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Abstract

Prior to the detailed design of turbines, turbomachinery engineers must

rely on mean-line and throughflow models to come to a preliminary design.

These models are based on empirical loss correlations and are often derived

from cascade experiments and numerical analyses that are confined to the

subsonic and transonic regime. Axial turbines for rocket propulsion appli-

cations are characterised by a near zero degree of reaction and supersonic

stator vanes that yield a complex flow field, making the prediction of losses

challenging with existing correlations. The goal of this study is to investi-

gate the variation of loss generation in supersonic axial turbine stator vanes

with the isentropic exit Mach number. The profile losses will be split into

components that can be attributed to different loss generation mechanisms

whose relative magnitude may point to where performance improvement

can be made. The investigation is performed on stator vanes that are used

in the first turbine stage of a 1MN-class gas generator cycle type rocket en-

gine. The stator vanes will be optimised for the profile losses by exploiting a

novel adjoint optimisation framework for turbomachinery and the effect on

the exit flow field will be investigated. The computational risk will be miti-

gated to ensure that the feasibility of the research is not jeopardised. The

successful outcome of this research will lead to supersonic loss character-

istics of axial turbine stator vanes, reduced development costs, increased

efficiency levels and pave the way for future work on optimisation methods

for turbomachinery applications.
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Greek Symbols
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Chapter 1

Introduction

This chapter serves as an introduction to the thesis and presents the re-

search analysis and statement, research objective and thesis outline.

1.1. Research Analysis and Statement
The development of liquid rocket propulsion is closely tied to the history

of turbines and nowadays they are indispensable for efficient operation of

high thrust liquid rocket engines. Turbines are applied in rocket engines

to drive turbopumps that force propellants into the high pressure com-

bustion chamber; forcing the propellants by pressurising the tanks is often

not feasible because the pressure required for acceptable combustion pres-

sure results in heavy propellant tanks. As a result, turbines alongside with

turbopumps have become the backbone of large liquid rocket propulsion

systems.

Supersonic axial turbines find their application in rocket engines because

they are characterised by a high pressure ratio and therefore have the po-

tential for large specific work. For a given power level, this type of turbine

requires a small amount of driving fluid and a small number of stages. De-

spite that they generally operate at lower efficiency levels, the supersonic

turbine may still be the best design choice for applications where the pri-

mary design requirements are a minimum number of stages and a mini-

mum fluid consumption. In this case, the availability of high specific work

more than compensates for the lower turbine efficiency.

To ensure that turbine designs lie within acceptable limits for rocket propul-
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sion applications, the turbomachinery engineer must perform a trade-off

between several parameters, for instance power, efficiency, reliability and

cost. Efficiency is presumably one of the most important design parameters

for turbomachinery. Turbomachinery engineers cope with stringent mass

requirements and therefore, given that other performance criteria are satis-

fied, improving the efficiency is often the only means to reduce the number

of stages or the fluid consumption. To increase the efficiency of turbines,

the physical origins and effects of losses on turbine performance have to

be thoroughly understood rather than indiscriminately using the available

loss prediction correlations.

Over the past decades, tremendous efforts have been put into improving the

efficiency of turbines. Accomplishing further performance improvements

has therefore become more difficult, however, not impossible. The ever-

advancing knowledge of the complex fluid mechanics and thermodynamics

has pushed modern turbines to the extreme edge of technological devel-

opment. Theoretical and experimental methods applied to both individual

components and whole machines have made this progression achievable.

Particularly the advancements of numerical methods for Computational

Fluid Dynamics (CFD) and optimisation techniques such as the adjoint

method have greatly improved our ability to understand turbines and to

push performance abilities to extreme limits.

The development of modern axial flow turbines starts with the preliminary

design phase during which the profile, tip-leakage and endwall losses must

be modelled. The initial design configuration is defined from mean-line and

throughflow models that are based on empirical loss correlations. Over the

past decades, many loss correlations have been developed and are available

in literature, but these are often derived from cascade experiments and nu-

merical analyses that are confined to the subsonic or transonic regime.

Axial flow turbines for rocket applications are characterised by a near zero

degree of reaction and supersonic stator vanes that yield a complex flow

field, making the prediction of losses challenging with existing correlations.

The research statement can therefore be phrased as:

9
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The design of supersonic axial turbines for rocket propulsion applications

remains challenging because the influence of loss mechanisms on the overall

efficiency is not fully understood.

1.2. Research Objective
The present study aims to unravel the physical origins of the profile loss

mechanisms and the influence of the isentropic exit Mach number on the

overall two-dimensional efficiency of supersonic axial stator vanes for rocket

propulsion applications. Although the importance of three-dimensional

loss mechanisms is acknowledged, this kind of study is considered to be

beyond the scope of this research. The tip-leakage and endwall loss mech-

anisms can be investigated in follow up research. The objective of this

research is to offer a competitive advantage to Arianegroup through super-

sonic axial turbine stator vanes with reduced development costs, increased

efficiency levels and loss characteristics to be used in the early design phase

of supersonic stator vanes by extending the pioneering work byMee et al. [1]

to the supersonic regime. The research questions can therefore be phrased

as:

• What is the impact of the isentropic exit Mach number on the profile

losses in supersonic axial turbine stator vanes for rocket propulsion ap-

plications?

• What reduction of the profile losses in supersonic axial turbine stator

vanes for rocket propulsion applications can be achieved using the ad-

joint optimisation method?

The successful outcome of this research will result in a step change in

the performance of supersonic axial turbines for rocket propulsion appli-

cations, reduced development costs and will pave the way for future work

on optimisation methods for turbomachinery applications.
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1.3. Thesis Outline
In chapter 2 the characteristics of rocket engine turbines and

two-dimensional loss mechanisms in axial flow turbines are reviewed. In

chapter 3 the governing equations for compressible viscous flow are intro-

duced. The challenges of turbulence modelling are considered and some

numerical methodologies are briefly discussed; the Direct Numerical Simu-

lation (DNS) approach, the Large Eddy Simulation (LES) approach and the

Reynolds-Averaged Navier-Stokes (RANS) approach. The RANS method-

ology is described in more detail. In chapter 4 the governing equations

for adjoint-based shape optimisation are presented, with special empha-

sis on the discrete approach. The adjoint-based optimisation framework

is discussed in terms of the adjoint solver, surface parametrisation and

mesh deformation, with reference to the computational tool adopted in the

present study. In chapter 5 the research methodology is presented; the

optimisation setup and loss breakdown method are extensively described.

The computational tool used in the present study is also introduced. In

chapter 6 the findings of the current research are presented. The baseline

and optimised design are investigated and compared using the loss break-

down method developed in chapter 5. In addition, this chapter provides a

mesh sensitivity study, validation of the adjoint method and an investiga-

tion of the excitation on the adjacent blade row. In chapter 7 the research

findings are summarised and their scientific and technical implications are

discussed. Some suggestions for further works are also given.
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Chapter 2

Rocket Engine Turbines

The current study presents an investigation of the two-dimensional loss

generation in the stator vane of a supersonic axial flow turbine used in a

gas generator cycle type rocket engine. Therefore, a description of rocket

engine turbines and two-dimensional loss mechanisms in axial turbines

must be provided.

The treatment in this chapter is intentionally brief as its purpose is to intro-

duce the reader to rocket engine turbines and two-dimensional loss mech-

anisms in axial turbines. A detailed discussion on these topics however is

too exhaustive and is clearly beyond the scope of this study. The reader

is strongly recommended to read the detailed description of liquid rocket

engine turbines by Douglas [2] and of all the loss mechanisms in turboma-

chinery by Denton [3].

2.1. Characteristics
Turbines are applied in rocket engines to drive the pumps that pressurise

propellants and must therefore provide adequate power at the desired rota-

tional speed and torque. The energy that drives the turbines is obtained by

expanding a gaseous working fluid through one or more stages that consist

of stator vanes and rotor blades mounted on disks to the shaft. The shaft

speed is often limited by design considerations of the pump, logically lead-

ing to the use of axial flow turbines with their potential for higher efficiency

at lower machine speeds. Figure 2.1 shows the liquid oxygen turbopump

of the Vulcain 2 engine used in the European Ariane 5 launcher.
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Turbine
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Figure 2.1: Liquid oxygen turbopump of the gas generator type Vulcain 2 engine used in the

European Ariane 5 launcher (Paniagua and Steelant [4]).

2.1.1. Kinematics

The are two types of axial flow turbines that are most suited for use in

rocket turbopumps: impulse turbines and reaction turbines. In an im-

pulse turbine the conversion of enthalpy to kinetic energy takes place in

the stator vanes and not in the rotor blades. The fluid expands to super-

sonic, nearly tangential, speeds through highly turning stator vanes and

is then delivered to the rotor blades, where the kinetic energy is converted

into a tangential force.

Momentum of the fluid that is imparted to the rotor blades causes the tur-

bine wheel to rotate. In a velocity-staged impulse turbine all of the expan-

sion takes place in the first-stage stator row. Stator vanes of the remaining

stages merely turn the flow after it leaves the first-stage and direct the flow

to enter the subsequent rotor rows in which energy from the working fluid is

further imparted to the turbine wheel. The pressure-staged impulse turbine
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splits the fluid expansion over all the stator rows. In a reaction turbine, the

expansion of the working fluid is roughly equally divided between the stator

and rotor rows. The pressure drop that is available in the working fluid of

a gas generator cycle is typically very high and favors a simple, lightweight

one- or two stage impulse turbine. Rocket turbines are typically low reac-

tion turbines with a small expansion in the rotor blades. For example, the

supersonic turbine stage investigated by Dorney et al. [5], typical of those

proposed for a reusable launch vehicle, has a reaction of 0.092.

Supersonic axial flow turbines find their application in rocket engines be-

cause they are characterised by a high pressure ratio and therefore have

the potential for large specific work. For a given power level, this type of

turbine is driven by a small amount of working fluid and enables a reduc-

tion in the total number of stages. Supersonic turbines generally operate at

lower efficiency levels which is an inevitable consequence of the high stage

loading. However, when the primary design criteria are a minimum num-

ber of stages and a minimum fluid consumption, the supersonic turbine

may still be the best design choice. In this case, the availability of high

specific work and a low fluid consumption more than compensate for the

lower turbine efficiency.

2.1.2. Design of Supersonic Nozzles

The design of supersonic stator vanes is based on the method of charac-

teristics, which is a general technique for solving hyperbolic partial differ-

ential equations (PDE). The governing equations for the two-dimensional

supersonic flow of a calorically perfect gas are of this type. The method of

characteristics can be efficiently applied to design channels that produce

uniform and parallel flows at supersonic speeds, which is desired for the

flow entering the rotor rows.

The channels of a supersonic first-stage stator row consist of three sec-

tions; a converging section, a diverging section and a straight section on

the suction surface. This is illustrated in Figure 2.2. The flow enters the

stator row through the converging section in the axial direction and is ac-
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celerated to sonic speed. This section is also designed to produce all of the

required flow turning in order to keep the losses to a minimum. In the di-

verging section downstream of the throat the flow expands to the desired

exit Mach number, producing expansion waves that are reflected off the

centerline. The reflections of the expansion waves are cancelled to achieve

uniform and parallel flow at the section exit. By making the throat edge

sharper, nozzles with a smaller axial chord can be achieved that can serve

as the basis for compactness considerations. The straight section on the

supersonic suction surface completes the stator vane profile, and its length

is determined by the required nozzle angle.

By designing the sections described above using the method of characteris-

tics, an inviscid nozzle profile can be obtained, as indicated by the dashed

lines in Figure 2.2. The viscid nozzle profile can be obtained by adding

an estimate of the boundary layer displacement thickness to the diverg-

ing (supersonic) section of the profile, as indicated with the solid lines in

Figure 2.2. The development of the boundary layer in the converging (sub-

sonic) section is negligible.
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Figure 2.2: Design of a supersonic stator vane with a sharp-edged throat (Glassman [6]). A

sharp-edged throat serves as the basis for the design of supersonic stator vanes with minimum

axial length.
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2.2. Two-Dimensional Loss Mechanisms
One of the most important performance parameters for turbines is un-

doubtedly the efficiency. A critical aspect in the analysis of these machines

is the characterisation and assessment of losses that determine the effi-

ciency. The most useful indicator of inefficiency in turbines is irreversible

entropy generation; it can be regarded as lost work and therefore serves as

a rigorous measure of loss. For a calorically perfect gas the specific entropy

generation between two states is given by:

𝑠 − 𝑠 = 𝑐 ln(𝑇𝑇 ) − 𝑅ln(𝑝𝑝 ) (2.1)

where 𝑠 is the entropy, T is the temperature, p is the pressure, 𝑐 is the

specific heat at constant pressure, 𝑅 is the universal gas constant, the

subscript 0 represents stagnation conditions and the subscripts 1 and 2

indicate the initial and final state, respectively. In an adiabatic flow the

stagnation temperature is constant and so entropy generation is only de-

termined by changes in stagnation pressure via:

𝑠 − 𝑠 = −𝑅ln(𝑝𝑝 ) (2.2)

Hence for adiabatic flow, loss of stagnation pressure is formally identical to

entropy generation.

The important sources of irreversible entropy creation are categorised by

Greitzer [7] in a more practical manner in terms of fundamental internal

flow processes as: viscous dissipation by friction in boundary layers, heat

exchanges over finite temperature differences and mixing of mass, momen-

tum and energy.

