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Abstract

Background: Assembly algorithm choice should be a deliberate, well-justified decision when researchers create genome assemblies
for eukaryotic organisms from third-generation sequencing technologies. While third-generation sequencing by Oxford Nanopore
Technologies (ONT) and Pacific Biosciences (PacBio) has overcome the disadvantages of short read lengths specific to next-generation
sequencing (NGS), third-generation sequencers are known to produce more error-prone reads, thereby generating a new set of chal-
lenges for assembly algorithms and pipelines. However, the introduction of HiFi reads, which offer substantially reduced error rates,
has provided a promising solution for more accurate assembly outcomes. Since the introduction of third-generation sequencing tech-
nologies, many tools have been developed that aim to take advantage of the longer reads, and researchers need to choose the correct
assembler for their projects.

Results: We benchmarked state-of-the-art long-read de novo assemblers to help readers make a balanced choice for the assembly
of eukaryotes. To this end, we used 12 real and 64 simulated datasets from different eukaryotic genomes, with different read length
distributions, imitating PacBio continuous long-read (CLR), PacBio high-fidelity (HiFi), and ONT sequencing to evaluate the assemblers.
We include 5 commonly used long-read assemblers in our benchmark: Canu, Flye, Miniasm, Raven, and wtdbg2 for ONT and PacBio CLR
reads. For PacBio HiFi reads , we include 5 state-of-the-art HiFi assemblers: HiCanu, Flye, Hifiasm, LJA, and MBG. Evaluation categories
address the following metrics: reference-based metrics, assembly statistics, misassembly count, BUSCO completeness, runtime, and
RAM usage. Additionally, we investigated the effect of increased read length on the quality of the assemblies and report that read
length can, but does not always, positively impact assembly quality.

Conclusions: Our benchmark concludes that there is no assembler that performs the best in all the evaluation categories. However,
our results show that overall Flye is the best-performing assembler for PacBio CLR and ONT reads, both on real and simulated data.
Meanwhile, best-performing PacBio HiFi assemblers are Hifiasm and LJA. Next, the benchmarking using longer reads shows that the
increased read length improves assembly quality, but the extent to which that can be achieved depends on the size and complexity
of the reference genome.

Keywords: de novo assembly, third-generation sequencing, benchmarking, eukaryote genomes

Introduction quencing are Pacific Biosciences Single Molecule, Real-Time se-

De novo genome assembly is essential in several leading fields
of research, including disease identification, gene identification,
and evolutionary biology [1-4]. Unlike reference-based assembly,
which relies on the use of a reference genome, de novo assem-
bly only uses the genomic information contained within the se-
quenced reads. Since it is not constrained to the use of a refer-
ence, high-quality de novo assembly is essential for studying novel
organisms, as well as for the discovery of overlooked genomic
features, such as gene duplication [5], in previously assembled
genomes.

The introduction of third-generation sequencing (TGS) led to
massive improvements in de novo assembly. The advent of TGS
has addressed the main drawback of next-generation sequencing
(NGS) platforms—namely, the short read length—but has intro-
duced new challenges in genome assembly, because of the higher
error rates of long reads. The leading platforms in long-read se-

quencing (often abbreviated as “PacBio”) and Oxford Nanopore
(ONT) sequencing [6].

Since the introduction of TGS platforms, many methods have
been developed that aim to take the most benefits from the longer
read length and overcome the new challenges due to sequencing
error. Recent studies have been conducted to compare long-read
de novo assemblers. One such study was conducted by Wick and
Holt [7], who focused on long-read de novo assembly of prokary-
otic genomes. Eight assemblers were tested on real and simu-
lated reads from PacBio and ONT sequencing, and evaluation
metrics included sequence identities, circularization of contigs,
computational resources, and accuracy. Murigneux et al. [8] per-
formed similar experiments on the genome of Macadamia jansenii,
although in this case, the focus was on comparatively benchmark-
ing Illumina sequencing and 3 long-read sequencing technologies,
in addition to the comparison of long-read assembly tools. Stud-

Received: January 30, 2023. Revised: June 18, 2023. Accepted: October 31, 2023

€20z laquieoa G| uo 1sanb Aq /#¥611.2/00 L peib/aousiosebib/es0 L 0L /10p/a1o1le/aousiosebib/uwoo-dno-oiwapede)/:sdiy woly papeojumoq

© The Author(s) 2023. Published by Oxford University Press GigaScience. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided
the original work is properly cited.


https://orcid.org/0009-0000-1447-2701
https://orcid.org/0000-0003-2624-0718
https://orcid.org/0000-0003-2022-0679
https://orcid.org/0009-0001-2887-0193
https://orcid.org/0000-0002-9765-4400
https://orcid.org/0000-0002-4219-8698
https://orcid.org/0000-0002-7205-7431
mailto:t.abeel@tudelft.nl
https://creativecommons.org/licenses/by/4.0/

2 | GigaScience, 2023, Vol. 12, No. 1

ies narrowed down tojust 1 type of sequencing technology include
those of Jung et al. [9], who evaluated assemblers on real PacBio
reads from 5 plant genomes, and Chen et al. [10], who used Oxford
Nanopore real and simulated reads from bacterial pathogens in
their comparison. Except for the Wick and Holt study, which pro-
vides a compressive comparison on de novo assembly of prokary-
otic genomes, other studies are either comparing the assemblers
on single genome or using data from a single sequencing plat-
form. Here, we provide a comprehensive comparison on de novo
assembly tools on the most used TGS technologies and 7 differ-
ent eukaryotic genomes, to complement the study of Wick and
Holt.

