Visualization of Point Clouds in Mobile
Augmented Reality using Continuous
Level of Detail Method

04-11-2020

Liyao Zhang

Mentor #1: Peter van Oosterom
Mentor #2: Haicheng Liu

Faculty of Architecture and The Built Environment, TU Delft, The
Netherlands

]
TUDelft

Overview

Introduction
Methodology
Implementation
Results
Analysis
Comparison
Conclusion

N o oA e

o]
TUDelft

Introduction — Augmented Reality

Augmented Reality (AR)

« An Augmented Reality system is
a system that has the following
properties (Azuma et al., 2001):

o combines real and virtual
objects in a real
environment;

o runs interactively, and in
real-time;

o aligns real and virtual
objects with each other.

* AR applications can be used on
mobile devices without specific
equipment like helmets and
handles.

]
TUDelft

(Pokémon GO)

Introduction - Motivation

Reasons of showing point clouds in mobile Augmented Reality using
cLoD method:

 Point clouds have become important data resources of multiple fields,
however, the use of point clouds in mobile AR is waited to be explored.

« Save a lot of time and resources if we can directly get use of point clouds
In mobile AR: some pre-processing steps can be avoided.

+ Large point clouds can’t be visualized without LoD support, and will be
visualized ugly with dLoD approaches.

Challenges of showing point clouds in mobile AR using cLoD method:

- Dealing with huge-amount data of point cloud datasets with limited
memory, CPU and GPU resources of mobile devices

« Reaching relatively high visual quality and performance requirements
CLoD based visualization has not been used in mobile AR before

o]
TUDelft

Overview

Introduction
Methodology
Implementation
Results
Analysis
Comparison
Conclusion

N o oA e

]
TUDelft

Methodology - Overview

]
TUDelft

[

Point Clouds
Input

7

Continuous LoD
Calculation

'

Data Organization

'

Adaptive Point Size
Strategy Rendering

Selective Query

Methodology — cLoD Calculation

This cLoD model is developed based on the idea of refining ideal discrete

LoDs and making them be a continuous function.
Refined discrete levels (max level L = 13), r: refinement, r = 2(1/2*r)

r=()

0 0
3 3
g Z
] [t
14 14
0 0.2 0.4 08 0.8
Probability density f(I)
=3
0 0
3 3
g z
< 3
] []
14 14
0 0.2 0.4 05 0.8

FProbability density f(I)

r=1
0 0.2 0.4 06 0.8
Probability density f({]
r =5
0 0.2 0.4 06 0.8

FProbability density f({]

Zoom Level 1

Zoom Level 1

0

14

14

=2
0 0.2 04 0.6 0.8
Probability density f(1)
=10
0 0.2 04 0.6 0.8

Probability density f(I)

blue bars: refined discrete level-of-detail, red curve: continuous function

e (van Oosterom, 2019)
TUDelft

Methodology — cLoD Calculation

For ideal continuous function over levels (nD):
2Dy — 1)n2
flbm) = -1+ — |

This function has Cumulative Distribution Function (CDF):
2(n—1)l -1

2(n—1)(L+1) —1

F(l,n) =

When the number of sublevels approaches infinity, the CDF can be seen as
continuous function. So, the inverse function of F(l,n) together with random
generator U (uniform between 0 and 1) is used to generate continuous level |
for points in nD space:

(n-1)(L+1) _
[= F-1(U) = In((2 1)U+1

(n—-1)In2 (van Oosterom, 2019)

L —the max level of detail
| —levels between 0 and L+1
 n—number of dimensions

o]
TUDelft

Methodology — cLoD Calculation

Properties of cLoD model:
* This cLoD model has ideal distribution over LoDs

- Can realize smooth transition in density, avoid density shocks as present in
discrete LoD approaches

« Keeps the desired relative point density as much as possible

dLoD (left) and cLoD(right) (Guan, 2019)

o]
TUDelft

Methodology — Adaptive Point Size Strategy Rendering

Issues of showing

points as the same

size:

 If the size is too
small, then there
will be obvious
holes between
points;

 If the size is too
big, the
neighboring points
will overlap a lot
and cause a loss of
Information.

