Delft University of Technology

Faculty of Electrical Engineering, Mathematics & Computer Science
Department of Software Technology

An Architecture-Agnostic Memory Protection
Interface for the Tock Operating System

Daniel Stefanus Maria Verhaert

Stanford

University

]
TUDelft

An Architecture-Agnostic Memory Protection
Interface for the Tock Operating System

TuEsIs

submitted in partial fulfillment of the requirements for the
MASTER OF SCIENCE
degrees in
EvLECTRICAL ENGINEERING
&
EMBEDDED SYSTEMS
by

DANIEL STEFANUS MARIA VERHAERT
born in AMSTERDAM, THE NETHERLANDS

to be defended publicly on October 19, 2018 at 15:30

Student number:
Submission date:

Aduvisors:

Thesis Committee:

ISBN:

4234685
October 12,2018

Prof. dr. P. Levis
Prof. dr. K. G. Langendoen

Prof. dr. K. G. Langendoen (Chair)
Dr. J.S. Rellermeyer
Dr. M. Nasri

978-94-6366-094-5

ii

Stanford University
Delft University of Technology

Delft University of Technology
Delft University of Technology
Delft University of Technology

An Architecture-Agnostic Memory Protection
Interface for the Tock Operating System

Author: Daniel Stefanus Maria Verhaert
Email: d.s.m.verhaert@student.tudelft.nl

Abstract

Tock is an embedded operating system that can run multiple concurrent, mutually distrustful
processes, concurrently. Tock is written in Rust, a novel system programming language enfor-
cing type safety at compile-time, and takes advantage of Rust’s strong safety features. However,
since Tock allows user-level applications to be written in any language, Rust is not sufficient in
guaranteeing memory safety for user-level Tock. To obtain memory isolation, Tock takes advant-
age of MPUs provided by recent microcontrollers. Although Tock is supposed to be fully archi-
tecture agnostic, it is at present only able to support the MPU of the Cortex-M architecture. The
lack of an architecture-agnostic MPU interface, process manager and the corresponding MPU
implementations is the biggest remaining hurdle in making Tock architecture independent. In
order to create such an interface, this work performs an analysis of state-of-the-art MPUs, com-
paring their key features and constraints. A feasibility study for the design of an MPU interface
in Tock is carried out, resulting in a number of general changes to the current implementation
of Tock, and leading up to the design, implementation and evaluation of two MPU interfaces.
The first is a region-based interface, aiming to have an abstraction that is straightforward and
completely agnostic of what the MPU is used for. The second interface is a process-based in-
terface, that utilizes knowledge of what it is applied for in order to provide a solution that is
more efficient given the constraints and optimizations of an arbitrary MPU. Implementations
for the Cortex-M, Kinetis K and nRF51 MPUs are created that match these interfaces, and in
addition fundamental adaptations to process management in the Tock kernel are made. On the
Hail development board, these changes reduce context switching time by 25.34%, but lead to a
cost of 848 bytes or 1.0% in flash memory overhead. Most importantly, with the introduction of
these interfaces, the biggest hurdle for Tock in becoming a multi-architecture operating system
is overwon.

iii

Preface

Up until a year ago, I could never have imagined myself writing an MSc thesis on memory
protection or operating systems, let alone getting to do this at Stanford University. I have had
the most amazing time in the last nine months, and am extremely grateful to have gotten this

opportunity.

I would start by thanking my thesis supervisors that made this adventure possible. Phil, I am
extremely grateful to you for extending this life-changing invitation. Thank you for for your
useful input and guidance. Koen, thanks for organizing everything on the Delft side and guiding
me through the process of writing an MSc thesis, all while calling with me through a nine hour
time difference.

Everybody on the Tock team, you have all been magnificent in helping me getting started. Amit,
you in particular have been a tremendously helpful guide to me. Thank you.

My special thanks goes out to Conor. From having productive discussions to being vultures
ahead of the wake while scavenging through Gates for free food, my experience working with
you has been a ton of fun.

I am very grateful towards the Justus & Louise van Effen Excellence Scholarship and the Stan-
ford Information Networks Group for funding me throughout the nine months I spent in the
San Francisco Bay Area. Without this support, it would have been difficult to have had this
experience.

I would like to thank the friends and family who helped me through the process of writing my
thesis. You were an incredible motivation for me, helping me shape this work into what it is
now (and providing some much needed distraction once in a while).

Thank you all for your unwavering support.

Danilo Verhaert
Palo Alto, California
October 12, 2018

Contents

[Abstract iii
[Prefacel v
Conten vii
List of Figures xi
[List of Tables| xii
xv
1__Introductionl 1
(.1 Problem Statementl Lo 2
2 ResearchGoall 3
L3 Contributions 3
4 Thesisoutlinel 4

[2 Background| 5
2.1 OperatingSystems| L o 5
2.1.1 Kernelsl. 6

212 Processes. 6

2.2 Memory Management| o 0 oL 7
[2.2.1 Memory Management Units|. 8

222 Memory Protection Units|, 9
R3Rusl. 9
231 Ownership|l. 10

vii

233 Tifetimes. 12
234 UnsafeRustl 12

2.4 Tockl. 13
241 Overviewl 13
242 Memory Isolationf. o 15

R5 RelatedWorkl 16
[2.5.1 Embedded Operating Systems| 16
[2.5.2 Sottware-based memory isolation| 00 L. 17
[2.5.3 Hardware-based memory isolation|. 17

[3 Memory Protection Units| 19
B.1 Choiceof MPUsl 19
3.2 Region-Based Protection| 21
B.21 Keykeatures|. o o o 22
B22 Access Permissions| Lo 23
3.2.3 Overlapping Regions| 24
324 Default Access Permissions|, 25

B.3 Barrier-Based Protectionl oo 26
3.4 Memory ProtectioninTock| o o o 0oL 27
341 Process Memory Overview| 28
[3.4.2 Current Shortcomings| 31

[4 Design Considerations and Methodology| 35
4.1 Storingregions| 35
.2 Overlapping Regions| o . 37
[4.2.1 Challenges in Overlapping| 37
422 AvoidingOverlap|. L o 38

4.3 Flexible RegionRanges|. o 38
[4.3.1 Block-Aligned Algorithm| 39
|4.3.2 General Power-of-Iwo Aligned Algorithm|. 39
433 Cortex-Malgorithm| 40

B4 The MPU Traitl. 43
@5 Disablingthe MPU| L 43

.6 Methodologyl

[5 A Region-Based MPU Interface|
5 Design| L

5.2 Implementation| L

[5.2.1 Relative RegionRequest{

[5.2.2 Absoluteregionrequest| o L oL

[5.3.1 Relative RegionRequest{

[5.3.2 Absolute Region Request|
[0.3.3 Summary|

[6.1.1 Non-Growing Region Request|

[6.1.2 Growing Regions Request|,

[6.2 Implementation| o

|6.2.1 Non-Growing Region Request|

[6.2.2 Growing Regions Request|,

6.3.1 Memory|
[6.3.2 Portability|

ix

[6.3.4 Summary|

A Register Interface|

List of Figures

p1

Memory overview of a process. The dashed lines and arrows indicate a region

can expand in thatdirection.|. o o oo L oo L

n2

Simplified tlow of a memory reference usingan MMU,|

23

Simplified tlow of a memory reference usingan MPU/|.

D4

Overview of Tock’s architecture. The kernel contains both the core (trusted) code,

and the (untrusted) capsules.| o 0oL

25

Memory layout of processes in Tock [11].|

B1

Schematic Overview of the Cortex-M4 processor [13]. Highlighted are the pro-

cessor, its core, and the MPU.|

B2

Example illustrating the general functionality of an MPU. The memory segment

shown in red is protected by the MPU. The green segment represents the remain-

ing unprotected memory,| L0 L L L L o

B3

Example of the union mechanism for overlapping regions. Two regions are defined,

one with read only permission from 0x00000 to 0x60000, and the other with write

only permission from 0x20000 to 0x80000. In the overlapping segment the per-

mission becomes the logical sum of permissions: [read, write and execute (RWX)}|

25

B4

Overview of barrier-based protection for the nRF51. Shown are the memory ret-

erences from user to supervisor memory and their possible access permissions.

For instance, RW /- means the MPU can be configured to either allow both read

and write accesses to that part of memory, or allow neither|.

27

B5

Overview of process memory with the existing Cortex-M MPU implementation

in Tock. Shown is the memory and MPU allocation of three memory-contiguous

processes running concurrently. A more detailed explanation is given in Sec-

tion3.4 1Ll e e e e e e e

B6

Overview of subregion usage for thefprocess accessible memory (PAM)|in the situ-

ation shown in Figure|3.5] Full lines represent regions, and dashed lines indicate

subregions. In this case, subregion 4 and 5 are enabled for ip_sense, whereas the

other two processes do not require using subregions|

Xi

4.1 Example showing what occurs for power-of-two aligned MPUs when overlapping

of regions is prohibited. Shown are two processes, crc and ac running concur-

rently. Now that the grant (red) does not overlap with the[PAM]|(green) any longer,

external fragmentationoccurs.| o L L o oL

5.1 Overview of process memory using the region-based MPU interface for the Cortex-

M MPU in Tock. Shown is the memory and MPU allocation of three memory-

contiguous processes running concurrently using this intertace. A more detailed

explanation is givenin Section5.3f oo oo

[5.2 Overview of subregion usage for RAM in the situation shown in Figure[5.1} Full

lines represent regions, dashed lines subregions, and the green and red areas are

the [PAM[and grant, respectively. For clarity reasons, grant subregions are not

|6.1 Overview of process memory using the process-based MPU interface for the Cortex-

M MPU in Tock. Shown is the memory and MPU allocation of three memory-

contiguous processes running concurrently using this interface. A more detailed

explanation is givenin Section[6.3}| o oo

6.2 Overview of subregion usage for the |[PAM[in the situation shown in Figure [6.1]

Full lines represent regions, and dashed lines indicate subregions.|.

69

List of Tables

2.1 Comparison between MMU and MPU Features.| 9
2.2 Tock system call interface [11]]. L. 14
B.1 Attributesof various MPUs] oo oo 23

[3.2 Access permission encodings and corresponding permissions for the Cortex-M
MPU | §| The first column in each table shows the bit field value, and the second
[and third column show what the resulting access permissions for that region will |
be after setting this bit field, for both the supervisor and user mode.|. 24

[3.3 Access permissions for the default memory map not covered by any region| . . . 26

3.4 Memory requirement tor each process shown in Figure(3.5 expressed in number |
| ofbytes|. L 28

|6.1 Comparison of memory usage for the existing, region-based and process-based
interface given the example of three running processes. Both the maximum pos-
sible region sizes after growing and the total memory usage are shown,| 71

xiii

Acronyms

CPU central processing unit
FPGA field-programmable gate array
HIL hardware interface layer

IoT internet of things

IPC inter-process communication
ISA instruction set architecture
LIFO last in, first out

MMU memory management unit
MPU memory protection unit

OS operating system

PAM process accessible memory
PMP physical memory protection
RAM random access memory
RWX read, write and execute
TBF Tock binary format

TLB translation lookaside buffer

XV

Chapter 1

Introduction

With the ever increasing number of connected devices [1]], new capabilities are made possible
through access of rich new information sources. This creates the [internet of things (IoI)} the
network of interconnected devices, providing the ability to share information. Frequently,
systems are composed of embedded systems. Embedded systems are small devices with a ded-
icated function that are embedded as part of a larger system. Embedded systems often have
microcontrollers at their core: small computers on a single chip. Embedded systems are charac-
terized by their low cost and low power consumption in comparison to their general-purpose
counterpart, at the price of limited resources [2]. These properties make embedded systems
economically attractive, and the drop in costs in recent years is what has spurred the growth
of the by making it cost-effective. The drawback of being low power and low cost is that
embedded systems have very limited resources, particularly in terms of RAM and code space,
making them more difficult to interact with. To make the most out of this, embedded systems
are historically written in system-level languages like C and C++. These languages provide little
abstraction from a computer’s architecture, and therefore introduce very little overhead in terms
of memory usage and execution time. However, they leave it up to the programmer to manu-
ally and explicitly handle memory management. This has proven to be a difficult task for many
programmers, and is often the reason for bug-prone and vulnerable programs [3] [4].

Flaws caused by memory management in systems have become increasingly apparent in
recent years. For instance, a memory vulnerability in CD players of certain cars gave attackers
control of safety critical subsystems in 2011 [5]], and cardiac devices showed vulnerabilities that
allowed an attacker to deplete the battery and administer incorrect pacing and shocks in 2017 [6].
In fact, poor memory management is the second to most common vulnerability in embedded
devices next to poor login credentials [7] [8]. The strength of passwords is the responsibility
of the user; on the system level little can be done to improve this. However, memory manage-
ment need not be the responsibility of the user and should be correctly handled behind the
scenes.

A new programming language enforcing memory safety is Rust: a system-level language intro-
duced by Moxzilla [9]. Rust is focused on safety, speed and concurrency, and maintains these
goals without having a garbage collector, making it a useful language for writing low-level code
among others. In Rust, variables are tracked by their lifetime and deallocated when they go out
of scope. The safety guarantees of Rust are particularly appealing for an operating system ker-
nel. It makes buffer overflows, integer overflows, and uninitialized data bugs impossible, which

1

1.1. PROBLEM STATEMENT 2

constitute a significant fraction of kernel bugs [10]. Even with these safety guarantees that are
generally only found in high-level languages, Rust has memory efficiency and performance close
to C/C++.

Tock is an embedded operating system developed in Rust taking advantage of the safety be-
nefits it provides [11] [12]. It is designed for running multiple concurrent, mutually untrusted
processes on low-memory and low-power microcontrollers. Tock brings flexible multiprogram-
ming to resource-constrained systems while isolating processes from the kernel and from each
other. The kernel heap in Tock is split across processes, which allows the system to respond to
resource demands from one process without impacting the available memory of the kernel and
other processes.

1.1 Problem Statement

Tock allows for user-level processes to be written in any programming language. This means
that although Rust’s safety guarantees hold for the kernel, they do not hold for processes. Pro-
cesses are scheduled preemptively and given their own separate memory region, making them
have strong system liveness guarantees. However, this still is not enough to guarantee memory
isolation: preventing a process from accessing memory that has not been allocated to it, as most
other programming languages do not enforce this at compile-time. In general-purpose com-
puting, a[memory management unit (MMU)| would be used to prevent this from happening,
providing memory isolation in addition to address virtualization. however contain fea-
tures that are generally unnecessary in embedded systems, leading to a needless increase in cost
and complexity. Recent microcontrollers include a [memory protection unit (MPU)|instead: a
trimmed-down version of the that also provides memory protection, but no address vir-
tualization. An MPU can be configured to protect a certain address range in memory, also called
an MPU region. Tock takes advantage of MPUs to enforce memory isolation.

The market of microcontrollers has always been a fragmented and heterogeneous one, where
MPUs too vary significantly per chip designer. Factors such as region alignment, (minimum)
region sizes, access permissions and behaviour in the case of overlapping regions or a region
miss show significant differences between MPUs. For this reason, having a system support mul-
tiple MPUs is a complex undertaking. In addition, the procedure of setting up MPU regions is
fundamentally tightly interwoven with memory allocation: hence supporting multiple MPUs in
an operating system is a tedious operation. In fact, currently no operating system exists with the
ability to support multiple MPUs, and the few operating systems that do support an MPU only
support one specific type of MPU, that is mostly the MPU of the ARM Cortex-M
[architecture (ISA)| [13]. [[SAs| like these have historically been proprietary for business reasons,
and companies have patents on these[[SAs|that prevent others from using them without expens-
ive licenses. Due to the rise of open-source initiatives, newwith different MPUs have been
gaining momentum, with the most prominent example being RISC-V [14] [15].

Tock is one of the operating systems that does support an MPU, but has its existing MPU im-
plementation specifically set up for the Cortex-M The current implementation makes it
impossible to use other MPUs, and because of this, Tock is unable to provide its safety guaran-
tees for any other architecture than the Cortex-M. Therefore, Tock is currently only supported
for platforms with a Cortex-M processor.

3 CHAPTER 1. INTRODUCTION

1.2 Research Goal

In this thesis, the problem of operating systems not being able to support multiple MPUs is
tackled by defining an efficient and general software abstraction for MPUs, using Tock as the
target operating system. Tock is programmed to be modular with one key exception: the MPU.
Because of this, a valid solution to our problem fitting Tock would be to create a modularly
programmed MPU interface, that enables the addition of MPU functionality for other hardware
platforms. As a result, the main research question of this thesis is as follows:

Can an Architecture-Agnostic MPU interface be created in Tock?
This question raises a number of sub-questions:
1. What are the main challenges in creating a generic MPU interface for Tock?
2. Can a generic MPU interface be created that is completely independent from the target application?

3. Can a generic MPU interface be created in Tock that is efficient for a wide range of MPUs, not
having less features than a stand-alone implementation?

The benefit of answering these questions is creating a kernel that is simple and easy to port to a
wide variety of platforms, and yet provides strong isolation guarantees for processes.

1.3 Contributions

The contributions this thesis proposes can be summarized in the following manner.

® An analysis of state-of-the-art MPUs, including an overview of their key features and con-
straints in addition to a more in-depth look at their discerning capabilities.

¢ A feasibility study to explore the challenges involved in creating an MPU interface, both
in general and for Tock specifically.

¢ A variety of modifications to Tock ranging from making it architecture-agnostic, reducing
its context switching overhead and simplifying its implementation.

¢ Design, implementation and evaluation of a region-based MPU interface in Tock, that as
an interface aims to be as generic and operating-system agnostic as possible, but in turn
loses some MPU-specific optimizations, struggles with dynamic memory allocation and
has a higher complexit

- A corresponding MPU-specific implementation for the Cortex-M MPU.
- A corresponding MPU-specific implementation for the Kinetis K MPU.

® Design, implementation and evaluation of a process-based MPU interface in Tock, that is
targeted at a process memory model supporting regions with different access permissions
that grow towards each other and leaves a high degree of freedom to the implementor,
thereby being able to support all MPU-specific optimizations?}

— A corresponding MPU-specific implementation for the Cortex-M MPU.

Thttps://github.com/dverhaert/tock/tree/region-based-interface
Zhttps://github.com/dverhaert/tock/tree/process-based-interface

https://github.com/dverhaert/tock/tree/region-based-interface
https://github.com/dverhaert/tock/tree/process-based-interface

1.4. THESIS OUTLINE 4

- A corresponding MPU-specific implementation for the Kinetis K MPU.

1.4 Thesis outline

The structure of this thesis is as follows. Chapter[2gives the reader an overview of fundamental
background information regarding operating systems and memory, provides information on
the Rust programming language and the Tock operating system, and discusses related work.
Chapter [B| performs a comparative analysis of the key and in-depth features of MPUs, and dis-
cusses current memory protection in Tock. Next, Chapter [dwalks through the initial design de-
cisions made for generalizing Tock, that are valid for both designed interfaces. The first interface,
the region-based interface, is proposed in Chapter[5}, where we dive into its design, implement-
ation and evaluation. We go through similar aspects for the second interface, the process-based
interface, in Chapter[6} Finally, we discuss the results and provide recommendations for future
research in Chapter

Chapter 2

Background

This chapter introduces the reader to several topics essential for grasping the full nature of this
research. First, operating systems are discussed, going through the fundamentals and other
topics relevant to this research in Section Next, memory and the importance of memory
management are covered in Section[2.2} along with an introduction to memory protection units.
Hereafter, Section [2.3|covers the novelties and key features of the Rust programming language.
This all leads up to the introduction of the Tock operating system in Section[2.4, The motivation,
design and memory layout of Tock are elaborated on and illustrated. Finally, the related work
relevant to this thesis is covered in Section 2.5

2.1 Operating Systems

The ulterior goal of a computer is to enable a user to communicate with hardware; programs and
operating systems exist to simplify this process [16]. A program —such as a mail client, a browser
or a game- is a sequence of instructions written by a computer programmer in a programming
language, existing to perform a certain task when executed by a computer.

An|joperating system (OS)|is software that controls the general operation of a system, acting as an
intermediary between programs and the computer hardware. The motivation of an operating
system is to provide an environment that is efficient and convenient for a user. Traditionally,
operating systems are only used in general-purpose computers, making their design focused on
being as convenient as possible. Recently however, operating systems have started to appear
in embedded systems. Since efficiency is vital in embedded systems, the emphasis of these
embedded operating systems design is on efficiency over convenience.

A|central processing unit (CPU)| also called a processor, is the hardware that carries out a pro-
gram’s instructions. At a processor’s center are one or more cores that are its basic computation
units; embedded systems traditionally have one core. An operating system can communicate
with the processor through the use of registers. A register is a hardware component that
can hold a sequence of bits. Software can read registers to get information from the hardware,
and can write information to the registers to send information to the hardware. In embedded
systems, registers are usually 32 bits wide. An important consequence of this is that only 4 GB
(232) of memory can be directly accessed.

2.1. OPERATING SYSTEMS 6

2.1.1 Kernels

The core of an operating system, responsible for controlling all other programs, is called the
kernel. Unlike a user program, the kernel has full control of the operating system. Therefore, in
order to achieve proper operation of an operating system, the execution of user-defined code and
kernel code must be distinguishable. Consequently, modern operating systems operate between
(at least) two distinct modes:

Supervisor Mode In supervisor mode, executing code has unrestricted access to the underlying
hardware. Any instruction can be executed, and each memory address can be referenced.
Supervisor mode is generally reserved for the most trusted functions of the operating sys-
tem. Supervisor mode is often also called system mode, privileged mode or kernel mode.

User Mode In user mode, executing code cannot directly access the underlying hardware. Code
running in user mode is restricted and can only access certain pre-specified addresses.
User mode is utilized for most of the programs on a computer.

The current mode of the operating system is most often indicated by a bit present in the hardware
of the computer and enforced by the At boot time, the system starts in supervisor mode.
Once the operating system is fully loaded, programs are dispatched in user mode to protect the
system from unauthorized or unwanted access of privileged resources. If a program running
in user mode wants to request a service that can only be fulfilled by the kernel, it can do so by
means of a a system call. A system call provides an interface between a program and the kernel,
and is the only normal entry point for a user-level program into the kernel.

After a program is done executing, it is supposed to return control to the operating system by
executing a system call. Programs that only voluntarily return control in this manner are co-
operatively scheduled. To ensure programs do not keep control infinitely, frequently operating
support setting up a timer to interrupt after a specified period, giving control back to the oper-
ating system. Programs that are executed in this way are called preemptively scheduled.

Kernel architectures can be written in two ways. A monolithic kernel is one that is big and com-
plex, without having a specified structure. All services are bundled together, resulting in a smal-
ler memory footprint and often higher efficiency. On the other hand a microkernel architecture
has the goal of being as small as possible. Microkernels are predominantly known for their re-
liability and security; if one part of the system fails, the whole system does not crash unlike in
monolithic kernels. Additionally, easier to extend and customize. The drawback associated with
microkernels is their poor performance.

