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A B S T R A C T

In this paper, a new indicator to localize fatigue damage in a fibre glass composite structure, i.e. spar cap to
shear web thick adhesive joint of a wind turbine blade, is presented. This indicator is based on the effect of
damping on the phase of the mode shapes of the structure. When fatigue damage occurs, damping increases
in the defective area and this leads to an increase in the local energy dissipation. This non-uniformity in the
energy dissipation throughout the structure causes the structure to vibrate with mode shapes whose structural
elements no longer have the same phase creating complex mode shapes. A visco-elastic finite element (FE)
vibration model is developed for a thick adhesive joint of a wind turbine blade. The mass, stiffness, and
damping matrix extracted from the FE model are used to determine the complex mode shapes. The results
show that the damaged area is located where the spatial derivative of the phase of the components of the mode
shapes is minimum. Changes in the phase of mode shapes of the structural elements are strongly dependent
on the location of damage. In the locations where the strain modal energy is greater, the change in the phase
is also higher.
. Introduction

With the ever-increasing size of wind turbine blades, especially for
ffshore machines, deploying a suitable condition monitoring system in
rder to reduce the levelized cost of energy (LCOE) is essential [1]. This
s more important for far offshore wind farms which have low acces-
ibility [2]. Four main methods have been proposed for the condition
onitoring of a wind turbine blade [3]: vibration-based methods, strain
easurements, acoustic emission and ultrasonic wave propagation. For

he strain measurements, acoustic emission and the ultrasonic wave
ropagation methods, sensors should be close to the damage source in
rder to detect the damage. Therefore, a large number of sensors would
eed to be installed in different parts of a blade in order to effectively
onitor damage, which is an expensive and impractical solution [4].

Vibration-based techniques are easier to implement and are poten-
ially less expensive than other methods. For vibration-based methods,
wo main techniques are used to detect damage: methods which are
ased on change in stiffness and those which are based on change in
amping [5,6].

For the former, the reduction in natural frequency is used as an
ndication of reduction in overall stiffness of the structure which in
urn is used to infer damage. Increase in the mode shape curvature or
ecrease in modal strain energy are the most frequent methods which
re employed to localize damage. All these proposed techniques rely

∗ Corresponding author.
E-mail address: s.khoshmanesh@tudelft.nl (S. Khoshmanesh).

on the assumption that damage leads to an appreciable reduction in the
stiffness of a structure [7,8]. But in a complex composite structure like a
wind turbine blade, which consists of several structural elements, such
as spar caps, trailing and leading edges, etc, a change in stiffness may
not be significant unless severe damage occurs which can compromise
the operation of the wind turbine [9].

To identify damage in a wind turbine blade, the latter method
described above, namely the detection of changes in the material
damping of structure may be a better alternative.

An early experimental investigation to identify damage by mea-
suring the modal damping of a structure was carried out by Modena
and Zonta [10,11]. They evaluated the use of modal damping to
identify manufacturing defects or structural damage in pre-cast re-
inforced concrete. In a similar fashion, Kawiecki [12] showed the
feasibility of measuring modal damping by using arrays of piezoelectric
transducers in a study of two types of concrete blocks. It was found
that damping could be a useful property to detect damage in a non-
metallic structure. Unlike identification, the localization of damage
based on changes in damping is a more complicated challenge. Some
researchers have tried to propose a method to localize damage but
with limited success. Among these researchers, Keye [13] attempted
to localize de-lamination damage in a carbon fibre reinforced polymer
vailable online 27 February 2023
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(CFRP) structure by measuring changes in its modal damping and the
introduction of a modified modal assurance criterion. Although the
concept of change in modal damping as an indicator of damage in CFRP
materials was verified, its use regarding damage localization required
further work. Montalvao et al. [14] proposed a method to localize
damage in a CFRP plate. They combined the change in modal damping
factor from a reference state to a damaged state with the modal strain
shape to produce a spatial damage index. The significant number of
false positive and false negative results were a drawback of this method
and further research was suggested to improve the accuracy of the
index. Another disadvantage was that this method relies on identifying
a large number of mode shapes which makes it of limited practical use.

Compared to metals, composite materials have generally a higher
damping capacity. The major reason for this is the visco-elasticity
of the polymeric matrix [15]. In fibre-reinforced polymers such as
seen in a thick adhesive joint, the dominant damping mechanism
is related to the visco-elastic behaviour of the matrix and/or fibre
materials. Coulomb friction due to slip in un-bonded regions of the
fibre/matrix interface appears to have less influence than visco-elastic
effects [16]. Thermo-elastic damping and other mechanisms, such as
dislocation damping, are important in metal matrix composites but not
in a polymer matrix [16].

To effectively develop a damage model, a model of damping based
on the visco-elastic properties of the composite material is considered.
In a wind turbine thick adhesive joint, i.e., spar cap to shear web,
the adhesively bonded connection is a key element for the struc-
tural integrity of the blade. If the joint suffers fatigue damage at the
bond-line then this can propagate through the spar cap and lead to
delamination and de-bonding of the spar cap from the webs [17,18].
In a previous study, fatigue damage in such a test joint was studied
experimentally by assessing the change in the damping properties of
the joint material [19].

In this paper, to localize damage in a thick adhesive joint of a
composite material used in a wind turbine blade, a new indicator based
on the effect of damping on the phase of mode shapes is presented.
This approach uses a visco-elastic damping model to develop a finite
element (FE) vibration equation. The mass, stiffness and damping
matrix extracted from the FE model are used as input parameters to
a MATLAB program to find the complex mode shapes. Then the phase
of the components of the mode shapes are used to localize damage.