In this study, we are benchmarking these methods using 12
real and 64 simulated datasets (see Fig. 1) from PacBio continuous
long-read (CLR), PacBio high-fidelity (HiFi), and ONT platforms to
guide researchers to choose the proper assembler for their stud-
ies. Benchmarking using simulated reads allows us to accurately
compare the final assembly with the ground truth, and bench-
marking using the real reads can validate the results based on
simulated reads. The assembler comparison presented in this ar-
ticle complements the literature that has already been published,
by introducing an analysis of not just assembler performance but
also of the effect of read length on assembly quality. Although in-
creased read length is considered an advantage, we investigate if
it is always a necessary advantage to have for assembly perfor-
mance. To that end, the scope of the study extends to 6 model
eukaryotes that provide a performance indication for genomes of
variable complexity, covering a wide range of taxa on the eukary-
otic branch of the Tree of Life [11]. Complexity in genome assem-
blyis determined by multiple variables, the most notable of which
is the proportion of repetitive sequences within the genome of a
particular organism. Complexity in eukaryotic genomes is further
exacerbated by size and organization of chromosomal architec-
ture, including telomeres and centromeres, and the presence of
circular elements such as mitochondrial and chloroplast DNA.

De novo genome assembly evaluation remains challenging, as it
represents a process that must account for variables such as the
goal of an assembly and the existence of a ground-truth reference.
A standard evaluation procedure was introduced in the literature
by the 2 Assemblathon competitions [12, 13], which outlined a se-
lection of metrics that encompasses the most relevant aspects of
genome assembly, but these metrics require a reference sequence.
Most of these metrics are adopted in our benchmark.

Consequently, this study addresses 2 main objectives. First, we
provide a systematic comparison of state-of-the-art long-read as-
sembly tools, documenting their performance in assembling real
and simulated PacBio CLRs, PacBio HiFi reads, and ONT reads on
a diverse set of eukaryotic organisms. The PacBio CLR and ONT
reads generated from the genomes of Saccharomyces cerevisiae,
Plasmodium falciparum, Caenorhabditis elegans, Arabidopsis thaliana,
Drosophila melanogaster, and Takifugu rubripes and the PacBio HiFi
reads are generated from the genomes of S. cerevisiae, P. falciparum,
A. thaliana, and Drosophila ananassae. Our second objective is to in-
vestigate whether increased read length has a positive effect on
overall assembly quality, given that increasing the length of reads
is an ongoing effort in the development of TGS platforms [14].

It is important to note that our objective is to evaluate the
performance of these tools in generating a consensus assembly
without taking haplotypes into account. Moreover, it is crucial
to highlight that the results and conclusions drawn from this
comparison may not be directly applicable to metagenome as-
sembly. The unique characteristics and complexities associated

with metagenomic data warrant a separate and distinct analysis,
which is beyond the scope of this study.

Materials and Methods

Data

In this study, we are using real and simulated data from various
organisms to benchmark long-read de novo assembly tools.

Reference genomes

We selected 6 reference genomes from eukaryotic organisms rep-
resented in the Interactive Tree of Life (iTOL) v6 [11] for evaluating
PacBio CLR and ONT assemblers: S. cerevisiae (strain S288C), P. falci-
parum (isolate 3D7), C. elegans (strain VC2010), A. thaliana (ecotype
Col-0), D. melanogaster (strain ISO-1), and T. rubripes. Moreover, we
selected the 4 eukaryotic organisms to evaluate PacBio HiFi as-
semblers: S. cerevisiae (strain S288C), P. falciparum (isolate 3D7), A.
thaliana (ecotype Col-0), and D. ananassae (strain 14024-0371.13).
Assembly accessions are included in Supplementary Table S1.

The reference assemblies for C. elegans, D. melanogaster, and T.
rubripes included uncalled bases. In these cases, before read sim-
ulation, each base N was replaced with base A, as done by Wick
and Holt [7]. This avoids ambiguity in the read simulation process
and consequently simplifies the evaluation of the simulated read
assemblies. As such, we used this modified version as a reference
when evaluating all assemblies of simulated reads from these 4
genomes. In the evaluation of real read assemblies, the original
assemblies were used as references.

Simulated reads

The PacBio CLR and ONT simulated read sets were generated us-
ing Badread v0.2.0 [15]. To create read error and Qscore (quality
score) models in addition to the simulator’s own default models,
Badread requires the following 3 parameters: a set of real reads, a
high-quality reference genome, and an alignment file, obtained by
aligning the reads to the reference genome. We used real read sets
from the human genome to create error and Qscore models that
reflect the state of the art for PacBio CLRs and Oxford Nanopore
reads. The simulated PacBio HiFi reads were generated using PB-
SIM3. To generate reads similar to HiFi, we used the -num-pass
10 parameter and then applied ccs version 6.4.0 to generate the
consensus reads.

To create the models for PacBio CLR and Oxford Nanopore
reads, we used the real read sets sequenced from the human
genome and aligned to the latest high-quality human genome
reference assembled by [16]: assembly T2T-CHM13v2.0, with Ref-
Seq accession GCF_009914755.1. The alignment was performed
using Minimap2 v2.24 (RRID:SCR_018550) [17] with default pa-
rameters. The sources for these sequencing data are outlined in
Supplementary Table S2, as well as the read identities for each
technology, which are later passed as parameters for the simula-
tion stage.