2.1.2 Processes

A program in execution is called a process. A process predominantly contains the following
memory sections:

The text section (also known as the code segment) contains the program’s code.

The data segment contains global or static variables.

The stack section contains temporary data. During runtime, the stack can be dynamically
adjusted according to allast in, first out (LIFO)|structure.

The heap area contains data dynamically allocated during process runtime.

7 CHAPTER 2. BACKGROUND

high address

low address

Figure 2.1: Memory overview of a process. The dashed lines and arrows indicate a region can
expand in that direction.

Since the stack and heap can both grow during runtime, these are generally set to be growing
towards each other in memory. A schematic of this general memory overview is shown in Fig-

ure2.11

Typically, operating systems are designed to support seemingly simultaneous running of mul-
tiple processes. To do this, they employ a technique called context switching, that essentially
suspends the execution of one process and resumes the execution of another process. Context
switching can only occur in supervisor mode. Doing a context switch is in most cases com-
putationally intensive for an operating system. Consequently, avoiding unnecessary context
switching has been a central point in the design of operating systems.

Independent processes are not affected by the execution of other processes. It can however be
advantageous for processes to cooperate with each other for increasing computational speed,
convenience and modularity. [[nter-process communication (IPC)|is a mechanism allowing pro-
cesses to do this.

2.2 Memory Management

Memory management is the process of controlling and coordinating computer memory among
programs, deciding how much memory each program gets at what time. In order for a com-
puter system to function properly, proper memory management is essential. Flawed memory
management can lead to slow performance, bugs, and even vulnerability to malware.

Memory management is done in either volatile or non-volatile memory. Volatile memory charac-
terizes itself by being faster than non-volatile memory. On the other hand, non-volatile memory
is distinguished by offering much more memory capacity and retaining saved data even without
any power supply. In most modern general-purpose computers and embedded systems, both

2.2. MEMORY MANAGEMENT 8

Virtual address Physical address
N

CPU > MMU

Y

Memory

TLB

Figure 2.2: Simplified flow of a memory reference using an MMU.

forms of memory are used so that data can be stored both reliably and quickly. For embedded
systems, usually a form offrandom access memory (RAM)|is used for volatile memory, and flash
is used for non-volatile memory.

Proper memory management aims to to minimize fragmentation: the inefficient use of storage
space. Internal fragmentation is the wasted space within memory regions that results from al-
locating too much memory for a process. This is often the result of having to round up from
the requested allocation to the allocation granularity. External fragmentation occurs when free
memory is interspersed by allocated memory, i.e., having holes between memory regions.

2.2.1 Memory Management Units

Memory references on most general-purpose devices initially arrive at a memory management
unit (MMU). This unit provides two main features. The first is address translation, that in es-
sence is a method to abstract away memory. Using address translation, the operating system
translates a request for a virtual memory address to an actual physical address. This enables
programs to execute without having their entire address space be in by relocating and
accessing memory where convenient, resulting in reduced storage space and more flexibility in
The virtual address space is regularly subdivided into equally-sized pages, and these are
then stored in an on-chip page table. Usually, page sizes are in the order of kilobytes, and the cor-
responding page table has a number of pages in the order of thousands [17]. The downside of
using address translation is that the translation costs time, leading to a performance reduction.
To minimize this reduction an MMU generally contains a translation lookaside buffer (TLB)| A
[TLBJis a fast, on-chip memory cache that contains a number of past entries for an MMU's virtual-
to-physical translations table. Even though an MMU'’s greatly reduces the average memory
access time, inevitably memory addresses not stored in the[TLByet will need to be accessed, and
these incur a significantly higher performance cost.

The second main feature an MMU provides is memory isolation. An MMU can be configured
to protect certain address ranges — also called regions — in memory. Whenever a process tries to
access a certain address, the MMU checks if the process is authorized to do so. If not, the access
will be blocked and a segmentation fault will occur, generally leading to an abort of the program.
A simplified flow of a memory reference when using an MMU is shown in Figure

9 CHAPTER 2. BACKGROUND

Physical address Physical address
N

CPU > MPU

Y

Memory

Figure 2.3: Simplified flow of a memory reference using an MPU.

Feature MMU MPU

Address translation Yes No

Memory isolation Yes Yes

Protected segment Fixed (page) Flexible (region)
Typical number of entries | Thousands Tens
Region/page table location | External Memory | On-chip registers

Table 2.1: Comparison between MMU and MPU Features.

2.2.2 Memory Protection Units

A full-fledged MMU is not the best fit for embedded systems. Address translation is an expens-
ive operation in terms of memory and performance and having more unnecessary features like
a[TLB|leads to increased cost and complexity. For this reason, most embedded systems choose
not to implement an MMU and try to find another solution for memory isolation. One of the
most recent solutions is a hardware component that does not have these drawbacks: the[memory]
[protection unit (MPU)} Simply put, the MPU is a trimmed down version of the MMU that only
provides memory isolation, but is far simpler and cheaper. An overview of the regular flow of
memory references on a system using an MPU is shown in Figure

Where MMU pages are fixed blocks in memory, MPU regions are generally defined as segments
that have a variable size. The number of memory regions for an MPU is usually in the order
of tens, contrary to the order thousands of pages for the MMU. For this reason, the MPU re-
gion table can be kept in on-chip memory, whereas MMU regions are generally kept on external
memory. A comparison between MMU and MPU features is shown in Table[2.1} Because of this
difference in features, MPUs generally have a lower cost, complexity and power consumption in
comparison to MMU .

2.3 Rust

The choice of a programming language is important in setting up an embedded system. Ideally,
one wants a language that is both easy to understand and has a high performance. Regrettably,
a trade-off has to be made. In order to more deeply understand this trade-off, it is useful to
subdivide programming language into two classes:

¢ Higher-level languages enable programmers to produce software very close to the user
(and far away from the hardware). Abstracting away from the hardware makes these lan-
guages very user friendly: they are platform independent, the syntax is easy to read and
write, and the code is checked for mistakes. The focus is on reducing the time needed to
write the program, and the performance of the program is a secondary concern.

¢ Lower-level languages enable programmers to produce software very close to the hard-
ware (and far away from the user). Lower-level languages get the most performance out

2.3. RUST 10

of hardware by efficiently using available resources, therefore usually being very efficient
in terms of memory usage and execution time. A great degree of hardware awareness is
required to do low-level programming, making them much harder to code.

Since embedded systems must be as efficient as possible given their cost and power require-
ments, lower-level languages are used to program them. The most common languages for this
are C and C++. Both of these are pretty close to the lowest level of machine code and therefore
provide high performance, while also remaining relatively highly portable and easy to program.
Unfortunately, a very useful property that these languages lack is type safety. Type-safe languages
ensure no possible execution in any program written in the language can exhibit undefined be-
haviour. In the ideal world, code written by programmers would not contain any mistakes and
therefore would also not exhibit undefined behaviour, but in reality mistakes are commonly
made [10]. This makes languages like C and C++ bug prone and vulnerable. On the other hand,
languages like Python, Java(Script), Ruby and Haskell are all type safe, but are relatively higher
level and therefore lack the performance and efficiency of lower-level languages.

This apparent gap led to the introduction of Rust, a lower-level programming language designed
to map directly to hardware while providing most features of high-level languages including
type safety, generics, enumerations (algebraic data types) and much more [9]. Rust is a relatively
new programming language that started out as a hobby project by a former Mozilla employee.
Morzilla adopted the language and has released it as an open-source project, with its first stable
release on May 15, 2015. Since then, Rust has been successfully used in large projects such as
Dropbox’s back end storage [18]. Rust provides two main features:

Memory Safety Security exploits often leverage bugs in the way languages (mostly C and C++)
handle memory. Rust disallows the use of three things: null pointer dereferences, dangling
pointers and buffer overruns. Instead, it uses options, borrowing and arrays with definite
bounds.

Data-race free concurrency Writing (safe) multithreaded code is becoming increasingly import-
ant in modern devices [19], and is often complicated in traditional languages. Rust allows
for concurrency to be used safely, and advocates developers to use it from the start.

Roughly 50% of all security critical bugs in Firefox’s layout engine are related to mistakes in
memory safety, even though its C++ programmers are experienced and have access to the best
static analysis tools available [3]. This shows the severity of this problem, and the value of Rust’s
memory safety.

2.3.1 Ownership

All programs have to manage memory in some way. Some languages have garbage collection,
continuously looking for unused memory while the program runs. Other languages enforce the
programmer to explicitly allocate and free memory. Rust uses its own approach called owner-
ship (an affine type system [20]), that is also its most unique feature [21]]. This approach manages
memory through a set of rules that the compiler checks at compile time. We proceed by explain-
ing this through an example. Consider the code fragment in ListingT]

This code will print "z = 1, y = 1" when executed. Since x and y are both integers, their size is
known at compile time. Copies are therefore easy to make, and Rust chooses to store primitive
types entirely on the stack. That means now two variables x and y exist, both with a value of 1.
A version where a reference to memory is used instead is illustrated in Listing

11 CHAPTER 2. BACKGROUND

// Rust can statically infer a variable's type at compile time
let x = 1;

// Copy the value of x into a new variable y

let y = x;

// Print x and y

println!("x = {}, vy = {3", %, ¥);

Listing 1: Basic example of copying in Rust.

// Let x be a vector of size 5

let x = vec![1, 2, 3, 4, 5];

// The pointer of x is copied into y, giving y ownership

let y = x;

// Compiling will fail at this line, since x no longer owns the heap memory
println! ("x[0] = {}", x[01);

// This line will compile successfully, since y now owns the heap memory
println! ("y[0] = {}", y[01);

Listing 2: Basic example of ownership in Rust.

Since this looks very similar to the previous code, one might assume it works the same and y will
be a copy of x. However, this code will not compile for a subtle but important reason. The first
line allocates memory for the vector object = on the stack, and allocates memory on the heap
for the actual data (1, 2, 3, 4, 5). Creating the copy y now does not actually allocate the same
vector on the heap, but just copies the vector object/pointer . As this results in two pointers to
the same memory, that could lead to a data race and violate safety guarantees, Rust forbids this
copying. Instead, Rust transfers the ownership of the vector to y.

2.3.2 Borrowing

To enable sharing of objects, Rust uses a concept called borrowing Listing 3] gives an example of
borrowing.

let mut x = 1;

{
// y is defined as a mutable reference to x
let y = &mut x;
// Increment the value y points to (x) by 2
¥y += 2;

}

println! ("{}", x);

Listing 3: Basic example of borrowing in Rust.

This code will print 3 when executed. First, note the mut keyword with which z is defined.
Variables in Rust are immutable by default, and only mutable with the addition of this keyword.

2.3. RUST 12

After defining z, a new scope is entered where y is made a mutable reference to x, and 2 is added
to the thing y points to. If z was not mutable, a mutable borrow to an immutable value could
not have been taken. Rust has two fundamental rules for borrows. First, any borrow must not
last for a greater scope than that of the owner. Second, there may either be exactly one mutable
reference to a resource, or any number of immutable resources.

2.3.3 Lifetimes

Both ownership and borrowing are enforced through [ifetimes. A lifetime is effectively just a
name for a scope somewhere in the program. They exist to ensure a variable binding points
to a valid resource, thereby enforcing memory safety. An illustration of lifetimes is shown in
Listing [4

fn main() {
let mut x = 1; // Lifetime of x begins
{
let y = 2; // Lifetime of y begins
} // Lifetime of y ends
println! ("y = {}", y) // This will fail, since y went out of scope
} // Lifetime of x ends

Listing 4: Basic example of lifetimes in Rust.

Each reference in Rust is marked with a lifetime specifying the scope it is valid for. The compiler
lets you elide lifetimes in common cases, as was the case in the previous examples. Explicit
lifetime annotations are required when for instance working with structs that contain references,
or when a lifetime is required that is different from its scope. Lifetimes prevent the existence of
dangling pointers.

Since ownership, borrowing and lifetimes are all enforced at compile time, there is no cost at
runtime and therefore Rust accomplishes safety and speed. However, because this is a new
concept, it does take quite some time to get used to. Many new users to Rust experience 'fighting
the borrow checker’, where a program the author thinks is valid does not get compiled by the
Rust compiler. The good news is that the compiler is user-friendly, and usually provides hints
as to what should be changed in order to make the program successfully compile. Once users
overcome this rather steep learning curve, many of them grow to love Rust [22].

2.3.4 Unsafe Rust

Any operating system requires some code that does not enforce memory safety guarantees. By
nature, static analysis is conservative, and furthermore, underlying computer hardware inher-
ently requires some memory unsafe code. For this reason Rust has a second language hidden
inside enabling these memory unsafe features called unsafe Rust. When code is encapsulated by
an unsafe block, several things like dereferencing a raw pointer and accessing or modifying a
mutable static variable are allowed. Within an unsafe block, it is up to the programmer to ensure
these things do not break the system at runtime. Note that the ability for a part of code to use

13 CHAPTER 2. BACKGROUND

\
: Untrusted
Processes CoE App written [Service] BLE while (1) (isolated by
Ported to in Rust Environmental ® the MPU and
(Any Language) Tock Sensing Profile @ preemptively
schedluled)
Syscall Interface ssssssssssssssssssssssnnsnssnssnsnsnnssssssnsnnsnnnnsnsnnsnnsnnnnnnnnnnnnns
N)
. (%] . .
o) (¢) G) @) @) || ..o
memop, a2 (unsafe
IPC 3 6LoWPAN ' SD Card .. S17021 ' forbidden)
P
Kernel -
(Rust) Standardized Hardware Interface Layer (HIL))
Trusted
Core Kernel . . X . N (unsafe
Seheduler Procese Microcontroller-specific Peripheral Drivers b allowed for
management, etc. [SPI][RNG][Timer][ADC][GPIO] P,:ACMIto’)
, etc.
\ ((2c) uart) aes) oac][uss]J
P
.
araware CPU

Figure 2.4: Overview of Tock’s architecture. The kernel contains both the core (trusted) code,
and the (untrusted) capsules.

an unsafe block can be rescinded if necessary. This is useful to for instance prevent user-level
programs from calling unsafe.

24 Tock

The strict current-day power and cost budget has kept embedded platforms very simple, mean-
ing[RAM]and other features like memory isolation are scarce. On most embedded systems, this
simplicity causes faults to be non-isolated. Hence, the misconduct of a single application could
lead to the entire system crashing, and even worse, devices are often very vulnerable to hacking.
Another downside is that memory is often statically allocated, enforcing developers to guess
how much memory to allocate for processes. Tock is an embedded operating system addressing
these shortcomings by providing fault isolation and dynamic memory allocation [11]. Tock’s
kernel is written in Rust, and therefore inherits Rust’s type safety, high memory efficiency and
performance. In addition, Tock provides abstractions for processes using hardware isolation
mechanisms found frequently in recent chips.

24.1 Overview

Tock is designed for running multiple mutually distrustful programs concurrently and inde-
pendently on embedded systems El [23]. An overview of Tock’s architecture is shown in Fig-
ure

Thttps://github.com/tock/tock

https://github.com/tock/tock

2.4. TOCK 14

Call Core/Capsule | Description

command Capsule Invoke an operation on a capsule
allow Capsule Give memory for a capsule to use
subscribe | Capsule Register a callback

memop Core Increase heap size

yield Core Block until an callback completes

Table 2.2: Tock system call interface [11].

Capsules

Recall from Section[2.1.1]that traditionally, operating systems distinguish between at least user-
defined code and kernel code. Tock distinguishes between another type of code called cap-
sules. Capsules are programs written in Rust that exist within the kernel; therefore, they are
constrained by Rust’s strong memory safety. Because of this, there is no overhead associated
with safety and capsules require minimal error checking. Capsules are cooperatively sched-
uled, causing context overhead to be minimal by taking advantage of the kernel’s short opera-
tions. However, this means they must also be trusted for system liveness. Even though capsules
exists within the kernel, unlike kernel code they are not allowed to call unsafe code.

Processes

Tock characterizes user-defined code as processes. Processes are isolated from most parts of
memory by hardware, allowing them to be written in any language. The maximum number
of processes is only constrained by the available flash and Processes are scheduled pree-
mptively and use a round-robin policy. For interacting with the kernel, processes can use sys-
tem calls as elaborated on in Section[2.1.1} System calls are either routed to capsules or the core
through a system call interface; this is shown in Figure Five system calls currently exist in
Tock and are shown in Table[2.21

Grants

Capsules require the ability to allocate memory in response to process requests. For example, a
virtual timer driver must allocate a structure to hold metadata for each new timer any process
creates. Generally, one of two existing techniques would be used to address this problem:

¢ Static memory allocation. The limits of this technique are that with a too high estimated
number, memory is wasted, whereas a too low estimated number limits concurrency.

¢ Using a global kernel heap. The drawback of using such a technique is that it can lead to
unpredictable resource exhaustion.

Unfortunately, both techniques have their limitations. The novel solution Tock introduces to re-
solve this problem is by using so-called grants. The grant region is a dynamically-sized region
in a process’s memory, allowing the kernel to use a part of a process’s memory for its own pur-
poses. Having all memory related to a certain process in its own memory has two advantages.
First, the required kernel memory for one process does not affect the available kernel memory
for another process. That is, if one process requests an enormous amount of memory, it will not

15 CHAPTER 2. BACKGROUND

heap RAM heap

data data Procegs
Accessible

.......... L i R o Memory
text Flash | ([text

Processes
(Any language)

[
{,

Figure 2.5: Memory layout of processes in Tock [11].

negatively influence other process. Secondly, if a process dies, all resources can be immediately
freed.

The manner in which Tock layouts process memory is presented in Figure Observe that
this is different from a conventional operating system as seen in Figure [2.1| because of Tock’s
grant region. Normally, the stack and heap grow towards each other since these are the only
dynamically sized regions; now, the grant is dynamically sized as well. This problem is tackled
by having the maximum stack size be static instead, which is set at compile-time.

2.4.2 Memory Isolation

Rust preserves memory safety at compile time as covered in Section However, since Tock
processes can be written in any language, they are not protected by the Rust type system and
therefore can still access certain addresses that they should not have access to in memory. In
other words, Rust is not sufficient to provide memory isolation in user-level Tock, and some
other component is necessary in order to safely support untrusted processes. For this reason,
Tock uses MPUs (Section provided by recent embedded microcontrollers. The MPU is
set up so that processes are by default only allowed to access their own memory, excluding the
grant region. Consequently, the MPU configuration is different for each process, and the MPU
is reconfigured with each context switch to a process. The combination of the stack, data and
heap region of a process which a process does have access to is referred to as[process accessible|

memory (PAM)| Together with the grant and the flexible memory between the grant and the

heap, this consists of a process’s RAM.

When the system is executing kernel code, Tock chooses to disable the MPU completely instead
of using supervisor mode. This means there are no hardware restrictions preventing the kernel
from accessing the entire address space. In other systems, this would lead to the system being
vulnerable to kernel bugs. In Tock however, the Rust type system restricts what the kernel can
do. For example, it is impossible for a capsule (which cannot use unsafe) to access a process’s
memory because it cannot create and dereference an arbitrary pointer. In general, Tock tries to

2.5. RELATED WORK 16

minimize the amount of trusted code (i.e. code that can call unsafe), and tries to encapsulate
code that does need unsafe to make it clear what that code does and how to use it in a manner
that does not violate overall system safety.

There are some exceptions to the memory isolation of Tock for processes. Processes can choose
to explicitly share portions of their in two ways:

¢ With the kernel. This is done through the use of allow system calls as discussed in Sec-
tion This gives capsules access to the process’s memory for use with a specific capsule
operation.

* With each other, through an [[PC] mechanism as discussed in Section To use
processes specify a buffer in theirRAM]to use as a shared buffer, and then notify the kernel
that they would like to share this buffer with other processes. Then, other users of this
mechanism are allowed to use to this buffer.

Tock’s kernel follows the microkernel design. Hardware-specific implementations are separated
by their hardware platform. Processes, capsules and the kernel all have a completely architecture-
agnostic implementation and use Rust’s traits to interface with the hardware. Traits enforce a set
of behaviours to which implementations must comply; they are similar to interfaces in other
programming languages.

2.5 Related Work

In order to measure the value of using MPUs for memory isolation in Tock, it is important to
see which existing systems and techniques already exist to solve this problem. For this reason,
we start by looking at the embedded operating systems landscape, and discern what techniques
are used to provide memory safety in these operating systems. Next, we split memory isolation
methods up in software- and hardware-based techniques, and compare this with Tock’s use of
an MPU.

This section gives an overview of the embedded operating systems landscape

2,51 Embedded Operating Systems

While embedded operating systems have a focus on efficiency over convenience as discussed in
Section[2.T) they must still be convenient enough for a user to get started quickly enough. Because
of this, for now Linux — the best-known open-source operating system — is the largest operating
system deployed on embedded systems, having a good balance between being resource-efficient
and possessing a large amount of simple yet effective functionality [24] [25]. Moreover, Linux
has a very large contributing open-source community, helping it advance at a fast pace.

The advantage of current-day open-source initiatives has not only spurred the growth of Linux,
but also that of several open-source embedded operating systems. Contrary to the monolithic
kernel design as discussed in Section [2.1.1} to which Linux adheres, a microkernel is the regu-
lar design choice for embedded operating systems due to its better reliability, extensibility and
customization. The growth of these embedded operating systems has been very high in the last
three years; in fact, it has been greater than the growth of Linux on similar platforms [25]. A list
of leading embedded operating systems and their distinguishing features is as follows:

17 CHAPTER 2. BACKGROUND

* TinyOS targets wireless sensor networks with scarce resources [2]. It is written in the nesC
language, optimized for event-driven execution, flexible concurrency and component-oriented
application design [26].

* Contiki has a focus on flexibility in low-power wireless IoI' devices [27]. Contiki’s key
feature is its network mechanism, providing IPv4 networking, an IPv6 stack and a custom
lightweight networking protocol.

¢ RIOT’s main design objectives are real-time support, modularity and multithreading [28].

® FreeRTOS has ease of use, a small memory footprint and robustness as its primary design
goals [29].

Besides these, numerous other embedded operating systems are emerging [30] [31]. As of yet,
few operating systems leverage the capabilities of emerging MPUs. Some that do are FreeR-
TOS [29] and Contiki [27]. Both of these have an implementation for the Cortex-M architecture’s
MPU. However, the interface with which they communicate to this MPU is tailored to this archi-
tecture, and they do not support any other MPUs. Such an interface is easier to construct, since
the memory allocation model in the kernel code is pre-arranged so that the regions created al-
ways match to valid MPU regions.

