (Waarde On-
roerende Zaken (WOZ)). The data is only publicly available, under the clause, that
a single device can access 10 unique locations per day. Automatic harvesting of data
through the service provided is not legal under article 40a of the "Wet WOZ" [132].
As the service provider is not willing to provide an extract of the dataset and we are
prohibited to contact the municipalities directly at this point, we manually acquire
the necessary extents of the data throughout the duration of the project. The second
dataset of the two is Nederlands Regionaal Model (Dutch regional model) (NRM).
This data can be acquired by directly contacting and following an extensive proce-
dure of Dutch ministry of infrastructure and water management– Rijkswaterstaat.
Nonetheless, the data is free of charge and available for research purposes.

49
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Class Feature Source Reference
year

Buildings Building footprints BGT, BAG 2016

Buildings Building functions BAG, Host company 2016

Buildings Parcels BRK 2016

Buildings Spatial plans Ruimtelijkeplannen.nl 2016

Buildings Building vacancy CBS municipal level data 2015

Buildings/
households

Building population size Host company N/A

Buildings/
households

Building value (WOZ) WOZ-register 2016

Buildings Risk Host company 2018

Buildings/
networks

Road network NWB 2017

Buildings Public space BGT, features "begroeid"
and "onbegroeid terrein-
deel"

2017

Households Aggregate household
properties

CBS "Wijken" en "Bu-
urten" dataset, "Buurten"
level

2015

Buildings/
households

Zonal job origins and
destinations, zonal work-
places and working pop-
ulations

NRM, base year matrices 2014

Table 5.1: Datasets, their sources and classes they contribute to in the model

5.1.2 Building class

parcels The parcel dataset, BRK, is one of the key registers of the Netherlands
just like BAG.BRK is a spatial dataset including the castrate boundaries [87]. The
issue with the dataset is that it does not provide clear marking of different os of
parcels. So our primary goal is to filter out anything, that would likely not be suit-
able for building a residential building. Additionally, we overlay this information
with the Ruimtelijkeplannen (spatial plans)]) (RP) dataset, which allows us to se-
lect zones suited for residential development. This is all done in the step one of
the pipeline discussed in Figure 4.2.2. The only detail missing in the description
is the treshold for the circularity checks. After trial and error we choose 0.3. This
value seems to return sufficient amount of parcels for simulation purposes, whilst
removing any irrelevant road feature parcels. This procedure helps us identify 2

parcels suitable for residential building development in Huizinge ’buurt’ , 51 in
Middelstum ’wijk’ and 239 in the municipality of Loppersum.

geometry The building geometries, that are used in this projects are taken from
a Dutch key register BAG. However, for the model itself we only utilize the point
geometries of the BAG verblijfsobjecten: smallest unit suitable for residential, busi-
ness professional, or recreational purposes [133].

functions The building functions are used in the model to identify workplaces
and destinations (e.g. schools, health-care, amenities) for the agents in the model.
However, this information is covered only limitedly in the BAG [85, 131]. Therefore,
we choose to utilize the dataset provided by the host company created using public
datasets (see []).
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Figure 5.1: The output of parcel processing

real-extate value As mentioned earlier, the real-estate value data is publicly
available, but requires manual harvesting. Keeping in mind the time required to
doing so, it is one of the reasons for limiting the project scope to a 1/3 of a mu-
nicipality. Additionally, this data is not provided for each and every building and
is rather consistent with similar types of buildings (i.e. farms, industrial buildings,
monuments, to an extent flats). Given the fact, that there are no or limited data
points to refer to per each type, we cannot extrapolate the possible value of this
type and have to discard these buildings from the model scope. Noteworthy, is that
the data is provided in relation to an address, which can be parsed and connected
to a specific BAG identifier, allowing us to connect it to the building class definition.

workplaces Jobs mobility and location information is one of the core pieces of
this model. It is used to determine one of the optimization criteria for the agents–
the job accessibility. Firstly, we find the job locations by comparing the day (Pday)
and night(Pnight) population information 5.1. If Pday > Pnight, then a building can be
tagged as a workplace. This is a crude approach, which could be refined by using
the Landelijk Informatiesysteem van Arbeidsplaatsen (National Information System
of Workplaces) (LISA) dataset [148]. This dataset is only available commercially and
their free data only comes at municipal level.

For the smallest problem set (Huizinge neighborhood) we assume that all job
openings in a zone are filled by people living in it. This is far from accurate (see
e.g. [35])– the population does not necessarily work in the same zone as they live.
However, most detailed freely available data on job mobility is of municipal scale
[35]. This level is too coarse for the application at hand, as even the largest exercise
does not go larger than a municipality. Therefore, to begin with, we implement
the worker residence and job distributions based on arbitrary numbers. Having
five zones (’buurten’), we create a 6x6 matrix (case + outside), which shows the
proportions of workers coming from a zone (rows) and working in a specific zone
(columns):

The total number of workplaces in the municipality in the reference year 2015

is 1600 and 1700 a year later [34]. The numbers whilst looking at the day/night
population dataset show a unrealistically large 1840, covering only the case-study
zones (1/3 of the municipality). This can be explained by: (1) we are not taking into
account people working during the night; (2) the data is of a different year; (3) the
counting methods differ.

Due to this we decide to look into the base dataset provided with the NRM.
This data further underlies the fact, that the day/night population-based workplace
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Zone Day/night Arup building tags Workplaces

0 147 227 650

1 7 14 70

2 5 13 25

3 9 25 54

Table 5.2: Building tags as a workplace, based on two datasets in relation to workplace
counts

counts are completely mismatched. The NRM dataset shows the data in a year
earlier than we are looking into, yet the inhabitant number is roughly the same
to the CBS dataset counts (3% difference). The working population is only 44%
of the total population, 9,6% of which did not have a job. Additionally, NRM
dataset identifies 799 jobs in the area, most of which are located in the Middelstum
area (81%). When comparing the original and final tagging options (day/night
versus Arup building tags, Table 5.2), we observe, that the original approach had a
very small number of nodes in comparison to workplace number. Due to this, we
discard the building level day/night data for this purpose and randomly distribute
the workplaces, based on the building function tags (i.e. non-residential), through
the nodes. This brings in another point of uncertainty in the model, but we accept
it, as this data is likely to be accessible in real-world situation.

Later in the process, we attempt to integrate the data available from the NRM
model input. The information that we are seeking are the base matrices, originat-
ing in the year 2014, which capture the numbers of trips, with their origins and
destinations in zones [135]. The data also specifies the time of day for the trip (i.e.
morning (7:00-9:00), evening peaks(16:00-18:00), rest of the day), mean of transport
(e.g. passenger car, bike, public transport) and the motive for transportation. The
latter aspect involves 3 motives:

1. Home–work

2. Business-related (i.e. home–business-related, other–business-related)

3. Other (i.e. Home–school, home–shopping, home–other)

For the specific application case, we extract the total trips of motive 1 in the
morning peak hours. However, the data is only provided in 2 modes: truck and
passenger car (driver) data. Keeping in mind the small spatial extents, the number
of trips made by car to and from each of the interest zones was less than 5% per
zone. This suggests, that majority of the trips are likely to be done by slow modes
(e.g. bike, e-bike, foot). This data is estimated in the NRM itself, thus we discard
the acquired trip counts for this project purposes, but suggest this line of inquiry
for future work.

