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Preface

As an end to my study journey, I took the challenge of diving deep into the robust control discipline,
while hopefully making our understanding of it a tiny bit better. I am proud to state that I will be among
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projects I witnessed will have a lasting impression on me. I am delighted to state that the project has
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of Zakynthos. And what a journey it has been. I am humbled and sincerely thankful I have been given
the opportunity to pursue this goal. This was made possible by very special individuals who have sup-
ported me unconditionally.

Do not go gentle into that good night,
Old age should burn and rave at close of day,

Rage, rage against the dying of the light. - Dylan Thomas

The words to my great friends, my inspiration Georges, my sister Katiana, my girlfriend Andrea, my
stepfather Peter and of course my loving mother Margit: I stand here today for you, and because of
you. Look at where we started, look where we are now. On the shoulders of giants indeed we stand to
reach higher. I am eternally grateful for you.

It is my sincere hope I have contributed to extending humanity’s knowledge by even a tiny bit, a
contribution to the betterment of our understanding, a betterment of life.

Chari Loukisas
Delft, January 2024
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1
Introduction

1.1. Context & Goal
Control of (agile) aerospace vehicles is an active and well-known research field, with no exception
to the rule in recent years [36, 18, 29] as they pose a challenging (robust) control problem. Robust
control is a discipline of special significance for Aerospace Vehicles (manned and unmanned) due
to the often critical operating conditions and situations inherent to them. Exposure to (unexpected)
uncertainty is therefore a major challenge for control system designers, to which rigorous research has
been dedicated to in the last decades and still poses a challenge in modern days [30, 10].

Robust linear control combined with gain scheduling, despite being the industry standard for agile
vehicles [10], has been criticised for being complex in the design phase and challenging to implement
while requiring extensive manual intervention throughout [16, 36], especially when fast dynamics are
involved. A well-known issue with common robust control methods like mixed-sensitivity H∞ is the
often conflicting design requirements and other issues like pole-zero cancellations [36, 3]. In addition,
classical robust control methods lead to high-order controllers which are difficult to implement [36]. With
respect to these criticisms, themethod ofH∞ Loop Shaping introduced in [9] is a powerful robust control
method with numerous advantages. The important advantages include an inherent balance between
robustness/ performance properties without the need for weighting function definitions (hence simpler
design objectives compared to mixed-sensitivity); a-priori robustness measures / goals (hence no need
for γ-iteration) and simultaneous gain/ phase margin guarantees [3]. Along with these advantages is
the method’s widely-applicable 2 stage design process [3] which inherently gives room for automation
as opposed to e.g. mixed-sensitivity. Combining this method with structured robustification in addition
avoids high-order controllers, which is recently made possible by non-smooth optimization [1].

The goal of this study is thus to demonstrate an effective design procedure using structured (gain-
scheduled) H∞ Loop-Shaping with a focus on automation, including its implementation for testing of
the non-linear system of the selected agile aerospace vehicle model.

1.2. Report Structure
The report starts with the (already graded) literature survey in Chapter 2, which serves to cover the
fundamentals of robust control theory, specificallyH∞ control, in the context of agile aerospace vehicles.
The survey initiates with an introduction ofH∞ Robust Control in section 2.1, where the main aspects of
the control methods are covered along with a special focus on Mixed-Sensitivity andH∞ Loop-Shaping.
Emphasis is also placed on the structure of the resulting controllers. Related to this section, model
uncertainty is discussed section 2.2, giving more context into general uncertainty modelling. In order to
form the research gap and questions, an overview of the state of the art of robust agile vehicle control
is given in section 2.3, along with certain challenges and criticisms of the selected design method in
section 2.4. Section 2.5 summarizes the insights gained from the literature survey as well as serving
as input into the research goals. From the bibliographic survey, a research gap is identified from which
the research goal and research questions are formulated in Chapter 3.

The main part of the study can be found in Part II of the report in the form of a scientific article.
The selected model along with its requirements is discussed and analyzed, after which the theory of
H∞ is briefly covered. The controller design along with its implementation and results are discussed.
Conclusions are formed and certain recommendations are described.

1



1.2. Report Structure 2

The report ends with a discussion on the achieved successful results. Certain limitations / improve-
ments are identified which are subject to recommendations for future work (based on the article). Finally,
a conclusion describes the results of the article and evaluates the answers to the research questions.



Part I
Literature Research
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2
Bibliographic Survey

2.1. H∞ Robust Control
TheH∞ control method is suited and specifically developed to take uncertainty into account during the
design phase of a control system. The term H∞ was first introduced in the 1980s by Zames [28], but
failed to take hold to large extents initially in the aerospace industry due to complications in using it
for structured controllers (see section 2.1.2), after which it was solved by Apkarian and Noll [1] using
non-smooth optimization techniques, leading to it being an industry-standard robust control method,
especially for aerospace applications [2]. For agile vehicle autopilots, the approach works well for
specific operating conditions (despite being difficult to automate the design over the design space)
[10].

