
Model-based Lifecycle

Optimization of Well Locations

and Production Settings in

Petroleum Reservoirs





MODEL-BASED LIFECYCLE

OPTIMIZATION OF WELL

LOCATIONS AND PRODUCTION

SETTINGS IN PETROLEUM

RESERVOIRS

PROEFSCHRIFT

ter verkrijging van de graad van doctor

aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. dr. ir. J.T. Fokkema,

voorzitter van het College voor Promoties,

in het openbaar te verdedigen op

donderdag 17 april 2008 om 12:30 uur

door

Maarten Johan ZANDVLIET

werktuigkundig ingenieur

geboren te Washington, D.C., Verenigde Staten.



Dit proefschrift is goedgekeurd door de promotoren:

Prof. ir. O.H. Bosgra
Prof. dr. ir. J.D. Jansen

Samenstelling promotiecommisie:

Rector Magnificus, voorzitter

Prof. ir. O.H. Bosgra, Technische Universiteit Delft, promotor
Prof. dr. ir. J.D. Jansen, Technische Universiteit Delft, promotor
Prof. dr. ir. P.M.J. Van den Hof, Technische Universiteit Delft
Prof. dr. Y. Yortsos, University of Southern California
Prof. dr. ing. B.A. Foss, Norwegian Institute of Technology
Prof. dr. ir. A. Heemink, Technische Universiteit Delft
Prof. dr. W.R. Rossen, Technische Universiteit Delft
Prof. dr. P.L.J. Zitha, Technische Universiteit Delft, reservelid

This dissertation has been completed in partial fulfillment of the requirements of
the Dutch Institute of Systems and Control DISC for graduate study.

This research has been conducted in the framework of the “Integrated System
Approach Petroleum Production” (ISAPP) programme. The knowledge center
is a long-term co-operation of TNO, Shell and Delft University of Technology
to increase hydrocarbon recovery through the application of innovative reser-
voir development and management technologies. Financial support has also been
provided through the “Virtual Asset Learning and Understanding Environment”
(VALUE) programme, which is sponsored by Shell and Senter/Novem.

ISBN: 978-90-9022987-4

Keywords: petroleum, reservoir engineering, systems and control, optimization

Copyright c© 2008 by M.J. Zandvliet.

All rights reserved. No part of the material protected by this copyright notice may be re-

produced or utilized in any form or by any means, electronic or mechanical, including

photocopying, recording or by any information storage and retrieval system, without writ-

ten permission from the copyright owner.

Printed in the Netherlands.



to Peet





Aknowledgements

D
o ing a PhD over the past four years has been fantastic thanks to the support
of many people.

Paul, Okko and Jan-Dirk: thank you for your great supervision; I truly appreci-
ate all your time and effort. Having three supervisors may not be the fastest way
to publish, but it did inspire me to be thorough and approach a problem from
different angles. I will miss our collaboration - most of all our lengthy research
discussions in which one of us would often have a hard time convincing the rest
about a certain point! You pointed me in the right directions at the right times,
and I am very proud of our results. Thanks again for your guidance.

Special thanks to Gijs and Jorn for providing invaluable input into this thesis, and
simply for being great colleagues and friends. Gijs and Martijn: it was a privilege
to supervise your MSc theses, and as you can see your results have each resulted
in a chapter of this book. At Shell I would like to thank Roald and Sippe for all
the ‘bakkies’ during which you helped out with many a research difficulty, and
Roald and Hans for helping out with MoReS and co-authoring several papers. In
general I would like to thank the many present and former colleagues at DCSC
and at Applied Earth Sciences (there are too many of you to mention) for provid-
ing a great place to work! John, Mathilde, Eric, Sarah and Stine: thanks for your
constant interest and encouragement.

Jan, thanks for all the pleasant distractions. Finally, Peet: thanks for everything...
“gewoon logisch blijven nadenken” is by far the best advice I’ve ever had!

Amsterdam, March 2008

Maarten Zandvliet

vii



viii



Contents

Aknowledgements vii

1 Introduction 1

1.1 Demand for hydrocarbons . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Exploration and production of oil and gas . . . . . . . . . . . . . . . 2

1.2.1 Summary of E&P process . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Problems in the E&P industry . . . . . . . . . . . . . . . . . . 7

1.3 Opportunities to increase the recovery factor . . . . . . . . . . . . . 10

1.4 Literature overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4.2 Model-based optimization . . . . . . . . . . . . . . . . . . . . 13

1.4.3 Model reduction . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4.4 State estimation and parameter identification . . . . . . . . . 18

1.4.5 Closed-loop control . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.5.1 Research objective . . . . . . . . . . . . . . . . . . . . . . . . 23

1.5.2 Solution directions . . . . . . . . . . . . . . . . . . . . . . . . 23

1.5.3 Outline of thesis . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Reservoir Modeling 25

2.1 Black oil formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.2 Derivation of PDE’s . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.3 State-space formulation . . . . . . . . . . . . . . . . . . . . . 27

2.1.4 Single-phase flow reservoir models . . . . . . . . . . . . . . 31

2.1.5 Time discretization . . . . . . . . . . . . . . . . . . . . . . . . 32

ix



x Contents

2.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Uncertainty in reservoir models . . . . . . . . . . . . . . . . . . . . . 34

2.3.1 Sources of model uncertainty . . . . . . . . . . . . . . . . . . 34

2.3.2 Representing model uncertainty by multiple models . . . . 35

2.3.3 Limitations of reservoir models . . . . . . . . . . . . . . . . . 36

2.4 Chapter conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Optimal Control of Production Settings 39

3.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Necessary conditions for optimality . . . . . . . . . . . . . . . . . . 41

3.3 Bang-bang optimal solutions and singular arcs . . . . . . . . . . . . 43

3.4 Sufficient conditions for optimality . . . . . . . . . . . . . . . . . . . 46

3.5 Optimization methods . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5.1 Steepest descent method . . . . . . . . . . . . . . . . . . . . . 47

3.5.2 Switching time methods . . . . . . . . . . . . . . . . . . . . . 48

3.5.3 Alternative descent method . . . . . . . . . . . . . . . . . . . 48

3.6 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.7 Chapter conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Robust Optimization of Production Settings 57

4.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Optimization method . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Generating subsurface realizations . . . . . . . . . . . . . . . . . . . 61

4.4 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5 Chapter conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Optimal Well Placement 67

5.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Effect of production settings . . . . . . . . . . . . . . . . . . . . . . . 70

5.3 Optimal well placement using adjoint models . . . . . . . . . . . . . 72

5.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4.1 Application 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4.2 Application 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4.3 Application 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.6 Chapter conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



Contents xi

6 Controllability and Observability of Reservoir Models 83

6.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2 Controllability and observability . . . . . . . . . . . . . . . . . . . . 84

6.3 Balancing and truncation . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.4.1 Example 1: homogeneous permeability . . . . . . . . . . . . 90

6.4.2 Example 2: heterogeneous permeability . . . . . . . . . . . . 93

6.5 Effect of physical reservoir parameters . . . . . . . . . . . . . . . . . 95

6.6 Chapter conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7 Identification of Reservoir Parameters 97

7.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.2 Number of identifiable parameters . . . . . . . . . . . . . . . . . . . 100

7.3 Relevant spatial patterns of permeability . . . . . . . . . . . . . . . 101

7.4 Controllability and observability-based re- parameterization . . . . 105

7.5 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.6 Chapter conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

8 Conclusions and Recommendations 111

8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Bibliography 117

List of Symbols 127

List of Publications 131

Summary 133

Samenvatting 135

About the author 137



xii Contents



1 CHAPTER

Introduction

Th e coming years there is a need to increase production from petro-
leum reservoirs, and this thesis provides efficient tools to achieve

this through model-based dynamic optimization of wells and their pro-
duction settings. This chapter discusses some of the processes, problems
and opportunities in the exploration and production industry, and pro-
vides the motivation for the research presented in this thesis.

1.1 Demand for hydrocarbons

According to the International Energy Outlook 2006, the coming decades there
will be a significant growth in energy consumption as a result of robust economic
growth - EIA (2006); see Figure 1.1.
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Figure 1.1: World marketed energy use by energy type, 1980-2030 (EIA (2006)).
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2 Chapter 1 Introduction

While renewable energy sources become more economically competitive with fos-
sil fuels (i.e. oil, natural gas, and coal), oil in particular will remain the dominant
energy source until 2030. To meet the projected increase in world oil demand, total
petroleum supply in 2030 will need to be around 40 million barrels per day higher
than the 2003 level of 80 million barrels per day. The exploration and production
(E&P) industry is struggling to keep up with this increasing demand, which has
recently lead to a significant increase in crude oil prices - see Figure 1.2.
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Figure 1.2: Prices of crude oil, February 1998 - March 2008.

In order to understand how the research presented in this thesis can contribute
to increasing hydrocarbon production, the following sections discuss some of the
processes, problems and opportunities in the E&P industry.

1.2 Exploration and production of oil and gas

1.2.1 Summary of E&P process

Origin of oil and gas

Oil and gas originate from the remains of prehistoric plants and animals deposited
at the bottom of the oceans and swamps. Over millions of years, these layers
gradually stacked up and the resulting pressure and heat converted them into oil
and gas. Because oil and gas are less dense than water, they tend to migrate to-
wards the surface and will only form an accumulation, or reservoir, if they are
trapped by a layer of impermeable rock along the way. The subsurface is gen-
erally deformed over long periods of time, leading to folds, faults and fractures.
Reservoirs therefore have spatially varying rock properties, and these property
differences are referred to as heterogeneities.
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Exploration phase

Finding oil and gas reservoirs is a major challenge, since they can be located at
great depths (e.g. several kilometers) and in very inaccessible areas (e.g. the Arc-
tic). By sending sound waves through the ground and measuring how long they
take to bounce back off the different layers of rock, geoscientists create 3D maps
of the subsurface (i.e. seismic imaging). If a certain area seems promising, explo-
ration wells are drilled to verify whether oil or gas is indeed present. Core samples
and logs from these wells can be combined with the previously mentioned seismic
data to form models which can be used to roughly predict how field development
decisions affect future production. A reservoir or field (i.e. a collection of reser-
voirs related to the same geological structure) will obviously only be developed if
these predictions are promising enough.

Development phase

Developing a field essentially consists of drilling wells and connecting them to
the surface facilities from which the produced oil and gas can be transported to
refineries. The actual process of creating a well can be very complicated, and a
well can cost between 1-100 million dollars. A well is created by drilling a hole
and cementing a steel pipe (or casing) inside. Small holes (or perforations) are
made in the part of the casing that passes through the reservoir to provide a path
for the hydrocarbons to flow from the surrounding rock into the well. An example
of a reservoir with several wells is depicted in Figure 1.3.

Figure 1.3: Reservoir with multiple wells. The shading indicates fluid saturations.

Production phase

The production lifecycle of a reservoir is usually in the order of tens of years,
and can generally be divided into three stages. In the initial stage of production,
the reservoir pressure is higher than the bottom-hole pressure inside the well.
This natural pressure difference drives hydrocarbons toward the well, and this
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process is referred to as primary recovery. During primary recovery only a small
percentage of the initial hydrocarbons in place are usually produced. Referred
to as the recovery factor, this is only around 10% for oil reservoirs. Because of
production, however, the reservoir pressure declines and it may become necessary
to inject fluids (e.g. water or gas) through injection wells to ‘flood’ the reservoir by
driving the hydrocarbons to the production wells. This is referred to as secondary
recovery, during which around 15-40% of the original oil in place is produced.
Finally, tertiary recovery refers to techniques that alter the original properties of
oil, for example using chemicals, CO2 or steam.

Field development planning

When developing a field, the goal is often to maximize an economic criterion (e.g.
oil and gas revenues minus field development costs). The choices that have to be
made include the number, type, and location of wells, the type of surface facilities
and the required infrastructure. These choices are referred to as inputs, and their
effect can be measured through the produced volumetric flow rates of oil and gas
and the pressures in wells, referred to as outputs. This is depicted as an open-loop
process in Figure 1.4.

inputs

(decision on wells, surface

facilities and infrastructure)

reservoir outputs

(oil, water and gas production

rates; pressures in wells)

Figure 1.4: Field development planning. The decisions on wells, surface facilities
and infrastructure determine hydrocarbon production.

Numerical reservoir simulation models, or reservoir models for short, often play
an important role in field development planning. These models seek to describe
the effect of decisions on hydrocarbon production (i.e. the ‘reservoir’ block in Fig-
ure 1.4), and are often based on physical conservation laws. The time-varying
(dynamic) properties in reservoir models are generally the fluid pressures and
saturations, and are referred to as states. The remaining fluid properties (e.g. vis-
cosity or density, which can be functions of the state) and geological properties
(e.g. permeability or porosity) are generally considered to be time-invariant (sta-
tic), and are referred to as parameters1. Table 1.1 summarizes the terminology
used throughout this thesis.

The governing equations for multi-phase flow through porous media are a set of
mildly nonlinear parabolic (diffusion) equations, describing the rate of change of

1In the systems and control community a dynamical system with fixed parameters is formally called
a model, while one with free parameters is called a model structure. Throughout this thesis, however, we
only refer to models because it will be clear from the context whether the parameters are free or fixed.
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Name Description
inputs decisions on wells, surface facilities, infrastructure
outputs oil and gas production rates, pressures in wells
states fluid pressures and saturations
parameters fluid and geological properties

Table 1.1: Terminology.

pressures, coupled to a set of strongly nonlinear parabolic-hyperbolic (diffusion-
convection) equations, describing the rate of change of fluid saturations - Ewing
(1983), Jansen (2007); see also Chapter 2. The time constants of the pressure equa-
tion are typically in the order of hours to months, whereas the time constants of
the saturation equation can be up to thousands of years. The fluid velocities are
also usually much smaller than the propagation speeds of the pressure waves.
Under some simplifying assumptions the equations may therefore be decoupled
into a set of linear time-varying parabolic (diffusion) equations for pressures and
a set of nonlinear hyperbolic (transport) equations for saturations.

As mentioned earlier, the geological properties within a reservoir can vary sig-
nificantly over space. It is important to model the effect of these heterogeneities
because they can lead to preferential flow paths outside of which significant quan-
tities of oil can be bypassed and simply left behind. This is depicted in Figure 1.5,
where water is injected through the injection well on the left in order to flood
the reservoir by driving the oil to the production well on the right. The hetero-
geneities lead to an irregular-shaped oil-water front that, once it has reached the
production well, will lead to a flow path through which most of the injected water
will flow.

Figure 1.5: Process of water flooding using a horizontal injection and produc-
tion well. The irregular-shaped oil-water front is a result of the reservoir hetero-
geneities (after Brouwer (2004) and van Essen et al. (2006a)).
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Because reservoirs are generally heterogeneous, it is common in reservoir mod-
eling to divide the reservoir into a finite number of grid blocks whose geological
and fluid properties are assumed to be homogeneous. Unfortunately, adequately
describing the heterogeneities throughout a reservoir requires a huge number of
grid blocks, which in turn leads to a huge number of pressures and saturations (at
least one pressure and saturation for each grid block). As a result, the number of
parameters and states are generally in the order of 104 − 106 and predicting the
effect that field development decisions have on hydrocarbon production can take
hours to simulate.

To make matters worse, the parameters and initial states can only be estimated to
a very limited extent (e.g. through core samples and seismic data). In other words,
not only are reservoir simulations computationally demanding, their predictions
of oil and gas production are also very uncertain. For example, if the reservoir
heterogeneities in Figure 1.5 are different from those used in the reservoir model,
water may reach the producer much earlier than anticipated by reservoir simula-
tions. When this happens, it can cease to be economically viable to keep produc-
ing from that particular well and it will consequently be shut-in. Had this water
breakthrough been predicted accurately, the wells would have been drilled in a
different location or else operated in a different fashion.

Reservoir management

Field data is therefore often gathered throughout the production lifecycle of a
reservoir (e.g. in the form of pressure, temperature and production data at surface
or in the wells) in a process called reservoir surveillance. These measurements
can be assimilated in reservoir models in the hope of improving their predic-
tive power, and thereby the robustness of the development decisions they serve.
Unfortunately, this so-called history matching is generally very time-consuming.
Consequently, measured data is often only incorporated into reservoir models
when the underlying field is being considered for re-development: an exercise un-
dertaken roughly every 5 years, whereby a series of new wells is drilled in order to
increase production. This iterative closed-loop approach of reservoir surveillance
and field (re)development is referred to as reservoir management.

Production operations

Where the decisions made in the reservoir management domain generally are
taken every few years and concern an entire field, those taken in the so-called
production operations domain involve a much shorter time and spatial scale. This
division of the E&P process according to different time and spatial domains is de-
picted in Figure 1.6. Here, each domain provides objectives and constraints to the
domain below it in the sequence, while it provides historic data and forecasts to
the domain above it.
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In production operations, available production data is used to manage day-to-day
operations, for example to meet daily production targets. The to-be-taken deci-
sions involve the individual well production settings, but also so-called workovers
to repair an existing production well for the purpose of enhancing its production.
These decisions are generally taken without the use of the previously discussed
reservoir models. Instead, models describing the multi-phase flow through the
wells and surface facilities are used, with the reservoir sometimes simply mod-
eled as a tank.

time

objectives

& constraints

portfolio

management

reservoir

management

production

operations
objectives

& constraints

historical data

& forecasts

historical data

& forecasts

space

company

asset

field

well

decadesyearsdays

Figure 1.6: E&P process domains (after Jansen et al. (2005)).

1.2.2 Problems in the E&P industry

Technology

It is widely believed that the ‘easy’ producible reservoirs have been found, and
to a large extent have been produced - Deffeyes (2001), Heinberg (2003), Sim-
mons (2005), Voss and Patel (2007). This makes it harder for oil companies to
meet the demand without undertaking more complicated and expensive projects.
Fortunately, higher oil and gas prices in recent years have allowed the industry to
invest heavily in advanced technology needed to develop resources from places
before thought either impossible or not economically viable (e.g. the deepwater
Gulf of Mexico, or the sub-Arctic conditions of Sakhalin). This is particularly true
for commercial oil companies, who are finding it increasingly difficult to compete
with national ones in projects where technology does not play a crucial role. In
other words, commercial oil companies view technology not only as an enabler to
pull off large and complicated projects, but increasingly as their main competitive
advantage.
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People

Reservoir management is a complex process, due to the large number of decisions
that have to be made, the long simulation times of reservoir models required to
predict the effect of these decisions, and the associated uncertainty. It is virtually
impossible for a reservoir management team to determine a field development
plan that maximizes an economic criterion or that is robust against model uncer-
tainties in any meaningful sense within a acceptable time-frame. As a result, many
decisions are made in a fragmented way for various pieces of a field.

To make matters worse, 40% of the E&P workforce is expected to retire within
the coming decade - Parry et al. (2006). Referred to as ‘the big crew change’, it is
the result of the close historical correlation between inflow of new personnel into
the industry and oil price: very high immediately following the oil crises of the
1970s and 1980s, but quickly waning as prices dropped. To make matters worse,
many oil and service companies economized on in-house training, research and
development during the recent fall in prices in 1998-1999. Combined with the pre-
viously mentioned complexity in reservoir management, this loss of technological
know-how clearly presents a huge challenge for an industry seeking to undertake
larger and more challenging projects than ever before.

Processes

Besides being time-consuming, the essential processes in reservoir management
(i.e. history matching and field development planning) and production operations
suffer from a number of additional drawbacks. As discussed in Jansen et al. (2005),
traditional history matching

- is usually only performed when a field is being considered for re-development,
which is typically several years after the previous drilling campaign.

- The techniques are often ad-hoc and involve manual adjustment of model
parameters.

- Uncertainties in the states, model parameters and measured data are usually
not explicitly taken into account.

- The resulting history matched models often violate essential geological con-
straints.

- The updated model may show a perfect history match and yet have no pre-
dictive capacity because it has been over-fitted by adjusting a large number
of unknown parameters using a much smaller number of measurements.

On the other hand, field development planning
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- involves both discrete decisions variables (e.g. number of wells) as continu-
ous ones (e.g. production settings). Even with significantly more time and
resources, it is therefore still very difficult to determine a plan that is optimal
in any meaningful sense.

- A field development plan is often based on a ‘nominal’ reservoir model, and
its robustness is usually evaluated by applying it to a very limited number of
other reservoir models (e.g. two: a ‘high’ and ‘low’ case) that have different
parameter values than the nominal one. This ad-hoc way of taking uncer-
tainty into account is again mainly driven by limited time and resources,
and clearly provides no guarantees that future hydrocarbon production will
not be less than predicted.

- The combination of uncertainty with significant investment make for a high
incentive to earn back that investment as soon as possible, even though de-
cisions based on short-term goals can have a detrimental effect on long-term
ones, such as the recovery factor.

- Moreover, the field development planning and production operation tasks
are often performed by separate teams within a single oil company. As a
result, while fields are generally developed on a campaign basis according
to long-term goals (e.g. the recovery factor), they are often operated on a
daily basis according to short-term goals (e.g. daily production targets).

- There is a fundamental difference in the type of models used in the E&P
industry to predict hydrocarbon production. Reservoir management teams
generally use models describing the flow throughout the reservoir for long-
term predictions, while production operations teams generally use models
describing the flow through the wells and surface facilities for short-term
predictions. This can lead to inconsistent decisions being made for develop-
ing the same field.

Summary

The easy oil has been found, new projects are becoming more challenging and
the required expertise to undertake them is becoming more scarce. Furthermore,
there are many drawbacks in the current reservoir management and production
operation processes.



10 Chapter 1 Introduction

1.3 Opportunities to increase the recovery factor

Considering that the current recovery factor of petroleum reservoirs is relatively
low (15-40%), there is enormous potential to increase production by increasing the
recovery factor, and there are several opportunities to achieve this.

Technology

As mentioned earlier, higher oil and gas prices in recent years have allowed the
industry to invest heavily in technology. Among the resulting developments are
the following advances in hardware.

- Wells that are not only purely vertical, but have deviated or even horizontal
sections, thereby increasing their contact area with the reservoir.

- Valves to remotely close off individual sections of a well, for example be-
cause they have experienced water breakthrough, referred to as Interval
Control Valves (ICV’s).

- Sensors to permanently measure pressure, temperature, flow rate or flow
composition down-hole in the well. These sensors can gather a wealth of
information on the processes in and around the wells in which they are in-
stalled.

- Seismic surveys that are repeated after a significant period of time (e.g. sev-
eral years), also called time-lapse or 4D seismics, allowing for areal monitor-
ing of the fluid flow throughout the reservoir.

Wells equipped with ICV’s or sensors are often referred to as smart, intelligent or
instrumented wells - see Figure 1.7.

The goal of these improvements in hardware is of course to increase the recovery
factor, and this can be achieved along three different paths.

1. Making better field development and production operation decisions by us-
ing the extra freedom in well types and ICV’s to better control the subsurface
flow in petroleum reservoirs. For example, if the heterogeneities in Figure
1.5 are known and the wells are equipped with ICV’s, their settings can be
varied over time to reduce the bypassing of oil.

2. Reducing the effect of uncertainty, for example by installing ICV’s to create
the possibility to close off sections where there is earlier-than-foreseen water
breakthrough.

3. Reducing the uncertainty itself, for example by installing sensors and in-
corporating the resulting measurements in reservoir models to make more
accurate predictions, and ultimately a better and more robust development
plan.
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Figure 1.7: Artist impression of a futuristic smart well with multiple horizontal
sections, Interval Control Valves and sensors (after Kapteijn and Muessig (2003)).

Although there are other ways to increase oil and gas production (e.g. by develop-
ing unconventional resources such as heavy oil or gas hydrates) and other ways
to increase the recovery factor (e.g. by tertiary recovery techniques) this thesis fo-
cuses exclusively on increasing the recovery factor by the previously mentioned
opportunities.

People

Attracting more personnel to work in the E&P industry and improving their tech-
nical expertise would arguably also lead to better decisions and thereby a higher
recovery factor, however this is also not considered in this thesis.

Processes

Despite the previously mentioned advances in technology, actually making better
decisions and reducing uncertainty is far from trivial because of the many draw-
backs in reservoir management and production operation processes. Note that
opportunities 1. and 2. involve optimization of inputs, and 3. the estimation of
states and parameters. Optimization and estimation are the main topics in systems
and control, and applying systems and control techniques is therefore a logical
step to making better use of hardware to increase the recovery factor. The first
step in this direction is to consider reservoir management and production opera-
tions as a model-based closed-loop controlled process, as depicted in Figure 1.8.
Here, the open-loop relation from inputs to outputs from Figure 1.4 is closed by
an estimation (i.e. history matching) and optimization (i.e. field development and
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production operations) loop. The optimization process is model-based, because
reservoir models are used to assess the effect of field development and produc-
tion operation decisions on future hydrocarbon production.

Geology, seismics,
well logs, well tests,
fluid properties, etc.

System
(reservoirs, wells

& facilities)

Sensors

System models

Optimization

NoiseInput Output

Controllable
input

Noise

State / parameter
estimation

Simulated
output

Measured
output

Figure 1.8: Reservoir management represented as a model-based closed-loop con-
trolled process (after Jansen et al. (2005)).

Sometimes also referred to as real-time reservoir management, self-learning reser-
voir management, e-fields or smart fields, the concept of closed-loop reservoir
management and production operations is not new - see Chierici (1992) and Ny-
havn et al. (2000) with further references in Jansen et al. (2005). Indeed, Chierici
(1992) stresses that a “continuous feedback process” is required throughout the
lifecycle of a field in order to maximize its recovery factor, as opposed to the com-
monly applied campaign-based approach. In practice, however, this continuous
feedback process is not feasible if its components (i.e. history matching, field de-
velopment planning and production operations) are not made more efficient. Af-
ter all, one of the main reasons why they are not continuously applied in the first
place is that they are very time-consuming.

In other words, there is significant scope to increase the recovery factor
of petroleum reservoirs by tailoring tools from the systems and control
community to efficiently perform closed-loop reservoir management and
production operations, in the sense that they lead to good decisions while
requiring limited time from the user.
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1.4 Literature overview

1.4.1 Introduction

There are many promising optimization and estimation techniques available in
the systems and control literature, but their applicability is highly dependent on
the type of model under consideration. It is important to note that reservoir mod-
els are typically

- physics-based (white-box),

- large-scale, (e.g. 104 − 106 states and 104 − 106 parameters),

- MIMO (e.g. 101 − 102 inputs and 101 − 102 outputs),

- nonlinear,

- uncertain, and

- take hours to simulate.