There are numerous loss mechanisms in axial flow turbines that lead to en-

tropy generation and they can be categorised as two-dimensional or three-

dimensional. The two-dimensional losses are those that would be present

in a cascade test of a turbine blade row with infinite span and are often
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referred to as the profile losses. The three-dimensional losses are the ad-

ditional losses that exist in a turbine that operates in a realistic rotating

arrangement.

The two-dimensional losses in a turbine blade row consist of the blade

boundary layer loss, trailing edge loss and the shock loss. The three-

dimensional loss sources can be separated into the tip-leakage loss, endwall

loss and the loss due to coolant flows.

In the present study only two-dimensional losses will be investigated. Al-

though the importance of the three-dimensional loss mechanisms is ac-

knowledged, this kind of study is considered to be beyond the scope of this

research. The tip-leakage and endwall loss mechanisms can be investi-

gated in follow up research.

This historical breakdown of loss is illustrated in Figure 2.3 and contin-

ues to be widely used although it must be clearly recognised that the loss

mechanisms are seldom really independent.

Overall	Loss

Axial	Turbines

Two-Dimensional
Losses

Three-Dimensional
Losses

Blade	Boundary
Layer	Loss Trailing	Edge	Loss Shock	Loss Tip	Leakage	Loss Endwall	Loss Coolant	Flow	Loss

Figure 2.3: Traditional breakdown of the loss mechanisms in axial flow turbines. In the

present study only the two-dimensional loss mechanisms are investigated.

2.2.1. Boundary Layer Loss

The boundary layer loss may be thought of as the lost work that is ex-

pended against the intense viscous shear within the boundary layers. A

derivation by Denton [3] shows that the rate of change of entropy flux in a
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two-dimensional boundary layer with the conditions of an adiabatic surface

and boundary layer edge is given by:

𝑑
𝑑𝑥 ∫𝜌𝑢 (𝑠 − 𝑠 ) 𝑑𝑦 = ∫ 1

𝑇𝜏 (𝑑𝑢𝑑𝑦 )𝑑𝑦 (2.3)

where 𝑥 and 𝑦 are the Cartesian coordinates along and perpendicular to

the blade surface, respectively, 𝜌 is the density, 𝑢 is the velocity in the

x-direction, 𝜏 is the shear stress with the Cartesian tensor notation, 𝛿 is
the boundary layer thickness and the subscript 𝛿 refers to a quantity at

the boundary layer edge. Equation 2.3 shows that the total rate of entropy

production within boundary layers is proportional to the integral of shear

stress over the boundary layer velocity profile. It is noteworthy to point out

that for most boundary layers, especially for turbulent layers, the velocity

gradients near the surface are the largest and thus the entropy creation is

concentrated in the inner part of the layers. This corollary is also supported

by Dawes [8], who presents a more comprehensive breakdown of entropy

generation and shows that the inner boundary layers contribute to as much

as 90% of the total entropy generation.

By examining Equation 2.3, Young [9], White [10] and Schlichting [11]

found that for compressible flows:

𝑑
𝑑𝑥 (𝜌 𝑢 𝛿 ) = 𝑇 ∫ 1

𝑇𝜏 (𝑑𝑢𝑑𝑦 )𝑑𝑦 (2.4)

where 𝛿 is the boundary layer kinetic energy thickness. The cumulative

rate of dissipation at a certain location along the blade is thus proportional

to the kinetic energy thickness at that location. The rate of dissipation also

scales as the cube of the free-stream velocity so that regions of high free-

stream velocity such as the suction surface become dominant sources of

loss generation.

The entropy production rate is frequently transformed into a dimensionless

boundary layer dissipation coefficient for practical convenience:
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𝐶 = 𝑇
𝜌 𝑢 ∫ 1

𝑇𝜏 (𝑑𝑢𝑑𝑦 )𝑑𝑦 (2.5)

where 𝐶 is the dissipation coefficient. Truckenbrodt [12] and Schlichting

[11] have fit experimental data of the 𝐶 of laminar and turbulent bound-

ary layers, respectively, to the momentum thickness Reynolds number 𝑅𝑒 .

The results suggest that in the range of 𝑅𝑒 where either a laminar or tur-

bulent boundary layer could exist, the 𝐶 in the laminar boundary layer

is much less than in the turbulent one; by a factor of between 2 and 5.

This emphasises the essence of accurately anticipating the boundary layer

transition in order to minimise the boundary layer losses.

2.2.2. Shock Loss

It is well known that shock waves are irreversible and that changes in the

flow properties across it are nearly discontinuous. The discontinuities oc-

cur in extraordinarily short distances that are comparable with a fewmolec-

ular mean free paths (Denton [3]) and give rise to large gradients of velocity

and temperature. This leads to strong thermal conduction and large vis-

cous normal stresses in the interior of the shock wave, making shock waves

a source of entropy generation.

The equation for the entropy increase across a plane normal shock has

been derived by many text books, e.g. by Shapiro [13]. This equation can

be expanded in a power series for a weak shock:

𝑠 − 𝑠
𝑐 ≈ 2𝛾 (𝛾 − 1)

3 (𝛾 + 1)
(𝑀 − 1) + 𝒪 (𝑀 − 1) (2.6)

where 𝑐 is the specific heat at constant volume, 𝑀 is the upstream Mach

number, 𝛾 is the ratio of specific heats and stations 1 and 2 refer to up-

stream and downstream of the shock, respectively. Equation 2.6 shows

that the entropy generation due to a normal shock wave varies linearly

with cube of 𝑀 − 1. Changes in the flow properties are relatively small for
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upstream Mach numbers 𝑀 less than 1.4 (Anderson [14]). However, if the

upstream Mach number further increases, these changes drastically in-

crease and correspondingly the shock loss becomes significant (Dixon and

Hall [15]).

Equation 2.6 is strictly applicable to normal shock waves. To apply Equa-

tion 2.6 to oblique shock waves, the upstream Mach number 𝑀 must rep-

resent the component normal to the oblique shock wave. Inclined shocks

will therefore always produce less entropy compared to a normal shock with

the same upstream Mach number.

There are various other loss mechanisms that can be indirectly attributed

to the occurrence of shock waves in turbines; trailing edge shock system

and shock wave-boundary layer interaction. The trailing edge shock sys-

tem is a direct consequence of the low base pressure acting on the trailing

edge; it causes an expansion of the flow around the trailing edge to this low

base pressure. When the suction and pressure surface flows meet, they are

recompressed by a strong shock. The loss generation arises from the strong

viscous dissipation in the flow separation zone immediately downstream of

the trailing edge and from the recompression shock.

The shock wave-boundary layer interaction can be attributed to the ad-

verse pressure gradient that the boundary layer experiences when it passes

a shock wave. If the shock is weak, usually a separation bubble forms at

the root of the shock with subsequently extra dissipation within and down-

stream of the bubble. If the incoming boundary layer is laminar, the sepa-

ration bubble will almost certainly cause transition of the boundary layer to

a turbulent one. This will increase the 𝐶 significantly, as discussed in sub-

section 2.2.1, and consequently increase the boundary layer losses. If the

shock is strong it may cause complete separation of the boundary layer, and

Denton [3] states that this gives increased contribution to the base pres-

sure term in Equation 2.8, leading to larger trailing edge losses. According

to Atkin and Squire [16], a normal shock is likely to separate a boundary

layer completely if 𝑀 is larger than 1.4. A more accurate approach is con-

sidered by Souverein et al. [17], who proposed a scaling to determine the
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flow regime (attached, incipiently separation, fully separated), which also

constitutes a separation criterion for shock induced separation. The sepa-

ration criterion is only dependent on the free-stream Mach number and the

deflection angle, and successfully classified the separation states for a wide

range of shock wave-boundary layer interactions documented in literature

over a large Reynolds and Mach number range.

2.2.3. Trailing Edge Loss

A frequently occurring situation in internal flow applications is the mix-

ing of two streams of fluid at an angle with different stagnation conditions.

The different streams are subjected to a shear strain rate upon mixing and

generate entropy as a result of the viscous shear. Young and Wilcock [18]

performed a differential analysis on this mixing situation which is not re-

stricted to mixing at either constant area or pressure, and showed that the

irreversible entropy creation per unit mass within the control volume can

be given as:

𝑑𝑠
𝑐 =

�̇�
�̇� {[

(𝑢 − 𝑢 , ) + 𝑢 ,
2𝑐 𝑇 ] + [ ∫ (1𝑇 −

1
�̂�) 𝑑�̂�]} (2.7)

where �̇� is the mass flow rate, �̂� is a dummy variable and the subscript ’inj’

indicates the injected stream. The first term represents the dissipation of

bulk kinetic energy as the two streams mix and their velocities equilibrate.

The second term represents the thermal dissipation as the two streams mix

and their temperatures equilibrate. Multiplying the latter term with �̇�𝑐 𝑇
results in the power that could be obtained theoretically by a Carnot cycle

coupled between the mainstream flow at temperature T and the injected

stream at 𝑇 (Young and Wilcock [18]). It is also noteworthy that all the

kinetic energy injected perpendicular to the mainstream is dissipated.

The loss generated by the constant area mixing of a wake downstream of a

blunt trailing edge for incompressible flow is examined by Denton [3] who
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showed that the stagnation pressure loss coefficient 𝑌 can be expressed as:

𝑌 = −
𝐶 𝑡
𝑤 + 2𝜃𝑤 + (𝛿 + 𝑡𝑤 ) (2.8)

where 𝐶 is the base pressure coefficient, 𝑡 is the trailing edge thickness,
𝑤 is the local passage width at the trailing edge and 𝜃 is the momentum

thickness. The base pressure coefficient is defined as:

𝐶 =
𝑝 − 𝑝
0.5𝜌𝑢 (2.9)

where 𝑝 is the base pressure and the subscript ref indicates a reference

value. The restriction of incompressible flow can be easily relaxed in nu-

merical solutions. The first, second and last term in Equation 2.8 arise due

to the loss generated by the low base pressure acting on the trailing edge,

mixing of the momentum contained in the boundary layers and the simul-

taneous blockage of the boundary layers and the trailing edge, respectively.

2.2.4. Loss Trends

The variation of the loss components with the exit Mach number is shown

in Figure 2.4 for a transonic turbine cascade at a Reynolds number 𝑅𝑒 of
1 × 10 . Measurements of the boundary layer towards the trailing edge of

the suction surface and examination of the wake traverse data have allowed

the individual loss contributions due to the blade boundary layers, shocks

and trailing edge to be determined as energy loss coefficients.

The boundary layer loss decreases monotonically with the exit Mach num-

ber 𝑀 and significantly contributes to the overall loss for subsonic and

transonic 𝑀 . The results indicate that this trend continues for supersonic

𝑀 .

The shock loss is intuitively negligible for 𝑀 < 0.95. For higher values of

𝑀 the shock loss considerably increases and the results suggest it settles

and possibly drops for supersonic 𝑀 . The contribution of the shock loss
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to the overall loss is negligible for subsonic 𝑀 but relatively significant for

transonic 𝑀 .

The trailing edge loss increases with 𝑀 , except for near sonic 𝑀 . The

contribution of the trailing edge loss to the overall loss is significant for

subsonic 𝑀 and even more so for transonic 𝑀 . The results suggest that

this contribution further increases for supersonic 𝑀 .

The total loss remains relatively constant for subsonic𝑀 and this is related

to the absence of shocks and large regions of boundary layer separation.

The total loss suddenly increases for 𝑀 > 0.95 and this is associated to

the appearance of shocks and the increased trailing edge loss contribution.

The results suggest that the total loss levels off for supersonic 𝑀 .

There are no similar studies in literature for supersonic turbines blades;

the present study will investigate the loss trends in the supersonic regime.

Figure 2.4: Experimental measurements of the variation of the energy loss coefficient with

the exit Mach number for a transonic turbine cascade at a Reynolds number of ×
(Mee et al. [1]).
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Compressible Viscous Flow

The aim of the present study is to map the two-dimensional loss charac-

teristics with the isentropic exit Mach number for axial flow turbines for

rocket propulsion applications. Therefore, a theoretical background must

be provided on compressible viscous flow theory.

The treatment in this chapter is deliberately concise as its purpose is to

present the governing equations to give the reader an impression of com-

pressible viscous flows. A comprehensive presentation of compressible vis-

cous flows would be too exhaustive and is clearly beyond the scope of this

study. For a more detailed description the reader is encouraged to closely

examine the work of Anderson [14] and White [10].

In this chapter the Cartesian tensor form with the Einstein convention will

be adopted.

3.1. Governing Equations
Compressible viscous flow is mathematically described by the governing

equations derived from the principles of mass, momentum and energy con-

servation together with the continuum hypothesis. The governing equa-

tions are commonly called the Navier-Stokes (NS) equations and are prob-

ably the most pivotal equations in all of theoretical fluid mechanics. Al-

though strictly speaking the term NS merely refers to the components of

the momentum equation, it is common practise to include the mass and

energy equation in the set referred to as the NS equations. In the present

work this practise will be followed.
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The conservation of mass is described by the continuity equation which re-

lates the local variation of density in time to convective mass transport. The

mass conservation equation for compressible viscous flow without source

terms is given by:

𝜕𝜌
𝜕𝑡 +

𝜕
𝜕𝑥 (𝜌𝑢 ) = 0 (3.1)

where t is the time and 𝑢 and 𝑥 are the velocity and the Cartesian coordi-

nate in the i direction, respectively.

