
DELFT UNIVERSITY OF TECHNOLOGY

MASTERS THESIS

Incremental Snapshotting in Transactional
Dataflow SFaaS Systems

Author:
Nikolaos GAVALAS

Supervisor:
Dr. Asterios KATSIFODIMOS

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Web Information Systems Group
Software Technology

Student number: 5514762
Thesis committee: Dr. A. Katsifodimos, TU Delft, supervisor

Dr. G. Gousios, TU Delft
PhD Candidate K. Psarakis, TU Delft, daily supervisor

An electronic version of this thesis is available at
https://repository.tudelft.nl/.

June 25, 2023

http://www.tudelft.nl
http://www.johnsmith.com
http://www.jamessmith.com
http://www.wis.ewi.tudelft.nl/
https://www.tudelft.nl/en/eemcs/the-faculty/departments/software-technology/
https://repository.tudelft.nl/

iii

DELFT UNIVERSITY OF TECHNOLOGY

Abstract
Electrical Engineering, Mathematics and Computer Science

Software Technology

Master of Science

Incremental Snapshotting in Transactional Dataflow SFaaS Systems

by Nikolaos GAVALAS

The adoption of the serverless architecture and the Function-as-a-Service model has
significantly increased in recent years, with more enterprises migrating their soft-
ware and hardware to the cloud. However, most applications require state man-
agement, leading to the use of external databases. To alleviate the burden of state
management, there are systems known as SFaaS (Stateful Function-as-a-Service) that
provide stateful functions. Despite their benefits, SFaaS systems still face challenges
such as the need for transactional logic. Stateful streaming dataflow engines offer
promising capabilities for implementing transactional SFaaS systems due to their
exactly-once message delivery guarantees and global state management. Key-value
stores serve as embedded databases in this architecture, making it crucial to carefully
evaluate available options for suitable types of key-value stores.

This work focuses on the implementation and evaluation of three distinct types
of log-structured key-value stores within the context of serving as state-management
backends for transactional dataflow systems. A key aspect of our implementations
is the incorporation of efficient incremental snapshotting functionality. We explore the
performance and suitability of these key-value stores in managing state and sup-
porting transactional operations in dataflow systems.

HTTP://WWW.TUDELFT.NL
https://www.tudelft.nl/en/ewi/
https://www.tudelft.nl/en/eemcs/the-faculty/departments/software-technology/

v

Acknowledgements
I would like to express my gratitude to my supervisor, Asterios Katsifodimos, for
providing me with the opportunity to prove myself, trusting me, and offering in-
valuable feedback throughout the journey of my thesis.

Additionally, I extend my sincere appreciation and gratitude to my daily-supervisor,
Kyriakos Psarakis, whose unwavering support, guidance, and continuous feedback
have been instrumental in making this work possible. I am also grateful to the mem-
bers of the committee for generously dedicating their time to evaluate my work.

Lastly, I would like to thank my family and friends for their support throughout
this endeavor.

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Design Requirements . 2
1.2 Research Questions . 3
1.3 Contributions . 4
1.4 Outline . 4

2 Related Work 7
2.1 Transactional Dataflow Systems . 7
2.2 Key-value stores . 8

2.2.1 Types of key-value store backends 8
B-Trees . 8
Log-Structured Merge-Trees . 9
Fractal Trees . 10
On-disk hash-tables . 10
In-memory key-value stores . 10
Hybrids . 11

2.2.2 Key-value stores in dataflow systems 11
2.3 Incremental Snapshots . 11

2.3.1 Incremental Snapshots in Distributed Systems 11
2.3.2 Data structures for efficient state synchronization 11

Delta maps . 12
Merkle trees . 12
Conflict-Free Replicated Data Types (CRDTs) 13

3 Implementation 15
3.1 Common design decisions . 15

3.1.1 Application Programming Interface 15
3.1.2 Encoding . 16
3.1.3 Filesystem and Persistence . 16

3.2 Log-Structured Merge-Tree . 17
3.2.1 Design . 17

Writing data . 18
Reading data . 19
Fault-tolerance . 21
Tiering vs Leveling . 22

3.2.2 Implementation . 23
3.3 AppendLog . 23

3.3.1 Design . 23
3.3.2 Implementation . 25

viii

3.4 HybridLog . 26
3.4.1 Design . 26
3.4.2 Implementation . 28

Hash Index . 28
Ring buffer . 29
Flushing and Merging . 29

3.5 Snapshots . 30
3.5.1 Remotes . 30
3.5.2 Incremental Snapshots . 30

3.6 Possible extensions and optimizations 31
3.6.1 LSM-Tree . 32
3.6.2 Improvements for all engines . 32

4 Evaluation 35
4.1 Parameters . 35

4.1.1 LSM-Tree . 35
Max Runs per Level . 35
Density Factor . 36
Memtable Size . 36

4.1.2 HybridLog . 37
Mutable Segment Size . 37
Read-only Segment Size . 38

4.1.3 AppendLog . 38
Threshold . 38
Compaction . 39

4.2 Comparison . 40
4.2.1 Write Latencies . 40
4.2.2 Read Latencies . 42
4.2.3 Recovery Time . 42
4.2.4 Memory . 43

4.3 Incremental Snapshotting . 43
4.3.1 Benchmark . 44
4.3.2 Real-world evaluation . 44

Snapshots . 45
Recovery . 45
Latencies . 46

4.4 Discussion . 47

5 Conclusion 49
5.1 Summary . 49
5.2 Future Work . 51

A Code 53
A.1 Key-value store API . 53
A.2 Remote API . 53

B Experiments on HDD drives 55
B.1 Compaction in AppendLog . 55
B.2 Latencies . 56

Bibliography 59

ix

List of Figures

2.1 Architecture of Apache StateFun . 7
2.2 Key lookup example in a B-Tree. 8
2.3 Example of a simple Merkle Tree. 12

3.1 Encoding & Example. Keys and values are prepended by their respec-
tive length values. 16

3.2 Example of LSM-Tree flushing. 18
3.3 Example of LSM-Tree flushing (cont.). 18
3.4 Example of LSM-Tree merging. 19
3.5 Fence pointers example with density factor equal to 3, i.e. a pointer

that maps a key to a file offset is created for every 3 entries of the SST. . 20
3.6 Bloom filter example with bitarray of 20 bits and 3 hash functions. . . . 20
3.7 Example of value retrieval in an LSM-Tree. The numbers in the arrows

signify the search order. 22
3.8 Tiering vs Leveling in LSM-Trees. Tiering sort-merges R runs per level

(R = 3 in this example) into a run in the next level, while in leveling
each run is greedily sort-merged with the run from the next level. . . . 22

3.9 Example of operation of the AppendLog. Ki:Vj are key-value pairs. . . 25
3.10 Logical Address Space used in HybridLog. 27
3.11 Hash index of HybridLog. 28
3.12 Incremental snapshotting example. 32

4.1 LSM-Tree: Latency vs Max Runs per Level. 36
4.2 LSM-Tree: Latency vs Density Factor. 37
4.3 LSM-Tree: Memory and Disk Usage vs Density Factor. 37
4.4 LSM-Tree: Latency vs Memtable Size. 38
4.5 LSM-Tree: Memory Usage vs Memtable Size 38
4.6 HybridLog: Latency vs Mutable Segment Size. 39
4.7 HybridLog: Latency vs Read-Only Segment Size. 39
4.8 AppendLog: Latency vs Threshold. 40
4.9 AppendLog: Write Latency vs Throughput, with Compaction dis-

abled (left) and enabled (right). 40
4.10 Read Latency vs Throughput, with Compaction disabled (left) and

enabled (right). 41
4.11 Write Latency vs Throughput, for Uniform and Zipfian data distribu-

tions. 41
4.12 Write Throughtput when data fits the memory 42
4.13 Read Latencies . 42
4.14 Recovery Times . 43
4.15 Memory Usage . 43
4.16 Snapshotting Time vs Write Volume, when we increase the state by

inserting new records. 44

x

4.17 Snapshotting Time vs Write Volume, when state stays the same and
we only update it. 45

4.18 Snapshot duration in a dataflow system, for a workload consisting of
100K unique keys. 46

4.19 Snapshot duration in a dataflow system, for a workload consisting of
1M unique keys. 46

B.1 Writes in AppendLog with compaction disabled (left) and enabled
(right) in an HDD. 55

B.2 Reads in AppendLog with compaction disabled (left) and enabled
(right) in an HDD. 56

B.3 Write latency for every store in an HDD. 56
B.4 Read latency for every store in an HDD. 57

xi

List of Tables

4.1 Average time to recover the state in the dataflow system in ms, per
key-value store type, for state sizes of 100K and 1M keys. 46

4.2 Transaction latency in the dataflow system in ms, for a state consisting
of 1M keys. 47

4.3 Summary of the properties of the key-value stores. 47

1

Chapter 1

Introduction

Cloud Computing has seen a dramatic rise in its adoption the recent years, with
an increasing number of enterprises migrating their software and hardware to the
cloud, and this trend is only expected to continue [Gens et al., 2019]. Historically, this
shift towards managed infrastructure has been arguably inevitable, because with
cloud computing the cost per unit of computation is minimized [Castro et al., 2019].
The drive for increased efficiency in computation has culminated in the emergence
of the serverless architecture [Rajan, 2018].

In the serverless cloud computing execution model, applications are being devel-
oped as collections of fine-grained event-driven and stateless units of computation
called cloud functions. Cloud providers offer the execution of serverless functions as a
paid service, known as Function-as-a-Service or FaaS [Shafiei, Khonsari, and Mousavi,
2019].

While FaaS offerings prioritize scalability by being stateless, most applications
require some form of state management, resulting in developers resorting to exter-
nal databases for their applications’ state-keeping. Several recent works have aimed
to alleviate the burden of state management from application developers [Bykov et
al., 2011; Burckhardt et al., 2021; Zhang et al., 2020] by enabling the transparent man-
agement of application state through external databases, thereby providing stateful
functions, or SFaaS.

SFaaS systems ease the development of stateful applications, but they are not a
panacea per se. Any programmer that develops distributed applications will even-
tually have to deal with fundamental potential issues such as network partitioning,
system failures, and the Byzantine generals messaging problem [Lamport, Shostak,
and Pease, 2019]. These problems become especially hard to deal with when the ap-
plication level requires implementing transactional logic, as transactions require extra
guarantees. Transactions are sets of operations that must adhere to the ACID princi-
ples - Atomicity, Consistency, Isolation, and Durability [Gray and Reuter, 1992].

Consequently, developers often find themselves intermixing business logic with
consistency checks, rollbacks, snapshots, and timeouts, resulting in systems that are
highly intricate to maintain and prone to failures. This highlights the need for an
intermediary layer that abstracts the distributed fault tolerance logic and provides
application developers with specific guarantees, both at the state-management level
and the transactional level, if feasible.

SFaaS systems built on top of stateful streaming dataflow engines such as Apache
Flink StateFun [Carbone et al., 2015] make excellent candidates for implementing
transactional SFaaS systems, primarily for two reasons [Heus et al., 2022]:

1. They offer exactly-once message delivery semantics, eliminating the need for
identifying lost messages and resending them, and also guarantee the message
delivery order - the communication channels between the distributed compo-
nents are FIFO.

2 Chapter 1. Introduction

2. They fully manage the system’s global distributed state by periodically cre-
ating consistent snapshots and recovering them upon failures. This is espe-
cially important for implementing transactions, since for failed transactions
there needs to be a rollback mechanism to guarantee the Atomicity property.

Dataflow SFaaS systems are comprised of multiple worker processes, with each
of them keeping a partition of the global state locally [Carbone et al., 2015]. The
state is represented as key-value pairs, making key-value stores an ideal choice as
embedded databases for this task.

As the key-value store is a critical component of this architecture, it is essential
to carefully evaluate the available options of suitable types of key-value stores and
motivate our selection. Towards this end, in this study, we implement three different
kinds of key-value stores, evaluate their performance within transactional dataflow
systems and conduct a comprehensive comparative analysis among them.

1.1 Design Requirements

In a (transactional) dataflow SFaaS system, the key-value stores need to have specific
properties to be considered suitable. These properties, extending those mentioned
in the work of Chandramouli et al., 2018, are:

1. Incremental snapshots [Carbone et al., 2017]. When the dataflow engine requests
a worker to create a snapshot of its state, the state backend (the key-value store)
will dump the state and save it. As this process happens many times during
the execution of a workflow, to ensure fault tolerance and fast state recovery, it
is imperative that it is done efficiently, building on previous snapshots.

The naive solution is to save the whole state every time, but if there is a way
to only save the updates on the state at each step, incrementally, it would defi-
nitely be more efficient. However, saving only the updates on each step would
make recovery very slow, as the state would need to be rebuilt from the very
beginning in case of a system failure. In this work, we propose a solution that
combines fast incremental snapshots with low recovery times.

2. State recovery to a previous version from previous snapshots (rollback) [Chandy and
Lamport, 1985; Carbone et al., 2017]. Upon execution, the dataflow coordina-
tor process may request the workers to restore some previous version of their
state, so that the system can go back to some consistent global state and “re-
play” events to recover from some failure.

3. Larger-than-memory data (spill-to-disk). When dealing with large volumes of
data, it is expected that during execution the state will exceed in size the amount
that can be stored in memory. Hence, it is essential that the key-value store
employs persistent storage when necessary to handle states larger than the
available memory.

4. Update intensity. In dataflow systems, changes to the state are typically char-
acterized by the volume of updates rather than inserts or deletes. This is par-
ticularly evident in workflows that involve data aggregations or analytics, and
it holds even more significance in systems that support transactions. Transac-
tional systems often involve frequent operations like value increments. As a
result, the state backend needs to be well-suited for update-heavy workloads.

1.2. Research Questions 3

5. Locality. In real-world dataflow applications, access to data is rarely uniformly
distributed. Keys that are “alive” at any moment may be of many orders of
magnitude, but it’s usually a subset of those that are “hot” at some given time,
i.e. accessed or updated frequently. The hot set may drift as time passes but
the strong temporal locality property is maintained.

6. Point operations. A key-value store for our use case should be optimal for point
operations, i.e. operations associated with a single key, as opposed to range
operations. Since state updates rarely operate on ranges of keys, we can lever-
age this knowledge to our advantage.

1.2 Research Questions

At this juncture we can outline the main research questions of this work. The first
research question is:

RQ1: Which type or types of key-value stores are more fitting as embedded
state stores in the worker processes of transactional dataflow SFaaS systems?