2. Finite element visco-elastic damping model

The visco-elastic behaviour of a composite material is the dominant
mechanism for energy dissipation in such a material when subjected to
fatigue. Logically, this type of behaviour should be expected for such
as a spar cap-shear web thick adhesive joint in a wind turbine blade.
Therefore, to investigate the dynamic behaviour of such a structure, a
finite element visco-elastic vibration model is used.

Using a finite element framework, the displacement within each
element of a structure is expressed in a Lagrangian context as a function
of initial position and time, which can be written as [20]:

𝑈 𝑒(𝑋, 𝑌 ,𝑍, 𝑡) = 𝑵(𝑋, 𝑌 ,𝑍)𝑞𝑒(𝑡) (1)

In this equation, variables with an arrow over the top denote a vec-
tor and variables with a bold letter denote a matrix or tensor. 𝑋,

and 𝑍 are the initial position of elements in the structure and
𝑒(𝑋, 𝑌 ,𝑍, 𝑡) is the displacement vector for each element within the

tructure. 𝑵(𝑋, 𝑌 ,𝑍) is the shape function matrix and is dependent on
he type of each element. 𝑞𝑒(𝑡) is the nodal displacement vector whose
nitial position 𝑞𝑒(𝑡 = 0) is known but its change in position with time
eeds to be calculated.

For a linear visco-elastic material, the constitutive equation for the
tress–strain relationship at time 𝑡 can be written as: [21,22]:

(𝑡) = 𝑪(𝑡)𝜖(0) +
𝑡
𝑪(𝑡 − 𝜏)�̇�(𝜏)𝑑𝜏 (2)
2

∫0
here (⋅) represents the time derivative operator:

(⋅) = 𝜕()∕𝜕(𝑡) (3)

𝜏 is the characteristic relaxation time and 𝑪(𝑡) is the visco-elastic fourth
order tensor of the material properties which due to the symmetry
of the stress and strain can be represented in Voigt notation as a
6 × 6 dimension matrix. The strain 𝝐(𝑡) and stress 𝝈(𝑡) are second-order
ensors which due to symmetry can also be expressed in Voigt notation
s 6 × 1 vectors [20].
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(4)

In contrast to an elastic material, for a visco-elastic material, 𝑪(𝑡) varies
with time. The weak form equation of motion for the structure can be
derived by applying the principle of virtual work for each element of
a structure. This states that for a structure in dynamic equilibrium, the
work of the applied forces (including the inertia force) on the structure
due to a small deviation, 𝛿𝑈 , from the equilibrium position is zero.
Applying this principle for each element [20], this gives:

∫𝑉𝑒
�̈�𝑇 𝛿𝑈𝜌𝑑𝑉 + ∫𝑉𝑒

𝜎𝑇 𝛿𝜖𝑑𝑉 + ∫𝑉𝑒
𝑡 𝑇 𝛿𝑈𝜌𝑑𝑉 + ∫𝑉𝑒

𝑓 𝑇 𝛿𝑈𝜌𝑑𝑉 = 0 (5)

The first term is work due to inertial forces within the volume of an
element, the second term is work due to stresses within an element,
the third term is work due to boundary (non-gravitational external)
forces over the surface of an element and the last term is work due
to gravitational forces within an element. These terms are for a small
displacement of a structure 𝛿𝑈 from time 𝑡 to time 𝑡+𝛿𝑡. 𝑡 is the bound-
ary force per unit area for an element and 𝑓 is the gravitational force
per unit volume of an element. The subscript 𝑒 indicates that a vector
or matrix belongs to an element 𝑒 of the structure and the superscript
𝑇 indicates the transpose of a vector or matrix. From Eq. (1):

𝛿𝑈 𝑒 = 𝑵𝛿𝑞𝑒 (6)

Strain in a structure can be related to the displacement field as:

𝜖 = 𝑫𝑈 (7)

where 𝑫 is the operator matrix which acts on the shape function and
its form and components depend on the element type and selected
solution. From Eqs. (1) and (7):

𝜖 = 𝑫𝑵𝑞𝑒 (8)

𝛿𝜖 = 𝑫𝑵𝛿𝑞𝑒 (9)

�̇� = 𝑫𝑵 �̇�𝑒 (10)

The matrix 𝑩 is then defined as 𝑩 = 𝑫𝑵 . By substitution of Eqs. (8)–
(10) into Eq. (5) and after some manipulation, the finite element form
of the equation of motion for an element of the structure is obtained:

𝑴𝑒𝑞𝑒 + 𝑞𝑒(0)𝑲𝑒(𝑡) + ∫

𝑡

0
𝑲𝑒(𝑡 − 𝜏)�̇�𝑒𝑑𝜏 = 𝐹 𝑒 (11)

here the element mass and stiffness matrices and the force vector are
efined as:
𝑒 = ∫𝑉𝑒

𝑵𝑇𝑵𝜌𝑑𝑉 (12)

𝑲𝑒 = ∫𝑉𝑒
𝑩𝑇𝑪(𝑡)𝑩𝜌𝑑𝑉 (13)

𝐹 𝑒 = 𝑵𝑇 𝑡𝑑𝑠 + 𝑵𝑇 𝑓𝑑𝑉 (14)
∫𝑉𝑒 ∫𝑉𝑒
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Applying the virtual work principle for all elements and then assem-
bling the mass, stiffness and force vector for the whole structure gives:

