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Relative Navigation in Asteroid Missions:

A Dual Quaternion Approach

B. Razgus∗ and E. Mooij†

Delft University of Technology, Faculty of Aerospace Engineering,

Kluyverweg 1, 2629 HS Delft, The Netherlands

D. Choukroun‡

Ben-Gurion University of the Negev,

POB 653, 84105, Beer Sheva, Israel

This paper presents an Extended Kalman filter (EKF) for relative position and attitude
(pose) estimation in a mission around an asteroid. It compares two different ways of rep-
resenting the pose: a conventional one (Cartesian coordinates for position and quaternions
for attitude) and a novel approach (dual quaternions, which comprise both attitude and
position in one eight-dimensional vector). Moreover, this paper presents a ’realistic’ mod-
elling for dynamics and hardware simulation for missions around small bodies. It includes a
polyhedron gravity field modelling, polyhedron gravity gradient torque, navigation camera
and laser ranger measurements. The results of the filters show that it is not only possible to
estimate the relative states with high accuracy, but also parameters such as gyroscope drift
and asteroid angular rates can be estimated. This, however, can only be achieved when
the navigation camera detects landmarks in its field-of-view. Finally, the dual quaternion
representation does not give any noticeable advantages over the conventional one; in fact,
the two filters are identical in the steady state.

I. Introduction

Asteroids are gaining more attention among space agencies, due to their preserved state since the be-
ginning of the Solar System. In addition, they could be a potential hazard to our planet or oppositely,
another source of resources in the future. Thus, the interest is expected to grow even further. As of June
2016 three missions dedicated to small bodies were accomplished. NEAR visited and landed on the asteroid
Eros in 2000.1 JAXA’s mission Hayabusa retrieved samples from the Itokawa asteroid,2 and ESA’s mission
Rosetta successfully put a lander on a comet in 20143 The spacecraft was controlled-crashed in 2016 as part
of its end-of-life strategy. All of these missions required precise navigation relative to the asteroid/comet.
Earth-based measurements provide accurate results, however, they introduce a delay, which could be too
large for proximity manoeuvres, thus autonomy in navigation is required. As a result, most of the missions
have navigation cameras,4 which provide measurements relative to the asteroid. Furthermore it was shown
that range measurements could improve the navigation and make it more robust, especially when only a few
landmarks are visible.5,6

When position and attitude (pose) are required between two non-inertial frames, e.g., spacecraft docking,
formation flying, an asteroid mapping/landing, it is common practice to develop navigation algorithms
based on relative pose-dynamics modelling, as opposed to inertial pose-dynamics modelling. The case of two
spacecraft is extensively covered by Kim et al.7 In that work, an extended Kalman filter (EKF) estimates the
pose vector modelled as Cartesian relative coordinates augmented with the relative quaternion of rotation.
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An alternate modelling approach that has recently spawned growing attention, models the pose via a dual
quaternion, which represents position and attitude in an eight-dimensional vector. Research shows that it
could result in higher accuracy and faster convergence.8,9 As of June 2016, there have been no attempts
to implement dual quaternions for navigation in an asteroid mission, which is where this paper comes in.
The main contribution of this paper is the investigation of dual quaternions as an efficient representation in
relative-navigation algorithms for asteroid missions.

The main focus of the paper is the simulation of the environment in the vicinity of an asteroid and the
appropriate relative-navigation-filter development. The idea is to compare two different position and attitude
representations. The first, named as conventional, is a vector (Cartesian coordinates) for position and a
quaternion for attitude, and a new approach based on a dual quaternion representation. The target asteroid
for simulations is asteroid Kleopatra, which is a dog-bone shaped body, resulting in a highly-perturbed
gravity field. Another contribution of this work is the introduction of a novel approach for simulation of a
navigation camera and laser-ranger measurements.

Section II gives an overview of the way the dynamics is simulated. Reference frames, the translational and
rotational motion, perturbations, and relative states are discussed. Section III presents the hardware (sensor)
models, which includes novel modelling for the navigation camera and the laser-ranger measurements. In
Sec. IV the nominal Extended Kalman filter is developed, based on the conventional pose representation. Sec-
tions V and VI introduce dual quaternions and show the development of the corresponding EKF. In Sec. VII
the results are presented and discussed, and the paper is finished with conclusions and recommendations in
Sec. VIII.

II. Dynamics

Asteroids have one of the most perturbed environments in the Solar System. Weak and non-central
gravity fields, irregular shapes, fast spinning and other disturbances make the dynamics in the vicinity of
an asteroid very unpredictable, thus simulating it has to be discussed in a greater detail than the cases of
conventional Earth-based missions.

II.A. Reference frames

Three reference frames are used throughout this paper: inertial, asteroid and body, with indices FI , FA and
FB respectively. Inertial and asteroid frames have the same origin (the centre of mass of the asteroid), with
the latter being fixed to the asteroid itself (rotating together with the asteroid around the Z-axis), and the
body frame is fixed to the spacecraft.

II.B. Translational Motion

The dynamics is simulated in the inertial frame, and the equations of motion are written in the following
form.

ṘI = VI (1)

V̇I = gI + adist (2)

where RI , VI and gI are a position, velocity and gravity field vector in the FI , respectively. adist is a
perturbing acceleration, due to non-gravitational disturbances. It is assumed that no control is present, so
no external propulsion force.

Polyhedron Gravity Field

Since the gravity field of asteroids is highly irregular, a central gravity-field approximation would be inac-
curate. Having a 3D surface model (polyhedron) of an asteroid and assuming constant density, the most
accurate way to simulate it is a constant-density polyhedron gravity model, first introduced by Werner and
Scheeres.10 The gradient of the potential is given as a sum over the edges and faces:

gA = ∇U = −Gρ
∑

e∈edges

EereLe +Gρ
∑

f∈faces

Ffrfωf (3)
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where G is the gravitational constant, ρ is the mean density of the asteroid (assumed to be constant), re and
rf are the distances from a field point (in this case the spacecraft) to an edge and a face respectively, Ee
is a dyadic matrix of an edge, Ff is an outer product of a face normal, and Le is a dimensionless per-edge
factor, representing the potential of the edge. For a complete derivation and implementation, the interested
reader is referred to Werner and Scheeres.10 The sum through all faces of dimensionless per-face factor ωf
gives a solid angle, which vanishes if the field point is outside the polyhedron, or equals 4π, if it is inside
the volume. This is a very useful property of polyhedron models, since it gives a mean to know, whether a
spacecraft crashes into an asteroid. Moreover, this property will be exploited for hardware simulations later
on.

Disturbance forces

Third-body perturbations for the orbits simulated in this paper are negligible, so only solar-radiation-pressure
(SRP) force is simulated. It can be calculated as a sum over all (N) illuminated planes of the spacecraft.11

The simulated spacecraft has solar panels with a reflectivity of εSP = 0.21 and the body with εB = 0.5.