To address this question in alignment with the design requirements outlined in
subsection 1.1, our approach involves several steps. Firstly, we will survey and
examine existing key-value store designs, considering their suitability for our pur-
poses. Next, we will carefully narrow down our options and provide a compelling
rationale for our chosen selections. Subsequently, we will proceed to implement the
most promising candidates, and study them in depth, which leads us to the second
and third research questions:

RQ2: How do changes in the parameters of each selected type of key-value
store affect its performance?

RQ3: In the selected types of key-value stores, which are the trade-offs that
determine their operation? In which general use cases does each of them per-
form better?

Next, we will proceed with a thorough evaluation of the implemented key-value
stores by integrating them into a transactional dataflow system. During this evalu-
ation, we will specifically focus on assessing the efficiency of the incremental snap-
shotting functionality and its impact. Thus, our fourth research question is formu-
lated as follows:

RQ4: How does the performance of a key-value store that incorporates in-
cremental snapshotting functionality compare to that of a "naive" in-memory
key-value store, which captures snapshots of its entire state at each step, in
terms of snapshot creation time?

4 Chapter 1. Introduction

Ultimately, we will be able to address the final research question:

RQ5: Is there a key-value store that clearly stands out as the superior choice
for state management?

1.3 Contributions

We summarize this work’s contributions in the following points:

1. Design and implementation of Three Key-Value Stores: To ensure a fair comparison
and level playing field, we have implemented three distinct key-value store
implementations. Each implementation adheres to the same programming
language and incorporates similar design choices for shared functionality, such
as data encoding and data structures. By keeping these aspects consistent, we
can isolate the differences in the key-value store logic and facilitate accurate
comparisons.

2. Experimental Analysis: In order to address the research questions outlined in
section 1.2, we have conducted a series of experiments. These experiments
focus on analyzing the parameters of each implemented key-value store and
exploring the trade-offs inherent in their designs, particularly in terms of re-
source utilization. By systematically examining these aspects, we aim to gain a
deeper understanding of the strengths and weaknesses of each key-value store
implementation.

3. Comprehensive Comparison: Building upon the experimental analysis, we have
conducted a comprehensive comparison among the implemented key-value.
This comparison encompasses various factors, including the effectiveness of
incremental snapshotting, which plays a vital role in state management. Ulti-
mately, our goal is to determine whether one key-value store emerges as the
optimal choice for our specific use case. By thoroughly evaluating the per-
formance and capabilities of each implementation, we aim to provide insights
and make informed recommendations for state management in transactional
dataflow systems.

1.4 Outline

The rest of the thesis is structured as follows:
Chapter 2 provides a review of the existing literature and related work in the

field. It explores previous research, methodologies, and advancements in key-value
stores and state management within transactional dataflow systems. This chapter
establishes a solid foundation for our study.

In Chapter 3 we delve into comprehensive descriptions of the internal workings
of each type of key-value store. We provide in-depth insights into their underlying
mechanisms, data structures, and algorithms. Furthermore, we discuss the specific
implementation details and design decisions that pertain to each key-value store
type. By thoroughly understanding the intricacies of each implementation, we lay
the groundwork for subsequent evaluations and comparisons.

1.4. Outline 5

Chapter 4 is dedicated to the evaluation of our implemented key-value stores.
We conduct a series of benchmarks and comparisons to assess their performance
and capabilities. This includes integrating the key-value stores into a transactional
dataflow system to simulate real-world usage scenarios. By rigorously evaluat-
ing their performance, scalability, and efficiency, we gain valuable insights into the
strengths and limitations of each implementation. We discuss the obtained results
and analyze the implications they have on state management in transactional dataflow
systems.

In the final chapter, 5, we provide a comprehensive summary of our research
and findings. We present our conclusions based on the evaluation and comparisons
performed. We also address the research questions posed earlier in the thesis and
provide insightful answers. Additionally, we discuss potential directions for future
research and highlight areas that require further exploration and development.

7

Chapter 2

Related Work

2.1 Transactional Dataflow Systems

Transactional dataflow systems are a class of distributed systems designed to handle
large-scale data processing with transactional guarantees. They provide a program-
ming model that allows developers to write declarative, data-driven computations
that automatically handle fault tolerance, scalability, and consistency.

Transactional dataflow SFaaS (Stateful Function-as-a-Service) systems are cloud-
based systems that provide a serverless platform for processing large-scale data with
transactional guarantees. These systems allow users to write and deploy stateful
individual functions or small pieces of code that are triggered in response to events,
such as incoming data or scheduled tasks. They are built on top of dataflow systems
because they provide fault tolerance, scalability, and consistency out-of-the-box.

One of the most prominent transactional dataflow SFaaS system is Apache Flink’s
[Carbone et al., 2015] StateFun, the architecture of which is shown in figure 2.1 (cred-
ited to Heus et al., 2022).

FIGURE 2.1: Architecture of Apache StateFun

Remote functions are executed in the nodes of the StateFun cluster, and each
node saves its state into an embedded key-value store, as the state can be modelled
effectively by a collection of key-value pairs.

Relatively to the current work, this is the model architecture for which we will
optimize our key-value stores. More concretely, we assume that the key-value stores
are to be used as embedded key-value stores in a similar cluster and that there exists
some reliable remote storage in the cloud to store our snapshots.

8 Chapter 2. Related Work

2.2 Key-value stores

A key-value store is a type of database that uses a simple key-value data model to
store data. In a key-value store, data is represented as a collection of key-value pairs,
where each key is a unique identifier that is associated with a corresponding value.

Key-value stores are designed for efficient and fast access to data, making them
suitable for use cases where high performance and low latency are critical.

There are various types of key-value stores, each of which is optimized for spe-
cific use cases and applications. A fundamental factor that determines the proper-
ties of a key-value store is its backend, i.e. the data structures that power it. The
main backends for key-value stores are B-Trees, LSM-Trees, and on-disk hash-tables
if they store their data on disk, or other tree-based or hash-based data structures if
they store their data in memory. Of course, there are also hybrids that combine other
types.

2.2.1 Types of key-value store backends

B-Trees

A B-tree is a data structure used to store and organize data in a sorted manner, al-
lowing for efficient search, insertion, and deletion operations [Comer, 1979]. It is
a balanced tree structure, meaning that the height of the tree is kept relatively low
compared to the number of elements it contains, which in turn ensures fast access
and modification times.

The B-tree consists of nodes, each containing a number of keys and pointers to
child nodes. The keys are sorted in ascending order within each node, and the point-
ers are used to traverse the tree and locate the desired key or node. The number of
keys and pointers in each node is fixed, and typically determined by the size of a
disk block or page. An example of how key-value lookups work in B-Trees can be
found in figure 2.2.

ref 100 ref 200 ref 300 ref 400 ref

Example of lookup for key = 231

ref 111 ref 135 ref 152 ref 169 ref

ref 210 ref 230 ref 250 ref 290 ref

key < 100

230 val 231 val 232 ref 245 val

100 <= key < 200
300 <= key < 400

key >= 400

FIGURE 2.2: Key lookup example in a B-Tree.

B-trees are commonly used in database systems (especially relational database
systems), file systems, and other applications that require fast and efficient access to
large amounts of data stored on disk or in memory. However, the B-tree significantly
escalates the I/O costs of transactions, as it necessitates real-time maintenance of the
index. Consequently, this results in a considerable rise in the overall system cost,
reaching up to a fifty percent increase in I/O operations [O’Neil et al., 1996].

2.2. Key-value stores 9

Log-Structured Merge-Trees

The Log-structured Merge-Tree [O’Neil et al., 1996] (or LSM-Tree for short) is another
popular data structure used in modern database systems.

At its core, the LSM-tree consists of two main components: a memory compo-
nent, often called the memtable, that serves as an in-memory buffer and a series
of on-disk components, typically referred to as levels. The levels themselves are
comprised of immutable SSTables, short for sorted-string tables, or just “runs”. The
writes to the LSM-Tree are flushed directly to disk, and the runs are then merged
periodically to garbage-collect overwritten records. The LSM-Trees’ internals are
analyzed in detail in Chapter 3.

In comparison to the B-Trees, LSM-Trees have several advantages (or trade-offs
to be more accurate):

• The LSM-trees excel in workloads with heavy write operations (inserts-updates-
deletes). Since writes are initially buffered in the memtable and flushed to
disk periodically, LSM-trees minimize disk I/O operations, resulting in sig-
nificantly faster write performance compared to B-trees. B-trees, on the other
hand, require immediate disk writes for every update, which can be a per-
formance bottleneck in write-intensive workloads. However, B-Trees typically
are more suitable for read-intensive workloads.

• LSM-Trees are usually more space-efficient, leading to less disk space usage. B-
Trees often suffer from fragmentation, where deleted or updated entries leave
behind empty or partially-filled nodes. LSM-trees consolidate data during the
compaction process, eliminating duplicates and reclaiming space, leading to
improved space utilization. In addition, data in LSM-Trees can be relatively
easily compressed, leading to even more efficient space utilization.

• In storage systems, a phenomenon known as write amplification [Hu et al., 2009;
Dong et al., 2017] occurs, which can have a detrimental effect on disk durabil-
ity and performance, especially in SSD drives. Write amplification refers to
the situation where a single write operation in the database triggers multiple
physical writes to the disk. This phenomenon is more pronounced in B-trees in
comparison to the LSM-trees, because multiple random page writes are needed
to update a single value and the index. LSM-Trees are less susceptible to this
phenomenon because they write data sequentially, leading to less susceptibil-
ity to write amplification. Sequential writes also lead to a performance boost,
especially in rotational HDD disks.

• Due to the way LSM-Trees organize their data immutably into levels, they al-
low for fast recovery, and most importantly for efficient incremental snapshots.
All the recent writes are located in higher levels of the LSM-Tree and therefore when
taking a snapshot we can exclude the lower levels if they have been included in a pre-
vious snapshot. With a B-Tree, incremental snapshots would be challenging to
achieve because of their in-place updates. We would need to maintain addi-
tional data structures to keep track of what exactly was changed, and make
these data structures persistent as well.

While log-structured storage offers numerous benefits, it does have a drawback
related to the compaction process, which can occasionally impact the performance of
concurrent read and write operations. As disks have limited bandwidth, allocating a
significant portion of it to merging operations can adversely affect data writes. This

10 Chapter 2. Related Work

can result in a slight reduction in throughput and average response time. The impact
is typically minimal but in certain cases, particularly at higher percentiles, queries
to log-structured storage engines may experience relatively high response times. In
such scenarios, B-trees tend to offer more predictable and consistent performance.

Additionally, in B-trees each key exists in precisely one location within the index,
unlike log-structured storage engines where multiple copies of the same key may re-
side in different segments. This characteristic makes B-trees appealing in databases
that aim to provide robust transactional semantics. Many relational databases, for
instance, implement transaction isolation by applying locks to key ranges. In a B-
tree index, these locks can be directly associated with the tree, making it easier to
manage and enforce transactional consistency. For our use case, this characteristic
is not important, because all transactional logic is handled at higher levels by the
transactional dataflow system.

Fractal Trees

Fractal Trees are a type of indexing data structure that is designed to provide high
performance and scalability in multi-core environments. They are primarily based
on B-Trees.

The key idea behind Fractal Trees is to split the index into a set of smaller in-
dexes, each of which is optimized for a specific data access pattern. This allows the
system to scale horizontally across multiple cores and nodes, while also providing
high performance for a wide range of workloads.

Like B-Trees, there are good for transactions at the database level, because each
key exists in only one copy in the tree. Compared to LSM-Trees, they can offer some
advantage in terms of mitigating write amplification [Kuszmaul, 2014], but the ad-
vantage is insignificant in leveled many-runs-per-level LSM-Trees (which is the kind
of LSM-Tree presented and implemented in Chapter 3).

On-disk hash-tables

On-disk hash-tables, also known as persistent hash-tables, are data structures that
allow efficient storage and retrieval of key-value pairs on disk. On-disk hash-tables
use hashing algorithms to map keys to specific locations on the disk, enabling fast
retrieval of values associated with the keys. The hash-table is typically divided into
fixed-size buckets or blocks, each containing a certain number of key-value pairs.
One prominent example of a database that uses on-disk hash-tables is the GNU dbm
project.

In-memory key-value stores

In-memory key-value stores, as the name implies, store and retrieve data entirely
in main memory, providing fast and efficient access to key-value pairs. Unlike disk-
based storage systems, which store data on hard drives, in-memory key-value stores
keep the entire dataset in RAM, eliminating the latency associated with disk I/O
operations, allowing for extremely low access times, making them ideal for appli-
cations that require high-performance data retrieval, such as caching, real-time ana-
lytics, and session management. However, the limited capacity of RAM restricts the
size of the dataset that can be stored in memory, making these stores more suitable
for smaller to moderate-sized datasets that can fit within the available memory. A
well-known commercial in-memory key-value store is Redis.

2.3. Incremental Snapshots 11

Hybrids

There are databases that leverage more than one data structure to store and retrieve
data. Microsoft’s FASTER Chandramouli et al., 2018 for instance uses in-memory
components with log-structured on-disk storage to combine the best between two
worlds. We analyze FASTER in detail in chapter 3, as it is one of the implemented
stores.

2.2.2 Key-value stores in dataflow systems

The most prominent key-value store used as embedded key-value store in distributed
streaming/dataflow systems is RocksDB, an LSM-Tree-based store. It is used in
Apache Spark Structured Streaming [Armbrust et al., 2018], Apache Flink [Carbone
et al., 2015], Apache Kafka and Apache Samza [Noghabi et al., 2017]. In the work of
Kalavri and Liagouris, 2020, the authors have also integrated FASTER in a dataflow
system seamlessly.

2.3 Incremental Snapshots

Snapshots play a vital role in distributed systems, as they enable the creation of a
consistent snapshot representing the global state of the system. However, achieving
this consistency is challenging due to the absence of globally shared memory and a
synchronized global clock.

Extensive research has been conducted on snapshotting algorithms, as docu-
mented in literature such as the work by Chandy and Lamport, 1985. While these
algorithms have received significant attention, there has been limited exploration of
efficient incremental snapshots, which aim to leverage previous snapshots to avoid
redundant work.

The problem of incremental snapshots can be seen as an extension of the broader
challenge of distributed state synchronization, which focuses on maintaining con-
sistency across distributed systems. In the next sections we present the approach
of some commercial systems to this problem, as well as some data structures com-
monly used for state synchronization.