To study the effect of read length on genome assembly, we
simulated reads that imitate PacBio CLR, PacBio HiFi, and Oxford
Nanopore sequencing, with 4 different read length distributions,
using Badread for PacBio CLR and Oxford Nanopore sequencing
while using PBSIM3 for PacBio HiFi. The first read simulation rep-
resents the current state of the 3 long-read technologies. The
other 3 simulations reflect data points in between technology-
specific values and ultra-long reads, data points of a similar length
as ultra-long-reads, and longer than ultra-long reads. We need to
define the mean and standard deviation of the read length dis-
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Figure 1: The benchmarking pipeline. For PacBio CLR and ONT (right panel), first we select 6 representative eukaryotes from the Tree of Life [11] and
use Badread’s error and Qscore model generation feature [15] to create 2 models of PacBio CLR and ONT long sequencing technologies. This is input to
the read simulation stage, where we simulate reads from all genomes, with 4 different read length distributions. We then perform assembly of
simulated and real reads, using 5 long-read assemblers. For PacBio HiFi (left panel), first we select 4 representative eukaryotes and use PBSIM3 to
simulate HiFi reads. These reads are then assembled using 5 state-of-the-art HiFi assemblers. Lastly, we evaluate all PacBio HiFi, PacBio CLR, and ONT

assemblies based on several criteria.

tributions for these simulations. The values for the mean and
standard deviation of these distributions were selected as follows.
First, we calculated the read length distributions of the real read
sets in Supplementary Table S2 and simulated an initial itera-
tion of reads using these technology-specific values. For choos-
ing these values for the other 3 iterations, we analyzed a set of
Oxford Nanopore ultra-long reads used in the latest assembly of
the human genome [16]. We selected GridION run SRR12564452,
available as sequence data in BioProject PRINA559484, with a
mean read length of approximately 35.7 kilobase pairs (kbp) and
a standard deviation of 42.5 kbp. A summary of the Badread
and PBSIM3 commands used in our simulation can be found in
Supplementary Tables S3 and S4.

A full overview of the mean and standard deviation of all 4
read length distributions is given in Table 1. Note that, for each
of the technologies, the standard deviation for the last 3 distri-
butions was derived from the mean, using the ratio between the
mean and standard deviation reflected by the technology-specific
values. Hence, for the last 3 iterations, the mean read length is
consistent across sequencing technologies, but the standard de-
viation varies.

Consequently, we ran the simulations for each reference
genome. As described above, we used our own models for each
technology and passed them to the simulator as the —error_model

and —gscore_model. The read identities per technology were set to
the values included in Supplementary Table S3. Across all simu-
lations, we chose a coverage depth of 30x. Canu’s documentation
[18] specifies a minimum coverage of 20-25x for HiFi data and 20x
for other types of data, while Flye’s guidelines [19] indicate a min-
imum coverage of 30x. As there is no minimum recommended
coverage indicated for the other assemblers we used in our bench-
mark, we simulated reads following the stricter guideline among
these two, that is, 30x coverage.

Real reads

In support of our evaluation on simulated reads, we also
performed a benchmark on real read assemblies from Ox-
ford Nanopore and PacBio reads sequenced from the reference
genomes. These reads were sampled to approximately 30x cover-
age, to avoid introducing potentially confounding variables when
comparing assemblies of real and simulated datasets. The data
sources for all real sets are included in Supplementary Table S5.
Please note that the PacBio CLR data from C. elegans were gener-
ated using the older RSII technology. These reads’ inherent char-
acteristics of the RSII system, such as shorter average reads and
a higher error rate, might have influenced the assembly results.
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Table 1: The mean and standard deviation describing the read length distributions used in our simulations. Note that read length
increases with each iteration, and the distribution parameters are different for each technology.

Read length distribution parameters (kbp), per technology

PacBio CLR PacBio HiFi Oxford Nanopore
Mean SD Mean SD Mean SD
Iteration 1 (technology-specific values) 15.7 14.4 20.7 2.5 12.1 17.1
Iteration 2 25 22.5 25 3 25 35
Iteration 3 (imitate ultra-long reads) 35 31.5 35 4.2 35 49
Iteration 4 75 67.5 75 9 75 105

Assemblies

For the PacBio CLR and ONT reads, we included the following 5
long-read de novo assemblers: Canu v2.2 (RRID:SCR_015880) [18],
Flye v2.9 (RRID:SCR_017016) [19], Wtdbg?2 (also known as Redbean)
v2.5 (RRID:SCR_017225) [20], Raven v1.7.0 (RRID:SCR_001937) [21],
and Miniasm v0.3_r179 (RRID:SCR_024114) [22]. For the PacBio
HiFireads, we included HiCanu v2.2 [23], Flye v2.9, Hiflasm 0.19.5-
1587 [24], LJA v 0.2 [25], and MBG v 1.0.14 [26]. We used the most
recent releases of the assemblers at the time we started this study.

The assemblies were performed with default values for most
parameters. Canu and Wtdbg2 require the estimated genome size
as a parameter, and we set the following values: S. cerevisiade = 12
megabase pairs (Mbp), P. falciparum = 23 Mbp, A. thaliana = 135
Mbp, D. melanogaster = 139 Mbp, C. elegans = 103 Mbp, T. rubripes
= 384 Mbp, and D. ananassae = 217 Mbp. All commands used in
the assembly pipelines are available in Supplementary Table Sé.
We note that further polishing of assemblies using high-fidelity
short reads, although common in practice [27-29], is omitted in
this study, as the focus is exclusively on assembler performance
on long-read data and not polishing tools.

We added a long-read polishing step for Miniasm and Wtdbg2,
as their assembly pipelines do not include long-read based polish-
ing. Following Raven’s default pipeline, which performs 2 rounds
of Racon polishing [30], we used 2 rounds of Racon polishing on
Wtdbg2 and Miniasm. We note that for Miniasm, we used Minipol-
ish [7], which simplifies Racon polishing by applying it in 2 it-
erations on the Graphical Fragment Assembly files produced by
the assembler. For both Miniasm and Wtdbg?, the alignments re-
quired for polishing were generated with Minimap v2.24.