]
TUDelft Points with different sizes (left) and with same size (right) *°

Methodology — Adaptive Point Size Strategy Rendering

Therefore, in order to get better visual quality, we’ll use the Adaptive point
size strategy, which sets the point size of each point as different values. Based
on the perspective projection matrix, we derive a formula to calculate ideal
point sizes at different depth in the viewing z-axis direction.

s*n*1 * screenHeight

Size =
Zeye * tan(0.5 * fov)
r = right coordinate of near fov = field of view
clipping plane screenHeight = height of screen
s = coefficient to scale the points Zeye = POINt depth in the viewing z-axis
n = near clipping plane distance direction

]
TUDelft

11

Methodology — Selective Query

« The computation in point-wise is too expensive for mobile devices and will cause
an extremely low frame rate and even software crashes. Thus a uniform threshold
over cLoD is used to filter the points.

« B+ tree is applied to speed up the query on the cLoD value.

« The main idea of filtering the points is to reach an ideal point cloud density for
display at certain distance.

« The Cumulative Density (CD) at a certain level can be obtained from the
Cumulative Distribution Function.

FOLmN (20D —1)N
En o (z(n—l)(L+1) _ 1)En
[= continuous level
N = the total number of points in the dataset

1 n = number of dimension
TUDelft " = size of spatial domain in nD case .

CD(l,n) =

Methodology — Selective Query

« The value of ideal density is chosen based on the ideal point sizes at each
depth in the adaptive point size strategy rendering step.

* Alogarithm of distance from the center of the point cloud model to the
camera is set as the denominator. -> Higher density when the model is
nearby, and lower density when the model is far away.

- By visualizing all the points with level less than I, we can reach the wanted

density. b
CD(l,n) =
Iny ((x — w2+ — v)2+(z —w)2) + 1
[= continuous level x,y,z = coordinates of the point cloud
n = number of dimension center in world space
D = ideal density u, v, w = camera coordinates in world space

]
TUDelft

13

Overview

Introduction
Methodology
Implementation
Results
Analysis
Comparison
Conclusion

N o oA e

]
TUDelft

14

Implementation — Tools

Software

« ARCore (version 1.17.0)

« Unity game engine (version 2018.4.21)
Language

- C#

« LAZ file system in C# - LASzip

« High-Level Shading Language (HLSL)
Hardware

* The tests and benchmarks are carried on a Redmi
K20 Pro model.

* Qualcomm Snapdragon 855 processor at 2.84
GHz, 8 GB of Random Access Memory (RAM),
2340 x 1080 pixels resolution, and a triple-camera
setup.

o]
TUDelft

c ARCore
& unity

15

Implementation — Datasets

* Furniture Point Clouds: point clouds of furniture, such as chair, table, and
sofa.

« Architecture Point Clouds: Point clouds of an underground garage,
obtained by the NAVVIS M6 indoor mobile mapping system. Available at:
https://www.navvis.com/m6-pointclouds

* Terrain Point Clouds:

O

o]
TUDelft

NEON AOP Discrete Return Light Detection and Ranging (LiDAR) Point
Cloud, which is an American Society for Photogrammetry and Remote
Sensing (ASPRS) LASer format data product in UTM map projection.
Available at: https://data.neonscience.org/data-products/DP1.30003.001,;

AHNZ2 (Actueel Hoogtebestand Nederland) dataset, which is the digital
elevation map for the whole Netherlands. Available for download via the
PDOK (Publieke Dienstverlening Op de Kaart).

16

https://www.navvis.com/m6-pointclouds
https://data.neonscience.org/data-products/DP1.30003.001

Implementation - Overview

]
TUDelft

Yes

Point cloud input

v

Feature points detection

Y

Flane detection

Y

—- Hit detection

Y

Paoint cloud rendering

Y

Enable cbject manipulation
system

<Loes user hit screen again

real-time update of models

17

Implementation — Point Cloud Input and Storage

» The point clouds are stored as LAZ files in order to reduce the file size and
speed up loading. A C# library called LASzip is used to read the LAZ files.

« The minimum and maximum X, Yy, z coordinates of the point cloud are first
read from the header of the LAZ file and waiting to be used in the later
transformation.

« The coordinates, colour
and calculated cLoD of
each point are stored as
separated arrays, and are
sorted based on the cLoD
value in ascending order.
The cLoD array is then
organized using a B+ tree
to speed up the selective
query on the continuous
levels.

]
TUDelft

Implementation — Hit Detection

 In order to put 3D virtual objects on 2D
plane, ARCore performs a raycast
against detected planes.

 In this case, the direction of the raycast
IS determined by the hit position on the
screen and the camera position.

« The point cloud models will be put into
the scene based on this hit pose.