Not surprisingly, many systems and control techniques cannot directly be applied
to reservoir models because of these properties. This section describes some of the
tools that are applicable, which of these have already been applied in the litera-
ture, and some of the related open problems.

1.4.2 Model-based optimization

Optimal control of production settings

Given a correct reservoir model and a certain configuration of wells2, finding the
time-varying production settings over the lifecycle of a reservoir that maximize
the recovery factor can be posed as an optimal control problem. With the ex-
ception of certain specific situations, it is generally very difficult to find analyti-
cal solutions to such problems. For example, optimal control problems involving
quadratic performance measures of the state and input trajectories of a linear sys-
tem (i.e. so-called LQ problems) do have an analytical solution. Moreover, the
solution can be implemented by a linear state-feedback controller, which makes
it particularly suitable for online implementation as it allows for disturbance re-
jection and robustness to model uncertainties - Athans (1971). Unfortunately, a
reservoir’s recovery factor cannot be written as a quadratic performance measure
(see Chapter 3) and a reservoir’s dynamics are generally described by equations
that are linear in the control, but nonlinear in the state (see Chapter 2). Although
it is theoretically possible to transform such a nonlinear system into a linear one

2Determining the number, trajectory and location of wells that maximize the recovery factor -
clearly also very important decision factors in a field development plan - involves integer optimization,
and is discussed later in this section.
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by means of a nonlinear feedback control law (see Isidori (1983)), this so-called
feedback linearization requires higher order partial derivatives of the nonlinear
equations with respect to the state which, for reservoir models, are too tedious to
derive.

There are, however, several methods to compute solutions to optimal control
problems involving nonlinear systems and non-quadratic performance measures,
such as the gradient, simultaneous, shooting or dynamic programming method
- Bryson and Ho (1975), Srinivasan et al. (2002b). Of these, only the gradient
method is applicable due to the extremely large number of reservoir model states.
The main idea is to iteratively improve upon an initial guess of the optimal control
using a gradient-based method until a local optimal solution is reached. The diffi-
culty lies in effectively obtaining the required gradients. Conceptually, the easiest
approach is to approximate each individual component of the gradient by finite
differences, but this is computationally too demanding since each approximation
requires an evaluation of the performance measure (e.g. the recovery factor) which
in turn requires a reservoir simulation. The only viable approach is therefore to
compute the gradient using a so-called adjoint model - see Kirk (1970), Stengel
(1986). Adjoint models are discussed in Chapter 3.

There have been numerous applications of adjoint-based optimization of produc-
tion settings in the petroleum engineering literature. Some of the earliest ones are
by Ramirez and co-workers, summarized in Ramirez (1987), who considered ter-
tiary recovery techniques. This was quickly followed by Asheim (1987), Asheim
(1988), Virnovsky (1991), Zakirov et al. (1996), and Sudaryanto and Yortsos (2000)
who considered secondary recovery techniques. Although the type of production
settings differ (e.g. from concentrations of injected chemicals to water injection
rates), they are all applications of the same technique: gradient-based optimiza-
tion with gradients computed using an adjoint model. In this respect it is inter-
esting that the method only received significant attention after Brouwer (2004)
and Brouwer and Jansen (2004) demonstrated the possibility to significantly in-
crease the recovery factor using smart wells. There have been numerous applica-
tions since, several of which involve the particularly difficult problem of including
state constraints - see Sarma et al. (2006a), de Montleau et al. (2006), and Kraaije-
vanger et al. (2007). Since state constraints (e.g. bounds on the reservoir pressure
or the amount of produced water) are particularly important in production oper-
ations, state constraint handling is a topic of ongoing research. Another relevant
open issue is the shape of optimal solutions: Sudaryanto and Yortsos (2000) and
Sudaryanto and Yortsos (2001) state that these will sometimes be of the bang-bang
(i.e. on-off) type, having the obvious advantage over smooth solutions in that
they can be implemented with simple on-off valves. Interestingly, this statement
is supported by some, but not all, applications in Brouwer (2004) and Brouwer
and Jansen (2004). In other words, it is unclear why and under what conditions
optimal production setting problems can be expected to have bang-bang optimal
solutions. This is important, because variable-setting valves are much more ex-
pensive than simple on-off ones.
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Integer optimization of wells

During the modeling process, reservoirs are essentially divided into a finite num-
ber of ‘grid blocks’, the properties of which are assumed to be homogeneous.
Wells are then simply source or sink terms (depending on whether they produce
or inject fluids) into or from certain of these grid blocks. Optimization of the well
trajectory and its location is thereby an integer problem - Kosmidis et al. (2005),
Bangerth et al. (2006). For example, if a single well is to be placed in 1 out of N
grid blocks, the problem clearly involves N discrete possible choices. Determin-
ing the number of wells is also clearly an integer problem, and the combination
with the optimization of production settings leads to a mixed-integer nonlinear
problem, or MINLP.

MINLP’s also frequently arise in the chemical process industry, and there are sev-
eral methods to deal with them - see Kallrath (2000). Most of these methods,
however, require far too many evaluations of the performance measure to be ap-
plicable to reservoir models. In practice, well optimization is therefore mostly
done manually, although there are several publications on automatic well opti-
mization. These applications can be broadly classified into local, or global opti-
mization methods. Local optimization methods try to iteratively improve upon
an initial well configuration, much as in the previous optimization of production
settings, until a local optimal solution is reached. The main challenge in this ap-
plication, again as in the optimization of production settings, is to effectively find
improving directions3 in which to alter the well configuration. Global methods,
on the other hand, will sometimes tolerate lower performance measures in the
hope of finding the global, as opposed to local, optimal solution.

There are many applications of global methods to the well optimization prob-
lem: Beckner and Song (1995) applied simulated annealing, Centilmen et al. (1999)
neural networks, Bittencourt and Horne (1997), Montes et al. (2001) and Aitokhuehi
et al. (2004) genetic algorithms, and Yeten (2003) a combination of the latter two.
Although these applications have the virtue of simplicity (a global optimization
algorithm of choice is coupled with a reservoir simulator to evaluate the perfor-
mance measure), they generally require many reservoir simulations to converge
to an adequate solution.

Bangerth et al. (2006) compares two local methods for optimizing the location of
vertical wells in a 2D reservoir model. The first one is the Finite Difference Gradi-
ent (FDG) method, which as the name suggests tries to find improving directions
by perturbing each well location by one grid block in each direction. This has the
obvious drawback of requiring 2m + 1 reservoir simulations to compute an im-
proving direction ofm to-be-placed wells. The second method is the simultaneous
perturbation stochastic approximation (SPSA) method of Spall (1992), which ba-
sically chooses a random direction in which to alter the wells and, if this does
not yield an improvement in the performance measure, assumes that the opposite

3Being an integer problem, the gradient is of course not defined.
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direction will. The obvious advantage is that an improving direction is almost al-
ways found in at most 2 reservoir simulations, with the disadvantage that this di-
rection is generally far from the ‘steepest’ one. In other words, an efficient method
to find (almost) steepest improving directions using a limited number of reservoir
simulations is currently lacking.

Robust control

It is possible to estimate each individual uncertain reservoir model parameter (e.g.
the permeability in a specific grid block) within a certain continuous range of val-
ues. For example in the case of one parameter, say permeability in a certain grid
block, this could be the interval [1, 1000] mDarcy. This naturally leads to the pos-
sibility for robust optimization, where the goal is to optimize a so-called robust
performance measure that represents the performance over the entire uncertainty
range (e.g. the worst case, or lowest recovery factor). In order to implement robust
optimization methods, however, we have to somehow propagate the probability
distribution of the uncertain parameters to the states in order to ultimately deter-
mine what the effect will be on the performance.

In the systems and control literature, robust control is often associated with de-
signing a feedback controller for an uncertain linear system such that the result-
ing closed-loop performance is robust against (or acceptable for) all possible un-
certainties within a certain class. As with LQ problems, certain robust control
problems also have an analytic solution (e.g. so-called H∞ control, see Zhou et al.
(1996)). Moreover, for these problems it is possible to analytically determine the
worst-case effect of the uncertainty on the performance measure.

For large-scale nonlinear systems, however, determining the effect of uncertainty
on the performance measure is often only possible by sampling the uncertainty
space. This is a common approach in the optimization of batch processes in
the chemical process industry - see Terwiesch et al. (1994), Ruppen et al. (1995)
Terwiesch et al. (1998) and Srinivasan et al. (2002a). In field development plan-
ning a similar approach is often adopted, where the uncertain parameters are
lumped into a single vector θ, which is subsequently assumed to take on only
a limited number of values - Narayanan et al. (2003). Sometimes as few as three
cases are considered and given labels ‘low’, ‘medium’ and ‘high’ (meaning θ ∈
{θlow,θmedium,θhigh}). The variation in predictions of the resulting three reservoir
models is then assumed to be representable for the entire continuous uncertainty
range. The expected value is an example of a robust performance measure that is
sometimes used in field development planning, although there are many others -
see Samsatli et al. (1998) for an overview. Note that in this respect the expected
value is mostly used for analyzing the robustness of a particular field develop-
ment plan against model uncertainty, and not maximized using an optimization
procedure (e.g. as with the previously mentioned applications to batch processes
in the chemical process industry). However, there are a few applications of robust
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optimization in the petroleum engineering literature.

Yeten et al. (2004) maximized a robust performance measure (5 realizations of the
subsurface heterogeneity and risk of ICV failure) by varying the production set-
tings, and subsequently decided on wether or not to deploy these ICV’s using a
decision-tree analysis. Guyaguler and Horne (2004) maximized a robust perfor-
mance measure (23 realizations of the subsurface heterogeneity) by varying the
well locations using a hybrid genetic algorithm. Aitokhuehi et al. (2004) maxi-
mized a robust performance measure (2 realizations of the subsurface heterogene-
ity) by varying the well type, location and trajectory using a genetic algorithm. In
these applications, the robustness of the outcome is never validated against a dif-
ferent set of possible reservoir models. In this sense it must still be demonstrated
that robust optimization can reduce the effect of a continuous range of uncer-
tainties, as opposed to the representation of uncertainty by a limited number of
models. Also, it is unclear how to generate a minimal set of models that in some
sense is representative of the entire uncertainty range.

1.4.3 Model reduction

Reservoir engineers prefer to work with the physically interpretable states of cur-
rent reservoir models (e.g. pressures and saturations). Since model reduction of-
ten involves transforming original states into physically non-interpretable ones
(e.g. through projection), the main motivation for applying model reduction is to
reduce the computation time of the corresponding simulations. There are several
nonlinear model reduction techniques, but very few of them are suited for large-
scale applications - Antoulas (2005). Moreover, the techniques that are applicable
often destroy any sparsity that the original model structure may have, and there-
fore do not lead to a reduction in computation time - van den Berg (2005).

There are a few applications of model reduction in the petroleum engineering lit-
erature. Markovinovic et al. (2002), Heijn et al. (2004) and later Gildin et al. (2006)
successfully applied several standard model reduction techniques (e.g. modal de-
composition and balanced truncation) to a reservoir model that, under certain
simplifying conditions, has linear dynamics. They also applied proper orthogo-
nal decomposition (POD) to a nonlinear reservoir model, and this was further ex-
ploited in Van Doren et al. (2006) to reduce the computation time required to find
optimal production settings by 35%. The fact that these early attempts at model
reduction were successful indicates that reservoir models are controllable and /
or observable to a very limited extent, and that the relevant reservoir dynamics
are therefore less complex than they seem. Controllability and observability of
reservoir models is, however, still largely an unexplored issue.
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1.4.4 State estimation and parameter identification

Before discussing state estimation and parameter identification techniques, it is
important to note that

- the saturation dynamics in reservoir models are governed by strongly non-
linear equations,

- the saturation dynamics in reservoir models can have time constants of up
to thousands of years, and

- depleting a reservoir is essentially a single-batch process since it cannot be
repeated.

Inferring the values of states and parameters based on measured data thereby
becomes a combined state - parameter estimation problem. Unfortunately, most
techniques in the systems and control literature focus on either one or the other -
Evensen (2007).

Parameter identification

In the systems and control literature, building mathematical models based on
measured data is generally referred to as system identification, and the theory for
linear time-invariant systems is very mature - see Ljung (1999). The resulting mod-
els are called black-box if they rely purely on the measured data and the identified
parameters have no physical interpretation. However, if the resulting models also
rely on physical considerations in the system and the parameters do have a phys-
ical interpretation, they are called gray-box. The latter approach is commonly
adopted in petroleum engineering and is generally called history matching, for
obvious reasons. Unfortunately, the theory for system identification of large-scale
nonlinear systems is much less mature than for linear time-invariant ones.

In practice, the problem of estimating the physical parameters in reservoir models
based on measured data is often approached by defining a cost function (typically
the weighted squared difference between predicted and measured data), and min-
imizing it over all possible parameter values. The cost function is then minimized
using a gradient-based optimization procedure where, as in the optimization of
production settings, the gradients are computed using the adjoint method from
optimal control theory - see Jacquard and Jain (1965), Carter et al. (1974), Chavent
(1975), Reynolds et al. (1996), Li et al. (2003) and Gao and Reynolds (2006). An-
other approach which has recently received significant attention is the so-called
Ensemble Kalman Filter. However, since it is based on the Kalman Filter used for
state estimation, it is discussed in the following subsection.

Given the number of to-be-estimated parameters in reservoir models, it is not sur-
prising that a major difficulty in this particular application is that it does not have
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a unique solution, meaning there are many combinations of parameter values
that yield the same minimum value of the cost function. In other words, reser-
voir model parameters are not uniquely identifiable. Unfortunately, two different
combinations of model parameters that give the same minimum value of the cost
function may lead to completely different predictions - Tavassoli et al. (2004).

Many authors have therefore attempted to regularize the problem (i.e. render
it ‘less’ ill-posed). One approach is to redefine the cost function by including
the squared difference between initial and final estimated parameter values. By
weighting the data and prior mismatch terms, the resulting problem can, under
certain conditions, be interpreted as finding the maximum a posteriori estimate
- Tarantola (2005). This is often referred to as the Bayesian estimation approach
to history matching - see Gavalas et al. (1976), Zhang and Reynolds (2002), Li
et al. (2003) and Zhang et al. (2005). The so-called Representer Method, originally
developed by Bennett for oceanographic applications and described in Bennett
(2002), is essentially a Gauss-Newton implementation to minimize the previously
mentioned cost function. It has been used to estimate the permeability in reservoir
models in Rommelse et al. (2006).

Another regularization method is to re-parameterize the high number of physi-
cal model parameters by a much smaller number of non-physical ones. Some of
the re-parameterization techniques applied in history matching to achieve this in-
clude zonation (Jacquard and Jain (1965), Jahns (1966)), adapted versions thereof
(Grimstad et al. (2003), Berre et al. (2007)), grad zones (Bissell (1994), Bissell et al.
(1994), Brun et al. (2004)), spectral decomposition and subspace methods (Shah
et al. (1978), Reynolds et al. (1996), Abacioglu et al. (2001)), kernel principle com-
ponent analysis (Sarma et al. (2007)) and the discrete cosine transform (Jafarpour
and McLaughlin (2007a), Jafarpour and McLaughlin (2007b)). Despite all of these
applications, it is not clear how many parameters can be uniquely identified for
any particular reservoir model.

State estimation

The most common state estimation technique for linear systems is by far the Kalman
Filter. Under the condition that the system is linear and that the only source of
model uncertainty is Gaussian noise on the states and measurements, the Kalman
Filter provides the linear estimate of the state minimizing the mean square esti-
mation error - see Kalman (1960), Anderson and Moore (1979). The reason for its
wide-spread use is its optimality at low computational cost: the optimal estimate
and corresponding error covariance is computed recursively using simple matrix
multiplications.

There are several state estimation methods for nonlinear systems, such as the Ex-
tended Kalman Filter (EKF), the Unscented Kalman Filter (UKF), particle filters,
the Moving Horizon Estimator (MHE) and the Ensemble Kalman Filter (EnKF) -
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see Bos (2006) for an overview. The EKF uses linearizations of the original non-
linear model equations to recursively compute an estimate and corresponding
error covariance, but it does not perform well when the nonlinearities are very
large as in reservoir models. The UKF is more capable of dealing with nonlinear-
ities, but requires two simulations per state element to compute an estimate and
corresponding error covariance. Similarly particle filters, which try to compute
the entire probability density function of the state using a Monte Carlo approach,
also require too many simulations to be applicable to reservoir applications. The
MHE is essentially a least-squares approach to state estimation as has been dis-
cussed in the previous section on parameter identification, and is therefore not re-
considered here. The EnKF, originally developed by Evensen for oceanographic
applications and described in detail in Evensen (2007), uses a Monte-Carlo ap-
proach to compute the error covariance through an ensemble of prior model es-
timates. As with the least-squares approach, it has been successfully applied to
various large-scale problems.

The EnKF has been applied to history matching of reservoir models, among oth-
ers in Naevdal et al. (2005), Rommelse et al. (2006) and Reynolds et al. (2006). In
these applications the state vector is extended with the to-be-identified parame-
ters, yielding surprisingly good results with as few as 50 reservoir models in the
Monte-Carlo approach. As with model reduction, this could possibly be explained
by the limited controllability and observability of reservoir models.

1.4.5 Closed-loop control

Many processes are controlled by sequentially applying an estimation and opti-
mization technique, where the former computes an improved estimate of the sys-
tem’s state and parameters every time measurements become available, and the
latter computes a new optimal control based on this improved estimate. Usually
called closed-loop control in the systems and control literature, it is also known
as Model Predictive Control (MPC) in the chemical process industry. In many
MPC applications the performance measure is defined in terms of a reference or
set-point4 (e.g. a desired temperature, or end-product concentration). Two dif-
ferent types of MPC are generally distinguished, depending on the time interval
over which the performance measure is defined. If the performance measure is
defined over a fixed time interval (e.g. 1 hour in the future) one generally refers to
moving or receding horizon MPC, as opposed to shrinking horizon when it is de-
fined up to a fixed terminal time (e.g. 10:00 am today). MPC is widely applied in
the chemical process industry because of its ability to handle constraints - Mayne
et al. (2000). Indeed, in the case of a linear model, a quadratic performance mea-
sure and linear inequality constraints on the inputs and states, the optimization
subproblem can be written as quadratic program for which the global optimal
solution can be efficiently found - Garcia et al. (1989), Maciejowski (2002). Not
surprisingly, this no longer holds for problems involving nonlinear models and

4When the reference is also a degree of freedom, the term Dynamic Optimization is sometimes used
instead of MPC.
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non-quadratic performance measures (see also the previous discussion on optimal
control of production settings) and for these problems it is particularly difficult to
analyze the closed-loop performance - van Hessem (2004).

Due to the nonlinearity and large number of equations governing flow through
porous media, closed-loop control of reservoirs as depicted in Figure 1.8 is often
simply the combination of an estimation and optimization technique of choice,
and the resulting closed-loop performance is usually evaluated by numerical sim-
ulation. Nevertheless, the results of these simulations are sometimes surprisingly
good. Brouwer et al. (2004), Jansen et al. (2005), Naevdal et al. (2006) and Sarma
et al. (2006b) consider the combination of the EnKF with adjoint-based optimiza-
tion of the production settings in a shrinking horizon framework with large un-
certainty in the reservoir permeability. These applications are very successful in
that the results are often marginally worse than those obtained without model un-
certainty. Apparently, the models resulting from the EnKF’s state and parameter
estimates have sufficient predictive power for the adjoint-based optimization pro-
cedure. Again, this could possibly be explained by the limited controllability and
observability of reservoir models.

Several other shrinking horizon applications are reported in Nikolaou et al. (2006),
however these involve global optimization methods (e.g. genetic algorithms) and
perform worse than the optimal production settings obtained by gradient-based
optimization using the previously discussed adjoint method. A moving horizon
MPC application is reported in Saputelli et al. (2006), where a performance mea-
sure defined over 2200 days is maximized using a horizon of 30 days by vary-
ing the production settings of wells. Although the MPC results are better when
compared to an uncontrolled case, no comparison is made to optimal production
settings obtained by the adjoint method.

Finally, we remark that there are deeper control-theoretical problems involved
with closed-loop control of petroleum reservoirs. For example, well optimization
becomes more complicated in closed-loop, since new wells offer the possibility to
obtain measurements in previously inaccessible areas of the reservoir. This new
information can be used to reduce uncertainty, although it is not always clear how
to value this information - see Ozdogan and Horne (2006) for some first results
in this direction. Similarly, production settings that are good for maximizing the
recovery factor are not necessarily good for reducing model uncertainty (i.e. the
certainty equivalence principle does not hold because reservoir models are non-
linear). This so-called dual control problem (after Fel’dbaum (1965)) in production
setting optimization is difficult because, again, it is not clear how to quantify the
value of information.
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1.4.6 Discussion

We have seen that there are many systems and control techniques that, in theory,
could be applied to efficiently perform closed-loop reservoir management and
production operations, but that in practice this is severely limited by the proper-
ties of reservoir models. As a result, there are still many open problems in reser-
voir management and production operations processes.

Some of the open problems in field development planning and production opera-
tions are as follows.

- How can we automatically determine the number, trajectory, and location of
wells using a limited number of reservoir simulations?

- How can we reduce the gap between the models (i.e. reservoir vs. wells and
surface) and goals (i.e. long-term vs. short-term) used in reservoir manage-
ment and production operations?

- How can we efficiently handle state constraints when optimizing production
settings during field development planning?

- When and why are optimal production settings sometimes smooth as op-
posed to bang-bang (i.e. when should we choose variable setting control
valves over simple on-off ones)?

- Can robust optimization reduce the negative effect of a continuous range of
uncertainties?

- Can we significantly reduce the currently long reservoir simulations times
through the application of model reduction techniques?

Some of the open problems in history matching are as follows.

- Which state and parameter estimation technique is the most reliable?

- How can we determine the number of parameters that can be reliably esti-
mated through measured data?

- What are the controllability, observability and identifiability properties of
reservoir models?

- How can we generate a discrete set of models that in some sense is repre-
sentative of the entire uncertainty range?

- How can we determine the value of information?
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1.5 Problem formulation

1.5.1 Research objective

Following the discussion on open problems concerning the processes reservoir
management and production operations, the main research objective of this thesis
is as follows.

-Research objective-
Develop efficient tools for dynamic optimization of well locations and
their production settings to maximize the recovery factor of petroleum
reservoirs based on uncertain reservoir models.

The motivation for the various elements of this research objective is as follows.
First of all, maximize the recovery factor of petroleum reservoirs relates to the
desire to increase the cumulative production in order to meet increasing global
demand. Well locations and their production settings relates to the degrees of
freedom considered in this thesis. Although there are numerous other factors that
can contribute to increasing the recovery factor, these fall outside the scope of this
work. Dynamic optimization relates to optimization of the recovery factor by
considering a dynamic system, in this case a petroleum reservoir, as opposed to
static optimization. This optimization should be based on reservoir models, as
opposed to model-free optimization. The uncertainty in these reservoir models
should explicitly be taken into account by reducing its effect as well as reducing
the uncertainty itself. Finally, as discussed in the previous section, there are many
open issues in this field. By developing efficient tools, in the sense that they lead
to good decisions while requiring limited time from the user, closed-loop reservoir
management and production operations can evolve from concept to reality.

1.5.2 Solution directions

Because there are too many open problems to be treated in one thesis, the previ-
ously stated research objective is tackled along four main solution directions.

D1. Shape of optimal solutions
Investigate the structural properties of optimal production settings. In par-
ticular, find out why and under what conditions production setting opti-
mization problems can be expected to have bang-bang (on-off) optimal so-
lutions.

D2. Robust optimization
Investigate the possibilities for robust optimization of production settings
to reduce the negative effect of model uncertainty. In particular, find out if
robust optimization can be used to find production settings that are robust
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against a continuous range of uncertainties, and not just its representation
by a limited number of models.

D3. Well placement optimization
Investigate how we can effectively find optimal well locations. In particular,
find out if the gradients used in production setting optimization - efficiently
derived using adjoint models - can also be used in well location optimiza-
tion.

D4. Controllability, observability and identifiability of reservoir models
Analyze and interpret the controllability and observability of single-phase
flow reservoir models, and how these are affected by well locations, hetero-
geneity and fluid properties. In particular, investigate if better understand-
ing of a reservoir’s controllability, observability and identifiability proper-
ties can be used to increase the recovery factor or reduce the uncertainty of
the outcome.

1.5.3 Outline of thesis

The outline of this thesis is as follows. Reservoir models, productions constraints
and the sources and effects of model uncertainty are discussed in Chapter 2. The
shape of optimal production settings is treated in Chapter 3, and is based on Zand-
vliet et al. (2006) and Zandvliet et al. (2007). Reducing the negative effect of model
uncertainty by means of robust optimization is treated in Chapter 4, and is based
on van Essen et al. (2006a) and van Essen et al. (2006b). How to effectively find
optimal well locations using adjoint models is shown in Chapter 5, and is based
on Handels et al. (2007) and Zandvliet et al. (2008a). The controllability and ob-
servability of reservoir models is analyzed in Chapter 6, and is based on Zandvliet
et al. (2008b). How the analysis of Chapter 6 can help in identifying reservoir pa-
rameters is discussed in Chapter 7, and is also based on Zandvliet et al. (2008b).
Finally, the conclusions and recommendations are given in Chapter 8.



2 CHAPTER

Reservoir Modeling

Th is chapter presents the notation, the reservoir models and the pro-
duction constraints used throughout this thesis, and as such forms

the basis of all the chapters that follow. Particular attention is paid to the
sources, effects and representation of uncertainty in reservoir models.

2.1 Black oil formulation

2.1.1 Introduction

Petroleum reservoirs always contain both hydrocarbons and water. The former
consists of many chemical components which, theoretically, should each be con-
sidered individually in the modeling process. Computationally, however, this is
too demanding. Moreover, reservoir engineers are often mainly interested in pre-
dictions of future hydrocarbon production. Most reservoir models are therefore
based on a so-called black oil formulation, which only considers three phases: oil,
water and gas.