II.C. Rotational Motion

Attitude Representation

There are many ways to represent the attitude of a spacecraft, each having its advantages and disadvantages.
Commonly, quaternions proved to be the most efficient, singularity-free choice, so they will be used for
this study. Unfortunately, quaternions are not uniquely defined, and since different authors use various
conventions, we will use the one in Markley and Crassidis’ book.11 A quaternion is defined as a four-
dimensional vector with the first three components being a vectorial part and the last one a scalar component.
For attitude description only unit quaternions are used, thus their norm has to be one. Furthermore, two
quaternion products are defined as follows:

[q⊗] =

[
q4I3 − [q1:3×] q1:3

−qT1:3 q4

]
, [q�] =

[
q4I3 + [q1:3×] q1:3

−qT1:3 q4

]
(4)

and the following holds:
q1 ⊗ q2 = q2 � q1 (5)

The first product is more often used, since it represents the composition of rotations in a similar way as it
is done with a direction cosine matrix (DCM). For example, the relative attitude between a spacecraft and
an asteroid would be expressed as:

qB/A = qB/I ⊗ qI/A (6)

Kinematics and Dynamics

The most appealing property of using quaternions is the kinematic equation, which becomes linear. For a
spacecraft attitude relative to an inertial frame, it is written as:

q̇B/I =
1

2
ωBB/I ⊗ qB/I (7)

where ωBB/I is the angular velocity of a body with respect to inertial frame, expressed in body frame. Note

that in this formulation real vectors, formulated as quaternions, have the fourth component (scalar part)
equal to zero. According Eq. (4), the kinematic equation is then written as:

q̇B/I =
1

2
Ω
(
ωBB/I

)
qB/I , where Ω

(
ωBB/I

)
=

[
− [ω×] ω

−ωT 0

]
(8)

Furthermore, the dynamics of a spacecraft is given by Euler’s equation:

ω̇BB/I = I−1
(
−ωBB/I × Iω

B
B/I + Tdist

)
(9)
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where I is the inertia tensor and Tdist is a sum of disturbance torques acting on a spacecraft, which will be
detailed now.

Disturbance Torques

Disturbance torques can either be internal or external. Internal torques are caused by fuel sloshing, mass
imbalances in reaction wheels, etc., however, these are currently assumed to be absent. External torques are
caused by sources, such as solar-radiation pressure, a gravity gradient, magnetic fields and an atmosphere.
Since an asteroid does not have a significant magnetic field, nor an atmosphere, these can be discarded.
Moreover, the simulated spacecraft is axi-symmetric, both in geometry and surface properties, so the SRP
torque is neglected. Thus, only a gravity-gradient torque will be simulated. Many sources give the gravity-
gradient torque for a central gravity field as:11,12

Tgg = 3
µ

R3
a3 × Ia3 (10)

where µ is the gravitational parameter, R is the distance to the attracting body and a3 is the third component
of Local Vertical Local Horizontal reference frame, which has nadir direction. Equation (10) only holds for
central gravity fields, which is not true for an asteroid, so a new way to simulate this torque is needed.
In general, the gravity-gradient torque arises from different gravity field strengths at different parts of the
spacecraft body. If one assumes the SC to be made of N point-masses, the torque is then given by:

Tgg,B =

N∑
i=1

RB,i ×migB,i (11)

where RB,i is the distance of the point-mass from the centre of mass of the SC, gB,i is gravity field strength
at the point-mass (calculated with polyhedron model), and mi is its mass. Obviously, the more point-masses
are taken into account, the more accurate the torque will be.

II.D. Asteroid Dynamics

The orbit of an asteroid around the Sun is not simulated, since the simulation time is up to (only) three
hours, therefore the movement around the Sun is negligible. Furthermore, the angular velocity of the asteroid
is assumed to be constant in direction and magnitude, ignoring any nutation and/or precession:

ωAA/I = const (12)

This leaves only the attitude of the asteroid to be simulated, which, if expressed in quaternions, is given
similarly to the SC kinematics, Eq. (8):

q̇A/I =
1

2
Ω
(
ωAA/I

)
qA/I (13)

In other words, if one knows the initial attitude of the asteroid and its angular velocity, he will also know it
at any time in the future.

II.E. Relative States

Until now, the dynamics was expressed with respect to an inertial reference frame, but since the navigation
filter will deal with relative states, these need to be expressed. The relative spacecraft states are position,
RA, and velocity, VA, expressed in frame FA, attitude, qB/A, and angular velocity ωBB/A. Let us start with
the position and velocity. Relative position is simply obtained by frame transformation:

RA = CA/IRI (14)

where CA/I is expressed with qA/I . Differentiating Eq. (14), gives the relative velocity:

VA = CA/IVI − ωAA/I ×RA (15)
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The relative attitude, expressed in quaternions is:

qB/A = qB/I ⊗ q−1
A/I (16)

and the angular rate:
ωBB/A = ωBB/I −CB/Aω

A
A/I (17)

where CB/A is obtained from qB/A.

III. Hardware

The simulated spacecraft is equipped with a star tracker and a gyroscope for inertial state measurements,
a navigation camera and a laser ranger for relative state measurements.

III.A. Gyroscope

Gyroscopes measure the inertial angular velocity directly, but, as all sensors, they are susceptible to noise.
Moreover, they experience a drift, which is an accumulated noise over time. Other errors, such as misalign-
ment and scale errors are discarded for now, assuming that the knowledge of these parameters is absolute.
In continuous time, the measured rate, ω̃BB/I (the tilde symbol denotes measured values), of a spacecraft can
be written as:

ω̃BB/I(t) = ωBB/I(t) + µ(t) + ηv(t) (18)

µ̇(t) = ηu(t) (19)

where µ is the drift, and ηv, ηu are zero-mean, white noise vectors with known variance. Gyroscopes output
values in discrete time, thus it is more precise to simulate them in discrete time:11

ω̃k+1 = ωk+1 +
1

2
(µk+1 + µk) +

(
σ2
v

∆t
+

1

12
σ2
u∆t

)1/2

ηvk (20)

µk+1 = µk + σu∆t1/2ηuk
(21)

III.B. Star Tracker

A star tracker measures the position of the stars in its field-of-view and compares this to the known positions
on the celestial sphere in the star map, stored on-board. Basically, it would output a single unit vector for
each star, and when there are more than one star, one could estimate the attitude. Modern star trackers
output a quaternion q̃B/I directly, having a simple estimator inside the tracker itself. This will be the way
the star tracker is simulated. The real quaternion qB/I will be affected by a noise quaternion δq.

q̃B/I = δq−1 ⊗ qB/I (22)

where δq is approximated by a small-angle rotation vector:

δq =


φ/2

θ/2

ψ/2

1

 (23)

The noise angles φ, θ, ψ are simulated as zero-mean, white noise vectors with known variance. The axis,
corresponding to the boresight axis has usually a higher variance of the noise. Note that the noise quaternion
is no longer a unit quaternion, so it has to be normalised. Also, no scale-factor or misalignment errors are
simulated, assuming perfect knowledge of them. The inclusion of this kind of instrument errors remains to
be done as future work.
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III.C. Navigation Camera

The navigation camera detects landmarks on the asteroid, identifies them and outputs unit vectors to the
corresponding landmarks, which are then fed to the navigation filter. The identification part is left as future
work; and it is thus assumed that the position of the landmarks on the asteroid is known with infinite
accuracy (the landmark map is perfect).