𝑴𝑞 + 𝑞(0)𝑲(𝑡) + ∫

𝑡

0
𝑲(𝑡 − 𝜏)�̇�𝑑𝜏 = 𝐹 (15)

where 𝑴 , 𝑲(𝑡) and 𝐹 are mass and stiffness matrices and force vector
for the whole structure, respectively. Eq. (15) in the Laplace domain
can be written as:

𝑠2𝑴𝑞(𝑠) + 𝑠𝑲(𝑠)𝑞(𝑠) = 𝐹 (𝑠) (16)

Note that when the Laplace transform is taken, the transformed
second term in Eq. (15) is cancelled out by a component of the trans-
formed third term. For a visco-elastic material, the relaxation matrix
properties 𝑪(𝑡) can be written as the sum of an equilibrium part and a
time-dependent part:

𝑪(𝑡) = 𝑪0 + 𝒉(𝑡) (17)

where 𝑪0 is the matrix of relaxation properties as 𝑡 ⇀ ∞.
Substituting Eq. (17) into Eq. (13) gives:

𝑲𝑒 = ∫𝑉𝑒
𝑩𝑇𝑪0𝑩𝜌𝑑𝑉 + ∫𝑉𝑒

𝑩𝑇 𝒉(𝑡)𝑩𝜌𝑑𝑉 (18)

By introducing the terms: 𝑲0𝑒 = ∫𝑉𝑒 𝑩
𝑇𝑪0𝑩𝜌𝑑𝑉 and 𝑯𝑒(𝑡) = ∫𝑉𝑒

𝑩𝑇 𝒉(𝑡)𝑩𝜌𝑑𝑉 then:

𝑲𝑒(𝑡) = 𝑲0𝑒 +𝑯𝑒(𝑡) (19)

In the Laplace form:

𝑠�̄�𝑒(𝑠) = 𝑲0𝑒 + 𝑠�̄�𝑒(𝑠) (20)

where 𝑠�̄�𝑒, 𝑲0𝑒 and 𝑠�̄�𝑒(𝑠) are the dynamic modulus, storage modulus
and loss modulus matrix for an element of structure, respectively. Note
that 𝑲0𝑒 is a constant. By introducing, �̄�𝑒(𝑠) = 𝑠�̄�𝑒(𝑠) and substituting
Eq. (20) into the Laplace form of Eq. (11) and then assembling the mass,
stiffness and force vector for the whole structure, gives:

𝑠2𝑴𝑞(𝑠) +𝑲0𝑞(𝑠) + �̄�(𝑠)𝑞(𝑠) = 𝐹 (𝑠) (21)

This is the Laplace form of the equation of motion where 𝑴 is the
mass matrix, 𝑲0 is the stiffness matrix and �̄�(𝑠) is the damping matrix.
This equation is used to extract complex eigenvalues and complex mode
shapes as explained in Section 3.5.

3. Methodology

3.1. Description

A wind turbine blade consists of aerodynamic shells (the pressure
side and suction side) and shear webs which are moulded separately
and then bonded together in an assembly process using a structural ad-
hesive. The load carrying parts of the shells (spar caps) are constructed
from uni-directional composite laminates such as thick GFRM (glass
fibre-reinforced materials) [23,24]. Shear webs are built from multi-
axial fibre lay-ups and a core of balsa wood or polyvinyl chloride (PVC)
foam. The web body is produced by infusion of a balsa/foam core with
thin skin laminates, whereas the web foot is primarily made of multi-
axial direction glass fibres. The spar-web adhesive joint is manufactured
by bonding the web foot onto the spar cap of the blade as shown in
Fig. 1.

This web adhesive joint is a key element for the structural integrity
of the blade. If the joint suffers fatigue damage at the bond-line then
this can propagate through the spar cap and lead to de-lamination and
de-bonding of the spar cap from the webs [17].
3

Fig. 1. Schematic illustration of a spar cap-shear web assembly of a wind turbine
blade.

3.2. Modelling

A test specimen representative of the spar cap to shear web adhe-
sively bonded connection as shown in Fig. 1 is used for the simulation
of damage in this study. This thick adhesive joint consists of two
skins of unidirectional fibre glass laminate which are bonded together
by means of an adhesive. To study the theoretical response of this
joint under varying levels of damage, a model of this joint, shown
schematically in Fig. 2, is used. Material properties and dimensions of
this joint are given in Table 1. 𝐸, 𝐺, 𝜈 and 𝜌 are Young’s modulus, shear
modulus, Poisson ratio and density. The index 𝑥 and 𝑦 are pointed out
to the directions in a Cartesian coordinate system as shown in Fig. 2.

For the purposes of the vibration analysis, the adhesive joint is
considered as a solid structure consisting of solid type elements and
fixed at one end as shown in Fig. 3 modelled in 3D using ANSYS
Structural Analysis 18.2 FE software. To identify and localize damage,
the mass, stiffness and damping matrix are extracted. These matrices
are used as input to a MATLAB code to calculate the complex mode
shapes and the phase of the components of the mode shapes.