2.5.2 Software-based memory isolation

Most existing embedded operating systems do not support MPUs. Instead, they use more tra-
ditional, software-based approaches to provide memory isolation. CCured [32] attempts to do
compile-time verification, and inserts run-time checks where this is insufficient. However, in the
process, it changes the programming language C’s data representation by replacing regular C
pointers with "fat pointers" that contain extra information. In addition, doing dynamic checks
like this leads to an undesirable runtime overhead. Harbor [33], a memory protection system
built on SOS [30], enforces memory isolation by distinguishing between distinct subsets of the
overall memory space, where each process can only write into its own domain. Harbor ensures
return addresses of function calls can not be corrupted by storing these in a protected area. An-
other approach is taken by t-kernel [34], that ensures memory isolation by doing extensive code
modification at load time. Although both Harbor and t-kernel achieve static memory isolation
just like Tock, they trade this off with a lower efficiency and a higher complexity due to the fact
that they are language modifications. Moreover, language modifications seldomly tend to be
sufficient to guarantee memory isolation [35] [36]. Since Rust already natively supports type
safety due to its language constraints, and furthermore Tock is backed up by an MPU enforcing
memory isolation, Tock is able to make stronger safety guarantees at a lower cost.

2.5.3 Hardware-based memory isolation

MPUs have only gained popularity in the last few years, simplifying the problem of memory isol-
ation. Before this, several other parties were already trying their hand at hardware solutions.
SMART [37] proposes a straightforward and efficient hardware-software primitive, demonstrat-
ing that minimal changes with a simple measurement routine in memory can lead to memory
isolation on devices that did not have it before. Another similar solution is found by the authors
of Sancus [38] [39], deploying a minimal hardware unit for extra [CPU|instructions that is used
to create protected memory regions. However, both Sancus and SMART have their restrictions.

2.5. RELATED WORK 18

The interaction between protected processes in SMART is very slow, and Sancus has a relatively
high hardware cost in addition to restricting processes’ freedom. The authors of TrustLite [40]
propose their own MPU instead: a Secure Loader hardware unit. This MPU records memory
access rules in a configurable hardware table. Compared to Sancus and SMART, this allows for
a more fine-grained protection scheme. However, TrustLite does not support dynamic process
loading. For this reason, TrustLite has recently been expanded by introduction of the TyTAN
architecture [41], enabling dynamic loading, real-time scheduling guarantees and secure
Nevertheless, TyTAN still has a significant overhead associated with creating a secure task that
is over 100 times greater than creating a normal task.

Since not all operating systems have an implementation for an MPU even though they have
microcontrollers that support it, some take it upon themselves to create this implementation.
Hardin et al. create such an implementation [42] for the TI MSP430FR5969 [43] microcontroller
on the Amulet wearable platform [44]. An interesting insight from their work is that using the
MPU has less than a 0.5% impact on battery lifetime. Unfortunately, the MSP430 has a very
limited MPU that cannot protect the region below the allocation of the current app. This makes
the authors resort to compiler-inserted bounds checks in order to provide memory isolation,
which is far from an optimal solution. Because of this, the authors envision extending their
work to more advanced MPUs.

Chapter 3

Memory Protection Units

The first and foremost challenge in creating amemory protection unit (MPU)|interface for Tock is
the diversity and heterogeneity of MPU designs on different microcontrollers. Recent platforms
that support MPUs are rapidly emerging, and have a great amount of variance in semantics for
controlling the MPU, in addition to varying constraints. In order to construct a generic MPU
interface, it is essential to quantify these design differences and find a way to overcome the
associated difficulties. Furthermore, it is of importance to analyze the feasibility of creating
such an MPU interface on Tock, the target operating system.

This chapter starts off by introducing several MPUs as targets for analysis in Section Next,
in Section 3.2]an analysis of MPUs that are based on region-based protection is performed. The
most fundamental MPU characteristics for a variety of region-based MPUs are analyzed, their
key differences are compared using a table, and other important differences in terms of permis-
sions, overlapping regions and default access permissions are explored. Afterwards, the work-
ing of barrier-based protection is briefly studied in Section[3.3] Consequently, the challenges that
Tock provides are studied in Section looking at the existing implementation that has been
tailored for the Cortex-M MPU. This includes Tock’s process manager, an initial attempt at an
MPU interface, and the existing MPU implementation for the Cortex-M processor.

3.1 Choice of MPUs

A number of MPUs have been selected as targets to perform a comparative analysis on. The
key factors taken into account in the selection of these MPUs were popularity, feasibility for
embedded operating systems and uniqueness. After all, including a wider variety of MPUs will
aid in fulfilling the research goal of this thesis: making a truly generic MPU interface. This has
resulted in the following list of MPUs.

Cortex-M MPU ARM Cortex-M is a series of 32-bit processors widely used in modern micro-
controllers [45]. The series is built on the ARM [instruction set architecture (ISA)| and the series’
core is currently the most widespread used core in embedded systems [46]. The Cortex-M0+ [47]
and the Cortex-M3 [48] both contain an MPU and are the most prevalent processors based on

19

3.1. CHOICE OF MPUS 20

Cortex-M4
Processor Optional FPU
Optional Optional
> ‘\)/\nc <+ NVIC <> Processor €«» Embedded |€+>
Core Trace Macrocell

I

Optional . Optional
< » Debug Ogiggilngﬂ,?m;y Serial Wire >
Access Port Viewer
A t ¢ A
Optional Optional
Flash Data

Patch Watchpoints

\ 4 # # v

Bus Matrix
Code SRAM and
Interface Peripheral Interface
A A
v v

Figure 3.1: Schematic Overview of the Cortex-M4 processor [13]. Highlighted are the processor,
its core, and the MPU.

the Cortex-M series, although many other types exist. In the Cortex-M series, the MPU is (op-
tionally) contained within the processor. This is illustrated by the schematic overview of the
Cortex-M4 in Figure[3.1]

Many microcontrollers use the Cortex-M processor and therefore also inherit its MPU. Micro-
controllers that do this and are also implemented for Tock are the Nordic Semiconductor nRF52
[49] and Texas Instruments” TM4C129x [50] and CC26X [51].

RISC-V MPU RISC-V [15] [52] is a rapidly growing open-source that is designed to be
useful in a wide range of devices. RISC-V is overseen by the non-profit RISC-V foundation and,
in contrast to the ARM[ISA] is completely free and open, which makes it easier to implement and
extend. In 2017, RISC-V has introduced an MPU in their architecture called [physical memory|
[protection (PMP)]

Kinetis KMPU NXP Kinetis K [53] is a series of microcontrollers that offers high performance,
scalable integration and low-power capabilities built on the Cortex-M4 core. Even though the
microcontrollers of the Kinetis K series all contain a Cortex-M4 core, they do not contain its MPU,
as this is located outside of the Cortex-M core as illustrated in Figure Instead, the Kinetis K
series contains its own MPU as a microcontroller peripheral.

Nordic nRF51 MPU Building on a Cortex-MO core [54], the Nordic nRF51 series offers an ultra
low-power wireless microcontroller [55]. Partly because of this ultra-low power requirement,
the MPU on the nRF51 provides a very limited set of features. Like the Kinetis K series, the

21 CHAPTER 3. MEMORY PROTECTION UNITS

MPU is not located in the processor or core, but outside of the processor as a peripheral on the
microcontroller.

NIOS II MPU The NIOS II processor is a processor specifically designed to be embedded in
Altera [field-programmable gate array (FPGA)|devices [56]. Using the NIOS II processor, a sys-
tem designer can specify and generate a custom NIOS II core with an instruction set customized
from the NIOS II Although the NIOS II processor contains an MMU, it also contains an
optional MPU that is designed for environments that do not require virtual memory manage-
ment.

Xtensa LX7 MPU The Xtensa just like NIOS 1II, is an architecture that allows designers to
customize the instruction set automatically [57]. Processors based on the Xtensa are able to
be fine-tuned for a specific application at design time; one of these processors containing an MPU
is the Xtensa LX7 processor [58]. Because The Xtensa LX7 processor has been designed with
these reconfigurable and high-performance goals in mind, where everything is about increasing
performance over reducing memory usage, the MPU is relatively coarse-grained.

TI Keystone MPU The TI Keystone II ISA is a multicore architecture that has been designed
with high-performance digital-signal processing goals in mind, mainly targeted at embedded
infrastructure applications [59]. For performance reasons, the TI Keystone MPU can often be
found multiple times on the same architecture, in contrast to other MPUs that are usually only
implemented on a microcontroller once. For instance, the 66 AK2Hxx microcontroller contains
15 MPUs [60].

3.2 Region-Based Protection

Recall from Section2.1.1]that in order to achieve proper operation of an operating system, user-
defined code and kernel code must be distinguishable. Because of this, MPUs generally have
the ability to set both user and supervisor permissions for an certain memory region. To create
such a region, one must specify a beginning and an end address (or a size) in memory, along
with permissions for this region in terms of the user and the supervisor. Frequently MPUs
define three fundamental access types for which permissions can be set: read (R), write (W)
and execute (X). These can be controlled for both user and supervisor mode. Most embedded
devices consider flash and RAM as a continuous block of memory, sharing the available MPU
regions across these.

Most MPUs:

1. Allow for the creation of regions.
2. Are capable of distinguishing between at least supervisor and user mode
3. Define read, write and execute permissions

These will be referred to as region-based MPUs. Of the selected MPUs, the only one that is
not region-based is the nRF51; it will be referred to as being barrier-based. The design of the
nRF51 will be discussed in more detail in Section For now, region-based MPUs are looked
into.

3.2. REGION-BASED PROTECTION 22

0x00000 0x20000 0x80000

Figure 3.2: Example illustrating the general functionality of an MPU. The memory segment
shown in red is protected by the MPU. The green segment represents the remaining unprotected
memory.

In order to give the reader an idea of the general functionality of a region-based MPU, an example
is shown in Figure In this example, the memory size totals 512 kB, and the first 128 kB
must be protected from any access by a process while leaving it accessible for the kernel. In
hexadecimal, the total memory range from 0 to 512 kB is represented by 0x00000 to 0x80000.
The 128 kB region that requires protection ranges from 0x00000 to 0x20000; so these addresses
are set as the beginning and end address for an MPU region, respectively. Next the permissions
for this region are configured as [read, write and execute (RWX)| for the supervisor, whereas
no permissions for the user are set. We will now proceed by analyzing region-based MPUs by
taking a look at their key features, the way they set up permissions, default access permissions
and the behaviour on overlap.

3.2.1 Key Features

The key features of an MPU are the maximum number of regions, the region granularity, and
the restrictions on the sizes and start addresses of these regions. An analysis of these features
for the chosen MPUs is shown in Table[3.T} Some interesting things to consider given this table
are the following:

Number of Regions The Cortex-M supports so-called subregions. Each MPU region consists of
eight equally-sized subregions, which can be independently enabled and disabled. NIOS
II on the other hand separates read/write regions from execute regions, and allows 32
regions for both to be set. The Xtensa LX7 and TI Keystone MPUs have various possible
configurations that result in a different number of maximum regions.

Granularity The Xtensa LX7 and the TI Keystone architectures have been designed with high
performance goals in mind, in contrast to the more traditional optimization targets of em-
bedded systems like cost and energy consumption. For this reason, the granularity for the
Xtensa LX7 and the TI Keystone is far coarser than that of the other architectures.

Region Size The Cortex-M, RISC-V and NIOS I MPUs have regions that must have a size equal
to a power of two. This is fairly restrictive and can have a great impact on memory alloca-
tion. For instance, when a protected segment of 7 kB is desired, the closest possible region
conforming to this constraint would be 8 kB. One solution for obtaining this exact seg-
ment could be to use three contiguous regions of 4 kB, 2 kB and 1 kB: however, this is a
very architecture-specific solution and has a cost of using multiple regions. The Kinetis K,
Xtensa LX7 and TI Keystone MPU have a size that must be divisible by a certain constant,
where the Kinetis K is much more fine-grained than the other two.

Region Alignment The MPUs that have a power of two constraint on their size have the ad-
ditional constraint that start addresses have to be divisible by their size. For example, if

23 CHAPTER 3. MEMORY PROTECTION UNITS

MPU Number of regions | Granularity | Region Size Region Alignment
Cortex-M [13] 8 - 8 subregions 32B power of two | start % size =0
Kinetis K [61] 12 32B size % 32=0 start % 32=0
RISC-V [52] 16 4B power of two | start % size =0
NIOS II [56] 32R/W, 32X 64B power of two | start % size =0
Xtensa LX7 [58] || 16 or 32 4kB size % 4kB =0 | start % 4kB =0

TI Keystone [62] || 2,4, 8 or 16 1kB size % 1kB =0 | start % 1kB=0

Table 3.1: Attributes of various MPUs.

a region is 8 kB in size, it must start on an 8 kB boundary. This not only forces the start
addresses to be limited to addresses divisible by a power of two, but also causes them to
be dependent on the region size as will be discussed in an example in Section The
non-power-of-two MPUs require region start addresses to be divisible by their granularity.

Generally, in terms of the region size and start address, observe there are two different themes.
The first is MPUs where sizes align with a power of two, and the start address is divisible by the
size. The second is MPUs where both the size and start address are divisible by the same con-
stant: their granularity. We will separate these as power-of-two-aligned and block-aligned MPUs.
Because of their different alignment and size constraints, the considerations that have to be made
for these two types are very different.

Note that the assumption that all existing MPUs fall into one of these two types can not be made;
therefore, these should not exclusively be used as a reference point in order to create a generic
MPU interface.

3.2.2 Access Permissions

The manner in which read, write and execute permissions can be set differs per MPU. The easiest
way to set permissions is by using a different bit for each of the permissions. We call this
procedure using bit-based permissions. Xtensa LX7 and TI Keystone take this approach for both
the user and supervisor levels, resulting in a total of six bits per region. However, since some
scenarios are generally not very useful - for instance, to let the user have more permissions than
the supervisor — the Cortex-M and NIOS II choose an encoded permissions technique instead.
In this approach, a specific set of permissions is defined. For instance, the set of permissions
implemented for the Cortex-M devices is shown in Table This leads to a total of 4 bits per
region defining access permissions. RISC-V and the Kinetis K series choose a combination of
these two approaches. For the user level, they choose a bit-based approach. For the supervisor
level, a single bit indicates whether the supervisor should have full access or the same
permissions as the user.

All of these region-based MPUs have two distinct privilege levels, except for the RISC-V MPU,
which has another privilege level that is meant for conventional use. This can be useful when
for example simultaneously running two applications: one can be set to have more privileges
than the other without having to do a context switch. A fourth privilege level in RISC-V, meant
for hypervisor extensions, is planned for the near future [63].

In addition to setting permissions for processes running on the core, the Kinetis K and TI Key-
stone MPU allow permissions to be set individually for buses, e.g. a device connected by USB
or the debugger.

3.2. REGION-BASED PROTECTION

AP[2:0] Super.vi.sor User .
permissions | permissions
000 No access No access
001 RW No access
010 RW R- XN Supervisor | User
011 RW RW permissions | permissions
101 R- No Access 0 X X
110 R- R- 1 No access No access

(a) Read and write permission encodings (b) Execute permission encodings

Table 3.2: Access permission encodings and corresponding permissions for the Cortex-M MPU
[13]. The first column in each table shows the bit field value, and the second and third column
show what the resulting access permissions for that region will be after setting this bit field, for
both the supervisor and user mode.

3.2.3 Overlapping Regions

Overlapping MPU regions can be useful in order to use them more efficiently, and is in some
cases even unavoidable. The behaviour of overlapping regions differs per MPU. We distinguish
between three mechanisms for overlapping regions: priority, union and intersection.

Priority

With the priority ordering mechanism, regions are statically prioritized. The overlapping seg-
ment will adhere to the rules set by the region with the highest priority. The MPUs that make
use of this mechanism are the Cortex-M, RISC-V, NIOS II and Xtensa LX7 MPUs. Generally, a
higher region index corresponds to a higher priority. However, with RISC-V, a lower region in-
dex corresponds to a higher priority. In all four MPUs, any region has priority over the default
access permissions.

To realize the scenario shown in the example from Figure 3.2|using the priority mechanism, the
simplest solution would be to define a region with a higher priority and all access permissions
for the user mode spanning from 0x20000 to 0x80000. This is possible for the Xtensa LX7 MPU.
Unfortunately, this is not possible with the other three priority MPUs due to their power of two
constraint: 0x60000 is not a power of two. Two potential solutions to work around this constraint
are:

1. Create two regions that together make up the full region. Region 0 from 0x20000 to 0x40000
and region 1 from 0x40000 to 0x80000.

2. Create tworegions. Region 0 allows all permissions and overwrites the background memory
for the entire memory, that is from 0x00000 to 0x80000. Region 1 blocks all user accesses
from 0x00000 to 0x20000; because it has priority, it takes precedence..

25 CHAPTER 3. MEMORY PROTECTION UNITS

0x00000 0x20000 0x60000 0x80000

RW - RWX --X

Figure 3.3: Example of the union mechanism for overlapping regions. Two regions are defined,
one with read only permission from 0x00000 to 0x60000, and the other with write only permis-
sion from 0x20000 to 0x80000. In the overlapping segment the permission becomes the logical
sum of permissions: [RWX]

Union

The union mechanism gives priority to granting access over denying access in the case of over-
lapping regions. That is, the protection rights are logically summed together: like the boolean
OR operator. An example of one scenario where it is useful to overlap regions with this mech-
anism is shown in Figure[3.3] Of the selected MPUs, the Kinetis K MPU makes use of this union
mechanism.

Recreating our example (Figure3.2) using the union mechanism can be simply done by creating
an accessible region ranging from 0x20000 to 0x80000.

Intersection

Using the intersection mechanism, priority is given to denying over granting access. The inter-
section mechanism behaves as the complementary of the union mechanism: like the boolean
AND operator. Using the example of Figure [3.3| with the intersection mechanism would lead
to the overlapping region permitting no access at all, contrary to the union mechanism where
RWX|would be allowed. Of the selected MPUs, the TI Keystone MPU makes use of this mech-
anism.

3.2.4 Default Access Permissions

The example from Figure [3.2|assumes that memory was by default unprotected. In most scen-
arios however, it is convenient to have all memory be protected by default: for instance, when
having processes run on an operating system that should only have access to their own memory.
This is also something that should be enforced in Tock, and therefore we will usually be exposing
memory regions, in contrast to protecting them.

In some cases, overlap is inevitable: for instance, in some MPUs every region will overlap with
their default access permission region as discussed in Section

All MPUs offer a method to protect the entirety of memory by default:

Cortex-M Besides having 8 configurable regions, the Cortex-M supports a so-called background
region. This region can be set to either block all accesses for both the user and supervisor,
or to block accesses for the user only. Recall from Section [3.2.3|that the Cortex-M uses the
priority mechanism. The priority of the background region is defined as -1: this implies
every defined region will overwrite the background region.

3.3. BARRIER-BASED PROTECTION 26

MPU User accessible | Supervisor accessible
Cortex-M No Yes/No

RISC-V No Yes

Kinetis K No No

NIOSII No No

Xtensa LX7 || No Yes

TI Keystone || Yes Yes

Table 3.3: Access permissions for the default memory map not covered by any region.

RISC-V When no regions are set, the entire memory space for the RISC-V MPU is by default
fully accessible to anyone. When the first MPU region is set, the default memory map is
protected for the user; the supervisor still has full access to the default memory map.

Kinetis K On reset, by default region 0 is set up to map the entire 4 GB address space with[RWX]
permissions for both the supervisor and user. When region 0 is changed to map a smaller
chunk of memory, memory references that miss will fail, i.e., the actual background is
protected. Because of the union mechanism, this means if region 0 is not changed this
region overwrite the permissions of every other region. It is therefore imperative to adjust
the settings of region 0 when using the Kinetis K MPU.

NIOS II Any memory reference that does not match with a valid MPU region will fail: the
default memory map is protected by default for both the user and supervisor.

Xtensa LX7 By default, all supervisor references to memory not defined within an MPU region
will succeed; user accesses will fail.

TI Keystone All memory is by default unprotected. In order to protect all memory, one can cre-
ate a region with no access permissions that spans the entirety of memory. However, since
the TI Keystone follows the intersection mechanism as covered in Section[3.2.3} any region
that overlaps it will have no access permissions. Therefore, in order to properly protect
memory, separate no-access regions must be created in all memory that is not covered by
a region that does give access.

An overview of the default behaviour of each MPU for region misses is displayed in Table[3.3}

Since denying permissions by default is generally a desirable property, in subsequent sections
we assume all memory not covered by a region is protected, by using the corresponding MPU-
specific method to protect the default memory map for the user. Consequently, in contrast to pro-
tecting regions, we will talk about exposing memory regions within this protected memory.

3.3 Barrier-Based Protection

As mentioned in Section contrary to all other region-based MPUs, the Nordic nRF51 is
barrier-based. Instead of creating MPU regions, permissions are checked depending on the loc-
ation of the instruction issuing the memory reference. Execution (X) permissions are always
granted, regardless of where the call was made. Flash and RAM are seen as separate memory
and are both divided in two regions: a supervisor and user region. To split these areas, the nRF51
supports a barrier address in both flash and RAM. These two barriers correspond to two registers
in hardware. Every address with a lower address value than the barrier address is classified

27 CHAPTER 3. MEMORY PROTECTION UNITS

Flash (code)

RW/-

RAM (data)

RW

Figure 3.4: Overview of barrier-based protection for the nRF51. Shown are the memory ref-
erences from user to supervisor memory and their possible access permissions. For instance,
RW/- means the MPU can be configured to either allow both read and write accesses to that
part of memory, or allow neither.

as the supervisor region, and everything with a higher address value is classified as the user
region. The supervisor region has full access to the entire system, whereas the user region has
full access to itself and configurable access to supervisor memory. This configurable access is
different for flash and RAM:

* Memory references made from user flash to supervisor RAM are always read-only, whereas
references to supervisor flash can be set to be read-only or no access.

* Memory references made from user RAM to supervisor RAM always have full access,
whereas references to supervisor flash can be set to have full or no access.

This is illustrated in Figure 8.4 and shows that the functionality of the nRF51 has significant
restrictions. Supervisor RAM is always accessible by user RAM; hence, if a user program has
RAM assigned, it is always able to fully access supervisor RAM. This is a critical flaw that basic-
ally prevents the running of anything important in the kernel: user processes would be able to
manipulate this data freely. Even if a program is only able to execute out of flash, it can still read
supervisor RAM. The only part of memory that can be read and write protected in the nRF51 is
supervisor flash, and even this part of memory is open to execute permissions. Therefore, this
MPU is definitely not as secure as any of the region-based MPUs, and designing the interface
around it is a secondary priority.

3.4 Memory Protection in Tock

Tock aims to guarantee memory isolation for processes by harnessing the power of MPUs as
discussed in Section Nevertheless, currently only the Cortex-M MPU [45] is supported
on Tock owing to the lack of a generic MPU interface. Because of this, although Tock has been
ported to other platforms that have a different MPU, such as the Kinetis K series and the Nordic
nRF51, these ports currently lack an implementation for their MPU. Furthermore, the MPUs of
platforms that Tock is currently being ported to, such as RISC-V, are also not able to be utilized.