Evaluation

We evaluated the assemblies in 3 different categories of metrics.
The COMPASS analysis compares the assemblies with their corre-
sponding reference genome and provides insight into their sim-
ilarities. The assembly statistics provide some basic knowledge
about the contiguity and misassemblies. Finally, the BUSCO as-
sessment investigates the presence of essential genes in the as-
semblies. These 3 categories of metrics, next to each other, can
provide a complete overview of the assembly’s quality.

Correctness analysis

For each assembly, we ran the COMPASS script to measure the
coverage, validity, multiplicity, and parsimony, to assess the qual-
ity of the assemblies, as defined in Assemblathon 2 [13]. These
metrics describe several characteristics that were deemed impor-
tant for comparing de novo assembly tools, and they were com-
puted using 3 types of data: (i) the reference sequence, (i) the
assembled scaffolds, and (iii) the alignments (sequences from
the assembled scaffolds that were aligned to the reference se-

quences). Definitions and formulas for the metrics are reported
in Supplementary Table S7.

Moreover, we use QUAST v5.2.0 (RRID:SCR_001228) [31] to cal-
culate the number of misassemblies. QUAST identifies misassem-
blies based on the definition outlined by [32]. The total number
of misassemblies is the sum of all relocations, inversions, and
translocations. Considering 2 adjacent flanking sequences, if they
both align to the same chromosome, but 1 kbp away from each
other, or overlapping for more than 1 kbp, this is counted as a re-
location. If these flanking sequences, aligned to the same chromo-
some, are on opposite strands, the misassembly is considered an
inversion. Lastly, translocations describe events in which 2 flank-
ing sequences align to different chromosomes.

Contiguity assessment

We use QUAST v5.2.0 [31] to measure the auNGA of an assem-
bly. The auNGA metric, standing for the area under the NGAx [12]
curve, is a measure of assembly contiguity. By calculating the area
beneath this profile, which integrates the aligned sequence frag-
ment or contig lengths at various percentage thresholds, it pro-
vides a more thorough understanding of the contiguity of the as-
sembly compared to single-value metrics. A larger auNGA value
indicates better contiguity in the genome assembly.

Completeness assessment

BUSCO v5.4.2 (RRID:SCR_015008) assessment [33, 34| is per-
formed to evaluate the completeness of the essential genes
in the assemblies. This quantifies the number of single-copy,
duplicated, fragmented, and missing orthologs in an assem-
bled genome. From the number of orthologs specific to each
dataset, BUSCO identifies how many orthologs are present
in the assembly (either as single copy or duplicated), how
many are fragmented, and how many are missing. We ran
these evaluations with a different OrthoDB lineage dataset
for each genome: S. cerevisize—saccharomycetes, P. falciparum—
plasmodium, A. thaliana—brassicales, D. melanogaster—diptera, C.
elegans—nematoda, T. rubripes—ctinopterygii, and D. ananassae—
diptera.

Results and Discussion
Overview of the benchmarking pipeline

Figure 1 shows an overview of the benchmarking pipeline. For the
PacBio CLR and Oxford Nanopore reads, we begin with the selec-
tion of 6 representative eukaryotes from the iTOL [11]: S. cerevisiae,
P. falciparum, A. thaliana, D. melanogaster, C. elegans, and T. rubripes.
We also use 3 read sets from the latest human assembly project
[16] to generate Badread error and Qscore models [15] for PacBio
CLRs and Oxford Nanopore reads (see Supplementary Table S2).

€20z laquieoa G| uo 1sanb Aq /#¥611.2/00 L peib/aousiosebib/es0 L 0L /10p/a1o1le/aousiosebib/uwoo-dno-oiwapede)/:sdiy woly papeojumoq


https://scicrunch.org/resolver/https://scicrunch.org/resolver/RRID:SCR_015880
https://scicrunch.org/resolver/https://scicrunch.org/resolver/RRID:SCR_017016
https://scicrunch.org/resolver/https://scicrunch.org/resolver/RRID:SCR_017225
https://scicrunch.org/resolver/https://scicrunch.org/resolver/RRID:SCR_001937
https://scicrunch.org/resolver/https://scicrunch.org/resolver/RRID:SCR_024114
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad100#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad100#supplementary-data
https://scicrunch.org/resolver/https://scicrunch.org/resolver/RRID:SCR_001228
https://scicrunch.org/resolver/https://scicrunch.org/resolver/RRID:SCR_015008
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad100#supplementary-data

Evaluating long-read de novo assembly tools for eukaryotic genomes | 5

The reference sequences and models become input to the Badread
simulation stage. For each genome, we simulate reads with 4 dif-
ferent read length distributions and 2 sequencing technologies
(see Table 1), amounting to a total of 8 simulated read sets per
reference genome. These reads, as well as real read sets, are as-
sembled with 5 assembly tools: Canu, Flye, Miniasm, Raven, and
Wtdbg?2.

For the PacBio HiFi reads, we begin with the reference genome
of the 4 selected eukaryote species: S. cerevisiae, P. falciparum, A.
thaliana, and D. ananassae. Then we use PBSIM3 and CCS to gener-
ate PacBio HiFi reads. Similar to the previous setup, for each ref-
erence genome, we simulate reads with 4 different read length
distributions. The simulated reads along with real reads for each
of the 4 reference genomes are assembled with 5 assembly tools:
HiCanu, Flye, Hifiasm, LJA, and MBG.