Generating Landmarks

In general, a landmark can be a crater, bolder, ridge or any other distinguishable feature, however, here a
landmark is taken as a point on the surface, as no identification algorithm is included. It will also be assumed
that the landmarks are spread evenly on the surface of the asteroid. The asteroid’s 3D model is given as a
polyhedron file with defined vertices and triangular faces. So, first a face is randomly chosen after which a
point is placed randomly on the triangle. A way to place a random point on a triangle was investigated by
Osada et al13 in his shape-recognition paper. The random point on a triangle equation is given as:

P = (1−
√
r1)A+

√
r1(1− r2)B +

√
r1r2C (24)

where A, B and C are the vertices of a triangle and r1, r2 are random numbers, r1, r2 ∈ [0, 1]. As a result,
Asteroid Kleopatra is depicted with 2000 landmarks in Figure 1. The number 2000 is chosen, because it
assures that the navigation camera will see sufficient number of landmarks most of the time, but is not
correlated with the actual landmarks of the asteroid.

Figure 1: Asteroid Kleopatra with 2000 landmarks

Each landmark gets an identifier and has its coordinates and normal vector associated to it in FA.

Landmarks in the Field-Of-View

Having the landmark map generated, one needs to know, which ones are seen by the navigation camera
(NAVCAM). The parameters of the NAVCAM are taken from the Rosetta missiona. The field-of-view(FOV)
is a 5◦×5◦ square with 1024×1024 pixels and a focal length, f , of 152.5 mm. The FOV forms an imaginary
pyramid with a square base. If one extends this pyramid until the base is inside the asteroid (if possible),
then the landmarks, within the FOV, will be in this pyramid. Then, a polyhedron model is constructed
for this pyramid. Now, we recall the useful property of polyhedron models that the sum of the solid angle
ωf through all faces indicates, whether a point lies inside or outside the body. Running through all the
landmarks will give those, which are in the FOV of the camera.

aftp://ssols01.esac.esa.int/pub/data/SPICE/ROSETTA/kernels/ik/ROS_NAVCAM_V01.TI, date accessed: 02-06-16
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Pixel Coordinates

When landmarks in the FOV are identified, their coordinates have to be expressed in the FB and then
projected on the camera plane. Figure 2 shows the geometry of the process.

XB

YB
ZB

ZA

XA

YA

(u,v)

RBLM

RALM

RA
d

Figure 2: A landmark projected on a sensor plane

So, first the landmark coordinates are transformed:

RLM
B = CB/A

(
RLM
A −RA

)
(25)

Then, using a pinhole-camera-model, they are projected on the sensor7 by:(
u

v

)
=

1

p

f

ZLMB

(
XLM
B

Y LMB

)
(26)

where u, v are coordinates in pixels, p is the pixel size, which in this case (Rosetta mission) is 13 µm. Fur-
thermore, since the actual landmark-recognition and centre-finding algorithm is not simulated, errors/noise
are added to the coordinates: (

ũ

ṽ

)
=

(
u

v

)
+

(
δu

δv

)
(27)

where δu, δv are zero-mean, white noises with known variance, expressed in (sub-)pixels.

Measurement Vector

To implement Eq. (27) in the navigation filter, it is more convenient to use unit vectors to the landmarks
and write them in the form:

b̃ = C (q) r (28)

where the measured unit vector b̃ is:

b̃ =
1√

(pũ)2 + (pṽ)2 + f2

 pũ

pṽ

f

 (29)

and r is the reference vector, which in this case is defined as:

r =
RLM −RA

‖RLM −RA‖
(30)
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III.D. Laser Ranging

When landmarks are detected in the FOV, one of them will be chosen to measure the distance. It is assumed
that the laser ranger has a gimbal or mirror system, which enables pointing it to the landmark. However,
as reality is not perfect, this pointing introduces an error, which will propagate to the distance error.

Measuring the Distance

The distance, d, between the spacecraft and a landmark can be simply expressed by looking at Fig. 2:

d =
∥∥RLM

A −RA

∥∥ (31)

However, as mentioned before, if a pointing error is introduced, the measured distance can change signifi-
cantly. Figure 3 (left) shows that when the angle between the laser beam and the local normal increases,
the same angular deviation causes larger overshoots. This effect is increased even more for irregular shapes,
which is mostly the case for asteroids. As a result, Eq. (31) is not valid any more for getting the measured
distance, since the pointing-angle error changes the distance in an unpredictable way. There is no analytical
function to solve this problem for an irregular body, thus a numerical solution must be found. The very
same useful property of polyhedrons will be used.

POINTING ERRORS

RA

dbLMA
~

d1

d2

d3

~

~

~

inside

outside

RA+d2bLMA
~

Figure 3: Laser ranger errors (left) and measurement simulation process (right)

Suppose the nominal pointing of the laser is bnomB = ( 0 0 1 )T , then this vector is rotated around X-
and Y-axis in FB in an active (alibi) manner to point to the landmark:

bLMB = Ry(θ̃)Rx(φ̃)bnomB (32)

where φ̃ and θ̃ are control angles, extracted from the landmark pixel-coordinates, with introduced pointing
errors:

φ̃ = φ+ δφ θ̃ = θ + δθ (33)

where δφ, δθ are zero-mean, white noise representing the pointing error. This can be seen as the actual
gimbal/mirror system, rotating the laser beam to the selected landmark. The actual geometry is depicted
in Fig. 4.

If the pointing vector bLMA (expressed in FA) is extended in the same direction by d̃, Figure 3, at some

point the vector RA + d̃bLMA will be inside the asteroid (the sum of solid angle ωf will be 4π). Then, in a
similar way the bisection method works, the boundary between inside and outside can be found, which will
represent the measured distance d̃. For example, suppose we extend the vector by d̃1, Fig. 3. The vector
RA+ d̃1b

LM
A is still outside the asteroid, so we extend it again by the same distance, which results in d̃2b

LM
A .

Now the vector RA + d̃2b
LM
A is inside the asteroid, so we reduce the distance by half of d̃1 value, which

represents the vector d̃3b
LM
A . At this point, the vector RA+ d̃3b

LM
A is outside the asteroid, so now we would

extend it by a quarter of d̃1 value and continue the process until a desired accuracy is reached. The measured
distance d̃ will be the value from the last iteration, d̃i.
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B frame

Y

X

Z

bnom

φ

θ

RXbnom

RyRxbnom

~

~

Figure 4: Laser pointing

IV. Nominal EKF Development

There are many different variants of the Extended Kalman filter, especially concerning attitude with
quaternions. A multiplicative quaternion error14 is chosen for this paper. Furthermore, the nominal EKF
will include a position vector, thus the relative pose will be represented by a quaternion-vector pair. This
filter will be called QVEKF. The error model, measurement equations and the QVEKF algorithm will be
briefly presented.