In this section we make further simplifications in considering only oil and water
and ignoring several important physical aspects such as gravity, capillary pres-
sures and the presence of an aquifer. Gravity effects, however, are included in the
applications that follow in later chapters, but are omitted here to economize on the
derivation length. For more details on black oil models the reader is referred to
the textbooks Peaceman (1977) and Aziz and Settari (1979), on which this chapter
is largely based.
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26 Chapter 2 Reservoir Modeling

2.1.2 Derivation of PDE’s

The mass balances for oil (o) and water (w) are1

∂

∂t
(φρiSi) = −∇ · (ρiūi) + qi, i ∈ {o,w} (2.1)

where t is time, ∇· the divergence operator, φ the porosity, ρi the density of the
phase i, ūi the superficial velocity, and Si the saturation. It is assumed that there
is no flow across the boundaries of the reservoir geometry over which (2.1) is
defined, other than through the source/sink terms qo and qw (i.e. so-called Neu-
mann boundary conditions). How we can indirectly control these source/sink
terms through the production settings of wells is discussed later.

Conservation of momentum is governed by the Navier-Stokes equations, but is
normally simplified for low velocity flow through porous media to be described
by the semi-empirical Darcy’s equation - Muskat (1937), Hubbert (1956):

ūi = −k
kri

µi
∇pi, i ∈ {o,w} (2.2)

where pi is the pressure of phase i, ∇ the gradient operator, k the permeability, kri

the relative permeability, and µi the viscosity of phase i. The relative permeabil-
ities are generally highly dependent on the water saturation Sw in that they can
vary between 0 and a value smaller or equal to 1, and thus form a major source of
nonlinearity. Figure 2.1 depicts typical curves for krw and kro.
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Figure 2.1: Typical relative permeability curves.

Substituting (2.2) into (2.1) leads to two flow equations with four dynamic un-
knowns: po, pw, So and Sw. Two additional equations are required to complete the

1To be precise we would have to include spatial coordinates, such as Cartesian ones (x, y, z). For
notational convenience, however, all of the dependent arguments are omitted, (e.g. we write ūi instead
of ūi(t, x, y, z) and φ instead of φ(x, y, z)).
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system description. The first is the closure equation requiring that the sum of the
phase saturations equals one:

So + Sw = 1. (2.3)

Secondly, the difference between the individual phase pressures is given by the
capillary pressure, which is assumed to be a function of water saturation. As
mentioned earlier, however, we will ignore these capillary effects, and can there-
fore write

pw = po. (2.4)

Common practice in reservoir simulation is to substitute (2.3) and (2.4) into the
flow equations by taking the oil pressure and water saturation (for notational con-
venience now symbolized by p and S) as state variables, leading to the following
partial differential equations (PDE’s)

∂

∂t
(φρo [1 − S]) = ∇ ·

(

k
kro

µo
ρo∇p

)

+ qo (2.5)

∂

∂t
(φρwS) = ∇ ·

(

k
krw

µw
ρw∇p

)

+ qw (2.6)

The variables φ, k, µi and ρi are, generally speaking, dependent on pressure. How-
ever, for simplicity we assume the pressure dependency of φ, k and µi to be so
small that it can be ignored.

2.1.3 State-space formulation

Because oil and gas reservoirs are generally heterogeneous (their geological prop-
erties vary significantly over space), (2.5)-(2.6) cannot be solved analytically, but
must be evaluated numerically. The first step in this numerical evaluation is
spatial discretization, where the reservoir is divided into a finite number of grid
blocks whose geological properties are assumed to be homogeneous.

Each grid block j now relates to two states: oil pressure pj and water saturation
sj . Let us stack all of these states into a vector x as follows

p :=
[
p1 . . . pN

]T
, (2.7)

s :=
[
s1 . . . sN

]T
, (2.8)

x :=
[

pT sT
]T
. (2.9)

Because a reservoir has evolved over millions of years, it is generally initially in
equilibrium. In other words, the fluids in a reservoir only start to flow once wells
are drilled.
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If an injector well is perforated in grid block j, then we can directly control the
source terms qj

o and qj
w, which are in [kg/m3s]. Only water (and not oil) is injected

to keep the pressure in the reservoir above a certain level, and we can write

qj
o = 0, (2.10)

qj
w =

ρw(pj)

vj
qj , j ∈ Ninj (2.11)

where vj is the volume of grid block j, qj is the rate of injected fluid in [m3/s] and
Ninj is the set of grid block indices in which an injector well is perforated.

If a producer well is perforated in grid block j, then we can only indirectly control
the source terms qj

o and qj
w since the produced liquid is a combination of oil and

water:

f j
w :=

krw(sj)
µw

krw(sj)
µw

+ kro(sj)
µo

(2.12)

qj
o =

ρo(p
j)

vj
(1 − f j

w(sj)) qj , (2.13)

qj
w =

ρw(pj)

vj
f j
w(sj) qj , j ∈ Nprod (2.14)

where fw is the fractional flow rate of water, qj is the rate of produced fluid in
[m3/s] and Nprod is the set of indices in which a producer well is perforated.

Since the porosity φ is assumed to be independent of pressure, we have

∂

∂t
(φρiS) = φ

(

S
∂ρi

∂t
+ ρi

∂S

∂t

)

, i ∈ {o,w}.

By defining the fluid compressibilities cw and co as

ci(p) :=
1

ρi(p)

dρi

dp
(p), i ∈ {o,w}, (2.15)

the equations (2.5)-(2.14) for each of the N grid blocks can be replaced by a single
equation of the form

E(x(t))ẋ(t) = Ã(x(t))x(t) + B̃(x(t))u(t), (2.16)

x(0) = x̄0. (2.17)

where the control u is a vector containing the well rates qj , x̄0 is the initial condi-
tion and

E(x(t)) :=

[
diag(φj(1 − sj)ρo(p

j)co(p
j)) diag(−φjρo(p

j))
diag(φjsjρw(pj)cw(pj)) diag(φjρw(pj))

]

.



2.1 Black oil formulation 29

If, in order to economize on notation, we assume that the reservoir is modeled by
N × 1 × 1 grid blocks of fixed volume v = ∆x× ∆y × ∆z and there are only two
wells (an injector in grid block 1 and a producer in grid block N ),

B̃(x(t)) :=
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, u(t) :=

[
q1(t)
qN (t)

]

.

At position x = (j − 1/2)∆x in the reservoir (i.e. at the center of grid block j,
denoted by a superscript j)

∇·

�
k

kri

µi

ρi∇p

�j

≈

�
k kri

µi
ρi∇p

�j,j+1

−
�
k kri

µi
ρi∇p

�j,j−1

∆x

≈
ρi(p

j)

µi

(kkri)
j,j+1

�
pj+1 − pj

�
− (kkri)

j,j−1
�
pj − pj−1

�
∆x2

≈
ρi(p

j)

µi

kj,j+1kri(s
j , sj+1)

�
pj+1 − pj

�
− kj,j−1kri(s

j , sj−1)
�
pj − pj−1

�
∆x2

for i ∈ {o,w}. The permeability k is evaluated at the grid block interfaces (i.e. at
position x = (j ± 1/2)∆x in the reservoir, denoted by a superscript j, j ± 1) using
the harmonic average

kj,j±1 =
2

1
kj + 1

kj±1

. (2.18)

The relative permeability kri needs to be evaluated using the so-called upstream
weighting in order to obtain correct convective behavior:

kj,j±1
ri :=

{
kri(s

j) if pj ≥ pj±1

kri(s
j±1) if pj < pj±1 , i ∈ {o,w}. (2.19)
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This leads to

Ã(x(t)) :=

[
Ao(x(t)) 0
Aw(x(t)) 0

]

Ai :=








−a1,2
i a1,2

i

a2,1
i −(a2,1

i + a2,3
i ) a2,3

i

. . .
. . .

. . .

aN−1,N
i −aN−1,N

i







,

aj,j±1
i :=

ρi(p
j)

µi

kj,j±1

∆x2
kj,j±1
ri (pj , pj±1, sj , sj±1), i ∈ {o,w},

kj,j±1 :=
2

1
kj + 1

kj±1

,

kj,j±1
ri :=

{
kri(s

j) if pj ≥ pj±1

kri(s
j±1) if pj < pj±1 , i ∈ {o,w}.

Ai is tridiagonal because of the simplifying assumption that the reservoir is 1D
(i.e. modeled byN ×1×1 grid blocks). For 2D and 3D models, Ai becomes penta-
diagonal and septadiagonal, respectively, as depicted in Figure 2.2. See Aziz and
Settari (1979) for more details.

(a) (b) (c)

Figure 2.2: Structure of Ai for (a) 1D, (b) 2D and (c) 3D reservoir models.

We often only have indirect control over the flow rate qj through a so-called well
model

qj = αjwj(sj)(pj
bh − pj), j ∈ {Ninj,Nprod} (2.20)

where pj
bh is the well’s bottom-hole pressure, and αj a valve setting (simply a mul-

tiplication factor ranging from 0 to 1). The well index wj contains the well’s geo-
metric flow factors and rock and fluid properties of the reservoir directly around
the well, and throughout this thesis is computed using a so-called Peaceman
model, after Peaceman (1978):

wj(sj) =
2πkj∆z

ln
(

0.14
√

∆x2 + ∆y2/rw

)

+ S

(
kro(s

j)

µo
+
krw(sj)

µw

)

. (2.21)
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Here, S is the skin factor which can be used to represent well impairment (e.g. due
to sand clogging the well perforations). The wellbore radius rw is used to repre-
sent logarithmic pressure-drop in the near wellbore-area, which is a sub grid-scale
effect.

If we can directly control the valve setting αj , the qj term in u is replaced by αj and

the corresponding entries in B̃ are modified to include the term wj(sj)(pj − pj
bh).

If a valve setting αj is absent (or for some reason constant) but we can directly

control the bottom-hole pressure pj
bh, the qj term in u is replaced by pj

bh and the

corresponding entries in B̃ are modified to include the term wj(sj). However, the
(j, j) elements of Ao and Aw are also modified to include the term wj(sj) because
of the dependency on the grid block pressure pj in (2.21).

Furthermore, we remark that including gravity effects and aquifers leads to extra
terms on the right-hand side of (2.16) over which we have no control. Including

capillary pressures affects Ã with terms in the columns multiplying the satura-
tions.

Note that E is invertible as long as the fluids are compressible (meaning co 6= 0
and cw 6= 0) and the porosity in all grid blocks is non-zero. Left-multiplying (2.16)
by E−1 leads to an equation of the form

ẋ(t) =

[
A11(x(t)) 0
A21(x(t)) 0

]

︸ ︷︷ ︸

=Ā(x(t))

x(t) +

[
B1(x(t))
B2(x(t))

]

︸ ︷︷ ︸

=B̄(x(t))

u(t), (2.22)

x(0) = x̄0, (2.23)

in which B̄ := E−1B̃ and Ā := E−1Ã. An example of a heterogenous reservoir
with 12 wells modeled by (2.22) considered throughout this thesis is depicted in
Figure 2.3.

2.1.4 Single-phase flow reservoir models

The state-space formulation (2.22) is nonlinear due to the dependencies of A and
B on x. If there is one phase in the reservoir, the only states in the model are
the pressures in the different grid blocks. If, in addition, the phase compressibil-
ity is constant the only remaining source of nonlinearity in (2.22) is the pressure-
dependency of density. However, if the compressibility of the phase is small (as
is common for fluids) and if the pressure differences throughout the reservoir are
not very large, the density will remain nearly constant

ρi(p(t)) ≈ ρi(p(0)), i ∈ {o,w}. (2.24)

Considering water as example, s(t) =
[

1 . . . 1
]T

for all t and we can write

ṗ(t) = A11p(t) + B1u(t), (2.25)

p(0) = p̄0. (2.26)
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Figure 2.3: Reservoir considered throughout this thesis with 8 injectors (light), 4
producers (dark). The shading indicates permeability.

Note that the right-hand side of (2.25) is linear in terms of p and u.

If the flow rates in all of the wells are directly controlled (i.e. u contains only qj

terms) A11 will contain an integrator, since the row and column sum of Ã are then
zero. This is intuitively obvious: a step response on an injector then corresponds
to injection without production, which due to the no-flow boundary conditions
leads to ever increasing pressure. If the flow rate in at least one well is indirectly
controlled through the bottom-hole pressure according to (2.20) (i.e. u contains at

least one pj
bh term), A11 will be Hurwitz. Single-phase flow models of the form

(2.25) will be used in Chapters 6 - 7.

2.1.5 Time discretization

Whether considering an equation of the form (2.22) for multi-phase flow or (2.25)
for single-phase flow, performing a reservoir simulation invariably requires dis-
cretization in time. The most common method is the first-order Euler scheme

ẋ(t) ≈
xk+1 − xk

∆t
(2.27)

where ∆t is the discretization time step and xk := x(k∆t). If the remaining terms
in (2.22) or (2.25) are evaluated at time t the discretization is called explicit, as
opposed to implicit if the terms are evaluated at time t+ ∆t. In Chapters 6 - 7 we
will consider explicit time discretization of (2.25). With

A := I + A11∆t (2.28)

B := B1∆t, (2.29)
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we can write

pk+1 = Apk + Buk, (2.30)

p0 = pinit (2.31)

as a difference equation approximating (2.25)-(2.26), where uk := u(k∆t). The
discretization time step is set to

∆t = 0.5/ |λmin (A11)| (2.32)

where λmin represents the most negative eigenvalue. This leads to quite small
time-steps, and is referred to as the so-called Nyquist-Shannon sampling time
needed to accurately capture all of the dynamics in (2.25) - see Astrom and Wit-
tenmark (1990). In practice, the implicit time discretization scheme is usually pre-
ferred over the explicit one, in combination with much larger sampling times than
in (2.32). Nevertheless, we use (2.32) to time discretize single-phase flow reservoir
models because the analysis and results presented in Chapters 6-7 requires that all
of the dynamics are accurately captured. Note that, as (2.25), the right-hand side
of (2.30) is linear in terms of pk and uk.

2.2 Constraints

In practice, there are many constraints which have to be met during the produc-
tion process. Most of these can be translated into inequality constraints

g(x(t),u(t)) ≤ 0 ∀ t (2.33)

and equality constraints

h(x(t),u(t)) = 0 ∀ t (2.34)

on both the states x and controls u in (2.22).

There are clearly always upper and lower bounds on the bottom-hole pressures,
valve settings and flow rates in the individual wells, reflected by

umin ≤ u(t) ≤ umax ∀ t (2.35)

for given umin,umax ∈ R
m. This can be written as (2.33) with

g(u(t)) =
[

u(t) − umin −u(t) + umax

]T
.

Note that a very common lower bound is umin = 0, since an injector generally
only injects fluids and a producer only produces them. This also holds for a pro-
ducer that is converted into an injector (e.g. to maintain reservoir pressure), as it
can then no longer produce fluids.
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In order to avoid pressure decline in the reservoir, it is sometimes desirable to
balance the total volumetric injection rate (i.e. sum of flow rates over all injector
wells) with the total volumetric production rate (i.e. sum of flow rates over all
producer wells). If we can directly control all of the well flow rates, this can be
written as (2.34) with

h(u(t)) =
[

1 . . . 1
]
u(t).

In this thesis we do not model the dynamics of fluids flowing through the wells,
nor do we model the surface facilities. We therefore implicitly assume that these
omissions can be captured through constraints of the form (2.33) and (2.34).

2.3 Uncertainty in reservoir models

2.3.1 Sources of model uncertainty

As mentioned in Chapter 1, reservoir models of the form (2.22) are generally very
uncertain. This section discusses some of the sources and effects of this uncer-
tainty, and how it is commonly represented.

Model structure
Many simplifying assumptions have been made in deriving the model structure
of (2.22). The black oil formulation and semi-empirical Darcy’s Law, for example,
are only approximations of the true physics dictating multi-phase flow, as is the
spatial discretization of the reservoir (for a large reservoir the grid block dimen-
sions can be 100m × 100m × 10m). Furthermore, the reservoir geometry (e.g. the
no-flow boundary) is also not exactly known.

Parameters
Virtually all of the physical parameters entering (2.22) are uncertain. The fluid
properties (e.g. relative permeability curves krw and kro) are determined by per-
forming numerous tests on rock and fluid samples taken from wells. Even so,
they are still only approximations as it is difficult to relate fluid properties on a
micro-scale to properties on a grid-block size scale. The geological properties (e.g.
the permeability kj and porosity φj in grid blocks j = 1, . . . , N ) are also very un-
certain due to the limited number of wells from which core samples can be taken,
and the limited capacity of seismic experiments to distinguish between the differ-
ent layers of the subsurface.

Initial conditions
The initial conditions x̄0 (e.g. the initial pressures and initial contact depths be-
tween the different phases, which are translated into grid block saturations) are
uncertain, again because of the limited number of wells from which measure-
ments can be taken and because of capillary pressure effects. Note the contact
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depths are particular important, as these determine how much oil and gas is ini-
tially in place.

Disturbances
In some reservoirs there can be large disturbances affecting (2.22), such as the
presence of an active aquifer, that are only known to a limited extent. While the
effect of these disturbances is not always undesirable (e.g. an active aquifer will
slow down undesired pressure decline), they can have a significant impact on
predictions.

2.3.2 Representing model uncertainty by multiple models

For notational convenience, let us assume that the only source of uncertainty in
a reservoir model of the form (2.22) is in the fluid and geological parameters. By
stacking all of the uncertain parameters θi in a vector θ as follows

θ :=
[
θ1 . . . θM

]T
, (2.36)

we can write for a given configuration of wells

ẋ(t) = Ā(x(t),θ)x(t) + B̄(x(t),θ)u(t). (2.37)

Let us assume that a cumulative distribution function (cdf) for θ has been de-
termined, either through an identification / history matching procedure, or by
engineering judgement. Such a cdf for θ and a (deterministic) control u together
now determine a cdf for the state trajectory x and thereby of future production
of oil and gas. However, because (2.37) is nonlinear, this cdf cannot be evaluated
analytically and must be approximated numerically. Unfortunately, the number
of uncertain parameters M can be in the order of the number of grid blocks N
(i.e. 104 − 106). Even though these parameters are strongly correlated with each
other, it is virtually impossible to approximate the cdf of x accurately due to the
generally long computation time of a single reservoir simulation. The common
approach to this numerical approximation is to decide upon a few sources of un-
certainty that presumably have the largest impact on the predictions of future pro-
duction as well as a few of their values. Let us denote these values by θ1, . . . ,θL,

where L ≪ M , and their probability by w1, . . . , wL, where
∑L

i=1 wi = 1. These
values and their probabilities are often determined using engineering judgement,
sometimes in combination with a stochastic method (e.g. by sampling a Gaussian
distribution around a specified mean).

The parameter vectors θ1, . . . ,θL, often called realizations when referring to per-
meability or porosity distributions, are then used to generate L reservoir models
of the form (2.37). Figure 2.4 depicts six realizations of the permeability distri-
bution of the reservoir depicted in Figure 2.3. For clarity, if permeability is the
only source of uncertainty under consideration, the values of all six permeability
distributions are stacked to form θ1, . . . ,θ6, and subsequently lead to six different
models of the form (2.37).
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Figure 2.4: Six realizations of permeability for the reservoir in Figure 2.3, each
depicting meandering channels of high permeability.

2.3.3 Limitations of reservoir models

Multiple models can be used to make predictions of future production, and the
spread in these predictions together with their probabilities can be used to assess
the impact of model uncertainty. Figure 2.5 depicts such a spread in predictions
of future production. Unfortunately, this spread can be very large, and this forms
a major limitation in using reservoir models to make field development decisions.
Furthermore, a large spread will obviously worry oil companies, as it can imply
significant financial risk in developing a particular field. This is discussed in more
detail in Chapter 4.
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Figure 2.5: Predictions of future production by multiple reservoir models.
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Despite their limited reliability, reservoir models are a widely used tool for field
development planning. There are a number of reservoir simulators which essen-
tially implement the equations of the form (2.37). Some of these simulators are
commercially available (e.g. Schlumberger’s Eclipse), and others proprietary (e.g.
Shell’s MoReS). The simulation results considered in this thesis have been ob-
tained either by using MoReS, or by implementing (2.37) in MATLAB.

As mentioned in Chapter 1, another limitation of reservoir models is that, while
they are widely used for field development planning, they are generally not used
to determine the day-day decisions made in productions operations. In produc-
tion operations, where the goal is often to maximize daily hydrocarbon produc-
tion, decisions are often based on models accurately describing multi-phase flow
through wells and related surface network. Coupling reservoir models with well
and surface network models is an area of ongoing research - Coats et al. (2003),
Kosmala et al. (2003).

2.4 Chapter conclusions

Reservoir models are often based on a black oil formulation, in which oil, wa-
ter and gas are considered as phases. The equations governing the flow of these
phases are a combination of a mass balance equation and Darcy’s Law, which
states that fluid flow rate is proportional to the pressure gradient. Because reser-
voirs are generally heterogeneous, these partial differential equations cannot be
solved analytically, but must be evaluated numerically. The reservoir under con-
sideration is therefore spatially discretized into a finite number of grid blocks,
whose geological properties are assumed to be homogeneous. This leads to a large
number of ordinary differential equations that can be written in state-space form,
where the states are the fluid pressure and saturations in each grid block and the
inputs are the production settings of the wells. Unfortunately, reservoir models
contain a significant amount of uncertainty from various sources. It is common
to represent this uncertainty by considering not one but several models to make
predictions of future hydrocarbon production, and the spread in these predictions
can be used to assess the impact of model uncertainty.
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3 CHAPTER

Optimal Control of Production
Settings

Th is chapter focuses on the optimal production settings of wells.
First, necessary conditions for optimality are given. Then, based on

these conditions, the structural properties of optimal production settings
for a whole variety of optimal control problems is discussed. The main
contribution of this chapter is to analyze why and under what conditions
these problems can be expected to have bang-bang (on-off) optimal so-
lutions, as well as the role of so-called singular arcs. Sufficient optimality
conditions for bang-bang controls are given, as well as two gradient-based
optimization procedures to actually find optimal settings. Finally, an ap-
plication is presented to illustrate the results.

3.1 Problem formulation

Given a certain configuration of wells, finding the time-varying production set-
tings over a time interval [0, T ] that maximize a reservoir’s recovery factor can
be posed as an optimal control problem. Since maximizing the recovery factor is
equivalent to maximizing the volume of produced oil or minimizing the volume
of remaining oil, the recovery factor can naturally be expressed as a performance
measure in terms of the water saturations at the terminal time T , and we can
write1

Jrf(u) =

N∑

j=1

Sj(T ) . (3.1)

However, since oil companies have an incentive to maximize the economic value
as opposed to recovery factor of a reservoir, a very common performance mea-
sure is simple Net Present Value (NPV), defined as the total oil revenues minus

1See Chapter 2 for an explanation of the notation used throughout this chapter.
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the total injection and production costs, in combination with a discount factor d
representing the time value of money (e.g. interest rate). Letting roil denote oil rev-
enue per unit volume, rinj the injection cost per unit volume, and rprod the water
production cost per unit volume, we can write

Jnpv(u) =

∫ T

0

{
∑

j∈Nprod

roil(t)
[
1 − f j

w(t)
]
qj(t)

︸ ︷︷ ︸

oil revenue

−
∑

j∈Nprod

rprod(t)f j
w(t)qj(t)

︸ ︷︷ ︸

production cost

+
∑

j∈Ninj

rinj(t)q
j(t)

︸ ︷︷ ︸

injection cost

}
1

(1 + d(t))t

︸ ︷︷ ︸

discount factor

dt. (3.2)

Both (3.2) and (3.1) are performance measures of the form

J(u) = ψ(x(T ), T ) +

∫ T

0

{
l1(x(t), t) + lT2 (x(t), t)u(t)

}
dt (3.3)

where u(t) enters the integrand of (3.3) linearly. The additional time arguments
in l1 and l2 can be used to represent time-varying properties, such as volatile oil
prices and interest rates.

From (2.22), for notational convenience let us define

f1(x(t)) := Ā(x(t))x(t), (3.4)

f2(x(t)) := B̄(x(t)). (3.5)

Furthermore, let us for the moment assume that the only production constraints
are upper and lower bounds on the control u(t). The reason for this assumption
will be clarified later in this chapter. The optimal control problems we are consid-
ering are thereby of the following form.

Problem 1

maximize J(u) = ψ(x(T ), T ) +

∫ T

0

{
l1(x(t), t) + lT2 (x(t), t)u(t)

}
dt

over u ∈ L1
m[0, T ]

subject to ẋ(t) = f1(x(t)) + f2(x(t))u(t)

x(0) = x̄0

u(t) ∈ U ∀ t ∈ [0, T ]

U = {w ∈ R
m : umin ≤ w ≤ umax} .

Here, L1
m[0, T ] denotes the space of m-valued absolute-integrable functions de-

fined over the time period t = 0 to t = T . The norm of an element u∗ ∈ L1
m[0, T ]

is given by

‖u∗‖ =

m∑

i=1

∫ T

t=0

|u∗i (t)| dt. (3.6)
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Note that we do not consider model uncertainty, and thereby implicitly assume
that the reservoir model (2.22) is correct.

It is interesting to note that virtually all of the applications discussed in the liter-
ature overview in Section 1.4 involve problems that can be written as Problem 1,
some with an additional equality constraint on the control. Of these, Sudaryanto
and Yortsos (2000) and Sudaryanto and Yortsos (2001) are the only ones who state
that the optimal solution is necessarily a bang-bang control - meaning that over
the entire time interval, each component of u takes on either its minimum or max-
imum value. Consequently, they disregard the possibility of smooth optimal solu-
tions and only consider bang-bang controls, parameterized in terms of switching
times (times at which a component of the control switches from one extreme value
to the other.) It turns out that the problems considered in Sudaryanto and Yortsos
(2000) and Sudaryanto and Yortsos (2001) do not satisfy the conditions for which
we can expect them to have bang-bang optimal solutions (Bellman (1956), Athans
and Falb (1966) and Sussmann (1979)), the reasons for which are clarified later in
this chapter.