Next, the resulting assemblies are evaluated using COMPASS,
QUAST, and BUSCO, and based on the reported metrics, we distin-
guish 6 main evaluation categories: sequence identity, repeat col-
lapse, rate of valid sequences, contiguity, misassembly count, and
gene identification. The selected COMPASS metrics are the cov-
erage, multiplicity, and validity of an assembly, which provide in-
sight on sequence identity, repeat collapse, and the rate of valid se-
quences, respectively. In this regard, an ideal assembly has cover-
age, multiplicity, and validity close to 1. This suggests that a large
fraction of the reference genome is assembled, repeats are gen-
erally collapsed instead of replicated, and most sequences in the
assembly are validated by the reference. Among others, QUAST
reports the number of misassemblies and the auNG of an assem-
bly. A high auNG value indicates high contiguity. In order to as-
sess contiguity across genomes of different sizes, we report the
ratio between the assembly’s auNG and the N50 of the references.
Lastly, gene identification is quantified in terms of the percentage
of complete BUSCOs in an assembly.

The search for an optimal assembler for PacBio
CLR and ONT reads is influenced by read
sequencing technology, genome complexity, and
research goal

To select an assembler that is most versatile across eukaryotic
taxa, we simulate PacBio CLRs and Oxford Nanopore reads from
the genomes of 6 eukaryotes, assemble these reads, and evaluate
the assemblers in the 6 main categories mentioned in the previous
section. The results for each evaluation category are normalized
in the range given by the worst and best values encountered in
the evaluation of all assemblies of reads with default length. This
highlights differences between assemblers, as well as between
genomes and sequencing technologies.

The results of the benchmark on the PacBio CLR and ONT
read sets with default lengths—namely, those belonging to the
first iteration (see Table 1)—are illustrated in Fig. 2. A full re-
port of the evaluation metrics in this figure is included in the
Supplementary Tables S8-524, under “Iteration 1.” We note that no
assembler unanimously ranks first in all categories, across differ-
ent sequencing technologies and eukaryotic genomes, although
our findings highlight some of their strengths and thus their po-
tential for various research aims. The runtime and memory usage
of the assembly tools on all of the simulated datasets are reported
in Supplementary Tables S25-S30, since this can also be a decid-
ing factor next to the quality of the assembly for the researchers
to choose the suitable assembler for their purpose. We note that
all assemblies were run on our local High-Performance Comput-
ing Cluster, and the runtime and RAM usage may have been af-

fected by the heterogeneity of the shared computing environment
in which the assembly jobs executed.

While working with PacBio CLR and ONT reads, Miniasm,
Raven, and Wtdbg2 are all well-rounded choices for the simpler
S. cerevisiae, P. falciparum, and C. elegans genomes, with a balanced
trade-off between assembly quality and computational resources.
For PacBio HiFi reads, Raven is generally qualitatively outper-
formed by other assemblers like Canu, Flye, and Miniasm, likely
as a consequence of the fact that its pipeline is not customized
for all long-read sequencing technology. Nonetheless, if computa-
tional resources are a concern, Raven is a more suitable choice,
since Miniasm and Wtdbg?2 do not scale well for larger genomes.

We can single out Flye as the most robust assembler for PacBio
CLR and ONT reads across all 6 organisms, although for larger
genomes such as T. rubripes, Canu is a better tool. Both produce as-
semblies with high sequence identity and validity, as well as good
gene prediction, but Flye assemblies generally rank first when we
compute the average score across all 6 metrics. For Canu, we no-
tice more variation in assembly quality across different genomes,
particularly for P. falciparum and A. thaliana, while Flye maintains
more consistent results. Nonetheless, on the T. rubripes genome,
Canu assemblies have higher sequence identity and contiguity, as
well as more accurate gene identification.

Evaluation of PacBio CLR and ONT real read
assemblies supports our rankings on simulated
read assemblies

To determine assembler performance on real PacBio CLR and ONT
reads and validate the rankings of the simulated read assemblies,
we assemble several real read sets from the 6 reference eukary-
otes (Supplementary Table S5). Supplementary Figs. S1-S12 pro-
vide a visual representation of the read length distribution for all
of the real read sets. The evaluation results on the real read as-
semblies, summarized in Fig. 3, indicate that assemblers that per-
form well on simulated reads perform similarly well in assembling
the sets of real reads. The full report of metrics on the real read
assemblies is included in Supplementary Table S31. We conclude
that, overall, the assembler rankings remain consistent. This il-
lustrates that benchmarking using simulated data is similar to
real read sets. For reference-based metrics, we used the reference
genomes given in Supplementary Table S1.

Notably, reference-based metrics in the evaluation of real read
assemblies rely on comparisons with an assembly and not the
genome from which the reads were initially sequenced. In con-
trast to the evaluation of simulated read assemblies, the exis-
tence of a ground-truth reference is not available in this case, but
reference-based metrics are included for the sake of consistency
with the simulated read evaluation.

In the evaluation of real read assemblies of PacBio CLR and ONT
reads, Flye ranks first for nearly all datasets, with the exception
of the T. rubripes and C. elegans PacBio reads, for which Raven per-
forms better overall. However, even in C. elegans, Flye performance
is close to the best values in all metrics other than contiguity. As
expected, overall assembler performance decreases for reference-
based metrics like sequence identity, repeat collapse, and va-
lidity, but surprisingly the misassembly count is considerably
lower.

Searching for the best HiFi assembler based on
simulated and real datasets

Similarly, in order to identify the best-performing HiFi assembler
for diverse eukaryotic taxa, we first generate simulated PacBio
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Figure 2: The performance of the 5 assemblers on the read sets with default read lengths, from iteration 1 (see Table 1), generated from 6 eukaryotic
genomes. Six evaluation categories are reported for each assembler, and the results are normalized among all assemblies included in the figure.
Ranges for each metric are reported as the best and worst values computed for these assemblies. The best-performing assembler is highlighted and

has a black outline.