IV.A. State Vector

First of all, we need to define the state vector for the filter. It should include the relative position, RA,
and velocity, VA, relative attitude, qB/A, and the angular velocity ωBB/A. The common practice for inertial
navigation filters is not to estimate the angular rate directly, but to estimate its drift µ, since the rate
is measured by the gyroscope. We will do the same for the relative rate, because it is a function of the
inertial angular velocity and the relative attitude, Eq. (17). However, estimating the drift accurately requires
frequent attitude measurements, which cannot be achieved by the navigation camera, therefore star-tracker
measurements will be used. This requires the inertial attitude, qB/I , to be added to the state vector as
well. Finally, the rotation period of the asteroid will also be estimated, assuming that a coarse estimate was
available before arrival to the asteroid. So, we have:

X20 =



RA

VA

qB/A
qB/I
µ

ωAA/I


(34)

IV.B. Process Equation

The navigation filter will supposedly run on-board the spacecraft, so it cannot deal with complex models,
e.g., a polyhedron gravity field. As a result, we will use simplified models and introduce a process noise,
w. For the gravity field we will use the central-gravity field approximation with the noise, ηg, which will
be a tuning parameter for the filter. Furthermore, we do not know the real inertial angular velocity of
the spacecraft, so the measured one, corrected for the drift, will be used. The errors of the gyroscope are
therefore included in the process equation, and they are not treated as measurements by the filter. As a
result, the non-linear process equation for the spacecraft around an asteroid is given as:

Ẋ = f(X) +Gw = (35)
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=



VA

−GM
R3

A
RA − 2ωAA/I × VA − ω

A
A/I × ω

A
A/I ×RA

1
2Ω
(
ω̃BB/I − µ−CB/A(qB/A)ωAA/I

)
qB/A

1
2Ω(ω̃BB/I − µ)qB/I

0

0


+



03×3 03×3 03×3 03×3

I3×3 03×3 03×3 03×3

04×3 − 1
2Ξ(qB/A) 04×3 04×3

04×3 − 1
2Ξ(qB/I) 04×3 04×3

03×3 03×3 I3×3 03×3

03×3 03×3 03×3 I3×3




ηg

ηv

ηu

ηa



where ηa represents the process noise of the asteroid rate, although it is noiseless, Eq. (12). The noise is
only added for tuning the filter. Since the EKF deals with errors of the state, this process has to be written
in a linear way for the perturbations:

δẊ = F (X)δX +Gw (36)

where F (X) is the gradient matrix of f(X), however, the attitude quaternions are constrained by the norm
equal to one, and the Kalman filter is not meant for constrained optimization, so a linear attitude-error
model has to be derived.

IV.C. Linear Perturbation Model for Attitude

Inertial Attitude

Let us start with the inertial quaternion. An error between the estimated and the real quaternion is defined
as follows:

δqI = qB/I ⊗ q̂−1
B/I (37)

where the hat symbol denotes an estimated value. The perturbation is then differentiated with respect to
time:

δq̇I = q̇B/I ⊗ q̂−1
B/I + qB/I ⊗ ˙̂q−1

B/I (38)

After some mathematical manipulation, the error kinematics can be written as:

δq̇I =

[
−
[
ω̂BB/I×

]
0

01×3 0

]
δqI −

1

2
δµ− 1

2
ηv (39)

where ω̂BB/I = ω̃BB/I − µ̂ and δµ = µ − µ̂. For small angle errors, a quaternion can be approximated by a
rotation vector:

δq ≈

(
1
2δϑ

1

)
(40)

Thus, Eq. (39) can be written for the rotation vector:

δϑ̇I =
[
−ω̂BB/I×

]
δϑI − δµ− ηv (41)

Relative Attitude

With the relative attitude quaternion, the same process is repeated. The error quaternion, δqR (R denotes
the relative state) is defined as:

δqR = qB/A ⊗ q̂−1
B/A (42)

Then, differentiating and expressing the error in rotation-vector form, the following is obtained:7

δϑ̇R = −
[
ω̂BB/I×

]
δϑR − δµ−C(qB/A)δωA − ηv (43)

where δωA = ωAA/I − ω̂
A
A/I . This is already an interesting result, since the relative attitude error depends

only on the inertial angular velocity of the spacecraft.
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Error-state Vector

Since the attitude errors were expressed with three-dimensional rotation vectors, the error-state vector size
decreased by two dimensions, compared to the state vector itself, and is written as follows:

δX18 =



δRA

δVA

δϑR

δϑI

δµ

δωA


(44)

Transition Matrix

Combining Eqs. (35), (41) and (43) we can obtain the continuous time state transition matrix, F , for
perturbations, Eq. (36). It is written as:

F =



03×3 I3×3 03×3 03×3 03×3 03×3

df(X)4:6
dRA

∣∣∣∣
X=X̂

df(X)4:6
dVA

∣∣∣∣
X=X̂

03×3 03×3 03×3
df(X)4:6
dωA

A/I

∣∣∣∣
X=X̂

03×3 03×3 −
[
ω̂BB/I×

]
03×3 −I3×3 −C(qB/A)

03×3 03×3 03×3 −
[
ω̂BB/I×

]
−I3×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3


(45)

and its discrete time version, Φ:
Φ = expF∆t ≈ I18×18 + F∆t (46)

IV.D. Measurement Equations

Since most of the measurements are non linear, the measurement matrices, H, for the filter must be found.

Startracker

The star tracker measures the inertial attitude directly, thus it can be written in the form:

zST = q̃B/I = HSTX (47)

HST =
[

03×9 I3×3 03×6

]
(48)

Navigation Camera

The navigation camera gives unit vectors to the landmarks, so its measurement to the ith landmark is:

zNAV CAM,i = h(X) = C(qB/A)
RLM,i −RA

‖RLM,i −RA‖
(49)

To adapt Eq. (49) for the filter, we express the error between the real and predicted measurement. For this,
we write the attitude matrix as follows:7

C
(
qB/A

)
= (I3 − [δϑR×])C

(
q̂B/A

)
(50)

Substituting Eq. (50) into Eq. (49), and defining δz = z − ẑ yields:

δz = CB/A(q̂B/A)
RLM,i −RA

‖RLM,i −RA‖
× δϑR (51)
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The measurement error becomes linear with respect to the relative attitude error, but not to the position.
As a result, the measurement matrix for a single landmark is:

HNAV CAM =

[
dh(X)
dRA

∣∣∣∣
X=X̂

03×3

[
CB/A(q̂B/A)

RLM,i−R̂A

‖RLM,i−R̂A‖×
]

03×9

]
(52)

Laser Ranger

The laser ranger measures distance to a selected landmark:

zLR = h(X) = ‖RLM,i −RA‖ (53)

To obtain the measurement matrix, we just find a Jacobian of Eq. (53):

HLR =

[
dh(X)
dRA

∣∣∣∣
X=X̂

01×15

]
(54)