3.4. MEMORY PROTECTION IN TOCK 28

Process || Flash | PAM | grant

crc 11,662 B | 4,928 B | 816 B
ip_sense || 10,759 B | 7,060 B | 748 B
ac 7694B | 4172B | 724 B

Table 3.4: Memory requirement for each process shown in Figure expressed in number of
bytes.

In order to tackle this problem, we investigate the memory protection design in Tock and its
existing shortcomings.

3.4.1 Process Memory Overview

Each process has three regions associated with it while running that require different permis-
sions:

¢ Its stack, data and heap, also called its [process accessible memory (PAM)| A process has
full access to its PAM

¢ The flash region where a process’s code is stored. Tock also allocates a[Tock binary formatj
[(TBF)|header inside a process’s flash that includes its flash size among others. The kernel
uses the header to traverse apps. Because the integrity of this header is essential to
keep Tock running, processes do not have write access to their own memory (that is, they
have R-X permissions).

¢ The grant region, where kernel memory is dynamically allocated. This region is fully
protected by the MPU for the user level, so that it is not accessible in any way by a process.

Recall the overview of the organization of these regions shown in Figure[2.4 To clarify this over-
view and gain insight into realistic memory sizes, a numerical example of memory allocation
and MPU regions is shown in Figure In particular, these details are shown for three running
processes: crc, ip_sense and ac, that are running on the Hail development board ﬂ containing
a SAMA4L microcontroller [64] with a Cortex-M4 processor and MPU [13]]. These are processes
that perform a cyclic redundancy check, broadcast periodic sensor readings and do an analog
comparison, respectively, and their requirements in terms of memory are shown in Table 0

Note that although this example may make it seem as if nine MPU regions are set concurrently,
in fact only three MPU regions are set at the same time. The reason being that the operating
system continuously context switches between processes and reconfigures the MPU, making it
look as if the processes are running concurrently. In addition to these three regions, Tock allows
processes to share their memory using an IPC region, as long as this region aligns to the Cortex-
M MPU's restrictions. For instance, ip_sense could choose to share 1 kB of its data to crc. In
that case, a fourth MPU region is defined inside the memory of ip_sense, that crc can access
while it is executing.

One aspect this example aims to emphasize is that the power-of-two-constraint of the Cortex-M
MPU plays a big role: the size of all MPU regions created in all three processes is rounded up
to a power of two. The reason the ends up being 15 kB for ip_sense and 7 kB for the other

Thttps://github.com/labl1/hail

https://github.com/lab11/hail

29 CHAPTER 3. MEMORY PROTECTION UNITS

crc ip_sense ac

Total: 8192 Total: 16384 Total: 8192

0x20006000 0x2000A000 0x2000C000

0x20005CD0O 0x20009D14 0x2000BD2C

N -

-
o =

0x20005340

0x2000B04C -

0x20004D30

0x2000AA40
0x20004800 0x2000A800
0x200046A0 0x2000A6C0O

0x20007B94

0x20004000 0x2000A000

0x2000754C

0x20006800
0x20006660

0x20006000

0x00034000 0x00038000

0x00038000

0x00030000 0x00034000

. Grant region, supervisor access only
- PAM region, full access

- Flash region, read-only access

Figure 3.5: Overview of process memory with the existing Cortex-M MPU implementation in
Tock. Shown is the memory and MPU allocation of three memory-contiguous processes running
concurrently. A more detailed explanation is given in Section [3.4.1}

3.4. MEMORY PROTECTION IN TOCK 30

two processes is the priority overlapping property of the Cortex-M as discussed in Section[3.2.3]
where in this case the grant region overlaps the PAM]region. Another important consequence
of power-of-two MPUs this example shows is the [random access memory (RAM)|of ip_sense
being much bigger than the [RAM] of the other two regions with 16 kB instead of 8 kB, even
though the majority of this 16 kB is unused and the minimum requirement of ip_sense
being 7,060 bytes. This is due to the kernel allocating some extra memory to processes’ in
order to account for possible growth of the heap/grant regions, making the next valid size for
ip_sense the nearest power of two: 16 kB.

When the heap grows into unused memory, no MPU regions have to be reconfigured as the
unused memory is by default accessible for processes. Only after the PAM|MPU region grows
into the grant does the process run out of memory and crash. On the other hand, when the grant
grows greater than its allocated MPU region of 1 kB, its MPU region has to be doubled in order
to keep a length of a power of two. Every time it grows, it can keep doubling in this manner
until it overlaps with the heap, after which the process runs out of memory. Having the grant
grow in this manner leads to a finer granularity for low grant sizes, and a coarser granularity
for higher grant sizes.

Note that the start address of ip_sense does not align with its size (0x20006000 % 0x4000 #
0), and therefore this region is ordinarily impossible to create on the Cortex-M MPU given its
alignment requirements discussed in Section [3.2.1} To make this possible, Tock makes use of
subregions provided by this MPU. A larger region is created that does align with the power-of-
two requirement, and a number of subregions is disabled so that the correct amount of memory
is exposed. The manner in which this is done is displayed in Figure[3.6]

crc ip_sense ac
OX20010000 « -« crvvrrrrrrr m——mSs e

OX2000EQ00 -« -rvvrr pmmmmmmmmmmmed
0X2000C000 -+ -rvvvv -+
0x2000A000 -« -« rrvevee -
0Xx20008000Q -« rccore pmmmmmmmmmmand L
0x20006000 pry []
0x20004000 -
0X20002000 -+ v rrrr s fmmmmmmmmmmm] e
0x20000000 -+ b—Mmd
Figure 3.6: Overview of subregion usage for the in the situation shown in Figure Full

lines represent regions, and dashed lines indicate subregions. In this case, subregion 4 and 5 are
enabled for ip_sense, whereas the other two processes do not require using subregions.

31 CHAPTER 3. MEMORY PROTECTION UNITS

3.4.2 Current Shortcomings

Tock distinguishes between different locations inside its kernel as shown in Figure[2.4] All code
in Tock that involves the MPU is situated within this kernel, and is separated into three sec-
tions:

1. The memory for all processes is allocated by the process manager inside the core kernel.
Here, the details of each process running within Tock are known, including its minimum
required flash and RAM size. The length and location of each process’s grant, flash
and optional [inter-process communication (IPC)|region are determined, and accordingly,
region requests are made for the MPU.

2. These region requests eventually arrive at the MPU implementation, which distinguishes
itself as a microcontroller-specific peripheral driver. This implementation checks if the re-
quested regions meet the requirements for the MPU, and is responsible for writing the
region configuration to the hardware registers. The only MPU implementation that cur-
rently exists is that of the Cortex-M MPU. In this case, subregions are created if necessary
(as was demonstrated in Figure[3.6), and the region configuration is written to two 32-bit
registers on the MPU.

3. Linking the process manager and the Cortex-M MPU implementation together is the MPU
interface situated within the lhardware interface layer (HIL) in the kernel. The core of
this interface is a Rust trait, defining functionality that every MPU implementation must
implement. This trait contains functions attached to objects that are also called methods.
Tock’s microkernel design is what makes this interface so important, allowing different
MPUs on different platforms to be coordinated through the use of a single abstraction.

Although there is nothing wrong with this structure, the existing implementation of it has a
number of fundamental shortcomings that prevent the support of other MPUs.

MPU Interface

The MPU interface should be a generic abstraction that works for every MPU. Currently, code
exists that is supposed to be an MPU interface: however, it is at this time not much more than a
helper file for specifically configuring the Cortex-M MPU registers. It contains many Cortex-
M specific details, and the trait defined inside it enforces properties that are unique to the
Cortex-M. An overview of this existing trait is shown in Listing[5} Although the enable_mpu and
disable_mpu functions are generic, the other two are not. The method create_region takes in
the region index, start address, size and permissions and returns a struct —a Rust data structure
that can contain different data types — called Region. This struct contains two 32-bit variables,
corresponding to the two 32-bit region registers that the Cortex-M MPU supports. After a region
has been created by create_region, the Region struct is written to the designated hardware re-
gisters by calling set_mpu. Rust’s self keyword, which some of the methods take as a parameter,
refers to the struct that implements this trait, similar to foo in foo.bar ().

In order to have this MPU interface be architecture agnostic, the create_region and set_mpu
methods of this trait must be made more generic or replaced by other functions. Next, as cur-
rently only the permissions that the Cortex-M MPU supports are supported, and even the exact
bits that have to be written to Cortex-M registers from Table [3.2| are specified, the defined per-
missions must be implemented in a generic way. Finally, a way should be found to not have the

3.4. MEMORY PROTECTION IN TOCK 32

pub trait MPU {
/// Enable the MPU.
fn enable_mpu(&self);

/// Disable the MPU.
fn disable_mpu(&self) ;

/// Creates a new MPU region

fn create_region(&self, region_index: usize, start: usize, size: usize,
-« execute: ExecutePermission, access: AccessPermission,

) -> Region;

/// Writes variables inside Region to hardware registers
fn set_mpu(&self, Region);

Listing 5: Simplified overview of the existing MPU interface.

Region struct be Cortex-M specific. These main points and other small Cortex-M specific details
must be moved out of the interface.

Process Manager

The existing process manager is far too interwoven with the constraints of the Cortex-M MPU,
whilst it should not assume any details about MPUs. First of all, the existing process manager
determines exactly what is passed to the MPU. Process memory is rounded up to a power of
two to comply with the constraints of the Cortex-M MPU, and allocated in such a way that the
start address always aligns to the size. Regions for flash, and grant are created and set
one by one with these exact constraints by calling create_region and set_mpu with these exact
variables, not accounting in any way for the addresses or permissions the MPU supports. In
addition, five empty [[PC|regions are created so that all eight MPU regions of the Cortex-M are
used. Since constraints differ per MPU, the process manager should not make any assumptions
like this, since even if such an assumption would work out for every MPU, it would in nearly all
situations lead to an inefficient memory use for non-power-of-two MPUs.

Secondly, the process manager currently creates the grant region on top of the end of a process’s

It does this in order to prevent external fragmentation: should the grant be situated after

the process’s[RAM] the subsequent process would not align to the Cortex-M region’s alignment
requirements anymore. In overlapping the grant with the process’s the process manager
assumes the behaviour on overlapping regions is the priority mechanism (Section [3.2.3). The
grant MPU region is assigned a higher region index (which on the Cortex-M corresponds to
a higher priority) with no permissions and thereby denies access to it for a process. Not all
MPUs have this priority mechanism however, and some have a priority mechanism where a
lower region index corresponds to a higher priority.

Thirdly, the process manager currently assumes a maximum of 8 regions, corresponding to the
maximum number regions of the Cortex-M MPU as shown in Table Ordinarily, a process
requires three MPU regions: for its grant, and flash. However, with the addition of

33 CHAPTER 3. MEMORY PROTECTION UNITS

MPU regions and the possible use of multiple regions to create a single region to provide more
flexibility with the power-of-two requirement in mind, a process might require more regions.
This could become problematic when the number of available regions on the MPU does not
match the supported regions on Tock.

A fourth problem with the process manager is that it assumes memory is by default protected
for the user and accessible for the supervisor, which is not the case for all MPUs as we saw in
Table The process manager currently relies on making calls outside of memory regions in
supervisor mode, and when these calls fail at this time, Tock crashes. Also, the process manager
assumes all user accesses to be blocked by default.

In all of these four scenarios the existing process manager blindly assumes the constraints of the
Cortex-M MPU. These decisions must be made either by the Cortex-M MPU implementation
instead of the process manager, or be made with knowledge of the utilized MPU.

MPU Implementation

Tock’s process manager currently passes in regions that completely match the constraints of the
Cortex-M MPU. In turn, the Cortex-M MPU implementation assumes region requests perfectly
meet its requirements, and has no way to deal with the situation where this is not the case. For
instance, when a region is not equal to a power of two, the existing behaviour is that the creation
of a region fails and the entire operating system crashes. MPU implementations must either
only receive valid region requests, or they must be able to work with region requests that do not
exactly fit their constraints.

Chapter 4

Design Considerations and
Methodology

Currently, the main obstacle preventing Tock from being an architecture-agnostic operating sys-
tem is that the MPU interface is specifically tailored to the Cortex-M MPU. In this chapter, the
design changes necessary in order to achieve a generic MPU interface are considered, and the
various possibilities in doing so are explored. The primary objective of these design consid-
erations is to generalize the MPU interface by removing the code that was specifically created
for the Cortex-M MPU. A secondary goal is improving the performance and simplicity of the
existing interface.

The structure of this chapter is as follows. We start by proposing storing the configuration of
MPU regions in Section 4.1} Section[4.2]explores the challenges introduced by the overlapping
of MPU regions, and the consequences that result when avoiding overlap. Next, we propose
algorithms for each of the chosen MPUs that find the optimal region given their constraints Sec-
tion[4d.3 We follow up by presenting updates to the trait of the MPU interface in Section[4.4} and
consider how to configure the MPU during kernel execution in Section[£.5 Finally, Section
lays out the methodology for creating an MPU interface.

4.1 Storing regions

In the existing design of Tock, the allocation of regions (asking the MPU to give back a valid
configuration for a particular region request) is entangled with actually writing these regions
to the MPU. This means that the entire process of communicating with the MPU regarding its
regions, which for instance for the Cortex-M also includes checking for subregion alignment, is
performed at every context switch. The maximum time a process is allowed to run on Tock is 10
milliseconds: therefore, context switching and thus reconfiguring MPU regions occurs at least
100 times per second (usually even much more), leading to a significant performance overhead.
We propose making use of a Rust struct (a data structure that can hold multiple variables) for
storing region information instead, so that regions do not have to be recomputed at every context
switch. In this region struct, one entry corresponds to one MPU region, making its size depend

35

4.1. STORING REGIONS 36

on the maximum number of regions an MPU supports. In every entry, a region is stored in two
different ways: the logical and physical MPU region.

The logical MPU region consists of the start and end address of the region. This is what the process
manager needs to know in order to properly align its next region. For instance, when a region
request is made and the MPU implementation sends back the logical start and size, the end of
the region can be computed by summing these two, and can be used as a start address for the
next MPU region. Logical MPU regions exist to give the process manager information regarding
the allocation of process memory, and separate regions by their access permissions.

Physical MPU regions are the actual variables that are written to the MPU corresponding to a
logical region. Physical regions are opaque to the process manager, in the sense that the process
manager has access to these register values, but does not derive any meaning from them. The
reason both logical and physical MPU regions have to be returned is that these two do not al-
ways relate in a straightforward manner. For instance, in the case for the Cortex-M as shown in
Figure 8.6} the logical region is the actual mapped memory whereas the physical region is the en-
tire underlying memory region of which only two subregions are exposed. Physical regions are
MPU-specific. The Cortex-M MPU for instance has two 32-bit hardware registers that are used
for construing all regions, where one of these registers contains 3 bits to specify which region to
write to. On the other hand, the Kinetis K66 has four 32-bit registers for each of its 12 regions.
In order to enforce every MPU implementation to have a region struct but also allow them to
be different, which is required because each MPU has different physical MPU regions, the pro-
posed MPU interface uses a Rust associated type. An associated type makes the implementor of a
trait specify the concrete type to be used in this type’s place for the particular implementation.
In this case, an associated type called MpuConfig is used to let each MPU implementation specify
their own struct.

For instance, inside the Cortex-M MPU implementation, MpuConfig is set to CortexMConfig,
being the region struct containing the logical and physical regions for each available region
CortexMRegion:

pub struct CortexMRegion {
location: Option<(*const u8, usize)>, // Logical region
base_address: FieldValue<u32, RegionBaseAddress::Register>, // Physical region
attributes: FieldValue<u32, RegionAttributes::Register>, // Physical region
}
pub struct CortexMConfig {
regions: [CortexMRegion; 8],

}

With these changes, configuring the MPU can now be done by directly writing the registers
with this stored data instead of (re-)calculating regions at every context switch. In line with this
objective, calls for fulfilling a region request and writing the actual registers are separated. Ful-
filling a region request — that is, returning logical and physical regions according to the MPU’s
constraint- is done with the allocate_region method. After fulfulling such a request, the lo-
gical regions returned by this method are used by the client to know what memory can be safely
used: memory can be allocated in the corresponding region. The physical regions on the other
hand are used in the configure_mpu method to write the actual MPU registers.

Storing regions has the benefit of not having to recompute regions at every context switch. How-
ever, since this recomputing in the original design also allowed for potential growth of certain
MPU regions, and Tock supports dynamic allocation of heap and grant memory at runtime, a

37 CHAPTER 4. DESIGN CONSIDERATIONS AND METHODOLOGY

new way to be able to grow MPU regions has to be found. Preferably, this should only happen
on growth of the heap and grant, instead of at every context switch. Accordingly, we propose
adding some functionality to the brk() and alloc() functions in Tock, that are called every
time a process requires more heap and grant memory, respectively. When these functions are
called, a check is done to see if memory is to be grown past the end of its MPU region. If the
growth of memory does not exceed its logical end, this means the currently set MPU region is
still sufficient to cover this growth, and nothing has to be done. If a region has grown outside of
its bounds, all MPU regions are recomputed given the new constraints.

4.2 Overlapping Regions

The existing design assumes the priority mechanism for overlapping, where a higher region
index corresponds to a higher priority as explored in Section In overlapping the grant
region with the process RAM, Tock uses that property to guarantee the grant not being accessible
by a process. As overlapping mechanics differ per MPU, the use of overlapping regions has to
be reconsidered.

4.2.1 Challenges in Overlapping

Not all MPUs have the same priority mechanism as the Cortex-M MPU. The RISC-V MPU has
lower region indices corresponding to a higher priority on overlap. Furthermore, the Kinetis
K and TI Keystone MPUs do not use the priority mechanism at all, but rely on the union and
intersection mechanism, respectively.

For the problem of the opposite priority ordering for the RISC-V MPU, a possible and relatively
easy solution is to invert the region indices in the MPU implementation, thereby writing the re-
quest for the first region (region 1) to the last region (region 16) instead and so on. Unfortunately,
the problem with overlapping regions is much harder to solve for the Kinetis K and TI Keystone
MPUs. The TI Keystone would in this specific case enforce the correct behaviour because of its
intersection mechanism. However, MPUs that use the union mechanism cannot have these re-
gions overlap. In this case, since of the chosen MPUs only the Kinetis K MPU uses the union
mechanism, the straightforward engineering solution would be to not overlap the regions when
using the Kinetis K MPU but change the start and /or size of the region that is being overlapped
instead, utilizing its fine granularity. However, a solution like this would not be a generic solu-
tion at all, and undermines the main goal of this interface: being architecture-agnostic.

In addition, the reverse scenario has to be taken into account where one region overlaps over
another that has fewer access permissions: for example, when overlapping a region with full
access permissions over a part of a region with limited access permissions. In this case, the
TI Keystone MPU is the one with the deviation in behaviour, since it will deny access to the
overlapping part, whereas all other MPUs would allow access to it.

Furthermore, the process of overlapping regions leads to an added complexity in terms of return-
ing logical regions. Specifically, where a logical region would normally have a 1-to-1 mapping
with a physical region, it might have a M-to-N mapping in the case of overlap. For instance, in
the example of Figure [3.3|for union and intersection MPUs, two physical regions would lead to
three logical regions, whereas for priority MPUs it would lead to two logical regions. On the
other hand, in a scenario of two physical regions where a region is situated in the middle of

4.3. FLEXIBLE REGION RANGES 38

0x20004000 0x20006000 0x20008000 0x2000A000

I | I |
crc ac

Figure 4.1: Example showing what occurs for power-of-two aligned MPUs when overlapping of
regions is prohibited. Shown are two processes, crc and ac running concurrently. Now that the
grant (red) does not overlap with the (green) any longer, external fragmentation occurs.

another region, this leads to three logical regions for union and intersection MPUs, and one or
three logical regions for priority MPUs, depending on the region indices.

4.2.2 Avoiding Overlap

As can be seen from the scenarios sketched out in Section [£.2.1} overlapping regions leads to a
variety of complex situations. Therefore, the impact of avoiding overlap is now inspected.

For block-aligned MPUs, not being able to overlap is not a big problem since overlapping is only
useful when really wanting to optimize the number of regions used. However, for general power-
of-two aligned MPUs, the choice of not overlapping regions for the allocation of regions often
leads to a significant amount of external fragmentation. One such situation can be shown by
going through an example in which only the crc and ac applications from Figure[.5are running.
Now that the grant is forbidden from overlapping and has to be placed after the process[random|
[access memory (RAM)| processes will not align as neatly as they do now. Since the memory both
processes require is greater than 4 kB, the next available region size for the [process accessible|
is 8 kB in order to align to a power of two. The smallest possible region size for
the grants of both processes is 1 kB. For crc, this means the total process[RAM](the combination
of the [PAM] and the grant) is 9 kB. Now, because the next process contiguous in memory ac
requires a size of at least 8 kB, the next available start address is at 0x20008000, introducing
external fragmentation of 7 kB. An overview of this situation is shown in Figure 4.1}

This is clearly not a preferred allocation of memory, and is the reason why in the existing design
of Tock the[PAM]and grant overlap. However, solving overlap would require knowledge regard-
ing the MPU, and thereby a significantly higher complexity in either the MPU interface or the
MPU implementation. The challenge of overlapping is one of the main problems we try to tackle
in this research, and both of the two proposed interfaces take another approach in solving this
problem. The default behaviour in our design however will be forbidding overlap.

4.3 Flexible Region Ranges

As region constraints differ per MPU, it is impractical to decide upon the region ranges without
knowledge of the MPU, which is something that is currently done in the process manager of
Tock. We propose a design where the kernel communicates with the MPU in order to find a
valid MPU region. On creation of a region, the kernel passes through a minimum region size the

39 CHAPTER 4. DESIGN CONSIDERATIONS AND METHODOLOGY

MPU region should have, and a range in which this region should be placed defined by a lower
bound and an upper bound. The objective of an MPU implementation is then threefold:

1. Create a region with a size that is greater or equal to the specified minimum region size, that
is valid and as close this size as possible.

2. Align the start of the MPU region on or after the lower bound as specified by the kernel, as
close to it as possible on a valid address.

3. Ensure the resulting end of the region does not exceed the value of the upper bound.

Since the region constraints are MPU-specific, the algorithm that determines the optimal region
descriptors given these three inputs is specific to an MPU implementation. Recall from Sec-
tion that two fundamentally different implementations for the selection of MPUs are dis-
tinguished between: power-of-two aligned MPUs and block-aligned MPUs. The algorithm that
finds the best suitable region is dependent on this type. We proceed by proposing algorithms
for general power-of-two aligned MPUs and block-aligned MPUs given these three inputs, and
in addition propose an algorithm for the Cortex-M MPU that makes use of its subregions as
discussed in Section 3.2.1]

4.3.1 Block-Aligned Algorithm

An overview of the block-aligned algorithm that finds the most suitable region is shown in Al-
gorithm[I] This is a pretty simple algorithm that rounds up start and size to the nearest multiple
of the granularity, and checks if the given upper bound is exceeded. If it does, no valid region
exists with these inputs and an error is returned. If it does not, and so the region is valid, the
start and size of the MPU region for this request are returned.