HiFi reads from the genomes of 4 different eukaryotes. These
simulated reads are then assembled, and the performance of
each assembler is evaluated based on the 6 primary categories
outlined in the previous section. For comparative clarity, the re-
sults for each evaluation category are normalized within the
range established by the lowest and highest values observed
across all assembly evaluations of reads of default length. This
method emphasizes both the variations among different assem-
blers, as well as the discrepancies across genomes and sequencing
technologies.

The results from simulated PacBio HiFi read sets with default
lengths—namely, those belonging to the first iteration (see Ta-
ble 1)—areillustrated in Fig. 4. Next to that, the results of real HiFi
reads of the same species are presented in Fig. 4. We note that Hifi-
asm and LJA outperformed other assemblers and performed well

in all datasets. The assembly results generated by the MBG assem-
bler demonstrated notably low sequence identity when compared
to the reference genome.

Longer reads lead to more contiguous
assemblies of large genomes but do not always
improve assembly quality

To investigate the effect of increased read length on assembly
quality, we simulate Oxford Nanopore, as well as PacBio CLR and
HiFi reads with different read length distributions (Table 1). These
reads are simulated from the genomes of S. cerevisiae, P. falci-
parum, C. elegans, A. thaliana, D. melanogaster, and T. rubripes for
PacBio CLR and ONT reads, as well as S. cerevisiae, P. falciparum,
A. thaliana, and D. ananassae for PacBio HiFi reads. We assemble
PacBio CLR and ONT reads with Canu, Flye, wtdbg2, Raven, and
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Figure 3: The performance of the 5 assemblers on the real PacBio CLR and ONT reads (see Supplementary Table S5), sequenced from 6 eukaryotic
genomes. As in Fig. 2, 6 evaluation categories are reported for each assembler, and the results are normalized among all assemblies included in the
figure. Ranges for each metric are reported as the best and worst values computed for these assemblies. The best-performing assembler is highlighted

and has a black outline.

miniasm and assemble PacBio HiFi reads with HiCanu, Flye, Hifi-
asm, LJA, and MBG. We evaluate assembly quality based on 6 eval-
uation categories (see Overview of the benchmarking pipeline). It
is worth mentioning that Canu’s PacBio CLR and ONT reads iter-
ation 4 (the longest reads) assemblies of A. thaliana and T. rubripes
did not finish within reasonable time and are excluded from the
evaluation.

Figure 5 shows a summary of the assemblers’ performance on
all simulated read sets, highlighting changes in performance for
each read length distribution. All 6 evaluation metrics are nor-
malized given the maximum and minimum metric values per
genome, per sequencing technology, and combined to obtain an
average score. For PacBio CLR and ONT read sets, we then av-
erage the 2 resulted scores. Finally, we report a rate between 1
and 10 for each assembler, per read length distribution for PacBio

CLR and ONT read sets, and a separate score for PacBio HiFi read
sets. The results on all computed metrics are fully described in
Supplementary Tables S8-S24.

The results imply that there is a correlation between the size
and complexity of the reference genome and the extent of the im-
provement in assembly quality that can be achieved by increasing
the length of the reads. While we observe no trend in assembly
quality improvement on the assemblies of smaller genomes, the
results on the T. rubripes assemblies are more conclusively in fa-
vor of the longer reads. For instance, on the shorter and simpler
S. cerevisiae and P. falciparum genomes, identification of repetitive
and complex regions is not aided by increased read length, likely
as these regions are already spanned by the reads with default
lengths. However, the benchmark results suggest that more com-
plex and repetitive regions within the A. thaliana, D. melanogaster,
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Figure 4: The performance of the 5 assemblers on the real PacBio HiFi read sets and simulated PacBio HiFi read sets with default read lengths, from
iteration 1 (see Table 1), generated from 4 eukaryotic genomes. Six evaluation categories are reported for each assembler, and the results are
normalized among all assemblies included in the figure. Ranges for each metric are reported as the best and worst values computed for these
assemblies. The best-performing assembler is highlighted and has a black outline.

and, most notably, T. rubripes genomes are better captured by
longer reads.

As recorded in Supplementary Tables S22 and S23, for larger
genomes, longer reads generally lead to significantly higher as-
sembly contiguity and a lower misassembly count. The latter
implies that the resulting assemblies are more faithful to the ref-
erences, although this is not necessarily supported by other met-
rics. We cannot report any compelling improvements in sequence
identity, multiplicity, validity, and gene identification.

Conclusion

In fulfillment of the first objective of this study, we conclude that
Flye is the highest-performing assembler when considering the
overview of all evaluation categories in this benchmark, which
include the sequence identity, repeat collapse, rate of valid se-
quences, contiguity, misassembly count, and gene identification.
Rankings are mostly consistent for all 3 sequencing platforms in-
cluded in the study: PacBio CLR, PacBio HiFi, and ONT. However,
no assembler ranks first in all evaluation categories, suggesting
that the choice of assembler is often a trade-off between certain
advantages and disadvantages. Therefore, we have corroborated
the conclusion of Wick and Holt [7], who benchmarked long-read

assemblers on prokaryotes, for eukaryotic organisms, and recom-
mend that these benchmarking parameters are considered in re-
lation to the desired outcome of an assembly experiment.

Additionally, the tests performed on real reads validate our
rankings of simulated read assemblies. Flye, the assembler that
scored consistently well in most evaluation categories for assem-
blies of simulated reads in PacBio CLR and ONT datasets, also
ranks first when evaluated on several sets of real reads sequenced
on long-read platforms.