The conservation of momentum equation relates the local change of mo-

mentum in time to convective momentum transport, surface forces due to

pressure and fluid deformation, and to body forces. The influence of body

forces is usually very small, especially in turbomachinery, and can there-

fore be neglected. The momentum conservation equation for compressible

viscous flow without body forces and source terms is given by:

𝜕
𝜕𝑡 (𝜌𝑢 ) +

𝜕
𝜕𝑥 (𝜌𝑢 𝑢 ) = − 𝜕𝑝𝜕𝑥 +

𝜕𝜏
𝜕𝑥 (3.2)

where 𝜏 is the viscous stress tensor. The viscous stress tensor models

stresses that can be attributed to the time rate of strain.

The energy conservation equation can be inferred from the first law of ther-

modynamics and relates the local change of stagnation energy in time to

conductive heat transport and to work done by pressure and viscous forces.

The energy equation can take on many forms but in this study the energy

equation is presented using the stagnation internal energy. The conser-

vation of stagnation internal energy when omitting the work done by body

forces and source terms is given by:

𝜕
𝜕𝑡 (𝜌𝑒 ) +

𝜕
𝜕𝑥 (𝜌ℎ 𝑢 ) = 𝜕

𝜕𝑥 (𝑢 𝜏 ) + 𝜕
𝜕𝑥 (𝜅 𝜕𝑇𝜕𝑥 ) (3.3)

where 𝑒 is the internal energy, ℎ is the enthalpy and 𝜅 is the thermal con-

ductivity.
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3.2. Turbulence
The governing equations of compressible viscous flow are called the NS

equations and these are presented in section 3.1. The governing equations

are a system of coupled and non-linear PDEs that hold for all flows without

source terms, including laminar and turbulent flows. The exact analytical

solution of the NS equations only exists in few situations where many terms

in the governing equations are precisely zero due the physical and geomet-

rical nature of the problem. This results in a set of equations for which the

solution is easily attained analytically or by simple numerical methods. An

assumption that is typically made for many of these cases is that the flow is

laminar. However, most flows encountered in turbomachines are turbulent

and therefore require special treatment.

The fluid motion in a turbulent flow is dictated by complex irregularities

that originate from the interaction of viscous terms and non-linear terms,

making a deterministic approach to turbulence problems difficult. Any per-

turbation applied to a turbulent flow results in an increasing number of

random fluctuations which rapidly propagate in time and space. Applica-

tions such as rocket engine turbines are influenced by turbulent motions

and therefore require a reliable numerical method that is able to overcome

the problems arising in the mathematical solution of the NS equations.

3.2.1. Scales of Turbulent Motion

Turbulence is described by the energy cascade theory as an hierarchy of

eddies of different scales. The turbulent kinetic energy is generated by the

integral scale eddies which are unstable and break down in to inertial and

dissipative scale eddies. The kinetic energy is redistributed from the in-

tegral scale to the dissipative scale in a process called turbulence energy

cascade. While turbulence progresses towards the dissipative scale, the

effects of viscosity become progressively more dominant and the turbulent

kinetic energy is transformed into thermal energy. The redistribution of the

kinetic energy from the integral range to the dissipative range is managed
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by the inertial scale eddies for which the effects of viscosity are not so im-

portant. The rate at which kinetic energy is dissipated by the dissipative

scale eddies can be assumed to be equal to the rate at which kinetic energy

is supplied from the integral scales. This condition is called turbulence

equilibrium and in this case the dissipative length scale (and time and ve-

locity scales) can be completely described by dimensional arguments using

the turbulence dissipation rate and the kinematic viscosity.

𝜂 = (𝜈𝜖 ) (3.4)

where 𝜂 is the Kolmogorov length, 𝜈 is the kinematic viscosity and 𝜖 is the
turbulence dissipation rate. Tennekes and Lumley [19] have shown that

the amount of kinetic energy per unit mass in the integral scale eddies is

proportional to 𝑢 and that the rate of energy transfer to the smaller scales

is proportional to 𝑢/𝑙 where 𝑙 is the integral length scale. The rate of

kinetic energy supply to the dissipative scales is thus of order 𝑢 /𝑙 . The

kinetic energy is dissipated at a rate 𝜖 and in the condition of turbulence

equilibrium this should be equal to the energy supply rate:

𝑙 ∼ 𝑢𝜖 (3.5)

The ratio between the integral scale and the Kolmogorov scale can now be

determined and gives an estimate of the number of turbulent structures

contained in a single turbulent motion in one dimension:

𝑙
𝜂 = 𝑅𝑒 (3.6)

where 𝑅𝑒 is the Reynolds number. It becomes evident from Equation 3.6

that for flows with a high Reynolds number, the turbulence structures vary

on a vast range of length scales. This makes the challenge of directly solving

the NS equations for flows with a high 𝑅𝑒 computationally very expensive.
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3.2.2. Modelling

The previous section sheds light on the difficulty of solving directly the NS

equations for all turbulent structures in a flow. The necessity of resorting

to numerical methodologies is without doubt unquestionable.

Themost rigorous treatment of turbulence involves the direct solution of the

NS equations without any further assumption and is labelled Direct Numer-

ical Simulation (DNS). A DNS is computationally very expensive because it

accurately resolves the length scales and time scales of all turbulent struc-

tures. Ferziger and Perić [20] have shown that for homogeneous isotropic

turbulence, the simplest type of turbulence, the cost of a DNS scales with

𝑅𝑒 . The application of DNS is therefore not feasible for the high Reynolds

number flows that are typically found in turbomachinery for rocket propul-

sion applications.

An alternate approach must therefore be considered; one which only ac-

curately resolves the most important part of the wide range of length and

time scales of a turbulent flow, and models the other part. In this approach,

called Large Eddy Simulation (LES), the dynamics of the integral structures,

which generally contain much more energy than the dissipative structures,

are computed directly and the effects of the dissipative structures are mod-

elled. The size and strength of the integral scale eddies make them without

doubt the most dominant transporters of conserved flow quantities. Al-

though LES is much less costly than DNS, it remains too costly for opti-

misation purposes and is therefore not suited for systematic investigations

aimed at defining best practises for turbomachinery design.

A statistical approach is therefore considered; one where the flow variables

are decomposed into a mean part and a fluctuating part. This approach is

called Reynolds-averaged Navier-Stokes (RANS). The RANS equations can

be obtained by averaging the non-linear NS equations which give rise to

terms that must be modelled. In this approach all unsteadiness is av-

eraged out, i.e. the governing equations are solved for the mean values

which are the most attractive from an engineering point of view. Engineers

are usually only interested in knowing a few properties of a turbulent flow.
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Using higher-fidelity approaches like LES or DNS to determine these prop-

erties is, to say the least, unreasonable. In this regards, RANS represents

a good compromise between accuracy and computational load. The RANS

approach will therefore be utilised in the analysis of the present study.

3.3. Reynolds-Averaged Navier-Stokes
Turbulent flows are inherently unsteady, i.e. their flow patterns constantly

change with time. It is possible however, to define a steady state where

the averaged flow field is invariant with time. In this case, every variable

can be decomposed into a mean and a fluctuating component. This pro-

cedure is called Reynolds averaging and involves different forms; the time-

averaging variant will be adopted throughout the present work. The stan-

dard Reynolds decomposition of any linear term in the governing equations

results in an averaged mean quantity, however, quadratic non-linear terms

introduce two quantities; a product of the averages and a covariance. The

covariance term corresponds to correlations involving density fluctuations

and requires modelling. In the presence of density fluctuations it is there-

fore advised to apply Favre averaging to certain quantities to prevent addi-

tional covariance terms that considerable complicate the averaging proce-

dure.

The NS equations presented in section 3.1 can be rewritten with the av-

eraging formalism presented above. To avoid additional unclosed correla-

tions, the pressure and density are averaged using the Reynolds procedure

whereas all other variables are averaged using the Favre method. The av-

eraged continuity equation can then be expressed as:

𝜕𝜌
𝜕𝑡 +

𝜕
𝜕𝑥 (𝜌 𝑢 ) = 0 (3.7)

where the overbar implies the mean contribution of Reynolds averaging and

the tilde indicates the mean contribution of Favre averaging. The averaged

momentum conservation equation is given by:
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𝜕
𝜕𝑡 (𝜌𝑢 ) +

𝜕
𝜕𝑥 (𝜌𝑢 𝑢 ) = − 𝜕𝑝𝜕𝑥 + 𝜕

𝜕𝑥 (𝜏 − 𝜌𝑢 𝑢 ) (3.8)

where the turbulent fluctuations are denoted by a double prime. The aver-

aged stagnation internal energy conservation equation is given by:

𝜕
𝜕𝑡 (𝜌𝑒 ) +

𝜕
𝜕𝑥 (𝜌ℎ̃ 𝑢 ) = 𝜕

𝜕𝑥 (𝜅 𝜕𝑇𝜕𝑥 − 𝜌𝑢 ℎ″ + 𝜏 𝑢 − 𝜌𝑢 𝑘)

+ 𝜕
𝜕𝑥 [𝑢 (𝜏 − 𝜌𝑢 𝑢 )]

(3.9)

where 𝑘 = 𝑢 𝑢 is the turbulent kinetic energy. Strictly speaking, these

equations are called the Favre-averaged RANS equations, but it is a com-

mon practise to refer to them as the RANS equations. This practise will be

adopted throughout the present study.

The RANS equations can be taken to be synonymous with the NS equations

with the exception of some additional terms that require modelling. Closure

of Equation 3.7 to Equation 3.9 requires the transport of momentum due

to turbulent fluctuations, denoted by Favre-averaged Reynolds-stress ten-

sor 𝜌𝑢 𝑢 , and the turbulent heat transport (𝜌𝑢 ℎ″) to be supplied. The
Favre-averaged turbulent kinetic energy is often omitted or obtained using

a turbulence model.

The Bousinessq eddy viscosity hypothesis is an attractive approach to achieve

the aforementioned closure. This approach assumes that the turbulent

shear stress is linearly related to the mean rate of strain. The basic idea is

that the integral scale eddies predominantly influence momentum transfer

in turbulent flows. The Boussinesq eddy viscosity hypothesis for compress-

ible RANS reads:

− 𝜌𝑢 𝑢 = 2𝜇 𝑆 − 23𝜇 𝑆 𝛿 − 23𝜌𝑘𝛿 (3.10)

𝑆 = 1
2 (

𝜕𝑢
𝜕𝑥 +

𝜕𝑢
𝜕𝑥 ) (3.11)
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where 𝜇 is the turbulent/eddy viscosity, 𝑆 is the strain rate tensor and 𝛿
is the Kronecker delta. The turbulent heat transport is commonly approx-

imated using the classical Reynolds analogy:

𝜌𝑢 ℎ″ = −𝜅 𝜕𝑇
𝜕𝑥 (3.12)

where 𝜅 is the turbulent/eddy thermal heat conductivity. Application of

the eddy viscosity hypothesis allows the dynamic viscosity 𝜇 in the viscous

stress tensor in Equation 3.2 and Equation 3.3 to be replaced by the sum

of a laminar and turbulent component:

𝜇 = 𝜇 + 𝜇 (3.13)

where 𝜇 is the laminar viscosity, which can be computed using Suther-

land’s law. In a similar fashion, according to the Reynolds analogy, a lam-

inar and turbulent component can be used to replace the thermal conduc-

tivity 𝜅 in Equation 3.3:

𝜅 = 𝜅 + 𝜅 = 𝑐 ( 𝜇𝑃𝑟 +
𝜇
𝑃𝑟 ) (3.14)

where 𝜅 is the laminar thermal heat conductivity and 𝑃𝑟 and 𝑃𝑟 are the

laminar and turbulent Prandtl numbers, respectively.

Thermodynamic closure can be achieved by assuming a calorically perfect

gas. The following relations then hold: 𝑝 = (𝛾 − 1) 𝜌 (𝑒 − 𝑢 𝑢 ), 𝑇 = 𝑝/𝜌𝑅
and 𝑐 = 𝛾𝑅/ (𝛾 − 1).
The eddy viscosity hypothesis is very attractive from an engineering per-

spective because it only requires the determination of the eddy viscosity.

The two turbulence models implemented in the SU2 suite are the one equa-

tion Spalart-Allmaras (SA) model and the two equation 𝑘 − 𝜔 Shear Stress

Transport (SST) model. The SA model is effectively a low Reynolds number

model and is not suitable for compressible flow unless the model is adapted.

Turbulence closure in the present study will therefore be achieved with the

𝑘 − 𝜔 SST model.
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3.3.1. 𝑘 − 𝜔 SST

In the present study turbulence closure will be achieved with Menter’s [21]

widely used 𝑘 − 𝜔 Shear Stress Transport (SST) model. This is a two-

equation model for the Reynolds/Favre-averaged turbulent kinetic energy

and specific turbulence dissipation rate 𝜔. The model consists of a blend of

the traditional high Reynolds number 𝑘−𝜖 model which has been converted

into the 𝑘−𝜔 formulation, and the 𝑘−𝜔 model by Wilcox. In this effort, the

SST model attempts to merge the superior elements of both models. The

𝑘 − 𝜔 SST model formulates the eddy viscosity as:

𝜇 = 𝑎 𝜌𝑘
𝑚𝑎𝑥 (𝑎 �̃�, 𝑆𝐹 ) (3.15)

where 𝑎 is a model constant, 𝑆 = √2𝑆 𝑆 and 𝐹 is the second blending

function. The 𝑘 −𝜔 SST model must be run with a suitable boundary layer

spacing to allow for 𝑦 ≈ 1 in order to prevent deterioration of the results.

The values for the model constants and the form of the transport functions

for the turbulent kinetic energy and specific turbulence dissipation rate,

and the blending and auxiliary functions can be found in the paper by

Menter [21].
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Chapter 4

Adjoint-Based Shape
Optimisation

This chapter presents the governing equations of the adjoint optimisation

method, with emphasis on the discrete approach. A brief discussion on the

adjoint solver, surface parametrisation and mesh deformation methods is

also presented.