In light of this work, the subsequent studies Brouwer (2004) and Brouwer and
Jansen (2004), which consider optimizing individual rates and valve settings in
water flooding, are particularly interesting. They find that the optimal rates are
smooth, but that the optimal valve settings are sometimes bang-bang - even though
they do not parameterize the control in terms of switching times. No explanation
is given as to what causes this difference in type of solution.

Bang-bang controls have the obvious advantage over smooth controls in that they
can be implemented using simple on-off valves, which are cheaper than valves
with variable settings. The main contribution of this chapter is to analyze the
conditions under which Problem 1 can be expected to have bang-bang optimal
solutions. To arrive at the previously mentioned conditions, we first inspect the
necessary conditions for optimality.

3.2 Necessary conditions for optimality

The basic reasoning behind deriving necessary optimality conditions for Prob-
lem 1 is that, given a candidate optimal control u∗, the first order variation of the
performance measure should be nonpositive for ‘small’ variations of u∗. These
derivations are given in virtually all textbooks on optimal control. See for exam-
ple Athans and Falb (1966), Bryson and Ho (1975), Luenberger (1981) and Stengel
(1986). For this derivation it is convenient to first consider a more general prob-
lem than Problem 1 in which both ẋ(t) and the integrand of J(u) do not depend
linearly on u(t), as follows.
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Problem 2

maximize J(u) = ψ(x(T ), T ) +

∫ T

0

l(x(t),u(t), t) dt

over u ∈ L1
m[0, T ]

subject to ẋ(t) = f(x(t),u(t))

x(0) = x̄0

u(t) ∈ U ∀ t ∈ [0, T ]

U = {w ∈ R
m : umin ≤ w ≤ umax} .

We first derive necessary optimality conditions for Problem 2, and then analyze
these solutions for Problem 1.

A common starting point is to define an auxiliary function, the so-called Hamil-
tonian, as follows

H(x(t),u(t),λ(t), t) := l(x(t),u(t), t) + λT (t)f(x(t),u(t), t). (3.7)

The vector λ(t) ∈ R
2N is often referred to as the adjoint, co-state, Lagrange multi-

plier or tangent vector.

Consider a candidate optimal control u∗ for Problem 2 which is allowable (mean-
ing u∗(t) ∈ U ∀ t ∈ [0, T ]) and an arbitrary allowable function v which is close to
u∗, in the sense that

m∑

i=1

∫ T

t=0

|u∗i (t) − vi(t)| dt < ε (3.8)

for some small ε > 0. It can be shown that if λ satisfies the adjoint system equation

λ̇(t) = −
∂H

∂x

T

(x(t),u∗(t),λ(t), t) (3.9)

with terminal-time condition

λ(T ) =
∂ψ

∂x

T

(x(T ), T ) (3.10)

the effect on the performance measure is

J(v) − J(u∗) =

∫ T

t=0

{H(x(t),v(t),λ(t), t) −H(x(t),u∗(t),λ(t), t)} dt

+ o(ε) (3.11)

in which o(ε) denotes terms of smaller order than ε.

A first order necessary condition for u∗ to be optimal for Problem 2 is

H(x(t), v̄,λ(t), t) ≤ H(x(t),u∗(t),λ(t), t), ∀ v̄ ∈ U , ∀ t ∈ [0, T ]. (3.12)
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Note that v̄ is not a function but an element of U , and that if (3.12) does not hold
it is possible to construct an allowable v close to u∗ for which J(v) > J(u∗). This
result is referred to as Pontryagin’s Maximum Principle and it is one of the most
important results in optimal control theory - see Pontryagin et al. (1962).

3.3 Bang-bang optimal solutions and singular arcs

An important observation is that, for the particular structure of Problem 1, these
necessary conditions have a particular form. Let us define

βT (t) := lT2 (x(t), t) + λT (t)f2(x(t), t). (3.13)

According to (3.12), a first order necessary condition for u∗ to be optimal for Prob-
lem 1 is

βT (t)v̄ ≤ βT (t)u∗(t) ∀ v̄ ∈ U , ∀ t ∈ [0, T ]. (3.14)

Note that the f1 and l1 terms do not enter (3.14) because they appear identically
on both sides of (3.12) and therefore cancel each other out. This necessarily leads
to the following form of the components of u∗

u∗i (t) =

{
u∗min,i , if βi(t) < 0
u∗max,i , if βi(t) > 0

(3.15)

for i = 1, ...,m, where u∗i denotes the ith component of u∗ and βi denotes the ith

component of β. The latter is often understandably referred to as the switching

function and its zeros the switching times. Note that ∂H
∂u

= β and that ∂kH
∂uk = 0

for k ≥ 2. Loosely speaking, the component βi at time t can therefore be viewed
as the first order variation of J due to a small change in the component u∗i at time t.

 

0

 

t

u
i
(t)

β
i
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Figure 3.1: The ith component βi of the scaled switching function β and the corre-
sponding bang-bang control component ui.

For clarity, we emphasize that the control u determines the state x through (2.22),
that the pair (x,u) determines the adjoint through (3.9) and (3.10), and that the
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pair (x,λ) determines the switching function β through (3.13). The control u∗

satisfies the first order necessary optimality conditions (3.12) if the zeros of the
components of β coincide with the times that the components of u∗ are discon-
tinuous - as illustrated in Figure 3.1. How to actually compute such a control is
discussed in Section 3.5.

If the switching function β contains only isolated zeros as in Figure 3.1, the prob-
lem is said to be regular. On the other hand, if any component of β is zero along
an open time interval, the problem is said to be singular, and such an interval is
called a singular arc. The difficulty lies in the fact that, along the singular arc,
(3.12) no longer provides information on the optimality of u∗ since the first order
variation of J is then insensitive to variations in u∗.

In short, any locally optimal solution to a reservoir flooding problem that can be
written in the form of Problem 1 is necessarily a bang-bang control, possibly in
combination with singular arcs. This is not surprising, as it is in line with the
intuitive notion that in a locally optimal solution of a static optimization prob-
lem, either the derivative vanishes or the to-be-optimized parameters are on the
boundary of the feasible set. However, what is surprising is that pure bang-bang
controls (without singular arcs) are widely encountered as optimal strategy for
optimal control problems that can be written as Problem 1.

Some examples from other application fields where pure bang-bang controls are
shown to be optimal include:

- minimum-time problems for linear systems - Bellman (1956),

- minimum-time problems for bilinear systems - Mohler (1973),

- optimal control of batch reactors - Blakemore and Aris (1962),

- optimal thermal control - Belghith et al. (1986),

- optimal drug administration in cancer chemotherapy - Ledzewicz and Schat-
tler (2002).

According to the previously mentioned studies Sudaryanto and Yortsos (2000),
Sudaryanto and Yortsos (2001), Brouwer (2004) and Brouwer and Jansen (2004),
and the application treated in this chapter, it now seems that pure bang-bang
controls are also sometimes (but not always) encountered as optimal strategy for
reservoir flooding problems that can be written as Problem 1.

It is now clear why we only consider upper and lower bounds on the individ-
ual components of the control u: the step from (3.14) to (3.15) in the derivation
of bang-bang optimal control does not apply to problems involving more general
(in)equality constraints on the control.
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In fact, this is precisely the reason why the optimal rates in Brouwer (2004) and
Brouwer and Jansen (2004) are smooth, while the optimal valve settings are some-
times bang-bang: there are additional equality constraints on the rates in order to
balance total injection with total production, but not on the valve settings. Finally,
we remark that the problems considered in Sudaryanto and Yortsos (2000) and
Sudaryanto and Yortsos (2001) also have equality constraints on the rates, which
is why there is no reason to expect them to have bang-bang optimal solutions.

In practice, more general (in)equality constraints on the control can be relevant
(e.g. balancing the total injection and production rates), as can state constraints
(e.g. keeping the pressure in the reservoir below a fracturing threshold, and above
the bubble-point pressure). Unfortunately, optimal control problems with state
constraints are, in general, difficult to solve. Some progress in handling state con-
straints in reservoir flooding problems has recently been achieved by Sarma et al.
(2006a), de Montleau et al. (2006) and Kraaijevanger et al. (2007).

Remarks:

- Local optimal vs. global optimal solutions
Since Problem 1 is a nonconvex optimization problem due the nonlinear
dynamics of (2.22), we cannot guarantee that a local optimal solution is also
a global optimal solution. If an optimization scheme converges to the same
solution for different initial conditions, we might have more confidence that
that particular solution is indeed globally optimal - but we generally cannot
prove it.

- Smoothness
We assume that f1, f2, l1, l2 and ψ are continuously differentiable with re-
spect to x and t - see for example (3.9). In general, this is a reasonable as-
sumption in reservoir flooding problems. For example, f1 and f2 are con-
tinuously differentiable as long as (krw, kro) depend smoothly on S, and
(µrw, µro, ρw, ρo) depend smoothly on p. It also is worthwhile to point out
that the ∂f

∂x
term in (3.9) is always available in a fully-implicit reservoir sim-

ulator - see Sarma et al. (2005).

- Free terminal time problems
If the terminal time T is free, the so-called transversality condition

∂ψ

∂T
(x(T ), T ) +H(x(T ),u(T ),λ(T ), T ) = 0 (3.16)

must be added to the set of necessary conditions for optimality - see Stengel
(1986).

- Continuous vs. discrete-time problems
The trajectory x can generally not be solved analytically for given u and x̄0,
and the same applies to λ. Consequently, (2.16) and (3.9) are discretized
in time and u is often taken to be piece-wise constant (i.e. step-like). The
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optimality conditions, however, are largely similar to the continuous-time
case; see Bryson and Ho (1975) for more details.

3.4 Sufficient conditions for optimality

To ensure that a control u∗ satisfying the first order necessary conditions given in
the previous subsection is indeed a local optimal solution to Problem 1, second
order sufficient conditions must be verified. Many authors have been involved in
deriving higher-order conditions, both necessary and sufficient, for optimality -
see for example Krener (1973), Bressan (1985) and Kawski (2003). Recently, how-
ever, second order sufficient conditions specifically for pure bang-bang solutions
have been derived in Agrachev et al. (2002), and their efficient numerical imple-
mentation have been discussed in Maurer et al. (2005).

In order to use the sufficient optimality conditions in Agrachev et al. (2002), we
must make four assumptions:

(a) the terminal time T is fixed,

(b) the bang-bang control u∗ satisfies the necessary optimality conditions and is
regular (has no singular arcs), and

(c) only one component of u∗ switches at any particular time.

Given n distinct switching times tk ∈ [0, T ] with t1 < ... < tn, let us define the
bang-bang vector τ as

τ =
[
t1 ... tn

]T
. (3.17)

Furthermore, let τ determine a bang-bang control u∗. Due to assumptions (b) and
(c), the components of τ coincide with the zeros of the components of the switch-
ing function. That is, for each k = 1, ..., n there is a unique index i(k) such that
only the component u∗i(k) is discontinuous at tk, and only the component βi(k) is
zero at tk.

The fourth and final assumption is that

(d) the strict bang-bang property holds

d

dt
βi(k) (tk)

(

uk+1
i(k) − uk

i(k)

)

> 0, k = 1, ..., n (3.18)

where uk
i(k) denotes the value of u∗i(k)(t) for tk−1 < t < tk.

With this notation,
(

uk+1
i(k) − uk

i(k)

)

represents the ‘jump’ of u∗i(k)(t) at the switching

time tk. Loosely speaking, (3.18) therefore requires that u∗i(k)(t) actually switches
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from one value to another at t = tk. Note that since u∗ satisfies Pontryagin’s Max-
imum Principle (3.12), the left hand side of (3.18) is always larger than or equal to
zero - we simply require it to be strictly larger than zero.

The performance measure J is now a function of τ . If we have found a τ such
that u∗ satisfies the first order necessary conditions for optimality, we can only
conclude that u∗ might be a local optimal solution to Problem 1. Surprisingly, if

the Hessian ∂2J
∂τ2 (τ ) ∈ R

n×n is negative definite

∂2J

∂τ 2
(τ ) < 0 (3.19)

we can make the much stronger statement that u∗ really is a local optimal solution.
We stress that optimal here refers to variations of u∗ satisfying (3.8) (i.e. optimal
with respect to the L1

m-norm (3.6)).

If ∂2J
∂τ2 (τ ) is negative semi-definite, u∗ again might be a local optimal solution,

whereas if it is indefinite it certainly is not. Whatever the situation, (3.19) is clearly
a simple condition to check. This is illustrated in the example of Section 3.6.

3.5 Optimization methods

3.5.1 Steepest descent method

As mentioned earlier, the equations (2.16) and (3.9) are usually discretized in time,
with u taken to be piece-wise constant (i.e. step-like). Let u be divided into K
equal intervals over [0, T ], let uk

j ∈ R
m denote the value of u(t) over the j-th time

interval in the k-th iteration, and let

uk :=
[

uk
1

T
. . . uk

K

T
]T

. (3.20)

An optimal solution to Problem 1 can be found by iteratively improving upon an
initial choice of uk in a steepest descent2 method

ũk+1 = uk + δk dJ
T

duk
(uk), (3.21)

uk+1
j = max

(
umin,j , min

(
umax,j , ũ

k+1
j

) )
, j = 1, . . . ,mK. (3.22)

Here, ũk
j denotes the jth component of ũk, uk

j the jth component of uk and δk the

step size. Note that (3.22) is to ensure that uk+1 leads to an allowable control (i.e.
within the required upper and lower bounds). dJ

duk is the (total) derivative of J ,
whose components are given by

∂J

∂uk
j,i

(uk) =

∫ jT/K

t=(j−1)T/K

∂H

∂uj,i

T

(x(t),u(t),λ(t), t) dt. (3.23)

2This is a slight abuse of terminology since, strictly speaking, it is only a ‘steepest’ descent method
if there are no active constraints on uk .
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for j = 1, . . . ,K and i = 1, . . . ,m. Although it has the obvious advantage of being
easy to implement, the steepest descent method is known for its slow convergence
near an optimal solution. There are other methods that have better convergence
properties, but these are not considered here.

3.5.2 Switching time methods

If we assume that the optimal solution to Problem 1 is a bang-bang control, we can
in principle very efficiently parameterize the control in terms of switching times.
An optimal solution can then be found by iteratively improving upon an initial
choice of the switching times, for example again using a steepest descent method.
There are several methods to compute optimal bang-bang controls which focus on
finding the optimal number and value of switching times, such as

- the Switching-Time-Variation Method (STVM) of Mohler (1973),

- the method of Glashoff and Sachs (1977),

- the Switching Time Optimization (STO) of Meier and Bryson (1990),

- the Switching Time Computation of Lucas and Kaya (2001).

A major challenge, however, is that the optimal number of switching times is not
known beforehand. For regular optimal control problems involving linear nth-
order systems, it has been proven that the optimal solution has at most n switch-
ing times - see Bellman (1956) and Athans and Falb (1966). In Sussmann (1979),
these results have been extended to problems involving nonlinear systems. Un-
fortunately, they are not of much practical use, since in our intended application
n is in the order of 104 − 106.

In all of the previously mentioned methods, the initial number of switching times
is therefore set a priori. In light of this drawback we propose the following alter-
native descent method, which is a slight deviation from (3.21)-(3.22).

3.5.3 Alternative descent method

Choose an initial bang-bang control uk, and iteratively improve upon it in the
following descent method

uk+1
j,i = uk

j,i + hk
j,i sign

(

∂J

∂uk
j,i

(uk)

)

, (3.24)

hk
j,i =

{
umax,i − umin,i if j, i is in Ωk

1

0 if j, i is not in Ωk
1

Ωk
1 = set of indices of δ̃k largest components of Ω2

Ωk
2 = set of

∣
∣
∣
∣
∣

∂J

∂uk
j,i

(uk)

∣
∣
∣
∣
∣

for which uk
j,i is not aligned with

∂J

∂uk
j,i

(uk).
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Roughly speaking, this amounts to abruptly switching the δ̃k most important com-
ponents of uk that are not yet aligned as in Figure 3.1 from one lower / upper
bound to the other, until either the set Ωk

2 is empty (and the solution satisfies the
necessary optimality conditions) or there is no more improvement (and the so-

lution is suboptimal). δ̃k can be viewed as the step size. The advantage of this
method is that it does not work with switching times, while uk (and thereby u) is
still a bang-bang control at each iteration and can therefore be implemented with
simple on-off valves instead of variable-setting ones.

3.6 Application

Description

Consider a water flooding application of a 3-dimensional oil-water reservoir in
a fluvial depositional environment. It is modeled with 18.553 grid blocks of di-
mension 20m×20m×20m, and there are 7 vertical layers. Figure 2.3 depicts the
permeability field, together with the location of 12 vertical wells.

The modeling is as in Chapter 2, but with gravity effects. Geological and fluid
properties are given in Table 3.1. The relative permeability curves are depicted in
Figure 3.2.

Symbol Value Unit
φ 0.20 [-]
ρo(400 bar) 800 and 1000 [kg / m3]
ρw(400 bar) 1000 [kg / m3]
co 10−5 [1 / bar]
cw 10−5 [1 / bar]
µo 10−3 [Pa s]
µw 10−3 [Pa s]

pj
bh 390 - 415 [bar]

p̄0 hydrostatic at 400m [bar]
S̄0 0.10, . . . , 0.10 [-]

Table 3.1: Values of geological and fluid properties.

The well specifications are as follows:

- Each well is available as of time t = 0.

- Each well is vertical, and is perforated in all 7 layers of the reservoir.

- Each well operates at constant bottom-hole pressure. For the 8 injectors, the
bottom-hole pressure is set to 415 bar at the lowest perforation. For the 4 pro-
ducers, the bottom-hole pressure is set to 390 bar at the highest perforation.
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Figure 3.2: Relative permeabilities for cases in Table 3.3.

The pressures in the other perforations are computed assuming hydrostatic
equilibrium in the wellbore.

- Each well is equipped with a single valve, whose setting can vary between
10−6 (a lower bound of 0 leads to numerical problems) and 1. In other words,

U := {w ∈ R
12 : 10−6 ≤ wk ≤ 1 , k = 1, . . . , 12}.

- The valve setting of a well applies to all 7 perforations.

- The well indices wj are computed using a Peaceman model (2.21) with a
wellbore radius rw = 0.1m and skin factor S = 0.

The initial pressure in the reservoir is computed assuming hydrostatic equilib-
rium, with the top of the reservoir at a depth of 4000m and at a pressure of 400
bar. Note that due to the constant bottom-hole pressures in the wells, the pressure
in the reservoir always stays between 390 bar and 415 bar. The initial water satu-
ration is 0.10 throughout the reservoir.

The performance measure is Jnpv as defined in (3.2), using the values in Table
3.2. The goal is to maximize Jnpv by varying the valve settings of the 8 injectors
and 4 producers over the interval [0, T ]. Three different terminal times are con-
sidered: 1.5, 3.0, and 4.5 years. These reservoir flooding problems can be written
as Problem 1, and we aim to find optimal solutions for each of them using the
conventional and steepest descent methods described in the previous sections.

The previously described model is implemented in the Shell proprietary reservoir
simulator MoReS that also comprises the required adjoint model to compute gra-
dients. The differential equations described in Section 3.2 are discretized using a
fully-implicit scheme, with a maximum time-step size of 1/50 year (≈ 1 week).



3.6 Application 51

Symbol Value Unit
roil 20 [$ / bbl]
rprod 5 [$ / bbl]
rinj 0 and 1 [$ / bbl]
d 0 [-]
T 1.5, 3.0 and 4.5 [years]

Table 3.2: Values for computing Jnpv.

Results

The base case comparison is a conventional so-called reactive water flooding strat-
egy. Here, all valve settings are initially one, but a producer valve setting is shut
in (i.e. closed, and stays closed) when it is no longer profitable to produce from it.
With roil = 20 $/bbl and rprod = 5 $/bbl, this profitability threshold corresponds
to a water cut of 80%.

In order to find optimal valve settings, the conventional steepest descent method
(3.21)-(3.22) is used, with u also divided into intervals of 1/50 year and initial
guess uk = 1. At each iteration k, the step size δk is repeatedly reduced by a factor
2 until J(uk+1) ≥ J(uk), whereupon it is increased by a factor 1.6 for the begin-
ning of the next iteration. Initially, δk is set to 10−5.

The effects of terminal time, oil density, relative permeability, and water injection
cost on the shape of the optimal solution are investigated by considering 6 numer-
ical examples defined in Table 3.3, where results are also summarized.

Case T Type of rinj ρo Type of Shape of Jnpv Increase
[years] relperm [$ / bbl] [kg / m3] control control [billion $] [%]

reactive 1.350
1 1.5 2 0 800 optimal bang-bang 1.365 0.8

reactive 1.871
2 3.0 2 0 800 optimal singular 1.934 3.4

suboptimal bang-bang 1.933 3.3
reactive 1.832

3 3.0 2 0 1000 optimal singular 1.893 3.3
suboptimal bang-bang 1.892 3.3
reactive 1.736

4 3.0 2 1 800 optimal singular 1.822 5.0
suboptimal bang-bang 1.821 4.9
reactive 1.988

5 3.0 1 0 800 optimal singular 2.070 4.1
suboptimal bang-bang 2.070 4.1
reactive 1.900

6 4.5 1 1 1000 optimal singular 2.140 12.6
suboptimal bang-bang 2.119 11.5

Table 3.3: Jnpv and shape of reactive, optimal (i.e. using the steepest descent
method) and suboptimal (i.e. using the alternative descent method) controls. The
third column refers to the type of relative permeability used from Figure 3.2, T
denotes the terminal time, rinj the water injection cost and ρo the oil density.
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For Case 1, the scheme indeed converges to a pure bang-bang control. We stress
that this procedure could converge to a smooth solution, but does not because the
optimal solution is apparently a pure bang-bang control. The optimal control for
Case 1, denoted by u∗, is depicted in Figure 3.3. The first order necessary optimal-
ity conditions are satisfied for u∗, as can be seen by inspection of the sign of the
corresponding switching function β∗. At first sight, the resulting strategy for the
producers seems to be a reactive one. In fact this is not true: the second producer
valve is shut in at a water cut of 60% - far below the profitability threshold of 80%.
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Figure 3.3: Optimal valve settings u∗ and (sign of) the corresponding switching
function β∗ for Case 1.

From Figure 3.3, it can be seen that u∗ satisfies the assumptions (a)-(d) in Sec-
tion 3.4, and we can therefore check second order sufficient optimality conditions.
Clearly, u∗ has only one switching time at τ ∗ = 1.12 years for producer 2. Figure

3.4 shows that ∂2J
∂τ2 (τ ∗) < 0. In other words, u∗ really is locally optimal.

For Cases 2-6, the scheme does not converge to a bang-bang control, but to one
with short singular arcs for certain injectors. This situation is depicted for Case 2
in Figures 3.5 and 3.6.3

The improvement in Jnpv of the optimal control compared to the reactive control
is up to 12.6% - see Table 3.3. The cumulative oil and water production of both
strategies for Case 6 are shown in Figure 3.7. Since there is no discount factor in-

3β∗∗

1
(t) is almost, but not identically, zero for t ∈ [1.58, 2.52]. This is why its sign is not gray in

Figure 3.5.
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Figure 3.4: Jnpv as a function of the switching time τ .

volved (d = 0), the increase in Jnpv is solely due to a decrease in water production.

Improved valve settings can also be found using the alternative descent method
(3.24), with u again divided into intervals of 1/50 year and initial guess uk = 1. At

each iteration k, the step size δ̃k is repeatedly reduced by a factor 2 (and rounded
off to the nearest integer) until J(uk+1) ≥ J(uk), whereupon it is increased by a
factor 1.6 (and rounded off to the nearest integer) for the beginning of the next

iteration. Initially, δ̃k is set to 30.

For Case 1, the scheme converges to the same solution as that obtained with the
steepest descent method. For the other situations, however, the scheme converges
to a solution that is only slightly suboptimal (meaning with only a small loss in
Jnpv) - see Table 3.3. Obviously, this loss in NPV must be traded-off against the
practical advantage of being able to implement the solution with simple on-off
control valves.

Remarks:

- By comparing the optimal solution of Case 2 to Case 3, it does not seem that
oil density has a significant effect on the shape of the optimal solution. How-
ever, we do expect singular arcs to play a significant role in coning problems,
where it is common to operate wells below the highest allowable rate - Hoy-
land et al. (1989).

- By comparing the optimal solution of Case 2 to Case 4, it does not seem that
water injection costs have a significant effect on the shape of the optimal
solution.

- By comparing the optimal solution of Case 1 (T = 1.5 years) to Cases 2-5
(T = 3.0 years) to Case 6 (T = 4.5 years), we conclude that later terminal
times generally lead to more and longer singular arcs. It would be interest-
ing to see if this holds for problems with significant discounting in Jnpv.
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Figure 3.5: Optimal valve settings u∗∗ and (sign) of the corresponding switching
function β∗∗ for Case 2.

- Problems with type 1 relative permeabilities (see Figure 3.2) generally have
more and longer singular arcs than those with type 2 relative permeabilities.

- For Case 1, several (very similar) solutions were found that all satisfy the
necessary conditions for optimality. The one shown in Figure 3.3 is the one
with the highest Jnpv.

- From the results in Table 3.3, we conclude that there is more scope for opti-
mization in problems with later terminal times, type 1 relative permeabilities
and, in particular, higher water injection costs.

3.7 Chapter conclusions

Many production setting optimization problems can be written as optimal control
problems that are linear in the control. If the only constraints are upper and lower
bounds on the control, due to their particular structure, these problems will some-
times have bang-bang optimal solutions. This is supported by a water flooding
example, where for various situations the optimal solution is either bang-bang,
or a bang-bang solution exists that is only slightly suboptimal. This has obvious
practical implications, since bang-bang solutions can be implemented with simple
on-off control valves.
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4 CHAPTER

Robust Optimization of Production
Settings

Th is chapter focuses on the application of robust optimization to find
production settings that are robust against uncertainty in reservoir

models. First, robust performance measures are discussed, followed by
a gradient-based optimization procedure to find optimal solutions. The
main contribution of this chapter is to demonstrate that the method can
be used to find production settings that are robust against uncertainty as
defined by an entire class of models within a geological structure, and not
just its representation by a limited number of models. An application is
given to illustrate these results.