V. Dual Quaternions For Pose Representation

A dual quaternion is an eight-dimensional vector representing position and attitude in a coupled way.
It was first introduced by William Kingdom Clifford in his paper about bi-quaternions.15 To understand
dual quaternions, it is first needed to understand dual numbers and dual algebra. Dual numbers (also called
duplexes) are an extension to the real numbers. In the form they are written, dual numbers resemble complex
numbers:17

ď = a+ εb (55)

where ď is a dual number (the symbol ’ˇ’ denotes a dual quantity), a and b are real numbers, and ε has the
following properties:

ε 6= 0, ε2 = 0 (56)

There is no trivial explanation of these properties of ε, thus it has to be taken as it is given, and accepted
as truth. The first part in Eq. (55) is called the primary (or real) part of the dual number and the second
one represents the dual component. For further details about dual numbers and dual algebra the reader is
referred to the book of Fischer.17

V.A. Dual Quaternion

Similarly to how a dual number is constructed, a dual quaternion (DQ), q̌, can be written as:16

q̌ = qr + εqd (57)

where qr is the real and qd is the dual part of the dual quaternion, and both of them are quaternions (not
necessarily unit quaternions). Furthermore, a dual quaternion can be seen as a dual-hyper-complex vector
and can be written in the following form:

q̌ = qr1i+ qr2j + qr3k + qr4 + ε (qd1i+ qd2j + qd3k + qd4) (58)

where i, j and k are imaginary numbers. It is cumbersome to manipulate a dual quaternion algebraically,
as in Eq. (58). Thus, in this paper a dual quaternion is seen as an 8-tuple vector, defined as follows:

q̌ =

(
qr

qd

)
=



qr1

qr2

qr3

qr4

qd1

qd2

qd3

qd4


(59)
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The multiplication (⊗̌) of two dual quaternions follows the rules of dual numbers and quaternions. It reads
as follows:

q̌1⊗̌q̌2 = qr1 ⊗ qr2 + ε (qr1 ⊗ qd2 + qd1 ⊗ qr2) (60)

where ⊗̌ is the dual quaternion multiplication, which in matrix form is written as:

[q̌1⊗̌] q̌2 =

[
[qr1⊗] 04×4

[qd1⊗] [qr1⊗]

](
qr2

qd2

)
(61)

V.B. Conjugates

A dual quaternion can have three different conjugates:16

q̌� = qr − εqd (62)

q̌∗ = q∗r + εq∗d (63)

q̌◦ = q∗r − εq∗d (64)

The first and the third conjugates are not much useful, while the second one is. A multiplication of DQ with
this conjugate gives:

q̌⊗̌q̌∗ = (qr + εqd) (q∗r + εq∗d) = qr ⊗ q∗r + ε (qr ⊗ q∗d + qd ⊗ q∗r ) (65)

A quaternion multiplication with its conjugate (qr ⊗ q∗r ) gives a scalar, and the dual part, after some
mathematical treatment, turns out to be also a scalar. Thus, the result of the second conjugate product is
given as follows:

q̌⊗̌q̌∗ = ‖qr‖2 + 2ε (qr1qd1 + qr2qd2 + qr3qd3 + qr4qd4) (66)

The result in a general case is a dual number (a+ εb), but if the real part is orthogonal to the dual one, the
dual part vanishes, and the product becomes a real number.

V.C. Pose Representation

Up to this point, we have discussed the general properties of dual numbers and dual quaternions, but we have
not introduced a way to represent both, the position and the attitude (pose of a Cartesian coordinates frame
with respect to another frame) with a dual quaternion. To begin with, the real part of a dual quaternion
will be a unit quaternion, thus representing the attitude. Furthermore, the position has to be incorporated
as well. Jia16 gives the dual part of the dual quaternion as a multiplication of the real part with a position
vector from the origin frame to the frame the pose is described for:

qd =
1

2
qr ⊗R (67)

where R is treated as a quaternion (fourth component is zero). Then we calculate the dual quaternion
product with its second conjugate:

q̌⊗̌q̌∗ =

(
qr +

1

2
εqr ⊗R

)
⊗̌
(
qr +

1

2
εqr ⊗R

)∗
=

(
qr +

1

2
εqr ⊗R

)
⊗̌
(
q∗r +

1

2
εR∗ ⊗ q∗r

)
= (68)

= qr ⊗ q∗r +
1

2
ε (qr ⊗R⊗ q∗r + qr ⊗R∗ ⊗ q∗r )

The quaternion conjugate of a pure vector is simply R∗ = −R, so Eq. (68) reduces to a scalar 1, which,
means that the dual quaternion has the norm of one. Thus, in a similar way the quaternion of rotation must
have a norm of one, a dual quaternion to represent a pose must also have a norm (real number) of one:

q̌⊗̌q̌∗ = 1 (69)

The equation above requires two constraints to be met. The real part of a dual quaternion has to have a
norm of one, which is equivalent to the quaternion being a quaternion of rotation, and it is written as follows:

‖qr‖2 = 1 (70)
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Furthermore, a second constraint is introduced, which is derived from the dual part of the dual quaternion
product in Eq. (66).

(qr1qd1 + qr2qd2 + qr3qd3 + qr4qd4) = qr · qd = 0 (71)

which requires that the dot product between the real and the dual parts is equal to zero. In other words,
the two quaternions have to be orthogonal.

A dual-quaternion is an eight-dimensional vector, so these constraints remove two parameters, and thus
only six are left, which is the number required to represent the pose.

Now, it is essential to define in which reference frame the position vector is expressed. Suppose having
two reference frames FA and FB. The attitude of FB with respect to FA is qB/A. Then we would write the
position vector in FA and the resulting dual quaternion, representing the pose of FB with respect to FA,
would be given as follows:

q̌B/A = qB/A +
ε

2
qB/A ⊗RA (72)

If one wants to use the vector in FB, then a simple right multiplication of the dual part with a quaternion
unity Iq = q∗ ⊗ q has to be done.

q̌B/A = qB/A +
ε

2
qB/A ⊗RA ⊗ q∗B/A ⊗ qB/A (73)

where qB/A ⊗RA ⊗ q∗B/A is a quaternion frame transformation for vectors in frame FA to be expressed in

frame FB. As a result, Eq. (73) becomes:

q̌B/A = qB/A +
ε

2
RB ⊗ qB/A (74)

Comparing Eqs. (72) and (74), we can see that the same dual parts can be expressed in two different frames
by just switching the places of the multiplicands.

To retrieve the attitude quaternion and the position vector from a dual quaternion, one has to do the
following steps:

qB/A = qr (75)

RA = 2q∗r ⊗ qd (76)

V.D. Screw Displacement

Similarly to Euler’s theorem, which allows us to visualise a quaternion, there is a Chasle’s theorem, which
states that any rigid displacement is equivalent to a rotation around a line, called the screw axis, followed
by a translation in the direction of the line. This can be seen as a screw motion (rotation and translation
at the same time) with parameters as pitch angle, pitch distance and the screw axis, derived from a dual
quaternion.16

VI. Dual Quaternion Extended Kalman Filter

This section explains the development of the dual-quaternion Extended Kalman Filter (DQEKF). The
main difference between DQEKF and QVEKF is that the relative pose in the latter is expressed by a
quaternion-vector pair and in the DQEKF by a dual quaternion. All the other states remain the same. Also,
the relative attitude is represented identically in both filters.