Algorithm 1 Algorithm for calculating the nearest suitable region for block-aligned MPUs. In-
puts are a minimum region size, a lower bound an an upper bound. Outputs are a start and a
size.

1: start + lower_bound

: Slze 4— MInimum_region_size

: Round size up to a multiple of granularity
: Round start up to a multiple of granularity
. if start + size > upper_bound then

return error

: end if

: return start and size

® N oUW

4.3.2 General Power-of-Two Aligned Algorithm

The algorithm we propose for power-of-two aligned MPUs is presented in Algorithm 2| It is
equal to the block-aligned algorithm with the exception of line 3 and 4, where the size is rounded
up to a power of two instead, and the start is rounded up to this size.

4.3. FLEXIBLE REGION RANGES 40

Algorithm 2 Algorithm for calculating the nearest suitable region for power-of-two aligned
MPUs. Inputs are a minimum region size, a lower bound an an upper bound. Outputs are a
start and a size.

1: start <+ lower_bound
size < max(minimum_region_size, granularity)
Round size up to the next power of two
Round start up to a multiple of size
if start + size > upper_bound then
return error
end if
return start and size

4.3.3 Cortex-M algorithm

In the case of the Cortex-M, recall subregions can be used in order to partly circumvent the
power-of-two constraint. This provides more flexibility in terms of starting addresses as was
demonstrated in Figure where no fragmentation occurred, whereas for other power-of-two
MPUs there would be an external fragmentation of 8 kB between crc and ip_sense. In addition,
this leads to an improved flexibility in region sizes: now, a size that is a multiple of an eighth of
a power of two can be realized by having a different underlying region size than the actual MPU
region. The existing algorithm that calculates the subregion configuration relies on the fact that
the start and size that are passed in are fixed, making this problem relatively simple. In our
design of the Cortex-M MPU specific implementation, we propose an algorithm that passes in
the same parameters as the other algorithms, and uses subregions optimally in order to provide
more flexibility: this is shown in Algorithm[3} In essence, this algorithm rounds the size up to the
nearest power of two, and then tries a variety of start addresses and subregion sizes by rounding
them up to possible values. A detailed explanation of the algorithm is as follows.

Algorithm Explanation

First, the size is rounded up to the granularity for the Cortex-M MPU, 32 bytes, if it is smaller
than this. Otherwise, the size is rounded up to the next power of two P. Because subregions are
1/8 of the region size and therefore also a power of two, the minimum possible subregion size is
1/8 of the size rounded up to a power of two. As the granularity of subregions on the Cortex-M
MPU is also 32, the subregion size is rounded up to 32 if it turns out to be smaller. This implies
the actual underlying region size is higher than 256. The reason this was not rounded up in the
first place is because subregions might not be necessary in a simple case such as start = 0 and
size = 32.

Next, the while loop that tries to find a valid subregion configuration is entered by trying sizes
equal to P/8, P/4, P/2 and P. This loop starts by rounding up the size to subregion_size, so that
when size is a power of two and start is divisible by size, a valid region configuration is found
without having to resort to subregions, and the algorithm is finished. In such cases the algorithm
finishes at line 9 by returning the valid start and size. If rounding up the size did not provide
a valid region yet, the address under start is found that aligns with the underlying (physical)
region size, i.e., eight times the subregion size, as was the case in Figure[3.6} Given a value z and y
greater than 0 and = < y, itis an invariant that a value can be found lying between y and y —x that
aligns with «. This trick is utilized to find an underlying region start that aligns with the start y

41 CHAPTER 4. DESIGN CONSIDERATIONS AND METHODOLOGY

given the underlying region size . Afterwards, a check is done to see if the underlying created
region is big enough to cover the found start and size. If it is, the corresponding subregions that
should be enabled are calculated, and the logical region and physical region are returned. If it
is not, the procedure is repeated for a subregion_size of P/4, and afterwards P/2 and P. When
after all these tries still no valid region has been found, the algorithm fails, meaning there is no
valid region for the given constraints.

Simple Example

A simple example of the algorithm is one where immediately a size is found that is a power
of two. For instance, consider the inputs minimum_region_size = 0,lower_bound = 0 and
upper_bound = 76. The size is rounded up to 32 in line 2, the start remains unchanged and in
line 8 the algorithm enters the if statement and returns the region start = 0, size = 32.

Subregion Example

An example of this algorithm using subregions is as follows. Consider a minimum_region_size
of 2.9 kB, a lower_bound of 3 kB and an upper_bound of 8 kB. Now, P is set to 4 kB, and the subre-
gion size to 0.5 kB. Inline 5, since start already aligns to subregion_size, it will remain 3 kB. Next,
the while loop is entered and size is rounded up to the subregion_size and becomes 3 kB. Since
this does not align to a power of two, the else statement in line 14 is entered. An underlying re-
gion is constructed, with an underlying_region_size of 4 kB and an underlying_region_start of
0. This does not cover the end of the desired MPU region, as 4k B < 3kB+3kB, so subregion_size
is doubled to 1 kB. The start again remains unchanged, since it still aligns with subregion_size.
The if statement in line 8 again fails, and another underlying region is tried given the new
subregion_size. Now, underlying_region_size becomes 8 kB and underlying_region_start be-
comes 0. This time, 8kB > 3kB + 3kB and the desired region fits within upper_bound: the
algorithm knows a suitable region can definitely be found and subregions are created. Here,
min_subregion becomes 3 and max_subregion becomes 5. As Rust ranges are minimum inclus-
ive and maximum exclusive, this means the fourth through sixth subregions will be enabled,
corresponding to the memory from 3 kB to 6 kB. The algorithm has succeeded and returns the
physical region, being the optimal region request given these inputs.

This algorithm can be applied to the problem shown in Figure and will find a set of regions
that reduce external fragmentation in most cases. Unfortunately, this does not completely get
rid of external fragmentation, and therefore, this problem is something that we consider in both
proposed MPU interfaces.

In comparison to the existing design, note that adding an algorithm computing flexible region
ranges does lead to a small increase in flash and an increased complexity in the MPU-specific
code: this is the price we must pay for becoming architecture-agnostic.

4.3. FLEXIBLE REGION RANGES 42

Algorithm 3 Algorithm for calculating the nearest suitable region for the Cortex-M MPU. Inputs
are a minimum region size, a lower bound an an upper bound. Outputs are a start, a size and a
possible subregion configuration, as this algorithm makes use of Cortex-M subregions.

R B AU R o e

N DN DN DN DNDNDDNDNDDNDDNDR R R 2
CEISAREONESD09RIDT RN 2O

30:
31:
32:

. start < lower_bound
: size <— max(size, 32)

Find the next power of two of the size, P

. subregion_size + max(P/8,32)

Round start up to a multiple of subregion_size

: while subregion_size <= P do

Round size up to a multiple of subregion_size
if size is a power of two and start mod size == 0 then
if start + size > upper_bound then
return error
else
return start and size
end if
else
underlying_region_size < subregion_size * 8
underlying_region_start < start rounded down to underlying_region_size
end = start + size;
underlying_region_end < underlying_region_start + underlying_region_size
if underlying_region_end > end then
if start + size > upper_bound then
return error
else
min_subregion « (start — underlying_region_start)/subregion_size
maz_subregion <— min_subregion + size/subregion_size — 1
return start, size and subregion information
end if
end if
subregion_size < subregion_size x 2
Round start up to a multiple of subregion_size
end if
end while
return error

43 CHAPTER 4. DESIGN CONSIDERATIONS AND METHODOLOGY

44 The MPU Trait

To enable the MPU interface to be compatible with various MPUs, Rust’s trait mechanism is used
to define a trait named MPU as discussed in Section[3.4.2] Data types implementing this trait (the
MPU implementations) are normally forced to implement its methods. However, when the trait
defines default method definition, the implementor is not forced to implement this method but
will by default assume this implementation instead.

As an example, we take a look at the number_total_regions method in the MPU trait, that is a
new method we present that returns the number of maximum regions for that MPU. Having this
number of regions helps the process manager in making the right decisions, letting it know if
regions are still available. The existing implementation assumes there will always be 8 regions,
and has many dependencies relying on this invariant. For instance, it creates three regions for
the flash, and grant, and creates 5 additional regions that it sets to be empty by writing
the corresponding register values and region indices to the MPU directly. Our changes remove
these dependencies and make the implementation flexible with a variable number of maximum
regions depending on the MPU.

Generally, MPUs contain a hardware register that defines the number of available regions; the
MPU implementation should return this value to the interface. If such a register does not exist,
the implementation of this method can be as simple as returning a predetermined number. The
implementation of this method inside the MPU trait in the MPU interface is as follows:

fn number_total_regions(&self) -> usize {0}

Where usize is an unsigned integer that has a size dependent on the target. For example, on a
32-bit target it is 4 bytes. In this example of the method number_total_regions, the MPU trait
defines a default implementation that returns 0. Now, if an MPU implementation does not have
the number_total_regions method, it will assume this default implementation and return 0.
We choose this approach of defining default implementations for every method inside the MPU
trait in the MPU interface — over not defining a default implementation — in order to allow Tock
to function on a microcontroller that does not have an MPU, by inheriting these default imple-
mentations.

For the Cortex-M MPU implementation, we do define a method for number_total_regions,
overriding the default implementation. In this implementation,Cortex-M MPU’s DREGION re-
gister is read out that contains the number of regions it supports:

fn number_total_regions(&self) -> usize {
let regs = &*self.O;
regs.mpu_type.read(Type: :DREGION) as usize;

}

Where the regs variable is set to the hardware address at which the MPU is located, and we
make use of the new register interface that is clarified in Appendix

4.5 Disabling the MPU

An additional design consideration is that of the MPU usage during kernel execution. Currently,
instead of making use of the supervisor level while the kernel is running, Tock completely dis-

4.6. METHODOLOGY 44

ables the MPU. In normal operating systems, disabling the MPU during kernel execution is not
advisable: the operating system can contain bugs related to memory management, and correctly
setting up the MPU can lead to such bugs being caught more easily. In Tock however, as the ker-
nel is written in Rust and the unsafe keyword is sparingly used, disabling the MPU is a valid
option. Considering this, the main decision criteria for using the supervisor level or not are
complexity, power usage and performance:

Complexity Having the kernel run in supervisor mode would lead to an increased complexity,
in the sense that the default access permissions for the supervisor level should then be
similar across MPUs. For some MPUs, as discussed in Section this is a complex
undertaking. Therefore, in terms of complexity, preference goes to disabling the MPU.

Power Usage The difference in power usage for keeping the MPU enabled depends on the switch-
ing power consumption — that is, the power consumption of enabling and disabling the
MPU - relative to the steady power consumption. Although not much data is available on
this, the Kinetis K MPU datasheet states that disabling the MPU minimizes power dissip-
ation [61]].

Performance The effect on performance depends on the time it takes to enable and disable the
MPU after every context switch.

In order to measure the power usage and performance, some tests were done aimed at meas-
uring these factors for the scenario where the MPU was continuously enabled, and where it
was disabled and re-enabled at every context switch for the SAM4L microcontroller [64] with
the Cortex-M MPU. The results of these tests were an insignificantly distinguishable power dis-
sipation and speed; therefore we choose to disable the MPU by default in order have a lower
complexity.

4.6 Methodology

The most important design consideration in designing an MPU interface is that of the chosen
level of abstraction. Ideally, code duplication should be minimized by having a concise inter-
face and moving as much code into the process manager, which is reused for every MPU, as
possible. On the other hand, no useful features or optimizations a specific MPU might have
should be wasted, and therefore a certain degree of freedom should be given to MPU imple-
mentations, moving code away from the process manager. Seeking this Pareto point is the most
difficult aspect in designing an MPU interface, and is the reason we proceed by designing two
MPU interfaces. These interfaces are the result of seeking to answer research questions 2 and 3,
respectively.

We specify the following requirements for the design of an MPU interface, with a descending
order of importance:

Portability An MPU interface must be completely architecture agnostic. No assumptions re-
garding the target MPU must be made in the process manager and the MPU interface;
everything specific to an MPU must be contained within the platform-dependent MPU
implementation. Furthermore, it must be realizable on as many MPUs as possible.

Memory Usage Memory must be used in an efficient manner, keeping external and internal
fragmentation to a bare minimum. Furthermore, the MPU interface should support the
possible growth of regions during runtime.

45 CHAPTER 4. DESIGN CONSIDERATIONS AND METHODOLOGY

Complexity As much complexity as possible should be moved to the process manager, resulting
in a clearer abstraction and a simplification to the process of adding a new MPU imple-
mentation.

Due to the lack of comparable related work aiming to satisfy the same goals as our research,
a comparison between this research and existing work is impossible. Hence, we evaluate our
two MPU interfaces by comparing them to the existing MPU implementation in Tock and each
other.

Chapter 5

A Region-Based MPU Interface

In this chapter, we present the region-based MPU interface. This interface is based around the
idea of no information about the application of MPU regions being known in any way. There-
fore, it does not assume any information about the current workings of Tock or any MPU: it is
completely separate from memory allocation. Every region is created through the same func-
tion, and every region request is uncorrelated. This makes the interface straightforward and
compact, moving most complexity to the client (which in the case of Tock is the process man-
ager). In doing so, the interface remains independent of a specific application, as all changes
will be contained to this client. A successful interface with such a generic design is future proof:
it will not have to be changed when the memory layout of the operating system changes, and
could even be used for other operating systems.

Unfortunately the region-based design, while seemingly very flexible and general, runs into
problems due to the huge variations in MPU designs. The growth of MPU regions at runtime in
particular is a big problem for the region-based design, due to the constraints of power-of-two
aligned MPUs, and makes it unsuitable for Tock.

This chapter starts off by elaborating on the design of the region-based interface, discussing what
design choices were implemented in order to create this abstract interface in Section After-
wards, we discuss the implementation of this interface in Tock in Section [5.2}showing how this
is done in Rust. Finally, the interface is evaluated in terms of its portability in Section[5.3|

5.1 Design

The key challenge in designing the region-based MPU interface is defining a method that can
independently allocate regions, while encompassing all possible optimizations and accounting
for the constraints of each MPU. In Section we devise algorithms to find the optimal region
given minimum region size, lower bound and upper bound. Unfortunately, such an algorithm does
not support the growth of regions during runtime, since in that case extra constraints are ne-
cessary to take into account the memory that has already been allocated. For this reason, we
propose two different type of region requests for the region-based MPU interface. Although
the behaviour in finding a region is different for these requests, they both return a logical and

47

5.1. DESIGN 48

physical region that will be stored in the same way as discussed in Section from which it is
not distinguishable by which request each region was created.

5.1.1 Relative Region Request

The first of two types of region requests we propose is the relative region request. Relative region
requests are meant for regions that have constraints regarding the minimum amount of memory
to be covered, but no hard constraints regarding where exactly this memory region has to be
located. In that sense, the procedure of a relative region request is very similar to the algorithm
introduced in Section with the exception of two additional features. The first is that when
a lower bound is not defined, it will implicitly be set as the end of the previous region. Hence,
relative regions will by default be aligned as close as possible to the end of the previous region.
The second addition of relative region requests is that they allow for a region to be placed at
least a specified distance from the lower bound. This can be either a specific address, or the last
region that was set. This is a useful property when wanting to leave a gap between memory
regions that are supposed to grow towards each other.

5.1.2 Absolute Region Request

The relative region request as discussed in Section is suitable for the initial allocation of
regions: allocating a region as flexibly as possible, making no guarantees with respect to the
exact mapping of the start and end address. However, if memory has already been allocated
and the size of an MPU region has to increase at runtime, relative regions are unfitting. In
Tock for instance, when the heap and grant grow bigger during runtime and exceed their initial
memory allocations, MPU regions must be recomputed without changing the start address for
the [process accessible memory (PAM)| and end address for the grant, while making sure they
do not overlap. On the other hand, updating these regions must also have some flexibility, since
otherwise they can not meet all MPU-specific constraints while being MPU-agnostic.

Therefore, we propose absolute region requests, that promise to at least map a certain memory
range, but have a configurable flexibility at their start and end addresses: regions must be able
to support flexibility on both sides without giving up coverage of the already existing range.
In other words, absolute region requests exist to specify a start and end address that definitely
need to be covered by the memory region, and where (configurably) some other memory next
to the start and /or end can be covered as well if necessary for proper alignment. The parameter
start_flexibility defines the freedom in placement towards the left of the MPU region, i.e., the
maximum number of bytes that the start may be moved to the left in order to find a valid start
address. In fulfilling such a flexibility request, the MPU implementation should aim to devi-
ate as little as possible from the start address, in order to not expose any unnecessary memory
that would lead to internal fragmentation. The parameter end_flexibility defines the opposite:
flexibility in placement towards the right of the MPU region, and other than that has similar
requirements as the start flexibility.

We now propose an algorithm for both block-aligned and power-of-two aligned MPUs that aims
to find the smallest region that covers all memory between start and end, has a start not more
than start_flexibility bytes away from the start address, and an end not more than end_flexibility
bytes away from the end address.

49 CHAPTER 5. A REGION-BASED MPU INTERFACE

Block-Aligned Algorithm

The block-aligned algorithm that calculates the optimal region given an absolute region request
is shown in Algorithm[d] First, the start/end are rounded down/up to a multiple of the granu-
larity, respectively, to find a valid region start and end. Then, the algorithm checks if this start
and end addresses fall within the specified flexibility. If they do, the smallest possible region
covering the start and end has succesfully been found, and the region descriptors are returned.
If not, the algorithm fails.

Algorithm 4 Algorithm that calculates absolute regions for Block-Aligned MPUs.

: region_start < start

: region_end < end

: Round region_start down to a multiple of granularity

Round region_end up to a multiple of granularity

if region_start < start — start_flexibility OR region_end > end + end_flexibility then
return error

: end if

: return region_start and region_size

® N U AW N

Power-of-Two Aligned Algorithm

The proposed algorithm for power-of-two aligned MPUs given an absolute region request is
shown in Algorithm [5| First, the minimum possible region size is found by rounding up the
size of the region (end - start) to a power of two. If this is greater than the granularity, this is
used as the size: otherwise, the granularity is used as the size. Next, a loop is entered that
tries to find regions that fit within the specified lower and upper bound, that is within start-
start_flexibility and end+end_flexibility. Since the start address has to be divisible by the size for
power-of-two aligned MPUs, it is rounded down to a valid address. In line 8 of the algorithm a
check is done to see if the region covers the memory from start to end. If it does, a region is found
that conforms to both the power-of-two constraint and covers the desired memory region, so the
region values are returned and the procedure is finished. If it does not, the size is multiplied
by two, a suitable starting point is found again and the procedure is repeated. This eventually
leads to a point where either a valid region is found that covers all the required memory, or a
point where the constructed region lies outside of the desired boundaries. In the former case the
region identifiers are returned to the client, and in the latter case the algorithm fails and returns
an error.

5.1.3 Simultaneous Allocation

The choice of not overlapping regions for the allocation of regions unfortunately leads to a sig-
nificant amount of external fragmentation for power-of-two aligned MPUs as elaborated on in
Section Seeing that in the existing design, regions are created consecutively as examined
in Section the MPU has no way of knowing what the implementor is looking for in cre-
ating regions. For instance, consider a situation in which an implementor would like to create
three regions of 300 kB, 1 kB and 300 kB in a power-of-two aligned MPU. These regions will be
rounded up to a power of two, resulting in regions of 512 kB, 1 kB and 512 kB. If regions are

5.1. DESIGN 50

Algorithm 5 Algorithm that calculates absolute regions for power-of-two aligned MPUs.

: region_start < start
: region_end < end
. region_size < max(end — start, granularity)
Round region_size up to the next power of two
while region_start > start — start_flexibility AND region_end < end+ end_flexibility do
Round region_start down to a multiple of region_size
region_end < region_start 4+ region_size
if region_end > end then
return region_start and region_size
end if
TEGION_size <— region_size x 2
: end while
: return error

O XN DD

o S S

allocated consecutively, the first region will be created with 512 kB, after which the second re-
gion of 1 kB will be placed next to it, resulting in these two regions occupying the first 513 kB.
Consequently, the next available start address for the third region would be 1024 kB, leading to
511 kB of external fragmentation. A scenario like this should be avoided at all costs.

We propose sending all the region requests simultaneously instead of consecutively, and let-
ting the MPU implementation decide how to allocate regions according to the region size and
alignment constraints, granularity, overlapping mechanisms and other optimizations. Doing so
keeps the client (in the case of Tock, the process manager) and MPU interface generic, and moves
all the MPU-specific details to the MPU implementation. For instance, in the aforementioned
example, power-of-two aligned MPUs using the priority mechanism can choose to let the region
of 1 kB overlap with the first 512 kB region instead, since the first region actually only needs 300
kB. Another solution would be to sort regions in such a way that external fragmentation is kept
minimal, which in the case of this example would correspond to having the 1 kB region allocated
last. In addition, MPUs with optimizations can reduce internal fragmentation even further, e.g.
the Cortex-M can make this 512 kB region even smaller by only exposing subregions.

5.1.4 Access Permissions

Recall from Section that access permissions differ per MPU. Considering the region-based
interface should stay as generic as possible and not lose any functionality because of constrained
MPUs, it should support all permissions for all MPUs: every possible combination of read, write
and execute permissions should be specifiable.

In terms of user and supervisor levels, we support three possibilities for every permission: user
and supervisor, supervisor only, or no access for both. We exclude giving the user more per-
mission than the supervisor, since we do not see this ever being of use; furthermore this is not
possible in most MPUs. This leads to 27 total possible options for read, write and execute per-
missions combined.

MPUs that use bit-based permissions for both the user and supervisor level (like the Xtensa LX7
and the TI Keystone) are perfectly able to support all of these permissions. However, MPUs that
use any form of encoded permissions (all other chosen MPUs), would not be able to support

51 CHAPTER 5. A REGION-BASED MPU INTERFACE

this. One of two possible types of behavior can be enforced for the MPU implementation when
requesting a permission that is not defined:

1. The MPU implementation can fail, suggesting the client should request a region with
defined access permissions.

2. The MPU implementation can pick the closest possible set of permissions that is defined.
For instance, when a write-only permission is requested for the user level on the Cortex-M,
of which the possible access permissions are shown in Table the implementation will
create and return a region with read and write permissions.

In order to not deviate from the requested behavior, we opt to make the MPU implementation
return that the allocation has failed, and leave the responsibility for defining valid access per-
missions to the client.