4.1 Problem formulation

As discussed in Section 2.3, reservoir models generally contain a significant amount
of uncertainty originating from many different sources and, as depicted in Figure
2.5, this can have a large influence on the predictions of future production. As a
result, production settings based on a reservoir model that is ‘far’ from reality us-
ing the optimization procedure of Chapter 3 might be suboptimal when applied
to the true reservoir. It therefore makes sense to define the performance of pro-
duction settings not in terms of the performance of a single reservoir model, but
in terms of the performance of an entire class of possible models.

Consider the model structure (2.37). For a given choice of the well production set-
tings u, a performance measure J of the form (3.3) now also depends on θ through
the state trajectory resulting from (2.37). In other words, we can write J = J(u,θ).
Figure 4.1(a) depicts such a (fictional) dependency for two uncertain parameters.

57
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Let us assume that a cumulative density function (cdf) for θ has been determined,
either through an identification / history matching procedure, or by engineering
judgement - see for example Figure 4.1(b). Such a cdf for θ and a (deterministic)
control u together now determine a cdf for the performance J . This is depicted in
Figure 4.1(c), which is the result of combining the (again, fictional) cdf’s of θ1 and
θ2 in Figure 4.1(b) with Figure 4.1(a).
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Figure 4.1: (a) Performance J as function of uncertain parameters θ1 and θ2, as-
sumed to be uncorrelated, for given control u∗, (b) cdf’s of θ1 and θ2, and (c)
resulting cdf of J .

In practice, an oil company will of course only develop a particular field if the cdf
of the performance is favorable enough (e.g. if the expected value of J is above
and the variance below certain thresholds.) Note that we can influence the cdf of
J (e.g. Figure 4.1(c)) through both estimation (e.g. Figure 4.1(b)) and control (e.g.
Figure 4.1(a)). In this chapter we only consider the latter possibility by applying
so-called robust optimization: an approach often applied to batch processes in the
chemical process industry - Terwiesch et al. (1994), Ruppen et al. (1995) Srinivasan
et al. (2002a), Terwiesch et al. (1998).

The first step in robust optimization is to establish a so-called robust performance

measure, denoted by J̃ , which quantifies how good a certain control is for an
entire class of models. There are many different types of robust performance mea-
sures - see Samsatli et al. (1998) for an overview. Two common ones are the ex-
pected value and the worst-case, denote by J̃av and J̃wc, respectively, defined as

J̃av(u) := E [J(u,θ)] , (4.1)

J̃wc(u) := min
θ

J(u,θ). (4.2)

The main idea of robust optimization is to maximize J̃ over all allowable u. How-
ever, as discussed in Section 2.3, it is virtually impossible to accurately determine
the cdf of x (and thereby of J) which is why it is common to decide upon a few
sources of uncertainty that presumably have the largest impact on the predictions
of future production as well as a few of their values. As before, let us denote these
values by θ1, . . . ,θL and their individual probabilities by w1, . . . , wL > 0, where
∑L

i=1 wi = 1. The set of values is denoted by Θ := {θ1, . . . ,θL}. The result of
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this discretization is depicted in Figure 4.2(a), which shows several distinct pairs
(θi, J(u∗,θi)) based on Figure 4.1(a). These pairs can be combined with the prob-
abilities wi, depicted by cdf’s in Figure 4.2(b) to form a cdf of J depicted in Figure
4.2(c). Hopefully, Figure 4.2(c) is a reasonable approximation of Figure 4.1(c).
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Figure 4.2: (a) Values of J (◦) for specified values of θ1 and θ2 (×) and given control
u∗, (b) cdf’s of θ1 and θ2, and (c) resulting cdf of J .

We can now approximate J̃av and J̃wc by

J̄av(u) :=

L∑

i=1

wiJ(u,θi) (4.3)

J̄wc(u) := min
θi

J(u,θi), θi ∈ Θ, (4.4)

or, more generally, we can approximate the robust performance J̃ by

J̄(u) := ϕ (J(u,θ1), . . . , J(u,θL)) , (4.5)

for some function ϕ. Instead of maximizing J̃ , we can now solve the much easier
problem

Problem 3

maximize J̄(u) = ϕ (J(u,θ1), . . . , J(u,θL))

over u ∈ L1
m[0, T ]

subject to J(u,θi) = ψ(xi(T ), T ) +

∫ T

0

{
l1(xi(t), t) + lT2 (xi(t), t)u(t)

}
dt,

ẋi(t) = f1(xi(t),θi) + f2(xi(t),θi)u(t),

xi(0) = x̄0, i = 1, . . . , L,

u(t) ∈ U ∀ t ∈ [0, T ],

U = {w ∈ R
m : umin ≤ w ≤ umax} ,

m∑

j=1

uj(t) = 0 ∀ t ∈ [0, T ],
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where, as in Chapter 3, we have defined

f1(xi(t),θi) := Ā(xi(t),θi)xi(t), (4.6)

f2(xi(t),θi) := B̄(xi(t),θi). (4.7)

Note that, when compared to Problem 1, Problem 3 contains an additional equal-
ity constraint on the control u. This is because in this chapter we consider injection
and production flow rates as controls (i.e. the qj terms), whereas valve settings (i.e.
the αj terms) are considered as controls in the previous chapter. The equality con-
straint states that at all times the total injection rate (over all wells) must equal
the total production rate, which ensures that the average pressure in the reservoir
stays more or less the same. The choice of flow rates over valve settings as control
here is purely pragmatic: the adjoint model to compute gradients with respect
to flow rates was available while conducting this particular research; the adjoint
model to compute gradients with respect to valve settings was not.

There are several applications of robust optimization in the literature. Yeten et al.
(2004) considered 5 realizations of the subsurface heterogeneity and risk of ICV
failure as uncertainty, production settings as control, and decided on wether or
not to deploy these ICV’s using a decision-tree analysis. Guyaguler and Horne
(2004) considered 23 realizations of the subsurface heterogeneity as uncertainty,
well locations as control, and used a hybrid genetic algorithm to find optimal
solutions. Aitokhuehi et al. (2004) considered 2 realizations of the subsurface het-
erogeneity as uncertainty, the well type, location and trajectory as controls, and
used a genetic algorithm to find optimal solutions.

Interestingly, no-one has yet investigated robust optimization of production set-
tings using a gradient-based procedure where the gradients are computed using
an adjoint model (i.e. using (3.23) in Chapter 3). Furthermore, the robustness of
the outcome in the previously mentioned applications is never validated against
a different set of possible reservoir models (i.e. a different choice for Θ). In this
sense it must still be demonstrated that robust optimization can reduce the effect
of uncertainty as defined by an entire class of models, and not just its represen-
tation by a limited number of them. The main contribution of this chapter is to
demonstrate that this can indeed be done.

4.2 Optimization method

An algorithm similar to the steepest descent method for solving Problem 1 in
Chapter 3 can be used to efficiently solve Problem 3. As before, let u be divided
into K equal intervals over [0, T ], let uk

j ∈ R
m denote the value of u(t) over the

j-th time interval in the k-th iteration, and let

uk :=
[

uk
1

T
. . . uk

K

T
]T

. (4.8)
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An optimal solution to Problem 3 is then found by iteratively improving upon an

initial choice of uk using a gradient-based procedure. The gradient ∂J̄
∂uk is given

by

∂J̄

∂uk
(uk) =

∂ϕ

∂uk

(
J(uk,θ1), . . . , J(uk,θL)

)

=
[

∂J
∂uk (uk,θ1) . . . ∂J

∂uk (uk,θL)
]






∂ϕ
∂J (uk,θ1)

...
∂ϕ
∂J (uk,θL)






︸ ︷︷ ︸

=: ∂ϕ
∂J

(uk)

(4.9)

where ∂J
∂uk (uk,θi) can be computed with (3.23) using the state and adjoint tra-

jectory pair (xi,λi) corresponding to θi for i = 1, . . . , L. Note that for J̄av we

have ∂ϕ
∂J (uk) =

[
w1 . . . wL

]T
, whereas for J̄wc we have ∂J

∂uk (uk,θi) = 1 if

J(uk,θi) < J(uk,θj) ∀ j 6= i, j ∈ {1, . . . , L} and 0 otherwise.

However, ∂J̄
∂ukk might not be a feasible direction due to the constraints on the

control. Recall that, for Problem 1, this was solved by ‘clipping’ the control as in
(3.22). However, this will not work for Problem 3 due to the additional equality
constraint. We therefore use the so-called gradient projection method

uk+1 = uk + skdk, (4.10)

where dk denotes the projection of the gradient ∂J̄
∂uk onto the set of feasible direc-

tions and sk is the step size. The projection is given by

dk =
[

I + UT
(
UUT

)−1
U
] ∂J̄

∂uk
(uk). (4.11)

where U is a matrix consisting of the rows of active constraints - see Luenberger
(1973). For the equality constraint in Problem 3 this means that U has one row
consisting of ones. For the inequality constraints U has an additional row of zero’s
for each component of the control that is on the boundary of U , with a +1 at the
appropriate entry if uk

j,i = umax,i, and a −1 if uk
j,i = umin,i. The advantage of (4.10)

- (4.11) is that uk+1 always satisfies the equality constraint, and also satisfies the
inequality constraints for sufficiently small sk ≥ 0.

4.3 Generating subsurface realizations

Of the various sources of model uncertainty discussed in Section 2.3, the spa-
tial distribution of permeability often has a significant impact on the fluid flow
throughout a reservoir, and thereby on the production of oil, gas and water. A
particular choice of the permeability (e.g. made by a geologist) is often referred
to as a realization, and there are many methods to generate such realizations -
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see de Marsily et al. (2005) for a historical overview. The applicability of a cer-
tain method obviously depends on the type of reservoir at hand, and the type of
available measurements (e.g. seismics, well core samples, well logs). Besides these
measurements, a geologist will often have an idea of the geological structure of a
particular reservoir. This can be based on comparable reservoirs in the same re-
gion, on knowledge of the depositional environment, or on outcrops.

An example of such a geological structure is a

“fluvial depositional environment with meandering
channels in the main flow direction North-South.”

This is of course a very loose description, which any number of realizations can
satisfy - see for example the 6 realizations in Figure 2.4. These realizations were
simply drawn by hand (i.e. are not based on a specific stochastic distribution) and
all look very similar. We could create an infinite number of such realizations, and
the challenge is to find production settings that perform well (in some sense) for
all of them.

4.4 Application

Description

We consider a water flooding application of a 3-dimensional oil-water reservoir
that is very similar to the one considered in Section 3.6. It has the same shape, the
same configuration of wells, and is modeled by the same number of grid blocks.
The main difference is that the grid block dimension is smaller: 8m×8m×4m as
opposed to 20m×20m×20m previously. Geological and fluid properties are given
in Table 3.1. Only one oil density is considered: ρo = 1000 kg/m3. The Type 1
curves from Figure 3.2 are used for the relative permeability.

The well specifications are as follows. Each well is available as of time t = 0,
vertical, and is perforated in all 7 layers of the reservoir. The flow rate in each
individual well can be directly controlled, between 0.1 bbl/day (a lower bound of
0 leads to numerical problems) and 400 bbl/day. In other words,

U := {w ∈ R
12 : 0.1 ≤ wk ≤ 400 , k = 1, . . . , 12}.

For the permeability distribution we drew 200 realizations by hand, all satisfying
the previously mentioned geological structure and therefore very similar to the
ones depicted in Figure 2.4, and labeled them θ1, . . . ,θ200. In other words, θi is a
vector containing all the permeability values of the ith drawing. These realizations
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are subsequently split into the so-called optimization set Θopt and validation set
Θval, respectively defined as

Θopt := {θ1, . . . ,θ100} , (4.12)

Θval := {θ101, . . . ,θ200} . (4.13)

Within each set the realizations are assumed to be equiprobable (i.e. wi = 0.01 for
i = 1, . . . , 200).

The robust performance measure is average Net Present Value, J̄av(u) as defined
in (4.3), with J(u,θi) = Jnpv(u,θi) as defined in (3.2) using the values in Table 4.1,
and θi ∈ Θopt. Note that the realizations in Θval are not used at this point.

Symbol Value Unit
roil 20 [$ / bbl]
rprod 3 [$ / bbl]
rinj 1 [$ / bbl]
d 0 [-]
T 10 [years]

Table 4.1: Values for computing Jnpv.

These reservoir models are implemented in a proprietary reservoir simulator that
also comprises the required adjoint model to compute gradients. The differential
equations described in Section 3.2 are approximated using a fully-implicit scheme,
with a maximum time-step size of 1/16 year.

Results

The 100 realizations in Θopt are used to build 100 reservoir models of the form
(2.37). In this section, the robustness of three production setting strategies is eval-
uated using these models: a ‘reactive’ strategy ure, a ‘nominal’ strategy uno and a
‘robust’ strategy uro.

In the reactive strategy ure all valve settings are initially one, but a producer valve
setting is shut in (and stays shut in) when it is no longer profitable to produce
from it. With roil = 20 $/bbl and rprod = 3 $/bbl, this profitability threshold cor-
responds to a water cut of 87%. The injection and production flow rates are fixed
at 200 bbl/day and 400 bbl/day, respectively. Because there are 8 injection and
4 production wells, these flow rates satisfy the equality constraint in Problem 3.
When a producer well is shut in, the injection rate of each injection well is propor-
tionally scaled down in order to satisfy the equality constraint. Due to its reactive
nature, this strategy does not require any knowledge of the geological structure of
the reservoir. It does, however, require water cut measurements in the producer
wells, and formally we would have to write ure = ure(θi) since the water cut indi-
rectly depends on the permeability. We stress, however, that these measurements
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are not used by the other strategies, and in this sense the reactive strategy has an
advantage over them.

The nominal strategy uno is based on a single arbitrary reservoir model out of
the set of 100 possible ones - in this case the model resulting from θ1. It is found
by applying the gradient-based method (4.10) - (4.11) to Problem 3 with J̄(u) =
J(u,θ1). We expect that, while uno maximizes J(u,θ1), it will not maximize
J̄av(u) (i.e. we expect that there exists a u such that J̄av(u) > J̄av(uno)). We stress,
however, that any other reservoir model would probably lead to a different uno,
and thereby different results.

The robust strategy uro is based on all 100 reservoir models. It is found by apply-
ing the gradient-based method (4.10) - (4.11) to Problem 3 with J̄(u) = J̄(u)av =
∑100

i=1 wiJ(u,θi), with wi = 0.01 since the models are assumed to be equiprobable.
We expect that, while uro maximizes Jav(u), it will not maximize J(u,θ1) (e.g. we
expect that J(uno,θ1) > J(uro,θ1)).

For both the nominal and robust strategy, the control is divided into intervals of
1/16 year, and the initial choice uk=1 for the injection and production flow rates is
150 bbl/day and 300 bbl/day, respectively. At each iteration k, the step size sk is
initially set to 1 and then repeatedly reduced by a factor 2 until J̄(uk+1) ≥ J̄(uk)
and uk+1 ∈ U .

The three strategies ure, uno and uro each lead to 100 state trajectories (one cor-
responding to each θi ∈ Θopt). The corresponding trajectories for cumulative
production are depicted in Figure 4.3, and the resulting values for J̄av are summa-
rized in Table 4.2. The resulting cdf’s of J are depicted in Figure 4.4.
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Figure 4.3: Cumulative production of all the reservoir models resulting from Θopt

with (a) reactive, (b) nominal, and (c) robust production settings.

The results are as expected. The nominal strategy is indeed the best in terms of
the NPV of realization θ1. The robust strategy, however, is the best in terms of
the average NPV over the entire set Θopt. In other words, uro is more robust (in
an average sense) than ure and uno with respect to model uncertainty as defined
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Production J(u,θ1) Increase J̄av(u) Increase
settings u [million $] [%] [million $] [%]
Reactive ure 45.4 43.8
Nominal uno 49.3 8.7 46.5 6.2
Robust uro 48.4 6.6 47.8 9.1

Table 4.2: Performance of reactive, nominal, and robust strategies over Θopt.
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Figure 4.4: Cdf’s (a) and approximated pdf’s (b) of J based on Θopt (solid) and
Θval (dotted) for reactive (black), nominal (dark gray) and robust (light gray) pro-
duction settings.

by θi ∈ Θopt. Yet we cannot claim that this will hold for a set of infinitely many
realizations that satisfy the geological structure.

In order to make this claim more plausible, we apply the three strategies ure, uno

and uro to the 100 realizations in Θval. This again leads to three times 100 state
trajectories (one corresponding to each θi ∈ Θval), and the resulting cdf’s of J are
again depicted in Figure 4.4.

The cdf’s of J are clearly very similar, indicating the following.

1. For this particular example, the true cdf of J (i.e. the one obtained with an
infinite number of realizations) can be reasonably approximated with only
100 realizations. In other words, for this example, Figure 4.2(c) is indeed a
reasonable approximation of Figure 4.1(c).

2. The production settings uro are indeed robust (in an average sense) with
respect to uncertainty as defined by an entire class of models within a geo-
logical structure.

Similar results are obtained in van Essen et al. (2007), where the nominal strategies
for all 100 realizations are computed and applied to both sets Θopt and Θval.
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4.5 Chapter conclusions

The adjoint method to derive gradients of a cost function with respect to produc-
tion settings as discussed in Chapter 3 can be combined with robust optimiza-
tion to efficiently compute settings that are robust against uncertainty in reservoir
models. A water flooding application demonstrates that production settings can
be found that are robust against uncertainty as defined by an entire class of mod-
els within a geological structure, by optimizing over one set of 100 realizations of
the permeability distribution, and validating over a second set of 100 realizations.
However, in order to apply the approach presented in this chapter in practice, two
important issues need to be addressed. First, as discussed in Chapter 2, there are
many sources of uncertainty in reservoir models, while this chapter only consid-
ers the permeability distribution to be uncertain. It is clearly important to also
investigate the effects of other sources of uncertainty. Second, in practice it will
usually not be computationally tractable to perform a robust optimization over
a set of 100 reservoir models. In this respect it is still unclear how to generate a
minimal set of models that in some sense is representative of the entire uncertainty
range.



5 CHAPTER

Optimal Well Placement

Th is chapter focuses on optimization of well locations. First, the effect
of production settings on the well placement problem is analyzed.

Then, as main contribution of this chapter, it is shown how the gradients
used in production setting optimization - so efficiently derived using ad-
joint models - can also be used to find optimal well locations. Several
applications are given to illustrate these results.

5.1 Problem formulation

Determining the number, type, location and trajectory of wells are among the most
important decision factors in developing a reservoir, as they can cost up to several
millions of dollars and to a large extent determine how much hydrocarbons will
be produced. Their justification lies of course in the associated predictions of fu-
ture hydrocarbon production, and these predictions are often based on models of
the form (2.22) as discussed in Chapter 2.

Recall that these models consist of a finite number of grid blocks. For notational
convenience, let us assume that such a reservoir model consists of N = NxNyNz

grid blocks. Furthermore, let us assume that there arem vertical wells to be placed
at time t = 0 and that their perforations are fixed (e.g. through all the Nz layers).
As each well is vertical with predetermined perforations, the remaining degrees
of freedom for each well are its production setting ui(t) from t = 0 to t = T , and its
areal (i.e. horizontal, or xy) location. Let us number these locations by 1, . . . NxNy

and denote the set of all such locations by Nxy ,

Nxy := {1, . . . , NxNy}, (5.1)

and the set of locations for m wells by Z ,

Z := {Nxy × . . .×Nxy
︸ ︷︷ ︸

m times

}. (5.2)

67
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Note that with this definition, several wells can be placed in one location. Let us
denote the location of well i by zi ∈ Nxy and a particular configuration of m wells
by z,

z :=
[
z1 . . . zm

]T
∈ Z. (5.3)

With this notation we can generalize (2.22) and write

ẋ(t) = Ā(x(t), z)x(t) + B̄(x(t), z)u(t), x(0) = x̄0. (5.4)

A performance measure J of the form (3.3) now also depends on the well config-
uration z through the state trajectory resulting from (5.4). In other words, we can
write J = J(u, z). We could try to maximize J(u, z) simultaneously over both u

and z. In the literature, such problems are often called mixed integer nonlinear
programs (MINLP’s), because they are nonlinear and involve a mixture of contin-
uous decision variables u and discrete decision variables z.

MINLP’s frequently arise in the chemical process industry, and there are several
methods to deal with them - see Kallrath (2000). Most of these methods, how-
ever, require far too many evaluations of the performance measure to be applica-
ble to reservoir models. In practice, well locations are therefore invariably de-
termined manually. There are, however, a few publications that consider maxi-
mizing J(u, z) using optimization methods. In addition to having predetermined
number, type and perforations of the to-be-placed wells, a common assumption
in these applications is that the production settings are fixed at, say, u∗. Sub-
sequently, J(u∗, z) is maximized over the well locations z, thereby becoming an
optimization problem involving discrete variables only. We will refer to this as the
well placement problem, which can be written as follows

Problem 4

maximize J(z) = ψ(x(T ), T ) +

∫ T

0

{
l1(x(t), t) + lT2 (x(t), t)u∗(t)

}
dt

over z ∈ Z

subject to ẋ(t) = f1(x(t), z) + f2(x(t), z)u∗(t)

x(0) = x̄0

where, as in Chapter 3, we have defined

f1(x(t), z) := Ā(x(t), z)x(t), (5.5)

f2(x(t), z) := B̄(x(t), z). (5.6)

We stress that Problem 4 for u∗ is different from the one for u∗∗ if u∗ 6= u∗∗.

The publications that consider the well placement problem can broadly be classi-
fied into local, or global optimization methods. Local optimization methods try
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to iteratively improve upon an initial well configuration, much as in the previ-
ous optimization of production settings, until a local optimal solution1 is reached.
The main challenge in this application, again as in the optimization of produc-
tion settings, is to effectively find improving directions2 in which to alter the well
configuration. Global methods, on the other hand, will sometimes tolerate lower
performance measures in the hope of finding the global, as opposed to local, opti-
mal solution.

Among the applications of global methods to the well placement problem are the
following. Beckner and Song (1995) applied simulated annealing, Centilmen et al.
(1999) neural networks, Bittencourt and Horne (1997), Montes et al. (2001) and
Aitokhuehi et al. (2004) genetic algorithms, and Yeten (2003) a combination of
the latter two. Although these applications have the virtue of simplicity (an op-
timization algorithm of choice is coupled with a reservoir simulator to evaluate
the performance measure), they generally require many reservoir simulations to
converge to an adequate solution.

Bangerth et al. (2006) compares two local methods for optimizing the location of
vertical wells in a 2D reservoir model. The first one is the Finite Difference Gradi-
ent (FDG) method, which as the name suggests tries to find improving directions
by perturbing each well location by one grid block in both the x and y direc-
tion. This has the obvious drawback of requiring 2m + 1 reservoir simulations to
compute an improving direction of m to-be-placed wells. The second method is
the simultaneous perturbation stochastic approximation (SPSA) method of Spall
(1992), which basically chooses a random direction in which to alter the wells and,
if this does not yield an improvement in the performance measure, assumes that
the opposite direction will. The obvious advantage is that an improving direction
is almost always found in at most 2 reservoir simulations, with the disadvantage
that this direction is generally far from the ‘steepest’ one.

In other words, an efficient method to find (almost) steepest improving directions
using a very limited number of reservoir simulations is currently lacking. The
main contribution of this chapter is to present such a method using the adjoint
models derived in Chapter 3 for computing gradients in production setting opti-
mization.

As mentioned earlier, all of the previously discussed applications in the literature
solve Problem 4 over the well locations z for fixed production settings u∗. How-
ever, these production settings are often chosen to be constant - even after water
has broken through in the production wells. In practice such a well is generally
shut-in, yet this is often overlooked in the literature. This is surprising, as a well
configuration z∗ maximizing J(u, z) for u = u∗ may be far from optimal for a

1A well configuration is locally optimal if no improvement in the performance measure can be
achieved by altering the location of a single well by a single grid block.

2The term ‘improving directions’ is used instead of ‘gradient’, because the latter is not defined for
integer problems.
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different choice of u. Another contribution of this chapter is therefore to analyze
the effect of production settings on the well placement problem.

5.2 Effect of production settings

We will investigate the effect of production settings through a water flooding ex-
ample of a 2-dimensional oil-water reservoir, modeled by 21 × 21 × 1 grid blocks
of dimension 10m×10m×10m. Figure 5.1 depicts the permeability field. Geolog-
ical and fluid properties are given in Table 5.1. The relative permeability curves
are depicted in Figure 2.1. There are four producer wells whose location are fixed
(one in each of the four corners), and one to-be-placed injector well.

Symbol Value Unit
φ 0.20 [-]
co, cw 10−5 [1 / bar]
µo, µw 10−3 [Pa s]
ρw, ρw 1000 [kg / m3]

p̄0

[
400 . . . 400

]T
[bar]

S̄0

[
0.10 . . . 0.10

]T
[-]

Table 5.1: Values of geological and fluid properties.
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Figure 5.1: Permeability.

The performance measure is Jnpv as defined in (3.2), using the values in Table 5.2.
The goal is to maximize Jnpv by varying the injector location z ∈ Z = {1, . . . , 441}.
Three different terminal times are considered: 0.5, 2.5, and 10 years. The four
producers operate at a constant bottom-hole pressure of 397 bar, and are each
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Symbol Value Unit
roil 300 [$ / m3]
rprod 15 [$ / m3]
rinj 5 [$ / m3]
d 0 [-]
T 0.5, 2.5 and 10 [years]

Table 5.2: Values for computing Jnpv.

equipped with a single valve. The well indiceswj are computed using a Peaceman
model (2.21) with a wellbore radius rw = 0.1m and skin factor S = 0. Three
different production settings are considered.

- Constant production settings with the injector operating at a constant rate
of 50 m3/day, denoted by u = ucon.

- Reactive control, where the producers are shut-in at 95% water cut (i.e. the
profitability threshold corresponding to roil = 300 $/m3 and rprod = 15
$/m3), and with the injector operating at a constant rate of 50 m3/day. This
will be denoted by u = ure,rate.

- Reactive control, where the producers are shut-in at 95% water cut, and with
the injector operating at a constant bottom-hole pressure of 403 bar. This will
be denoted by u = ure,bhp

In short, we consider 9 well placement problems: 3 different terminal times T and
3 different production settings u. There are 441 possible injector locations for each
problem (i.e. Z contains 441 elements). For each problem, the value of Jnpv(u, z) is
computed for all z ∈ Z . These values can be plotted onto the 2D reservoir model
grid to form maps of Jnpv(u, z) , from which it is easy to distinguish optimal from
suboptimal areas for the water injector. We are of course particularly interested in
how these areas depend on the particular choice of the production settings3 u.