In our analysis, we found that when processing HiFi reads,
both LJA and Hifiasm assemblers showed better performance
than other options. While LJA and Hifiasm may not always have
been the absolute best, their high performance was a constant,
irrespective of the dataset. This was not dataset specific but was
consistently observed in both simulated and real datasets. This
underscores their efficiency and accuracy in assembling genomic
sequences using HiFi reads.

Regarding our second objective, which is addressing the effect
of increased read length on assembly quality, the benchmarking
of assemblers on read sets with different read length distributions
suggests that longer reads have the potential to improve assem-
bly quality. However, this depends on the size and complexity of
the genome that is being reconstructed. We found that improve-
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Figure 5: The left panel shows the performance of the 5 assemblers on all simulated PacBio CLR and ONT read sets, with 4 different read length
distributions (as previously described in Table 1). A score of 1-10 is reported for each assembler. We did not divide the auNGA with the N50 of the
reference genomes for this figure. The results are normalized for each genome, per sequencing technology. For PacBio CLR and ONT, an average score
for each read length distribution is first computed and then these 2 scores are averaged to obtain an overall score per read length distribution. For the
A. thaliana and T. rubripes ONT iteration 4, the Canu assembly was not completed. Therefore, the iteration 4 bar in the plot represents only the PacBio
CLR assemblies. Similarly, the right panel shows the performance of the 5 HiFi assemblers on all simulated PacBio HiFi read sets with 4 different read

length distributions.

ments in contiguity were most significant among all metrics, as
also supported by the conclusion of [8], who showed that using
third-generation sequencing considerably improves contiguity in
assembling a plant genome (M. jansenii). However, we did not find
significant improvements in other aspects of assembly quality,
such as sequence identity or gene identification.

This study focused on comparison of different sequencing
technologies and assemblers on a specific coverage level of 30x,
which provided insights into the performance of different as-
semblers. However, it is important to recognize that assemblers
may behave differently at lower or higher coverage levels, and
project planners need guidance in selecting the right coverage
for their goals and budget. Unfortunately, studying the effect of

different coverages on assembly performance is not part of this
study.

The field of genomics is continuously evolving, and advance-
ments in sequencing technologies can significantly influence as-
sembly outcomes. While our study focuses on benchmarking
long-read de novo assembly tools for eukaryotic genomes, the
rapid progress in sequencing technologies introduces complexi-
ties and challenges in comparing different data types, chemistries,
and versions of the tools. In an ideal situation, it would be im-
portant to consider all the various factors, including different
chemistries, sequencing devices, and base callers when evalu-
ating assemblies. However, due to the limitations of available
data and resources, we focused primarily on analyzing the im-
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pact of specific chemistry and related factors in this study. We
recognize that this represents one of the limitations of our
research.

The generations of HiFi reads have witnessed substantial ad-
vancements in both read length and accuracy. In earlier ver-
sions, HiFi reads typically had read lengths ranging from around
10 to 15 kilobases (kb) with high accuracy rates of 99.9% or
greater. However, with subsequent generations, there has been a
significant increase in read lengths. The latest versions of HiFi
reads now offer read lengths exceeding 20 kb, with some reach-
ing up to 30 kb or more, while still maintaining high accuracy
rates above 99.9%. These longer and highly accurate HiFi reads
provide researchers with more contiguous and reliable genomic
sequences, enabling improved de novo assembly and enhanc-
ing various genomic analyses. An interesting innovation worth
mentioning, while not included in this study, is the intro-
duction of Oxford Nanopore’s Duplex reads. This cutting-edge
technology holds the potential to enhance sequencing accu-
racy even further, making it a worthwhile subject for future
investigations.

Supplementary Fig. S1. Read length distribution of real A. thaliana
ONT reads.

Supplementary Fig. S2. Read length distribution of real A. thaliana
PacBio HiFi reads.

Supplementary Fig. S3. Read length distribution of real C. elegans
ONT reads.

Supplementary Fig. S4. Read length distribution of real C. elegans
PacBio CLR reads.

Supplementary Fig. S5. Read length distribution of real D. ananas-
sae PacBio CLR reads.

Supplementary Fig. S6. Read length distribution of real D.
melanogaster ONT reads.

Supplementary Fig. S7. Read length distribution of real D.
melanogaster PacBio CLR reads.

Supplementary Fig. S8. Read length distribution of real P. falci-
parum ONT reads.

Supplementary Fig. S9. Read length distribution of real P. falci-
parum PacBio HiFi reads.

Supplementary Fig. S10. Read length distribution of real S. cere-
visiage ONT reads.

Supplementary Fig. S11. Read length distribution of real S. cere-
visiae PacBio HiFi reads.

Supplementary Fig. S12. Read length distribution of real T
rubripes PacBio CLR reads.

Supplementary Fig. S13. Read length distribution of real human
PacBio CLR reads.

Supplementary Fig. S14. Read length distribution of real human
ONT reads.

Supplementary Table S1. Assembly accession numbers for all 7
reference genomes used in the experiments.

Supplementary Table S2. Long read sets from the human genome
used to generate Badread error and QScore models for PacBio CLR
and ONT. Where needed, we downsampled reads to 3 gigabase
pairs (Gbp), which meets the simulator’s requirements for at least
1 Gbp of real sequence data. Read identities were calculated as
described by Wick [15], who used the definition of BLAST identity.
The sequence data were aligned to reference GCF_009914755.1
[16], with Minimap v2.24 [17].