]
TUDelft

& Inspector

Implementation — Point Cloud R

-
Tag | Untagged

Rendering | ranstorm

Position

R otation

There are few things to do when rendering e

h + Point Cloud Renderer (Script)

the point cloud models in the scene: Serpt I
- Implement the selective query. e ————

Foint Obj Maone (Game Object)

- Store the information of the selected B [none] (Mesh Filter) LERS

. Mesh Mone (Mesh) @
pOIntS as MeSh' B 7 Mesh Renderer [i+ 8

Materials

o The Mesh class can handle large sze L
number Of pOintS t 0 FointCloud

o The Mesh class has some useful
properties and functions, which can
assist mesh generation.

Lightmap Static
To enable generation of lightmaps for this Mesh

Renderer ||-| e enable the 'Lightm [tati
property.,

mesh. vertices = points:
mesh. colors = colors;
mesh. S3etIndices|indices. MeshTopology. Points)] 0): . PointCloud

Shader | Custom/PointCloud

Dynamic Occluded A

Add Component

]
TUDelft

Implementation — Point Cloud
Rendering

« Create a new GameObject and bind the
Mesh to the GameObject.

« Create anchors based on the hit pose.

« Deliver the vertex positions, colours,
Indices to the GPU, and calculate the
point sizes in the GPU.

« The point cloud model in the scene will
be updated every X frames accords to
new cLoD based selection result. X is a
parameter called UpdateFrequency.

]
TUDelft

Implementation — Object 2
Manipulation

]
TUDelft

147142
Frame rate:

In order to scale and rotate the point cloud
models, ARCore’s object manipulation
system is loaded.

There are some changes in the pre-
compiled scripts:

o The script of Selection Manipulator is
revised to avoid putting a new object
Into the scene when the user hits on an
existing object.

o The script of Scaling Manipulator is
revised so that the number of points to
be rendered will change while scaling.

Number of pointi

Implementation — User Interfaces

b ol
Sis el
an

]
TUDelft

Overview

Introduction
Methodology
Implementation
Results
Analysis
Comparison
Conclusion

N o oA e

o]
TUDelft

24

Results — Source Code

» Source code and APK are available at:
https://qgithub.com/LiyaoZhang0702/AR_PointCloud (Only supports
Android devices at current stage)

]
TUDelft

25

https://github.com/LiyaoZhang0702/AR_PointCloud

Results - Visualization

Visualizing small point cloud models like furniture

]
TUDelft

26

Number of point;
147831

Frame rate:

Results - Visualization

* Visualizing large point cloud models (scanned
point cloud of an Office with 1.5M points)

]
TUDelft

Results - Visualization

* Visualizing large point cloud models (Terrain g
point cloud with 4.7M points)

]
TUDelft

Results - Ul

« Use different parameters to visualize point
clouds

o Different update frequency

o Different wanted density

o Different point size

]
TUDelft

Overview

Introduction
Methodology
Implementation
Results
Analysis
Comparison
Conclusion

N o oA e

o]
TUDelft

30

Analysis

* In order to evaluate the capability of the rendering system, some additional
experiments are carried using different types of test datasets.

« The test datasets can be mainly divided into three categories: furniture
point clouds, architecture point clouds, and terrain point clouds.
+ To assess the results under the same criterion, all of the results are of the
following condition:
o The distance from the centre of the point cloud model to the camera is
around 1 meter
o The spatial domain of the point cloud model is around 1 square meter
o The rendering results are considered to have nice visual quality from
the tester’s perspective.

]
TUDelft 31

Analysis — Parameters

. Model Points Original Denﬁit}r[phhnzl Wanted Uenﬁit}fipfﬁfmzl
Wanted DenSIty Table 10722 10442 77 14226493
. Chair 11525 11257.52 14223.77
® There IS no Clear "‘H.'rf..] :,',l'”.—.’..—.l_ '_1]:3”22” 2?.—.._”;‘11
relatlonshl between the Office] 1498042 1451341.0 17149499
. p . Garage 1002399 Y75602.6 146434 8
properties of the point Office2 8893706 85151893 241319.1
Terrainl 2474522 2387759.1 1666773
clouds and the value of Terrain2 4436593 14365930 1708225
1 Jerramm3d 3711573 3711573, 79762
Wanted denSItyI lerraimn3 115 115730 1974976.2

« The selection of the wanted density is affected by the original density, the
distribution of the point cloud, and the spatial domain of the rendering result.
So, it’s quite challenging to find a proper value of wanted density for all
datasets.

 Although there is a recommended value of the wanted density that is from
100,000 points/ m? to 200,000 points/ m?. Manual adjustment is still
needed, especially when visualizing sparse point clouds or unevenly
distributed point clouds.