3.3. Damage simulation

The damage in this study is simulated within a small section (some
elements) of the modelled adhesive joint by changes to the damping
properties. This approach was justified by a number of fatigue tension
tests conducted in a previous study by the authors [19]. During this
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Fig. 2. Schematic illustration of the spar cap-shear web thick adhesive joint modelled in this study.
Table 1
Material properties and dimensions of the thick adhesive joint modelled in this study.
Parts Material specification 𝐸𝑌 (Gpa) 𝐸𝑥(Gpa) 𝐺𝑥−𝑦(Gpa) 𝜈𝑥𝑦 𝜈𝑦𝑧 𝜌(g/𝑐𝑚3) L/W/t(cm)

Adhesive

Resin Epoxy Epikote
Resin
MGSBPR135G2 5.2 5.2 2.03 0.35 0.35 1.1 37.5/3.6/0.5

Curing
agent

Epoxy Epikure
Curing Agent
MGS BPH1355G

Face sheets Uni-directional fibre glass laminate 31.5 5 3.8 0.4 0.3 1.6 37.5/3.6/0.25
study, changes to the stiffness and damping of several test speci-
mens were measured. The tests showed that the damping experienced
a significant change over the lifetime but changes to the stiffness
were relatively small. Based on [19], the overall loss factor or modal
damping of the same test specimen during a fatigue test increased by
110%–120%. If the damage is localized, the change in the loss factor
of the damaged elements is much higher than the overall loss factor
or modal damping. Different levels of damage intensity for damaged
elements are considered and the highest level is assumed to cause an
increase of 110%–120% in modal damping.

Damping is introduced at some elements of the modelled adhesive
joint by adjusting the parameters of the Young’s (shear) modulus, which
is assumed to be dynamic:

𝐸(𝑡) = 𝐸0 + ℎ(𝑡) (22)

where E0 is a fixed term (the relaxation modulus) and ℎ(𝑡) is a time-
varying term. In the Laplace domain, this equation can be written as:

𝑠�̄�(𝑠) = 𝐸0 + 𝑠ℎ̄(𝑠)𝐸0 (23)

where 𝑠�̄�(𝑠), 𝐸0, 𝑠ℎ̄(𝑠)𝐸0 and 𝑠ℎ̄(𝑠) are the dynamic, storage modu-
lus, loss modulus and loss factor of the visco-elastic material, respec-
tively [21]. An expression for the loss factor introduced by McTavish
et al. [21] (also known as the Golla–Hughes–McTavish or GHM model)
is given by:

𝑠ℎ̄(𝑠) = 𝛼
𝑠(𝑠 + 2𝜁�̄�)

(𝑠2 + 2𝜁�̄�𝑠 + �̄�2)
(24)

where 𝛼, 𝜁 and �̄� are model parameters. Eq. (23) can also be written
as:

𝑠�̄�(𝑠) = 𝐸0 + 𝜂(𝑠)𝐸0 (25)
4

Where 𝜂(𝑠) is the material loss factor. For the damaged section, the
damage intensity level (DIL) is defined as:

𝐷𝐼𝐿 =
𝜂𝑑
𝜂

(26)

where 𝜂𝑑 is the loss factor for the damaged section. The data in Table 1
are used for the storage modulus. The loss modulus is calculated by
multiplying the loss factor by the storage modulus. Using these values
as input to ANSYS Structural Analysis 18.2 FE software, the mass matrix
𝑴 , stiffness matrix 𝑲0 and damping matrix �̄�(𝑠) from Eq. (21) at range
of frequencies were extracted.

3.4. Damage identification and localization

The approach proposed in this work for damage localization is
based on the premise that damage in a certain part of a composite
structure leads to a substantial localized increase in damping (non-
proportionality). This local damage creates non-proportionality in the
energy dissipation throughout the structure. This means that in the
damaged area, the dissipation of energy due to damping is greater com-
pared with the case when there is no damage. This non-proportionality
in energy dissipation affects the phase of the characteristic mode shapes
of the structure. If the adhesive joint is considered as a number of
solid elements supported at one end as shown in Fig. 3, then the 𝑘th
eigenvector (mode shape) of the structure can be written as:

𝜙(𝑘) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

𝜙(𝑘)
1
...
𝜙(𝑘)
𝑖
...
...
(𝑘)

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

, (27)
⎩

𝜙𝑛 ⎭
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Fig. 3. Schematic illustration of the thick adhesive joint in first bending mode.
where 𝜙(𝑘)
𝑖 (𝑖 = 1, 2,… , 𝑛) are the components or structural element dis-

placements of each mode shape 𝑘. The components of the eigenvector
are complex and can be written as:

𝜙(𝑘)
𝑖 = ‖𝜙(𝑘)

𝑖 ‖𝑒𝑗𝜃
(𝑘)
𝑖 , 𝑖=1,2,…,𝑛 (28)

where ‖𝜙(𝑘)
𝑖 ‖ is the magnitude and 𝜃(𝑘)𝑖 is the phase of the 𝑖th component

of the 𝑘th eigenvector and 𝑗 =
√

−1.
When there is no damage, the dissipation of energy is proportional

throughout the structure and the phases of the components of each
eigenvector are zero (𝜃(𝑘)𝑖 = 0 , 𝑖 = 1, 2,… , 𝑛), [25]. When there
is damage in a certain part of the structure, this results in phase
differences between the components of the eigenvector especially for
those nodes close to the area of damage.

To localize damage, the phases of the complex mode shapes (𝜃)
are calculated. When local damage occurs in a structure, the damping
matrix is non-proportional and the eigenvectors are complex. The
method used here to calculate the complex eigenvectors is based on
expressing each complex mode shape (complex eigenvector) as a linear
combination of normal modes and then using a Neumann expansion
method to find the vector coefficients.