Supplementary Table S3. Badread parameters used in the simula-
tion of PacBio CLR and ONT reads. In total, using Badread, we sim-

ulated 48 read sets, accounting for 6 genomes (Supplementary Ta-
ble S1), 2 sequencing technologies, and 4 read length distributions
per technology (Table 1). Aside from read length, these parameters
were kept consistent for each technology across all simulations.
All other parameters not included in this table were kept as the
simulator’s defaults. Please note that the pacbio_human2019 and
ont_human2019 models were generated in this study (see Supple-
mentary Table S2).

Supplementary Table S4. Commands and parameters used for
simulating PacBio HiFi reads using PBSIM3.

Supplementary Table S5. Accession for the sequencing data used
in our benchmark of real read assemblies. To match our simu-
lated reads, we have further downsampled these read sets to 30x
coverage. Due to the low coverage of the T. rubripes PacBio and D.
melanogaster ISO-1 Oxford Nanopore datasets, we combined mul-
tiple datasets and sampled reads to a coverage of approximately
30x%.

Supplementary Table S6. Assembly commands for all assem-
blers. The $genome_size in the assembly commands below was
set as follows: S. cerevisiae = 12 Mbp, P. falciparum = 23 Mbp, A.
thaliana = 130 Mbp, D. melanogaster = 139 Mbp, C. elegans = 103 Mbp,
T. rubripes = 384 Mbp, and D. ananassae = 217 Mbp. The $threads
parameter was set to 8 for S. cerevisiae and P. falciparum; 16 for A.
thaliana, C. elegans, D. melanogaster, and D. ananassae; and 20 for T.
rubripes.

Supplementary Table S7. Definitions and formulas for the COM-
PASS metrics defined in Assemblathon 2 [13]. We define C, V, M, P
as the coverage, validity, multiplicity, and parsimony of an assem-
bly, respectively. We also denote L¢; as the total length of the cov-
erageislands, L, as the total length of the alignments between the
reference and the assembly, L as the total length of the reference,
and Ls as the total length of the assembly (sum of the scaffold
lengths).

Supplementary Table S8. Evaluation results for the S. cerevisiae
Oxford Nanopore simulated read assemblies.

Supplementary Table S9. Evaluation results for the S. cerevisiae
PacBio CLR simulated read assemblies.

Supplementary Table S10. Evaluation results for the S. cerevisiae
PacBio HiFi simulated read assemblies.

Supplementary Table S11. Evaluation results for the P. falciparum
Oxford Nanopore simulated read assemblies.

Supplementary Table S12. Evaluation results for the P. falciparum
PacBio CLR simulated read assemblies.

Supplementary Table S13. Evaluation results for the P. falciparum
PacBio HiFi simulated read assemblies.

Supplementary Table S14. Evaluation results for the C. elegans
Oxford Nanopore simulated read assemblies.

Supplementary Table S15. Evaluation results for the C. elegans
PacBio CLR simulated read assemblies.

Supplementary Table S16. Evaluation results for the A. thaliana
Oxford Nanopore simulated read assemblies.

Supplementary Table S17. Evaluation results for the A. thaliana
PacBio CLR simulated read assemblies.

Supplementary Table S18. Evaluation results for the A. thaliana
PacBio Hifi simulated read assemblies.

Supplementary Table S19. Evaluation results for the D.
melanogaster Oxford Nanopore simulated read assemblies.
Supplementary Table S20: Evaluation results for the D.
melanogaster PacBio CLR simulated read assemblies.
Supplementary Table S21. Evaluation results for the D. ananassae
PacBio HiFi simulated read assemblies.

Supplementary Table S22. Evaluation results for the T. rubripes
Oxford Nanopore simulated read assemblies.
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Supplementary Table S23. Evaluation results for the T rubripes
PacBio CLR simulated read assemblies.

Supplementary Table S24. Evaluation results for the PacBio HiFi
real read assemblies.

Supplementary Table S25. Runtime (minutes) and memory us-
age (GB) for all S. cerevisiae ONT and PacBio CLR simulated read
assemblies.

Supplementary Table S26. Runtime (minutes) and memory us-
age (GB) for all P. falciparum ONT and PacBio CLR simulated read
assemblies.

Supplementary Table S27. Runtime (minutes) and memory usage
(GB) for all C. elegans ONT and PacBio CLR simulated read assem-
blies.

Supplementary Table S28. Runtime (minutes) and memory us-
age (GB) for all A. thaliana ONT and PacBio CLR simulated read
assemblies.

Supplementary Table $29. Runtime (minutes) and memory usage
(GB) for all D. melanogaster ONT and PacBio CLR simulated read
assemblies.

Supplementary Table S30. Runtime (minutes) and memory usage
(GB) for all T. rubripes ONT and PacBio CLR simulated read assem-
blies.

Supplementary Table S31. Evaluation results for all real read as-
semblies.

Data Availability

All additional supporting data are available in the GigaScience
repository, GigaDB [35].

Availability of Supporting Source Code and
Requirements

Our evaluations were produced with QUAST v5.0.2 [31], BUSCO
v5.4.2 [33, 34], and COMPASS [13]. We also provide the scripts we
used in GitHub:

Project name: Long-read assembly benchmark

Project homepage:  https://github.com/AbeelLab/long-read-
assembly-benchmark

Operating system(s): Platform independent

Programming language: Python and Shell

License: GNU General Public License v3.0

Abbreviations

BLAST: Basic Local Alignment Search Tool; BUSCO: Bench-
marking Universal Single-Copy Orthologs; CLR: continuous
long read; Gbp: gigabase pair; HiFi: high-fidelity; iTOL: Inter-
active Tree of Life; kb: kilobases; kbp: kilobase pair; Mbp:
megabase pair; NGS: next-generation sequencing; ONT: Ox-
ford Nanopore; PacBio: Pacific Biosciences; TGS: third-generation
sequencing.
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