The results are shown in Figure 5.2. The Jnpv(u, z) maps for u = ucon are quite
intuitive: the best location for the injector is near the center of the reservoir. For
u = ure,rate, however, there is a clear shift in optimal locations and the difference
in NPV for different injector locations is small compared to u = ucon. The optimal
well locations for T = 10 years are in low permeability regions. However, for
u = ure,bhp the results are quite different: the optimal well locations are in high
permeability regions. This is clearly due to the injector well’s BHP constraint: in-
jecting 50 m3/day of water into low permeable regions requires more pressure
than the available 403 bar.

3To be thorough we should also consider optimal production settings as discussed in Chapter 3.
However, this is computationally too demanding since finding optimal production settings for an
arbitrary z ∈ Z is an optimization problem in itself.
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Figure 5.2: Performance Jnpv(u, z) for all possible injector locations z ∈ Z for
T = 0.5, 2.5 and 10 years of no control (u = ucon), reactive control with a constant
injection rate (u = ure,rate) and reactive control with a constant injection bottom-
hole pressure (u = ure,bhp).

We conclude from these results that the type of production settings has signifi-
cant impact on the well placement problem. Because in practice there is limited
injection pressure and because wells are often operated using reactive production
settings, from now on we only consider u = ure,bhp.

5.3 Optimal well placement using adjoint models

We will consider a local optimization method to find optimal well locations for
Problem 4, which essentially tries to iteratively improve upon an initial well con-
figuration until a local optimal solution is reached. Letting zk

x and zk
y denote the

x and y co-ordinates of the well configuration zk in iteration k, then this can be
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written as follows.
[

z̃k+1
x

z̃k+1
y

]

=

[
zk

x

zk
y

]

+ sk

[
dk

x

dk
y

]

︸ ︷︷ ︸

=:dk

, (5.7)

zk+1
x,j = max(1,min(Nx, z̃

k+1
x,j )), j = 1, . . . ,m (5.8)

zk+1
y,j = max(1,min(Ny, z̃

k+1
y,j )), j = 1, . . . ,m (5.9)

where dk denotes an improving direction, sk ∈ N the step size, zk
x,j the jth compo-

nent of zk
x and zk

y,j the jth component of zk
y . Note that sk and the components of

dk are integers, and that (5.8)-(5.9) is to make sure that zk+1 is a well configuration
within the Nx × Ny grid of the reservoir model. As mentioned earlier, the main
challenge in this approach is to efficiently find improving directions. We consider
dk an improving direction if (5.7) - (5.9) using the smallest possible step size sk = 1
leads to J(u, zk+1) ≥ J(u, zk).

Recall that adjoint models can be used to efficiently derive gradients of a perfor-
mance measure J with respect to production settings u. By surrounding each to-
be-placed well by wells that operate at a very low constant flow rate (i.e. so-called
pseudo wells) and computing their production setting gradients using (3.23), these
gradients can be used to compute improving directions dk.

Let nk
i,x and nk

i,y denote the x and y co-ordinate, respectively, of well i in the kth

iteration. For simplicity, let us assume that this well is not located along the bor-
der of the reservoir model (i.e. 2 ≤ nk

i,x ≤ Nx − 1 and 2 ≤ nk
i,y ≤ Ny − 1), so that

it can be surrounded by 8 pseudo wells. Let qi
1, . . . , q

i
8 denote the constant flow

rates of these pseudo wells. We stress that these flow rates must be very small
(e.g. less than 1% of the flow rate of the to-be-placed well) so as to have a negligi-
ble influence on the overall flow behaviour throughout the reservoir. The partial
derivatives

∂J

∂qi
1

, . . . ,
∂J

∂qi
8

can be computed using (3.23) by summing over all K time intervals.

Let mi denote the pseudo well with the largest partial derivative, or

mi := arg max
j=1,...,8

∂J

∂qi
j

(u), (5.10)

and let mi
x and mi

y denote its x and y co-ordinate, respectively. If

∂J

∂qi
mi

(u) > 0

we conclude that, of the 8 flow rates qi
1, . . . , q

i
8, the performance measure will ben-

efit the most from the slight increase in the flow rate qi
mi . A key observation is that
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the flow rate qi
mi will be significantly increased by making the pseudo well mi the

main well. This is the main reason why we expect the direction of the pseudo well
mi to be an improving direction for well i. In other words, we set

dk
i,x =







−1 if mi
x = nk

i,x − 1
0 if mi

x = nk
i,x

1 if mi
x = nk

i,x + 1
(5.11)

dk
i,y =







−1 if mi
y = nk

i,y − 1
0 if mi

y = nk
i,y

1 if mi
y = nk

i,y + 1 .
(5.12)

The procedure (5.7) - (5.12) is visualized in Figure 5.3 for step size sk = 1.

(a) (b)

Figure 5.3: Top view of part of the grid of a 2D reservoir model with a main well
(+) surrounded by 8 pseudo wells (o). The solid circle in (a) represents the pseudo
well having the largest partial derivative in iteration k, and with step size sk = 1
becomes the main well in iteration k + 1 as shown in (b).

The procedure’s main benefit is that it computes a direction for all m wells in only
one forward reservoir and one backward adjoint simulation. We stress, however,
that there is no guarantee that this direction is improving, for the following rea-
sons.

- The largest pseudo well partial derivative ∂J/∂qi
mi is not always positive,

in which case dk can be interpreted as the ‘least harmfull’ direction.

- For sk = 1, the increase in flow rate of pseudo well mi may be too large (i.e.
the performance may decrease due to higher-order effects not captured by
the first-order derivative).

- The decrease in flow rate of well i may have a negative effect on the perfor-
mance, countering the positive effect expected by increasing the flow rate of
pseudo well mi.

- The location of all m wells is changed simultaneously, and the interaction
between them may counter the positive effect expected by increasing the
flow rates of each pseudo well individually.
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The latter is also why the procedure (5.7) - (5.12) does not necessarily converge
to a local optimal solution as discussed in Section 5.1. Although there may be no
improving direction in which to change all m wells simultaneously, the perfor-
mance might benefit from a change in the location of a single well. The procedure
is therefore considered to have converged after k iterations if the well locations
then alternate between two different locations (i.e. zk+2 = zk).

In the following section the procedure (5.7) - (5.12) is applied to three different
well placement problems, demonstrating that the computed directions are indeed
often improving.

5.4 Applications

5.4.1 Application 1

Consider again the well placement problem from Section 5.2 with u = ure,bhp and
T = 2.5 years. Recall that the map of Jnpv(ure,bhp, z) for all possible injector lo-
cations z ∈ Z is depicted in the middle right plot of Figure 5.2. To test whether
(5.7) - (5.12) yields improving directions, each of the four corners of the reservoir
is taken as the initial location of the to-be-placed water injector. The pseudo well
rates are set to 0.01 m3/day, which is less than 0.1% of the injection rate of the
to-be-placed well. The results are shown in Figure 5.4. As expected, the injector
moves towards the center from each of the four corners, demonstrating that - in
this case - the directions are indeed improving. For each case, the injector alter-
nates between two locations after around 10 iterations. Note that the final well
location depends on the initial one, indicating that the method can lead to local
maxima.
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Figure 5.4: (a) Injector locations zk for iterations k = 0, . . . , 12 starting from 4
different initial locations projected onto map of performance Jnpv(ure,bhp, z) for
all possible injector locations z ∈ Z (i.e. middle right plot of Figure 5.2), and (b)
corresponding values of Jnpv(ure,bhp, z

k).
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5.4.2 Application 2

Consider an application that only differs from the previous one in the size and
permeability of the reservoir model, and the terminal time. The reservoir is mod-
eled by 101 × 101 grid blocks of 10m × 10m × 10m. The permeability is depicted
in Figure 5.5. There are 9 to-be-placed producer wells, and 4 to-be-placed injector
wells.

x−grid

y
−

g
ri
d

 

 

[1
0

−
1

2 m
2]

1 21 41 61 81 101

101

81

61

41

21

1 0

1

2

3

4

5

6

Figure 5.5: Permeability.

The performance measure is Jnpv as defined in (3.2), using the values in Table
5.2. The goal is to maximize Jnpv by varying the well locations. Note that with
Nx = 101, Ny = 101 and M = 13 there are (101 × 101)13 ≈ 1052 elements in
Z (i.e. possible well configurations). The terminal time is 10 years. The produc-
ers are each equipped with a single valve, and are operated using the previously
discussed reactive production settings u = ure,bhp. The producers and injectors
operate at a constant bottom-hole pressure of 397 bar and 403 bar, respectively.
The pseudo well rates are set to 0.1 m3/day, which is less than 1% of the flow
rates of the to-be-placed wells.

This well placement problem can be written as Problem 4. The procedure (5.7)
- (5.12) is applied starting from two different initial well configurations, referred
to as the ‘standard’ and ‘mini’ one. The standard initial well configuration is a
13-spot pattern while the mini initial well configuration is a condensed version of
the standard one - see Figure 5.7. As before, the step size is sk = 1.

Figure 5.6 depicts Jnpv per iteration and Figure 5.7 the well locations at iterations
k = 1, 20 and 94 for two different initial well configurations. Figure 5.8 and Figure
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5.9 illustrate the end-of-life water saturation for the initial and optimal well loca-
tions. Starting from the standard initial pattern the method leads to a 4% increase
in Jnpv. Starting from the mini initial pattern, which will never be the preferred
well configuration in a field development plan, Jnpv increases to a value that is
only slightly less than the optimized Jnpv starting from the standard initial well
pattern. This might seem surprising since the final well locations are completely
different, but is because in both cases the reservoir is almost completely drained -
see Figure 5.8(b) and Figure 5.9(b).
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Figure 5.6: Performance Jnpv(ure,bhp, z
k) per iteration k for standard and mini

initial well configuration.
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Figure 5.7: Well location path of 9 producers (o) and 4 injectors (+) for standard
(top) and mini initial well configuration (bottom).
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Figure 5.8: Water saturation at the terminal time for standard initial well config-
uration (a) and optimized well configuration (b). Crosses indicate injector wells,
circles producer wells.
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5.4.3 Application 3

Consider the reservoir treated in Section 3.6. There are 4 to-be-placed producer
wells, and 8 to-be-placed injector wells. The performance measure is Jnpv as de-
fined in (3.2), using the values in Table 5.2. The goal is to maximize Jnpv by vary-
ing the well locations. The terminal times is 10 years. The producers are each
equipped with a single valve, and are operated using the previously discussed
reactive production settings u = ure,bhp. For the 8 injectors, the bottom-hole pres-
sure is set to 415 bar at the lowest perforation. For the 4 producers, the bottom-
hole pressure is set to 390 bar at the highest perforation. The pressures in the other
perforations are computed assuming hydrostatic equilibrium in the wellbore. The
well indices are computed using a Peaceman model with a wellbore radius of
0.1m and zero skin factor. The pseudo well rates are set to 0.1 m3/day, which is
less than 0.1% of the flow rates of the to-be-placed wells.

This well placement problem can be written as Problem 4. The procedure (5.7) -
(5.12) is applied starting from two different initial well configurations, again re-
ferred to as the ‘standard’ and ‘mini’ one - see Figure 5.11. As before, the step size
is sk = 1.

Figure 5.10 depicts Jnpv per iteration and Figure 5.11 the well locations at itera-
tions k = 1, 10 and 50 for two different initial well configurations. Starting from
the standard initial pattern, the method leads to a 6% increase in Jnpv. As in Appli-
cation 2, the optimized Jnpv starting from the mini initial configuration is similar,
while the final well locations are completely different. Again, this is because in
both cases the reservoir is almost completely drained.
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Figure 5.11: Well location path of 4 producers (o) and 8 injectors (+) for standard
(top) and mini initial well configuration (bottom).

5.5 Discussion

The previous applications show that the directions computed using our adjoint-
based method for well placement are often improving. The almost monotic in-
crease in Jnpv for Applications 2 and 3 starting from a mini initial well configura-
tion, in particular, supports this claim.

A major advantage of our method is that it generates improving directions for all
m wells in only one forward (reservoir) and one backward (adjoint) simulation.
In comparison, the FDG method requires 2m+ 1 forward simulations to compute
an improving direction, since each well location is sequentially perturbed by one
grid block in both x-and y-direction. It turn out that the directions computed us-
ing both methods are similar, but not identical. In order to compare them, both
methods were applied to Application 3 starting from the mini initial well con-
figuration. The NPV values per iteration k, depicted in Figure 5.12 show similar
increases, even though their well locations per iteration are different.

Finally, it is interesting to note that wells will occasionally merge - see Figure 5.7
and Figure 5.11. This is because once two injectors or producers share the same lo-
cation they will never part, because the gradient data prodived by their respective
pseudo wells is identical.
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5.6 Chapter conclusions

The type of production settings (e.g. reactive versus constant) significantly effect
the well placement problem, in that a well configuration that is optimal when the
wells operated with one type of settings may be far from optimal when the wells
are operated with another type of settings. Furthermore, the gradients used in
production setting optimization can be used to efficiently compute directions in
which to iteratively improve upon an initial well configuration by surrounding
the to-be-placed wells by pseudo wells.

While this is a very promising step towards automatic well placement, there are
several issues that need to be addressed before this method can be applied in prac-
tice. First of all, the concept of surrounding a well with pseudo-wells to efficiently
compute improving directions is by no means restricted to a single ‘ring’. Using
two or more rings of pseudo wells for each well leads to more gradient infor-
mation, and thereby possibly a better optimization procedure. Second, the water
flooding application considered in this chapter demonstrates that the final well
configuration is very dependent on the initial one. In practice, this is clearly un-
desirable. Third, the effect of model uncertainty needs to be addressed. It should
be noted that it is conceptually straightforward to apply the robust optimization
approach considered in Chapter 4 to well location optimization. It would be in-
teresting to investigate under what conditions a well configuration that is robust
against model uncertainty (e.g. geological uncertainty represented by a large set
of realizations as in Chapter 4) resembles the commonly applied pattern-flood.
Finally, the decisions concerning the number, scheduling and trajectory of wells
need to be addressed. We remark that, as with well location optimization, well
trajectory optimization might be tackled using the concept of pseudo-wells. Each
grid block in which a to-be-optimized well is perforated should then be viewed as
a separate well, and subsequently surrounded by pseudo-wells. The challenge is
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then to improve upon an initial well trajectory while adhering to practical drilling
constraints (e.g. curvature and length).



6 CHAPTER

Controllability and Observability of
Reservoir Models

Th is chapter focuses on the controllability and observability proper-
ties of single-phase flow reservoir models, as well as the possibil-

ities to obtain reduced order models through balancing and truncation.
The main contribution of this chapter is to analyze and interpret the con-
trollability and observability of single-phase flow reservoir models, and
to investigate how these are affected by well locations, heterogeneity and
fluid properties. The results are illustrated through two examples.

6.1 Problem formulation

Recall that this thesis considers three ways to increase the recovery factor: model-
based optimization of production settings (Chapter 3) and well locations (Chap-
ter 5), reducing the effect of model uncertainty by robust optimization (Chap-
ter 4), and reducing model uncertainty itself by using measurements to estimate
model states and parameters (Chapter 7). The degree to which the water flooding
process can be optimized clearly depends on the ability to control the fluid flow in
the reservoir at hand. Similarly, the degree to which uncertainty can be reduced
clearly depends on the ability to estimate / identify the states / parameters of the
reservoir at hand.

Despite the many reported applications of optimal control, estimation and identi-
fication in the reservoir engineering literature, the concepts of controllability and
observability have not yet been analyzed in detail (although it should be men-
tioned that Fyrozjaee and Yortsos (2006) consider how to partition the flow rate in
a well so that the displacement front can be steered according to pre-determined
dynamics). This is surprising since these concepts essentially determine a reser-
voir’s behavior and thereby the success of the chosen application.

83
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The main contribution of this chapter is to analyze and interpret the controllabil-
ity and observability properties of single-phase flow reservoir models, and how
these are affected by well locations, heterogeneity and fluid properties. Since the
concepts of controllability and observability are more complicated for nonlinear
systems and since the nonlinearity of oil and gas reservoirs is mainly due to time-
varying saturations in multi-phase flow, we only consider single-phase flow. The
identification of reservoir parameters is discussed in Chapter 7.

6.2 Controllability and observability

Consider the discrete-time single phase flow model (2.30)-(2.31):

pk+1 = Apk + Buk,

p0 = p̄0.

Recall that the flow rate qj through a well in grid block j is related to its bottom-

hole pressure pj
bh through a well model (2.20)

qj = αjwj(pj
bh − pj).

in which the well index wj is computed using a Peaceman model (2.21). If we can
measure the flow rate qj in some of the production and injection wells and the
pressure pj in all of the observation (i.e. non-producing or injecting) wells, we can
write

yk = Cpk + Duk, (6.1)

where yk ∈ R
Ny is the so-called output vector containing the measurements at

time t = k∆t. The (i, j) entry of C ∈ R
Ny×N is:

- −wj if there is a production or injection well containing a flow meter in grid
block j,

- 1 if there is an observation well containing a pressure gauge in grid block j,

- 0 otherwise.

The (i, i) entry of D ∈ R
Ny×Ny is wj if the ith measurement is a flow rate measure-

ment and 0 otherwise.

For simplicity, from now on we only consider the discrete-time formulation (2.30),
(6.1). The following section shows how the controllability and observability of
the pressures throughout the reservoir model are determined by the matrix pairs
(A,B) and (A,C), respectively. We stress, however, that both the theory and
results that follow do not depend on implicit or explicit time discretization or
on the particular value of the discretization time-step ∆t, and also apply to the
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continuous-time case.

The material treated in this section was pioneered by Kalman (1963), Moore (1981)
and Glover (1984), and is usually included in any advanced course on systems and
control. The reader is referred to these works or for example the textbooks Chen
(1984) and Antoulas (2005) for details and proofs.

For a system (2.30), (6.1) with Nu control inputs (i.e. controlled flow rates or
bottom-hole pressures) and Ny outputs (i.e. measured flow rates or bottom-hole
pressures), the controllability matrix Ck and observability matrix Ok are defined
as follows

Ck(A,B) :=
[

B AB A2B . . . Ak−1B
]
, (6.2)

Ok(C,A) :=










C

CA

CA2

...
CAk−1










. (6.3)

By the so-called Cayley-Hamilton theorem, the rank of C∞ and its image are
determined by at most the first N × Nu columns, where N is the state dimen-
sion. In other words, im(C∞) = im(CN ) ⊂ R

N . Similarly, the rank of O∞ and
its kernel are determined by at most the first N × Ny rows. In other words,
ker(O∞) = ker(ON ) ⊂ R

N .

From (2.30), (2.31) it follows that

pn = Anp̄0 +
n−1∑

k=0

An−k−1Buk. (6.4)

It is clear by inspection of (6.4) together with the previous remark on the image
of CN that pk is a linear combination of the columns of CN together with a p0-
dependent term. Consequently, if CN has full rank then im(CN ) = R

N and any pN

can be reached by suitable choice of {u0, . . . ,uN−1}. This is why a linear system
of the form (2.30), (6.1) is called controllable1 if its controllability matrix CN has
full rank (i.e. rank N ). If rank(CN ) < N , then

X
con := im(CN (A,B)) ⊂ R

N (6.5)

is often referred to as the controllable subspace, and consists of the states that can
be reached by suitable choice of the control.

1Under these conditions the system is actually called reachable in the systems and control literature,
which is equivalent to controllable if A is nonsingular. Since A is nonsingular throughout this thesis,
we stick to the term controllable.
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It is clear by inspection of (6.4) and (6.1) that yk equals CAkp̄0 plus a control-
dependent term which we assume known. Consequently, if ON has full rank
then ker(ON ) = ∅ (empty) and any p̄0 can be distinguished from zero through
the measured output {y0, . . . ,yN−1}. This is why a linear system of the form
(2.30), (6.1) is called observable if its observability matrix ON has full rank. If
rank(ON ) < N , then

X
unobs := ker(ON (C,A)) ⊂ R

N (6.6)

is often referred to as the unobservable subspace, and consists of the states that
cannot be distinguished from zero through the measured output.

From (6.4) it appears that the pressures can become unbounded if A has an eigen-
value whose magnitude or absolute value is strictly larger than one. It turns out
that if at least one well is controlled by its bottom-hole pressure, A has eigenval-
ues strictly smaller than one - see Chapter 2. This is quite intuitive, as increased
reservoir pressure through injected water then automatically leads to increased
production, which would not be the case if the flow rates of all the other wells are
set to zero. Note that we have already assumed that some of the production and
injection wells are controlled by their bottom-hole pressure.

Strictly speaking, all of the states in X
con can be reached provided that there are no

bounds on the manipulated input (i.e. the bottom-hole pressures). Similarly, all of
the states not in X

unobs can strictly speaking be distinguished from zero provided
that there are no bounds on the accuracy of the measured output (i.e. the flow
meters). In practice, neither is realistic. However, there are elements of X

con that
require significantly more energy2 in terms of

∞∑

k=0

uT
k uk

to be reached than others. Similarly, there are elements not in X
unobs that produce

significantly more energy in terms of

∞∑

k=0

yT
k yk

when observed than others. To quantify this, the so-called controllability Gramian
P and the observability Gramian Q are defined as follows

P := C∞(A,B)CT
∞(A,B) =

∞∑

k=0

AkBBT
(
AT
)k
, (6.7)

Q := OT
∞(C,A)O∞(C,A) =

∞∑

k=0

(
AT
)k

CT CAk, (6.8)

2The term ‘energy’ is used loosely here, motivated by the fact that energy can often be written as
a quadratic form (e.g. kinetic energy as a function of squared velocity). A more precise term is the
squared l2 norm of the input.
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These can be computed by solving the so-called discrete-time Lyapunov (or Stein)
equations

APAT + BBT = P, (6.9)

ATQA + CT C = Q, (6.10)

as can be seen by substituting (6.7)-(6.8) into (6.9)-(6.10) and using the fact that
Ak → 0 for k → ∞ since the eigenvalues of A are strictly smaller than one. Note
that im(CN ) = im(P) and ker(ON ) = ker(Q).

Consider a reference state pr ∈ R
N . In Glover (1984) it is shown that the minimal

energy Jcon required to steer the state from 0 to pr is3

Jcon(pr) = pT
r P

−1pr, (6.11)

and that the maximal energy Jobs produced by observing the output of the system
whose initial state is given by pr is

Jobs(pr) = pT
r Qpr. (6.12)

This means that the elements in X
con that require the most energy to reach have a

significant component in the span of the eigenvectors of P corresponding to small
(absolute) eigenvalues. Similarly, the elements not in X

unobs that produce the least
energy when observed have a significant component in the span of the eigenvec-
tors of Q corresponding to small (absolute) eigenvalues.

The controllability and observability Gramians, however, are co-ordinate depen-
dent, meaning that the energy required/produced to reach/observe reference states
depends on the particular choice of co-ordinates (e.g. the grid block numbering).
This can be seen by considering a linear combination of the original pressures

p̂k = Tpk, (6.13)

with T ∈ R
N×N nonsingular. The dynamics of p̂k are given by

p̂k+1 = TAT−1
︸ ︷︷ ︸

=:Ã

p̂ + TB
︸︷︷︸

=:B̃

uk, (6.14)

yk = CT−1
︸ ︷︷ ︸

=:C̃

p̂k + Duk. (6.15)

The associated Gramians P̃ and Q̃ satisfy

P̃ = TPTT , Q̃ = T−TQT−1 ⇒ P̃Q̃ = TPQT−1.

In other words, by choosing a transformation such that a particular reference state
is easier to reach simultaneously makes it harder to observe, and vice-versa. Al-
though the Gramians themselves are co-ordinate dependent, the eigenvalues of
their product are not. The latter are called the Hankel singular values

σk :=
√

λk (PQ), k = 1, . . . , N (6.16)

and, being co-ordinate independent, are input-output system invariants.

3Assuming P−1 exist, which holds if the system is controllable.
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6.3 Balancing and truncation

We can find a co-ordinate transformation such that the Gramians P̃ and Q̃ are
equal, diagonal and nonnegative. By computing a Cholesky factorization of P =
UUT and Q = LLT and a singular value decomposition of UT L = ZΣYT , it can
be shown that setting

T = Σ−1/2YT LT
︸ ︷︷ ︸

=:Tbal

and T−1 = UZΣ−1/2
︸ ︷︷ ︸

=:T−1

bal

(6.17)

leads to

P̃ = Q̃ = Σ = diag (σ1, . . . , σN) , (6.18)

where σ1 ≥ σ2 ≥ . . . ≥ σN . Tbal is called a balancing transformation matrix. Note

that because in the balanced co-ordinates P̃ = Q̃, states are equally difficult to
reach as observe. In the original co-ordinates this means that, letting t̂j denote the
jth column of T−1

bal, we have

Jcon(t̂j) = 1/σj and Jobs(t̂j) = σj .

It is important to note that the kth Hankel singular value σk can be interpreted as
the energy contribution of the kth component of the balanced state p̂k to the input-
output behavior of the system. If the Hankel singular values decrease rapidly, we
can therefore conclude that most of the input-output behavior is determined by
the first few balanced states.

The input-output behavior of a linear system is characterized by its so-called
transfer function G. Given a quadruple {A,B,C,D} (or ‘realization’) describ-
ing the dynamics of a system through (2.30), (6.1), its transfer function is given
by

G(z) := C (zI − A)
−1

B + D. (6.19)

One of the reasons for considering the transfer function of a system is that, because
of its linearity, a manipulated input sinusoid of frequency ω eventually leads to a
measured output sinusoid of frequency ω. The magnitude and phase shift of this
output can be determined by the complex number G(ejω), called the frequency
response of G. However, since for an arbitrary invertible T

CT−1
(
zI − TAT−1

)−1
TB + D = C (zI − A)

−1
B + D,

there are infinitely many realizations that can form the same transfer function G,
depending on the particular choice of coordinates (e.g. the grid block numbering).
Any two such realizations can be transformed into one another through a suitable
change of coordinates (6.14)-(6.15).
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Because in balanced co-ordinates the states are equally difficult to control as ob-
serve, it is easy to distinguish between states that contribute to the input-output
behavior and states that do not by considering the following partitioning

Σ =

[
Σ1 0
0 Σ2

]

, Ã =

[
Ã11 Ã12

Ã21 Ã22

]

, B̃ =

[
B̃1

B̃2

]

, C̃ =
[

C̃1 C̃2

]
,

where Σ1 := diag(σ1, . . . , σk), Σ2 := diag(σk+1, . . . , σN ) and

σ1 ≥ σ2 ≥ . . . ≥ σN .