To identify damage, modal damping is calculated and an increase
in modal damping is taken as an indication of damage in the structure.
The complex natural frequency of mode 𝑘, as denoted by 𝜆𝑘, can be
written:

𝜆𝑘 = −𝑅𝑘 + 𝑗𝐼𝑘 (29)

Where 𝑅𝑘 is the real part and 𝐼𝑘 is the imaginary part of complex
natural frequency for the 𝑘th mode. The complex natural frequency 𝜆𝑘
is related to the eigenvalue, 𝑠𝑘:

𝜆𝑘 = 𝑗𝑠𝑘 (30)

The magnitude of the complex natural frequency and the modal damp-
ing are denoted by 𝜔𝑘 and 𝜁𝑘, respectively, and are determined us-
ing [26]:

𝜔𝑘 =
√

𝑅2
𝑘 + 𝐼2𝑘 (31)

𝜁𝑘 = −𝐼𝑘∕𝜔𝑘 (32)

Substituting Eq. (31) and (32) into Eq. (29) gives an expression for the
complex natural frequency:

𝜆𝑘 = 𝜔𝑘(
√

1 − 𝜁2𝑘 − 𝑗𝜁𝑘) (33)
5

3.5. Calculation of complex eigenvalues and eigenvectors

For a non-proportional damped system with 𝑛 degrees of freedom,
each mode shape of this system is a linear vector composition of 𝑛
un-damped mode shapes [27]:

𝜙(𝑘) =
𝑛
∑

𝑖=1
𝛼(𝑘)𝑖 𝑏(𝑖) (34)

where 𝜙(𝑘) is the eigenvector of the 𝑘th mode of the non-proportional
damped structure, 𝑏(𝑖) is the eigenvector of the 𝑖th mode of the un-
damped structure and 𝛼(𝑘)𝑖 is a constant. To calculate the coefficients
of Eq. (34), this equation can be substituted into Eq. (21), with 𝐹 (𝑠) =
0, [28]. The left hand side of this equation is then multiplied by the
transpose of the 𝑚th mode shape, (𝑏(𝑚))𝑇 , and using the orthogonal
properties of the un-damped mode shapes:

𝛼(𝑘)𝑚 𝑠2𝑘 + 𝛼(𝑘)𝑚 𝜔2
𝑘 + 𝛼(𝑘)𝑘 𝐾𝑚𝑘 + 𝛼(𝑘)𝑚 𝐾𝑚𝑚 +

𝑛
∑

𝑖=1,𝑖≠𝑘,𝑖≠𝑚
𝛼(𝑘)𝑖 𝐾𝑚𝑖 = 0 (35)

where

𝐾𝑚𝑖 = (𝑏(𝑚))𝑇 �̄�(𝑠 = 𝑠𝑘) 𝑏(𝑖) (36)

Without loss of generality, 𝛼(𝑘)𝑘 is considered equal to 1 and Eq. (35)
can be rewritten as:

𝛼(𝑘)𝑚 (
𝑠2𝑘 + 𝜔2

𝑚 +𝐾𝑚𝑚

−1
) −

𝑛
∑

𝑖=1,𝑖≠𝑘,𝑖≠𝑚
𝛼(𝑘)𝑖 𝐾𝑚𝑖 = 𝐾𝑚𝑘 (37)

In matrix form, this equation can be written as (see [28]):

[𝑃𝑘 −𝑄𝑘]𝐴𝑘 = 𝐵𝑘 (38)

where 𝑃𝐾 , 𝑄𝐾 and 𝐴𝐾 are given in Box I. The 𝑘th row and column of
the matrices correspond to the coefficients 𝛼(𝑘)𝑘 which are assumed to
be known (𝛼(𝑘)𝑘 =1), so are removed to give a solution for coefficients
other than 𝛼(𝑘)𝑘 .

Using the Neumann expansion method, the coefficients matrix for
𝑘th mode shape can be written as:

𝐴𝑘 = [𝐼𝑁−1 + 𝑅𝑘 + 𝑅2
𝑘 + 𝑅3

𝑘 +⋯]𝐴0 (42)

where,

𝑅𝑘 = 𝑃−1
𝑘 𝑄𝑘 (43)

𝐴 = 𝑃−1𝐵 (44)
0 𝑘 𝑘
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𝑃𝑘 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑠2𝑘+𝐾11+𝜔2
𝑘

−1 0 ... (𝑘𝑡ℎ term deleted) 0 0

0
𝑠2𝑘+𝐾22+𝜔2

𝑘
−1 0 ... 0

... ... ... ... ...
(𝑘𝑡ℎ term deleted) (𝑘𝑡ℎ term deleted) (𝑘𝑡ℎ term deleted)

0 0 0 ... 0

0 0 0 (𝑘𝑡ℎ term deleted) ...
𝑠2𝑘+𝐾𝑛𝑛+𝜔2

𝑘
−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(39)

𝑄𝑘 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 𝐾12 .... (𝑘𝑡ℎ term deleted) ... 𝐾1𝑛
𝐾21 0 ...
... ... .... ... ...

(𝑘𝑡ℎ term deleted) (𝑘𝑡ℎ term deleted) (𝑘𝑡ℎ term deleted)
... ... ... ... ...
𝐾1𝑛 𝐾2𝑛 ... (𝑘𝑡ℎ term deleted) ... 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(40)

𝐴𝑘 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛼(𝑘)1

𝛼(𝑘)2
..

(𝑘𝑡ℎ term deleted)
.....
𝛼(𝑘)𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐵𝑘 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐾1𝑘
𝐾2𝑘
...