The treatment in this chapter is intentionally brief as its purpose is to intro-

duce the reader to the discrete adjoint method, emphasising its simplicity

when viewed in the context of linear algebra. A detailed discussion on this

topic is too exhaustive and is clearly beyond the scope of this research. For

a more detailed presentation the reader is encouraged to closely examine

the work of Giles and Pierce [22] and Pini [23].

All vectors presented in this chapter are conventionally assumed as column

vectors.

4.1. Governing Equations
The goal of fluid dynamic design optimisation is to minimise a cost function

𝐽 that for most practical purposes has a non-linear dependence on a set of

discrete state variables. Pini et al. [24] elaborate that in fluid dynamic

problems, the cost function generally depends on a vector of physical and

geometrical design variables 𝛼𝛼𝛼, state variables u and mesh points X. The

state variables represent all the conserved flow variables that arise from the

approximate solution of the flow governing equations at the discrete mesh
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points. The state variables are dependent on the physical and geometrical

variables while the mesh points solely depend on the geometrical param-

eters. For most practical purposes however, the physical variables can be

considered as fixed and can therefore be omitted from the design variable

vector. The cost function can then be written as:

𝐽 = 𝐽 [u (𝛼𝛼𝛼) ,X (𝛼𝛼𝛼)] (4.1)

The state variables u are constrained to satisfy the flow governing equations

presented in section 3.3 for an arbitrary choice of 𝛼𝛼𝛼. The residuals of the
governing equations R can be symbolically written as:

R [u (𝛼𝛼𝛼) ,X (𝛼𝛼𝛼)] = 0 (4.2)

Notice that Equation 4.2 can be considered an equality constraint for the

fluid dynamic design optimisation. The equality constraint must hold for

any choice of 𝛼𝛼𝛼 and therefore the derivative of R must also be null at all

times. The derivative of R can be expressed as:

𝑑R
𝑑𝛼𝛼𝛼 =

𝜕R
𝜕u

𝜕u
𝜕𝛼𝛼𝛼 +

𝜕R
𝜕X

𝜕X
𝜕𝛼𝛼𝛼 = 0 (4.3)

In fluid dynamic design optimisation the main question of interest is; what

is the perturbation in the cost function due to a perturbation in the geome-

try and thus in the flow field? The gradient of the cost function with respect

to the geometrical design variables reads:

𝑑𝐽
𝑑𝛼𝛼𝛼 =

𝜕𝐽
𝜕u
𝜕u
𝜕𝛼𝛼𝛼 +

𝜕𝐽
𝜕X

𝜕X
𝜕𝛼𝛼𝛼 (4.4)

The aim is to evaluate Equation 4.4 while the state variables are constraint

to satisfy Equation 4.2. The direct sensitivity of the cost function to per-

turbations in the state variables is easy to evaluate. The computation of

the direct sensitivity of the state variables to perturbations in the geomet-

rical variables is usually a very demanding and computationally inefficient
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operation. A straightforward but computationally prohibitive method to

compute 𝜕u/𝜕𝛼𝛼𝛼 is the finite difference method. In an alternative attempt,

the same sensitivity is obtained by resolving the so called primal form of

the optimisation given by:

(𝜕R𝜕u )(
𝜕u
𝜕𝛼𝛼𝛼) = −(

𝜕R
𝜕X

𝜕X
𝜕𝛼𝛼𝛼 ) (4.5)

The primal form however requires considerable CPU memory utilisation as

a series of N decoupled linear systems has to be solved, where N represents

the number of columns in the term (𝜕𝑅/𝜕X)(𝜕X/𝜕𝛼𝛼𝛼) which is equal to the

number of geometrical design variables. Solving the primal form can be

avoided by rewriting Equation 4.5 as:

𝜕u
𝜕𝛼𝛼𝛼 = −(

𝜕R
𝜕u ) (𝜕R𝜕X

𝜕X
𝜕𝛼𝛼𝛼 ) (4.6)

and by plugging the previous equation in Equation 4.4. The result is that

the cost function gradient with respect to the geometrical design variables

can be expressed as:

𝑑𝐽
𝑑𝛼𝛼𝛼 = −

𝜕𝐽
𝜕u (

𝜕R
𝜕u ) (𝜕R𝜕X

𝜕X
𝜕𝛼𝛼𝛼 ) +

𝜕𝐽
𝜕X

𝜕X
𝜕𝛼𝛼𝛼 (4.7)

The term (−𝜕𝐽/𝜕u)(𝜕R/𝜕u) is called the adjoint variables vector v. Con-
sequently the adjoint variables vector can be determined by resolving the

so called linear adjoint system:

(𝜕R𝜕u )
⊺
v = −( 𝜕𝐽𝜕u)

⊺
(4.8)

which is the dual form of the primal system and represents the adjoint

equations in discrete form. The gradient of the cost function with respect

to the design variables is finally expressed as:
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( 𝑑𝐽𝑑𝛼𝛼𝛼)
⊺
= (𝜕X𝜕𝛼𝛼𝛼 )

⊺
[( 𝜕𝐽𝜕X)

⊺
+ (𝜕R𝜕X)

⊺
v] (4.9)

It is noteworthy to point out that unlike the primal form, computation of

the dual form is independent of the number of geometrical design variables.

The choice is to solve either the primal form given by Equation 4.5 or the

dual (adjoint) form given by Equation 4.8. For a single geometrical design

variable there would be no benefit nor disadvantage in using the adjoint

approach. For multiple geometrical design variables however, the primal

form has to be solved for each design variable whereas the dual form only

has to be solved once. This results in the adjoint approach to be computa-

tionally much more efficient.

In addition to the flow governing equations, engineering design applications

often also require a set of constraints to be satisfied. Some constraints

can be geometric while others may depend on the flow variables. Geo-

metric constrains are easily incorporated by altering the search direction

for the design variables to ensure that the geometric constraints are sat-

isfied. Constraints that depend on the flow variables require the value of

the constraint function and its linear sensitivity to the design variables.

The latter requires another adjoint calculation; the addition of more flow-

based constraints would require even more adjoint calculations. This type

of constraint therefore undermines the computational benefit of the adjoint

approach and should therefore be kept to a minimum.

4.2. Adjoint Solver
The evaluation of the cost function gradient with respect to the design vari-

ables, defined by Equation 4.9, involves several Jacobian matrices that

have to be build. This requires a numerical gradient calculation method;

the Algorithmic Differentiation (AD) method is first formally described. This

method is implemented in the SU2 computational suite adopted in the

present study.
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The AD technique exploits the fact that every function specified by a com-

puter program is a concatenation of elementary arithmetic operations. By

applying the chain rule to this concatenation, derivatives of arbitrary order

can be precisely determined with computer accuracy. The AD technique

can be used in forward or reverse mode; the difference lies in the direction

of traversing the chain rule derivatives.

The step-by-step procedure of calculating the cost function gradient with

respect to the design variables, as defined by Equation 4.9, can be briefly

summarised as:

1. The first step is to calculate the adjoint variables vector v appearing

in the last term in Equation 4.9. The adjoint vector is obtained by

solving Equation 4.8 which has the form Av = b, where A = (𝜕R/𝜕u)⊺

and b = −(𝜕𝐽/𝜕u)⊺. In the present study the iterative flexible gener-

alised minimum residual (FGMRES) solver is adopted. This type of

matrix-free solver does not require the explicit evaluation of the Jaco-

bian (𝜕R/𝜕u), but it only calculates the product of (𝜕R/𝜕u)⊺v at each

iteration. The FGMRES method utilises the AD technique presented

above in reverse mode to construct (𝜕R/𝜕u)⊺ and −(𝜕𝐽/𝜕u)⊺.

2. The second step is to calculate the gradient of the cost function with

respect to the entire set of mesh points, given by the term in brackets

Equation 4.9. This term is calculated by separately differentiating the

numerical procedures that implement the functional 𝐽 (X) and R (X)
using the AD technique in reverse mode. The transposed derivative

of the functional R (X) is then multiplied with the adjoint variables

vector and summed with the transposed derivative of 𝐽 (X).

3. The last step is to calculate the rate of mesh perturbation for a change

in the design variables, given by the first term in parentheses in Equa-

tion 4.9, and to multiply its transpose with the gradient obtained in

the previous step. The mesh perturbation gradient is obtained by dif-

ferentiation of the mesh deformation equations, which are presented

in section 4.4, using the AD formalism in reverse mode.
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4.3. Surface Parametrisation
A critical aspect of automated fluid dynamic design of turbomachinery is the

selection of an appropriate shape parametrisation method. The parametri-

sation method is key to ensure robustness and design flexibility of the en-

tire optimisation process. Vitale et al. [25] report that the use of surface

nodes as design variables may lead to discontinuous solutions. An alter-

nate method must therefore be considered; Samareh [26, 27] performed a

survey of shape parametrisation techniques and states that the Computer-

Aided Design (CAD) and the Free Form Deformation (FFD) methods have

the desirable characteristics of being efficient, compact and suitable for

complex configurations.

In a CAD-based method, the blade shape is parametrised with non-uniform

rational basis spline (NURBS) curves and the position of the control points

is derived from geometrical characteristics of the blade. The advantage of

this method is that large shape changes can be achieved and that blade

geometrical constraints can be easily implemented. However, parametrisa-

tion of existing complex shapes is still a challenging task and the shapes

created are not always good enough for automated mesh generation tools.

The implementation of a CAD-based method in the computational tool used

in the present study would be time consuming and costly and is therefore

not considered ideal.

In a FFD-basedmethod, a parallelogram control lattice is constructed around

(a part of) the blade surface and is deformed using a tensor product of Bern-

stein basis polynomials. The embedded surface mesh points are deformed

in a continuous way by moving only the control points of the lattice. The

FFD approach only allows small to medium geometry changes. The advan-

tage of parametrising the mesh on the surface is that the topology stays

fixed throughout the optimisation; hence, the mesh can be deformed au-

tomatically. According to Anand et al. [28], the FFD-based method also

offers a high degree of flexibility, but makes it hard to satisfy geometrical

constraints. The geometrical constraints could be imposed by adapting the

lattice to indirectly satisfy the geometrical constraints. The appealing fea-
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tures of the FFD technique make it ideal for the present work.

4.4. Mesh Deformation
In the course of the optimisation, changes are made to the blade surface

and therefore the mesh must be regenerated or deformed accordingly. De-

forming a mesh tends to be substantially cheaper and more convenient

than to regenerate it.

4.4.1. Surface Deformation

The control points P , of the FFD control lattice can be displaced to con-

tinuously deform the embedded surface mesh points X . The control points

are therefore chosen as design variables, i.e. 𝛼𝛼𝛼 = P , . The coordinates of

the nodes on the deformed surface for the 𝑑 optimisation step are given

by:

X = X + ΔX (4.10)

The displacement of the surface nodes embedded in the control lattice can

be expressed as a linear combination of lattice control points P , and

Berstein polynomials 𝐵 as:

ΔX = ∑ ∑𝐵 (𝑦 )𝐵 (𝑦 ) (P , − P , ) (4.11)

where 𝑦 is the local coordinate of X with respect to the control lattice in

the 𝑝 direction, 𝐵 is the 𝑚 Bernstein polynomial in the 𝑝 direction

and k represents the FFD degree in the 𝑝 direction.
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4.4.2. Volume Deformation

The mesh deformation algorithm implemented in SU2 is based on a spring

analogy method proposed by Dwight [29]. In this approach, the mesh is

modelled as an elastic solid using the equations of linear elasticity. If the

surface deformation ΔX is imposed as a Dirichlet boundary condition in the

equations of linear elasticity , the mesh deformation ΔX can be determined

by solving the linear system (Vitale [30]):

KΔX = TΔX (4.12)

where K is a stiffness matrix and T is a projection matrix which re-orders

ΔX in accordance with X. The coordinates of the mesh points for the 𝑑
optimisation step are then given by:

X = X + ΔX (4.13)

A significant advantage of this approach is that diverse features required

in practise can be readily and simply realised in a manner consistent with

the model of the mesh as an elastic body (Dwight [29]). However, large

surface variations can possibly produce unacceptable meshes due to the

fixed topology. In this case the mesh must be regenerated manually during

the optimisation.

An overview of the mesh deformation method is illustrated in Figure 4.1.

This type of method is included in the SU2 computational suite used in the

present study.

Surface	Deformation Volume	Deformation Flow	Solver
� �

�
� �

Mesh	Deformation

� (�)

Figure 4.1: Formal representation of the mesh deformation method based on the equations of

linear elasticity. This method is implemented in the SU2 computational suite adopted in the

present study.
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Chapter 4. Adjoint-Based Shape Optimisation

4.5. Design Optimisation Chain
An overview of the automated design optimisation chain is visualised in

Figure 4.2. This optimisation framework is implemented in the SU2 com-

putational suite adopted in the present study.

Mesh	Deformation Flow	Solver Cost	Function
Convergence?	

Terminate	
Optimisation

Adjoint	Solver Alter	Design	
Variables

Yes

No

Figure 4.2: Formal representation of the automated adjoint-based design optimisation chain.

This framework is implemented in the SU2 computational suite adopted in the present study.
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Methodology

This chapter presents an extensive description of the numerical setup and

the loss breakdown method. The computational tool adopted in the present

study is also briefly discussed.