VI.A. Relative Pose

Suppose having reference frames FA and FB defined relative to FI . We recall that the FI has the same
origin as the asteroid frame, so we express their pose in dual quaternions as:

q̌A/I = qA/I + ε0 (77)

q̌B/I = qB/I +
ε

2
qB/I ⊗RI (78)
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where RI is the position vector of the spacecraft, expressed in FI . The relative pose is then:

q̌B/A = q̌B/I⊗̌q̌∗A/I =
(
qB/I +

ε

2
qB/I ⊗RI

)(
q∗A/I + ε0

)
= qB/I ⊗ q∗A/I +

ε

2
qB/I ⊗RI ⊗ q∗A/I (79)

The position quaternion can be expressed in the asteroid frame using the quaternion frame transformation:

RI = q∗A/I ⊗RA ⊗ qA/I (80)

Substituting Eq. (80) into Eq. (79) yields:

q̌B/A = qB/A +
ε

2
qB/I ⊗ q∗A/I ⊗RA ⊗ qA/I ⊗ q∗A/I = qB/A +

ε

2
qB/A ⊗RA (81)

which is a logical outcome, showing a translation, RA, in FA, followed by a rotation.

VI.B. DQEKF State Vector

In DQEKF the relative pose is expressed in a dual-quaternion form. We change the state representation
accordingly, and the full state vector reads as follows:

X21 =


q̌B/A
VA

qB/I
µ

ωAA/I

 (82)

We can see that the state representation increased by one dimension, because the position is now expressed
in a four-dimensional quaternion form.

VI.C. Dual Quaternion Kinematic Equation

By taking Eq.(81) and differentiating it with respect to time, the following is obtained:

˙̌qB/A = q̇B/A +
ε

2

(
q̇B/A ⊗RA + qB/A ⊗ ṘA

)
= (83)

=
1

2
ωBB/A ⊗ qB/A +

ε

2

(
1

2
ωBB/A ⊗ qB/A ⊗RA + qB/A ⊗ VA

)
This result, after some rearrangement, can be written in a matrix form:

˙̌qB/A =
1

2

 [ωBB/A⊗] 04×4

[VA�]
[
ωBB/A⊗

] ( qr

qd

)
(84)

where qr = qB/A and qd = ε
2qB/A⊗RA are the real and the dual parts of the dual quaternion, respectively.

Furthermore the term qB/A ⊗ VA in Eq. (83) can be rewritten as:

qB/A ⊗ VA = qB/A ⊗ VA ⊗ q∗B/AqB/A = VB ⊗ qB/A (85)

Then, substituting Eq. (85) into Eq. (83) and writing it in matrix form, yields:

˙̌qB/A =
1

2

 [ωBB/A⊗] 04×4

[VB⊗]
[
ωBB/A⊗

] ( qr

qd

)
(86)

Here, we introduce a dual velocity, which is defined in FB as:

ω̌B = ωBB/A + εVB (87)
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The kinematics equation is then:

˙̌qB/A =
1

2
ω̌B⊗̌q̌B/A (88)

where ⊗̌ is a dual quaternion product and, according to Eq. (86), it is defined as follows:

[
ω̌BB/I⊗̌

]
=

 [ωBB/A⊗] 04×4

[VB⊗]
[
ωBB/A⊗

]  (89)

Full process model

Only the relative position representation has changed, so the process function f changes accordingly:

f(X) =



1
2Ω
(
ω̃BB/I − µ−C(qr)ω

A
A/I

)
qr

1
2ω

B
B/A ⊗ qd + 1

2qr ⊗ VA
−GM
R3

A
RA − 2ωA/I × VA − ωA/I × ωA/I ×RA

1
2Ω(ω̃BB/I − µ)qB/I

0

0


(90)

VI.D. Linear Perturbation Model for Dual Quaternion

As was done for the QVEKF, a linear perturbation model for dual quaternions is developed first.

Dual quaternion error

The dual quaternion error is defined as:

δq̌ = q̌B/A ⊗ ̂̌q∗B/A (91)

where q̌B/A is the real dual quaternion and ̂̌qB/A is the estimated one. They are expressed as follows:

q̌B/A = qB/A +
ε

2
qB/A ⊗RA (92)

̂̌qB/A = q̂B/A +
ε

2
q̂B/A ⊗ R̂A (93)

Substituting Eqs. (92) and (93) to (91) and using (q1 ⊗ q2)
∗

= q∗2 ⊗ q∗1 yields:

δq̌ =
(
qB/A +

ε

2
qB/A ⊗RA

)(
q̂∗B/A +

ε

2
R̂∗A ⊗ q̂∗B/A

)
= (94)

= qB/A ⊗ q̂∗B/A +
ε

2
qB/A ⊗RA ⊗ q̂∗B/A +

ε

2
qB/AR̂

∗
A ⊗ q̂∗B/A

The quaternion error qB/A ⊗ q̂∗B/A is δqR, and R̂∗A = −R̂A, then the error expression is simplified:

δq̌ = δqR +
ε

2
qB/A ⊗

(
RA − R̂A

)
⊗ q̂∗B/A = (95)

= δqR +
ε

2
qB/A ⊗ q̂∗B/A ⊗ q̂B/A ⊗

(
RA − R̂A

)
⊗ q̂∗B/A =

= δqR +
ε

2
δqR ⊗ δRB

With a first order approximation δqR ⊗ δRB ≈ δRB , the dual quaternion error becomes:

δq̌ ≈ δqR +
ε

2
δRB (96)
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which shows a useful result, since the dual part of the error is the position error itself, however, expressed
in FB.

Error kinematics

We differentiate the error, Eq. (95), with respect to time, and since the real part of the dual quaternion error
derivative is essentially the same as was derived for the relative attitude quaternion, Eq. (43), therefore it is
not repeated again. The dual part (all terms with ε) derivative is as follows:

δq̇d =
(
V̂B + δVB

)
⊗δqR +

1

4

(
ω̂BB/A + δω −C

(
q̂B/A

)
ω̂AA/I × δϑR −C

(
q̂B/A

)
δωA

)
⊗δRB+ (97)

−1

2
δqR ⊗ V̂B −

1

4
δRB ⊗ ω̂BB/A

Neglecting the second order terms yields:

δq̇d =
1

2
V̂B ⊗ δqR +

1

2
δVB +

1

4
ω̂BB/A ⊗ δRB −

1

2
δqR ⊗ V̂B −

1

4
δRB ⊗ ω̂BB/A = (98)

= −
[
V̂B×

]
δqR +

1

2
δVB −

1

2

[
ω̂BB/A×

]
δRB =

= −
[
C
(
q̂B/A

)
V̂A×

]
δqR +

1

2
C
(
q̂B/A

)
δVA −

[
ω̂BB/A×

]
δqd

Since the dual part error can be represented by δRB , Eq. (96), and the real part by a small rotation vector,
ϑR, the whole dual quaternion error is written as:

δq̌ =


1
2δϑR

1
1
2δRB

0

 (99)

Therefore, we reduce the pose vector dimension from eight to six:

δq̌1:6 =

(
δϑR

δRB

)
(100)

Then, Eq. (98) becomes:

δṘB = −
[
C
(
q̂B/A

)
V̂A×

]
δϑR +C

(
q̂B/A

)
δVA −

[
ω̂BB/A×

]
δRB (101)

As opposed to the QV filter the derivative of δRA is not δVA.