“]
TUDelft 3

Analysis — Parameters
Update Frequency

- When visualizing all the point Table
clouds that are under the i
capability of the rendering Offcel
system, the update can be Office?
implemented more frequently o
than once per 5 frames. lerrain3

» The pauses between each update
are not noticeable.

Point Size

Points
10722
11525
2355
1455082
1M 35
BE93706
2474522
4436593

3711573

Update Frequency
LN EH"!’ | frame
LN E""I."!' | frame
once per 1 frame
once per 2 frame
LN E"'I."!' 2 t'r.!rm'
CNIEr F"I'I."!' 5 t'mrm'
once per 2 frame
once per 3 frame
LN E:"I.‘f 3 t'r.lr:n:'

Point Size
x12

x14

« The ideal point size (x5) performs well when visualizing the dense point

clouds.

* When visualizing the sparse furniture point clouds, the adjustment of point

size is required.

o]
TUDelft

33

Analysis —

]
TUDelft

Parameters

34

Analysis — Performance

Boundary

« The rendering system can process at most 10 million points in memory /
CPU, and contain at most 5 million points in the scene by GPU.

Frame Rate

- After experiments, we find that no matter how many points are processed
and visualized by the rendering system, the frame rate stays at 30 fps
stably.

o]
TUDelft

35

Analysis — Performance

Proportion of Reduced
Points ¥ il

Mumber of Points versus Proportion of Reduced Points

100 T

When visualizing large s O ¥
point clouds in small area |
(1 m?), the proportion of
reduced points is high,
which is from 70% to 90%.

The proportion of reduced
points is determined by the

80 |
70+

60

Froportion of Reduced Points [%]

50T

spatial domain, distribution, 4
and the original density of w! - : - : ")
the pOint CIOUd. Number of Points w108

For most of the indoor applications that usually have small field of vision,
the number of points can be reduced significantly when visualizing large
point clouds.

o]
TUDelft

36

Analysis — Performance

Utilized Memory

* The utilized memory
Increases when the number
of points to be processed
Increases.

* When visualizing large
point clouds, the
consumption of memory is
quite high.

* The consumption of
memory is too high for a

simple point cloud renderer.

o]
TUDelft

Utilized Memory [MB]

1200

1000

800

600

400 T

2007

Mumber of Points versus Utilized Memory

4

G
Mumber of Points

8

12
x 108

37

Overview

Introduction
Methodology
Implementation
Results
Analysis
Comparison
Conclusion

N o oA e

o]
TUDelft

38

Comparison - Preprocessing
Pre-processing Workflow

Pre-processing steps

cLoD-based Point Cloud Visualization

Point Cloud Input L Visualization

Mesh-based Visualization

Visualization

1
Paint Cloud Input > Vertex Normal »> Screened Poisson .: Unwanted Surfaces

Computation Reconstruction Removing 1

]
TUDelft

Comparison - Preprocessing

Pre-processing Time

* The pre-processing time of the
mesh-based visualization is the
sum of the time to import
point cloud, time to calculate
the normals, and the time to
implement the Screened
Poisson algorithm.

Although the pre-processing
steps of the mesh-based

120

100

FPre-processing Time [s]

visualization are implemented 27,

on the computer, for most
cases the pre-processing time
of our cLoD-based
visualization is still less than
the pre-processing time of
mesh-based visualization.

o]
TUDelft

Mumber of Points versus Pre-processing Time

80 r

60

401 #

- Pre-processing Time of Mesh-based Visualization
#--- Pre-pocessing Time of cLoD-based Visualization
*.
*., *
b
*
R *
: ¥
kS
a0 *
*
o G 8 10 12
Mumber of Points «10%

40

Comparison - Preprocessing

Utilized Memory of Pre-
processing Steps

* The utilized memory of our
cLoD-based visualization pre-
processing is from 0 to 1200
MB, which is much less than
the utilized memory of mesh-
based visualization pre-
processing (from 1600 to 4600
MB).

]
TUDelft

Utilized Memory [MB]

Number of Points versus Utilized Memory of Pre-processing Steps

8000
- Utilized Memory of Mesh-based Visualization Pre-processing
Utilized Memaory of cLoD-based Visualization Pre-pocessing
5000
.*.
* . #* *
4000 ; ' ; *
L *o
*
3000 [.
2000 §
*
1000
D § i i 1
0 2 4 B 8 10 12
Mumber of Points «10%

41

Comparison - Visualization

Visual Quality

* The overall visual
quality of our
cLoD-based point
cloud visualization
and the mesh-
based visualization
IS quite close.