5.1. Numerical Setup
The RANS-based discrete adjoint optimisation framework discussed in chap-

ter 4 is now applied to improve the performance of the stator vane shown in

Figure 5.2A. The supersonic stator vane is designed to operate with a high

pressure ratio at design point and is employed in the first turbine stage of

a 1MN-class gas generator cycle type rocket engine. The operating condi-

tions are listed in Table 5.1 but can not be disclosed due to confidentiality

reasons. The compressibility factor is unity and heat transfer effects are

neglected.

𝑝 𝑇 𝑝

𝑝 𝑇 𝑝

Table 5.1: Inlet stagnation pressure and

temperature, and outlet pressure for the

design optimisation.

�̇� 𝛼 𝑀

�̇� 𝛼 𝑀

Table 5.2: Average target values for the

mass flow rate, outlet Mach number and

outlet flow angle .
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5.1.1. Computational Tool

The computational tool utilised throughout the present work is the open-

source software SU2 which is extensively described by Economon et al.

[31]. SU2 is conceived for solving multi-physics PDEs and PDE-constrained

optimisation problems using unstructured meshes. The tool leverages on

an optimisation framework that incorporates a RANS discrete adjoint solver.

The flow and the adjoint solver can be run on parallel CPU architectures,

making the SU2 optimisation framework highly suited for systematic in-

vestigations aimed at defining best practises for turbomachinery design.

The platform has been extended for turbomachinery applications by the

Propulsion & Power group from the faculty of Aerospace Engineering at the

University of Technology in Delft.

5.1.2. Flow Solver

The RANS equations discussed in section 3.3 are solved with the SU2 flow

solver in order to obtain numerical flow solutions of the supersonic stator

vane. Thermodynamic closure is achieved by assuming a calorically perfect

gas, which is a valid approximation considering that the compressibility fac-

tor is unity, while turbulence closure is achieved by the two-equation 𝑘−𝜔
SST model discussed in subsection 3.3.1. The laminar viscosity is deter-

mined using Sutherland’s law and the laminar Prandtl number is assumed

to be constant.

The flow solver is based on a finite volume method for spatial integration

whereas in the present study the temporal integration is achieved through

an implicit Euler method with a fixed Courant-Friedrichs-Lewy number of

10. The convective fluxes are discretised using a second-order accurate

classic upwind Roe scheme and spurious oscillations due to shocks and

discontinuities are avoided by the van Albada slope limiter. The viscous

fluxes are determined using the weighted least square method. The 𝑘 − 𝜔
SST equations are solved using an upwind scheme with a first-order re-

construction. The flow solver utilises the FGMRES method, which is an

44



Chapter 5. Methodology

efficient iterative matrix-free solver. The performance of this solver is fur-

ther enhanced using the Lower-Upper Symmetric Gauss-Seidel (LUSGS)

preconditioner.

Non-reflecting boundary conditions are implemented allowing calculations

to be performed on truncated domains without generation of non-physical

reflections at the far-field boundaries, leading to improved accuracy and

computational efficiency because the mesh can be made much smaller

(Giles [32]). The number of iterations is set to result in a reduction of about

four orders in the residuals of the conserved quantities in the governing

equations.

All the relevant settings of the SU2 flow solver are listed in Table 5.3.

Setting

Governing Equations RANS

Turbulence Modelling 𝑘 − 𝜔 SST

Flow Turbulence

Time Discretisation Euler Implicit

Spatial Gradients Weighted Least Squares

CFL 10 1

Convective Numerical Method Upwind Roe Scalar Upwind

Spatial Integration 2nd order 1st order

Slope Limiter Van Albada Edge Venkatakrishnan

Setting

Linear Solver FGMRES

Preconditioner LUSGS

Table 5.3: An overview of all the relevant settings of the SU2 flow solver.
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5.1.3. Adjoint Solver

The adjoint equations discussed in section 4.1 are solved with the SU2

adjoint solver. The adjoint solver also utilises the FGMRES method with

the LUSGS preconditioner. The gradient components are efficiently con-

structed by exploiting the AD technique in reverse mode, preliminarily to

evaluate the adjoint system, then to obtain the terms appearing in the

derivative of the cost function with the design variables. All the relevant

settings of the SU2 adjoint solver are listed in Table 5.4.

Setting

Adjoint Solver FGMRES

Preconditioner LUSGS

Table 5.4: An overview of all the relevant settings of the SU2 adjoint solver

5.1.4. Optimisation

The optimisation process aims at minimising the entropy generation coeffi-

cient 𝜉 while achieving the average target flow quantities listed in Table 5.2.

The values of the average target flow quantities cannot be disclosed due to

confidentiality reasons. The cost function in the adjoint equations pre-

sented in chapter 4 is the entropy generation coefficient, i.e. 𝐽 = 𝜉 . The

entropy generation coefficient is defined as:

𝜉 = 𝑠 − 𝑠
(5.1)

where 𝑢 = √2 (ℎ − ℎ ) is the isentropic downstream velocity, also re-

ferred to as the spouting velocity. The thermodynamic quantities required

to calculate the entropy generation coefficient and the isentropic down-

stream velocity are obtained using the mixed-out averaging procedure.
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Constraints

An optimisation of the entire stator vane is very challenging due to the per-

formance, manufacturing and thermomechanical constraints. To satisfy

the mass flow rate criteria for a given working fluid and for the upstream

stagnation conditions listed in Table 5.1, the throat area must remain un-

altered to keep the corrected flow per unit area constant. In addition, the

stator vane is built layer by layer in the axial direction using additive man-

ufacturing; this imposes a limit on the maximum surface angle upstream

of the throat. At last, a minimum trailing edge thickness is enforced by

thermomechanical constraints.

As a result, the only parts of the stator vane surface that can be changed

are the leading edge, pressure surface and the supersonic suction surface.

It is hypothesized that the former two parts of the stator vane surface do

not largely influence the overall flow because they mostly operate in the

subsonic regime. The focus is therefore turned to improve the performance

of the supersonic suction surface. In this way, the mass flow rate, the man-

ufacturing and thermomechanical requirements can be indirectly satisfied.

The hypothesis is proven by inspection of the values of the entropy genera-

tion gradient computed all along the blade surface. The results are shown

in Figure 5.1 and indicate that only changes in the supersonic suction sur-

face significantly impact the entropy generation.

Since the throat and trailing edge shapes are fixed, the overall passage area

ratio is also fixed. It is therefore expected that the outlet flow angle and the

outlet Mach number will not significantly change. These performance con-

straints will therefore not be directly imposed on the optimisation. If the

outlet flow angle and Mach number constraints are not satisfied after a

preliminary optimisation, the optimisation problem will be reformulated to

include them.
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Figure 5.1: Gradient vectors of the entropy generation coefficient with respect to the surface

points of the supersonic stator. The axial location, pitchwise location and axial chord are given

by , and , respectively. Note that the gradients on the leading edge, pressure surface and

subsonic suction surface are very small.

Surface Parametrisation

The FFD method discussed in section 4.3 is applied to parametrise the

supersonic suction surface of the stator vane. The control lattice is defined

by 𝑘 = 8 degrees in the 𝑝 direction and 𝑙 = 4 degrees in the 𝑞 direction,

as shown in Figure 5.2B. The total number of control variables is 45. The

control points are bound to move perpendicular to the axial direction.
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(A) (B)

Figure 5.2: (A) Geometry of the supersonic stator vane. (B) FFD parametrisation of the su-

personic suction surface. The red dots are the design variables of the FFD method. The axial

location, pitchwise location and axial chord are given by , and , respectively.

Mesh Deformation

Changes made to the blade surface are propagated through the mesh using

the spring analogy method described in section 4.4.

Optimisation Problem

The unconstrained optimisation of the supersonic suction surface of the

stator vane is formulated as:

minimise 𝐽 (𝛼𝛼𝛼) = 𝜉 (𝛼𝛼𝛼)

where the vector of geometrical design variables 𝛼𝛼𝛼 is defined by the set of

45 control points shown in Figure 5.2B. Recall that the performance con-

straints listed in Table 5.2, and the manufacturing and thermomechanical

constraints are indirectly satisfied.
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Optimiser

The gradient-based optimisation framework implemented in SU2 uses a

Sequential Least Squares Programming (SLSQP) algorithm to minimise the

cost function. This algorithm uses the Quasi-Newtonmethod with a Broyden-

Fletcher-Goldfarb-Shanno update for the Hessian of the cost function. Con-

vergence of the optimisation is achieved by satisfying the Karush-Kuhn-

Tucker (KKT) conditions with a tolerance of 1 × 10 . The cost function is

scaled with 1 × 10 and the maximum number of optimisation iterations

is set to 50. All the relevant settings of the SU2 optimiser are listed in

Table 5.5.

Setting

Optimiser SLSQP

Convergence Criteria KKT

Convergence Tolerance 1 × 10
Scaling of Cost Function 1 × 10

Maximum Number of Iterations 50

Table 5.5: An overview of all the relevant settings of the SU2 optimiser.

5.2. Loss Breakdown Method
There are various ways to define loss coefficients that measure loss creation

in turbines; a comparison by Brown [33] shows that values of the energy

loss coefficient change the least with the Mach number. In the present

study losses are determined using the energy loss coefficient 𝜉 ≈ 1−𝜂 which
is proposed in the experimental study by Mee et al. [1], where 𝜂 is the

primary efficiency. The efficiency parameter 𝜂 is a ratio of the attained

kinetic energy to the isentropic kinetic energy at the downstream plane. In

terms of the enthalpy ℎ the energy loss coefficient for a turbine blade row

may be written as:
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𝜉 ≈ 1 − 𝜂 = 1 − ℎ − ℎ
ℎ − ℎ (5.2)

where 𝜉 is the energy loss coefficient and the subscript s refers to a quantity
that is obtained in an isentropic process.

The two-dimensional loss components discussed in section 2.2 can be ex-

pressed in terms of the energy loss coefficient defined by Equation 5.2. An

overview of the loss breakdown method for supersonic blades developed in

the present study is illustrated in Figure 5.3 and a detailed explanation

on the different loss components and the total loss is given in the follow-

ing subsections. For subsonic and transonic blades, an overview of the

methodology can be found in Appendix A.
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Figure 5.3: Overview of the two-dimensional loss breakdown method for supersonic blades

adopted in the present study, where the superscript indicates a mass-weighted average.

The loss components and the total loss are expressed in terms of the energy loss coefficient

and it is assumed that the working fluid is fixed and behaves like a calorically perfect gas.

Stations 1 and 2 refer to the upstream and downstream plane, respectively.
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5.2.1. Boundary Layer Loss

The boundary layer loss can be quantified in terms of the energy loss coef-

ficient by relating it to the mechanical energy that is converted into heat in

the layers. An estimate of this dissipation can be obtained by measuring

the defect between the mechanical energy in the actual layers and those

that would be present at free-stream conditions. This is done using the

kinetic energy thickness 𝛿 which is defined as:

𝛿 = ∫ 𝜌𝑢
𝜌 𝑢 (𝑢 − 𝑢 )𝑑𝑦 (5.3)

The rate of kinetic energy loss in the boundary layer �̇� is then given by:

�̇� = 0.5𝜌 𝛿 𝑢 (5.4)

If the flow expanded isentropically from upstream conditions to the down-

stream conditions, the kinetic energy flux at the downstream plane would

be:

�̇� = �̇� (ℎ − ℎ ) (5.5)

Noting that for a calorically perfect gas ℎ = 𝑐 𝑇 and that for isentropic flow

𝑇 = 𝑇 , Equation 5.5 can be rewritten as:

�̇� = �̇�𝑐 𝑇 [1 − (1 + 𝛾 − 12 𝑀 ) ] (5.6)

where 𝑀 is the isentropic exit Mach number. The boundary layer energy

loss coefficient 𝜉 can now be determined as the ratio of Equation 5.4 and

Equation 5.6 as (Mee et al. [34]):

𝜉 = 0.5𝜌 𝛿 𝑢

�̇�𝑐 𝑇 [1 − (1 + 𝑀 ) ]
(5.7)
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In the present study the layers are extracted at 0.75 𝑙/𝑙 and 0.9 𝑙/𝑙
of the pressure and suction surface, respectively, where the curvilinear ab-

scissa 𝑙 is measured from the leading edge. The height used for the bound-

ary layer extraction is estimated from a preliminary CFD calculation. The

boundary layer extraction on the baseline profile is illustrated in Figure 5.4.

Figure 5.4: Visualisation of the boundary layer (red) extraction at 0.75 / and 0.9 / of

the pressure and suction surface, respectively, where the curvilinear abscissa is measured

from the leading edge. The axial location, pitchwise location and axial chord are given by ,

and , respectively.

According to Mee et al. [34], the contribution of the pressure surface bound-

ary layer to the overall boundary layer loss is negligible because it is one

order of magnitude smaller than the suction surface layer. Here, it is not

considered mostly because of ease of implementation.
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5.2.2. Shock loss

The shock loss component is evaluated in terms of the energy loss co-

efficient by investigating the stagnation pressure deficit in the wake-free

regions at the downstream plane. Recall that for an isentropic process

𝑇 = 𝑇 and also:

𝑇
𝑇 = ( 𝑝𝑝 ) (5.8)

By combining these two properties of an isentropic flow, and noting that

for a calorically perfect gas ℎ = 𝑐 𝑇, the energy loss coefficient given by

Equation 5.2 can be rewritten as (Oldfield et al. [35]):

𝜉 = 1 −
1 − ( )

1 − ( )
(5.9)

where 𝜉 is the shock wave energy loss coefficient. The pressure and stag-

nation pressures in Equation 5.9 must be estimated in a way that they

represent the shock loss. To develop one comprehensive method for sub-

sonic, transonic and supersonic flows is quite cumbersome, and therefore

two different approaches are proposed below.