risk As mentioned in the previous chapter, we integrate the risk values to Mid-
delstum run of the model. The only available data on the risk is the selection of
buildings, that require interventions. They are grouped in subsets or batches. How-
ever, within our subset there are only buildings of one of the upgrading batches.
These batches are based on the prioritization principles presented in [2], which at
its core focuses on as effectively as possible reducing the risk to human life. Specif-
ically, the priority is given to the buildings with highest number of occupants and
reinforcement of vulnerable building elements (falling objects and non-structural
elements). From the 1175 buildings, only 62 (5.28%) are in the priority list. All of
these buildings are within our inspection subset, as they have complete data.
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Following the assumption, that the soil conditions and ground acceleration in
the subset area are the same, we can extrapolate that buildings with similar inferred
structural types are likely to be under the same risk. Within the subset we have
7 unique Global Earthquake Model (GEM) strings (structural type identifiers, for
more see [28]) or 3 major structural types. Expanding our search to these strings
allows us to identify another 607 buildings that could be potentially under risk
(55.98% of the zone building stock) (see Figure 5.2)

Figure 5.2: Building structural systems in the Middelstum case-study area; types in orange
include buildings under risk

5.1.3 Network class

data source dilemma To be able to find the spatial relations between parcels
and buildings, we need to constrain them to a network. The two main sources we
are considering are two open datasets: NWB [136] and OpenStreetMap (OSM) [111].
When considering continuous space approach, another public dataset is added to
this collection: BGT [86].

The NWB is owned by the Rijkswaterstaat (Dutch Ministry of Infrastructure
and Water Management). The dataset is extensively used within the public sector.
Among many examples of its applications are fast mode routing, traffic manage-
ment, transport analyses for air pollution and accessibility, and infrastructure plan-
ning. The dataset includes all roads (thus also foot paths and bike lanes), as long as
they have a street name [134]. Additionally, the NWB dataset consists only of line
geometries, considered as valid for routing purposes. This implies, that the network
does not have area features, the streets/roads are segmented only on the intersec-
tions, there are no duplicate geometries or orphaned (disconnected) segments (even
though they can result from clipping).

The second dataset, OSM, primarily consists of volunteered data, but can in-
corporate open governmental datasets as well. This implies, that the quality of
data is dependent on the area and can significantly differ from the governmental
data (see ??). The coverage of the dataset extends beyond the Dutch border, which
would simplify the scaling of the method. This is showcased by a number of recent
accessibility and environmental risk modeling studies (see [109]).

In contrary to the NWB, OSM includes roads like paths, bike lanes, steps etc. (for
full overview see [112]). This is relevant while considering the modes we will be
using in the model. The NWB dataset excludes considerable amount of connections,
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which are meant for slow modes both on small (5.3) and large scale (5.4a). Nonethe-
less, on small scale most of them are insignificant, as they still fall within the same
street representation as the motorized traffic. On the large scale, NWB dataset
can be expanded using the Lange Afstands-Wandelpaden (Long Distance Walking
Paths) (LAW) routes (walking path data) and the Fietsknooppuntennetwerk (bike
path data).

However, the OSM data is not immediately usable for our purposes: the geome-
tries are not of uniform type (i.e. only lines), segmentation is inconsistent, geome-
tries overlap, have duplicates and can be orphaned (a French example is discussed
in [67]). This would require significant effort to adapt the dataset to our purposes.
Thus we select the NWB for the general network representation in the model, used
to connect all other model features spatially.

All in all, we conclude that within the scope of the research area and for show-
casing purposes, it is actually sufficient to use the NWB alone. Given the clear
documentation and simple geometries of the dataset it gives no further issues and
is processed as defined in Section 4.2.2.

OSM highwayOSM highway
NWB wegvakkenNWB wegvakken

Background luchtfoto 2016 OrthoBackground luchtfoto 2016 Ortho

LegendLegend

00 2525 5050 7575 100 m100 m

Figure 5.3: A comparison of NWB and OSM datasets, with an aerial picture in the back-
ground

5.1.4 Households

The household data synthesizing procedure requires multiple datasets. The small-
est scale demographic data available to us is "CBS vierkantstatistieken" (squares
dataset)[33] and "CBS buurten" (neighborhood dataset) [32]. Both of the datasets
are available through WFS, but requesting it through Feature Manipulation En-
gine (FME) trims the column names, making them unreadable (i.e. percenta05 or
gemmidel01). Therefore, the square dataset was re-acquired with the help of Atom
feed. The resulting attribute names allowed to connect it to its documentation and
constrain the population numbers to it. However, in the final application this data
is not used. This is because of the limited coverage of the dataset (Figure 5.5), as
well as the rounding of the numbers (i.e. rounded to multiples of 5 [33], p. 6). This
is not the case for the higher level "CBS buurten". The harvested year is 2015. We
choose this due to the attribute availability (see [33], pp. 40-43, [32], pp. 33).

working population For number of workers, we take the total working popu-
lation, taken from the NRM dataset in the case-study zones. This number is then
reduced by the percentage of the unemployment rate in the region in 2015: 6.4%
[34]. Additionally, based on the NRM zonal data, we define the proportions of
population working outside of their zone of residence. For this we need to assume
a number coming from external zones. Theoretically, the base matrices of NRM
could be used to determine this, but, as mentioned earlier, they only have informa-



5.2 software 55

00 10001000 20002000 30003000 4000 m4000 m

NWB wegvakkenNWB wegvakken
fietsknooppuntennetwerk WMSfietsknooppuntennetwerk WMS

lawroutes [lawroutes:lawroutes]lawroutes [lawroutes:lawroutes]

Luchtfoto 2016 Ortho 25cm RGBLuchtfoto 2016 Ortho 25cm RGB

LegendLegend

(a) NWB data
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(b) OSM data

Figure 5.4: A comparison of network data overlays on bike- and footpaths datasets, with an
aerial picture in the background

Origin/Destination 127 128 129 130 Total trips
127 6.8% 30.7% 6.4% 6.4% 2545

128 9.6% 25.2% 16.7% 8.8% 3453

129 7.0% 15.1% 5.6% 14.6% 2589

130 76.6% 29.0% 71.3% 70.2% 24721

Total trips 28468 1195 1232 2413 33308

Table 5.3: The result of the doubly-constrained gravity model for estimating the zonal de-
pendencies between working populations and their jobs

tion on the personal car and lorry traffic counts. Knowing the totals for each zone,
we utilize doubly constrained gravity model to find the numbers of people working
in each of the zones. We assume that the travel costs are equal to one, as we are
looking at a very small subset in space. However, it is potentially scalable by the
travel distance between the centers of each zone. The results of the scaling is shown
in Table 5.3

5.2 software

5.2.1 Acquiring and processing the data

We carry out data acquisition and pre-processing in FME Workbench [139]. It is an
Extract, Transform, Load (ETL), flow programming software. The goal of utilizing
this tool is to selectively harvest and merge the datasets, trim irrelevant attributes
and reduce spatial extents. Additionally, FME provides built-in methods to produce
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Figure 5.5: CBS dataset spatial extents and coverage

and test topologically valid networks. The latter is needed to calculate accessibility
related criteria in the model. Although all of the datasets produced with this soft-
ware can be spatial, this would create geometric redundancies (see Section 4.2.1).
Therefore, the output of this tool also includes non-spatial datasets. However, ev-
erything produced is linked either by keys or spatial overlaps (see Section 4.2.1).