2.3.1 Incremental Snapshots in Distributed Systems

Apache Flink [Carbone et al., 2015] leverages the properties of the log-structured
storage and the concept of delta maps (see section 2.3.2) [Carbone et al., 2017] for in-
cremental snapshots, although as for the time this related work was published, it
hasn’t been implemented. This approach is the one we generally follow in imple-
menting the incremental snapshotting functionality in the key-value stores in Chap-
ter 3.

In the work of Fraser, 2009, the author introduces the concept of Differential Syn-
chronization for synchronizing changes to a single document edited by multiple users
in parallel. The approach is interesting but too high-level for our use case.

2.3.2 Data structures for efficient state synchronization

Low-level synchronization mechanisms usually make use of specific data structures.
In the following subsections, we examine three of the most prominent ones.

12 Chapter 2. Related Work

Delta maps

A delta map is a data structure or mechanism used to track and represent changes or
differences between two versions of a dataset or state. It provides a way to efficiently
transmit and apply updates across distributed nodes without transferring the entire
dataset.

Delta maps are usually implemented with version vectors or logs, depending on
the problem and the application. The synchronization approach with delta maps
using version vectors is more carefully examined in Chapter 3 because it is the ap-
proach we will use ourselves for detecting the changes needed to be synchronized
between the key-value stores and remote object storage systems.

Merkle trees

Merkle trees [Merkle, 1987] are a cryptographic data structure that facilitates effi-
cient and secure verification of data integrity. They operate by organizing data into
a tree-like structure, where each leaf node represents a small portion of data and
the intermediate nodes store the hash values of their child nodes. The process of
constructing a Merkle tree involves recursively hashing pairs of nodes until a single
root hash called the Merkle root. This root hash serves as a compact representation
of the entire data set, allowing for efficient lookup of changes. An example of a
Merkle-Tree is shown in figure 2.3 1.

FIGURE 2.3: Example of a simple Merkle Tree.

In the context of synchronizing distributed systems, Merkle trees play a crucial
role. They enable multiple parties to compare and synchronize their datasets by
efficiently identifying differences in data without transferring the complete dataset.
By comparing the Merkle root hashes, participants can determine if their datasets are
identical or if specific portions of the data have diverged. This approach minimizes

1Credits to Wikipedia

2.3. Incremental Snapshots 13

the amount of data that needs to be exchanged and reconciled, reducing bandwidth
requirements and synchronization time.

Conflict-Free Replicated Data Types (CRDTs)

Related to the field of replica-synchronization, especially in implementing eventual
consistency in distributed systems is the concept of Conflict-Free Replicated Data
Types (or CRDTs) [Shapiro et al., 2011].

CRDTs are a class of data structures designed for distributed systems that aim
to provide strong eventual consistency without the need for coordination or cen-
tralized authority. They are specifically designed to handle concurrent updates in a
distributed environment where there may be latency, network partitions, or conflict-
ing operations.

The key idea behind CRDTs is that they ensure convergence by allowing updates
to be commutative and/or associative, meaning that the order of concurrent opera-
tions does not affect the final state of the data.

CRDTs have been implemented for a variety of lower-level data structures like
counters, sets, maps, registers, and even JSONs [Kleppmann and Beresford, 2017].

15

Chapter 3

Implementation

This chapter is structured as follows: we begin by discussing some common high-
level design decisions that apply to all of our implementations. Secondly, we delve
into the specifics of each key-value (KV) store, including their internals and im-
plementation details. Lastly, we demonstrate how we leveraged log-structuring to
achieve the desired incremental snapshotting functionality of our key-value store.

3.1 Common design decisions

First of all, we go through some design decisions that are common throughout all of
the implementations, namely the programming interface and encoding of values.

3.1.1 Application Programming Interface

We designed our implementations to expose a common interface (API) to the pro-
grammer. By doing this we allow for easy benchmarking, testing, and ultimately a
fair comparison between the engines. The API is programmatically defined within a
parent class that is inherited and extended by the classes corresponding to each en-
gine, of which the exact method signatures can be found in appendix A. The meth-
ods supported are:

• get: For retrieving the value of a given key. This operation is called a read.

• set: For setting the value of a given key. If the key does not exist, it is inserted
in the database with the given value, and if it already exists it is updated to the
given value. If the value is empty, this is considered a delete. We refer to all
these operations as writes.

• close: Closes the database by flushing all buffers and closing all files.

• snapshot: Takes a snapshot of the current state, by flushing all buffers and
pushing the latest created files to a remote directory (more on that in section
3.5). This method takes as argument an integer which is the snapshot iden-
tifier. The values of those integers should be unique and ascending but not
necessarily consecutive, for example 1, 3, 6, 8 is a valid sequence of snapshot
identifiers for taking four consecutive snapshots, but 2, 5, 4, 8 is not.

• restore: Using the remote directory, it pulls all files associated with a given
version, restoring the state of a specific point in time when a snapshot was
taken. This method takes an integer as an optional argument, representing the
snapshot version to restore. If the argument is not given, the latest version is
restored by default.

16 Chapter 3. Implementation

The decision to treat deletes as mere writes to empty values offers significant ad-
vantages in terms of both usage and implementation. By adopting this approach,
we eliminate the need to invoke special methods or follow complex deletion proce-
dures. Instead, a straightforward write operation can be used to signify the deletion
of a record. On the implementation side, treating deletes as writes to empty val-
ues allows us to avoid dealing with intricate concepts such as tombstones. In certain
database systems, tombstones are special markers used to indicate record deletions
[Matsunobu, Dong, and Lee, 2020]. However, by adopting our chosen approach, we
eliminate the need for tombstones.

Also, all keys and values are in the form of raw bytes. This is the design decision
followed in the APIs of major commercial key-value stores too, like RocksDB and
Redis, because besides offering simplicity, it also allows for maximum flexibility, as
any other data type can be serialized in bytes (and has to be if it is to be written on
disk), and makes the encoding of the key-value pairs on disk easy implementation-
wise.

3.1.2 Encoding

Regarding the encoding of the key-value pairs on disk, we encode each key-value
pair as shown in figure 3.1: we first encode the length of the key in bytes, then we
write the key itself, and then we repeat the same for the value. This enables us to
avoid any kind of character-escaping mechanisms, special characters, or padding,
which would all add complexity, restrictions, and would waste disk space.

Key Length Key Value Length Value

0x02 0xAB 0x1D 0x03 0x01 0x2B 0xEE

Example:

Encoding:

FIGURE 3.1: Encoding & Example. Keys and values are prepended
by their respective length values.

An important benefit of using such encoding is that it allows us to encode keys
and values of arbitrary size without limit. The trade-off is that we use slightly extra
disk space for the encoding bytes if the keys and/or values are large. With encoding
bytes of length one we can have keys/values up to 21∗8 − 1 = 255 bytes long, with
length two we can have up to 22∗8− 1 = 65535 et cetera. Each key-value store accepts
as an argument in the constructor the maximum key length and the maximum value
length, which we use to determine the number of bytes we will use for the encoding.

3.1.3 Filesystem and Persistence

Another design decision is to store all data in files under one directory on disk, which
enables easy backups and management in general.

3.2. Log-Structured Merge-Tree 17

Regarding the behavior of the key-value store upon initialization, if the key-
value store is not initialized with a connection to a remote directory, and finds data
in its local data directory from a previous run, it will rebuild its indices using this
local data.

If on the other hand, a key-value store is initiated with a remote connection (ei-
ther a path in the same machine mounted remotely from elsewhere or minio - more
on that in section 3.5), it will attempt to fetch the latest snapshot. If such a snap-
shot is available, it will overwrite any preexisting data in its local directory, giving
preference to the snapshot.

3.2 Log-Structured Merge-Tree

The Log-Structured Merge-Tree (LSM-Tree) is a disk-based data structure [O’Neil et
al., 1996], and one of the most prominent, battle-tested, and well-researched database
engines. It was invented by Patrick O’Neil in 1996 and has since been used in multi-
ple databases, such as Google’s LevelDB, Meta’s RocksDB, and Apache’s Cassandra.

The LSM-Tree makes extensive use of the log-structuring technique, which first
appeared in the LFS file system [Rosenblum and Ousterhout, 1992] and has since
been used not only in LSM-Tree-based database management systems but also in
other types of storage engines, even B-Tree-based ones [Levandoski, Lomet, and
Sengupta, 2013].

Log-structuring offers significant speedups by significantly reducing the num-
ber of writes per page and transforming them into a "sequential" format. In other
words, it consolidates numerous random writes into a single large multi-page write
[Levandoski, Lomet, and Sengupta, 2013].

In this work, we use log-structuring extensively, because, besides its advantages
in I/O operations, it also provides a straightforward way to create incremental snap-
shots of the database’s state. We analyze the way we leveraged log-structuring for
incremental snapshotting later, in section 3.5.

Given the close relationship between log-structuring and the LSM-Tree (which
makes extensive use of it), we will introduce the concept in tandem with the LSM-
Tree.

3.2.1 Design

The power of the LSM-Tree can be partially attributed to the fact that it uses lightweight
indices, when compared to B-trees which effectively double the cost of every I/O op-
eration to maintain their indices [O’Neil et al., 1996]. This enables the LSM-Tree to
scale to very high write rates.

However, one other important factor for the LSM-Tree’s fast I/O is the use of an
in-memory buffer, also called memtable, which aggregates the updates and when it’s
full, it flushes them to disk sequentially. As it is well known, disks perform much
faster sequential operations that operations than require random access, especially
in the cloud, where inexpensive disks have limited I/O rates [Levandoski, Lomet,
and Sengupta, 2013].

This buffer flushes the aggregated data into sorted chunks of data that are com-
monly referred to as SSTs for “Sorted String Tables”, but we will just call them
“runs”. Sorting is essential for indexing, as it enables us to lookup keys in loga-
rithmic time instead of linear.

18 Chapter 3. Implementation

Writing data

Initially, as we are writing data, we keep them in our buffer, and when this buffer is
full, we flush it into a run-file. This can be seen in figure 3.2, where the file L0.0.run
is created, corresponding to the first file of the first run (everything is zero-indexed).

flushMemtable L0.0.run Level 0

FIGURE 3.2: Example of LSM-Tree flushing.

As we continue writing key-value pairs, we create new runs in the same level
by flushing our memtable (figure 3.3), until their number reaches the maximum al-
lowed runs per level, which is defined by the parameter max_runs_per_level when
instantiating the LSM-Tree. When that happens, a merge is triggered; the merge will
merge these files into one file in the next level, and will check if the number of runs in
that level is equal to the maximum runs per level. If it is, it will cascade the merging
recursively to the next level, and this process will keep happening until no merges
need to be done.

flush

Memtable L0.0.run Level 0L0.1.run L0.2.run

FIGURE 3.3: Example of LSM-Tree flushing (cont.).

The merging process is shown in figure 3.4, where the runs in the first level are
merged into L1.0.run. After being merged, the files in the first level are deleted.
The merging process resembles the greedy merging step in the mergesort algorithm,
because every run is sorted. We keep a number of file descriptors equal to the num-
ber of runs we are merging, and go through all of them at the same time. We take
care to write the smallest key first, to make sure that the resulting merged file is
also sorted. In case of two or more conflicting keys during the process, we write the
latest one (the one with the largest run index) and skip the rest, as those have been
overwritten by a more recent write and are not valid anymore. This is also how the
LSM-Tree performs garbage-collection - during the merging process, invalid values
are dropped.

3.2. Log-Structured Merge-Tree 19

Memtable

merge

L0.0.run Level 0

merge

L0.1.run

merge

L0.2.run

L1.0.run Level 1

FIGURE 3.4: Example of LSM-Tree merging.

Reading data

To retrieve values using the get operation, it is necessary to search through the files
in reverse order to locate the latest write. This involves performing a binary search
on each file, starting from the first level, and then searching within each level from
the runfile with the highest index to the lowest.

This search can be time-consuming if done on the files themselves because it
would involve a large number of I/O operations, so we use a data structure called
fence pointers [Li et al., 2009] to speed up the process. The fence pointers are essen-
tially sparse in-memory indices implemented with arrays that allow us to do binary-
search in memory, and they associate a key with its offset in the runfile. Of course,
they don’t store all the keys, as that would be like keeping all the keys in memory
and thus we would miss one of the main points of using an LSM-Tree. Instead, we
use a subset of them, and since the runfile is itself sorted, if the key we are looking
for does not have a fence pointer itself, we still know the offsets among which it
should be (hence the name “fence pointers”) and we can go ahead and search for it
linearly on the file. The gap in the numbers of key-value pairs between the offsets
of the pointers is controlled via a parameter called density_factor - the higher its
value, the greater the gaps and the more key-value pairs we have to search sequen-
tially on disk. An example illustrating how fence pointers function can be found in
figure 3.5.

The fence pointers offer a significant speedup, but we can skip entire runfiles
if we know for sure that they don’t contain the key we are looking for by using
Bloom filters [Tarkoma, Rothenberg, and Lagerspetz, 2011]. The Bloom filter is a
probabilistic data structure that when queried if a key exists in a set (a runfile in
our case) it will answer negatively with 100% certainty if it does not. The positive
answer is not always accurate, but having a few false positives is no problem for files
that we were going to search anyway if we didn’t have the Bloom filter.

20 Chapter 3. Implementation

"Elephant" 0

"Elephant"

"Lemon" 32
"Pear" 69

"Dumbo"
"Fish" "Nemo"
"Grape" "Merlot"
"Lemon" "Meyer"
"Monkey" "Baboon"
"Orange" "Clockwork"
"Pear" "Bartlett"
"Wombat" "Cute"

Fence-pointers Run-file (Sorted-String Table)

Key Offset

Key Value

8 5
4 4
5 6
5 5
6 6
6 9
4 8
6 4

FIGURE 3.5: Fence pointers example with density factor equal to 3,
i.e. a pointer that maps a key to a file offset is created for every 3

entries of the SST.

The Bloom filter achieves this probabilistic lookup by employing a bitarray of m
bits and k hash functions. To illustrate how it works, let us consider the example in
figure 3.6 with a bitarray of m = 20 bits and k = 3 hash functions.

0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

x

h1(x) % m h2(x) % m h3(x) % m

Bitarray with m = 20 bits:

k = 3 Hash functions:

Value to be inserted:

FIGURE 3.6: Bloom filter example with bitarray of 20 bits and 3 hash
functions.