Full State-error Vector

Since the dual quaternion error is now expressed as a six-dimensional number, the full state-error vector has
the same size as in QVEKF case:

δX18 =



δϑR

δRB

δVA

δϑI

δµ

δωA


(102)

Full Linear-perturbation Model
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The linear perturbation model would basically be different only by the position error kinematics, expressed
in Eq. (101). However, since the error, δRB is now expressed in FB instead of FA, as it was in QVEKF, the
Jacobian for the velocity has to be modified accordingly. Without loss of generality, we can write:

∂f

∂RB
=

∂f

∂RA

∂RA

∂RB
(103)

where ∂RA

∂RB
is simply an attitude matrix:

∂RA

∂RB
= CA/B = C

(
qB/A

)T
(104)

As a result, the velocity Jacobian is expressed as follows:

∂VA
∂RB

=
∂VA
∂RA

C
(
qB/A

)T
(105)

F =



−
[
ω̂BB/I×

]
03×3 03×3 03×3 −I3×3 −C(qB/A)

−
[
C(qB/A)V̂A×

]
−
[
ω̂BB/A×

]
C(qB/A) 03×3 03×3 03×3

03×3
df(X)7:9
dRA

C
(
qB/A

)T ∣∣∣∣
X=X̂

df(X)7:9
dVA

∣∣∣∣
X=X̂

03×3 03×3
df(X)7:9
dωA

A/I

∣∣∣∣
X=X̂

03×3 03×3 −
[
ω̂BB/I×

]
−I3×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3


(106)

Since the state vector has changed, the noise mapping matrix has changed accordingly:

G =



03×3 −I3×3 03×3 03×3

03×3 03×3 03×3 03×3

I3×3 03×3 03×3 03×3

03×3 −I3×3 03×3 03×3

03×3 03×3 I3×3 03×3

03×3 03×3 03×3 I3×3


(107)

VI.E. Measurement Equations

Since the position error in DQEKF is represented by δRB , and it was δRA for QVEKF, then the measure-
ment matrices are essentially the same.

Star tracker

The star tracker matrix is very alike to the QVEKF one, and it reads as follows:

HST =
[

03×9 I3×3 03×6

]
(108)

Note that the order of the state variables has changed, so the matrix has changed accordingly, see Eq. (102).

Navigation Camera

For the Jacobians with respect to the position vector, the same method is applied as in Eq. (104):

∂h

∂RB
=

∂h

∂RA
C
(
qB/A

)T
(109)
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This allows us to use the same measurement matrices as for QVEKF by multiplying them with CT
B/A. The

measurement matrix for the navigation camera is then:

HNAV CAM =

[ [
CB/A(q̂B/A)

RLM,i−R̂A

‖RLM,i−R̂A‖×
]

dh(X)
dRA

C
(
qB/A

)T
03×12

] ∣∣∣∣
X=X̂

(110)

A different approach for dual quaternions is possible, where the landmarks are treated not as points, but
rather as lines connecting two landmarks. This method was presented by Goddard,? however, for the sake
of equal comparison the DQEKF will process the landmarks as points. The dual-line representation is left
as a future work.

Laser Ranger

Similarly to the NAVCAM measurement matrix, the laser ranger one is obtained:

HLR =
[

01×3
dh(X)
dRA

C
(
qB/A

)T
01×12

] ∣∣∣∣
X=X̂

(111)

VII. Simulation and Results

This section presents the results of the nominal EKF (QVEKF) and the dual quaternion counterpart
(DQEKF). The spacecraft size and mass parameters are taken from Rosetta missionb. A ’polar’ orbit
around asteroid Kleopatra is simulated for 10,000 s with the initial position and velocity:

RA =

 0

0

200

 km, VA =

 0

−35.35

0

 m/s (112)

The initial inertial and relative attitudes are the same:

qB/I = qB/A =


1

0

0

0

 (113)

which means that at t = 0 frames FI and FA coincide. The asteroid is spinning around its Z-axis at the
rate of ωA/I = 3.241× 10−4 rad/s and the initial spacecraft angular velocity is:

ωBB/I =

 1.711× 10−4

0

0

 rad/s (114)

The trajectory is shown in Figure 5, where the light-blue pyramids show the FOV pyramids of the
spacecraft.

The initial angular velocity of the SC is chosen to match the mean motion of its orbit, which in an
ideal case would mean that it would always point nadir. However, in the current spacecraft model nei-
ther position nor attitude control is considered. This complicates the navigation, because the navigation
camera experiences unfavourable pointing relative to the asteroid. As a result, due to perturbations it
drifts from its nominal trajectory. Figure 6 shows the evolution of the number of landmarks in the FOV
per each frame. The number varies from 3 to 20, which will give significantly different situations for the filter.

Target for Laser-Ranger Selection

When the landmarks in the FOV are identified, one of them is chosen for the range measurement. The
choice can be done randomly, however, we recall that the error in measured distance depends on the angle

bhttp://www.esa.int/Our_Activities/Space_Science/Rosetta/The_Rosetta_orbiter
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Figure 5: Simulated trajectory around the Kleopatra asteroid (the spacecraft is not in scale)
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Figure 6: Number of landmarks, seen by the navigation camera per frame

between the pointing vector and the local (landmark) normal vector, Fig. 3. The landmark-normal vec-
tor is included in the landmark map database, thus assumed to be available on-board the spacecraft. With
this knowledge we can choose a landmark with the smallest angle and thus reduce the possible distance errors.

Laser-Ranger Errors

Until now, we only discussed the laser ranger errors, but did not characterise them. The Kalman filter
algorithm needs to know the measurement covariance RLR, however the errors are state and asteroid surface
dependant, so there is no analytical function to express them. Figure 7 gives the laser-ranger errors as a
function of the angle between the landmark normal and the laser pointing vector. There is a clear correlation
between the angle and the distance error, and a few cases can be distinguished. The first is between 0◦ to
20◦, and the distance error has variance of ≈ 25 m2. The second has an angle from 20◦ to 40◦ and the
variance of ≈ 169 m2. The third has an angle from 40◦ to 60◦ and the variance of ≈ 900 m2, and the last
one is 60◦ and above, and the error variance ≈ 2500 m2.