Noteworthy is that in this application we store the information in the local hard
drive. And yet the sources of it are web-services and atom feeds. In other words,
to bring the project data up to date one only needs to re-run the FME process:
all its output is automatically stored in the project folders linked to the code for
further steps. Nonetheless, the software also allows for creating automatic pipelines,
seamlessly incorporating Python code with the native functions. However, this
type of approach should only implemented in the end of the process. I.e. having
independent feature modules allows for significantly faster design iterations. This
signifies, that the pipeline feature is not essential for the current scope and thus is
excluded from the project.

Python

After initial spatial and attribute reductions we choose to switch to pure Python
coding. This allows a clearer control of the processes, reducing the module running
time. The libraries used touch upon 3 subjects: non-spatial and spatial data analysis,
and network processing.

The non-spatial data processing is carried out using Pandas. This library is se-
lected due to its superior performance with large datasets, range of native methods
to read and write the data. In addition, in the background it supports Numpy
operations and allows almost seamless integration with it. This is particularly im-
portant when considering applying RRM, as the model requires multiple level for
loops, some of which can be replaced with vectorized operations.

Within the model code itself, for spatial datasets we select the Geopandas frame-
work, which in essence is a connection between Pandas framework and most com-
mon spatial libraries such as GDAL, Shapely and Fiona. During the later stages of
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the model development process any spatial data preprocessing has been done in
this framework rather than FME.

All graph related calculations have been carried out using an open-source Python
library NetworkX. It forms an interface to code written in C, C++ and FORTRAN,
allowing for relatively fast and flexible implementations. Moreover, NetworkX sup-
ports (un)weighted and (un)directed graphs, has built-in shortest path (Dijkstra, A*
and Floyd-Warshall) and centrality related (e.g. betweenness, closeness) algorithms.

5.2.2 Modeling software

Just as extensive as the field of ABM is the selection of available modeling and
simulation tools for it. Allan [7] gives a great overview of what is available in the
field, with explanations for differing terminology. Yet in this project primarily 2

options were considered: NetLogo and Mesa.
The first of the two, NetLogo, is a "programmable modeling environment for

simulating natural and social phenomena"[172]. Due to its active user community
and the simplicity of use, some researchers see NetLogo as "the most promising
language for becoming a standard in ABMs" [154]. Additionally, the software is
open-source, has an extensive documentation and has seen many applications in
geospatial domain (e.g. [114]). However, operating it requires knowledge of NetL-
ogo programming language and, if extensions are needed, Java or Scala. However,
linking with Python is also possible. For utilizing Python code directly in NetLogo,
a Python extension was developed by Bryan Head [73]. In our case, this would be
used to retrieve the attributes of the actors, while they change their location on the
network. For controlling NetLogo from Python PyNetLogo library can be utilized
[81]. This would allow us to start the model and retrieve its results. Nonetheless,
this would require high proficiency in the modeling software.

The second option, Mesa, is an open-source (under Apache 2.0 license [8]) Python
library. This toolkit allows the user explicitly handle the agent scheduling, inte-
grates features observed in other ABM software such as batch-running (Repast,
NetLogo), data collection (NetLogo). However, just like NetLogo, this modeling
framework has its limitations. For instance, it only implements two representations
of space: continuous and grid[100]. Additionally, the tools the library provides are
rather self-explanatory, if ones would implement it themselves. For instance, move
agents, get neighbors, run batch.

Given these considerations, we start implementing the code in pure Python code,
but drawing inspiration from the elements of each of the libraries.

5.2.3 Visualization and interaction

Within Python there are 2 main libraries to be considered while making dashboards:
Bokeh and Dash by Plotly. Other less used libraries include Bowtie, Pyxley and
Pydashie. However, they either have very limited functionality/documentation or
have been discontinued. In our research we choose to focus on Dash, as it not only
is more effective with large datasets, but also more consistent and easy to use [72].
With this in mind, Dash sacrifices modifiability for user friendliness.

However, geo-spatial plots in Plotly still are rather limited. For instance, while
utilizing Mapbox plots any custom polygon data requires a GeoJSON-based dictio-
nary input. Each set of colors for polygons need to be loaded as a separate layer.
This brings in a limitation, that only aggregate level areas can be displayed in such
manner or large, discrete classes need to be used for visualization. Additionally,
similar can be said about displaying the network: gradient visualization as if the
network was overlayed on a continuous field is not feasible. Thus the coloring needs
to be done in the same manner as for the polygons.
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Regardless of the limitations, the Dash/Plotly framework allows for easy and
fast prototyping, allowing us to show the basic functionality. Nonetheless, if such
was to be brought on a commercial scale, whilst also allowing spatial user input,
the logical step would be to continue developing using Geographic Information
System (GIS) system as a framework (as proposed by [82]). This suggestion is
based on reasoning, that these systems allow manual spatial input, more effective
map styling options, as well as the possibility to integrate Python code in them.

5.3 performance
Performance plays a big part in the way the model can be operationalized. To be
more specific, if we can perform analyses instantaneously, then a simulation can
give real-time feedback to the user, who can define model inputs in a very respon-
sive manner. However, in our case we are not dealing with linear, but quadratic
computational complexity. This implies that the model times scales quadratically
with the choice set size. In practice, we have observed similar tendencies.

The ’toy’ scale model with 100 household sets had the runtime of 6 minutes,
with small variations coming in due to different intervention inputs. Keeping in
mind, that there were no dramatic differences between model runs, this is com-
pletely reasonable.

As expected, running the larger subset of the model with identical criteria, took
significantly longer. 10 household sets took 3 hours to run and full 1000 household
extents would have taken at least 12.5 days.

Thus in comparison, 45 households and 3 empty buildings versus 984 house-
holds and 56 empty buildings took 300 times longer to execute on average for a
single run. Important to note, that the run times depend on the properties of both
households and buildings, that become available. Due to the filtering done prior
to the evaluation step, the larger subset runs have a lower amount of households,
that evaluate and consequently relocate. However, given our current extents, the
execution was so slow, that it required significant optimizations.

Keeping in mind, that fully optimized code is not part of our research scope,
we remain utilizing Python. However, it becomes essential to make the model runs
more manageable in the available time frame.

After code profiling (see [126]), we identify that the bottleneck of our code is
indeed the evaluation function. It is the lowest level method in our code and is
repeated in every step for each household and for each alternative house. Our
optimization approach follows the guidelines in [117] and focuses on vectorization
of evaluations. In other words, we reduce the layers of the core loop from 3 to 2, with
the reduction coming in by performing the analysis on numpy vectors. Keeping in
mind, that numpy is an interface to highly efficient legacy code, this allows us to
reduce the execution duration to 1/10 of the original (Figure 5.6). Interestingly,
even running the code on computers with significantly better specifications (see
Section A.3), it had no influence of running times (see Figure 6.24). This suggest,
that the further bottlenecks lie in data access, rather than processing. Nonetheless,
this level of optimization is acceptable for the project purposes and spatial scope.

However, even with further improvements the code (e.g. compiling, interfacing
to C or parallelizing) is very unlikely to perform at the required speeds for real-
time feedback. This suggest, that the model application could potentially take the
form similar to UrbanCanvas [150], where the computations are made in the cloud,
many interconnecting models are pre-computed, but intervention feedback is not
real-time.
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Figure 5.6: The run times box-plot for the base run with 1000 alternative sets





6 R E S U LT S

6.1 synthesizing
The synthesizing is the first step in the model and thus also a result of this project.
Within this section we omit the ’toy’ scale synthesizing results for brevity, as they
are a simplified version of the large scale problem, but have similar properties.