To insert value x, we hash it using all three hash functions obtaining the values
hi(x), i = {1, 2, 3}, then we calculate the values pi = hi(x) mod m, and set the bits
of the bitarray with positions equal to pi to 1. When we want to query the Bloom
filter, to check whether the value x exists, we use the hash functions and modulo
operation again the same way and check whether the bits at positions pi are set to 1.
If there is at least one bit that is set to zero then x definitely does not belong in the set

3.2. Log-Structured Merge-Tree 21

of values inserted in the Bloom filter and if all values are set to one, then x probably
belongs in the set. The positive answer is probabilistic simply because the same bits
may have been set to 1 from insertions of values other than x.

The probability of getting a false positive answer from the Bloom filter is a func-
tion of the bitarray length m, the number of hash functions k, and the number of
inserted elements n. Assuming that the hash functions are perfect i.e. the probability
distribution of the hash function values is uniform, we can calculate this probability.
With some algebraic manipulation, we can also calculate the optimal number of hash
functions k and bitarray length m, given the number of elements to be inserted n and the
false-positive probability ε. These values are shown below, with m being rounded up
and k rounded down for performance reasons, implementation-wise:

m =
⌈
− n ln ε

(ln 2)2

⌉
k =

⌊m
n

ln 2
⌋

The creation of Bloom filters and fence pointers occurs in memory concurrently
with the writing of a runfile, when flushing the memtable, or when merging other
runs. After the Bloom filters are created, they stay in memory so that they can be
queried for faster lookups, but we also persist them on disk by embedding them
into the runfiles. If a system failure happens, the key-value store can quickly load all
the fence pointers and Bloom filters from the disk without having to go through all
the discovered files to rebuild them from scratch. This design decision significantly
reduces the recovery time of the store at the expense of using (a bit) more disk space.

To embed the fence pointers and the Bloom filter into a runfile, we append each
of them at its end along with two 64-bit values that correspond to their offsets in the
runfile. These two offsets, therefore, define three segments in the run-file: the first is
the SST, the second contains the fence pointers and the third is the Bloom filter.

After these additions, value retrieval looks as follows (see figure 3.7): starting
from the first level and the rightmost latest run, we query the Bloom filters for the
key we are looking for. When a Bloom filter answers positively, we query the fence
pointers and get an offset. We look up at most d key-values in that file following
this offset, where d equals the density factor. If the key is not found, we repeat this
process with the next runfile. If we exhaust the lookups and haven’t found the key,
we return the empty value (0 bytes).

Fault-tolerance

As a final design choice, we add a write-ahead log (WAL) to make the database more
resilient by preventing loss of unflushed records in the memtable in the event of a
system failure. More specifically, when we write a value to the store, we also write it
to an append-only log. Since the log is append-only, it is still relatively fast despite
the I/O, and at the same time it allows us to rebuild the memtable by re-inserting the
values after a system crash, making the database more fault-tolerant.

22 Chapter 3. Implementation

12

3

4
5

Memtable L0.0.run Level 0

Fence pointers

Bloom filter

L0.1.run L0.2.run

L1.0.run L1.1.run Level 1

Fence pointers

Bloom filter

Fence pointers

Bloom filter

Fence pointers

Bloom filter

Fence pointers

Bloom filter

FIGURE 3.7: Example of value retrieval in an LSM-Tree. The numbers
in the arrows signify the search order.

Tiering vs Leveling

LSM-Trees come in two flavors, depending on the merging strategy: there are the
LSM-Trees that use tiering and those that use leveling [Sarkar et al., 2022]. In tiering,
we use up to R runs per level, while in leveling we only use one. As we increase R,
the first level essentially transforms into an append-only log, which has the highest
write speed. However, the reads become slower, as the LSM-Tree has to search a
higher number of files to retrieve a value. On the other hand, in leveling when R = 1,
the LSM-Tree merges each file directly to the runfile of the next level, using the file
sizes as thresholds that trigger merges. This optimizes the read performance but
impedes the writes due to frequent merges [Sarkar et al., 2021]. Figure 3.8 illustrates
the difference between tiering and leveling.

Level 0

Level 1

Level 2

Level 3

Leveling Tiering

FIGURE 3.8: Tiering vs Leveling in LSM-Trees. Tiering sort-merges
R runs per level (R = 3 in this example) into a run in the next level,
while in leveling each run is greedily sort-merged with the run from

the next level.

3.3. AppendLog 23

Our implementation uses tiering because we are optimizing for writes. Nonethe-
less, the R value described above is still configurable, and we will analyze the per-
formance of the LSM-Tree for various values of it in Chapter 4.

3.2.2 Implementation

As we stressed in the previous subsection, the properties of the LSM-Tree are de-
rived primarily from having sorted runfiles. To remove the values from the memtable
when flushing it in order, we need a data structure that does this operation effi-
ciently. At the same time, we want this data structure to support efficient lookup
and insertion/update of values. These requirements are satisfied by Skip lists, or
self-balancing binary-tree structures, like AVL trees and Red-Black trees. The skip
list is used in some commercial LSM-Tree-based key-value stores, like LevelDB but
operations on them are not guaranteed to be efficient due to their probabilistic na-
ture. On the other hand, AVL trees and Red-Black trees have guaranteed access,
lookup, insertion, and deletion complexity of O(log (n)).

In our implementation, we used the sortedcontainers package, a Python imple-
mentation of an associative array that offers the same complexity for the above oper-
ations. For the fence pointers, we used the same package because the fence pointers’
keys have to be sorted to allow for efficient in-memory lookup, with the binary-search
algorithm.

For the Bloom filters, we could not use the most popular publicly available im-
plementation due to a versioning incompatibility so we implemented it from scratch
using a bitarray which is persisted using base64 encoding. For hash function, we
used MurmurHash3, a fast non-cryptographic hash function, a common choice for
Bloom filters and other probabilistic data structures that require general hash-based
lookups.

3.3 AppendLog

AppendLog is primarily based on Bitcask [Sheehy and Smith, 2010], a log-structured
hash-table key-value store. Bitcask constitutes one of the backend choices for Riak,
a popular commercial distributed key-value store. It is an operationally and concep-
tually simple database, but it is precisely its simplicity that makes it fast and robust.

3.3.1 Design

The AppendLog has two main components: a (log-structured) append-only log, and
an in-memory hash table.

To understand how it operates and its design, we will start with the writes. Leav-
ing aside log-structuring for now, we assume that we only use an append-only log,
and we write key-value pairs to it. For every key-value pair we write, we use the
hash table as an index which keeps track of the key-to-offset mapping in this log.
The writes in this log are immutable - if we update a key to a new value, we just
append it as a new key-value pair.

Then, to read the value of a key, we query the in-memory hash table for the key,
get the offset, and seek to this offset and read the key-value pair.

This simple design is very fast because it writes data to the disk sequentially,
and sequential I/O is faster in both mechanical and solid-state disks. In mechanical
HDDs it is faster because the rotational parts of the disk do not have to seek to other
positions so they do not add overhead, and in SSDs sequential writes mitigate the

24 Chapter 3. Implementation

phenomenon of write-amplification [Hu et al., 2009] which we introduced in Chapter
2.

However, the design so far has a major drawback; it lacks garbage-collection. As
updates to values are appended, the old values are useless and only take up disk
space. To solve this issue, we introduce log-structuring to the design, which we
have already used in the LSM-Tree implementation to solve a similar problem. With
log-structuring, we leverage the merging step to drop the old values.

Concretely, as we write values, we use a size-threshold value for the logfile size
that when exceeded, we close the log file and start a new one. These logfiles are
equivalent to the runfiles in the LSM-Tree’s log-structuring scheme. Then, we use
a second parameter as the upper limit of the number of logfiles. When this limit is
reached, we merge the files in this run into a new file in the next level and at the
same time we update the hash table index to point to the new location.

This new design decision has the following implication: the index can no longer
just point to an offset, as we have multiple files in our log-structured scheme. The
solution is to simply store the file information in the hash table alongside the offset,
so the index points to the offset of a specific file.

The entire design so far is visualized in figure 3.9. In this figure, we see an ex-
ample of a potential snapshot during the operation of an AppendLog instantiated
with the parameter of maximum runs per level set to three and maximum key-value
capacity per file set to two, right before the merging phase. The first level is full and
thus the files L0.0.run, L0.1.run and L0.2.run are about to be merged in L1.2.run.
We notice how the index always points to the latest record. In the next section (3.3.2)
we explain how the merging is implemented.

Compared to the LSM-Tree, the AppendLog has the following advantages:

1. It offers significantly faster reads since a value retrieval is essentially a query
to an in-memory hash table, a seek to a file offset, and a file read operation.
There is no need to search multiple files or look up multiple data structures.

2. It is unencumbered by the overhead that the creation of the fence pointers and
the Bloom filters add to the LSM-Tree.

3. The hash-table index itself is faster than the LSM-Tree’s insertions and dele-
tions. The hash table has a complexity for these operations of (amortized)
O(1) while the memtable is O(log (n)), where n is the number of entries to
the memtable.

The advantages however come at the following costs:

1. The keys have to all fit in memory, since they have to be hosted to the hash-
table. This hampers the scalability of the AppendLog.

2. The AppendLog does not perform any buffering before flushing the entries to
disk. In some cases this fact may degrade performance. We will analyze this
further in the following section, 3.3.2.

To recover from a failure, the AppendLog needs to rebuild its main index. To
do this, it has to scan all the files in reverse order (i.e. reverse to the order they
are written) and for each key-value pair it needs to update the index. After this
procedure, the index will point to the latest records.

3.3. AppendLog 25

K2

K1

K4

K3

K5

K6

Hash-Table index L0.0.run Level 0L0.1.run L0.2.run

L1.0.run Level 1

K1:V1
K2:V2

L1.1.run

K1:V11
K3:V3

K4:V4
K5:V5

K4:V44
K3:V33

K4:V444
K6:V6

FIGURE 3.9: Example of operation of the AppendLog. Ki:Vj are key-
value pairs.

3.3.2 Implementation

Although the implementation of the AppendLog is straightforward, it does feature
certain intricacies that require attention, like the merging strategy and the record
flushing.

Regarding merging, the resulting files need to be devoid of invalid records, i.e.
key-value pairs that have been updated more recently. This step is important as
it is the only garbage-collection mechanism. This can be done in multiple ways
using extra memory, but there is in fact a way to achieve it using the already present
index without extra memory or modifications. Concretely, for a single file, we read
through the file sequentially, going over all the key-value pairs. For each key-value
pair that we encounter, we query the index - if the offset that the index returns is
equal to the current read offset of the file we are scanning, then this means that this
record is indeed the latest for the queried key and must be preserved. Thus, we
write it to the merged file, otherwise we drop it and continue to the next read. This
process is repeated for the rest of the files in a level, resulting in a single merged file.
After that, we can delete the merged files.

To improve the efficiency of the merging process in the AppendLog, we have im-
plemented a garbage-collection mechanism called compaction that is triggered right
after flushing. This feature is optional and can be enabled as needed. By perform-
ing some of the garbage-collection work on flushed files before merging, we can
distribute the total workload more evenly during the operation of the AppendLog.
This, in turn, allows for faster and more streamlined merging, as some of the work
that would typically be done during merging has already been completed. We eval-
uate the effectiveness of this mechanism in Chapter 4.

One ramification of this merging algorithm is that it compels us to write the keys
along with the values on disk, because we need to know the key associated with a
value so that we can query the index appropriately, leading us to using more disk
space. However, there is no other way to know which record is the latest (and at the
same time make this information persistent) without using extra memory, which is
more expensive than the disk and also volatile. This is also the approach that Bitcask
follows [Sheehy and Smith, 2010].

26 Chapter 3. Implementation

When implementing the AppendLog, we used a profiler to look for bottlenecks.
Evidently, the open() system call adds significant overhead to I/O operations. This
led us to keep the files open for reading (and for writing where applicable) and keep
their file descriptors available in memory at all times. The files are then closed when
the store’s close() method is called.

Another intricate point is the flushing of the records. Because the AppendLog
does not use any data structure to buffer the writes (at least at the implementation
level), we need to flush immediately, otherwise the index may point to an unflushed
record and this can lead to an erroneous read. The use of flushing right after a write
is necessary, even if it can potentially lead to reduced performance. On the positive
side, the AppendLog does not need any write-ahead logging, precisely because it
flushes everything immediately.

In the next section we will introduce HybridLog, which uses buffering to avoid
flushing immediately.

3.4 HybridLog

The HybridLog is similar to the AppendLog, albeit with a key distinction: contrary
to the AppendLog, it does buffer the writes in memory.

The HybridLog is based on the hybrid log introduced in Microsoft’s KV store
FASTER [Chandramouli et al., 2018]. In the following two sections, we will present
the design of HybridLog, its differences from the original in FASTER, and its imple-
mentation details.

3.4.1 Design

FASTER in the original work [Chandramouli et al., 2018] consists of two main com-
ponents: A special hash index, and the hybrid log, which spreads across memory
and disk, hence the name.

The hash index in FASTER is a concurrent, lock-free, and scalable to the num-
ber of threads hash-table. It leverages a framework (introduced in the same work
[Chandramouli et al., 2018]) called Epoch Protection Framework for lock-free coordi-
nation between the threads. It consists of 2k 64-byte cache-aligned buckets that each
has eight 8-byte entries of which the first seven are for entries and the last one serves
as an overflow bucket pointer. Each bucket entry has three parts: a tentative bit used
for concurrency control, a 15-bit tag, and a 48-bit address, which points to a record.
Each record has an 8-byte header (16 bits for metadata like invalid and tombstone,
required by some log-structured allocators, and 48 bits for storing the address of the
next record, in case of conflicts), then the key that we store and finally its value.

These records can either be allocated in memory (using some memory allocator
like jemalloc), in an append-only log, or in a hybrid log, which combines memory
and disk. The hybrid log is a logical log, which holds records that are addressable in
a logical address space. This logical address space is presented in figure 3.10, along
with the special offsets of it that denote its three main segments: the segment that
resides on disk, starting from offset zero up to the head offset, the in-memory read-
only segment starting from the head offset all the way to the read-only offset, and
the mutable segment, also in-memory, from the read-only offset onwards. There is
also the tail offset which points to the offset of the last record. The logical segments
themselves are implemented as follows: the area residing on disk is an abstraction
of log-structured files, and the area residing in memory is a ring buffer.

3.4. HybridLog 27

Disk
Log-structuring

0

Memory
Read-only

Memory
Mutable (update in-place)

Head Offset Read-only Offset Tail Offset

FIGURE 3.10: Logical Address Space used in HybridLog.