5.1.5 Default Access Permissions

By default, the MPU should give a process access to its RAM and flash only: no access to any
other part of memory. For this reason, when the MPU is enabled, it is ensured that the default
memory map is protected for processes by using the corresponding MPU-specific technique as
described in Section[8.2.4] This is easily possible for all MPUs but the TI Keystone MPU, that has
the default memory map be accessible to user accesses by default as seen in Table[3.3] Therefore,
in order to protect this default memory map, the MPU implementation of the TI Keystone must
make sure to create regions with no permissions in locations where no regions by the user are
defined on every call to the MPU. This would lead to a significant amount of complexity in
the MPU implementation and a lowered number of maximum regions, since existing regions
would have to be checked and possibly adjusted every time another region is adjusted /created,
but would then show the correct behaviour.

Generally, operating in supervisor mode is used for the kernel. In line with this use case, on
many MPUs having supervisor access implies being able to write to hardware registers, includ-
ing hardware registers for the MPU itself. Since no other party than the kernel should by default
have access to this, in our design we also assume the supervisor permission is reserved for kernel
use, and therefore set the default memory map to be fully accessible for the supervisor permis-
sion.

Although most MPUs support this feature as shown in Table the two MPUs that do not
have this option built in by default are the Kinetis K and NIOS II MPUs. In order to achieve
this feature on the Kinetis K MPU, a region must be defined that spans the entire memory and
gives full access to the supervisor. Because of the union mechanism that the Kinetis K MPU
adheres to on overlap, this implies that the supervisor always has access to the entire memory.
As for the NIOS II MPU, since it follows the priority mechanism, if the region with the lowest
priority is used to cover the entire memory, the MPU will function as if the default memory map
is protected.

5.2 Implementation

We now present an implementation of the design of the region-based interface described in
Section 5.]in Tock. At its core, this implementation consists of a redesigned MPU interface and

5.2. IMPLEMENTATION 52

process manager (Section that are generic and therefore can be implemented for every
MPU. In order to evaluate these changes and test their value, we present MPU implementations
of this interface for a power-of-two aligned and a block-aligned MPU: the Cortex-M and Kinetis
K MPU, respectively.

Now that regions can be created as either relative or absolute regions, a means is necessary to
indicate which of these is being created on a region request. For this, a Rust enumeration or enum
is used, that is a data structure that enumerates all possible values but can only take the value of
one of them. Both Relative and Absolute are structs defined within this enum: one or the other
can be picked for a region request.

5.2.1 Relative Region Request

The Relative enumeration contains four fields:
1. The lower_bound field indicates which address to use for the lower bound.
2. The upper_bound field indicates which address to use for the upper bound.

3. Themin_offset field indicates the minimum distance that has to be between the lower_bound
and and the start of this region.

4. Themin_region_size field indicates the minimum size the region should have.

The min_offset field is useful for leaving a gap in memory that regions can grow into. In Tock
for instance, when setting the grant after specifying the min_offset represents the min-
imum amount of unused memory between these.

The implementation of the algorithms for the relative region request is equal to the algorithms
shown in Section[4.3} with two modifications to its input parameters. First, 1lower_bound is now
wrapped in a Rust Option. When the Option is Some, it contains the value of the address to use
as a lower bound for the region. If it contains None, the end of the previous logical region is
used as the lower bound. Second, min_offset is added to lower_bound on the calculation of
start.

In the initial setup of every region in Tock, only relative region requests have to be made, since
there are at that point no strict constraints on where exactly the data has to be located.

5.2.2 Absolute region request

The Absolute enumeration contains four different parameters: start, end, start_flexibility
and end_flexibility. Here, start and end represent the start and end address of the memory
range that definitely has to be covered, and start_flexibility and end_flexibility define
the flexibility in region placement as discussed in Section The algorithms that have been
implemented for the absolute region request are Algorithor block-aligned MPUs and Al-
gorithm [5|for power-of-two aligned MPUs.

An absolute region request is useful in a situation where a region needs to grow. In the case
of Tock, this means on growth of the heap or grant. On growing of the heap in Tock, brk() is
called, and the region stored in the region struct for the[PAM]is removed. Then, a new region is
created that has the same start, and a start flexibility of 0, but a different end corresponding to
the newly required memory and an end flexibility such that the does not extend into the

53 CHAPTER 5. A REGION-BASED MPU INTERFACE

grant. On growth of the grant a similar procedure takes place: the Tock kernel calls alloc(),
the grant region is removed and an absolute region request is made with a fixed end and flexible
start.

5.2.3 Simultaneous Allocation

Section proposes sending all region requests simultaneously in order to be able to enable
the MPU implementation to decide on optimizations. In the implementation, this is done by
first storing all region requests in a regions array, with each index corresponding to one region.
The details for flash, grant and optional finter-process communication (IPC)|regions for a
process are stored in this array and sent to the MPU implementation at the same time, allow-
ing this implementation to allocate in a more flexible way and account for the constraints and
optimizations, a feature that is mostly useful for exploiting overlapping regions. Since in the
region-based interface in Tock the and grant are separated by a certain offset as explained
in Section there is no overlap. Therefore, no special algorithm for overlapping regions is
created in both the Cortex-M and Kinetis K MPU implementations.

5.2.4 Access Permissions

A Permission enum is defined with three options: no access, supervisor access only and full
access. Each read, write and execute permission inherits this enum, allowing the flexibility of
all possible access permissions. The process manager requests a certain read, write and execute
permission and sends this to the MPU implementation. These requests are then matched to
register values. For instance, consider setting the execute permissions for the Cortex-M MPU,
which is done by setting one bit as shown in Table[3.2b} If the supervisor and user are both given
execute permissions, this bit is set, and if they are both denied access permissions this bit is not
set. If a region is requested with supervisor execute permissions and no execute permissions
for the user, the Cortex-M implementation returns an error, and Tock will panic with a message
stating the unsupported permission.

To implement the default memory map to be accessible for the supervisor and inaccessible for the
user, on enabling the MPU activates the background region for the Cortex-M MPU as explored
in Section and creates a supervisor region spanning the entire memory for the Kinetis K
MPU.

5.2.5 Overview

An overview of the implementation of the region-based MPU interface in Tock is shown in List-
ing[6] The core of this interface are the methods allocate_regions and configure_mpu in the
MPU trait.

In allocate_regions, a Region struct is passed to the MPU implementation, that contains the
enum corresponding to the desired region request, in addition to read, write and execute per-
missions. The possible permission options are defined in the Permission enum. The process
manager calls allocate_regions in three situations:

1. When Tock boots, setting up each process’s memory.

5.3. EVALUATION 54

2. When brk() or alloc() are called, recomputing the MPU regions for that process.
3. When an IPC region is added.

The return value of allocate_regions is the config containing the MPU-specific struct as pro-
posed in Section Finally, configure_mpu is called to write this struct to the hardware re-
gisters, which occurs in these three situation in addition to at every context switch.

Note that all methods have a default definition as explored in Section enabling platforms
that do not have an MPU to run Tock. For instance, as allocate_regions expects a Rust Result to
be returned, the default implementation always returns Ok.

5.3 Evaluation

The region-based interface is evaluated by analyzing the impact of both relative and absolute
region requests on memory. For this analysis, the allocation of memory and MPU regions in the
example of three running processes for the existing implementation as shown in Figure [3.5]is
considered, but now by using the region-based interface. In order to have a fair comparison this
exact same situation is thoroughly analyzed, i.e., the same memory requirements and the same
MPU. Hereafter, we discuss how this would apply to other MPUs, and provide a summary of
the strengths and weaknesses of the region-based interface.

5.3.1 Relative Region Request

The result of using the Cortex-M subregions and our new algorithm for this as discussed in Sec-
tion[4.3.3|leads to a process memory layout occupying less memory, and is shown in Figure 5.1}
The corresponding subregion alignment is shown in Figure[5.2] Unfortunately, using the region-
based interface for a power-of-two aligned MPU does lead to some complications. In order to see
what these are and understand the exact procedure of the interface in practice, we now proceed
by going through the allocation of MPU regions in a step-by-step manner.

Flash

The start of the flash region of crc is placed directly next to the end of the flash that the kernel
needs, which in this case is 0x00030000. To do this, the process manager makes a relative region
request with lower_bound set to Some (0x00030000), a min_offset of 0 from that location, an
upper_bound of 0x20000000 corresponding to the end of flash, and amin_region_size of 11,662
bytes (as per its requirements shown in Table[3.4). In the old design, this would get rounded up to
16 kB: now, by using Cortex-M subregions and our proposed algorithm in Section aregion
of 12 kB can be achieved by only exposing the first six out of eight subregions of a 16 kB region.
When the process ip_sense is context switched to, its regions are set up given the constraints
of previously allocated memory. This process requires amin_region_size of 10,759 B and lower
bound set to Some (0x00033000). Using subregions, a region of 12 kB can be created starting
from that location by creating an underlying of region of 32 kB that aligns with 0x00030000 and
exposing subregion four through six. As for the flash of ac, since the next power of two is 8 kB
and the starting address (0x00036000) already aligns with this, a region can be created without
resorting to subregions.

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

55 CHAPTER 5. A REGION-BASED MPU INTERFACE

/// Access permissions.
pub enum Permission {

// Supervisor User
// Access Access
NoAccess, // No No
SupervisorOnly, // Yes No
Full, // Yes Yes

/// MPU region type.
pub enum RegionType {

/// Absolute region, anchored to start and end

Absolute {start: usize, end: usize, start_flexibility: usize,
— end_flexibility: usize},

/// Relative region, flexible in alignment but having a minimum size
Relative {lower_bound: usize, upper_bound: usize, min_offset: usize,
— min_region_size: usize},

3

/// MPU region.

pub struct Region {
region_type: RegionType,
read: Permission,
write: Permission,
execute: Permission,

pub trait MPU {
/// Enables the MPU.
fn enable_mpu(&self) {}

/// Disables the MPU.
fn disable_mpu(&self) {}

/// Returns the total number of regions supported by the MPU.
fn number_total_regions(&self) -> usize {0}

/// Allocates a set of logical regions for the MPU.

/// Returns config with the resulting logical and physical regions.

fn allocate_regions(regions: &mut [Region]) -> Result<Self::MpuConfig>
{0kCON}

/// Configures the MPU with the provided region configuration.
fn configure_mpu(&self, config: &Self::MpuConfig) {}

Listing 6: Simplified overview of the region-based MPU interface.

5.3. EVALUATION

56

crc

Total: 8192
0x20006000 ————

0x20005CD0O

0x20005340

0x20004D30

0x20004800
0x200046A0

0x20004000

o -
0x00030000

ip_sense

Total: 10240
[]

=
2 =

0x20008800

0x20008514

0x20007B94

0x2000754C

0x20006800
0x20006660

0x20006000

o -
0x00033000

. Grant region, supervisor access only

. PAM region, full access

. Flash region, read-only access

ac

Total: 8192
0x2000A800]

0x2000A52C

0x2000984C

0x20009240

0x20009000
0x20008ECO

0x20008800

0x00036000

Figure 5.1: Overview of process memory using the region-based MPU interface for the Cortex-M
MPU in Tock. Shown is the memory and MPU allocation of three memory-contiguous processes
running concurrently using this interface. A more detailed explanation is given in Section

57 CHAPTER 5. A REGION-BASED MPU INTERFACE

crc ip_sense ac

0x2000A800
0x2000A000
0x20009800
0x20009000

0x20008800

0x20008000

0x20007800

0x20007000

0x20006800

0x20006000

s e

0x20005000

0x20004800

0x20004000

Figure 5.2: Overview of subregion usage for RAM in the situation shown in Figure Full lines
represent regions, dashed lines subregions, and the green and red areas are the[PAM|and grant,
respectively. For clarity reasons, grant subregions are not shown.

There is little internal and no external fragmentation in flash, contrary to the situation in Fig-
ure[3.5, now that Cortex-M subregions are exploited. Note that although this situation has such
small fragmentation, unfortunately many other situations in power-of-two aligned MPUs will
lead to at least some external fragmentation.

RAM

The first region request for random access memory (RAM)|is a relative region request for the
[PAMof the first process. Given the required kernel memory at the start of RAM, the lower_bound
is set to Some (0x20004000). Now, as the PAM|requires a size of 4,928 bytes as seen in Table
themin_region_size is set to this accordingly, and upper_bound is set as the end of Mak-
ing use of our Cortex-M subregion algorithm (Section[4.3.3), this leads to a logical region of 5,120
bytes, which uses five subregions in an underlying region of 8,192 bytes.

The subsequent region to be allocated (in the same context switch) is the grant region. Con-
sidering some unused space between the heap and the grant is necessary in order to allow
these regions to grow, the min_offset parameter is used. The original design would add 2,048

5.3. EVALUATION 58

bytes to the size of the [PAM|before allocating it: now, min_offset is set to 2,048 bytes. Setting
lower_bound to None (Section[5.2.1) makes it become the end address of the The start ad-
dress for the grant then becomes the sum of these two parameters. With the min_region_size
of the crc grant size being 816, this results in a grant region of 896 bytes, where seven out of
eight subregions of a region of 1,024 bytes are exposed. This is where the first problem of the
region-based interface surfaces: an external fragmentation of 128 bytes occurs between crc and
ip_sense, because no assumptions are made regarding the allocation of the next process. Op-
timally, the grant would have been placed at the end of this process as is done in the existing
implementation, so that both the grant and [PAM|would have more room for growth.

For ip_sense, the combined size of the stack, the unused stack growth space, data and heap is
7060, making the best the Cortex-M can do exposing the first seven subregions in a region of
size 8192, resulting in a logical region of 7168 bytes ending at the address 0x20007600. With a
min_offset for the grant region of 2048 bytes and its given size requirements, its start address
will be allocated at 0x20008400 and the grant region will have a length of 768 bytes, enabling the
first six subregions. In a similar manner,[RAM]for ac is allocated. Using its constraints an under-
lying region of 8 kB is created at 0x20008000 that enables use of the third through the seventh
subregions, leading to the actual covered range being from 0x20008800 to 0x20009C00.

By looking at these relative region requests, it becomes apparent that having a region-based
interface for power-of-two aligned MPUs leads to external fragmentation, even though this is
somewhat reduced by using the Cortex-M MPU’s subregions. In the case of non-growing re-
gions such as flash, having internal fragmentation is as bad as having external fragmentation
since the memory is not going to be used in either case (would memory not be allocated con-
secutively, external fragmentation would even be slightly better since a smaller region could
possible be placed within in this fragmented part). However, for growing regions internal frag-
mentation is preferred, as this means regions have more memory to grow into. This is the first
weak point of the region-based interface.

5.3.2 Absolute Region Request

Consider the setting in which the and the grant require growth during runtime, and re-
quest this by using an absolute region request. As the initial heap size of crc is 1552 and it has
192 bytes to grow before it exceeds its MPU region, every call to brk () for its initial growth will
lead to no change in the MPU regions. When it grows bigger than this, brk () will call an absolute
region request with a start of 0x20004000, a start_flexibility of 0, an end corresponding to
the new heap end and an end_flexibility of the difference between the end of the heap and
the beginning of the grant. This results in a of 6144 bytes: the same underlying region as
before that has an additional subregion enabled. In this case, the growth of the[PAM]is perfectly
fine, and similar to the existing scenario. Growth of the grant however leads to a less preferable
scenario. The grant region now has to grow after only 80 bytes, instead of 208 bytes as in the
existing design. With its end address being set already, even with subregions there is no way
to allocate a bigger region that aligns to this end address, and the algorithm fails, resulting in
the process running out of memory and failing. This brings us to the second and main weak
point of the region-based interface: the inability to efficiently handle growing regions that have
different access permissions given power-of-two constraints.

Even if the end address of the grant is during runtime somehow aligned to the start address of
the next process and the contents of the grant is somehow realigned to reduce external fragment-
ation solving the first problem as discussed in Section there is an abundance of possible

59 CHAPTER 5. A REGION-BASED MPU INTERFACE

scenarios in which one of the growing regions would result in an impossible scenario for the
region-based interface, and where a growth of 1 byte would already lead to the process running
out of available memory, making it crash. Other power-of-two aligned MPUs than the Cortex-M
MPU that do not have subregions suffer from this problem in an even more pronounced manner.
For instance, giving the[PAM|an initial size of 8 kB, setting up a grant region with a distance 2 kB
after it and consequently letting the grow by merely one byte will lead to no valid region
being available anymore. In addition, the process that gets allocated after it will not be able to
find a start address that leads to no external fragmentation.

5.3.3 Summary

To summarize, two problems caused by the alignment constraints of power-of-two aligned MPUs
make a region-based interface unsuitable as a generic MPU interface:

1. Allocating a left-growing region without knowing the start address of the next process
often leads to external fragmentation, which could have instead been used as more space
to grow into.

2. Because it is not known at allocation which regions grow towards each other, they can not
be aligned accordingly, leading to a sub-optimal region placement.

Even were in some way a method be devised to know allocation beforehand and solve the
first problem, e.g. moving the grant region after the start address for the next process in
memory is known, the second problem is unsolvable if an interface is to remain generic. Further-
more, although these problems can be reduced by using the properties of overlapping regions,
since this is not allowed in the region-based interface, the efficiency goes down. Regions can not
overlap if an 1-to-1 mapping is to be maintained, and adding an M-to-N mapping would lead
to a significant increase in complexity. To solve these problems, a request is needed that takes in
two regions (with differing access permissions) growing towards each other at the same time,
and allocates memory accordingly.

Note that block-aligned MPUs on the other hand do not have these two problems, since align-
ment is consistent through memory and there are no complicated non-uniform alignment con-
straints. With block-aligned MPUs, the region-based interface performs much better than the
existing interface, and is in fact optimal in placement given certain parameters. In addition,
the region-based interface would be a valid solution — even for power-of-two aligned MPUs —
would memory regions not require any growth during runtime. It is the combination of power-
of-two aligned MPUs and growing regions that unfortunately make the region-based interface
unsuitable for applications such as Tock.

Chapter 6

A Process-Based MPU Interface

In this chapter, we present the process-based MPU interface. Where the region-based MPU in-
terface discussed in Chapter [5is targeted at being as generic as possible and contains only one
call to the MPU for creating regions, the process-based interface supports specific functionality
for two regions that are growing towards each other. Our design for the process-based inter-
face solves the problems introduced in Section[5.3.3} allowing for a minimal amount of external
fragmentation and a more flexible support of region growth.

In this chapter, we first provide a detailed design of the process-based interface in Section
Subsequently, in Section [6.2| we describe its implementation in Tock. We end this chapter by
evaluating the process-based interface in terms of memory usage, portability and performance
in Section 6.3

6.1 Design

In the process-based design, instead of remaining fully agnostic of what memory is being used
for, assumptions are made regarding the target use case. This enables a design in which two
memory regions that should have different access permissions grow towards each other, which
is used in for instance Tock’s processfrandom access memory (RAM)| For this reason, we propose
two different region requests. The first is a non-growing region request, that has the goal of purely
allocating a region as optimally as possible. The second is a growing region request, that exists for
allocating two MPU regions with differing permissions growing towards each other.

6.1.1 Non-Growing Region Request

The region request for a non-growing region uses the same parameters and algorithms as men-
tioned in Section .3} minimum region size, lower bound and upper bound. Contrary to the region-
based interface as shown in Section[5.1.1} in non-growing allocation there is no need to account
for gaps in memory or aligning to the previous region within the same region request, and there-
fore only these three parameters are necessary for region alignment. Regions are still forbidden
from overlapping: if a user requests a non-growing overlapping region, the implementation
should fail.

61

6.1. DESIGN 62

6.1.2 Growing Regions Request

In order to deal with memory regions with differing permissions that grow towards each other,
we propose the growing regions request. This request takes in the same parameters as the non-
growing region request. Now, minimum region size, lower bound and upper bound are used in
order to set the size of the memory containing both of these two growing regions. In addition,
two new parameters are defined corresponding to the initially required size of each growing
region.

In the process-based interface, the MPU implementation decides how regions are used and the
client does not have full control of every region. This is in contrast to the region-based interface,
where the the client knows which region index corresponds to a growing region, allowing it to
clear that region entry and recompute it using an absolute region request. Shifting this respons-
ibility to the MPU implementation allows optimizations unique to MPUs to be used, which is
useful especially in the case of growing regions. For instance, in some MPUs the use of multiple
(overlapping) regions can be exploited. In others, subregions can be used to divide memory in
a more fine-grained manner. To enable the process manager to update this region on runtime
growth, which is in this interface not in control of every region anymore, we propose a second
method that exists solely to update the memory protection within the greater region at runtime:
the update growing regions request. It does not take in any constraints regarding the greater region,
considering this is already known at runtime, and purely changes the alignment of the regions
within. On runtime region growth, only this updating growing regions request will need to be
called, contrary to recomputing all regions as discussed in Section 4.1}

6.1.3 Access Permissions

Similar to the region-based interface, by default the MPU should give a process access only
to its own memory, and no access to any other part of memory as discussed in Section [5.1.4}
user accesses should be blocked on access violations. As for supervisor accesses to the default
memory map, we decide to not take this into account two reasons:

1. Generally, the supervisor mode is used for the kernel to ensure some memory is not ac-
cidentally overwritten. However, since Tock’s kernel is written in Rust, and the unsafe
keyword is sparingly used, unwanted memory references should be extremely rare.

2. Currently, in Tock there is no use case for the supervisor permission, as the MPU is disabled
while the kernel is running as discussed in Section

For these two reasons, in the process-based design, all MPU implementations are configured in
such a way that memory not lying within a region is by default protected for user-level processes,
and the supervisor permission is not taken into account.

Disregarding supervisor permissions reduces the number of possible permission combinations
defined in the MPU interface from 27 to 8. Of these resulting eight combinations, an additional
three combinations are removed: ‘write only’, ‘write and execute’, and 'no access’. The first two
are removed because these are combinations that are generally not useful in operating systems
and especially not in Tock, as scenarios in which it is useful to have write permissions and no read
permissions are extremely rare. The argument for removing the 'no access’ permission is that
the default memory map is not accessible anyways. Only in the case of overlapping regions for
power-of-two aligned MPUs would a no access permission potentially be useful in order to have

63 CHAPTER 6. A PROCESS-BASED MPU INTERFACE

a more fine-grained region alignment. However, since overlapping is only allowed within the
growing region request in the MPU implementation, and this does not involve the permissions
defined in the MPU interface as registers can in that case be directly written, there is no need for
a 'no access’” permission. This leaves only 5 permission combinations that are defined in this in-
terface: execute only, read only, read execute only, read write only, and full access (RWX).

6.2 Implementation

We now present our implementation for the process-based interface in for Tock, following the
design requirements of Section 6.1} The main additions to Tock are in the process manager, the
MPU interface and MPU implementations for the Cortex-M and Kinetis K MPUs. In addition,
minor changes are made to some other files in order to make this interface efficiently work with
the existing version of Tock (version 1.2).