To start of, the way we generate our data is not only based on the statistical
counts on aggregate level, but is also adjusted due to the incomplete data on the
building stock. Specifically, we randomly select to exclude specific households from
the simulations to make the vacancy rates of the building stock according to the sta-
tistical data. Due to this the inputs to the model are not always identical. Firstly,
the number of adults and children differs per household set (Figure 6.1). Secondly,
the decomposition of the adult population also shows a distribution between dif-
ferent occupations. This underlies a property of the definition of our synthesizing
procedure: the occupation is attributed post the reduction of the households, but
the number of jobs remains the same. The reason why we see a large spread in the
pensioner group is because this is the group that is identified the last and thus all
the remaining adults, that do not have an occupation, are automatically marked as
pensioner. The distributions of the rest of the occupations are also there. This is due
to the fact, that the occupation is attributed randomly, but the adult population is
smaller than the total of all the occupations combined. Additionally, this is not equal
per zone we process, keeping in mind, that the working population can be also fully
filled. To sum up, this aspect of synthesizing still complies to the definition of fitting
to the statistical boundaries, keeping in mind the excluded households. Nonethe-
less, we do distinguish the possibility having it more controlled, if the occupations
were attributed prior to the household exclusion.

Figure 6.1: Population box-plot distributions adults versus children

The income representation within the household set can also vary. Namely, the
households are randomly attributed to the building stock within the region (con-
strained to a region, such that the demographic statistics are still represented) and
with it get the specification for their income (i.e. 110% real estate value). Keeping
in mind the small number of vacant houses (i.e. 58), the differences between the
income groups over multiple runs are minuscule, with the histogram boundaries be-
ing identical, according to the maximum of the ‘Sturges’ and ‘Freedman-Diaconis’
estimators (see [153]). The mean and the standard deviation boundaries of all sets
can be seen in Figure 6.3.
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Figure 6.2: Adult population box-plot distributions by occupation, CS– case-study

Figure 6.3: The mean and standard deviation of the capital of all households per synthesized
set

6.2 ’toy’ run: huizinge

For the initial tests of the model we inspect a small case study area with 48 buildings
and 45 households, whilst optimizing four criteria (see Table 4.1). The base run of
the model on average would terminate, i.e. reach relative convergence around the
8th step, as seen in the Figure 6.4 in blue. The tail in the graph is due to the fact,
that the model still did not account the oscillatory behavior arising due to several
households exchanging houses between each other. This behavior is inevitable due
to the small number of criteria available and the fact, that their properties were
within the region, that the rejoice could outweigh the regret. This behavior was
observed in a relatively large number of runs (i.e. 3 %), but is unlikely in larger
systems, with more optimization criteria and wider range of houses.
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Figure 6.4: The number of steps before convergence histogram for the 100 synthesized house-
hold sets for the base run

The base run, executed on 100 household sets had varying results. The box-
plots in Figure 6.5 showcase the final step aggregate attribute values distributions.
We observe, that 3 out of 4 plots do not show any clear outliers, but that is not
the case for the distance to amenities criteria. This does not necessarily mean, that
these specific runs are by definition outliers themselves. In other words, we need to
see the attribute optimization as a product of all the dimensions (criteria), that we
are looking at. As seen in Figure 6.6, there are no clear outlier runs, which could
be discarded (as discussed in [56]). Moreover, it would be insufficient to to just
look at them at the base run: same starting conditions should be inspected in the
alternative, scenario runs and if the outlier behavior persists, identify the causes.
In addition to that, the set of 100 alternative households is relatively small relating
to the uncertainties of the household representation (i.e. no constraints imposed
on household size and age composition during synthesizing). However, how big
should a representative sample set be is a question for future study.

(a) House floor area (b) Distance to 3 closest amenities

(c) Distance to jobs (d) Property value

Figure 6.5: Distributions of final model step attribute aggregates for the Huizinge scale base
run for 100 synthesized household sets
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Figure 6.6: Product of all final model step attribute aggregates for the Huizinge scale for 100

synthesized household sets

6.2.1 Financial intervention

To further explore the model possibilities we propose a couple of hypothetical sce-
narios, which change the model inputs (explained in Section 4.4). In the simple
problem we explore the possibility of giving the lowest income bin ( 13% (5-7) of
people per synthesized set) a subsidy for relocation, as they are likely to be unable
to improve their housing conditions due to financial constraints. This is even more
accentuated due to our simplified bidding representation, where the household
with the largest capital always wins. We provide series of interventions ranging
from 5 to 80 thousand euro.

In our model specification households only move, if the alternative building
causes them less regret. Therefore, we would expect, that the more movement we
see, the better aggregate system performance becomes. Due to this, we first analyze
the average changes per financial intervention (Figure 6.7). The results show, that
the effect on the average number of changes (relocations) of the subsidy peaks at
40 thousand euros(+40k), which is in line with expectations. Namely, at this point,
the two lowest income bins exchange places. The Figure 6.8 shows the +40k and
base run aggregate changes per step, showing at which points the paths of the runs
differ. Moreover, after decomposing the change behavior per income bin we see a
clear increase in moves within the targeted lowest income group 1 (Figure 6.9).

Figure 6.7: Average changes per step per subsidy (intervention) for the Huizinge scale
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Figure 6.8: Total changes (relocations) per step for base run and +40k subsidy, given the 100

synthesized household sets for Huizinge scale

Figure 6.9: Number of changes (relocations) for income bin groups for the base and +40k
financial run for 100 synthesized household sets

Figure 6.10: Criteria optimization for the base and +40k financial run

However, when we inspect the optimization per system level-aggregated at-
tributes, we see completely identical criteria values (Figure 6.10). Even though,
we are be possibly attaining better attribute levels for the lowest income group, it
will not lead to better overall system performance. This indicates, that the primary
issue with the observed urban system is not due to the fact, that agents cannot
afford to move to specific houses, but rather the quality of the houses themselves.
Namely, we are observing a system with mere 3 empty properties per each synthe-
sized household set. This means, that in both runs the final result is that the same
three properties remain vacant. Nonetheless, this sort of finding could potentially
help identify buildings with unwanted attribute profiles. Of course, this is only
valid, if the choice behavior is representative of the demographic in the area.
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6.3 scaling: middelstum
For the scaled-up version of the simulation we have 984 households for each set with
1042 buildings as potential residences. We are evaluating 7 attributes (explained in
Section 4.4). Based on the data collected for a 1000 synthesized household datasets
(Figure 6.11, Figure 6.12 ) the model terminates after a median of 20 steps.

Figure 6.11: Aggregate number of changes (relocations) for each model step for all 1000

synthesized datasets for Middelstum scale

Figure 6.12: Histogram of the amount of steps it takes for the model to terminate. This data
is taken over 1000 household set runs for Middelstum scale.