As records are written to the HybridLog, we first insert them to the tail of the
ring buffer, we update the hash index, and we move the tail offset further. At every
write, we also query the hash index; if a key exists already in the mutable area, it
is updated in-place. As we write new key-value pairs and the mutable area grows
(because the tail offset moves towards higher logical addresses), we move the read-
only offset too if needed, so that it stays behind the tail offset at a constant lag. This
lag is configurable as an instantiation parameter of the HybridLog.

The records in the read-only area, as the name implies, are immutable. That is,
when a write occurs on a key that is already present in that area, it is copied to the
mutable area and updated there, which in the original work [Chandramouli et al.,
2018] is called a read-copy-update. In our design we simplified a bit this procedure
and we just do a new insert of the key-value pair with the new value in the mutable
area.

Like with the read-only offset, we also maintain the head offset, which also has
to stay at a constant lag behind the read-only offset, and this lag (or interval) is also
configurable as an instantiation parameter. When the gap in the logical addresses
between the head offset and the read-only offset reaches the defined value of the
interval, we flush all the read-only records to disk, i.e. the entire read-only area, and
move the head offset to the last logical address that resides on disk, just before the
read-only offset.

To retrieve a value, we first query the hash index; if the key does not exist in the
index, we just return the empty value (zero bytes). If the key exists and has a logical
offset greater than the head offset, it lies in memory so we retrieve it from the ring
buffer. If it resides on disk, we translate the offset appropriately and retrieve it from
one of the files by doing a seek and a read operation.

The disk area is log-structured, in the same way that AppendLog is - they both
use the same merging strategy for their files, and they both use the same value re-
trieval method to retrieve values from the files.

It is important to notice how the buffering policy acts like a cache for the writes.
The in-memory updates and the read-copy-update from the read-only area exploits
the temporal locality of keys. Therefore, this design choice should accelerate work-
loads with strong temporal locality. Also, the buffering stage does not require con-
tinuous flushing of the records by design, turning a succession of frequent small
flushes into a large one. This behavior by itself yields faster writes. The downside
of this (because no design choice comes without trade-offs) is that we have volatile
records. If the system suddenly crushes, we inevitably lose the unflushed records.

To address the issue of potentially lost records, the authors of the original work
[Chandramouli et al., 2018] suggest using a write-ahead log as a workaround. Sim-
ilarly to the approach we took with the LSM-Tree, a write-ahead log can provide a
reliable record of updates and help ensure data consistency in the event of system
failures.

28 Chapter 3. Implementation

Regarding recovery after failures, the HybridLog does exactly what the Append-
Log does to rebuild its hash index; it scans all the runfiles in reverse order and points
the index to the latest records.

3.4.2 Implementation

The implementation of the HybridLog essentially extends the implementation of
the AppendLog by replacing the hash index, adding the ring buffer, and also adding
some logic to support the translation of the logical addresses.

Hash Index

The first step of our implementation is the hash index. Because Python (the language
of the implementation) does not allow low-level memory management, we had to
simplify the design. The simplified design can be seen in figure 3.11. The index
consists of a Python list that holds “buckets”. Each bucket is itself a list of length 8.
The first 7 entries are integers, of which the upper bits hold the keys and the lower
bits the values (which will be used to hold the logical addresses). The last entry
holds the index of the next bucket, in case of overflow. New buckets are allocated at
the end of the list holding the buckets.

Value Key

Buckets
8 entries

FIGURE 3.11: Hash index of HybridLog.

To look up a key in this hash index, we hash it first using the MurmurHash3 hash
function which is suitable for hash-based lookups, we calculate the modulo of the
hash with the initial number of buckets, and then we follow the buckets, scanning
the entries for the key, until we exhaust the buckets.

To insert or update a new key, we first perform a lookup. If we find the key
in some bucket, we update its value. Otherwise, we scan for an empty space and
insert the key-value pair. If there is no room, we allocate a new bucket and set the
last bucket to point to it. When the inserted key-value pairs reach 75% of the total
capacity of the bucket, we resize it by allocating a new one with double the capacity
(2k+1 buckets if the previous one had 2k) and copy over the existing records. Deletion
is implemented as an update of the key’s value to the empty value.

3.4. HybridLog 29

Another necessary simplification is the removal of the epoch-protection frame-
work. Again, since we are working in Python and we do not have access to low-level
threading capabilities, we did not implement the framework.

After implementing the simplified hash index, we realized that it is quite slow,
about three times slower than a Python dictionary. Upon reflection, the reduced
performance appears to have been a predictable outcome since it is implemented
entirely in Python, while Python’s dictionary is implemented in C and bypasses
all the overhead that the high-level features of an interpreted language like Python
adds.

Thus, we continued the implementation using the Python dictionary as the back-
end for the hash index. This choice, in addition to the dictionary being faster, is
supported by two more reasons:

1. It allows for fairer comparisons in the evaluations and comparisons in Chapter
4, because the other engines also use the Python dictionary as a HashMap,
especially AppendLog which uses the dictionary as its main index as well.

2. We do not have any limitations about the key’s length anymore.

Ring buffer

After the hash index implementation, our attention turned to the ring buffer. This
data structure is represented in Python as a list with two pointers, one for reading
and one for writing, which circularly wrap around the list. To achieve this, we calcu-
late the respective buffer offsets using the modulo operation with the buffer’s length.
This approach allows for efficient and continuous data processing within the buffer,
without the need for costly buffer reallocations or data movement.

Flushing and Merging

Then, we implemented the logic for the flushing to disk, along with the log-structuring.
Every time the lag between the head offset and the read-only offset reaches the cor-
responding predefined interval limit (given as a constructor argument), a flush of
the read-only area of the ring buffer occurs. Each flush creates a new file. When the
number of the files reaches a given threshold, a merge is triggered, which merges
the files into one, placed in the next level in our log-structured setup, exactly like we
do with the AppendLog.

The next checkpoint of the implementation is the logical address translation. The
logical addresses need to be mapped to offsets of the ring buffer or offsets of files.
For the ring buffer, the mapping is straightforward: we just use the modulo operator
and the size of the buffer. For the disk, we used a Python dictionary that maps a
logical offset to a specific offset of a specific file. This decision uses extra memory,
but cannot be avoided. In FASTER, the authors use an allocator which also uses extra
memory behind the scenes. If we had only one logfile and entries with fixed length,
we could have had a one-to-one address translation between the logical offsets and
the file offsets by adding or subtracting a constant every time, but giving up on log-
structuring and the freedom to use whatever length for our keys and values are not worth the
trade-off.

30 Chapter 3. Implementation

3.5 Snapshots

In the context of distributed systems, fault tolerance is central. Replication is one
of the most effective methods that systems employ to achieve fault tolerance. By
storing copies of data across multiple nodes, replication can help ensure that the
system remains available even if some of its nodes fail.

As we design state storage backends, it is important to provide the user with
interfaces that allow for remote storage of the state and the ability to access different
versions of that state. This includes the ability to roll back to previous versions of it
if necessary.

In this section we will look into the method we implemented for creating snap-
shots efficiently from our log-structured key-value stores, as well storing them in
remote storage, and restoring previous versions of it.

3.5.1 Remotes

First of all, we define an abstraction we call Remote. The remote is an abstraction for
remote storage. The endpoints it exposes to the user are the following:

1. put: Uploads a file to the remote storage.

2. get: Fetches a file from the remote storage. By default, it fetches the latest
version but a previous version of it can be retrieved as well.

3. gc: Keeps only the files associated with the latest version and deletes the rest
to free up storage space.

4. restore: Retrieves all the files associated with a given version.

5. destroy: Deletes the remote storage with all the files in it.

The exact method signatures can be found in appendix A.
For the backend of the remotes, we have two implementations: A directory in

the local filesystem (to which a remote directory can be mounted) called PathRemote,
and a bucket in the S3-compatible object store minio for the cloud called MinioRemote.

To connect remote storage to one of the key-value stores, the user creates an
instance of a type of Remote of choice and passes it as a constructor argument when
instantiating the key-value store.

If a remote is given to a store, the store will prioritize it over local files for re-
covery. Instead of performing file discovery at the local data directory to rebuild the
indices and the in-memory data structures from the local pre-existing files, the store
will query the remote for the latest version saved. If no version exists, the store starts
anew, otherwise it fetches the files of the latest version and uses those to recover the
state of that version.

3.5.2 Incremental Snapshots

The implementation of the incremental snapshotting functionality in a log-structured
store is done with the use of delta maps.

The general idea boils down to this: the store performs file discovery on its local
directory and enumerates its local files in a set. It then queries the remote about
the files it has stored and the remote sends those files in a different set. The store
then calculates the difference between these two sets and then proceeds to “push”

3.6. Possible extensions and optimizations 31

or “pull” the missing files, according to which operation is performed, snapshot or
rollback respectively. This way, when the store takes a snapshot it will upload only
new or changed files containing the recent writes, and if it is restoring a previous
version from the remote, it will again only download the differences (the deltas),
avoiding repetition of work that is already done and hence making the snapshots
and recoveries faster. Importantly, the store will flush any records reside in memory
before taking a snapshot.

To implement this conceptually trivial procedure we need three things: a way
to identify the changed files, a way to keep all the versions of all files in the remote
without overwrites, and a way to associate each snapshot with a set of files and their
versions. We can cover all three requirements with the following:

1. We add a version counter to each instance of a key-value store called “global
version”. The value of this counter is appended to each runfile’s filename and
is incremented every time a merge takes place. To illustrate with an example,
the file named L0.0.run after this addition will be L0.0.0.run, and it will be
different than the file named L0.0.1.run - the latter is created after a merge
occurred in level 0. Deletions of files after merging are done as previously,
without changes needed.

2. Save all the filenames of a snapshot in a version-file in the remote and asso-
ciate that file with the snapshot version by adding the snapshot version in the
filename.

When the store requests to perform a rollback to a specific version, it will read the
version-file associated with the version to be restored and fetch all the relevant files.
This can be done again with deltas trivially to be maximally efficient, like it is done
in snapshots, but in our implementation we just delete the old files and fetch the files
needed, for simplicity. Importantly, when recovering a previous snapshot, the global
version of the store needs to be set to a value such that newer snapshots will not
interfere with older ones. We choose this value to be the maximum global version
detected in the remote files’ names, which preserves this invariant and maintains the
properties of snapshot and recovery we require in our design.

Incremental snapshotting is visualized in figure 3.12. In this example, the remote
has saved a version comprised of the file L1.0.0.run, which contains the merged
changes from files L0.0.0.run, L0.1.0.run and L0.2.0.run. When the store writes
two new files, L0.0.1.run and L0.1.1.run and takes a snapshot at this point, it will
only push these two to the remote, since the remote already has the file L1.0.0.run.

The global version addition we implemented also has a very convenient side
effect: it allows us to execute merges in the background. Since this feature has not
yet been implemented, we discuss it in the following section, 3.6.

3.6 Possible extensions and optimizations

In this section, we will explore a range of potential extensions and optimizations for
the implemented key-value store engines. We will begin by focusing on LSM-Tree-
specific additions and modifications, followed by an examination of optimizations
that can be applied to all engine types.

32 Chapter 3. Implementation

 v2

 v1

L0.0.0.run L0.1.0.run L0.2.0.run

L1.0.0.run

L0.0.1.run

L1.0.0.run

L0.1.1.run

Local Remote

L0.0.1.run L0.1.1.run

FIGURE 3.12: Incremental snapshotting example.

3.6.1 LSM-Tree

The implemented LSM-Tree uses a write-ahead-log (WAL) to ensure that buffered
records are never lost. However, this reduces the performance of the writes, as each
write must be written to disk instead of solely being added to the memtable.

The trade-off is worth it in the general use case, but probably not for our use case.
This fault-tolerance property is at the level of local storage. In a distributed system,
where snapshots are stored in different stores remotely, the WAL may be redundant.
In a future version of the key-value store implementation, it will be made optional.

At the core of the LSM-Tree, there are several optimizations that can be imple-
mented to increase performance:

1. The false-positive probability of the Bloom filters can be tweaked by dynam-
ically allocating memory to optimally balance the costs between updates and
lookups [Dayan, Athanassoulis, and Idreos, 2017].

2. The merge frequency can be adapted to remove superfluous merges based on
the workload and hardware [Dayan and Idreos, 2018]

3. By setting increasing capacity ratios (which are functions of the number of runs
at each level) between smaller levels, newer data can be merged more easily,
leading to faster writing [Dayan and Idreos, 2019].

4. The segments defined by the fence pointers can be compressed using an on-
line lossless compression algorithm like the LZW algorithm [Welch, 1984] to
increase disk-space efficiency.

5. Bloom filters can be added per level instead of per-file, or added alongside
them, to potentially skip entire levels when looking up values in tiered LSM-
Trees and substantially boost read performance.

The aforementioned improvements naturally come with a resource trade-off, as
their implementation necessitates increased memory usage, larger disk space re-
quirements, or both.

3.6.2 Improvements for all engines

There are several key optimizations that can be universally applied to all three en-
gines:

3.6. Possible extensions and optimizations 33

1. The process of merging files can be trivially executed in the background, by
leveraging the mechanism of versioned files we implemented for the incre-
mental snapshotting functionality.

2. It is imperative to enable concurrent reads while writing to the engines for
enhanced performance.

3. When it comes to writing to files, especially those that involve Bloom filters, the
implementation of memory-mapped I/O could yield significant benefits. This
technique involves mapping files directly into the system’s memory, enabling
faster and more efficient data transfer between the application and the storage.

4. To ensure data integrity and prevent any potential data corruption, we could
augment each record with a small metadata field that includes a checksum.
This can be done for example by appending one byte at the end of every record.
This additional information allows for the verification of data integrity.

5. To enhance “analytics readiness”, i.e. the ability to perform aggregations on
the data stored, there is an improvement that can be implemented. To perform
analytics on the data in a scalable manner, the files need to be independently
scannable. To scan each file independently, we should avoid querying any in-
dices. To achieve that, an easy way is through incorporating a “tombstone”
(see 3.1.1) within the metadata of each record. This tombstone serves as a
marker, indicating the presence of invalid or irrelevant records, thereby allow-
ing for the exclusion of such records without the need to query any indexing
mechanism.

6. Compression can be applied to the remotes for more efficient disk-space uti-
lization.

35

Chapter 4

Evaluation

In this chapter, we perform a series of experiments to evaluate our implementations
and pave the path towards answering our research questions. We start by examin-
ing each key-value store implementation independently, by studying how their pa-
rameters influence their performance and what trade-offs exist among them. Then,
we perform a comprehensive comparison between all the key-value stores, to as-
sess each engine’s strengths and weaknesses. Finally, we evaluate the incremental
snapshotting functionality in a test environment and in a real-world transactional
dataflow system.