(𝑘𝑡ℎ term deleted)
...
𝐾𝑛𝑘

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(41)

Box I.
o solve the matrix form of Eq. (38), an initial guess is made for the
th eigenvalue, for example, by setting 𝑚 = 𝑘 in Eq. (35). Knowing that
𝑘
𝑘 = 1, then this equation can be rewritten as:

2
𝑘 + 𝜃𝑘 + 𝜔2

𝑘 = 0 (45)

where:

𝜃𝑘 = 𝐾𝑘𝑘 + (𝐵𝑗 )𝑇𝐴𝑗 (46)

Then,

𝑠𝑘 = −𝜃𝑘 + 𝑖
√

(4𝜔2
𝑘 − 𝜃2𝑘) (47)

For the first guess, the term (𝐵𝑗 )𝑇𝐴𝑗 is neglected. The algorithm used
to find the complex mode shapes is summarized in Fig. 4.

4. Results

Damage was simulated by varying the material loss factor in four
different locations of the thick adhesive joint. Then the effect of damage
on the phase angle of motion of the structural elements was investi-
gated for different mode shapes. The four locations were at 2.5%, 10%,
20% and 40% of the length of the joint from the fixed end, denoted as
Damage Cases 1–4, respectively. Damage intensity levels (DILs) were
identified by the ratio of the loss factor of the damaged area (η𝑑) to the
loss factor of the healthy area (η), i.e., η𝑑∕η. The thick adhesive joint

as divided into 248 elements, of which 12 elements were considered
s damaged.

.1. Effect of damage location on the phase of mode shapes

The effect of damage on the phase angle of motion of the structural
lements of the first mode shapes for Damage Case 1 was determined
nd the results are shown in Fig. 5. The natural frequencies of the
est specimen for Damage Case 1 and DLI = 2.5 for the first, second,
nd third modes are 49.272, 95.38, and 305.44 Hz, respectively. To
nsure convergence, the number of elements in the test specimens
as increased until the natural frequencies did not change. This was
chieved when the total number of elements in the test specimen was
44 and changes in natural frequency were less than 0.001%. The
6

Fig. 4. Algorithm for calculation of complex mode shapes.

results show that, from the fixed end, the phase angle increases close
to the area of damage to a maximum positive value just before this
area and then rapidly decreases through the damaged area reaching a
minimum just beyond and then tending to a value close to zero near the
free end. The maximum amplitude of the phase angle change increases
with level of damage giving a value of 1.58◦ for DIL=9.
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Fig. 5. Phase angle of motion of the structural elements for the first bending mode for Damage Case 1. The damaged area is shown by the shaded region. The specimen is fixed
on the left hand side.
Fig. 6. Variation of modal damping for Damage Case 1 for different DILs.
The effect of local damage on the modal damping of the whole
specimen is shown in Fig. 6. The change in modal damping varies from
22.3% for DIL=2.5 to 110% for DIL=9.

The effect of damage on the phase angle of motion of the structural
elements for the first mode shape for Damage Case 2 for different
DILs is shown in Fig. 7. The pattern of variation in the phase angle
is similar to Damage Case 1, with the maximum peak shifted further
away from the fixed end close to the area of damage. The maximum
difference in phase for the same DIL=9 is reduced significantly from
1.5◦ in Damage Case 1 to 0.55◦ in this case. For this DIL, the change
in modal damping also reduces from 110% in Damage Case 1 to 88%
relative to an undamaged specimen as shown in Fig. 8.

To better localize damage, the spatial derivative of the phase angle
for the first bending mode for DIL=9 is calculated and the results
shown in Fig. 9. It can be seen that the derivative becomes increasingly
negative around the damaged elements reaching a minimum value
within the area of damage. The results for other DILs are not shown
but show a similar pattern.
7

For all four damage cases, the phase angles are plotted for DIL=9
in Fig. 10.

The magnitude of the phase angle change reduces significantly as
the damaged section moves away from the fixed end. This is logical
for the first mode shape as local strains progressively reduce moving
away from the fixed end and therefore the dissipation of energy is less.
This effect can also be observed when analysing the modal damping
of the specimen for the four damage cases as shown in Fig. 11 where
the change in modal damping reduces from 110% in Damage Case 1 to
19.8% in Damage Case 4.

4.2. Effect of damage on different mode shapes

In cantilever beam-type structures, the mode with dominant elastic
energy, which is the first bending mode, affects the phase angle the
most. Therefore, the first bending mode would normally be expected
to be the most appropriate mode to consider for the localization of
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Fig. 7. As Fig. 5 but for Damage Case 2.
Fig. 8. Variation of the modal damping for Damage Case 2 for different DILs.
damage. However, the elastic energy in this mode decreases when
moving from the fixed end to the free end. So if the damage is some
distance from the fixed end, it cannot be detected by the first mode. The
second mode has a similar elastic energy distribution as the first mode
and also may not be the most convenient for detecting damage away
from the fixed end. The most appropriate mode shape in this case to
detect the damage is the third mode. This has a node close to the area
of damage where the elastic energy within the structural elements close
to the node is high.