The aggregate attributes for the final step of the 1000 synthesized sets are not
identical, with the distributions presented in Figure 6.13. Keeping in mind the
larger sample set and the larger system, we notice, that outliers are more common
among the different attributes. I.e. all of the optimized criteria, apart from distance
to schools, had some outliers. However, when observing the product (subplot h),
outliers are not evident.
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(a) Distance to 3 closest amenities

(b) Distance to jobs

(c) Distance to schools (d) Property value

(e) House floor area

(f ) Parcel size

(g) Risk (h) Aggregate attribute product

Figure 6.13: Distributions of final model step attribute aggregates and their product (h) for
1000 synthesized household sets for Middelstum scale
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6.3.1 Financial interventions

For the scaled application of the model, we are also enriching the showcase of the
financial policies. In this subsection we will discuss two different approaches: static
and progressive subsidy. Noteworthy is that these interventions are not run on the
full extent of 1000 household sets, as that would have required around 11 days of
runtime for simulating (see Section 5.3). Due to this, we run 100 household sets for
each of the interventions.

Static subsidy

As explained in Section 4.4.2, static subsidy implies targeting one or more demo-
graphic groups and providing them with an identical subsidy. In the Middelstum
case, we need to expand the the target groups from 1 to 1 and 2 lowest income bins,
as the 1st bin has a median of 2 households for all 1000 household sets. With the
2nd bin added, this number rises to a median of 39.

After running the simulation, we observe very similar pattern to the small scale,
Huizinge run Figure 6.14. Specifically, the average number of changes peaks at 40

thousand mark. After decomposing the changes per income bin, we get Figure 6.15.
The image compares the impacts on the base, static and progressive subsidies (ex-
plained below). Looking at the first bin, we observe no relocations for the lowest
income group, which is improved by the financial policy to 94 moves. The second
bin is affected in a more extreme way: the number of relocations increases 5 times.
However, most importantly, these changes do not come in significant detriment to
other income bins. Namely, the first 18 bins increase their number of relocations,
whilst the higher income groups are affected very minimally (+/- 5 steps).

Figure 6.14: Average changes per step per subsidy (intervention) for Middelstum scale

However, we see little differences in the average aggregate attributes (Figure 6.16).
In both cases we see the opposite of expected behavior in relation to minimizing for
two variables: the risk and the real estate value. The first of the two is explained by
the fact, that more than 50% of the building stock is under some risk. Therefore, if
a household wants to increase any of the other criteria, they need to compromise
(i.e. see the Figure 3.6). The increase in real estate value has the same nature. How-
ever, these compromises result in significantly increasing parcel and house floor
areas, reducing the travel times to all the identified destinations. Between these
two model runs, financial run exhibits better results (more minimization or maxi-
mization, depending on criteria) on all of the dimensions, apart from distance to
amenities (slightly worse) and risk (identical).
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Figure 6.15: Total changes for all 100 household sets per income bin for base, static +40k and
progressive +10k simulations

Figure 6.16: Relative aggregate criteria optimization in relation to the starting condition for
base and +40k subsidy for 100 household sets, Middelstum scale

The policy also has impact on the spatial perspective. When looking at the full
system relocations (Figure 6.17), we can see differences from where and to where
all relocations happen. Notably, two of the most active origin (from where) tiles
in the base run see no relocations in the financial run. This could be potentially
indicate, that these tiles have lower quality (from our criteria perspective) housing,
which is primarily used as temporary solution for a household until relocating to
their final, most optimal house. Similar can be observed in the destination tiles.
However, in this case only one of the active tiles in the base run sees no activity in
the financial counterpart. This is also one of the earlier mentioned origin tiles. See-
ing the other tile as an active destination tile suggests, that the earlier assumption
of low quality housing stock is not valid for it. Overall, the patterns outside of the
villages differ very little. However, we see at least one change the financial policy
brings in. Specifically, one of the zones on the boundary of our case study area
(southern border), is not a destination anymore. This suggests, that in the base run
the households had to compromise the travel distances (majority of the destinations
are in the villages) to improve other attributes. However due to new financial ca-
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pabilities and freed-up building stock, these households were able to select a house
closer to their optimum.

When decomposing the same runs in bins, we observe significantly different
patterns for both origins and destinations of relocation Figure 6.18. We see more
active tiles both in the periphery and the centers of the settlements. The spread to
periphery could be caused by multitude of reasons, the simplest being, that there
were simply more varied households moving (e.g. a family of pensioners without
children would not optimize the 2 associated criteria).
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(a) Origins Base (b) Origins Financial

(c) Destinations Base (d) Destinations Financial

Figure 6.17: The spatial patterns of the household relocations for a 100 synthesized sets in
the base run and a scenario of a subsidy of 40 thousand euros for the 2 lowest
income bins

(a) Origins Base (b) Origins Financial

(c) Destinations Base (d) Destinations Financial

Figure 6.18: The spatial patterns of the household (2 lowest bins) relocations for a 100 syn-
thesized sets in the base run and a scenario of a subsidy of 40 thousand euros
for the 2 lowest income bins
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Progressive subsidy

The biggest difference between progressive and static subsidy, is than rather giving
a constant sum to a specific income bin, we choose to make it dynamic. According
to our specification, the lowest (and the smallest) income bin would get 3 times the
investment, 2nd– 2 times, 3rd– the base-line subsidy. Thus with similar amounts
of investment, you affect larger population. While comparing the changes of steps,
progressive +10k (thus 1st group given 30k) intervention results (Figure 6.19) have
similar average amount of steps as the static +30k subsidy (Figure 6.14). However,
in relation with the exemplary +40k static intervention, it shows similar, but less
extreme increase in number of steps against the base run (Figure 6.15). Keeping
this in mind, in aggregate criteria we observe almost identical level of optimization
in both financial policies, most of them being 1-2% better for the +40k intervention
(Figure 6.20).

On spatial terms, progressive policy has very similar impacts as the static (Fig-
ure 6.21, Figure 6.17). However, as expected, the impacts to the two lowest income
groups is less spread Figure 6.22 and having lower intensity values than the static.
This does not exclude, that this policy still caused more movement in comparison
with the base run.

Figure 6.19: Average changes per step per progressive subsidy (intervention) for Middels-
tum scale

Figure 6.20: Aggregate criteria optimization in relation to the starting condition for progres-
sive +10k (bins 1-3) and static +40k subsidy(bins 1-2) for 100 household sets,
Middelstum scale
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(a) Origins Base (b) Origins Progressive

(c) Destinations Base (d) Destinations Progressive

Figure 6.21: The spatial patterns of the household relocations for a 100 synthesized sets in
the base run and a scenario of a progressive subsidy of 10 thousand euros for
the 3 lowest income bins

(a) Origins Base (b) Origins Progressive

(c) Destinations Base (d) Destinations Progressive

Figure 6.22: The spatial patterns of the household (2 lowest bins) relocations for a 100 synthe-
sized sets in the base run and a scenario of a progressive subsidy of 10 thousand
euros for the 3 lowest income bins
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6.3.2 Subsidizing structural upgrades

The last type of intervention enables the agents to structurally upgrade their houses
and so remove the risk, associated with it (details in Section 4.4.2). When compar-
ing the final results of the runs with adaptive risk we observe very similar outcomes
in relation to the aggregate criteria optimization (Figure B.4). In detail (Table 6.1),
we can see some small scale effects on average aggregated attributes. If the risk
preference weight βrisk is the same as for all the other attributes (βrisk = 1), we
actually observe the opposite than expected effect on aggregate scale risk, i.e. it in-
creases. This is because currently upgrades also reduce the capital of agents, which
in turn effects their mobility. When the βrisk = 4, we see the average aggregate risk
reducing, however the effects on all aggregate attributes are still very small (0-2%).
From the perspective of upgrades, both preference weights return similar results
(Figure 6.3.2). Namely, they are all clustered in the same regions and have almost
identical upgrading counts (Table 6.1).