4.1 Parameters

Each of our implemented key-value stores is instantiated with a set of parameters.
In Chapter 3 we explained what each parameter represents, but to be able to under-
stand the trade-offs among them, and how various settings of them influence the
behavior of the respective engine, it is important to explore them visually.

In this section, the experiments performed aim to highlight qualitatively the ef-
fect of each parameter and do not constitute stress tests.

For the following demonstrations, we use by default - unless explicitly stated
otherwise - the following settings: The randomly generated keys and values have
lengths of 4 bytes, the sets of available keys and values have cardinality 103 each, the
distribution of picking keys and values from the sets is uniform, the input write and
read throughput are 103 writes and 103 reads per second respectively, and for latency
measurements that are sampled (to calculate the 50th and the 95th percentile), the
number of samples is 10. Also, for the LSM-Tree we use max_runs_per_level=3,
memtable_bytes_limit=103, density_factor=10, for the parameters of HybridLog
we use ro_lag_interval=103, flush_interval=103, and for the AppendLog we use
threshold=103 and compaction=False.

All the tests in this section are performed in a machine with 4 Intel Xeon CPU
cores, 8 GB of RAM, and an NVMe SSD drive, the write bandwidth of which has
been benchmarked (with the fio tool) at 16.6 MB/s for both random and sequential
writes.

4.1.1 LSM-Tree

Max Runs per Level

The first parameter of the LSM-Tree is max_runs_per_level. This controls the max-
imum amount of runs allowed in a level. As explained in Chapter 3, as the number
of runs per level increases, a log-structured database becomes write-optimized, and

36 Chapter 4. Evaluation

when it is kept close to 1, the database is optimized for reads. In figure 4.1 we
demonstrate this behavior:

2 4 6 8 10 12 14 16
Runs per level

10

15

20

25

30

35

W
rit

e
la

te
nc

y
(u

s)

metric
50p
95p

2 4 6 8 10 12 14 16
Runs per level

11.0

11.2

11.4

11.6

11.8

12.0

Re
ad

 la
te

nc
y

(u
s)

metric
50p
95p

FIGURE 4.1: LSM-Tree: Latency vs Max Runs per Level.

Clearly, the write latency drops, when max_runs_per_level increases, and the
read latency is low when the parameter is relatively small.

The LSM-Tree behaves as expected due to the following reasons: when the num-
ber of runs per level increases, the log-structuring scheme degrades into a large frag-
mented log spread over several smaller logs with infrequent merges. This essentially
becomes a large log, enabling the maximum writing speed. However, at the same
time, accessing a key requires searching through multiple runs per level, leading to
slower reads.

This parameter is central, and relevant not only to the LSM-Tree but to the other
two log-structured engines, HybridLog and AppendLog. More specifically, the ef-
fect on the write latency on these two is the same, but not quite so for the read
latency. Because of the fundamental difference in indexing (the latter two use in-
memory hash-based indices that point directly to files and offsets), the read laten-
cies are not affected. One needs to just keep the parameter “balanced” enough so
that the merges are not very large and infrequent, which would impact the overall
performance of the stores.

Density Factor

The density_factor, as explained in section 3.2.1, controls the width of gaps be-
tween the fence pointers of the LSM-Tree.

In figure 4.2 we observe the following: as the density factor increases, the writes
remain virtually unaffected, and reads become drastically slower. This is because the
LSM-Tree, when the density factor is high and therefore the gaps within the offsets
are large, has to go through more bytes in the file to find the requested key, which
slows down the reads.

However, there is an obvious tension here: we cannot keep the density factor too
small, because that would result in higher memory and disk usage, as demonstrated
in figure 4.3.

Memtable Size

The size of the LSM-Tree’s memtable, controlled by the memtable_bytes_limit, is
the number of bytes the in-memory structure can hold before it flushes to disk.

4.1. Parameters 37

25 50 75 100 125 150 175
Density Factor

17

18

19

20

21
W

rit
e

la
te

nc
y

(u
s)

metric
50p
95p

25 50 75 100 125 150 175
Density Factor

10

20

30

40

50

60

70

Re
ad

 la
te

nc
y

(u
s)

metric
50p
95p

FIGURE 4.2: LSM-Tree: Latency vs Density Factor.

25 50 75 100 125 150 175
Density Factor

200

300

400

500

600

700

M
em

or
y

Us
ag

e
(K

B)

metric
mem

25 50 75 100 125 150 175
Density Factor

520

530

540

550

560

570

580

Di
sk

 U
sa

ge
 (K

B)

metric
disk

FIGURE 4.3: LSM-Tree: Memory and Disk Usage vs Density Factor.

In figure 4.4 we notice that as the size of the memtable increases, the latency of
both the writes and reads drops. This is expected, as with bigger memtables, the
probability of accessing a key without the need to reach the disk is higher. How-
ever, the memory usage goes up, as seen in figure 4.5, and thus we cannot keep this
parameter too large.

4.1.2 HybridLog

Mutable Segment Size

The mutable segment size of the HybridLog memory segment is controlled by the
value of the RO (read-only) Lag Interval - ro_lag_interval. This parameter influ-
ences directly the probability of an in-memory hit of a key lookup, and thus the
cache-like behavior of the whole memory segment.

If this value is large, we expect many in-memory hits and therefore better per-
formance for both writes and reads. This is exactly what we observe in figure 4.6.
However, we obviously cannot increase this segment indefinitely because we have
finite memory.

38 Chapter 4. Evaluation

0 20 40 60 80 100
Memtable Size (KB)

0

20

40

60

80
W

rit
e

la
te

nc
y

(u
s)

metric
50p
95p

0 20 40 60 80 100
Memtable Size (KB)

2

4

6

8

10

12

14

16

Re
ad

 la
te

nc
y

(u
s)

metric
50p
95p

FIGURE 4.4: LSM-Tree: Latency vs Memtable Size.

0 20 40 60 80 100
Memtable Size (KB)

300

400

500

600

700

M
em

or
y

Us
ag

e
(K

B)

metric
mem

FIGURE 4.5: LSM-Tree: Memory Usage vs Memtable Size

Read-only Segment Size

The read-only segment, whose size is adjusted via the flush_interval parameter,
contains read-only entries that are ready to be flushed to disk. The larger the seg-
ment, the less the probability for disk access and therefore the higher the perfor-
mance of the key-value store. This is evident in figure 4.7. The obvious trade-off
present here, is that if this value is set to be large, we require a larger memory seg-
ment size, which will use more memory.

Additionally, it is crucial to ensure that the value is not set too low. If it is set too
low, it may impede the speedup of performance from large flushes to disk, which oc-
cur sequentially and are therefore fast. Furthermore, setting the value too low may
result in numerous small logs that require frequent merges, thus adversely impact-
ing performance. This phenomenon is also illustrated in the same figure 4.7.

4.1.3 AppendLog

Threshold

The threshold value is the maximum amount of bytes we can write to a runfile in
AppendLog, before closing it and starting the next one.

This parameter is similar to the flush_interval parameter of the HybridLog.
When it is too low, frequent merges hinder the write performance, and as it increases,

4.1. Parameters 39

0 10 20 30 40 50 60
Mutable Region Size (KB)

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
W

rit
e

la
te

nc
y

(u
s)

metric
50p
95p

0 10 20 30 40 50 60
Mutable Region Size (KB)

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

Re
ad

 la
te

nc
y

(u
s)

metric
50p
95p

FIGURE 4.6: HybridLog: Latency vs Mutable Segment Size.

0 1 2 3 4 5 6 7 8
Read-only Region Size (KB)

10

15

20

25

30

35

40

W
rit

e
la

te
nc

y
(u

s)

metric
50p
95p

0 1 2 3 4 5 6 7 8
Read-only Region Size (KB)

2.75

2.80

2.85

2.90

2.95

3.00

3.05

3.10

Re
ad

 la
te

nc
y

(u
s)

metric
50p
95p

FIGURE 4.7: HybridLog: Latency vs Read-Only Segment Size.

writes on average become faster (because the runfile becomes essentially a large
append-only log). However, if the threshold is too high, the files become large and
the merges become infrequent and cumbersome, which explains the widening of
the gap between the 50p and 95p lines in the write latencies in figure 4.8. As for the
reads, they are not significantly affected, as expected.

Compaction

Compaction is an experimental optional feature that we will evaluate empirically. It
could offer some speedup in practice, or it could be the case that its potential benefit
is already implicitly provided during merging and the system is just wasting time
doing extra unnecessary work.

From the experiment results in figures 4.9 and 4.10 it seems that this is exactly
the case. Compaction offers no advantage for reads (which was expected, since file
access is still the same), but also no advantage for writes, which are in fact impaired,
as compaction introduces a significant overhead. Therefore, compaction should be
avoided in our use-case.

At this point, the question of whether we would get the same negative answer in
a rotational HDD drive arises. We execute the same test in a machine with an HDD
drive and the results are still not influenced. These results can be found in Appendix
B.

40 Chapter 4. Evaluation

0 20 40 60 80 100
Threshold (KB)

5

10

15

20

25

30

35

40

W
rit

e
la

te
nc

y
(u

s)

metric
50p
95p

0 20 40 60 80 100
Threshold (KB)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Re
ad

 la
te

nc
y

(u
s)

metric
50p
95p

FIGURE 4.8: AppendLog: Latency vs Threshold.

1 2 3 4 5 6 7 8 9
Write Throughput (Kwrites/sec)

15

20

25

30

35

40

45

W
rit

e
La

te
nc

y
(u

s)

compaction = False

1 2 3 4 5 6 7 8 9
Write Throughput (Kwrites/sec)

compaction = True

metric
50p
95p

FIGURE 4.9: AppendLog: Write Latency vs Throughput, with Com-
paction disabled (left) and enabled (right).

4.2 Comparison

In this section, we proceed to compare the engines on their performances when ex-
ecuting the same task with similar parameters. For the following experiments, we
use the following parameters: Key and value lengths of 5 bytes each (so 10-byte key-
value pairs), 105 unique keys and values, and 10 samples per average latency mea-
surement for the percentiles. Also, for all engines we use max_runs_per_level=10,
for the LSM-Tree density_factor=10 and memtable_bytes_limit=100K, for the Hy-
bridLog ro_lag_interval=10K and flush_interval=10K, and for the AppendLog
threshold=100K and compaction=False.

The above settings lead to almost equally sized files on disk, and use the same
configurable memory, so the comparison is as fair as possible.

4.2.1 Write Latencies

In figure 4.11 we observe the write latencies of each engine as we increase the input
throughput. When choosing keys uniformly, HybridLog and AppendLog are signif-
icantly faster than the LSM-Tree. This can be attributed to the fast (amortized O(1))
hash-based indexing of those engines, versus the LSM-Tree’s memtable’s data struc-
ture, which has an insert complexity ofO(log (n)). This is also the reason that when

4.2. Comparison 41

1 2 3 4 5 6 7 8 9
Read Throughput (Kreads/sec)

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Re

ad
 L

at
en

cy
 (u

s)
compaction = False

1 2 3 4 5 6 7 8 9
Read Throughput (Kreads/sec)

compaction = True

metric
50p
95p

FIGURE 4.10: Read Latency vs Throughput, with Compaction dis-
abled (left) and enabled (right).

we use a state with a size that fits the in-memory structures and therefore does not
need to “spill” to disk, the HybridLog still performs faster, as can be seen in figure
4.12.

When we choose keys using a Zipfian distribution instead, some keys are ac-
cessed compared to the Uniform distribution, the LSM-Tree and the HybridLog be-
come faster than earlier, because the Zipfian distribution allows them to better lever-
age their in-memory buffering structures before flushing, thus reducing I/O oper-
ations, and the AppendLog becomes slower, because it lacks any similar buffering
method to take advantage of the Zipfian distribution. Among them, the Hybrid-
Log is clearly the fastest, precisely because its memory segment with its fast in-place
updates of recently written records exploits the Zipfian distribution best.

To cross out the possibility of results being dependent on the type of disk, we
execute the same experiment in a rotational HDD drive and notice that the results
are indeed not dependet on the disk type. These results can be found in Appendix B
for both writes and reads.

10 20 30 40 50 60 70 80 90
Throughput (Kwrites/sec)

5

10

15

20

25

30

W
rit

e
la

te
nc

y
(u

s)

distribution = uniform

10 20 30 40 50 60 70 80 90
Throughput (Kwrites/sec)

distribution = zipfian

engine
LSMTree
HybridLog
AppendLog

metric
50p
95p

FIGURE 4.11: Write Latency vs Throughput, for Uniform and Zipfian
data distributions.

42 Chapter 4. Evaluation

10 20 30 40 50 60 70 80 90
Throughput (Kwrites/sec)

0

1

2

3

4

5

W
rit

e
la

te
nc

y
(u

s)

engine
LSMTree
HybridLog

metric
50p
95p

FIGURE 4.12: Write Throughtput when data fits the memory

4.2.2 Read Latencies

Upon examining the latencies for the reads in figure 4.13, it becomes clear that the
HybridLog and AppendLog outperform the LSM-Tree by a large margin. This is
because of their fast hash-based in-memory indices and minimal I/O.

10 20 30 40 50 60 70 80 90
Throughput (Kreads/sec)

4

6

8

10

12

14

Re
ad

 L
at

en
cy

 (u
s) engine
LSMTree
HybridLog
AppendLog

metric
50p
95p

FIGURE 4.13: Read Latencies

4.2.3 Recovery Time

For this experiment, we perform a sequence of writes to each key-value store, and
then we close it, restart it, and measure the time that each of them takes to perform
file discovery and rebuild all the in-memory data structures (indices etc.).

The results can be found in figure 4.14. The LSM-Tree has by far the fastest re-
covery because it only needs to deserialize and load into memory the Bloom filters
and the fence pointers. The other two stores need to fully scan every file and insert
the keys and their file offsets to their in-memory indices.

4.3. Incremental Snapshotting 43

1 2 3 4 5 6 7 8 9
Write Volume (MB)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Re
co

ve
r t

im
e

(s
)

engine
LSMTree
HybridLog
AppendLog

metric
recovery

FIGURE 4.14: Recovery Times

4.2.4 Memory

HybridLog’s superiority as the fastest key-value store comes at the cost of high
memory usage, as can be seen in figure 4.15. Indeed, it is the store with the most
in-memory structures, including its main index. After that comes the AppendLog,
which also keeps its index in memory. Finally, the LSM-Tree uses the least memory
of all, making it ideal for low-memory environments (and also the cheaper option).
The components requiring memory in the LSM-Tree are the Bloom filters and the
fence pointers, which we keep in memory for fast access.