The following transfer function

Ĝ(z) := C̃1

(

zI − Ã11

)−1

B̃1 + D (6.20)

is a reduced kth order approximation Ĝ of the full N th order transfer function G.
The former is called reduced because it has N − k less states than the latter, and
has been obtained by simply truncating the N − k balanced states that contribute
the least to its input-output behavior.

Because a linear time-invariant system is characterized by its transfer function
or, equivalently, its frequency response, two systems are considered close to each
other if their frequency responses are similar. To quantify this, let us define the
so-called H∞ norm

‖G‖H∞
:= sup

z∈D̄

σmax (G(z)) (6.21)

as a measure of the size of G, where D̄ ⊂ C denotes the complement of the closed
unit disc and σmax the largest singular value. The H∞ norm can be interpreted
as the worst case energy norm, meaning that the energy of the measured output
is at most the H∞ norm times the energy of the manipulated input. It is shown

in Hinrichsen and Pritchard (1990) that the error of the approximation Ĝ of G

satisfies the following bound
∥
∥
∥G − Ĝ

∥
∥
∥

H∞

≤ 2 (σk+1 + . . . σN ) , (6.22)

or twice the sum of the deleted N − k Hankel singular values.

In the following sections this type of model reduction is not actually applied to
reservoir models (as done in Markovinovic et al. (2002), Heijn et al. (2004) and
Gildin et al. (2006). We merely point out that we can analyze when a high-order
model in fact behaves like a low-order one. Moreover, we can distinguish between
those linear combinations of the pressures that contribute to the input-output be-
havior, and those that do not. In the following sections the controllability and
observability properties of single-phase flow reservoir models are analyzed and
interpreted, and it is shown how these are affected by well locations, heterogene-
ity and fluid properties.
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6.4 Examples

6.4.1 Example 1: homogeneous permeability

Consider a 2D homogeneous reservoir containing one phase and modeled as in
the previous section. The model has 21 × 21× 1 grid blocks of 10m × 10m × 10m.
The absolute permeability is 10 mDarcy. The remaining geological and fluid prop-
erties are given in Table 6.1. There are five wells configured in a standard 5-spot
pattern depicted in see Figure 6.1. Wells 1, 3, 5 and 4 are production or injection
wells. In wells 1, 3 and 5 we can control the bottom-hole pressure; in well 4 the
flow rate. Wells 1, 3, 5 and 2 have pressure gauges or flow meters. In wells 1, 3
and 5 we can measure the flow rate; in well 2 (a non-producing or injecting well)
the bottom-hole pressure. The well indices wj are computed using a Peaceman
model (2.21) with a wellbore radius rw = 0.1m and skin factor S = 0.

Symbol Value Unit
Nx, Ny, Nz 21,21,1 [-]
N 441 [-]
∆x,∆y,∆z 10,10,10 [m]
φ1, . . . , φ441 0.20, . . . , 0.20 [-]
c 10−10 [1 / Pa]
µ 10−3 [Pa s]

Table 6.1: Geological and fluid properties.
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Figure 6.1: Well locations: wells 1, 3 and 5 are bottom-hole pressure controlled
production or injection wells containing a flow meter (⊗), well 4 is a flow rate
controlled production or injection well without a pressure gauge (©), and well 2
is an observation well containing a pressure gauge (×).
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The matrices A and B are computed as in Chapter 2 with a discretization time step
given by (2.32), which in this example leads to ∆t = 1.2 seconds. The matrices C

and D are computed as in Section 6.2. In this particular example, the nonzero en-
tries in C corresponding to the flow rate measurements (i.e. the well indices wj of
wells 1, 3 and 5) are in the order of 10−8: much smaller than the nonzero entry in
C corresponding to the pressure measurement in well 2, which is equal to 1. This
is problematic, because the previously discussed energy produced by observing
pressures in well 2 (in [Pa]2) will then generally be much larger than the energy
produced by observing flow rates in wells 1, 3 and 5 (in [m3/s]2). In the following
examples, the nonzero entry in C corresponding to the pressure measurement is
therefore scaled to the well index wj of well 2. Similarly, the nonzero entries in
B corresponding to the bottom-hole pressure controlled wells (i.e. wells 1, 3 and
5) are much smaller than the nonzero entry in B corresponding to the flow rate
controlled well (i.e. well 4). In the following examples, the nonzero entry in B

corresponding to the flow rate controlled well is therefore scaled to the well index
wj of well 4. Subsequently, All of the matrices discussed in the previous section
(e.g. Gramians, Hankel singular values, balancing transformation) are computed
using the MATLAB functions gram and balreal.

The Hankel singular values, depicted on a logarithmic scale in Figure 6.2, decrease
very rapidly. This is in line with earlier results from Markovinovic et al. (2002),
Heijn et al. (2004) and Gildin et al. (2006), and means that the 441th order reservoir
model behaves like a model of much lower order.
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1 21
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−12

10
−10

10
−8

Figure 6.2: All 441 Hankel singular values σ1, . . . , σ441 (left) and 21 largest ones
σ1, . . . , σ21 (right) for homogeneous example. The dashed line represents machine
precision.

The eigenvectors corresponding to the three largest absolute eigenvalues of the
Gramians P and Q as well as the first three columns of the inverse balancing ma-
trix T−1

bal are depicted in Figure 6.3. In each of the plots, the vector under consid-
eration is projected onto the model grid. Since each component of the state relates
to the pressure in a specific grid block, and thereby a specific physical location,
this projection allows us to interpret how the reservoir model’s controllability and
observability properties vary over space. Note that the scales of these plots differ
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and that the nonzero areas are of particular interest, as these represent areas where
reference pressures are controllable and / or observable.
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Figure 6.3: Eigenvectors corresponding to 3 largest absolute eigenvalues of con-
trollability Gramian P (top row), observability Gramian Q (middle row), and
first 3 columns of inverse transformation matrix T−1

bal (bottom row) projected onto
model grid for homogeneous example.

Since the observation well (well 2 in Figure 6.1) is the only well that does not ap-
pear as a nonzero area in the plots of the controllability Gramian, we conclude
that reference pressures in areas near production or injection wells require the
least energy to reach. Similarly, since the production well without any measure-
ment (well 4 in Figure 6.1) is the only well that does not appear as a nonzero area
in the plots of the observability Gramian, we conclude that reference pressures
in areas near wells with flow meters or pressure gauges produce the most en-
ergy when observed. In short, pressures near wells in which we can control the
flow rate or bottom-hole pressure are controllable, whereas pressures near wells
in which we can measure the flow rate or bottom-hole pressure are observable.
Since a column t̂j of the inverse balancing matrix T−1

bal represents a state (i.e. a
vector of pressures) that is equally difficult to reach as observe, it makes sense
that particularly the wells in which we can control and observe (wells 1, 3 and 5 in
Figure 6.1) appear as nonzero areas in the plots of T−1

bal.
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6.4.2 Example 2: heterogeneous permeability

Consider the same reservoir model as in the previous example, but with a high
permeability zone of 1000 mDarcy in the North-West corner, a low permeability
zone of 10 mDarcy in the South-East corner, and a permeability of 100 mDarcy
throughout the rest of the reservoir - see Figure 6.4. The discretization time step
∆t is still given by (2.32) and its value is therefore different than before, namely
∆t = 0.013 seconds.
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Figure 6.4: Heterogeneous permeability.
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Figure 6.5: All 441 Hankel singular values σ1, . . . , σ441 (left) and 21 largest ones
σ1, . . . , σ21 (right) for heterogeneous example. The dashed line represents ma-
chine precision.

The results are similar to the homogeneous example. The Hankel singular values,
depicted in Figure 6.5, decrease very rapidly. As before, this indicates that the
441th order reservoir model behaves like a model of much lower order.

The eigenvectors corresponding to the three largest absolute eigenvalues of the
Gramians P and Q as well as the first three columns of T−1

bal are depicted in Figure
6.6. Contrary to Figure 6.3, only the production well in the high permeable zone
(well 1 in Figure 6.1) appears as a nonzero area in the plots of the controllability
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Figure 6.6: Eigenvectors corresponding to 3 largest absolute eigenvalues of con-
trollability Gramian P (top row), observability Gramian Q (middle row), and
first 3 columns of inverse transformation matrix T−1

bal (bottom row) projected onto
model grid for heterogeneous example.

Gramian. From this we conclude that reference pressures in areas near produc-
tion wells in high permeable zones require the least energy to reach. Contrary to
Figure 6.3, only the well with a measurement in the high permeable zone (well 1
Figure 6.1) appears as a nonzero area in the plots of the observability Gramian.
From this we conclude that reference pressures in areas near observation wells in
high permeable zones produce the most energy when observed.

The following section shows how these results depend on the physical reservoir
parameters, the time discretization and the spatial discretization.
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6.5 Effect of physical reservoir parameters

Recall that the matrices A and B in (2.30) are given by (2.28)-(2.29):

A = I + A11∆t,

B = B1∆t.

From (2.16) in Chapter 2, it can be seen that scaling the value of

- compressibility c to (1/ǫ)c, or

- the entire porosity field
[
φ1 . . . φN

]
to (1/ǫ)

[
φ1 . . . φN

]
or

- viscosity µ to (1/ǫ)µ, or

- the entire permeability field
[
k1 . . . kN

]
to ǫ

[
k1 . . . kN

]
,

for some ǫ > 0 leads to

A = I + ǫA11∆t, (6.23)

B = ǫB1∆t. (6.24)

In other words, scaling the above mentioned physical parameters by ǫ has the
same effect on A and B as scaling the discretization time step ∆t by ǫ. Further-
more, from Section 6.2 it can be seen that for the viscosity or the entire perme-
ability this also leads to a scaling of the values of C and D in (6.1) to ǫC and ǫD,
respectively.

It is important to note that the dynamics of the discrete-time reservoir model
(2.30), (6.1) are unaffected by scaling ∆t, provided that ǫ∆t is still smaller than
the value given by (2.32)4. In fact, the results obtained in this chapter (in terms
of Hankel singular values and spatial variation of controllability and observabil-
ity properties) using the original continuous-time matrices (A11,B1) are virtually
the same. Given (6.23)-(6.24), this therefore also holds for the compressibility and
porosity scalings mentioned above. The viscosity and permeability scalings on
the other hand also influence C, leading to a scaling of the Hankel singular values
[
σ1 . . . σN

]
in (6.16) to ǫ

[
σ1 . . . σN

]
.

The spatial discretization also does not have a significant influence on the results:
the spatial patterns depicted in Figure 6.3 and Figure 6.6 clearly resemble the ones
obtained by modelling the reservoir with, say, 11 × 11 × 1 or 31 × 31 × 1 grid
blocks. This is important, as it points out that controllability and observability are
reservoir properties, and not just reservoir model properties. Furthermore, the
overall decrease in Hankel singular values is very similar - see Figure 6.7. This is
important, as it points out that the number of grid blocks, often chosen as high
as computationally possible, does not have a significant influence on the relevant
order of the pressure dynamics throughout the reservoir.

4Recall that a discrete-time model (2.30) obtained with a time-step larger than (2.32) does not cap-
ture all of the dynamics of the original continuous-time model (2.25).
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Figure 6.7: All Hankel singular values (left) and 21 largest ones (right) of three
reservoir models based on the reservoir treated in homogenous example, where
each model is spatially discretized by a different number of grid blocks.

6.6 Chapter conclusions

The most controllable and observable pressures in single-phase flow reservoir
models can be computed by performing an eigenvalue decomposition of the con-
trollability and observability Gramians. By projecting the eigenvectors correspond-
ing to the largest absolute eigenvalues of the Gramians onto the model grid, we
can interpret how the reservoir model’s controllability and observability proper-
ties vary over space. It turns out that pressures near wells in which we can control
the flow rate or bottom-hole pressure are controllable, whereas pressures near
wells in which we can measure the flow rate or bottom-hole pressure are observ-
able. Furthermore, the controllability and observability properties are determined
by the well configuration (i.e. the number and location of wells) and to a lesser ex-
tent the heterogeneity of the reservoir at hand. The Hankel singular values of
single-phase flow reservoir models decrease rapidly, indicating that they behave
as models of much lower order.

Despite these results, there is much work still to be done in this area. Since a reser-
voir’s recovery factor can be defined in terms of the saturations at the end of its
lifecycle, a reservoir’s saturations dynamics are at least as relevant for field de-
velopment planning as its pressure dynamics. However, a reservoir’s saturation
dynamics are described by nonlinear equations, and it is therefore important to
investigate how the controllability and observability of saturations change with
time. This could be done by linearizing the nonlinear dynamics along a certain
trajectory.



7 CHAPTER

Identification of Reservoir Parameters

Th is chapter focuses on the identification of physical parameters of
single-phase flow reservoir models through history matching of pro-

duction data. The main contributions are to show how to compute an up-
per bound on the number of identifiable parameters, and to present a new
method to regularize the history matching problem using the controllabil-
ity and observability analysis of the previous chapter. The benefits of this
method are illustrated through an application.

7.1 Problem formulation

As discussed in Section 2.3, reservoir models generally contain a significant amount
of uncertainty originating from many different sources and, as depicted in Figure
2.5, this can have a large influence on the predictions of future production. In or-
der to reduce the uncertainty associated with physical reservoir parameters, it is
common to define a cost function (typically the weighted squared difference be-
tween predicted and measured data), and minimize it over all possible parameter
values. In reservoir engineering this procedure is referred to as history match-
ing, and in this chapter we consider history matching production data to identify
physical parameters in single-phase flow reservoirs.

As in (2.36), let us stack all of the uncertain parameters in a vector θ. Furthermore,
let us assume that measurements ȳ1, . . . , ȳn are available, and that these have been
generated by the system

pk+1 = A(θ)pk + B(θ)uk, (7.1)

p0 = p̄0 (7.2)

yk = C(θ)pk + D(θ)uk (7.3)

for some unknown θ = θ̄ (i.e. the true physical reservoir parameters), known ma-
nipulated input u0, . . . ,un−1 and known initial state p̄0, where (7.1) and (7.3) are

97
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the generalizations of (2.30) and (6.1), respectively. If water and oil have similar
properties, this assumption can be justified by the previously discussed difference
in dynamics. For example if the measurements have been gathered over a period
of one month, the saturation front - which typically moves less than 1 meter per
day - can be assumed to have stayed nearly constant, and thereby so can A11,
A21, B1 and B2. We also assume that the input contains enough frequencies to
obtain informative measurements, also called persistently exciting - Ljung (1999).
A common history matching approach is then to consider the following nonlinear
least-squares problem

Problem 5

minimize V(θ) :=
n∑

k=1

[ȳk − yk(θ)]
T

[ȳk − yk(θ)]

over θ ∈ R
M

subject to pk+1 = A(θ)pk + B(θ)uk,

p0 = p̄0,

yk = C(θ)pk + D(θ)uk.

Because we assume that all modeling errors are captured in θ and that the mea-
surements are noisefree, Problem 5 is a least-squares problem with

V (θ̄) = 0,
∂V

∂θ
(θ̄) = 0 and

∂2V

∂θ2 (θ̄) ≥ 0.

If Problem 5 has a unique local minimum at θ = θ̄ (e.g. ∂2V/∂θ2(θ̄) > 0), the
model structure (7.1)-(7.3) is said to be locally identifiable. If this minimum is
global, the structure is said to be globally identifiable - see Bellman and Astrom
(1970), Glover and Willems (1974) and Ljung (1999) for a more detailed discussion.

It is well-known in the petroleum engineering community that if the vector of to-
be-estimated physical parameters θ contains the geological properties (e.g. per-
meability values) in all grid blocks, virtually all reservoir models of the form
(7.1)-(7.3) are not identifiable. Often called ill-posed, this lack of identifiability
in Problem 5 is mentioned in almost all publications on history matching, and is
problematic because a wrongly updated estimate θup of θ̄ can lead to a perfect
history match (i.e. V (θup) = 0) but incorrect long-term predictions (e.g. when the
saturation front has significantly advanced) - see Tavassoli et al. (2004).

Since permeability cannot be uniquely estimated from production data, it is com-
mon to regularize the problem (i.e. render it ‘less’ ill-posed). The most common
method is to add the difference between θ and the initial estimate θinit to the orig-
inal cost function V

Vreg(θ) :=
n∑

k=1

[ȳk − yk(θ)]
T

Py [ȳk − yk(θ)] + [θ − θinit)]
T

Pθ [θ − θinit)] ,
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where Py ∈ R
Ny and Pθ ∈ R

N are weighting matrices. By weighting the data and
prior mismatch terms, the resulting problem can, under certain conditions, be in-
terpreted as finding the maximum a posteriori estimate. This is often referred to
as the Bayesian estimation approach to history matching - see Gavalas et al. (1976)
and Tarantola (2005).

Whatever the history-match cost function V that is considered, it is often mini-
mized using a gradient-based optimization procedure. The gradients ∂V/∂θ can
be efficiently computed using the so-called adjoint method from optimal control
theory - see Jacquard and Jain (1965), Carter et al. (1974) and Chavent (1975). The
Gauss-Newton and Levenberg-Marquardt methods have been applied, among
others, in Reynolds et al. (1996) and Li et al. (2003). A disadvantage of these meth-
ods is that they require the sensitivities or partial derivatives of the measurements
{y1, . . . ,yn} with respect to the to-be estimated parameters θ. Despite the use of
the adjoint method, this becomes computationally demanding when the number
of measurements and the number of parameters is large.

Reducing the computational burden in history matching has been one of the main
motivations for re-parameterizing θ by a small number of basis functions (the
other being the desire to generate estimates that are geologically realistic). Some
of the re-parameterization techniques applied in history matching to achieve this
include

- zonation - Jacquard and Jain (1965), Jahns (1966), and adapted versions thereof
- Grimstad et al. (2003), Berre et al. (2007),

- grad zones - Bissell (1994), Bissell et al. (1994), Brun et al. (2004),

- spectral decomposition and subspace methods - Shah et al. (1978), Reynolds
et al. (1996), Abacioglu et al. (2001),

- kernel principle component analysis - (Sarma et al. (2007)),

- discrete cosine transform - (Jafarpour and McLaughlin (2007a), Jafarpour
and McLaughlin (2007b)).

Despite all of these applications, it is not clear how many parameters can be
uniquely identified for any particular reservoir model.
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7.2 Number of identifiable parameters

For any kth order linear system of the form (7.1)-(7.3) withNu manipulated inputs
and Ny measured outputs, there exists a transformation Tcan such that, in the
transformed co-ordinates, the state-space matrices that result from (6.14)-(6.15)
are in a so-called canonical form, which we will denote by

Â(θ) := TcanA(θ)T−1
can, B̂(θ) := TcanB(θ), Ĉ := C(θ)T−1

can, D(θ).

There are several canonical forms for linear multivariable systems. We consider
the one discussed in Luenberger (1967), Denham (1974) and Ljung (1999), which
has the following form.

- Â is initially filled with zeros and ones along the superdiagonal. The Ny

rows r1, r2, rNy
, where r0 = 0 and rNy

= k, are filled with parameters.

- B̂ is filled with parameters.

- Ĉ is filled with zeros, but each row i has a one in column ri−1 + 1.

The parameterization is uniquely characterized by the Ny numbers ri that are to

be chosen by the user. Note that only Ny rows in Â have elements not equal to

zero or one, B̂ is a full matrix and Ĉ only contains zeros and ones.

As an example, for the specific situation that k = 9, Nu = 2, Ny = 3, r1 = 3,
r2 = 5, and r3 = 9 this canonical form is as follows

Â(θ) =

















0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
× × × × × × × × ×
0 0 0 0 1 0 0 0 0
× × × × × × × × ×
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
× × × × × × × × ×

















, B̂(θ) =

















× ×
× ×
× ×
× ×
× ×
× ×
× ×
× ×
× ×

















,

Ĉ =





1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0



 , D(θ) =





× ×
× ×
× ×





and as such is completely described by the nonzero elements of Â, B̂ and D. In
other words, any kth order linear system of the form (7.1)-(7.3) with Nu manipu-
lated inputs and Ny can be completely described by at most

Nmax = (Nu +Ny) × k +NuNy (7.4)

parameters - Ljung (1999). In the example above, Nmax = 51.
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However, as shown in Chapter 6, the relevant order k of single-phase flow reser-
voir models is much smaller than their original order N (determined by the num-
ber of grid blocks, often chosen as high as possible). Furthermore, while the
physical reservoir parameters (e.g. the grid block permeabilities) do influence the
input-output behavior, they do not significantly influence the relevant order of the
input-output behavior (e.g. Figure 6.2 and Figure 6.5 show the same rapid decline
in Hankel singular values). This means that unless there are many wells Nu in
which we can control the flow rate or bottom-hole pressure and many wells Ny

in which we can observe the flow rate or bottom-hole pressure, the number of
identifiable parameters will be much smaller than the number of grid blocks N .
Consequently, if the grid block permeabilities are to be estimated, the resulting
reservoir model structure is not identifiable. We stress that this lack of identi-
fiability is not the result of applying a particular transformation to the original
state-space matrices {A(θ),B(θ),C(θ),D(θ)} describing single-phase flow, but
that there are fundamental reasons for it.

For example, consider again the homogeneous single-phase flow reservoir model
of Section 6.4.1. Recall that the reservoir is modeled by 21 × 21 × 1 grid blocks,
and the order of the model is therefore N = 441. However, the Hankel singular
values depicted in Figure 6.2 decline very rapidly. In fact, we have

2(σ16 + . . .+ σ441) = 8.0 × 10−3.

According to (6.22), the H∞ norm of the error between the full order model and a
15th order approximation is therefore less than 10−2. In other words, the relevant
order of the model is k = 15 and the relevant input-output behavior is described
by at most

Nmax = (Nu +Ny) × k +NuNy = (4 + 4) × 15 + 4 × 4 = 136

parameters. If θ contains the permeability in all 441 grid blocks, then the model
structure (7.1)-(7.3) is clearly not identifiable. This gap between the maximum
number of identifiable parameters Nmax and the number of to-be-identified para-
meters (e.g. N in the case of grid block permeabilities) is much larger for realistic
reservoir models with N = 104 − 106 grid blocks.

7.3 Relevant spatial patterns of permeability

In Chapter 6 it was demonstrated that (7.1)-(7.3) can be decomposed into a part
that is both controllable and observable (i.e. belongs to the k largest Hankel sin-
gular values) and a part that is poorly controllable and / or poorly observable (i.e.
belongs to the N − k smallest Hankel singular values). The choice of k of course
depends on what is considered to be relevant for the input-output behavior. For
example, if the H∞ norm of the approximation error should be less than 10−3,
k will generally be larger than for 10−2. Let us assume that a particular choice
for k has been made, and let Tbal denote the balancing matrix as introduced in
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Section 6.3 corresponding to (7.1)-(7.3). As mentioned earlier, the controllable and
observable part of (7.1)-(7.3) is represented by the triple

{Ã11(θ), B̃1(θ), C̃1(θ),D(θ)}

resulting from24 Tbal,1 0
Tbal,2 0

0 I

35� A(θ) B(θ)

C(θ) D(θ)

� �
T̂bal,1 T̂bal,2 0

0 0 I

�
=

24 Ã11(θ) Ã12(θ) B̃1(θ)

Ã21(θ) Ã22(θ) B̃2(θ)

C̃1(θ) C̃2(θ) D(θ)

35 ,

where Tbal and T−1
bal have been partitioned according to the first k rows and

columns, respectively:

Tbal =

[
Tbal,1

Tbal,2

]

, T−1
bal =

[

T̂bal,1 T̂bal,2

]
.

This decomposition is depicted in Figure 7.1.

manipulated
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output

controllable and observable

poorly controllable and /or
poorly observable

+
+

u y

A
11

(  ),B
1
(  ),C

1
(  ),D(  )

~ ~ ~

Figure 7.1: Decomposition of a reservoir model into a controllable and observable
part, and a poorly controllable and / or poorly observable part.

From a history-matching perspective, it clearly only makes sense to change an ini-
tial permeability estimate in a direction that affects the cost function V as defined
in Problem 5. Similarly, from a controllability and observability perspective, it
clearly only makes sense to change an initial permeability estimate in a direction
that affects the controllable and observable part of the reservoir model (i.e. the

quadruple {Ã11(θ), B̃1(θ), C̃1(θ),D(θ)} in Figure 7.1). If the inputs are persis-
tently exciting, this boils down to the same thing.

Consider the special situation that θ contains the permeability values in allN grid
blocks, or

θ =
[
k1 . . . kN

]T
. (7.5)

Let us focus on the effect of a variation ∆θ on {Ã11(θ), B̃1(θ), C̃1(θ),D(θ)} in
the coordinates corresponding to a fixed Tbal. Recall from Chapter 2 that the
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permeability value kj only enters B if grid block j contains a well. A variation

∆θj will therefore only have an effect on B̃1 if grid block j contains a well. The

same reasoning applies to C̃1 and D. On the other hand, the effect of a variation

∆θ on Ã11 is

Tbal,1A(θ + ∆θ)T̂bal,1 − Tbal,1A(θ)T̂bal,1
︸ ︷︷ ︸

=Ã11(θ)

=

N∑

j=1

Tbal,1
∂A

∂θj
(θ)T̂bal,1∆θj

+o(∆θ). (7.6)

By defining Π(θ) ∈ R
k2

×N as

Π(θ) :=
[

vec
{

Tbal,1
∂A
∂θ1

(θ)T̂bal,1

}

. . . vec
{

Tbal,1
∂A
∂θN

(θ)T̂bal,1

} ]

.(7.7)

we can rewrite (7.6) as

vec







Tbal,1A(θ + ∆θ)T̂bal,1 − Tbal,1A(θ)T̂bal,1
︸ ︷︷ ︸

=Ã11(θ)







= Π(θ)∆θ + o(∆θ). (7.8)

Consider again the homogeneous example of Section 6.4.1. In Section 7.2 we com-
puted that the relevant order of the model is k = 15. The matrix Π can now
be computed using (7.7). The right singular vectors corresponding to the three
largest singular values of Π are depicted in Figure 7.2. In each of the plots, the
vector under consideration is projected onto the model grid. Since each compo-
nent of θ relates to the permeability kj in a specific grid block j and thereby a
specific physical location, this projection allows us to interpret how the reservoir

model’s relevant input-output behavior (as captured by Ã11) varies over space.
Note that the scales of these plots differ and that the nonzero areas are of par-
ticular interest, as these represent areas where changes in permeability effect the
input-output behavior.
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Figure 7.2: Right singular vectors corresponding to three largest singular values
of Π projected onto model grid for homogeneous example.