The effect of damage on the phase angle of motion of the structural
elements for the third bending mode for Damage Case 4 for different
DILs is shown in Fig. 12 for part of the specimen. The third bend-
ing mode shape has a node (the point on the structure without any
movement) at structural element 32 as shown in the inset to Fig. 12.
The damaged area in this case is located far from the fixed end and
closer to the structural element where the levels of strain are relatively
high. This leads to higher local levels of energy dissipation and a larger
change in the phase angle close to the area of damage compared to the
first bending mode. For DIL=9, the maximum change in phase angle is
8

now around 0.4◦ compared with only 0.1◦ for the first bending mode.
It should be noted that Fig. 12 shows the phase angle for only part of
the specimen as, in the areas around the node where displacements are
very small, the phase angle and its derivative become invalid due to
division by a very small number. The resulting discontinuities can be
seen in Fig. 13 which shows the phase angle for the entire specimen.

The modal damping of the specimen for the third bending mode for
Damage Case 4 at different DILs is shown in Fig. 14. It can be seen that
at DIL η𝑑∕η=9, the increase in modal damping is about 25% which is
higher compared with the first bending mode (19.8%).

The spatial derivative of the phase angle for the third bending mode
is shown in Fig. 15. This is shown for DIL η𝑑∕η=9 but similar results
are seen for other DIL values. It can be seen from Fig. 15 that the
location of the damage is where the derivative of the phase angle shows
a minimum.

It seems that derivatives of nodal phase angle is a useful parameter
to localize damage although the large value near the structure node
could be misleading due to overestimating of this value near to the
structure node.
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Fig. 9. Derivative of the phase angle for the first bending mode for DIL=9.
Fig. 10. Phase angle of motion of the structural elements for the first bending mode for different damage locations for DIL=9.
4.3. Sensitivity to the size of the damaged area

To look at the effect of the size of the damaged area on the
maximum change in the phase angle of the mode shape, three different
areas of damage for Damage Case 1 with DIL=9 were considered. For
a damaged area equal to 4% of the total area of the test specimen, the
maximum change in the phase angle of the first bending mode was
1.58◦. For damaged areas equal to 2.6% and 1.3% of the total area
of the test specimen, the maximum changes in the phase angle of the
first bending mode were equal to 0.975◦ and 0.371◦, respectively. The
ability to measure such changes in phase angle in a real specimen is
difficult to determine, but this analysis at least gives an indication of
the size of change that would be expected.

4.4. Effect of damage on resonant frequency and mode shape

Based on a previous experimental study [19], the change in material
stiffness is small during damage progression compared with damping.
9

Therefore, the stiffness of the damaged sections was considered un-
changed in this model, and only damping assumed to have increased.
This means that the natural frequencies for all damaged cases are the
same and there is a negligible change in resonant frequencies due to
damping. The first mode resonant frequency for the healthy specimen is
49.272 Hz, and in Damage Case 1 with DIL=9, the resonant frequency is
49.321 Hz. The mode shapes are effectively the same, with very small
changes around the damaged region that cannot be distinguished by
Modal Assurance Criterion (MAC) values. The phase angle of the mode
shape changes for the worst case scenario (Damage Case 1 and DIL=9)
from 0.539 degrees to −1.05 degrees, with cosine values of 0.99995
and 0.99983 respectively, which gives a MAC value very close to 1
(0.9999996).

5. Discussion

From the modal analysis, the time-dependent displacement of the
structure is determined based on measurements from appropriate mo-
tion sensors. This time-displacement response is then used to determine
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Fig. 11. Modal damping of the first bending mode for the different damage cases and a DIL η𝑑∕η=9.
Fig. 12. Phase angles of the third bending mode for Damage Case 4 for different DILs.
the frequency response function (FRF) of the structure. In this section, it
is shown that the phase of the diagonal components of the FRF is related
to the phase at the locations of the structural elements for a given mode
shape. This is a method that can be used to determine experimentally
the phase angle of the motion of the structural elements for a given
mode shape.

The FRF has 𝑛 degrees of freedom and is a 𝑛 × 𝑛 matrix. Each
component of the FRF has a magnitude and phase which are dependent
on the frequency. The phase of the FRF at the resonant frequency for a
specific excitation mode in a healthy structure is 90◦ as the damping
is almost proportional throughout the entire structure. When local
damage occurs in the structure, the damping is no longer proportional,
the mode shapes become complex and the phases of motion of the
structural elements of the FRF at resonant frequency are no longer 90◦.

The damping matrix in a viscoelastic damping model of the struc-
ture is dependent on the frequency (see Eq. (21)). Because we are
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interested in the response of the structure in a narrow band around
the resonant frequency, the damping matrix can be considered constant
in this narrow band and equal to its value at the resonant frequency.
With this assumption, the diagonal components of the FRF at the 𝑘th
resonant frequency (𝜔𝑘,𝑟𝑒𝑠) can be written as [25]:

FRF𝑖,𝑖(𝜔 = 𝜔𝑘,𝑟𝑒𝑠) =
𝜙(𝑘)
𝑖 𝜙(𝑘)

𝑖

𝑚𝑘(𝜆2𝑘 − (𝜔𝑘,𝑟𝑒𝑠)2)
+

𝑛
∑

𝑞=1,𝑞≠𝑘

𝜙(𝑞)
𝑖 𝜙(𝑞)

𝑖

𝑚𝑞(𝜆2𝑞 − (𝜔𝑘,𝑟𝑒𝑠)2)
(48)

Where 𝜙(𝑘)
𝑖 is the 𝑖th component of the 𝑘th complex displacement mode

shape and 𝜔(𝑘)
𝑟 is the 𝑘th resonant frequency. The index 𝑞 refers to the

different displacement mode shapes, other than the 𝑘th mode shape.
The modal mass of the 𝑘th mode shape is defined as:

𝑚 = (𝜙(𝑘))𝑇𝑴 𝜙(𝑘) (49)
𝑘
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Fig. 13. As Fig. 12, but showing the phase angle for the whole length of the test specimen.
Fig. 14. Variation in modal damping for the third bending mode for Damage Case 4 and different DILs.
The resonant frequency 𝜔𝑘,𝑟𝑒𝑠 is the frequency of the structure where
the amplitude of the FRF components are greatest. From Eq. (48), this
maximum amplitude occurs when the denominator is minimized.