Since we defined that the landmark map has normal vectors associated to each landmark, we can use
this property in the filter on-board the spacecraft. For each aforementioned case we define the laser ranger
covariance as:

RLR1 = 25 m2, RLR2 = 169 m2, RLR3 = 900 m2 and RLR4 = 2500 m2 (115)

and switch them dynamically, according to the laser incidence angle.
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Figure 7: Laser-ranger angles between the pointing and landmark normal vectors, and corresponding
distance errors

VII.A. Filter Initialisation

Both filters are initialised with the same state vector X̂0/0, error covariance matrix P0/0, process covariance
matrix Q and measurement covariance matrices RST , RNAV C and RLR, only the order of variables is dif-
ferent.

State vector

Position and velocity are initialised with errors of 1000 m and 1 m/s on each axis, respectively. Relative and
inertial quaternions are selected as:

q̂B/A,0 =


0.905

−0.272

0.181

−0.272

 and q̂B/I,0


0.945

−0.189

0.189

−0.189

 (116)

which represents ΦR = 50.35◦ and ΦI = 38.18◦ attitude errors (2 cos−1 δq4), respectively. The gyroscope
drift is initialised with zeros and the asteroid rate is chosen such that it would represent 10% error for the
Z-axis and small errors (2× 10−6 rad/s) for X- and Y-axis:

ω̂AA/I,0 =

 0.02

0.02

3.565

× 10−4 rad/s (117)

Covariance Matrices

The covariance matrices are the main parameters for tuning the filter. Since it is not a linear Kalman filter,
no offline analysis can be done and each parameter has to be tuned empirically. So, the state error covariance
matrix is initialised as:

P0/0 =



107I3×3 03×3 03×3 03×3 03×3 03×3

03×3 10I3×3 03×3 03×3 03×3 03×3

03×3 03×3 10−8I3×3 03×3 03×3 03×3

03×3 03×3 03×3 10−4I3×3 03×3 03×3

03×3 03×3 03×3 03×3 10−10I3×3 03×3

03×3 03×3 03×3 03×3 03×3 10−14I3×3


(118)

The process noise covariance matrix after tuning was set to:

Q =


σ2
gI3×3 03×3 03×3 03×3

03×3 σ2
vI3×3 03×3 03×3

03×3 03×3 σ2
uI3×3 03×3

03×3 03×3 03×3 10−16I3×3

 (119)
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where σg = 0.005 m/s2 is the uncertainty in the gravity field, σv = 5.8 × 10−7 rad/s1/2 and σu = 5.8 ×
10−8 rad/s3/2 are the standard deviations of gyroscope noises. Some of the values in the error and process
noise covariance matrices are set really small (close to zero, e.g., 10−16), because it proved to give the best
performance. Increasing them, could result in a divergence of the filter. The star tracker has the measurement
covariance matrix:

RST = 0.1×

 4, 76× 10−9 0 0

0 5.88× 10−11 0

0 0 5.88× 10−11

 (120)

The covariance matrix of the navigation camera is:

RNAV C =

 1.69× 10−11 0 0

0 1.69× 10−11 0

0 0 1.69× 10−13

 (121)

The Z-axis has a far smaller variance set, because the focal length is constant and the noise comes only from
the norm of the vector, Eq. (29). Finally, the laser-ranger covariance is given by Eq. (115).

VII.B. Results

This subsection presents the results of the QVEKF and DQEKF. Only the magnitude of vectorial errors
between the real and estimated values are presented, together with 3-σ boundaries. The filter is run with a
0.1 s time step (the sampling time of the gyroscope), the star tracker is set to 1 s and the navigation camera
(also the laser ranger) to 10-s sampling times. Let us start with the estimates of the gyro drift and the
asteroid rate, since they affect the process equation (35). Figure 8 shows the estimate errors of the drift, µ
(top), and the the asteroid rate, ωAA/I (bottom).
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Figure 8: Gyroscope drift and asteroid rate errors

Surprisingly, both filters behave identically in steady state. Gyroscope-drift estimate shows a fast conver-
gence in around 1500 s, and the estimate does not change in time, since it is mainly influenced by star-tracker
measurements, which are independent from relative states and are always available. The errors are concen-
trated within 3-σ boundaries, although not perfectly. The asteroid rates converge slower (≈ 3000 s) and
they stay within 3-σ boundaries.

Furthermore, inertial and relative attitude estimates are presented in Fig. 9 by the angle Φ = 2 cos−1 q4.
In this case the QVEKF and DQEKF behave the same again. Inertial attitude estimates converge in less
than 3000 s. After convergence the error does not change and stays with about 8 arcsec 3 − σ value. This
is already a good result, since we recall having the errors of the star tracker with standard deviations 45,
5, 5 arsec on the X-,Y- and Z-axis, respectively. So the estimates show an error reduction more then an
order of magnitude. The relative attitude estimate converges at about t = 3000 s, just after the asteroid
rates converge. The error stays of the same order as the inertial attitude error, but reaches a minimum of
10 arcsec 3− σ at 6000 s (the maximum landmark number in the FOV).
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Figure 9: Inertial and relative attitude errors
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Figure 10: Position and velocity estimates’ errors

Finally, relative position and velocity estimates are shown in Fig 10. Both filters still have an identical
performance, which at this point can be safely said that the filters are the same. We recall the linear
perturbation model developed for dual quaternions, which turned out to be expressed with a position vector
in FB, so in the end, both filters have linear models that are very alike, and thus the performance in steady
state is the same. Nevertheless, position and velocity converge at the same time the asteroid rates converge,
since the velocity (and therefore position) depend strictly on the asteroid rate. After convergence, the
estimates stay within the 3-σ boundaries, which is around 15 m for position and 0.2 m/s for the velocity.
Position estimates reach a minimum at about t = 6000 s, which corresponds to the maximum number of the
visible landmarks in the FOV, Fig. 6.

VIII. Conclusions and Recommendations

This paper presented the work-flow of simulating the dynamics around an asteroid, modelling navigation
sensors and developing a navigation filter. It contributes to all of these fields. Firstly, the gravity-gradient
torque was simulated, assuming the spacecraft as a cloud of point-masses and calculating polyhedron gravity
field values at each of them, which resulted in a more accurate gravity-gradient torque than the central-gravity
field approximation. Secondly, the modelling of a navigation camera and a laser-ranger was accomplished by
a novel method, exploiting the very useful property of polyhedron models, which allows to know, whether
a point lies inside or outside it. This brings the simulation closer to reality and thus more representative.
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Finally, two versions of Extended Kalman filters were developed: one with conventional pose representation
(QVEKF), and the other one with dual quaternions (DQEKF). Surprisingly, the filters turned out to perform
identically, which might be explained by the linear perturbation model for DQEKF. The dual part of the dual
quaternion error can, in fact, be represented by a position vector (in FB), which makes the two estimators very
alike. However, they still give already satisfying results. The relative position and velocity can be estimated
with errors having 5 m and 0.06 m/s standard deviations respectively, inertial and relative attitude with
≈ 3 and ≈ 5 arcsec standard deviations, respectively (when converged). However, these results can only be
achieved when there are landmarks in the FOV of the navigation camera, because the dynamics model is
not accurate enough and the estimates rely on these measurements. A more accurate model for the gravity
field, e.g. spherical harmonic, could be used on-board.
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