Since wells 2 and 4 from Figure 6.1 do not appear as nonzero areas in the plots
of Figure 7.2, we conclude that permeability variations in grid blocks near wells
in which we can both control and observe affect the input-output behavior more
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than permeability variations in grid blocks far from these wells. This is in line
with results presented in Van Doren et al. (2008), and is also very similar to the
results from Chapter 6 on how a reservoir model’s controllability and observabil-
ity properties vary over space. In fact, the nonzero areas in the plots of Figure 7.2
strongly resemble those in the bottom row of Figure 6.3. In other words, the rele-
vant spatial patterns of pressure strongly resemble the relevant spatial patterns of
permeability. This can be explained as follows.

Recall from Chapter 2 that the matrices Ao and Aw, which are used to construct
A, have a very sparse structure - see Figure 2.2. Consequently, A also has a very
sparse structure, as does ∂A/∂θj . In fact, due to the sparsity in A, ∂A/∂θj has
at most 13 nonzero elements for a 2D reservoir model - see Figure 7.3. Moreover,
the nonzero components of ∂A/∂θj only appear in the rows and columns corre-
sponding to grid block j and its neighbors.
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Figure 7.3: Grid block numbering for a 2D model of 5 × 5 grid blocks (a) and
corresponding nonzero elements of ∂A/∂θ12 (b). Note that these only appear in
the rows and columns of grid block 12 and its neighbors 7, 11, 13 and 17.

Similarly, Figure 6.3 and Figure 6.6 show that the nonzero components of T̂bal,1

spatially correspond to grid blocks near wells in which we can both control and
observe. Although not depicted in any of the figures, this also holds for the rows
of Tbal,1. Consequently, the

Tbal,1
∂A

∂θj
(θ)T̂bal,1

term in (7.6) and thereby the jth column of Π only contains nonzero elements if j
corresponds to a grid block near a production or injection well with a flow meter
or a pressure gauge.

To summarize: the relevant spatial patterns of permeability strongly resemble the
relevant spatial patterns of pressure. This is quite intuitive, as it implies that per-
meability in an area where we can control and observe has a greater effect on the
input-output behavior than in an area where we cannot.
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7.4 Controllability and observability-based re- para-

meterization

In Section 7.2 it was shown that the model structure the (7.1)-(7.3) is not identi-
fiable if θ contains the grid block permeability values as in (7.5). We therefore
propose to regularize Problem 5 by re-parameterizing θ as

θ = Φα (7.9)

where Φ ∈ R
N×L is called the re-parameterization matrix and L≪ N is the num-

ber of to-be-estimated (non-physical) parameters (i.e. the number of elements in
α). The columns of Φ are referred to as basis functions, and linear combinations
of these can represent relevant spatial patterns of permeability.

Since the relevant spatial patterns of permeability strongly resemble the relevant
spatial patterns of pressure, we propose to choose the first L − 1 columns of the

inverse balancing matrix T̂bal,1, with an additional vector of ones to account for
an overall increase or decrease in permeability. By solving the regularized prob-
lem

Problem 6

minimize V(Φα) =
n∑

k=1

[ȳk − yk(Φα)]
T

[ȳk − yk(Φα)]

over α ∈ R
L

subject to pk+1 = A(Φα)pk + B(Φα)uk,

p0 = p̄0,

yk = C(Φα)pk + D(Φα)uk.

using a gradient-based optimization procedure starting from an initial estimate
θinit = Φαinit, we only update the permeability in directions that affect the con-
trollable and observable part of the reservoir model and thereby V . Note that L
should be smaller or equal to Nmax as given by (7.4) if Problem 6 is to have a
unique solution.

However, T̂bal,1 varies with θ - see for example the lower plots in Figure 6.3 which
closely resemble but are not identical to those in Figure 6.6. Therefore our ap-
proach might lead to a local minimum for Problem 6 that is not equal to zero (i.e.
not a perfect history match). An alternative method is therefore depicted in Fig-

ure 7.4. Here, T̂bal,1 is re-evaluated if there is no more decrease in V and a local
minimum for Problem 6 is found. This re-evaluation leads to a new set of basis
functions, which might possibly succeed in further decreasing V . This controlla-
bility and observability-based regularization is applied in the following example.
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Figure 7.4: Iterative procedure for controllability and observability-based re-
parameterization of grid block permeabilities.

7.5 Application

Consider again the heterogeneous reservoir treated in Chapter 6, and the problem
of identifying the logarithm1 of its permeability distribution as depicted in Figure
6.4. This permeability, whose logarithm is denoted by θ̄, is assumed to be the only
source of uncertainty. There are 200 perfect pressure measurements ȳ1, . . . , ȳ200

(from wells 1, 2, 3 and 5) available every ∆t = 0.013 seconds, which have been
generated by (7.1)-(7.3) using θ = θ̄, an initial state of p0 = 100 bar, and a ma-
nipulated input u0, . . . ,u199 depicted in Figure 7.5. This input contains enough
frequencies to obtain informative measurements (i.e. it is persistently exciting).
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Figure 7.5: Bottom-hole pressures (left) and flow rates (right).

The initial estimate θinit of θ̄ is a homogeneous permeability of 5 mDarcy. Based
on this estimate, the Hankel singular values and the balancing matrix Tbal(θinit)
are computed as in Chapter 6 using ∆t = 0.013 seconds. We stress that this balanc-
ing matrix corresponds to the initially estimated model, and not the true one. The
squared difference of the measured outputs of this model with the true measured
outputs as defined in (7.10) is V (θinit) = 8.7 × 10−2. The goal is to update this es-
timate by solving Problem 6 using a gradient-based optimization procedure (e.g.

1The logarithm of permeability is used in order to avoid negative permeability estimates and to
improve the numerical conditioning of the problem.
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the MATLAB function lsqnonlin).

The re-parameterization matrix Φ is chosen as

Φ =
[
IN×1 t̂1 . . . t̂L

]
, (7.10)

αinit =
[
−13.3 0 . . . 0

]
. (7.11)

where t̂j denotes the jth column of T−1
bal. The number of columns L of the re-

parameterization matrix Φ should be smaller or equal to the maximum number
of identifiable parameters, which in this case is Nmax = 120. However, very good
history matches are achieved with far fewer basis functions. This is shown in
Figure 7.6, which depicts the minimum value of Problem 6 that is achieved with
L = 1, . . . , 10. Note that V decreases by 5 orders of magnitude using only 6 basis
functions. The corresponding updated permeability estimate, depicted in Figure
7.7, only shows a resemblance with the true permeability, depicted in Figure 6.4,
in the vicinity of the wells in which we can control and observe.

0 2 4 6 8 10
10

−8

10
−6

10
−4

10
−2

10
0

Number of basis functions L

M
in

im
u

m
 o

f 
c
o

s
t 

fu
n

c
ti
o

n
 V

Figure 7.6: Minimum value of history match cost function V for different number
of basis functions L.

It is interesting to note that we can construct permeability estimates that appear
different, but lead to virtually the same input-output behavior and thereby his-

tory match cost function V using the columns of T̂bal,2. Three such estimates are
depicted in Figure 7.8: these are constructed by adding linear combinations of

columns of T̂bal,1 to the estimate depicted in Figure 7.8. The value of the history
match cost function V , originally 1.3 × 10−6, hardly changes.

Finally, it should be noted that this particular application involves history match-
ing 200 measurements taken every ∆t = 0.013 seconds, which is clearly not very
realistic - see the signals depicted in Figure 7.5. This is due to the reservoir’s rel-
atively small size and high permeability, as well as the low compressibility of the
fluid. However, for larger reservoirs with lower permeability and higher com-
pressibility the sampling time ∆t can be much larger.
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Figure 7.7: Updated estimate of heterogeneous permeability using 4 basis func-
tions.
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7.6 Chapter conclusions

Reservoir models are generally of very high order because the number of grid
blocks is often set as high as computationally possible. However, the Hankel
singular values of single-phase flow reservoir models decrease very rapidly, in-
dicating that they behave as models of much lower order. This severely limits
the number of identifiable parameters. An upper bound Nmax for the maximum
number of identifiable parameters is given. It is shown that if the vector of to-be-
estimated parameters contains the N grid block permeabilities, then Nmax ≪ N
and the model structure is not identifiable. Furthermore, by inspecting how the
controllable and observable part of a reservoir model depends on permeability,
it is shown that the relevant spatial patterns of permeability strongly resemble
the relevant spatial patterns of pressure. Consequently, a new method of regu-
larization is to re-parameterize permeability through a linear combination of the
most relevant spatial patterns of pressure. A history matching example shows
that this controllability and observability-based regularization leads to good re-
sults. Nonetheless, this method needs to be tested on more realistic problems (e.g.
3D, multi-phase flow reservoir models with noisy measurements) before it can be
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applied in practice. Even more importantly, it must still be demonstrated that the
resulting permeability estimate leads to better predictions of saturations, and not
only pressures.
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8 CHAPTER

Conclusions and Recommendations

Th is thesis aims at developing efficient tools for dynamic optimiza-
tion of wells and their production settings to maximize the recov-

ery factor of petroleum reservoirs based on uncertain reservoir models.
This chapter presents the conclusions and recommendations for future
research.

8.1 Conclusions

In Chapter 1 it was argued that, despite the many applications of optimization and
estimation techniques in the petroleum engineering literature, there are still many
open problems in reservoir management and production operations processes.
Consequently, there is significant scope to increase the recovery factor of oil and
gas fields by tailoring tools from the systems and control community to efficiently
perform dynamic optimization of wells and their production settings based on
uncertain reservoir models, in the sense that they lead to good decisions while
requiring limited time from the user. Four solution directions were outlined to
actually develop these tools, and in the following section the conclusions are cat-
egorized along these four directions.

Optimal control of production settings

Many production setting optimization problems can be written as optimal control
problems that are linear in the control. If the only constraints are upper and lower
bounds on the control, these problems can be expected to have pure bang-bang
optimal solutions. In situations where the optimal solutions are not purely bang-
bang but also smooth (i.e. containing so-called singular arcs), it is shown for the
example considered that pure bang-bang solutions exist which are only slightly
suboptimal. This has obvious practical implications, since bang-bang solutions
can be implemented with simple on-off control valves.

111
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Robust control of production settings

The adjoint method to derive gradients of a cost function with respect to pro-
duction settings can be combined with robust optimization to efficiently compute
settings that are robust against uncertainty in reservoir models. A water flooding
application demonstrates that production settings can be found that are robust
against uncertainty as defined by an entire class of models within a geological
structure, by optimizing over one set of 100 realizations of the permeability distri-
bution, and validating over a second set of 100 realizations.

Optimal well placement

The type of production settings (e.g. reactive versus constant) significantly effect
the well placement problem, in that a well configuration that is optimal when the
wells are operated with one type of settings may be far from optimal when the
wells are operated with another type of settings. Furthermore, the gradients used
in production setting optimization can be used to efficiently compute directions
in which to iteratively improve upon an initial well configuration by surrounding
the to-be-placed wells by pseudo wells (i.e. wells that operate at a negligible rate).

Controllability, observability and identifiability of reservoir models

The most controllable and observable pressures in single-phase flow reservoir
models can be computed by performing an eigenvalue decomposition of the con-
trollability and observability Gramians. By projecting the eigenvectors correspond-
ing to the largest absolute eigenvalues of the Gramians onto the model grid, we
can interpret how the reservoir model’s controllability and observability proper-
ties vary over space. It turns out that pressures near wells in which we can control
the flow rate or bottom-hole pressure are controllable, whereas pressures near
wells in which we can measure the flow rate or bottom-hole pressure are observ-
able. Furthermore, the controllability and observability properties are determined
by the well configuration (i.e. the number and location of wells) and to a lesser ex-
tent by the heterogeneity of the reservoir at hand. The Hankel singular values of
single-phase flow reservoir models decrease rapidly, indicating that they behave
as models of much lower order. This severely limits the number of identifiable
parameters. From the systems and control literature an upper bound Nmax for the
maximum number of identifiable parameters is given. It is shown that if the vec-
tor of to-be-estimated parameters contains the N grid block permeabilities, then
Nmax ≪ N and the model structure is not identifiable. Furthermore, by inspecting
how the controllable and observable part of a reservoir model depends on perme-
ability, it is shown that the relevant spatial patterns of permeability strongly re-
semble the relevant spatial patterns of pressure. Consequently, a new method of
regularization is to re-parameterize permeability through a linear combination of
the most relevant spatial patterns of pressure. A history matching example shows
that this controllability and observability-based regularization leads to good re-
sults.
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Discussion

Each of these results make closed-loop reservoir management and production op-
erations more efficient.

- By examining the type of constraints on wells it is possible to determine
in advance whether or not simple on-off control valves are likely to be as
effective as variable-setting ones. Although this inspection will not give a
conclusive answer, it points to situations when it can be beneficial, in terms
of control valve costs, to put extra effort into searching for pure bang-bang
(sub)optimal production settings.

- The negative effect of geological uncertainty on the recovery factor can be
reduced by applying robust optimization over a large number of subsurface
realizations.

- Given a reservoir model, optimal well locations can be determined much
more efficiently by applying the automatic well placement algorithm pre-
sented in this thesis than by manual well placement. The time that this saves
during field development planning can be used to focus on other aspects of
a development plan.

- The upper bound on the number of identifiable parameters as well as the
controllability and observability-based method of regularization can poten-
tially be used to improve history matching reservoir permeability.

8.2 Recommendations

Although these results solve some of the current problems in closed-loop reser-
voir management, the research in this area is far from finished. The following
recommendations for future research are given.

- There is still a large gap between reservoir management and production op-
erations in terms of goals and models used to achieve them. The resulting
inconsistencies in decision-making need to be addressed. A first step in this
direction could be to investigate how the terminal time, oil price and dis-
count factor affect the scope for improvement and the shape of optimal pro-
duction settings. In the applications in this thesis, the improvement in NPV
is solely due to reduced water production. However, the frequently associ-
ated delayed oil production has no effect on NPV because the discount fac-
tor in these applications is zero. For significant discount factors (e.g. around
15%) this clearly no longer holds, and in many applications it may then be
difficult to improve upon the reactive control strategy commonly employed
in production operations.

- The number, scheduling and trajectory of wells are very important decision
factors when developing a reservoir, but have not been considered in this
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thesis. Scheduling might be easier when only considering pure bang-bang
production settings with a single switching time for each well, since the de-
cision factors are then simply when to drill and abandon wells. As with
well location optimization, well trajectory optimization might be tackled
using the concept of pseudo-wells. However, each grid block in which a to-
be-optimized well is perforated should then be viewed as a separate well,
and subsequently surrounded by pseudo-wells. The challenge is then to
improve upon an initial well trajectory while adhering to practical drilling
constraints (e.g. curvature and length).

- The concept of surrounding a well with pseudo-wells to efficiently com-
pute an improving direction in well location optimization is by no means
restricted to a single ‘ring’. Using two or more rings of pseudo wells for
each well leads to more gradient information, and thereby possibly a better
optimization procedure.

- Conceptually, it is straightforward to apply the robust optimization approach
considered in this thesis to well location optimization. It would be interest-
ing to investigate under what conditions a well configuration that is robust
against model uncertainty (e.g. geological uncertainty represented by a large
set of realizations as in Chapter 4) resembles the commonly applied pattern-
flood.

- While there are many sources of uncertainty in reservoir models, this thesis
only considers the permeability distribution to be uncertain. It is clearly im-
portant to also investigate the effects of other sources of uncertainty and to
extend the system boundary (e.g. by considering multi-phase flow in wells
and the interaction with surface facilities). Also, it is still unclear how to gen-
erate a minimal set of models that is representative of the entire uncertainty
range, which is important to reduce the computational burden of applying
robust optimization.

- Since a reservoir’s recovery factor can be defined in terms of the saturations
at the end of its lifecycle, a reservoir’s saturations dynamics are at least as
relevant for field development planning as its pressure dynamics. However,
a reservoir’s saturation dynamics are described by nonlinear equations, and
it is therefore important to investigate how the controllability and observ-
ability of saturations change with time. This could be done by linearizing
the nonlinear dynamics along a certain trajectory and might lead to expla-
nations as to why, as observed in optimization studies, the control action of
optimal production settings at early times is often at the injection wells, and
at later times at the production wells.

- It is unclear which estimation technique is the most reliable for history match-
ing reservoir models. While there have been many successful applications,
a rigorous comparison of the (dis)advantages of these techniques would be
very beneficial to making automatic history matching standard practice in
reservoir management.
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- Reducing the computational load of a reservoir simulation would be very
beneficial to making near-continuous closed-loop reservoir management fea-
sible in practice. Further research into model reduction and numerical solvers
is therefore highly recommended.
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Summary

Th e coming years there is a need to increase production from petroleum reser-
voirs, and there is an enormous potential to do so by increasing the recovery

factor. This is possible by making better use of recent technological developments,
such as horizontal wells, downhole valves and sensors. However, actually mak-
ing better use of these improved capabilities is difficult because of many open
problems in reservoir management and production operations processes. Con-
sequently, there is significant scope to increase the recovery factor of oil and gas
fields by tailoring tools from the systems and control community to efficiently per-
form dynamic optimization of wells (e.g. number, locations) and their production
settings (e.g. bottom-hole pressures, flow rates, valve settings) based on uncertain
reservoir models, in the sense that they lead to good decisions while requiring
limited time from the user. This thesis aims at developing these tools, and the
main contributions are as follows.

Optimal control of production settings

Many production setting optimization problems can be written as optimal control
problems that are linear in the control. If the only constraints are upper and lower
bounds on the control, these problems can be expected to have pure bang-bang
optimal solutions. In situations where the optimal solutions are not purely bang-
bang but also smooth (i.e. containing so-called singular arcs), it is shown that pure
bang-bang solutions exist which are only slightly suboptimal. This has obvious
practical implications, since bang-bang solutions can be implemented with simple
on-off control valves.

Robust control of production settings

The adjoint method to derive gradients of a cost function with respect to pro-
duction settings can be combined with robust optimization to efficiently compute
settings that are robust against uncertainty in reservoir models. A water flooding
application demonstrates that production settings can be found that are robust
against uncertainty as defined by an entire class of models within a geological
structure, by optimizing over one set of 100 realizations of the permeability distri-
bution, and validating over a second set of 100 realizations.
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Optimal well placement

The type of production settings (e.g. reactive versus constant) significantly effect
the well placement problem, in that a well configuration that is optimal when the
wells are operated with one type of settings may be far from optimal when the
wells are operated with another type of settings. Furthermore, the gradients used
in production setting optimization can be used to efficiently compute directions
in which to iteratively improve upon an initial well configuration by surrounding
the to-be-placed wells by pseudo wells (i.e. wells that operate at a negligible rate).

Controllability, observability and identifiability of reservoir models

The most controllable and observable pressures in single-phase flow reservoir
models can be computed by performing an eigenvalue decomposition of the con-
trollability and observability Gramians. By projecting the eigenvectors correspond-
ing to the largest absolute eigenvalues of the Gramians onto the model grid, we
can interpret how the reservoir model’s controllability and observability proper-
ties vary over space. It turns out that pressures near wells in which we can control
the flow rate or bottom-hole pressure are controllable, whereas pressures near
wells in which we can measure the flow rate or bottom-hole pressure are observ-
able. Furthermore, the controllability and observability properties are determined
by the well configuration (i.e. the number and location of wells) and to a lesser ex-
tent by the heterogeneity of the reservoir at hand. The Hankel singular values of
single-phase flow reservoir models decrease rapidly, indicating that they behave
as models of much lower order. This severely limits the number of identifiable
parameters. From the systems and control literature an upper bound Nmax for the
maximum number of identifiable parameters is given. It is shown that if the vec-
tor of to-be-estimated parameters contains the N grid block permeabilities, then
Nmax ≪ N and the model structure is not identifiable. Furthermore, by inspecting
how the controllable and observable part of a reservoir model depends on perme-
ability, it is shown that the relevant spatial patterns of permeability strongly re-
semble the relevant spatial patterns of pressure. Consequently, a new method of
regularization is to re-parameterize permeability through a linear combination of
the most relevant spatial patterns of pressure. A history matching example shows
that this controllability and observability-based regularization leads to good re-
sults.



Samenvatting

D
e behoefte bestaat om in de komende jaren de productie van petroleum reser-
voirs te vergroten. Een belangrijke mogelijkheid hiertoe wordt geboden door

het toepassen van recente technologische ontwikkelingen, zoals horizontale put-
ten en ondergrondse kleppen en sensoren, voor het verhogen van de winningsfac-
tor. Deze toepassing wordt echter beperkt door vele open vraagstukken in reser-
voir management en productie-optimalisatie. Zodoende kan de winningsfactor
significant verbeterd worden door het efficiënt toepassen van meet- en regeltech-
nieken op onzekere modellen met betrekking tot het dynamisch optimaliseren
van putten (bijvoorbeeld aantal en locatie) en bijbehorende productiestanden (bi-
jvoorbeeld drukken, debieten, en kleppen). Optimalisatie-tools moeten de mo-
gelijkheid creëren om de juiste beslissingen te nemen binnen een beperkte tijd.
Dit proefschrift heeft het doel om deze tools te ontwikkelen. De belangrijkste
bevindingen worden hieronder beschreven.

Optimale aansturing van productiestanden

Het optimaliseren van productiestanden kan vertaald worden naar een ‘optimal
control’ probleem, dat lineair is in de aansturing. Als de enige beperkingen onder-
en bovengrenzen op de aansturing zijn, kan men verwachten dat voor een dergelijk
probleem de optimale oplossing zuiver ‘bang-bang’ (aan-uit) is. In de gevallen
waar de optimale oplossing niet zuiver bang-bang is, maar zogenaamde ‘singular
arcs’ bevat, kunnen we een zuivere bang-bang oplossing vinden, die slechts zeer
beperkt suboptimaal is. Dit biedt concrete toepassingsmogelijkheden, aangezien
bang-bang oplossingen met simpele aan-uit kleppen kunnen worden gerealiseerd.

Robuuste aansturing van productiestanden

De adjoint-methode voor het bepalen van de gradiënten van een kostenfunctie
met betrekking tot productiestanden kan gecombineerd worden met robuuste op-
timalisatie, om zo productiestanden te vinden die robuust zijn tegen onzeker-
heid in reservoirmodellen. Een ‘waterflooding’ voorbeeld laat zien dat produc-
tiestanden kunnen worden gevonden, die robuust zijn tegen modelonzekerheid,
wanneer deze gedefinieerd wordt door een verzameling modellen binnen een ge-
ologische structuur. Hiertoe is geoptimaliseerd over een verzameling van hon-
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derd realisaties van de permeabiliteit en gevalideerd over een tweede verzamel-
ing van honderd realisaties.

Optimale plaatsing van putten

Het type productiestanden (bijvoorbeeld reactief versus constant) heeft signifi-
cante invloed op de optimale plaatsing van putten; een putconfiguratie kan op-
timaal zijn voor het ene type standen, maar verre van optimaal voor het andere.
Daarnaast kunnen de gradiënten voor het optimaliseren van productiestanden
gebruikt worden om richtingen te bepalen voor het iteratief verbeteren van een
initiële putconfiguratie. De te plaatsen putten worden hiertoe omringt door zoge-
naamde pseudoputten, dat wil zeggen putten met een verwaarloosbaar debiet.

Regelbaarheid, waarneembaarheid en identificeerbaarheid van reservoirmod-
ellen

De meest regelbare en waarneembare drukken in één-fase reservoirmodellen kun-
nen worden berekend door een eigenwaarden-decompositie van de regelbaarheids-
en de waarneembaarheids-Gramiaan. Door de eigenvectoren van de grootse ab-
solute eigenwaarden van de Gramianen te projecteren op het modelraster, kan
men interpreteren hoe de regelbaarheids- en waarneembaarheidseigenschappen
van een reservoirmodel verschillen in de ruimte. Het blijkt dat drukken regelbaar
zijn in de buurt van putten, waar men de debieten of drukken kan aansturen.
Bovendien blijkt dat drukken waarneembaar zijn in de buurt van putten, waar
men drukken of debieten kan meten. Daarnaast worden de regelbaarheids- en
waarneembaarheidseigenschappen bepaald door de putconfiguratie en, in min-
dere mate, door de heterogeniteit van het betreffende reservoir. De Hankel sin-
guliere waarden van één-fase reservoirmodellen nemen snel af, waardoor zij zich
als modellen van een veel lagere orde gedragen. Dit beperkt in grote mate het
aantal identificeerbare parameters. Vanuit de meet- en regeltechniek wordt een
bovengrens Nmax voor het aantal identificeerbare parameters gegeven. Het wordt
aangetoond dat Nmax ≪ N en dat het modelstructuur niet identificeerbaar is,
waarneer de vector van te schatten parameters de N gridblok permeabiliteiten
bevat. Door de afhankelijkheid van het regelbare en waarneembare deel van
een reservoirmodel ten opzichte van de permeabiliteit te analyseren, kan wor-
den aangetoond dat de relevante ruimtelijke patronen van permeabiliteit sterk
overeenkomen met de relevante ruimtelijke patronen van drukken. Zodoende
bestaat er een methode voor regularisatie door het opnieuw parametriseren van
de permeabiliteit in de vorm van een lineaire combinatie van de meest relevante
ruimtelijke patronen van drukken. Een ‘history matching’ voorbeeld toont aan dat
deze op regelbaarheid en waarneembaarheid gebaseerde regularisatie tot goede
resultaten leidt.
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