Property β = 1 β = 4

v_house 0.0% 0.0%
d_amenities -0.2% -0.5%
d_schools -0.6% 0.8%
a_house 0.0% 0.2%
a_parcel -0.3% -1.6%
risk 0.4% -0.1%
average no. upgrades 22.81 21.1
σupgrades 9.31 10.13

Table 6.1: Relative difference between dynamic and base model runs average final step result

(a) Risk preference weight β = 1 (b) Risk preference weight β = 4

Figure 6.23: Number of upgrades per grid cell given different risk preference weights
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Figure 6.24: The run times boxplot for the base run with 30 alternative sets given two differ-
ent machines

(a) Changes (b) Optimization of system aggregate attribute
product

Figure 6.25: Overlay of the comparative run results

6.4 stability
One of the more important factors of our work is to prove that the model is stable
and reproducible. To be more specific, that the behavior of the agents does not
significantly change throughout the model. Namely, that given the same conditions
and rules, model outcome remains the same. For this purpose we compare two
model runs on the same subset of 30 households on two different machines.

The run 1 was executed on the secondary device, whilst run 2 was done on
the primary computer (specifications in Section A.3). As expected, the run times
between the devices was slightly different with the median for the run 2, being 25

sec. larger Figure 6.24. However, the distributions were similar, keeping in mind
the small sample size.

Most importantly, the results and the result paths (i.e. performance per step) of
both runs were the same. This was both on the primary indicator for differences,
the number of steps, and the aggregate attribute product optimization (Figure 6.25).





7 C O N C L U S I O N & D I S C U S S I O N

What matters is not "knowing
everything" about the system in
question but understanding the
reasons and possible implications of
our inevitable lack of comprehensive
knowledge

Werner Ulrich [155], p. 342

In this thesis we presented a computational framework, which allows simulat-
ing disaggregate residential location choice behavior. The chosen representation is
built upon a notion, that people make decisions based on the choice set dependent
regret, rather than context-independent utility. This is done by Random Regret
Minimization (RRM) modeling approach. It allows capturing varying levels of re-
gret (profundity) and enables incorporating multitudes of attributes of different
dimensionality. However, the Random Regret Minimization (RRM) models have
the estimated preference weight attribute unit scale dependent (β = 1/unit). Due
to this, the preference weight would have to be re-estimated with each dynamic
choice set, arising due to household heterogeneity and the dynamic vacancy rates
in the housing market.

This is consequently applied on two different scale case-studies, situated in
earthquake prone Loppersum municipality in The Netherlands. For the project
purposes we are provided highly detailed building stock datasets, enriched with
the information relating to the building risk. However, we lack micro-level popula-
tion data, as it is commonly seen as private. As a solution, we showcase a method
to synthesize the populations, based on several aggregate spatial and non-spatial
statistical datasets. For each of the spatial scales, we create large numbers of syn-
thesized household sets. They work as alternative model inputs and allows the
modeler to identify the boundaries of the expected model outcomes.

Given these inputs, we construct a disaggregate, agent-based model framework,
defined in a procedural, object oriented manner. This enables us to simulate micro
level behavior of residential location choice. The agents in the model are the house-
holds making the decision to relocate and looking for a house. The heterogeneity
of the agents is expressed in the household composition. Namely, it is conveyed in
the dependencies to the workplace and school locations. The number of these rela-
tions depends on the household size, which is static, but conforms to the aggregate
level statistics. The relations themselves are also based on zonal data, for which we
utilize doubly-constrained gravity model to allow zonal worker inter-changes. The
space representation is a mixture between discreet (i.e. there is a specific amount of
houses to relocate to) and network (i.e. these houses are interconnected by a street
network).

Furthermore, we showcase the simulation given 7 criteria for households to op-
timize for. These criteria relate both to the static properties of a building stock,
as well as the household-related dependencies to the network. Given equal im-
portance weights to each of the criteria, we observe stable and consistent model
outcomes on each of the aggregated criteria, with convergence after a median of
20 abstract model time units (steps). The model capabilities are then further tested
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using a series of financial interventions– subsidies targeting specific income groups.
The model runs show outcomes in line with expectations and allow space related
observations to be constructed.

Finally, this research allowed a definition of a working, but not yet predictive
disaggregate model of residential mobility, based on regret. The aspect of disas-
ters within this light has been integrated as a singular risk criteria, which has the
mechanisms to be adaptive built in the model. However, given, that these inter-
ventions within the case study context are fully subsidized by the government and
private agencies, we could not find a reliable, not ’ad-hoc’ manner of quantifying
the hindrance of the renovation. These aspects, would be essential to define if such
a model would ever be operationalized in disaster research. Nonetheless, our hopes
are, that this framework could enable integration of such findings in a transparent
and systematic way, paving the road for a more constructive dialog between the
parties involved.

7.1 research questions
The main research question on "How to build computational framework that would allow
to examine the residential choice behavior of households within a regional, disaster situation,
given public sector agency-defined policy scenarios?" can be answered in describing
the process gone throughout the project. The formal name of the approach is the
System, Theory, Modeling toolkit, proposed by Wilson [173].

In general, the procedure of making such a model starts with identifying the
hypothetical or a ’toy’ problem (Chapter 2). This allows one to draw the boundaries
and define the system properties in a controlled manner. This consequently leads to
defining the theoretical background and identifying the core methods and concepts.
Given the fact that the subject of urban modeling is so vast, there is likely not only
papers, but even open-source tools ready for your disposal. Even if one is to choose
to write their simulation from scratch, as in this project, these tools are an invaluable
guideline for development. However, the modeler should not underestimate the
value of protocols, as shown in Section 3.4.1. These help a modeler define the
framework and the core definitions of the model.

After drawing the outline, one needs to select a case study, and extract and pro-
cess the data for it. Once this is done, an iterative process of creating more and
more complex simulation begins. In our case we started by simply moving random
abstract households into the houses that were empty. Once this worked, we added
detailing on how these houses were chosen and what happens when two house-
holds intend to move to the same location. This is repeated until a sufficient model
detail and scale is achieved. Of course, one also needs to define and communicate
the outputs of the model, as well as be able to compare different model runs. This
can be done by utilizing statistical methods or identifying performance criteria.

Verifying our model meant ensuring its stability and repeatability given the
same starting conditions, as well as statistical checks during the data processing
procedures. The calibration and validation are an essential step if one wants to
describe the real world phenomena. However, due to not having access to data
describing it, this step falls beyond the scope of a Geomatics master thesis. The
details relating to the specific choices taken during this process can be approached
by answering the sub-questions.

How to abstract housing choice behavior of households in a disaster situation on a
regional scale?

For the first one, we need to differentiate between individual and group choice
behavior. The individual is represented by a RRMσ model, which assumes, that
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households base their decisions on context, i.e. choice set, dependent regret. The
collection of such individuals making decisions are then integrated in an agent-
based model. Here the entities, or agents, making the decisions, are the households
choosing a residential location. The disaster risk aspect is represented as a property
of the building stock, which can improved, if a household invests a part of their
capital.

What modeling approach would be suitable for such abstraction, given a PS planning
or policy making process?

We model the system as a collection of agents, which allow for bottom-up opti-
mization processes to happen. The choices of the agents is represented by utilizing
regret-based discrete choice model. In the context of Public Sector (PS) planning or
policy making process, this simulation needs to allow testing ’What-if’ scenarios. In
our case, these interventions are represented as rules, allowing to change the input
data or enabling the simulated entities to alter this data during the simulation (i.e.
upgrade the building stock, given some investment).