Subsonic and Transonic Flows

In subsonic and transonic flows an estimate of the pressure and the stag-

nation pressures in Equation 5.9 is obtained by extracting a streamline

that is not affected by the boundary layer and the trailing edge loss, a so

called inviscid streamline. This type of streamline is set to pass through the

center of the throat section. This crude approximation holds quite well for

subsonic and transonic flows, as will be demonstrated in subsection 5.2.5.

Figure 5.5 illustrates the inviscid streamline for the LS89 turbine stator

vane operating under subsonic and transonic operating conditions.
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(A) = 0.81 (B) = 1.04

Figure 5.5: Visualisation of the inviscid streamline (solid line) for the LS89 blade for subsonic

(A) and transonic (B) operating conditions. The inviscid streamline passes through the center

of the throat (dotted line). The pressure and stagnation pressure along the inviscid streamline

are used for the calculation of the shock loss.

Supersonic Flows

The inviscid streamline method described above does not work for super-

sonic flows because the strong shocks cause significant deflection of the

streamline, often resulting it to end near or inside a wake. Therefore, for

supersonic flows, a mass-weighted average for the downstream static pres-

sure and stagnation pressure is calculated in the wake-free regions. The

wake-free regions are crudely defined as the downstream locations in which

the local stagnation pressure is larger than the mass-weighted average of

the entire downstream plane. The upstream stagnation pressure can be

calculated as a mass-weighted average for the entire upstream plane.

The wake-free region obtained with this method is highlighted in Figure 5.6,

which shows the pitchwise stagnation pressure at the downstream plane

of the supersonic stator vane investigated in the present study. Figure 5.7

shows the stagnation pressure contour of the same stator vane. A manual

inspection of the wake-free region in Figure 5.7 reveals that the proposed

method for supersonic flow, demonstrated in Figure 5.6, is fairly accurate.
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Figure 5.6: Definition of the downstream wake-free region for the supersonic stator vane

investigated in the present study under nominal operating conditions, where is the pitchwise

location, is the blade pitch and the subscript M represents a mass-weighted average.

Figure 5.7: Manual inspection of the wake-free region using the stagnation pressure contour

of the supersonic stator vane studied in the present study under nominal operating conditions,

where is the pitchwise location and is the blade pitch.
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5.2.3. Trailing Edge Loss

The trailing edge loss is computed in terms of the energy loss coeffient as

the difference between the total loss, and the individual loss contributions

originating from the boundary layers and the shocks. The trailing edge loss

is given by:

𝜉 = 𝜉 − 𝜉 − 𝜉 (5.10)

where 𝜉 and 𝜉 are the trailing edge energy loss coefficient and the total

energy loss coefficient, respectively.

5.2.4. Total Loss

The total loss is determined in a similar fashion as the shock loss. How-

ever, the mass-weighted average for the downstream static pressure and

stagnation pressure are now calculated for the entire downstream plane so

that they represent all the losses occurring in the blade passage.

5.2.5. Validation

The loss breakdown procedure is validated with experimental results pro-

duced by Mee et al. [1]. The experimental results are shown in Figure 2.4.

The geometry of the transonic turbine stator blade used in the experimental

study is not available in literature and therefore the transonic LS89 turbine

blade will be used for validation. The cascade of LS89 turbine blades has

been studied extensively at the von Karman Institute for Fluid Dynamics

and has gained a lot of popularity in the recent years as a validation case

(Arts et al. [36]). A comparison will be made between the energy loss com-

ponents of the LS89 blade, obtained using the loss breakdown method for

subsonic and transonic blades described above, and the experimental data

shown in Figure 2.4. Numerical measurements of the loss components for

the LS89 blade at a 𝑅𝑒 of about 3 × 10 are shown in Figure 5.8 whereas
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Mach contours for different 𝑀 are shown in Figure 5.9.

Figure 5.8: Numerical measurements of the variation of energy loss coefficient with isen-

tropic exit Mach number for the transonic LS89 turbine blade at a Reynolds number of

approximately × . The reference loss coefficient is the total loss coefficient under nominal

operating conditions of = 0.81.

There is a strong agreement in the loss trends of the experimental data

shown in Figure 2.4 and the numerical data shown in Figure 5.8. Notice

that the experimental data is shown with the exit Mach number, whereas

the numerical data is shown with the isentropic exit Mach number 𝑀 .

The boundary layer and shock loss component, and the overall loss display

nearly identical behaviour. The trailing edge loss trends are also very sim-

ilar, except for sonic conditions. It is noted that for these conditions the

method applied for calculating the trailing edge loss is influenced by the

appearance of shocks. However, for subsonic Mach numbers shock waves

are absent and there the trailing edge loss trends are comparable. The nu-

merical results also suggest the same trends for the supersonic regime.

The trends are also in agreement with a more recent numerical study to

loss generation in transonic turbines by Duan et al. [37]. In this study

the losses are presented in terms of entropy generation, but still display

identical behaviour for all the loss components except for the trailing edge

component. This difference is arguably due to the different definition for

58



Chapter 5. Methodology

the trailing edge loss adopted in the present study.

The numerical trends of the overall loss and the loss components are in

agreement with the experimental data and therefore the loss breakdown

method is considered to be validated.

(A) = 0.64 (B) = 0.89

(C) = 1.04 (D) = 1.2

Figure 5.9: Mach contours of the transonic LS89 turbine stator blade for different isentropic

exit Mach numbers .
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Results

This chapter presents the results of the shape optimisation defined in

chapter 5. The baseline and optimised designs are investigated and com-

pared using the loss breakdown method developed in chapter 5. In addi-

tion, this chapter provides a mesh sensitivity study, validation of the adjoint

method and an investigation of the excitation on the adjacent blade row.

6.1. Mesh Sensitivity
Meshing of the supersonic stator vane is performed using the robust in-

house unstructured UMG2 code. Turbulence effects are modelled using the

𝑘−𝜔 SST model discussed in subsection 3.3.1 and therefore the mesh is set

to maintain a maximum 𝑦 value of unity on the blade surface. The non-

reflective upstream and downstream boundaries are located at 0.2 and 0.5

axial chords away from the blade surface, respectively. The hybrid mesh is

composed of triangular elements in the far-field and quadrilateral elements

near the blade surface. Figure 6.1 shows the sensitivity of the stagnation

pressure loss coefficient on the mesh size. The stagnation pressure loss

coefficient 𝑌 for turbines is given by:

𝑌 = 𝑝 − 𝑝
𝑝 − 𝑝 (6.1)

where the pressure and stagnation pressures are obtained using the mixed-

out averaging procedure. The final mesh has 63 × 10 cells and the stag-

nation pressure loss coefficient is within 0.5 percentage points of the finest
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mesh value, which is deemed to be acceptable for optimisation purposes.

Figure 6.1: Mesh sensitivity to the stagnation pressure loss coefficient . The final mesh has

× cells and the stagnation pressure loss coefficient is within 0.5 percentage points of

the finest mesh value.

6.2. Gradient Validation
The gradients obtained from the discrete adjoint method are validated with

a first-order reconstruction of the forward finite difference scheme and a

corresponding step size of 1 × 10 . Figure 6.2 shows a scatter plot of the

gradients of entropy generation obtained using the discrete and finite dif-

ference method. Note that many points are piled up in the origin of the

plot because the corresponding gradients are nearly zero. There is a very

good agreement between both methods, except for some control points that

are located near the trailing edge of the blade surface. It is well-known that

sharp edges have a large impact on the overall flow and loss performance of

stator vanes. Palacios et al. [38] point out that from a mathematical point

of view, the evaluation of gradients in such non-smooth regions is diffi-

cult for complex geometries. The gradients in these regions are therefore

less accurate and this also explains why there is relatively less agreement

61



Chapter 6. Results

between the different methods near the trailing edge.

Figure 6.2: Gradient validation of the discrete adjoint method with a first-order reconstruction

of the forward finite difference scheme and a corresponding step size of × . The gradients

are normalised with the largest absolute value of all gradients.

6.3. Optimisation
The convergence history of the optimisation problem defined in subsec-

tion 5.1.4 is shown in Figure 6.3. The optimisation processes have con-

verged within 49 iterations. The entropy generation coefficient is reduced

by about 6% and the equality performance constraints are also satisfied,

as listed in Table 6.1. In addition, the pitchwise outlet pressure non-

uniformity in terms of the area-weighted standard mean deviation is re-

duced by 6%.

�̇�/�̇� 𝛼 /𝛼 𝑀 /𝑀

1.00 1.00 1.00

Table 6.1: Average values for the mass flow rate, outlet Mach number and the outlet flow angle

of the optimised stator vane.
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Figure 6.3: Convergence history of the cost function, i.e. the entropy generation coefficient .

The reference value is the at the first optimisation step.

Figure 6.4: Area-weighted standard mean deviation of the pitchwise outlet pressure for

different design iterations. The reference value is the at the first optimisation step.
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The baseline and optimised stator vane geometries are displayed in Fig-

ure 6.5. The optimisation procedures lead to a curved supersonic suction

surface with a concave shape in the throat region and a convex shape to-

wards the trailing edge. This produces a variation of the local passage area

ratio, without altering the overall passage area ratio. The maximum change

between geometry of the baseline and optimised stator vane is in the order

of 0.04 axial chords and is within the machining accuracy of the additive

layer manufacturing method.

(A) Entire stator vane (B) Supersonic suction surface

Figure 6.5: Baseline and optimised stator vane geometries. The optimised suction surface is

more concave in the throat region and more convex towards the trailing edge. The order of the

geometry change is about 0.04 axial chords. The axial location, pitchwise location and axial

chord are given by , and , respectively.
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6.3.1. Assessment of Fluid-Dynamic Performance

The variation of the energy loss components with the design iterations is

illustrated in Figure 6.6. The most significant reduction is observed in

the shock loss component, whereas the components of boundary layer and

trailing edge loss remain nearly constant. In turn, the overall performance

improvement can be mainly attributed to the reduction of the shock loss.

Figure 6.6: Variation of the loss components in terms of the energy loss coefficient with the

respect to the design iterations. It is observed that the optimiser mainly acts on the shock

loss. The reference loss coefficient is the total loss coefficient calculated at the first design

step.

Boundary Layer Loss

As visible in Figure 6.6, it is safe to say that the boundary layer loss of

the baseline and optimised stator vane is identical. This assumption is

supported by Figure 6.7, which shows the pressure and suction surface

boundary layers of the baseline and optimised stator vane.

There is no visible difference between the pressure surface layer of the base-

line and optimised stator vane. This is as expected because no changes

have been made to the pressure surface of the stator vane. Recall that
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measurements by Mee et al. [34] indicated that the contribution of the

pressure surface layer to the total boundary layer loss is negligible because

the pressure surface layer is an order of magnitude smaller than the suc-

tion surface layer. These findings are supported by the present study; the

pressure surface loss of the optimised stator vane is two orders of magni-

tude smaller than the suction surface loss.

The boundary layer edge velocity of the suction surface layer of the op-

timised stator vane is seen to be slightly larger than that of the baseline

suction surface layer. The suction surface boundary layer edge properties

of the baseline and optimised stator vane are listed in Table 6.2. Recalling

that the mechanical energy dissipated in the layers is given by Equation 5.4,

it can be assumed that the overall change in the suction surface boundary

layer loss is negligible.

Figure 6.7: Pressure (dotted line) and suction (solid line) boundary layers of the baseline

and optimised stator vane. The layers are extracted at 0.75 / and 0.9 / of the

pressure and suction surface, respectively, where the curvilinear abscissa is measured from

the leading edge. The reference values represent the suction surface of the baseline design.
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𝜌 /𝜌 𝑢 /𝑢 𝛿 /𝛿

Baseline 1.00 1.00 0.107

Optimised 0.96 1.03 0.101

Table 6.2: Suction surface boundary layer edge properties of the baseline and optimised stator

vane.

Shock Loss

From Figure 6.9, which shows a numerical Schlieren flow visualisation, it

becomes visible that the oblique shock generated on the supersonic suction

surface is weakened in the optimised design. This is a direct consequence

of changing the local passage area ratio; the area-Mach relation relates the

Mach number at any location to the ratio of the local passage area to the

throat area. The higher passage area ratio of the optimised stator vane

immediately downstream of the throat leads to a larger acceleration of the

flow, consequently increasing the boundary layer losses. This effect can

be seen in Figure 6.8 for 0 < 𝑙/𝑙 < 0.34, which shows a comparison of

the supersonic suction surface loading between the baseline and optimised

stator vane. As the flow continues to expand in the concave region of the

optimised stator vane, it is slightly turned into itself. This leads to a reduced

flow acceleration and consequently a lower Mach number upstream of the

oblique shock. This effect is illustrated in Figure 6.8 for 0.34 < 𝑙/𝑙 < 0.6.

The result is that the concave part produces a smaller loss in stagnation

pressure compared to the straight suction surface with an oblique shock

wave with a larger upstream Mach number. The increase of the boundary

layer loss does not compensate for the decreased shock loss. The net effect

is a less pronounced flow acceleration on the supersonic suction surface

and consequently a weaker oblique shock wave. This is also illustrated in

Figure 6.10, which shows the Mach contours of the baseline and optimised

stator vane.
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Figure 6.8: A comparison of the supersonic suction surface loading in terms of the surface

isentropic Mach number between the baseline and optimised stator vane. The curvilinear

abscissa is measured from the throat. The reference value represents the average target

value for the outlet Mach number.