This occurs when the 𝑘th resonant frequency is equal to:

𝜔𝑘,𝑟𝑒𝑠 = 𝜔𝑘

√

1 − 2𝜁2𝑘 (50)

The FRF at the 𝑘th resonant frequency, to a good approximation, can be
estimated by neglecting the effect of the second term in Eq. (48) [25].
Neglecting the second term and substituting Eq. (28) and (50) into
Eq. (48) then:

FRF𝑖,𝑖(𝜔 = 𝜔𝑘,𝑟𝑒𝑠) =
‖𝜙(𝑘)

𝑖 ‖

2
𝑒2𝑗𝜃

(𝑘)
𝑖

𝑗(2𝑚𝑘𝜔2
𝑘𝜁𝑘

√

1 − 𝜁2)
(51)

The phase of the diagonal components of the FRF at the 𝑘th resonant
frequency can be written as:

Arg(FRF (𝜔 = 𝜔 ))
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𝑖,𝑖 𝑘,𝑟𝑒𝑠
= Arg(‖𝜙(𝑘)
‖

2𝑒𝑗2𝜃
(𝑘)
𝑖 ) − Arg(𝑗(2𝜔2

𝑘𝜁𝑘
√

1 − 𝜁2)) − Arg(𝑚𝑘) (52)

The phase of the first term in Eq. (52) is equal to 2𝜃(𝑘)𝑖 and the phase of
the second term is equal to 900. For simplicity, Arg(FRF𝑖,𝑖(𝜔 = 𝜔𝑘,𝑟𝑒𝑠)))
is replaced by 𝛽(𝑘)𝑖,𝑖 and then Eq. (52) can be written as (assuming all
angles in degrees):

𝛽(𝑘)𝑖,𝑖 = 2𝜃(𝑘)𝑖 − Arg(𝑚𝑘) − 90◦ (53)

When there is no damage, damping is proportional and 𝜃(𝑘)𝑖 is zero and
the modal mass is a real number so its arguments are also zero and
therefore the phase of the 𝑖th component of the FRF at the 𝑘th resonant
frequency is −90◦ as expected.

When there is local damage, 𝜃(𝑘)𝑖 is no longer zero and the modal
mass of the 𝑘th mode shape is a complex number. The modal mass is an
overall property of the structure and is dependent on the mass matrix
and mode shape. Therefore, local damage does not have much influence
on this parameter or its phase. This can be seen by considering the
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Fig. 15. Derivative of the phase angle for the third bending mode at DIL η𝑑∕η = 9.
phase of the modal mass in this study at DIL= 9 and at the first resonant
frequency ((𝜔1 = 49.32 Hz) which is equal to 0.0000435◦. Therefore,
Eq. (53) can be written as:

𝛽(𝑘)𝑖,𝑖 ≈ 2𝜃(𝑘)𝑖 − 90◦ (54)

This equation relates the phase of the motion of the structural com-
ponents for a particular mode shape to the phase of the diagonal
components of the FRF.

6. Conclusion

A new indicator for the localization of fatigue damage in a fibre
glass composite material, i.e., the thick adhesive joint of a wind turbine
blade is presented. The indicator analyses the change in the phase of
mode shapes of the structural elements to localize damage.

Using a well-known finite element structural code, the results show
that this approach can effectively localize simulated damage, though
the phase changes observed are relatively small, which may be chal-
lenging to detect in practice. In the case of a real wind turbine blade,
aerodynamic damping will play a role though this is more likely
to affect the global movement of the blade rather than the relative
movement of localized elements. It is this relative change that is the
important factor in damage detection. Nevertheless, it would require
further work to assess its impact on the ability to detect damage using
the proposed indicator.

The change in the phase of mode shape of the structural elements
depends on the location of damage and detecting damage in locations
with less strain energy is more challenging than in other locations
where the level of strain is higher. Therefore, the selection of the most
appropriate mode shapes to use for this method plays an important role
in the localization of damage.

In a practical measurement system, the phase angle of each struc-
tural element should be obtained from the FRF. For this indicator to be
used, the spatial change in phase angle should be measured at a few
key positions. Installing vibration sensors at relatively few locations on
a blade would be sufficient based on a finite element study to determine
the relevant mode shapes although damage localization accuracy may
be limited.

To have good accuracy in measuring the change in phase angle of
mode shapes, a relatively large number of sensors would be required.
Increasing the number of sensors adds complexity when installing a
12
monitoring system, however, by using fibre optic sensor technology
this is not insurmountable. In addition, the use of ground-based or
airborne remote laser scanning technology could be a future solution
to be used in periodic inspection. It should be stressed that the purpose
of this paper was merely to establish the ability to use changes in
damping properties as a way of detecting damage. Clearly, further work
is required to develop an operational measurement system. The overall
dimensions of the structure and the relative size of adhesive layer to
laminate thickness will affect the potential change in phase angles
during damage initiation. However, the purpose of this work was to
provide a proof of concept which would require further research and
refinement in a real world situation.
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