What (type of) data could be used to generate model criteria values and what is its
relation to the data available for the case-study?

The third question relates to the RRMσ specifications, which requires to have quan-
tified relations between different options. Apart from that, it can deal with both
ordinal, interval and ration scales. Nonetheless, whilst talking about residential
location choice, the inputs in our framework should be contained within the class
definitions. Namely, it should relate to the building, parcel, household properties
or intervene in the space (i.e. change the geometry of the network by adding new
nodes and edges). However, in relation to the data availability of case-study, we are
constrained to aggregate level population statistics, public spatial datasets and risk
definitions provided by the host company.

What output should the model have and how to communicate it to the PS organization
given a disaster mitigation or preparation situation?

Fourth, the model outputs a variety of properties. They include aggregate of each
optimization criteria values for all households per model discrete time unit (step).
Moreover: the relocations happening per step, both in relation to the household
that relocates, as well as the income bin it belongs to. And finally the building
stock, that is occupied and made vacant. Our primary communication methods
are plots, representing these non-spatial units. However, each of the model entities
are connected to the space, allowing us to create both maps (like the heat-maps
presented in the results section) and animations, showing model changes per time
unit.

What are the uncertainties and limitations of the model how to circumvent them?

Fifth, the uncertainties in the model are twofold - epistemic and aleatory (see Ta-
ble 3.2). The first is associated with the fact that we have limited knowledge of the
system attributes. Such is the results of the household synthesizing, risk definition,
job location attribution. These uncertainties are possible to circumvent by collect-
ing additional data and refining model specification. The aleatory uncertainties on
the other hand are significantly harder to avoid, as they are caused by the intrinsic
variability in nature. Such are the uncertainties in the actual choice behavior of
households in the region. This can be to some extent accounted by estimating the
model and refining the demographic subsets that exhibit specific choice behavior.
Even with this in place, there is a chance that on individual level the choice behavior
would not be rational. Due to that, it is essential, that models such as showcased
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in this research incorporates error terms, allowing for such behavior. This stochas-
ticity is inevitable and that is why many agent-based applications have batch runs
implemented, allowing for identifying outliers.

What type of data would be necessary in order to calibrate such a model?

Finally, to continue with the calibration of this model, one would first have to per-
form analysis on the choice behavior in the region. Namely, it is essential to identify
different demographic groups exhibiting similar choice patterns and ensure their
representation as heterogeneous agents with individual taste parameters in the
model application. However, the actual decision procedure is extremely complex
(see Figure 3.3). Additionally, it is hard to estimate the amount of different reloca-
tion options a household considers. This would indicate, that the model would have
to rely on stated preferences for the initial calibration. Next, one could consider us-
ing back-casting (i.e. applying the model in past situation and then validating it’s
predictive abilities for a point later in time) and sensitivity analysis for further re-
fining the definitions of the taste parameters.

7.2 discussion

7.2.1 On simulation and results

The simulation we performed showed relatively stable results and expected out-
comes in relation to optimization objectives. However, we concur with Lee et al.
[94]: even with all of the opportunities ABMs open up, their output analysis still
remains a large challenge. More specifically, we observe the need to perform more
rigorous statistical analyses on the outputs, but also sensitivity analysis.

These challenges of testing and verifying the simulation results stem from the
code performance. Specifically, a single set requires a mean of 4 minutes run time.
Due to this, we are restricted to testing very limited model inputs, such as only
100 household sets per each intervention. Moreover, the way we inspect the model
output variance is very rudimentary. We exhibited the error distributions of each
of the attributes and all attribute products for the final step of each alternative
household set. However, to fully understand the (dis)similarities between each of
them, we would have to quantify, how many attributes exhibit outlier behavior for
each of the model alternative model runs. This is done by quantifying the standard
error for each of the synthesized sets in every scenario. Nonetheless, given, that
the model is not calibrated, more extensive studies should be carried out to identify
how the model parameters influence the parameter space (see Figure B.3).

Additionally, we have many simplifications in our models. For instance, within
the project we ignore the unobserved part of regret (the error term). This is done
explicitly to verify the model stability, but should be integrated in the future itera-
tions of the work, once the estimation procedures are done. On a similar note, we
assume, that people are completely rational and always choose the option causing
the least regret. For a more accurate representation, one would have to implement
a Multinomial Logit (MNL) model, explained in Section 3.5.

7.2.2 On risk and upgrading

In this case study, we strove to showcase the application of risk as an adaptive
element in the model. This enables the end user pose questions relating to the cost
of an intervention not only from a subsidy, but also upgrading perspective. Yet,
the representation and impact of disaster risk in this model is still very limited.
This because the available data is incomplete and contains only the address tags
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for buildings identified as being under ’high’ risk. The rest of the information is
assumed based on the buildings’ likely structural type [41]. This could be improved
by incorporating the risk model into the framework.

Another aspect to consider, is that the upgrading costs are also randomly gener-
ated, based on expert opinions. Moreover, we generate this data only once, rather
than testing the effects of it on the model outputs. This could be done better by
integrating more complete information, datasets on upgrading costs in the region.
This would allow us to identify specific upgrading cost associated with structural
types in the case-study area. This would consequently allow to more accurately
simulate the likely effects of the ’What-if’ scenarios.

7.2.3 Usability aspect

The usability of this framework was one of the core objectives during the develop-
ment. This is the reason for primarily relying on public datasets, since many of
them (e.g. zonal statistics) are available outside of the Netherlands. Their process-
ing pipeline is likely be similar and thus re-usable from this project. However, the
aspect of data-hungriness remains a big challenge: with more detail needed in the
model, the more data is required. Even though we managed to create a working
model with only 10 datasets, this number is likely to rise if the project is developed
further.

Additionally, we also paid attention on the code extensibility and the possibil-
ity to integrate with other models. Namely, the scripts were written in an object-
oriented manner, clearly identifying the entities in the model. Moreover, all of the
scripts were written in Python, which is known for the ease of learning and devel-
opment [165], and is at the core of one of the most advanced general urban models
UrbanSim. Since the code of the latter is open access, this opens a door for future
integration.

However, as the main research question suggests, in this project we also strove
to showcase the applicability of such models in public planning and policy mak-
ing context. Given the hypothetical scenarios, we approached this by providing the
results in a series of interactive visualizations, part of which were provided in Chap-
ter 6. The main strength of this model lies in its flexibility to integrate variety of
different types of data, as well as present it on aggregate and dis-aggregate scales.
Given that the model is calibrated and represents urban phenomena to a degree of
certainty, it would allow to inspect the effects of policies in a controlled laboratory.
To go even further, if the issues of performance (Section 5.3) are overcome, such a
model could potentially form a basis for serious game in the spirit of SimCity [107]
or more recent Cities:Skylines [120]. With this vision we would see such a tool edu-
cating, allowing to interactively determine the scenarios and explore the complexity
of the data.

7.3 future work

Integration

There are several directions, that this work could go further. Firstly, whilst devel-
oping further, one needs to consider integration within other modeling frameworks
(e.g. UrbanSim [166]) or extended by other urban sub-models. The first attempt to
make it integrable was to script in an object oriented manner, following the princi-
ples laid out in protocols (as Section 3.4.1) and existing tools (such as MESA [100]
or PyNetLogo [81]). We would like to provide 3 initial directions for identifying the
integration possibilities.
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To begin with, excluding land-market representation in similar models as pre-
sented in this work could potentially lead to biased results, state Huang et al. [77].
In their extensive study, they provide many model examples and their best features.
Moreover, the presented model only inspects the home-owner market. For a full pic-
ture one should strongly consider inspecting the aspects private rent and housing
corporation markets.