Trailing Edge Loss

The change in trailing edge loss between the baseline and optimised stator

vane is also negligible. Recall from subsection 2.2.3 that the trailing edge

loss is generated by the low base pressure acting on the trailing edge, mix-

ing of the momentum contained in the boundary layers and the combined

blockage of the boundary layers and the trailing edge. In the present study

the trailing edge shape is fixed. In addition, it can be seen in Figure 6.10

that the flow in the vicinity of the trailing edge is very similar for the baseline

and optimised design. The boundary layer density and velocity profiles to-

wards the trailing edge are also very similar for the baseline and optimised

stator vane, as listed in Table 6.2. Therefore, the trailing edge loss remains

relatively constant.
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(A) Baseline (B) Optimised

Figure 6.9: Numerical Schlieren visualisation of the baseline and optimised supersonic stator

vane by means of the density gradient magnitude.

(A) Baseline (B) Optimised

Figure 6.10: Mach contours of the baseline and optimised stator vane. The reference value

represents the average target value for the outlet Mach number.
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Flow Non-Uniformity

The interaction between the mechanical and aerodynamic forces acting on

a structure (aeroelasticity) can give rise to various types of vibrations that

can lead to mechanical failure. There are several aeroelastic problems that

are of interest for turbomachinery engineers, but the present study is par-

ticularly concerned with the forced response caused by the stator-rotor in-

teraction.

Forced responses are intrinsically linked to the excitation forces that origi-

nate from the inherent unsteady nature of the flow within turbines. A spa-

tial non-uniform distribution of pressure in a stator row is seen as temporal

disturbance in the adjacent rotor row. The temporal disturbances cause a

periodic forcing on the rotor blades with an amplitude and frequency that

are based on the magnitude of the non-uniformities, and the number of

stator blades and the rotational speed of the adjacent rotor blades, respec-

tively. Forced response is a recurrent shortcoming in rocket engine tur-

bines and its reduction can lead to a significant increase of the lifetime of

the component.

Stator-rotor interaction effects can be limited by reducing the magnitude of

the spatial pressure non-uniformities at the outlet of the stator row. Fig-

ure 6.4 shows the area-weighted standard mean deviation 𝜎 of the pitch-

wise pressure at the stator outlet for different design iterations. It is ob-

served that while the optimiser reduces the entropy generation coefficient,

it also reduces the pressure non-uniformities at the stator outlet. As a re-

sult, it is expected that the optimised stator induces less excitation on the

adjacent rotor blade compared to the baseline stator vane.

Figure 6.11 shows the pitchwise outlet pressure and Mach distributions of

the baseline and optimised stator blade. It is observed that the outlet flow

has become more uniform. This is a direct consequence of adopting the

mixed-out averaging procedure for calculating the entropy generation coef-

ficient; a more uniform outlet pressure and Mach distribution will lead to a

smaller mixed-out entropy. Consequently, a more uniform outlet pressure

and Mach distribution will result in a smaller entropy generation coeffi-
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cient. Therefore, the optimiser indirectly acts on the outlet pressure and

Mach distributions in order to reduce the entropy generation coefficient.

(A) (B)

Figure 6.11: Spanwise pressure (A) and Mach (B) distributions at the stator vane outlet of the

baseline and optimised design, where and are the pitchwise location and the blade pitch,

respectively. The reference Mach number represents the average target value for the outlet

Mach number. It can be seen that the optimised stator has a more uniform outlet flow.

A significant change in the pressure and Mach non-uniformity is observed

for 0.0 < 𝑦/𝑏 < 0.45; this region is associated with the wake of the super-

sonic stator vane. This statement is confirmed by manual inspection of

the wake/wake-free regions in Figure 6.12, which shows the normalised

stagnation pressure contour of the optimised stator vane. This might seem

unintuitive at first; a high pressure and lowMach number is expected in the

wake region, however, the opposite is observed. This is a consequence of

the strong trailing edge shock which is present in the free-stream flow and

significantly increases the pressure and reduces the Mach number, so that

the wake-free pressure and Mach number are higher and lower compared

to the wake region, respectively. This effect is clearly visible in Figure 6.13,

which shows the pressure and Mach contour of the optimised stator vane.

The wake region is influenced by the complex shock structure observed in

the flow field, as illustrated in Figure 6.9 and Figure 6.10. As a result, part

of the free-stream flow ends up in the blade wake, as illustrated with the

streamlines in Figure 6.12. The flow field within the wakes is thus influ-

enced by the presence of the free-stream shock waves.
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Figure 6.12: Normalised stagnation pressure contours with free-stream streamlines that end

up in the stator vane wake. The stagnation pressure contours are normalised with the inlet

stagnation pressure.

(A) (B)

Figure 6.13: Pressure (A) and Mach (B) contour of the optimised supersonic stator vane, where

y, x and b are the pitchwise location, axial chord and pitch, respectively. The pitchwise location

for the wake/wake-free region is obtained by manual inspection of Figure 6.12. The reference

Mach number represents the average target value for the outlet Mach number.
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6.4. Loss Trends
Figure 6.14 shows the individual loss components of the baseline and opti-

mised stator vane for a range of 𝑀 . The trends of the loss components are

similar for the baseline and optimised stator vane. In general, the boundary

layer loss decreases monotonically with 𝑀 . The shock and trailing edge

loss components display non-monotonic behaviour. The shock loss peaks

near nominal conditions of 𝑀 /𝑀 = 1.06 and the inverse holds for the

trailing edge loss. The total loss remains relatively constant and signifi-

cantly increases for 𝑀 /𝑀 > 1.19.

In Appendix B the reader can find the variation of the loss components with

the axial chord Reynolds number.

Figure 6.14: Numerical measurements of the variation of energy loss coefficients with isen-

tropic exit Mach number for the baseline and optimised stator vane. The reference loss

coefficient represents the total loss coefficient of the baseline design under nominal operat-

ing conditions of / = 1.06. The reference Mach number represents the average target

value for the outlet Mach number.
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6.4.1. Boundary Layer Loss

The variation of the boundary layer loss is shown in Figure 6.14. The

boundary layer loss contribution to the total loss is relatively insignificant

over the wide range of 𝑀 . It can be seen that the boundary layer loss de-

creases monotonically with 𝑀 and the results indicate that the boundary

layer loss will keep decreasing for 𝑀 /𝑀 > 1.19. This observation can be

elucidated with reference to the supersonic suction surface loading of the

optimised stator vane depicted in Figure 6.15. It is seen that there exists

a favourable pressure gradient for 𝑙/𝑙 > 0.2 until an oblique shock wave

impinges on the suction surface. The effect of the favourable pressure gra-

dient, whose length increases with 𝑀 , is to decrease the boundary layer

thickness. However, the oblique shock wave also interacts with the suction

surface boundary layer and gives rise to strong adverse pressure gradient

which increases the boundary layer thickness. This impact outweighs the

effect of the favourable pressure gradient decreasing the layer thickness.

The combined effect is that the boundary layer thickness increases with

𝑀 . However, the momentum and kinetic energy thickness remain rela-

tively constant with 𝑀 . This is visible in Figure 6.16, which shows the

variation of the boundary layer thickness parameters with 𝑀 . Note that

the ideal kinetic energy leaving the downstream plane increases with 𝑀 .

Thus, recalling that the boundary layer energy loss coefficient involves the

ratio of mechanical energy dissipated to the isentropic mechanical energy

leaving the downstream plane, the net effect is that the boundary layer loss

decreases with 𝑀 .
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Figure 6.15: Suction surface isentropic Mach number distributions of the optimised stator

vane for different isentropic exit Mach numbers . The reference Mach number represents

the average target value for the outlet Mach number. The curvilinear abscissa is measured

from the throat.

6.4.2. Shock Loss

The variation of the shock loss component is shown in Figure 6.14. The

shock loss significantly contributes to the total loss and the results sug-

gest that this contribution keeps increasing for 𝑀 /𝑀 > 1.19. For the

range of 𝑀 shown in Figure 6.14, the shock loss displays non-monotonic

behaviour. The shock loss trend can be explained by the shock structures

that are observed in Figure 6.17, which show a numerical Schlieren visual-

isation for different 𝑀 . For 𝑀 /𝑀 = 0.88, as illustrated in Figure 6.17A,

an oblique shock wave impinges on the supersonic suction surface close to

the throat and is reflected. As 𝑀 is increased, as depicted for 𝑀 /𝑀 =

0.98 in Figure 6.17B and for 𝑀 /𝑀 = 1.09 in Figure 6.17C, the oblique

shocks move downstream along the suction surface and become less in-

clined. If 𝑀 is increased even more, as illustrated for 𝑀 /𝑀 = 1.19

in Figure 6.17D, the oblique shocks move so far downstream that they im-

75



Chapter 6. Results

Figure 6.16: Suction surface boundary layer thicknesses of the optimised stator vane with

isentropic exit Mach number . The reference value represents the boundary layer

displacement thickness under nominal conditions of / = 1.06. The reference Mach

number represents the average target value for the outlet Mach number.

pinge on additional oblique shock waves that are generated near the trailing

edge.

As 𝑀 is increased, the oblique shock wave impinging on the suction sur-

face becomes stronger whereas the reflected wave becomes weaker. The

former is in agreement with findings of Anand et al. [39], who dictates that

the shock strength increases with the degree of divergence in the nozzle.

The latter however, is a result of the shock wave impingement location on

the curved suction surface. For low 𝑀 , the oblique shock impinges on the

concave part of the surface upon which several weak reflection waves are

generated that point in the same direction. As a result, the weak shocks

merge and propagate as a stronger reflection shock wave. For higher 𝑀 ,

the oblique shock impinges on the straight/convex part of the surface. In

that case, the reflected waves do not point in the same direction and thus

do not merge to former a stronger reflection wave. This effect is visible in

Figure C.1, which shows the Schlieren flow visualisations of the baseline

stator. As can be seen, the strength of the reflected shock remains rela-
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tively constant.

The strength of the oblique shock waves is directly related to the shock loss

trend; the shock strength gives an estimate of the stagnation pressure loss

as a result of the presence of shocks. However, Mee et al. [1] argue that

the influence of the shock angle on the shock loss characteristics is more a

consequence of the way the shock loss is determined than a physical fea-

ture of the shock structures. The inclination of the shock waves increases

with 𝑀 and therefore at higher values of 𝑀 an increasing amount of the

loss generated by the shocks will take place further downstream which is

then attributed to the loss generated by the trailing edge.

The development of the shock structure is quantitatively assessed by Fig-

ure 6.15, which shows the loading of optimised supersonic suction surface

for different 𝑀 . The presence of oblique shock waves is indicated by a

finite drop in the surface isentropic Mach number. For 𝑀 /𝑀 = 0.88,

an oblique shock is observed at 𝑙/𝑙 = 0.35. As 𝑀 /𝑀 is increased to

0.98, the oblique shock moves downstream to 𝑙/𝑙 = 0.48 while the shock

strength is reduced. Further increasing 𝑀 /𝑀 to 1.09 moves the oblique

shock even more downstream to 𝑙/𝑙 = 0.75 while the shock regains its

strength. Finally, for 𝑀 /𝑀 = 1.19, the oblique shock does not impinge

on the suction surface anymore but instead interacts with additional trail-

ing edge shocks that are generated at 𝑙/𝑙 = 0.8. In this situation, the

trailing edge shocks cause the boundary layer to separate, as shown in

Figure 6.18D.
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(A) / = 0.88 (B) / = 0.98

(C) / = 1.09 (D) / = 1.19

Figure 6.17: Schlieren flow visualisation of the optimised stator vane for different isentropic

exit Mach numbers ..
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(A) / = 0.88 (B) / = 0.98

(C) / = 1.09 (D) / = 1.19

Figure 6.18: Mach contours of the optimised stator for different isentropic exit Mach numbers

.. The reference value represents the average target value for the outlet Mach number.
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6.4.3. Trailing Edge Loss

The variation of the trailing edge loss component is shown in Figure 6.14.

The trailing edge component significantly contributes to the total loss and

the results suggest that this contribution increases for 𝑀 /𝑀 > 1.19.

This increase for even higher 𝑀 numbers can be attributed to the bound-

ary layer separation, which is illustrated in Figure 6.18D. As discussed in

subsection 2.2.3, the trailing edge loss is composed of three components:

one due to the low base pressure acting on the trailing edge, one for the

mixing of the momentum contained in the boundary layers and lastly one

representing the simultaneous blockage of the boundary layers and the

trailing edge. In the present study, the shape of trailing edge is fixed, so

that the trailing edge loss is only dependent upon the base pressure and the

components of momentum and displacement thickness. Figure 6.16 and

Figure 6.19 show the variation of the boundary layer thickness parameters

and the base pressure coefficient with 𝑀 , respectively. Recall that the

base pressure coefficient is defined by Equation 2.9, where the reference

values are now taken at the downstream plane under nominal operating

conditions.

Figure 6.19: Variation of the base pressure coefficient of the optimised stator vane with

the isentropic exit Mach number . The reference values for the calculation of are taken

at the downstream plane under nominal operating conditions. The reference Mach number

represents the average target value for the outlet Mach number.
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From Figure 6.19 it can be observed that the base pressure coefficient de-

clines with 𝑀 . In Figure 6.16 it is also observed that the displacement

thickness increases and that the momentum thickness slightly fluctuates

with 𝑀 . The combined effect however, shown in Figure 6.14, is that the

trailing edge loss component varies non-monotonically with 𝑀 . The con-

tribution of the base pressure coefficient and the displacement thickness

does not seem to compensate for the non-monotonic contribution of the

momentum thickness.