1 2 3 4 5 6 7 8 9
State Size (MB)

0

20

40

60

80

M
em

or
y

Us
ag

e
(M

B)

engine
LSMTree
HybridLog
AppendLog

metric
mem

FIGURE 4.15: Memory Usage

4.3 Incremental Snapshotting

This section focuses on evaluating the incremental snapshotting capabilities of the
three log-structured engines. Towards this goal, to demonstrate the advantage of
having incremental snapshots, we compare the LSM-Tree, HybridLog, and Append-
Log to “MemOnly”, which is a naive implementation of a key-value store based on
an entirely in-memory hosted HashMap that dumps its whole state to disk every
time we want to take a snapshot of it.

44 Chapter 4. Evaluation

4.3.1 Benchmark

We perform two experiments. In the first, we iterate and write new key-value pairs,
taking also a snapshot at the end of each iteration. In the second experiment, we first
perform a large write-volume of 1GB, and then we write data in small increments
on 1KB, taking a snapshot after each increment.

For both experiments, we use keys and values of 2 and 8 bytes respectively so
that the available keys are no more than 216 and therefore we will not need too much
memory for the indices of HybridLog, AppendLog and MemOnly. Also, to simulate
a snapshot over the network, we add an overhead of 1µs per byte (as if we had
a network channel of 1MB/s). The settings for all engines are similar so that the
comparison is as fair as possible.

The results of the first experiment are shown in figure 4.16. As expected, the
naive MemOnly database dumps the whole state at every step, leading to a quadratic
increase of the total time taken to take n snapshots, while the other log-structured
stores increase linearly. During each snapshotting step, they only dump the new
inserts, except from a few cases when some merging takes place and have to push
some larger files as well, but still, they perform better than MemOnly.

For the second experiment, where only updates take place, the results can be
seen in figure 4.17. Again, as expected, the LSM-Tree, HybridLog and AppendLog
only push the updates, while the MemOnly store pushes the whole state every time.
By observing the cumulative graph, it is evident that the log-structured stores take
snapshots more efficiently than the naive method.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Write Volume (MB)

0.00

0.02

0.04

0.06

0.08

0.10

Sn
ap

sh
ot

 ti
m

e
(s

)

engine
LSMTree
HybridLog
AppendLog
MemOnly

(A) Discrete

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Write Volume (MB)

0.0

0.1

0.2

0.3

0.4

Sn
ap

sh
ot

 ti
m

e
(s

)

engine
LSMTree
HybridLog
AppendLog
MemOnly

metric
snapshot_aggr

(B) Cumulative

FIGURE 4.16: Snapshotting Time vs Write Volume, when we increase
the state by inserting new records.

The important takeaway from these two experiments is that while the cumula-
tive time of the naive snapshotting method increases quadratically at the worst case,
the log-structured incremental methods increase linearly. This distinction can have
significant ramifications in the performance of systems that keep large states.

4.3.2 Real-world evaluation

To evaluate the incremental snapshotting functionality in a more realistic setting,
we integrated each key-value store in a transactional dataflow SFaaS system. More
specifically, we embedded each key-value store as state store in each worker of the
dataflow system.

4.3. Incremental Snapshotting 45

1.0
1.000025

1.00005
1.000075

1.0001
1.000125

1.00015
1.000175

1.0002

Write Volume (GB)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Sn

ap
sh

ot
 ti

m
e

(s
)

engine
LSMTree
HybridLog
AppendLog
MemOnly

(A) Discrete

1.0
1.000025

1.00005
1.000075

1.0001
1.000125

1.00015
1.000175

1.0002

Write Volume (GB)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Sn
ap

sh
ot

 ti
m

e
(s

)

engine
LSMTree
HybridLog
AppendLog
MemOnly

(B) Cumulative

FIGURE 4.17: Snapshotting Time vs Write Volume, when state stays
the same and we only update it.

We used a system comprising of 4 workers to conduct the subsequent measure-
ments. These workers processed transactions at a rate of 1000 transactions per sec-
ond (1KTPS) for a duration of 60 seconds. Throughout this time:

• We captured periodic snapshots and measured their respective durations.

• We intentionally induced a worker’s failure to initiate a recovery process and
measured its duration.

• We also measured the transaction latency, i.e. the time for a single transaction
to complete.

Snapshots

For a state size consisting of 100K discrete keys, the results we obtain are shown in
figure 4.18. We observe that in general, the stores that take their snapshots incre-
mentally are indeed capable of snapshotting much faster than the non-incremental
method (“MemOnly”). There are a few exceptions in this, caused by the transfer of
larger files sometimes, but in the general case, the incremental functionality yields
faster snapshots.

These results are even more pronounced when we increase the state size from
100K discrete keys to 1 million, as can be seen in figure 4.19. In this figure, the
workload consists of mostly insertions at the beginning, so the state grows until
the snapshot with sequential ID 5. After this point, updates take over and and the
state size remains the same. In both parts, the incremental snapshots significantly
outperform the naive ones, especially in the update-heavy part, making incremental
snapshotting ideal for transactional systems.

Recovery

The average time taken for a worker to recover the state after a failure is shown in
table 4.1. The findings for the log-structure state-stores are consistent with our earlier
findings, with the LSMTree being the fastest and the HybridLog and AppendLog
taking the most time to recover a snapshot due to their need to scan all the files to

46 Chapter 4. Evaluation

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Snapshot sequential ID

50

100

150

200

250

300

350

400

Du
ra

tio
n

(m
s)

engine
LSMTree
HybridLog
AppendLog
MemOnly

FIGURE 4.18: Snapshot duration in a dataflow system, for a workload
consisting of 100K unique keys.

0 5 10 15 20 25
Snapshot sequential ID

0

500

1000

1500

2000

2500

Du
ra

tio
n

(m
s)

engine
LSMTree
HybridLog
AppendLog
MemOnly

FIGURE 4.19: Snapshot duration in a dataflow system, for a workload
consisting of 1M unique keys.

rebuild their indices, contrary to the LSMTree which only has to load and deserialize
the Bloom filters and the fence pointers.

Also, we notice that the MemOnly implementation takes significantly less time
on average, because it only needs to deserialize and load the snapshot, which itself
is as small as possible. The log-structured engines inevitably load some redundant
data on top of the useful state so they naturally take longer to recover a snapshot.
This is a trade-off that comes with incremental snapshots, but it’s definitely worth
paying, unless the system crashes all the time. For a system that crashes constantly
though, there are bigger concerns than having efficient snapshotting capabilities.

Latencies

The measurements for the transaction latencies for the run with 1M unique keys
are shown in table 4.2. Compared to the in-memory store, the log-structured stores

Engine Duration @100K keys Duration @1M keys

LSMTree 139 297
HybridLog 284 1488
AppendLog 281 1500
MemOnly 26 100

TABLE 4.1: Average time to recover the state in the dataflow system
in ms, per key-value store type, for state sizes of 100K and 1M keys.

4.4. Discussion 47

Engine Latency, 50p Latency, 99p

LSMTree 5 2255
HybridLog 5 2121
AppendLog 5 1883
MemOnly 7 57

TABLE 4.2: Transaction latency in the dataflow system in ms, for a
state consisting of 1M keys.

MemOnly LSM-Tree HybridLog AppendLog

Spill-to-disk No Yes Yes Yes

Strongest point Fastest performance
Fastest recovery,
lowest memory

Fastest performance
(with spill-to-disk)

Fastest snapshot

Memory Requirements
Keys and values
must fit in mem.

None
Keys must
fit in mem.

Keys must
fit in mem.

Data Loss (w/o snapshot) Will lose all records None
Will lose
unflushed records

None

Incremental Snapshots No Yes Yes Yes

TABLE 4.3: Summary of the properties of the key-value stores.

perform at the 50th percentile (the median). However, at the 99th percentile we
notice a large difference in favor of the in-memory store. This is attributed to the
fact that our current implementations don’t perform the merges in the background
which causes the processes to block. This degrades performance, especially during
merging large files, but as we saw in Chapter 3, merging in the background can be
implemented trivially after the versioning system we introduced for the incremental
snapshotting.

4.4 Discussion

We summarize our observations and comparisons in Table 4.3. The naive in-memory
store is the more performant (although this is not always true as can be seen in the
experiment in the dataflow system in the previous section, 4.3.2) but does not sup-
port neither spill-to-disk for larger-than-memory states nor incremental snapshots.

From the stores that do have spill-to-disk and incremental snapshots, the Hy-
bridLog seems to be the fastest, especially for Zipfian-distributed data. However,
the keys of the state must all fit in memory. The AppendLog also has the same
restriction because it uses the same indexing method, but because it flushes every
write immediately it offers the fastest snapshotting.

The LSM-Tree is the most balanced, being slightly less performant but at the
same time not having the limitations of the other stores in terms of state size and
memory usage. It is the most memory-efficient store and also offers the fastest re-
covery, because of its indexing scheme and the fact that it doesn’t need to scan all
the files upon recovery as the two log-structured stores need to.

Also, the LSM-Tree (with write-ahead-logging) and the AppendLog will never
lose data, contrary to HybridLog which will lose unflushed records and MemOnly
which will lose all data. However, in our use case this characteristic is not very
important since in a distributed system we entirely rely on snapshots to save the
state anyway.

48 Chapter 4. Evaluation

One important concern about the AppendLog is that precisely because it flushes
all writes instantly and does not use any buffering, it can contribute to wearing down
an SSD disk faster compared to the LSM-Tree and HybridLog that utilize buffering
for their write operations. This happens because SSD drives have a limited number
of program-erase (P/E) cycles and each write operation consumes a certain amount
of P/E cycles.

49

Chapter 5

Conclusion

5.1 Summary

In this work, we have implemented three different key-value stores that support
incremental snapshotting. The guiding principle throughout the design process was
for them to serve as state backends in transactional dataflow SFaaS systems.

We analyzed their behavior and the trade-offs governing their operation un-
der different settings of their parameters, gaining insight into how they should be
tweaked to deliver the best performance according to the use case. Then, we per-
formed fair comparisons between them, indicating the strengths and weaknesses of
each and the domains in which each of them excels. Finally, we implemented logic
to support incremental snapshotting capabilities and rollback to previous versions
and evaluated these functionalities as well.

To address our research questions, starting with the first one:

RQ1: Which type or types of key-value stores are more fitting as embedded
state stores in the worker processes of transactional dataflow SFaaS systems?

As we argued in 2, the key-value stores that are more fitting for transactional
dataflow systems are the LSM-Tree-based ones, or more generally those that employ
log-structuring. The workloads of transactional dataflow systems are write-heavy
(and more specifically update-heavy) with many point-updates and with high tem-
poral locality, and also because dataflow systems take periodical snapshots of their
state there is a strong need for this snapshotting to be as efficient as possible. Log-
structured stores work great with these types of workloads contrary to other data
structures like B-Trees, Fractal Trees, or on-disk hash-tables, and they also “group”
the updates conveniently in levels, making incremental snapshotting relatively triv-
ial implementation-wise.

After implementing the LSM-Tree, the HybridLog, and the AppendLog, we were
in a position to answer the following two research questions:

RQ2: How do changes in the parameters of each selected type of key-value
store affect its performance?

In the LSM-Tree, when the parameter controlling the sparsity of the indexes is set
too low (low-sparsity), the reads are fast but the memory and disk-usage increase.
When set too high, the store is more memory and space-efficient but the reads be-
come slow. Regarding the size of the memtable, the larger it is, the more performant
is the store in both writes and reads. In the HybridLog, similarly, the larger the mu-
table in-memory segment the more performant the store. The read-only segment

50 Chapter 5. Conclusion

size should be configured to a small value but not too small, otherwise writes be-
come slow due to frequent merges. In the AppendLog, similarly to the HybridLog’s
parameter controlling the read-only segment size, the threshold should be set to a
small value but if this value is too small the writes are impeded. Pre-merge per-file
compaction does not improve performance.

RQ3: In the selected types of key-value stores, which are the trade-offs that
determine their operation? In which general use cases does each of them per-
form better?

The HybridLog is the fastest of the log-structured key-value stores, but risks los-
ing recently written records, plus its keys must fit in memory. The AppendLog offers
the fastest snapshot and does not lose records, but its keys must also fit in memory
and is also slightly slower. The LSM-Tree has the lowest recovery times, its keys do
not need to fit in memory, it uses the least memory and does not lose any records,
but it is slower than the other two.

In Chapter 4, we also gained insights to answer the last two research questions:

RQ4: How does the performance of a key-value store that incorporates in-
cremental snapshotting functionality compare to that of a "naive" in-memory
key-value store, which captures snapshots of its entire state at each step, in
terms of snapshot creation time?

Incremental snapshotting turned out to offer dramatic speedups in snapshotting
speed over the naive snapshotting strategy, both in benchmarking setups and in the
real-world setups. More specifically, in the worst case, it accelerates snapshots up
to a relatively large constant factor, and in the best case, it reduces the snapshotting
complexity from quadratic to linear. Also, in update-heavy workloads with large
states (which is the typical case in transactional dataflow systems) it drops snap-
shotting time down by orders of magnitude, as we demonstrated in the real-world
experiments.

RQ5: Is there a key-value store that clearly stands out as the superior choice
for state management?

The HybridLog stands out in comparison to the other two log-structured stores,
with its highly performant point updates via cache-like buffering and efficient ex-
ploitation of temporal locality while at the same time maintaining the incremental
snapshotting capabilities. It does have the drawback of having the risk of losing
records precisely because of its buffering, but as we argued earlier, this is not a prob-
lem in distributed systems that checkpoint their state using periodic snapshots.

However, log-structuring, along with incremental snapshots and spill-to-disk
may not always be the best choice for all workloads. For small states that can en-
tirely fit to memory, perhaps an in-memory store is the best choice because it avoids
all the serialization and deserialization overheads that the disk introduces and the
benefits of incremental snapshotting are not greatly pronounced.

Hence we cannot say that HybridLog is absolutely superior for all state manage-
ment purposes, because we underlined, the other log-structured stores have strong
points as well which may be favorable for some state-management use-case, and
also for workloads with small states, it may be more simple and beneficial to just
use in-memory stores.

5.2. Future Work 51

Therefore, the choice entirely depends on the workload and the use-case and
should be up to the programmer to decide which type of key-value store to choose
to maximize efficiency. This is also the argument presented in the work of Kalavri
and Liagouris, 2020.