Another type to consider is job relocation model: residential and job re-location
timings are often correlated [129]. Such integrations have been shown in the works
of Rashidi et al. [128], as well as Acheampong [4].

Thirdly, we would like to suggest explicitly incorporating a risk model and not
only it’s results to the residential mobility model. This last aspect comes in line with
the initial motivation for this work and recent efforts in housing market research
(such as [46, 47]) show the growing interest for it in the scientific community.

Dynamics: disasters and life-cycle

The more realistic disaster representation in this sort of model also touches upon
the subject of dynamics. Currently, the model does not represent real-world time.
However, a step towards that would be identifying realistic transaction costs for
the processes the households are performing (e.g. relocation, renovation). Another
thing to consider in relation to long-term processes, is that life-cycle events are one
of the major contributors for the decision to move [4, 5, 77]. These events include
changes to socio-demographic attributes such as age, household composition, job
location, shopping patterns and capital. Their representation would allow popula-
tion to change dynamically. However, the necessity of such sub-model should be
evaluated in the light of a specific application case.

Heterogeneity and calibration

The Agent Heterogeneity (AH) should be refined based on the observed choice
behavior. Namely, the first step towards this would be to identify whether there are
different choice patterns between demographic groups. One way to approach it is
Latent Class models. They enable identifying "the probability that decision maker
n chooses alternative i, which equals the sum of the probability that he belongs to
class s multiplied by the probability that i is chosen given the class s "[157]. Given
this information, agent heterogeneity should be represented in the model as specific
household properties, allowing one to identify the correct decision rules. These
rules are the specifications of the RRM model, that are calibrated, based on the
choice data (for estimation code see advancedrrmmodels.com). More suggestions
on AH can be found in [77].

While gathering data for AH definition, one should consider retrieving informa-
tion on the housing search too. In other words, the number of considered alterna-
tives should be one of the properties differentiating households. This is important,
as not all demographic groups adopt the same residential location search strategies.

After calibration it is important to identify the uncertainties of the model def-
inition. One of the approaches is the Bayesian melding method [142], applied on
UrbanSim model. Other approaches include Generalized likelihood uncertainty es-
timation [21], which is similar to Bayesian melding, but the likelihood function is
derived from ’goodness of fit’ to observed data. Given the quantities of interest dis-
tributions attained by these approaches, the model runs falling under the threshold
can then be removed with more observations becoming available [56].

Usability

The usability of the model could be validated by incorporating the visualizations
in a dashboard, which would allow public sector agencies to interact with the data.
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By performing series of semi-structured interviews, future researchers could iden-
tify missing features in the model and properties to collect during the simulation.
Making the model easy to understand and use would make the model more likely
to be operationalized [66, 167].
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a.1 (pseudo-)code
All of the code was written using Python 3.14, making use o5f the libraries numpy,
pandas, geopandas, shapely

a.1.1 Problem definition

Location permutation number:

1 import numpy as np
2

3 k = 6000

4 p = 1260

5 t o t a l = 1261

6 f o r n in range ( 1 2 6 2 , 7261 ) :
7 t o t a l = t o t a l ∗ n
8 permutations = [ ]
9 N = k

10 f o r n in range (N) :
11 i f n == 0 :
12 continue
13 f o r m in range ( n ) :
14 permutations . append ( ( k−m) ∗ (p+n−m−1) )
15 sum_perm =sum( permutations )
16 a l l _ s c e n a r i o s = ( t o t a l−sum_perm ) ∗2+3∗(sum_perm )
17 p r i n t ( a l l _ s c e n a r i o s )

a.1.2 Network

Algorithm A.1: Distance matrix construction [171]
Data: Distance matrix D
Result: Shortest path matrix D (2x2)

1 foreach edge (u,v) do
2 dist[u][v]← w(u,v);

3 foreach vertex v do
4 dist[v][v]← 0;

5 for k from 1 to V do
6 for i from 1 to V do
7 for j from 1 to V do
8 if dist[i][j] > dist[i][k] + dist[k][j] then
9 dist[i][j]← dist[i][k] + dist[k][j];

Algorithm A.2: Distance to jobs or schools calculation, based on the dis-
tance matrix

Data: Distance matrix D <array>, current location c_loc <str>, job or
school locations ref_loc <list>

Result: Aggregate distance to jobs d_ref<int>
1 d_ref← 0;
2 for i from 0 to length(ref_loc) do
3 j← ref_loc[i];
4 if j != ’cordon’ and j != ’pensioneer’ and j != ’unemployed’ then
5 d_ref← d_ref + D[c_loc, ref_loc[i]];
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Algorithm A.3: N closest amenity identification and distance calculation
based on the distance matrix

Data: Distance matrix D <array>, current location c_loc <str>, buildings
table B, number of amenities N <int>

Result: Aggregate distance to 3 closest amenities <int>
1 homes← B[’residential_flag’==True];
2 amenity_nodes← B[B[’amenity_flag’==True], ’node_number’];
3 D← D.filter(amenity_nodes);
4 for i from 0 to len(homes) do
5 h_node← B[i, ’node_number’];

// finding distances to N closest amenities, given a

location on a network

6 B[i, ’d_amenities’]← D[h_node].nsmalles(N);

a.2 code verification
In the code we have two types of errors, that are not native to Python or its libraries:
PopulationError and ModelError. As the name suggests, the first type of error only
occurs, when some property, relating to the population (i.e. households) does not
have a valid input. What we define as valid in the data-preprocessing and synthesiz-
ing steps is corresponding to the statistics between datasets on zonal and aggregate
scale. For instance, during household synthesizing amount of active, working pop-
ulation in the case study area and coming from outside should be equal to the
number workplaces. But this also applies to the simulation as well: the average
population per household should be the same before and after each model steps.
The second error, ModelError, occurs if the inputs to one of the functions in the
code are not according to specifications. For example, if a household has multiple
current residence locations or a house has more than one household residing in it.

a.3 computer specifications

Major runs and
time estimations

High-end proces-
sor

Secondary-device

Processor Intel(R) Core(TM)
i7-6600U CPU @
2.60GHz

Intel Xeon E5-1620

v3 @ 3.5GHz
Intel(R) Core(TM)
i7-6700HQ CPU @
2.60GHz

RAM 16 GB 32 GB 6 GB





B A D D I T I O N A L R E S U LT S

b.1 base run

Figure B.1: Pairwise attribute scatter plots for the base run with 1000 household sets

b.2 dynamic risk
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102 additional results

Figure B.2: Pairwise attribute correlation heat-map for the base run with 1000 household
sets

Figure B.3: Parallel coordinate plot for all attributes (in standard errors) for the base run
with 1000 household sets. Colored by the value of the attribute v_house. Filter is
to show the distributions of other attribute values



b.2 dynamic risk 103

Figure B.4: Aggregate criteria optimization in relation to the starting condition for base and
dynamic risk runs (β = 1) for 100 household sets, Middelstum scale

Figure B.5: Differences between total number of upgrades per each household set (1 to 100),
given βrisk = 1 or 4
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