6.2.1 Non-Growing Region Request

The method used for creating a non-growing region request is allocate_region. As Tock has
no use case for overlapping regions other than[RAM]|that now has its own function, allocating all
regions at the same time as was done in the region-based interface (Section[5.2.3) only increases
complexity; therefore, allocate_region takes in constraints for one region at a time, allocating
regions consecutively. However, instead of an upper bound, now a maximum size in which a
region can grow is passed instead: that is, the size between the lower and upper bound. This
leads to less error checking (for instance, making sure the passed upper bound is not smaller
than the lower bound) and allows us to pass an integer instead of a pointer, reducing complexity
by avoiding some type castings. In particular, the following parameters are passed through the
allocate_region method:

1. The unallocated_memory_start field indicates which address to use for the lower bound.

2. The unallocated_memory_size field indicates the maximum size in which a region can
grow. For instance, if this field is 8 kB and unallocated_memory_start is 16 kB, this is
equal to upper bound being 24 kB.

3. Themin_region_size field indicates the minimum size that the region to be created should
have.

4. The permissions field indicates which of the five defined access permissions must be set.
5. The configstruct contains all logical and physical MPU regions as discussed in Section[4.1}

Besides being used to see what regions are free (and so in which index the new region should
be stored), the config struct is used by the MPU implementations of both the Cortex-M and
the Kinetis K MPU to ensure none of the existing regions overlap with the region to be created.
This is done by going over all the logical regions in the config struct and checking if any of
them overlap with the memory chunk starting from unallocated_memory_start with a size of
unallocated_memory_size.

The implementation of the region alignment follows the algorithm described in Section
using subregions for the Cortex-M MPU, and the block-aligned algorithm of Section[4.3.1|for the
Kinetis K MPU. We would like to emphasize that the implementation for a block-aligned MPU

6.2. IMPLEMENTATION 64

like the Kinetis KMPU is much simpler than the implementation of a power-of-two aligned MPU
like the Cortex-M MPU, especially since Cortex-M subregions, when used properly, provide a
great improvement to flexibility. In fact, the body of allocate_region in the Kinetis K MPU is
only 23 lines long, whereas that of the Cortex-M MPU is 76 lines long.

6.2.2 Growing Regions Request

The implementation of the growing regions request in Tock consists of two methods: one for
allocating process memory and another for updating it. As no MPU region has to be created for
the grant since it is by default protected, only one MPU region is required for a process’s RAM.
In terms of allocating unused memory between the heap and the grant, we choose to allocate this
to the kernel over the user, with the operating system goal in mind to not give a user needless
access to it (even though it is empty).

Allocating Process Memory

The growing regions request is implemented in Tock specifically for a process’s RAM. A process
is also sometimes called an app, leading to this method’s name: allocate_app_memory_regiomn.
It takes in the same five parameters as the method mentioned in Section and two addi-
tional parameters: initial_app_memory_size and initial_kernel_memory_size that repres-
ent the initial memory required for the[process accessible memory (PAM)|and the grant, respect-
ively.

The implementation of allocate_app_memory_region differs for MPUs, since different MPUs
can use their own techniques to optimally subdivide this memory. Recall from Section[4.3.3|that
previously, the Cortex-M implementation used subregions for changing the alignment and sizes
of regions. In the allocate_app_memory_region implementation for the Cortex-M on the other
hand we use one region for process memory and use its subregions in order to divide it between
the and the kernel. This way, only one MPU region has to be used, as the default memory
map is protected. Furthermore, having the growth defined by subregions makes the growth of
regions increment in logical steps of one eighth of the region.

For power-of-two aligned MPUs, it is an invariant that if memory regions are sorted by des-
cending size and the first one aligns, they will always align to their start addresses. Since the
size of processes of Tock is known at boot time, this property can be used to sort processes in
descending order: this way, there will not be any external fragmentation given that the first re-
gion aligns. These statements are possible because of the fact that dynamic loading is not yet
implemented in Tock (although possible by design), and the start of in Tock aligns to a
large power of two. Now that Cortex-M subregions are used for aligning permissions within
the MPU region instead of for aligning start and size, its start and size constraints are similar to
other power-of-two aligned MPUs; therefore, we also sort the process memory regions for the
Cortex-M implementation in descending order.

For the implementation of the Kinetis K also only one region is used: one that covers the
and is rounded up to a granularity of 32. Again, the Kinetis K implementation is much simpler
than that of the Cortex-M, with 35 lines of code instead of 80.

65 CHAPTER 6. A PROCESS-BASED MPU INTERFACE

Updating Process Memory

To update the process a new method is implemented: update_app_memory_region. It is
executed every time brk() and alloc() are called, and the check to see if a region has grown
beyond its initially allocated memory is now done inside this method in the MPU implementa-
tion, contrary to in the process manager as was the case in the region-based interface. Hence, an
MPU implementation can decide what to do when update_app_memory_region is called.

In our implementation for the Cortex-M MPU, we choose to simply recompute all regions at
every call of either brk() or alloc() for two reasons:

1. In practice, brk() and alloc() are rarely ever called in Tock, and so the computational
overhead caused by recomputing regions will be relatively low.

2. As the process manager only has information regarding the logical regions and cannot
distinguish anything from physical regions, it would take an additional parameter to make
the process manager aware of this. This is especially hard because of possible subregion
usage, and adding such a parameter would lead to a needless increase in complexity and
communication.

For the Kinetis K, we make the same decision in light of these two reasons in addition to a third
one: since the Kinetis K has the fine granularity of 32 bytes, practically every call to brk() or
alloc() will need to a recomputation of regions anyways.

Naturally, there still exists a point where a process grows too much at runtime and crashes. For
the Cortex-M MPU implementation, as subregions are used to give permissions to the user level,
this happens when the end of the last enabled subregion grows into the grant or vice versa. For
the Kinetis K, this occurs only when the and grant grow into each other with a precision
of 32 bytes.

6.2.3 Access Permissions

We define a Permissions enum with five options as discussed in Section[6.1.3] It is the respons-
ibility of the MPU implementation to convert these permissions into valid bit fields for register
values. As all the chosen MPUs support these five options, there is no need to deal with an error
case considering these permissions can always be set.

Because the default memory map now only has to be protected for the user level, it does not
matter what happens to the background region for the supervisor level. For the Kinetis K im-
plementation, this leads to an extra available region in comparison to the region-based interface,
since it has to use one region to make the default memory map accessible for the supervisor mode
as discussed in Section As for the Cortex-M, because it has specific functionality for the
default memory map anyways (Section[3.2.4), the background region is made accessible for the
supervisor to allow support for a possible future use case.

6.2.4 Overview

An overview of the implementation of the process-based MPU interface in Tock is displayed in
Listing@ In the three methods allocate_regions, allocate_app_memory_region and
update_app_memory_region, two additional parameters are passed besides the ones discussed.

6.3. EVALUATION 66

The firstis permissions, containing one of the five possible permissions as defined in the Permission
enum. The second is the config struct in which regions are stored as proposed in Section[£.1} A
key difference in comparison to the region-based interface shown in Section is that the
config struct is now passed in, instead of being returned. Where the region-based interface en-
tirely recomputes the config every time a region changes, the process-based interface lets the
MPU implementation maintain and update config, by passing it in as a mutable reference that

all these three methods borrow (Listing [3) while executing. In doing so, the MPU implementa-
tion is also free to use more regions when necessary. Every time after one of these three methods

is called, the hardware registers are written to by calling conf igure_mpu using the config struct.

In addition, configure_mpu is called by the process manager at every context switch.

As in the region-based interface, all methods now have a default method definition as discussed
in Section[4.4} allowing platforms that do not have an MPU to run on Tock. For allocate_region
and allocate_app_memory_region, a region is returned that is equal to the requested start and size,
and for update_app_memory_region a simple success value (0k) is returned.

6.3 Evaluation

We proceed by evaluating the process-based interface. First, the interface is compared using our
example of three concurrent processes, and a comparison is done with the existing and region-
based interfaces. Next, the portability and performance are discussed, after which the evaluation
is summarized.

6.3.1 Memory

For the implementation described in Section we evaluate the performance in terms of effi-
ciency in memory allocation for the same situation as the existing and region-based interface,
with the three running processes crc, ip_sense and ac.

The allocation of flash is similar to the situation shown in the evaluation of the region-based
interface in Section [5.3.1] The only two differences are the absence of the min_offset para-
meter, which for flash was set to zero anyways, and lower_bound (now min_region_size) is
not wrapped in an Option anymore. Therefore, we now take a look at what has changed: the
memory situation inRAM] and specifically the allocating and updating of its MPU regions.

Allocating Process Memory

First, processes are sorted by their size in RAM. Since ip_sense has a [PAM]of 7,060 bytes as
shown in Table it is placed first in memory, followed up by crc and ac. Booting proceeds
by the process manager allocating memory with unallocated_memory_start set to 0x20004000,
unallocated_memory_size equal to the size until the end of RAM isreached and amin_region_size
of 7,060+2, 048 = 9, 108 bytes, according to the actual required memory and a margin for poten-
tial growth of these regions. Now that the Cortex-M implementation does not use subregions for
alignment anymore, this size is simply rounded up to a power of two resulting in a region size
of 16 kB. Also, there is no need to compute an MPU region for the grant region, since memory
is by default protected. As for the enabled subregions, the algorithm calculates that using four

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

67 CHAPTER 6. A PROCESS-BASED MPU INTERFACE
/// Access permissions.
pub enum Permissions {

ReadWriteExecute, ReadWriteOnly, ReadExecuteOnly, ReadOnly, ExecuteOnly
}
/// MPU region.
pub struct Region {

start_address: *const u8, size: usize
}
pub trait MPU {

/// Enables the MPU.

fn enable_mpu(&self) {}

/// Disables the MPU.

fn disable_mpu(&self) {}

/// Returns the total number of regions supported by the MPU.

fn number_total_regions(&self) -> usize {0}

/// Allocates a new MPU region.

/// Returns the start and size of the allocated MPU region.

fn allocate_region(&self, unallocated_memory_start: *const u8,
— unallocated_memory_size: usize, min_region_size: usize, permissions:
— Permissions, config: &mut Self::MpuConfig,

) -> Option<Region>

{Some ((unallocated_memory_start, min_region_size))}

/// Allocates MPU region(s) for a process's RAM.

fn allocate_app_memory_region(&self, unallocated_memory_start: *const u8,
— unallocated_memory_size: usize, min_memory_size: usize,
— initial_app_memory_size: usize, initial_kernel_memory_size: usize,
— permissions: Permissions, config: &mut Self::MpuConfig,

) -> Option<(*const u8, usize)>

{Some ((unallocated_memory_start, min_region_size))}

/// Updates MPU region(s) for a process's RAM.

fn update_app_memory_region(&self, app_memory_break: *const u8,
— kernel_memory_break: *const u8, permissions: Permissions, config: &mut
— Self::MpuConfig,

) -> Result<(), O> {0k(()}

/// Configures the MPU with the provided region configuration.

fn configure_mpu(&self, config: &Self::MpuConfig) {}
}

Listing 7: Simplified overview of the process-based MPU interface.

6.3. EVALUATION 68

ip_sense crc ac
. Total: 8192 Total: 8192
0x20008000 ik 16384 0x2000A000 0x2000C000
Grant (748) Grant (816) Grant (724)
0x20007D14 0x20009CDO0 C 0x2000BD2C C
Unused
Unused
(2548) (3296)
0x20009340 | <

0X2000B04C |1 = 1

Unused
(8576) 0x20008D30
0x2000AA40
0x20008800 0x2000A800
0x200086A0 0x2000A6C0
0x20005B94 __
0x20008000 0x2000A000
0x2000554C
0x20004800

0x20004660 '

0x20004000

0x00033000 0X00036000 —— 0x00038000 -

0x00033000

0x00030000

. PAM region, full access

. Flash region, read-only access

Figure 6.1: Overview of process memory using the process-based MPU interface for the Cortex-
M MPU in Tock. Shown is the memory and MPU allocation of three memory-contiguous pro-
cesses running concurrently using this interface. A more detailed explanation is given in Sec-

tion @

69 CHAPTER 6. A PROCESS-BASED MPU INTERFACE

0x2000C000
0x2000B800
0x2000B000
0x2000A800
0x2000A000
0x20009800
0x20009000

0x20008800

0x20008000

0X20007800

0X20007000 f==———=—====d e

0X20006800

0x20006000

0x20005800

0x20005000

0x20004800

0x20004000

Figure 6.2: Overview of subregion usage for the in the situation shown in Figure Full
lines represent regions, and dashed lines indicate subregions.

of its eight subregions is sufficient to cover the stack, data and heap, resulting in a logical region
size of 8 kB (16 kB/8 x 4 = 8 kB).

When crc is context switched to, memory is allocated for it with a start address of 0x20008000,
amin_region_size of 4,928 + 2,048 = 6,976 bytes and similar other values, resulting in a region
of 8,192 bytes. Now, the first five subregions are enabled to cover a range of 5,120 bytes greater
than the required 4,928 bytes. On the context switch to ac a similar thing occurs: a region of 8
kB is allocated with 5 kB of subregions enabled.

Updating Process Memory

The and grant can be updated at runtime by calling update_app_memory_region, that is
called in both brk () and alloc(), and recomputes the region configuration for the active pro-

6.3. EVALUATION 70

cess. With ip_sense for instance, the first 1,132 bytes of growth for the heap will not change the
subregion configuration at all. With a growth of 1,133 bytes however, five out of eight subregions
are enabled, and all memory until 10,240 bytes (10 kB) is covered.

As for growth of the grant, nothing in particular has to happen since the unused memory is by
default allocated to it. What does happen on every call of update_app_memory_regionis a check
to see if the grant has grown into the[PAM,] in this case being the end of the last enabled subre-
gion. If this happens to be so, memory has ran out for the process leading to its failure. Region
growth of the other process is really similar to this scenario, where we simply grow and shrink
subregions whenever necessary. This is opposed to the region-based interface as evaluated in
Section 5.3} where we had to deal with complicated power-of-two region alignments.

Comparison

A comparison of the memory usage for the existing, region-based and process-based interface
given the example of three running processes is displayed in Table A brief summary of the
three interfaces given this table is as follows:

Existing Interface As the existing interface uses the Cortex-M subregions only for aligning the
start address, all regions are a power of two leading to an inefficient usage of flash memory.
Regions are allowed to overlap leading to a somewhat higher possible (and unlikely)
growth for ip_sense, because this interface is specifically created for the Cortex-M. How-
ever, in all other aspects the existing interface performs worse in memory than the other
two interfaces, even though it does not even work on any other MPU.

Region-Based Interface Becausein the region-based interface processes are independently placed
as efficiently as possible, this leads to a low total memory usage in both flash and
while being architecture agnostic. However, the region-based interface does suffer from
external fragmentation, and most importantly, supports region growth very poorly (espe-
cially that of the grant).

Process-Based Interface The process-based offers the solution for being both architecture ag-
nostic and having a relatively low memory overhead. No external fragmentation occurs,
but some more internal space is reserved for the and grant to grow into. In addi-
tion, because of the way Cortex-M subregions grow, region growth takes place in more
fine-grained linear steps for both the and grant region.

We would like to emphasize that these examples are given in order to clarify the subtle differ-
ences between the interfaces. The greatest contribution this work proposes is the architecture
agnosticism of the interface, which is something both the region-based and process-based inter-
face achieve.

Flash Memory Footprint

Since the additions made add to the number of lines of code in the Tock kernel, this leads to an
increased memory footprint. By checking the size of the binaries, the difference in size between
the existing and process-based interface is found. In the current Tock version, Tock 1.2, the total
memory size in terms of code/text memory Tock occupies for the Hail development board[] is

Thttps://github.com/labl1/hail

https://github.com/lab11/hail

71 CHAPTER 6. A PROCESS-BASED MPU INTERFACE

Feature Existing Region-Based | Process-Based
Total RAM| Usage 32 kB 26 kB 32 kB
Total Flash Usage 40 kB 32 kB 32 kB
External Fragmentation 0 kB 0.625 kB 0 kB
Maximum [PAM|Size for crc 7 kB 7 kB 7 kB
Maximum [PAM)|Size for ip_sense | 15kB 8 kB 14 kB
Maximum [PAM]|Size for ac 7 kB 7 kB 7 kB
Maximum Grant Size for crc 2 kB 1.875 kB 3kB
Maximum Grant Size for ip_sense || 8 kB 1.75 kB 8 kB
Maximum Grant Size for ac 2 kB 1.75 kB 3kB
Region Growth Steps Exponential | Varies Linear

Table 6.1: Comparison of memory usage for the existing, region-based and process-based in-
terface given the example of three running processes. Both the maximum possible region sizes
after growing and the total memory usage are shown.

83,620 bytes. With the inclusion of the new process manager, MPU interface, MPU implementa-
tions and other small changes, the flash size is increased to 84,468, corresponding to an increase
of 848 bytes or 1.0%.

6.3.2 Portability

The process-based interface is able to support all region-based MPUs. Contrary to the region-
based interface, it is able to support barrier-based MPUs like the nRF51 MPU as discussed in
Section Recall that barrier-based MPUs are only able to protect memory at one side of a
barrier, and therefore Tock only supports the running of one process in order to guarantee pro-
cesses are not able to read each others memory. Because of this, the sum of start and size can
simply be used as an address value for the barrier: those of allocate_region for flash and

allocate_app_memory_region for

Another aspect making this interface more portable is that it is easier to implement and clearer to
read. The existing interface is Cortex-M specific and unclear in its details, and the region-based
interface has additional complexity for supporting absolute region requests. Updating
with one method as in the process-based interface makes the interface simpler to grasp.

6.3.3 Performance

Each process has its own MPU region configuration. As such, the MPU has to be reconfigured
at every context switch, and the existing design does this by recomputing MPU regions every
time. In Section [4.1] the storage of physical regions is proposed, aiming to reduce needless com-
putational overhead in case a process’s region configuration has not changed from its previous
execution slot. For the process-based interface, we have implemented this storage of regions and
now proceed by evaluating its impact.

In order to measure the context switching overhead in Tock, we have configured a GPIO pin to
produce a high voltage after taking back control from a process, and a low voltage right before

6.3. EVALUATION 72

starting the next. We have used a logic analyzelﬂ to measure the time difference between this
toggling. This test was performed on the Hail development board on Tock 1.2, with both the
existing and the new MPU interface in which regions are stored. The results of this test are
an average context switching overhead of 54.4 us for the existing interface and 43.4 us for the
new interfaces, resulting in a speedup of 25.34%. Note that the performance results are equal
for the region-based and process-based interface, as their differing aspects do not involve the
performance.

6.3.4 Summary

The process-based interface presents different methods for creating non-growing and growing
regions. Because of this differentiation, regions that do not grow at runtime such as flash can be
allocated as efficiently as in the region-based interface, and memory that does require growth
such as process RAM can now also be efficiently allocated. Letting the MPU implementation
decide on region allocation makes the use of multiple regions and MPU-specific optimizations
such as the Cortex-M subregions possible. In addition, having the MPU implementation be
aware of how memory is allocated (where the next process RAM starts) allows it to optimally
allocate the grant region without any external fragmentation.

When using the region-based interface, the two main problems are allocating regions efficiently
without having external fragmentation, and region growth for power-of-two aligned MPUs.
With the process-based interface we have alleviated these problems, and arrived at a generic
interface which supports growing regions and has minimal external fragmentation.

2Galeae Logic 8, https:/ /www.saleae.com/

Chapter 7

Conclusions and Future Work

A new generation of memory isolation mechanisms naturally draws the attention of many due
to a large number of bugs related to memory management in resource-constrained systems.
Tock brings flexible multiprogramming to this tier of computing, leading to new opportunities
and capabilities for low-power embedded systems, while providing memory safety using the
novel mechanisms that Rust and MPUs provide. Although Tock is designed to be deployed on a
variety of hardware platforms, its implementation currently only supports platforms containing
the Cortex-M processor.

In this thesis, we investigate the feasibility of supporting a wide range of MPUs in Tock efficiently
and without losing utility by answering the following research question:

Can an Architecture-Agnostic MPU interface be created in Tock?

We now return to this main research question and the formulated sub-questions, discussing how
these questions are answered. Moreover, we identify remaining problems and improvements in
order to provide future research directions.

7.1 Contribution & Results

In this research, the objective has been to explore the ability to make platforms memory-safe for
user processes by utilizing the memory safety features of Rust in combination with the hard-
ware isolation provided by MPUs through using Tock. Although several approaches have been
suggested to provide memory safety on more than one differing platform, previous work has
been unable to provide memory safety in an efficient way due to additions in runtime overhead,
complex language modifications and the lack of dynamic allocation.

In Section[1.2} we identify three sub-questions of the main research question. To answer the first
sub-question, a study of MPUs in the embedded system landscape is performed by selecting a
variety of MPUs and comparing their key differences in terms of alignment. In addition, the
number of available regions, possible access permissions, semantics in overlapping regions and
default access permissions are analyzed for each of these MPUs. Furthermore, an analysis of
the memory allocation model in Tock discerns the main problems of its current state, and in
particular its entanglement with the Cortex-M MPU. Based on these analyses, the conclusion

73

7.2. FUTURE WORK 74

is drawn that the main research challenge of designing a generic MPU interface for Tock lies
within region allocation for two different types of MPUs: power-of-two aligned MPUs and block-
aligned MPUs.

The second sub-question describes the problem of creating an interface that does not assume
any knowledge regarding what kind of application the MPU will be used for. In order to do
this, several design considerations are made; in particular algorithms for flexible and efficient
region alignment are designed for all selected MPUs. The design of a region-based interface is
proposed, which is based on the premise of offering true platform independency. It assumes
no information regarding the application of MPU regions, leading to a straightforward interface
that moves most complexity to the client. The region-based interface uses a relative and absolute
region request in order to separate initially allocating regions and growing regions at runtime.
Since the region-based interface is generic and independent of the target application, it positively
answers the second sub-question.

The third and final sub-question investigates the ability of a generic MPU interface to work effi-
ciently, not losing any MPU-specific optimizations. Unfortunately, as the region-based interface
runs into problems due to the large variation in MPU designs, it fails to answer this research
question. In particular, the two main problems are the inability to consistently support region
growth and external fragmentation in power-of-two aligned MPUs.

In order to find a positive answer to the third sub-question, the process-based interface is pro-
posed. This interface contains functionality geared towards both non-growing and growing
regions. Non-growing region requests are used to allocate regions that do not grow during
runtime such as flash, whereas growing region requests are used for situations in which two
regions grow towards each other. In particular, a growing region request gives an MPU imple-
mentation the freedom to choose proper regions according to memory requirements, contrary
to forcing the MPU implementation to allocate regions independently as was the case in the
region-based interface. This enables use of optimizations such as Cortex-M subregions, result-
ing in minimal external fragmentation in addition to support for growing regions. In terms of
performance, the process-based interface delivers a speedup of 25.34% at the cost of 848 bytes
or an 1.0% overhead in flash. Most importantly, the process-based interface provides a level of
memory efficiency and optimality required from individual MPUs, and thereby allows Tock to
become architecture-agnostic in an effective manner.