Point clouds (top) and mesh models (bottom)

]
TUDelft

42

Comparison - Visualization

Visual Quality

« The major drawback of our
cLoD-based point cloud
visualization is that the point
cloud models don’t have
complete geometry and
topology.

« Some complex behaviours
like shading and adding
shadows are not feasible for
point cloud models, which
can performs well on the
mesh models.

p (Different rendering results of the same mesh
TUDelft model due to different environment)

43

Comparison - Visualization

Runtime Utilized Memory

« Mesh models contains more
Information, such as uv texture
coordinates, texture, and
normal.

* The run-time utilized memory
of mesh-based visualization is
always more than that of our
cLoD-based point cloud
visualization.

o]
TUDelft

Run-time Utilized Memory [ME]

300

2680

200

150

100

50 4

NMumber of Points versus Run-time Utilized Memory

4 Run-time Utilized Memory of Mesh-based Visualization
#--- Run-time Utiized Memory of cLoD-based Visualization

0.5

1 1.5 2 2.5
Number of Points «10%

44

Overview

Introduction
Methodology
Implementation
Results
Analysis
Comparison
Conclusion

N o oA e

o]
TUDelft

45

Conclusion - Contributions

« With this method, the rendering system can handle point cloud models
with at most 10M points, contain 5M points in the scene and visualize
them at 30 fps. Visualizing such large point clouds is not possible without
the cLoD method, and we can even visualize multiple large point cloud
models only if there are less than 5M points in the scene after selection.

« We add the concept of ideal density to the cLoD method and choose to use
a uniform threshold of cLoD to filter the points, which makes the
Improved cLoD method fit the mobile AR environment.

- Besides mobile AR applications, the improved cLoD method can also be
used in other applications that need to render point clouds on mobile
phones.

o]
TUDelft

46

Conclusion - Contributions

 In the rendering system, basic operations of an mobile AR application,
Interactions, and friendly user interfaces are realized.

« The rendering system has pretty nice usability. No matter the point clouds
are unevenly distributed or are very sparse, the users can always find
proper value of parameters to improve the rendering results in the end.

« Compared to the mesh-based visualization, our cLoD-based point cloud
visualization doesn’t need much pre-processing steps, once the file is
loaded into the system, the point cloud models can be visualized without
delay.

« The final visual quality is close to the mesh-based visualization as well.

]
TUDelft 47

Conclusion - Limitations

o]
TUDelft

The quality of the automatic estimation needs to be improved. Manual
operations are sometimes required to find the proper value of parameters.

The usability of the rendering system in the outdoor environment is under
question.

Due to the lack of valid geometry and topology, shading models can not be
Implemented and shadows can not be generated for the point cloud
models.

The memory bandwidth is overused. The utilized memory is too much for
a simple mobile point cloud renderer.

The phone will be overheating when running the rendering system for
more than 20 minutes.

48

Conclusion - Applications

« Strength of this method:

o Can directly get use of the &
easily obtained point clouds g

o The materials and shaders
used can be easily changed

« Potential Applications:

o Outdoor: architecture,
industrial design

o Indoor: home renovation,
estate sales, architectural
design

“]
TUDelft 29

Conclusion — Future Work

« Improve the quality of automatic estimation.

- Upgrade the formula of selective query, using distance from the camera to
individual points and nD data structure to improve the results.

« Optimize the app, reduce the utilized memory and solve the overheating problem.
« Test our method with more datasets and different devices to see its applicability.

* Explore the potential of our method to visualize larger point clouds like city or
nation wide point clouds.

* Apply more interactions to the rendering system.

]
TUDelft 50

References

« Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., and Maclntyre,
B. (2001). Recent advances in augmented reality. IEEE computer graphics
and applications, 21(6):34-47.

« Schutz, M., Krosl, K., & Wimmer, M. (2019). Real-Time Continuous
Level of Detail Rendering of Point Clouds. 2019 IEEE Conference on
Virtual Reality and 3D User Interfaces (VR). doi:
10.1109/vr.2019.8798284van Oosterom, P., 2019. From discrete to
continuous levels of detail for managing nD-PointClouds. Keynote
presentation at the ISPRS Geospatial Week 13 June 2019, Enschede, The
Netherlands.

* Virtanen, J.-P., Daniel, S., Turppa, T., Zhu, L., Julin, A., Hyyppa, H.,
Hyyppa, J., 2020. Interactive dense point clouds in a game engine. ISPRS
Journal of Photogrammetry and Remote Sensing, 163, 375-389.

« Xuefeng, G., 2019. =4 fi = W] AL REFARIR .

]
TUDelft 51

Thank you, any guestions?

]
TUDelft