5.2 Future Work

In section 3.6 we presented some potential extensions and optimizations that can be
added to our implementations. In addition to these, in this final section, we propose
some other interesting points that can serve as a basis for future work.

Firstly, all the stores we explored leveraged characteristics and parameters of
log-structuring to optimize for either read or write. It would be interesting to ex-
plore whether log-structuring can be tweaked specifically in favor of snapshotting
efficiency and/or rollbacks, by adjusting for example the numbers of runs per level.

Another focus point would be to investigate whether compaction (in the way it
was implemented in AppendLog) can make a difference in terms of performance,
when both compaction and merging are done in the background by some thread
other than the main writing thread. Intuitively, it should make a difference by mak-
ing more efficient use of the disk’s bandwidth.

Lastly, the key-value stores could be unified into one, of which the actual back-
end engine can be chosen by the application programmer that implements functions
to be executed by the SFaaS service, and is a choice between the LSM-Tree, Hybrid-
Log, AppendLog, and MemOnly. Selecting the appropriate backend engine can lead
to dramatic improvements in performance [Kalavri and Liagouris, 2020]. This is also
what Riak does in its product.

53

Appendix A

Code

A.1 Key-value store API

1 class KVStore:
2 def __getitem__(self , key: bytes) -> bytes:
3 ...
4

5 def __setitem__(self , key: bytes , value: bytes) -> None:
6 ...
7

8 def get(self , key: bytes) -> bytes:
9 ...

10

11 def set(self , key: bytes , value: bytes) -> None:
12 ...
13

14 def __sizeof__(self) -> int:
15 ...
16

17 def close(self) -> None:
18 ...
19

20 def snapshot(self , id: int) -> None:
21 ...
22

23 def restore(self , version: Optional[int] = None) -> None:
24 ...

LISTING A.1: Key-value store API - method signatures.

A.2 Remote API

1 class Remote:
2 def put(self , filename: str) -> None:
3 ...
4

5 def get(self , filename: str) -> None:
6 ...
7

8 def gc(self) -> None:
9 ...

10

11 def restore(self , version: Optional[int] = None) -> None:
12 ...
13

14 def destroy(self) -> None:
15 ...

LISTING A.2: Remote API - method signatures.

55

Appendix B

Experiments on HDD drives

The following experiments were conducted in an HDD drive which was bench-
marked to have a random-write bandwidth of 1.2 MB/s and a sequential-write
bandwidth of 2.7 MB/s with the fio tool.

The intention behind conducting this experiment was to evaluate whether slower
rotational magnetic hard drives can influence the results in Chapter 4. The experi-
ments in Chapter 4 were conducted in an NVMe SSD drive which is faster and non-
rotational.

It seems that these characteristics do not have an impact on the outcome. The
diagrams are visually similar (because the random seeds are the same), they are just
“shifted slightly upwards” because the drive is slower.

The absence of any significant difference in the results can be justified by the fact
that all stores write data sequentially, not randomly, and sequential writes are simi-
lar to both types of drives in the sense that they are both fast. It’s random writes that
degrade the performance of rotational HDDs because the disk head must move and
wait for the disk to rotate, and this type of writes is not common in our implemen-
tations.

B.1 Compaction in AppendLog

1 2 3 4 5 6 7 8 9
Write Throughput (Kwrites/sec)

30

40

50

60

70

80

90

W
rit

e
La

te
nc

y
(u

s)

compaction = False

1 2 3 4 5 6 7 8 9
Write Throughput (Kwrites/sec)

compaction = True

metric
50p
95p

FIGURE B.1: Writes in AppendLog with compaction disabled (left)
and enabled (right) in an HDD.

56 Appendix B. Experiments on HDD drives

1 2 3 4 5 6 7 8 9
Read Throughput (Kreads/sec)

1

2

3

4

5

6

7

8

Re
ad

 L
at

en
cy

 (u
s)

compaction = False

1 2 3 4 5 6 7 8 9
Read Throughput (Kreads/sec)

compaction = True

metric
50p
95p

FIGURE B.2: Reads in AppendLog with compaction disabled (left)
and enabled (right) in an HDD.

B.2 Latencies

10 20 30 40 50 60 70 80 90
Throughput (Kwrites/sec)

0

20

40

60

80

100

120

W
rit

e
la

te
nc

y
(u

s)

distribution = uniform

10 20 30 40 50 60 70 80 90
Throughput (Kwrites/sec)

distribution = zipfian

engine
LSMTree
HybridLog
AppendLog

metric
50p
95p

FIGURE B.3: Write latency for every store in an HDD.

B.2. Latencies 57

10 20 30 40 50 60 70 80 90
Throughput (Kreads/sec)

15

20

25

30

35

40

45

Re
ad

 L
at

en
cy

 (u
s)

engine
LSMTree
HybridLog
AppendLog

metric
50p
95p

FIGURE B.4: Read latency for every store in an HDD.

59

Bibliography

Apache Kafka. https://cwiki.apache.org/confluence/display/KAFKA/Kafka+
Streams+Internal+Data+Management. [Online].

Armbrust, Michael et al. (2018). “Structured streaming: A declarative api for real-
time applications in apache spark”. In: Proceedings of the 2018 International Con-
ference on Management of Data, pp. 601–613.

Burckhardt, Sebastian et al. (2021). “Durable functions: semantics for stateful server-
less.” In: Proc. ACM Program. Lang. 5.OOPSLA, pp. 1–27.

Bykov, Sergey et al. (2011). “Orleans: cloud computing for everyone”. In: Proceedings
of the 2nd ACM Symposium on Cloud Computing, pp. 1–14.

Carbone, Paris et al. (2015). “Apache flink: Stream and batch processing in a single
engine”. In: The Bulletin of the Technical Committee on Data Engineering 38.4.

Carbone, Paris et al. (2017). “State management in Apache Flink®: consistent state-
ful distributed stream processing”. In: Proceedings of the VLDB Endowment 10.12,
pp. 1718–1729.

Cassandra. https://cassandra.apache.org/. [Online].
Castro, Paul et al. (2019). “The rise of serverless computing”. In: Communications of

the ACM 62.12, pp. 44–54. URL: https://dl.acm.org/doi/pdf/10.1145/
3368454.

Chandramouli, Badrish et al. (2018). “Faster: A concurrent key-value store with in-
place updates”. In: Proceedings of the 2018 International Conference on Management
of Data, pp. 275–290.

Chandy, K Mani and Leslie Lamport (1985). “Distributed snapshots: Determining
global states of distributed systems”. In: ACM Transactions on Computer Systems
(TOCS) 3.1, pp. 63–75.

Comer, Douglas (1979). “Ubiquitous B-tree”. In: ACM Computing Surveys (CSUR)
11.2, pp. 121–137.

Dayan, Niv, Manos Athanassoulis, and Stratos Idreos (2017). “Monkey: Optimal
navigable key-value store”. In: Proceedings of the 2017 ACM International Confer-
ence on Management of Data, pp. 79–94.

Dayan, Niv and Stratos Idreos (2018). “Dostoevsky: Better space-time trade-offs for
LSM-tree based key-value stores via adaptive removal of superfluous merging”.
In: Proceedings of the 2018 International Conference on Management of Data, pp. 505–
520.

— (2019). “The log-structured merge-bush & the wacky continuum”. In: Proceedings
of the 2019 International Conference on Management of Data, pp. 449–466.

Dong, Siying et al. (2017). “Optimizing Space Amplification in RocksDB.” In: CIDR.
Vol. 3, p. 3.

Fraser, Neil (2009). “Differential synchronization”. In: Proceedings of the 9th ACM sym-
posium on Document engineering, pp. 13–20.

Gens, F et al. (2019). IDC FutureScape: Worldwide IT Industry 2020 Predictions. IDC.
GNU dbm. https://www.gnu.org.ua/software/gdbm/. [Online].
Gray, Jim and Andreas Reuter (1992). Transaction processing: concepts and techniques.

Elsevier.

https://cwiki.apache.org/confluence/display/KAFKA/Kafka+Streams+Internal+Data+Management
https://cwiki.apache.org/confluence/display/KAFKA/Kafka+Streams+Internal+Data+Management
https://cassandra.apache.org/
https://dl.acm.org/doi/pdf/10.1145/3368454
https://dl.acm.org/doi/pdf/10.1145/3368454
https://www.gnu.org.ua/software/gdbm/

60 Bibliography

Heus, Martijn de et al. (2022). “Transactions across serverless functions leveraging
stateful dataflows”. In: Information Systems 108, p. 102015.

Hu, Xiao-Yu et al. (2009). “Write amplification analysis in flash-based solid state
drives”. In: Proceedings of SYSTOR 2009: The Israeli Experimental Systems Confer-
ence, pp. 1–9.

Kalavri, Vasiliki and John Liagouris (2020). “In support of workload-aware stream-
ing state management”. In: Proceedings of the 12th USENIX Conference on Hot Top-
ics in Storage and File Systems, pp. 19–19.

Kleppmann, Martin and Alastair R Beresford (2017). “A conflict-free replicated JSON
datatype”. In: IEEE Transactions on Parallel and Distributed Systems 28.10, pp. 2733–
2746.

Kuszmaul, Bradley C (2014). “A comparison of fractal trees to log-structured merge
(LSM) trees”. In: Tokutek White Paper.

Lamport, Leslie, Robert Shostak, and Marshall Pease (2019). “The Byzantine generals
problem”. In: Concurrency: the works of leslie lamport, pp. 203–226.

Levandoski, Justin, David Lomet, and Sudipta Sengupta (2013). “LLAMA: A cache/s-
torage subsystem for modern hardware”. In: Proceedings of the International Con-
ference on Very Large Databases, VLDB 2013.

LevelDB. https://github.com/google/leveldb. [Online].
Li, Yinan et al. (2009). “Tree indexing on flash disks”. In: 2009 IEEE 25th International

Conference on Data Engineering. IEEE, pp. 1303–1306.
Matsunobu, Yoshinori, Siying Dong, and Herman Lee (2020). “MyRocks: LSM-tree

database storage engine serving facebook’s social graph”. In: Proceedings of the
VLDB Endowment 13.12, pp. 3217–3230.

Merkle, Ralph C (1987). “A digital signature based on a conventional encryption
function”. In: Conference on the theory and application of cryptographic techniques.
Springer, pp. 369–378.

Noghabi, Shadi A et al. (2017). “Samza: stateful scalable stream processing at LinkedIn”.
In: Proceedings of the VLDB Endowment 10.12, pp. 1634–1645.

O’Neil, Patrick et al. (1996). “The log-structured merge-tree (LSM-tree)”. In: Acta
Informatica 33, pp. 351–385.

Rajan, R Arokia Paul (2018). “Serverless architecture-a revolution in cloud comput-
ing”. In: 2018 Tenth International Conference on Advanced Computing (ICoAC). IEEE,
pp. 88–93.

Redis. https://redis.com/. [Online].
Riak. https://riak.com. [Online].
RocksDB. https://github.com/google/leveldb. [Online].
Rosenblum, Mendel and John K Ousterhout (1992). “The design and implementation

of a log-structured file system”. In: ACM Transactions on Computer Systems (TOCS)
10.1, pp. 26–52.

Sarkar, Subhadeep et al. (2021). “Constructing and analyzing the LSM compaction
design space”. In: Proceedings of the VLDB Endowment 14.11.

Sarkar, Subhadeep et al. (2022). “Compactionary: A Dictionary for LSM Compactions”.
In: Proceedings of the 2022 International Conference on Management of Data, pp. 2429–
2432.

Shafiei, Hossein, Ahmad Khonsari, and Payam Mousavi (2019). “Serverless Com-
puting: A Survey of Opportunities, Challenges, and Applications”. In: ACM Com-
puting Surveys (CSUR).

Shapiro, Marc et al. (2011). “A comprehensive study of convergent and commutative
replicated data types”. PhD thesis. Inria–Centre Paris-Rocquencourt; INRIA.

https://github.com/google/leveldb
https://redis.com/
https://riak.com
https://github.com/google/leveldb

Bibliography 61

Sheehy, Justin and David Smith (2010). “Bitcask: A log-structured hash table for fast
key/value data”. In: Basho White Paper.

Tarkoma, Sasu, Christian Esteve Rothenberg, and Eemil Lagerspetz (2011). “Theory
and practice of bloom filters for distributed systems”. In: IEEE Communications
Surveys & Tutorials 14.1, pp. 131–155.

Welch, Terry A. (1984). “A technique for high-performance data compression”. In:
Computer 17.06, pp. 8–19.

Zhang, Haoran et al. (2020). “Fault-tolerant and transactional stateful serverless work-
flows”. In: 14th USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI 20), pp. 1187–1204.

	Abstract
	Acknowledgements
	Introduction
	Design Requirements
	Research Questions
	Contributions
	Outline

	Related Work
	Transactional Dataflow Systems
	Key-value stores
	Types of key-value store backends
	B-Trees
	Log-Structured Merge-Trees
	Fractal Trees
	On-disk hash-tables
	In-memory key-value stores
	Hybrids

	Key-value stores in dataflow systems

	Incremental Snapshots
	Incremental Snapshots in Distributed Systems
	Data structures for efficient state synchronization
	Delta maps
	Merkle trees
	Conflict-Free Replicated Data Types (CRDTs)

	Implementation
	Common design decisions
	Application Programming Interface
	Encoding
	Filesystem and Persistence

	Log-Structured Merge-Tree
	Design
	Writing data
	Reading data
	Fault-tolerance
	Tiering vs Leveling

	Implementation

	AppendLog
	Design
	Implementation

	HybridLog
	Design
	Implementation
	Hash Index
	Ring buffer
	Flushing and Merging

	Snapshots
	Remotes
	Incremental Snapshots

	Possible extensions and optimizations
	LSM-Tree
	Improvements for all engines

	Evaluation
	Parameters
	LSM-Tree
	Max Runs per Level
	Density Factor
	Memtable Size

	HybridLog
	Mutable Segment Size
	Read-only Segment Size

	AppendLog
	Threshold
	Compaction

	Comparison
	Write Latencies
	Read Latencies
	Recovery Time
	Memory

	Incremental Snapshotting
	Benchmark
	Real-world evaluation
	Snapshots
	Recovery
	Latencies

	Discussion

	Conclusion
	Summary
	Future Work

	Code
	Key-value store API
	Remote API

	Experiments on HDD drives
	Compaction in AppendLog
	Latencies

	Bibliography