6.4.4. Total Loss

The trend of the overall loss with𝑀 is shown in Figure 6.14. The combined

effect of the loss components is a relatively constant total loss for 0.88

< 𝑀 /𝑀 < 1.07. Hereafter, the total loss slightly decreases for 1.07 <

𝑀 /𝑀 < 1.15. The total loss significantly increases for 𝑀 /𝑀 > 1.15

and the results suggest that this trend will persist for even higher 𝑀 . A

remarkable observation is that the total loss of the baseline and optimised

stator vane during nominal operation, i.e. 𝑀 /𝑀 = 1.06, can be reduced

by operating at a slightly higher 𝑀 , e.g. near 𝑀 /𝑀 = 1.15.

6.4.5. Further Remarks on Off-Design Performance

The turbine inlet manifold supplies the first stage stator vanes of a tur-

bine with hot gases from the combustion chamber. The primary function

of the inlet manifold is to evenly distribute the hot gases among the intake

ports of the stator vanes. Achieving an even distribution is important to

optimise the efficiency of the turbine, but this is hardly possible in reality.

Therefore, most of the first stage stator vanes operate in slightly different

conditions due to the circumferential non-uniformity induced by manifold.

In addition, the turbine experiences different off-design operating condi-

tions during its cycle of operation. The present study is therefore not only

concerned with the nominal performance of the optimised stator vane. In

Figure 6.14 it can be seen that the optimised stator vane performs better
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than the baseline for 0.93 < 𝑀 /𝑀 < 1.17. The optimised stator vane is

therefore expected to perform better for nominal, and a range of off-nominal

conditions.

However, there are some operating conditions where the optimised stator

vane does not perform better than the baseline, e.g. 𝑀 /𝑀 = 0.88 and

𝑀 /𝑀 = 1.19. The change in performance for these conditions can be

attributed to the shock loss component, as depicted in Figure 6.14. In

Figure 6.20A and Figure 6.17A, which show a numerical Schlieren visual-

isation of the baseline and optimised design for 𝑀 /𝑀 = 0.88, respec-

tively, it becomes clear that the oblique shocks impinging on the suction

surface are much stronger for the optimised design. This difference is also

visible in the Mach contours illustrated in Figure 6.18A and Figure 6.21A.

In Figure 6.17D and Figure 6.20B, which show the numerical Schlieren

visualisation of the baseline and optimised design for 𝑀 /𝑀 = 1.19, re-

spectively, it becomes evident that the trailing edge shock system is much

more dominant for the optimised design. This is also visible in the Mach

contours illustrated in Figure 6.18D and Figure 6.21B.

(A) / = 0.88 (B) / = 1.19

Figure 6.20: Numerical Schlieren visualisation of the baseline stator vane by means of the

density gradient magnitude for two off-nominal operating conditions.
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(A) / = 0.88 (B) / = 1.19

Figure 6.21: Mach contours of the baseline stator vane for two off-nominal operating condi-

tions. The reference value represents the average target value for the outlet Mach number.

6.4.6. Flow Non-Uniformity

The variation of the area-weighted standard mean deviation of the pitch-

wise outlet pressure with the isentropic exit Mach number is shown in Fig-

ure 6.22. A more uniform pitchwise outlet pressure profile is achieved for

the optimised stator vane for 𝑀 /𝑀 > 1.00, and the results suggest that

this continues for even higher 𝑀 .
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Figure 6.22: Variation of the area-weighted standard mean deviation of the pitchwise outlet

pressure with the isentropic exit Mach number for the baseline and optimised stator vane.

The reference ( ) is calculated for the baseline design under nominal operating conditions

of / = 1.06. The reference Mach number represents the average target value for the

outlet Mach number.

6.5. Impact of Stator Performance Improvement
on Turbine Performance

The approach adopted in the present study to assess the impact of the sta-

tor performance improvement on the overall turbine efficiency is based on

the Balje diagram. This approach has been proposed and demonstrated by

Souverein et al. [40]. The Balje diagram can be derived from Euler’s tur-

bomachinery equation and relates the specific rotational speed 𝑁 and the

specific diameter 𝐷 to the turbine efficiency. In this approach, blade loss

coefficients are used for the stator and rotor blades to relate the circumfer-

ential velocity to the ideal velocity that can be attained for isentropic flow,

namely the spouting velocity. The stator and rotor blade loss coefficients

are defined as:
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𝜓 = 𝑢
𝑢 and 𝜓 = 𝑤

𝑤 (6.2)

where 𝜓 and 𝜓 are the stator and rotor loss coefficients, respectively, 𝑤
is the relative velocity and the subscript 3 refers to the rotor outlet. Balje

[41] shows that the hydraulic turbine efficiency is given by the functional

𝜂 (𝑁 , 𝐷 , 𝑟, 𝛼 , 𝜓 , 𝜓 ), where 𝛼 is the absolute stator exit angle and 𝑟 is the
degree of reaction. Since the turbine efficiency 𝜂 is smaller than the hy-

draulic efficiency by the wheel-disk friction loss, an additional term can be

included to obtain the functional of 𝜂. The efficiency of an impulse turbine

(zero reaction) can now finally be expressed as:

𝜂 =
𝑁 𝐷 √1 − 2 + 2 ( )

77 (1 + 𝜓 )
⎡
⎢
⎢
⎣
𝜓 cos𝛼 −

𝑁 𝐷 √1 − 2 + 2 ( )
154

⎤
⎥
⎥
⎦

−
𝑁 𝐷 16𝛽∗ (1 − 2 )

154

(6.3)

where ℎ is the blade height, 𝐷 is the outer diameter of the rotor and 𝛽∗ is

the disk-wheel friction coefficient.

Considering now a 2-stage impulse turbine, the overall turbine performance

improvement can be evaluated using Equation 6.3. The values of the pa-

rameters required for this calculation cannot be disclosed for confidentiality

reasons. The results show an increase of about 0.1%. The impact on the

overall performance is not staggering, but considering that the optimisation

was quite constrained, this does not come as a surprise.

In addition, the calculation of the turbine efficiency involves the assumption

of a constant rotor loss coefficient. The decreased flow non-uniformity at

the stator outlet might have a beneficial impact on the rotor loss coefficient

and thus on the overall turbine performance. However, these interpreta-

tions are speculative, and any conclusions concerning the effectiveness of

the stator optimisation on the overall turbine performance must be based

on the results of an impact study.
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Conclusions and
Recommendations

This is a concluding chapter explaining the scientific and technical impli-

cations of the research findings in considerable detail. Recommendations

for further works will also be provided.

7.1. Conclusions
During the preliminary design of turbines the two-dimensional losses must

be modelled before a detailed design can be performed on the blade shape.

To define an initial design configuration, turbomachinery engineers rely on

mean-line and throughflow models that are based on empirical loss correla-

tions, but these are often derived from cascade experiments and numerical

analyses that do not apply to supersonic blades. Axial turbines for rocket

propulsion applications are characterised by supersonic stator vanes that

yield a complex flow field, making the prediction of losses challenging with

existing correlations. The research questions were therefore formulated as:

• What is the impact of the isentropic exit Mach number on the profile

losses in supersonic axial turbine stator vanes for rocket propulsion ap-

plications?

• What reduction of the profile losses in supersonic axial turbine stator

vanes for rocket propulsion applications can be achieved using the ad-

joint optimisation method?
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The current study presented an investigation of the physical origins of the

two-dimensional loss mechanisms in supersonic axial turbine stator vanes.

The investigation has been realised through the study of a stator vane that

is applied in the first turbine stage of a 1MN-class gas generator type rocket

engine. The performance of the stator vane is first improved by exploiting

a fluid dynamic design optimisation framework that leverages on a RANS

adjoint solver incorporated in the open-source SU2 suite. The optimisation

is focused on the supersonic suction surface because performance, man-

ufacturing and thermomechanical constraints have made it challenging to

optimise the entire stator vane.

The main contributions of the present study can be summarised as follows:

• A loss breakdown method based on the kinetic energy dissipation is

conceived and developed by using the energy loss coefficient in differ-

ent forms. The loss breakdown method is validated using the tran-

sonic LS89 turbine blade and showed strong agreement with experi-

mental data.

• The adjoint optimisation of the supersonic suction surface led to a 6%

reduction in the entropy generation coefficient and a 0.1% increase

in the overall turbine efficiency of an assumed 2-stage impulse tur-

bine. The optimised surface has a concave shape in the throat re-

gion and a convex shape towards the trailing edge. The combined

effect is a less pronounced flow acceleration and consequently weaker

shocks, whereas the boundary layer and trailing edge loss have re-

mained nearly constant. In addition, the standard mean deviation of

the pitchwise outlet pressure is reduced by 6%; this is a direct conse-

quence of adopting the mixed-out averaging procedure for calculating

the entropy generation coefficient. The expected benefit is a weaken-

ing of the stator-rotor interaction.

• The variation of the two-dimensional loss components with the isen-

tropic exit Mach number 𝑀 has been investigated. In general, the

boundary layer loss decreases monotonically with 𝑀 and the results
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suggest that this trend continues for even higher 𝑀 . The shock and

trailing edge loss components show non-monotonic behaviour. The

shock loss peaks near nominal operating conditions, the inverse holds

for the trailing edge loss. Numerical Schlieren visualisations have re-

vealed that this is caused by the complex shock patterns that are ob-

served in the flow passage. As𝑀 is increased, the oblique shocks im-

pinging on the supersonic suction surface move downstream while the

shock angles are reduced. The oblique shock impinging on the surface

increases in strength, whereas its reflection decreases in strength. A

further increase in 𝑀 even results in shock wave-wake interaction.

The results suggest that the shock and trailing edge loss increase for

even higher 𝑀 . The overall loss is relatively constant and only sig-

nificantly increases for 𝑀 where effects of shock-wake interaction

become prominent.

In summary, there are two relevant outcomes of the present study:

• The shock loss is the primary loss component in supersonic axial tur-

bine stator vanes. The magnitude of the shock loss component de-

pends on the shock impingement location on the supersonic suction

surface.

• In order to improve the performance of supersonic axial turbine stator

vanes, the supersonic suction surface must be carefully designed in

order to control the shock structures.

7.2. Recommendations
The present study has led to a better understanding of the two-dimensional

lossmechanisms in supersonic turbine stator vanes and the adjoint method

has been implemented to improve the stator performance. The quality of

the present study may be improved in several ways, of whom the most im-

portant are suggested below.
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• Flow physics of the complex shock patterns and their interaction with

the boundary layer and trailing edge wake may be better captured us-

ing higher-order methods. In this regards, a more accurate approach

to turbulence modelling, e.g. Reynolds Stress Models or LES, could

further increase the quality of the results achieved in this study. This

could lead to a more accurate prediction of the loss components.

• The unconventional optimisation convergence may imply that the

SLSQP algorithm is burdened by the intricate nature of supersonic

flow. Perhaps its a consequence of confining the FFD box to the su-

personic suction surface. The computational framework could be ex-

tended to include more robust optimisation algorithms for constrained

non-linear problems. In this way the endless endeavours of defining

a stable optimisation could be avoided. This could lead to a computa-

tional advantage and a better performance improvement.

• A less constrained optimisation could lead to a more significant per-

formance improvement. It is expected that the sharp and straight

trailing edge shape have a substantial impact on the performance. In

particular, for the additive manufacturing method, further optimisa-

tions should be performed for a fixed throat section, angle upstream

of the throat and trailing thickness, but permitting more variation in

the blade profile, notably the trailing edge profile. This might result

in designs that require the framework to be adapted to handle large

mesh deformations.

• A particularly interesting type of multi-objective shape design is rep-

resented by a multi-point optimisation. In this approach, the cost

function is calculated at different operating conditions during each

optimisation step. This type of optimisation allows to address flow

problems that are intrinsically linked to relevant fluctuations of the

operating conditions. This design methodology may lead to more ro-

bust stator vanes whose performance is less sensitive to variations of

the operating conditions.
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Appendix A

Loss Breakdown Methodology for
Subsonic & Transonic Blades

This appendix provides an overview of the two-dimensional loss breakdown

method for subsonic and transonic blades.

Compute:

, ,𝑝𝑀
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02

𝑝𝑀
2

Extract:
Upstream Plane

Downstream Plane

Compute:
𝜉𝑡𝑜𝑡
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, ,𝑝01 𝑝02 𝑝2

Extract:
Inviscid Streamline

Compute:
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Compute:
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Compute:
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Compute:
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Boundary Layer Loss Total Loss Shock Loss

Trailing Edge Loss

Figure A.1: Overview of the two-dimensional loss breakdown method for subsonic and tran-

sonic blades, where the superscript indicates a mass-weighted average. The loss compo-

nents and the total loss are expressed in terms of the energy loss coefficient and it is assumed

that the working fluid is fixed and behaves like a calorically perfect gas. Stations 1 and 2 refer

to the upstream and downstream plane, respectively.
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Appendix B

Loss Trends with Reynolds
Number

This appendix provides the variation of the loss components with the axial

chord Reynolds number.

Figure B.1: Variation of the loss components in terms of the energy loss coefficient with

the axial chord Reynolds number . The reference loss coefficient represents the total loss

coefficient of the baseline design under nominal operating conditions of , .
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Appendix C

Numerical Schlieren
Visualisation of Baseline Design

This appendix provides numerical Schlieren visualisations of the baseline

stator vane.
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Appendix C. Numerical Schlieren Visualisation of Baseline Design

(A) / = 0.88 (B) / = 0.98

(C) / = 1.09 (D) / = 1.19

Figure C.1: Numerical Schlieren flow visualisation of the baseline stator vane for different

isentropic exit Mach numbers .
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