7.2 Future Work

Power-of-two aligned MPUs are more prominent than block-aligned MPUs because they are less
expensive in terms of cost and performance. In terms of hardware efficiency, this is good. How-
ever, the power-of-two alignment constraint significantly complicates the process of creating an
MPU interface. Nearly all the problems discussed in this research are caused by MPUs having
a power-of-two constraint, and because of this the region-based interface is unsuitable and a
process-based interface is required. Would the MPU landscape ever converge to a block-aligned
MPUs, the interface should change accordingly.

Although an MPU implementation for more hardware platforms would be a great way to test
the value of the proposed MPU interfaces, unfortunately this would require Tock to support
more hardware platforms first. Since a port for the MK66 already existed with the only main
thing missing being an MPU implementation, creating and testing these implementations us-

75 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

ing the new MPU interface was a realizable feat. However, porting an entire operating system
like Tock to other hardware platforms involves much more factors than just the MPU. Seeing as
how the process-based interface we propose is relatively straightforward and well documented,
and so are the implementations for the Cortex-M and Kinetis K MPU, we believe supporting
other platforms safely should now be a much easier task. The implementation of block-aligned
MPUs is a straightforward task. As for the implementation of other power-of-two MPUs than
the Cortex-M (that do not support subregions), we propose using at least more than one MPU
region within a process’sfrandom access memory (RAM)] in order to ensure a more fine-grained
alignment within the process[RAM|

The deletion of regions is not yet implemented in the process-based MPU interface. As the
flash and[RAM]regions for a process do not require deletion during runtime, and Tock currently
reallocates all memory on the addition or deletion of a process, such a feature is simply not
useful in Tock at present. Even [inter-process communication (IPC)|is in a very experimental
stage in Tock 1.2, such that dynamic reallocation of [PC]|is not even supported in the kernel.
As these features evolve however, the MPU interface will require functionality for deletion of
regions.

Appendix A

Register Interface

An update is made to simplify writing to hardware registers by updating the register interface
for the Cortex-M MPU implementation. Instead of writing to memory by completely exposing
registers, they are marked as ReadOnly, WriteOnly or ReadWrite, matching the way the hard-
ware exposes them. Furthermore, with this updated register interface text is translated into
bitfields. For instance, enabling the MPU in the old interface was done as follows:

regs.control.set(0b101);

A programmer that wants to create a driver in Tock requires knowledge of the exact registers
in order to make sure that this is correct, making this a complex and bug-prone line of code.
Therefore, we now do this with an updated register interface:

regs.control.write(Control: :ENABLE: :CLEAR) ;

A register interface like this is more expressive and prevents mistakes when implemented. For
instance, if a programmer of the kernel accidentally writes to the RegionBaseAddress register
instead of the Control register, the code would no longer compile since it does not contain an
ENABLE field. As the register interface is created by using the unsafe keyword, there must be
programmed with care.

In order to even further simplify this process, we define a dedicated function that handles the
conversion of variables to register values, thereby taking complexity out of the function that al-
locate regions. This entails transforming variables such as region start and size. For instance,
in the existing implementation, setting up the bit string to write to the registers is done as fol-
lows:

Some (unsafe
Region: :new(
(start | 1 << 4 | (region_num & Oxf)) as u32,
1 | (region_size.exp::<u32>() - 1) << 1 | ap << 24 | xn << 28,
b
Whereas the new implementation does this in a more clear manner:
CortexMRegion: :new(start, size, region_start, region_size, region_num,

— subregion_mask, permissions)

77

78

Note that since we now want to return both logical and physical regions as discussed in Sec-
tion we need to send the start, size and permissions of the covered memory region to the
interface in addition to the Cortex-M specific underlying region start, underlying region size,
and subregion mask (the bitfield that indicates which subregions are enabled). Furthermore,
notice that because of this new register interface, there is no need to use the unsafe keyword
anymore: all use of it is moved to the kernel.

Bibliography

[1] W.Obile, “Ericsson mobility report: on the pulse of the networked society,” Ericsson mobility
report, June 2015.

[2] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay, J. Hill,
M. Welsh, E. Brewer et al., “Tinyos: An operating system for sensor networks,” in Ambi-
ent intelligence. Springer, 2005, pp. 115-148.

[3] B. Anderson, L. Bergstrom, M. Goregaokar, J. Matthews, K. McAllister, J. Moffitt, and
S. Sapin, “Engineering the servo web browser engine using rust,” in Proceedings of the 38th
International Conference on Software Engineering Companion. ACM, 2016, pp. 81-89.

[4] S. M. Alnaeli, M. Sarnowski, M. S. Aman, A. Abdelgawad, and K. Yelamarthi, “Vulnerable
¢/c++ code usage in iot software systems,” in Internet of Things (WF-IoT), 2016 IEEE 3rd
World Forum on. 1EEE, 2016, pp. 348-352.

[5] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage, K. Koscher,
A. Czeskis, F. Roesner, T. Kohno et al., “Comprehensive experimental analyses of automot-
ive attack surfaces.” in USENIX Security Symposium. San Francisco, 2011, pp. 77-92.

[6] M. Khera, “Think like a hacker: Insights on the latest attack vectors (and security controls)
for medical device applications,” Journal of diabetes science and technology, vol. 11, no. 2, pp.
207-212,2017.

[7] R. Morris and K. Thompson, “Password security: A case history,” Communications of the
ACM, vol. 22, no. 11, pp. 594-597, 1979.

[8] A. Costin, J. Zaddach, A. Francillon, D. Balzarotti, and S. Antipolis, “A large-scale analysis
of the security of embedded firmwares,” in USENIX Security Symposium, 2014, pp. 95-110.

[9] N. D. Matsakis and F. S. Klock II, “The rust language,” in ACM SIGAda Ada Letters, vol. 34,
no.3. ACM, 2014, pp. 103-104.

[10] H. Chen, Y. Mao, X. Wang, D. Zhou, N. Zeldovich, and M. F. Kaashoek, “Linux kernel
vulnerabilities: State-of-the-art defenses and open problems,” in Proceedings of the Second
Asia-Pacific Workshop on Systems. ACM, 2011, p. 5.

[11] A. Levy, B. Campbell, B. Ghena, D. B. Giffin, P. Pannuto, P. Dutta, and P. Levis, “Multipro-
gramming a 64kB computer safely and efficiently,” in Proceedings of the 26th Symposium on
Operating Systems Principles. ACM, 2017, pp. 234-251.

[12] A. Levy, B. Campbell, B. Ghena, P. Pannuto, P. Dutta, and P. Levis, “The case for writing a
kernel in rust,” in Proceedings of the 8th Asia-Pacific Workshop on Systems. ACM, 2017, p. 1.

79

BIBLIOGRAPHY 80

[13] ARM, “Cortex M4 Generic User Guide,” ARM DUI 0553A (ID121610), pp. MPU: 4-37
to 4-47, 2010. [Online]. Available: http://infocenter.arm.com/help/topic/com.arm.doc.
ddi0439b/DDI0439B_cortex_m4_rOp0_trm.pdf

[14] K. Asanovié¢ and D. A. Patterson, “Instruction sets should be free: The case for risc-v,” EECS
Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2014-146, 2014.

[15] A. Waterman and K. Asanovi¢, “The RISC-V Instruction Set Manual Volume I: User-Level
ISA, Document Version 2.2,” RISC-V Foundation, Tech. Rep., May 2017. [Online]. Available:
https:/ /riscv.org/specifications/

[16] A.Silberschatz, P. B. Galvin, and G. Gagne, Operating system concepts essentials. John Wiley
& Sons, Inc., 2014.

[17] L. C. Bertolotti and T. Hu, Embedded Software Development: The Open-Source Approach. CRC
Press, 2016.

[18] C. Metz, “The Epic Story of Dropbox’s Exodus From the Amazon Cloud
Empire,” Jun 2017. [Online]. Available: https:/ /www.wired.com/2016/03/
epic-story-dropboxs-exodus-amazon-cloud-empire/

[19] R. R. Schaller, “Moore’s law: past, present and future,” IEEE spectrum, vol. 34, no. 6, pp.
52-59, 1997.

[20] J. A. Tov and R. Pucella, “Practical affine types,” in ACM SIGPLAN Notices, vol. 46, no. 1.
ACM, 2011, pp. 447-458.

[21] S. Klabnik and C. Nichols, The Rust Programming Language. No Starch Press, 2018.

[22] Stack Overflow, “Developer survey results: 2018,” Available at: ht-
tps://insights.stackoverflow.com/survey/2018/ (accessed 10 September 2016)., 2018.

[23] “Tock: An embedded operating system designed for running multiple concurrent,
mutually distrustful applications on low-memory and low-power microcontrollers.”
[Online]. Available: https://www.tockos.org/

[24] E. Brown, “Embedded linux keeps growing amid iot disruption, says
study,” Mar 2015. [Online]. Available: https:/ /www.linux.com/news/
embedded-linux-keeps-growing-amid-iot-disruption-says-study

[25] C. Sabri, L. Kriaa, and S. L. Azzouz, “Comparison of IoI' constrained devices operating
systems: A Survey,” in Computer Systems and Applications (AICCSA), 2017 IEEE/ACS 14th
International Conference on. 1EEE, 2017, pp. 369-375.

[26] D. Gay, P. Levis, R. Von Behren, M. Welsh, E. Brewer, and D. Culler, “The nesC language: A
holistic approach to networked embedded systems,” Acm Sigplan Notices, vol. 49, no. 4, pp.
41-51, 2014.

[27] A.Dunkels, B. Gronvall, and T. Voigt, “Contiki-a lightweight and flexible operating system
for tiny networked sensors,” in Local Computer Networks, 2004. 29th Annual IEEE International
Conference on. 1EEE, 2004, pp. 455-462.

[28] E. Baccelli, O. Hahm, M. Gunes, M. Wahlisch, and T. C. Schmidt, “Riot os: Towards an os
for the internet of things,” in Computer Communications Workshops (INFOCOM WKSHPS),
2013 IEEE Conference on. 1EEE, 2013, pp. 79-80.

[29] R. Barry, The FreeRTOS reference manual. Amazon Web Services, 2009.

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0439b/DDI0439B_cortex_m4_r0p0_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0439b/DDI0439B_cortex_m4_r0p0_trm.pdf
https://riscv.org/specifications/
https://www.wired.com/2016/03/epic-story-dropboxs-exodus-amazon-cloud-empire/
https://www.wired.com/2016/03/epic-story-dropboxs-exodus-amazon-cloud-empire/
https://www.tockos.org/
https://www.linux.com/news/embedded-linux-keeps-growing-amid-iot-disruption-says-study
https://www.linux.com/news/embedded-linux-keeps-growing-amid-iot-disruption-says-study

81 BIBLIOGRAPHY

[30] C.-C. Han, R. K. Rengaswamy, R. Shea, E. Kohler, and M. Srivastava, “Sos: A dynamic
operating system for sensor networks,” in Proceedings of the Third International Conference on
Mobile Systems, Applications, And Services (Mobisys). ~Citeseer, 2005, pp. 1-2.

[31] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B. Shucker, C. Gruenwald, A. Torger-
son, and R. Han, “Mantis os: An embedded multithreaded operating system for wireless
micro sensor platforms,” Mobile Networks and Applications, vol. 10, no. 4, pp. 563-579, 2005.

[32] G. C. Necula, S. McPeak, and W. Weimer, “Ccured: Type-safe retrofitting of legacy code,”
in ACM SIGPLAN Notices, vol. 37, no. 1. ACM, 2002, pp. 128-139.

[33] R. Kumar, E. Kohler, and M. Srivastava, “Harbor: software-based memory protection for
sensor nodes,” in Proceedings of the 6th international conference on Information processing in
sensor networks. ACM, 2007, pp. 340-349.

[34] L. Gu and J. A. Stankovic, “t-kernel: Providing reliable os support to wireless sensor net-
works,” in Proceedings of the 4th international conference on Embedded networked sensor systems.
ACM, 2006, pp. 1-14.

[35] F. Sant’Anna, N. Rodriguez, R. lerusalimschy, O. Landsiedel, and P. Tsigas, “Safe system-
level concurrency on resource-constrained nodes,” in Proceedings of the 11th ACM Conference
on Embedded Networked Sensor Systems. ACM, 2013, p. 11.

[36] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney, “Region-based
memory management in cyclone,” ACM Sigplan Notices, vol. 37, no. 5, pp. 282-293, 2002.

[37] K. Eldefrawy, G. Tsudik, A. Francillon, and D. Perito, “Smart: Secure and minimal architec-
ture for (establishing dynamic) root of trust.” in NDSS, vol. 12, 2012, pp. 1-15.

[38] J. Noorman, P. Agten, W. Daniels, R. Strackx, A. Van Herrewege, C. Huygens, B. Pren-
eel, I. Verbauwhede, and F. Piessens, “Sancus: Low-cost trustworthy extensible networked
devices with a zero-software trusted computing base.” in USENIX Security Symposium,
2013, pp. 479-494.

[39] J. Noorman, J. V. Bulck, J. T. Miihlberg, F. Piessens, P. Maene, B. Preneel, I. Verbauwhede,
J. Gotzfried, T. Miiller, and F. Freiling, “Sancus 2.0: A low-cost security architecture for iot
devices,” ACM Transactions on Privacy and Security (TOPS), vol. 20, no. 3, p. 7, 2017.

[40] P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan, “Trustlite: A security architec-
ture for tiny embedded devices,” in Proceedings of the Ninth European Conference on Computer
Systems. ACM, 2014, p. 10.

[41] F. Brasser, B. El Mahjoub, A.-R. Sadeghi, C. Wachsmann, and P. Koeberl, “Tytan: tiny trust
anchor for tiny devices,” in Proceedings of the 52nd Annual Design Automation Conference.
ACM, 2015, p. 34.

[42] J. Hester, T. Peters, T. Yun, R. Peterson, J. Skinner, B. Golla, K. Storer, S. Hearndon, K. Free-
man, S. Lord et al., “Amulet: An energy-efficient, multi-application wearable platform,” in
Proceedings of the 14th ACM Conference on Embedded Network Sensor Systems CD-ROM. ACM,
2016, pp. 216-229.

[43] Texas Instruments, “Msp430fr5969 16 mhz ultra-low-power microcontroller,” SLAS704G,
2016.

BIBLIOGRAPHY 82

[44] T. Hardin, R. Scott, P. Proctor, J. Hester, J. Sorber, and D. Kotz, “Application Memory Isol-
ation on Ultra-Low-Power MCUs,” in 2018 USENIX Annual Technical Conference (USENIX
ATC 18). USENIX Association, 2018, pp. 127-132.

[45]].Yiu, The Definitive Guide to ARM® Cortex®-M3 and Cortex®-M4 Processors. Newnes, 2013.

[46] ARM, “Embedded segment market update,” China Technical Seminar Series, 2015.
[Online]. Available: https://www.arm.com/zh/files/event/1_2015_ARM_Embedded_
Seminar_Richard_York.pdf

[47] ——, “Cortex m0+ generic user guide,” ARM DUI 0662B (ID011713), 2012. [Online]. Avail-
able: http://infocenter.arm.com/help/topic/com.arm.doc.dui0662b/DUI0662B_cortex_
mOp_rOpl_dgug.pdf

[48] ——, “Cortex m3 generic user guide,” ARM DUI 0552A (ID121610), 2010. [Online]. Avail-
able: http://infocenter.arm.com/help/topic/com.arm.doc.dui0552a/DUIO552A_cortex_
m3_dgug.pdf

[49] Nordic Semiconductor, “nRF52 Series API Reference,” Nordic Semiconductor, 2015.

[Online]. Available: https://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.
infocenter.sdk5.v14.0.0%2Fgroup__nrf__mpu.html

[50] Texas Instruments, “Tiva C Series TM4C129x,” SPMU363, 2014. [Online]. Available:
http:/ /www.ti.com/lit/ug/spmu363a/spmu363a.pdf

[61] —, “CC13x2, CC26x2 SimpleLink Wireless MCU,” SWCU185A, 2018. [Online]. Available:
http:/ /www.ti.com/lit/ug/swcul85a/swcul8ba.pdf

[52] A. Waterman and K. Asanovi¢, “The RISC-V Instruction Set Manual Volume II: Privileged
Architecture, Version 1.10,” RISC-V Foundation, Tech. Rep., May 2017. [Online]. Available:
https:/ /riscv.org/specifications/privileged-isa/

[53] NXP, “Kinetis K Series Microcontrollers (MCUs) Selector Guide,” A Performance and
Integration Series Based on 32-bit ARM®Cortex®-M4 Cores, 2018. [Online]. Available:
https:/ /www.nxp.com/docs/en/product-selector-guide / KINETISKMCUSELGD.pdf

[54] ARM, “Cortex m0 generic user guide,” ARM DUI 0497A (ID112109), 209. [Online]. Avail-
able: http://infocenter.arm.com/help/topic/com.arm.doc.dui0497a/DUI0497A_cortex_
mO_rOp0_generic_ug.pdf

[55] Nordic Semiconductor, “nRF51 Series Reference Manual,” Nordic Semiconductor, pp. 28-36,
2014. [Online]. Available: http:/ /infocenter.nordicsemi.com/pdf/nRF51_RM_v3.0.pdf

[56] Altera, “Nios ii classic processor reference guide,” Altera, pp. 3-2 to 3-54, 2016. [Online].
Available: https://www.altera.com/en_US/pdfs/literature/hb/nios2 /n2cpu_nii5v1.pdf

[57] R.E.Gonzalez, “Xtensa: A configurable and extensible processor,” IEEE micro, vol. 20, no. 2,
pp- 60-70, 2000.

[58] Cadence, “Xtensa LX7 Microprocessor,” RG-2017.5, pp. 33-39, 2017.

[59] Texas Instruments, “White paper: enhancing the KeyStone II architecture with multicore
RISC processing,” SPRY223,2013. [Online]. Available: https://www.multivu.com/assets/
54044 /documents/54044- ARM-A15-in-KeyStone-1I-White-Paper-original. pdf

[60] —, “66AK2Hxx Multicore DSP+ARM®KeyStone II System-on-Chip (SoC),” SPRS5866G,
p-79 to 92, 2017. [Online]. Available: http:/ /www.ti.com/lit/ds/symlink/66ak2h12.pdf

https://www.arm.com/zh/files/event/1_2015_ARM_Embedded_Seminar_Richard_York.pdf
https://www.arm.com/zh/files/event/1_2015_ARM_Embedded_Seminar_Richard_York.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dui0662b/DUI0662B_cortex_m0p_r0p1_dgug.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dui0662b/DUI0662B_cortex_m0p_r0p1_dgug.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dui0552a/DUI0552A_cortex_m3_dgug.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dui0552a/DUI0552A_cortex_m3_dgug.pdf
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk5.v14.0.0%2Fgroup__nrf__mpu.html
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk5.v14.0.0%2Fgroup__nrf__mpu.html
http://www.ti.com/lit/ug/spmu363a/spmu363a.pdf
http://www.ti.com/lit/ug/swcu185a/swcu185a.pdf
https://riscv.org/specifications/privileged-isa/
https://www.nxp.com/docs/en/product-selector-guide/KINETISKMCUSELGD.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dui0497a/DUI0497A_cortex_m0_r0p0_generic_ug.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dui0497a/DUI0497A_cortex_m0_r0p0_generic_ug.pdf
http://infocenter.nordicsemi.com/pdf/nRF51_RM_v3.0.pdf
https://www.altera.com/en_US/pdfs/literature/hb/nios2/n2cpu_nii5v1.pdf
https://www.multivu.com/assets/54044/documents/54044-ARM-A15-in-KeyStone-II-White-Paper-original.pdf
https://www.multivu.com/assets/54044/documents/54044-ARM-A15-in-KeyStone-II-White-Paper-original.pdf
http://www.ti.com/lit/ds/symlink/66ak2h12.pdf

83 BIBLIOGRAPHY

[61] NXP Semiconductors, “Kinetis K66 Sub-Family Reference Manual,” NXP Semiconductors,

pp- 449-472, 2017. [Online]. Available: https://www.nxp.com/docs/en/data-sheet/
K66P144M180SF5V2.pdf

[62] Texas Instruments, “KeyStone Architecture Memory Protection Unit (MPU),” SPRUGW5A,
pp- 3-1 to 3-4, 2013. [Online]. Available: http://www.ti.com/lit/ug/sprugwba/
sprugwba.pdf

[63] P. Bonzini, J. Hauser, and A. Waterman, “Risc-v hypervisor exstension,” 7th RISC-
V Workshop, 2017. [Online]. Available: https://content.riscv.org/wp-content/uploads/
2017 /12 /Tue0942-riscv-hypervisor-waterman.pdf

[64] Atmel, “The sam4l series: an arm-based flash mcu,” 42023H, 2016.

https://www.nxp.com/docs/en/data-sheet/K66P144M180SF5V2.pdf
https://www.nxp.com/docs/en/data-sheet/K66P144M180SF5V2.pdf
http://www.ti.com/lit/ug/sprugw5a/sprugw5a.pdf
http://www.ti.com/lit/ug/sprugw5a/sprugw5a.pdf
https://content.riscv.org/wp-content/uploads/2017/12/Tue0942-riscv-hypervisor-waterman.pdf
https://content.riscv.org/wp-content/uploads/2017/12/Tue0942-riscv-hypervisor-waterman.pdf

	Abstract
	Preface
	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Problem Statement
	Research Goal
	Contributions
	Thesis outline

	Background
	Operating Systems
	Kernels
	Processes

	Memory Management
	Memory Management Units
	Memory Protection Units

	Rust
	Ownership
	Borrowing
	Lifetimes
	Unsafe Rust

	Tock
	Overview
	Memory Isolation

	Related Work
	Embedded Operating Systems
	Software-based memory isolation
	Hardware-based memory isolation

	Memory Protection Units
	Choice of MPUs
	Region-Based Protection
	Key Features
	Access Permissions
	Overlapping Regions
	Default Access Permissions

	Barrier-Based Protection
	Memory Protection in Tock
	Process Memory Overview
	Current Shortcomings

	Design Considerations and Methodology
	Storing regions
	Overlapping Regions
	Challenges in Overlapping
	Avoiding Overlap

	Flexible Region Ranges
	Block-Aligned Algorithm
	General Power-of-Two Aligned Algorithm
	Cortex-M algorithm

	The MPU Trait
	Disabling the MPU
	Methodology

	A Region-Based MPU Interface
	Design
	Relative Region Request
	Absolute Region Request
	Simultaneous Allocation
	Access Permissions
	Default Access Permissions

	Implementation
	Relative Region Request
	Absolute region request
	Simultaneous Allocation
	Access Permissions
	Overview

	Evaluation
	Relative Region Request
	Absolute Region Request
	Summary

	A Process-Based MPU Interface
	Design
	Non-Growing Region Request
	Growing Regions Request
	Access Permissions

	Implementation
	Non-Growing Region Request
	Growing Regions Request
	Access Permissions
	Overview

	Evaluation
	Memory
	Portability
	Performance
	Summary

	Conclusions and Future Work
	Contribution & Results
	Future Work

	Register Interface