The control method uses theH∞-norm of a selected system signal for robustness and performance
reasons. It provides a natural extension of classical and multivariable control concepts and allows for
intuitive model formulations and transparent design processes that yield robustness guarantees [3].
This makes H∞ Robust Control an extremely powerful tool for robust performance control systems.

Just like for H2, H∞ optimization problems are typically solved using LMIs and AREs for unstruc-
tured controllers, while non-smooth optimization, as mentioned, can be used for structured controllers
[1]. In general, the purpose of H∞ control is to minimize the exogenous effects w on outputs z given a
plant P and controller K [3]. Referring to figure 2.1, the problem can be described as [3]:

z = N(P,K)w (2.1)

where the problem to be solved is:
||N(P,K)||∞ = γmin (2.2)

However, for practical applications it is not always necessary (or even possible) to achieve the true
optimal. A sub-optimal controller may be achieved for this reason with γmin ≤ γ [3]:

||N(P,K)||∞ < γ (2.3)

The solution of this generic objective depends on what signals are chosen for this objective, which in
turn depend on the purpose of the design objectives.

2.1.1. Multivariable control & H∞ Norm
The H2-norm is directly related to the H∞-norm of a system. Consider G(s) that maps input u(s) to
output y(s). The H∞ norm of G(s) is then defined as [18]:

||G||∞ = sup
||u||2 ̸=0

||y||2
||u||2

= sup
||u||2 ̸=0

||Gu||2
||u||2

(2.4)

Equation 2.4 implies that the H∞-norm is the factor by which the energy of the input signal is amplified
to get the output signal [1]. The direct translation in the frequency domain states that the H∞-norm is
the largest system gain over the entire frequency domain [18]:

||G||∞ = sup
ω

|G(jω)| (2.5)

4



2.1. H∞ Robust Control 5

As can be concluded, H∞ control is about minimizing the closed loop ∞-norm of a system’s signals,
thus minimizing the frequency-domain peak (i.e. minimizing the maximum (supremum) ”energy” ampli-
fication in the time domain for all possible realisations). As implied by the ”H” (for Hardy space) in H∞,
theH∞ control problem is suited for the set of transfer functions with a bounded∞-norm, implying that
the transfer functions are stable and proper [30].

The SISO generalization discussed thus far provides clarity on the essence of H∞ Robust Control.
Multivariable control (multi-input multi-output, MIMO) is a highly relevant concept due the highly coupled
and interdependent states that are inherent to agile vehicle control and application, next to also being
highly relevant for H∞ Robust Control. This naturally leads to the necessity to discuss the MIMO case.

Multi-input multi-output systems differ from single-input single-output (SISO) systems. In MIMO
systems, there can be interactions between (multiple) inputs with (multiple) outputs. Next to this, the
concept of vector directions is a relevant concept in MIMO systems unlike for the SISO case. Despite
this difference, many concepts and ideas of SISO can be used in MIMO, an important example of
which is that the loss of rank of G(s) corresponds to the ”zeros” of the transfer function in the SISO
case [30]. Another important concept is the relation between scalar system magnitudes (SISO) and
singular values (MIMO) [30].

Eigenvalues do not give clear indications of the gain a MIMO system applies to a certain input, as
they do not account for the direction of the inputs, which can lead to completely different outputs for
inputs ui with the same magnitude [30]. For this, the concept of singular values is more useful, as the
maximum singular value of a transfer matrix G is equal to the largest gain for any input direction [30]:

σmax(G) = σ̄(G) = max
u ̸=0

||Gu||2
||u||2

(2.6)

with:
σ̄(G) =

√
ρ(GHG) (2.7)

where ρ = maxi(λi(G)), i.e. the largest eigenvalue of G. Singular value decomposition can show the
maximum and minimum magnitudes and the corresponding input and output directions [30]. Analo-
gously, the minimum singular value corresponds to the smallest gain, both maximum and minimum
being an indication of performance for systems (e.g. feasability of control for minimum values) [30]. A
direct relationship can be concluded when this is compared to equations 2.4 and 2.5, namely [1]:

||G||∞ = max
ω∈R

σ̄(G(jω)) (2.8)

By equation 2.8, an H∞ generalization for MIMO systems exists. Note that G does not necessarily
have to be the closed-loop transfer matrix from input to output, but can also represent the sensitivity
function, to e.g. account for measured output (sensor) noise.

It is possible to decoupleMIMO systems by introducing a compensator that e.g. diagonalizesG(s) at
certain frequencies, despite limitations such as in compensator choice and additional model uncertainty
sensitivity (which has different/worse and more complex implications than for the SISO case already),
limiting its use for practical applications (unlike the case when the system is close to diagonal) [30].
Next to this, by mixed-sensitivity and output weights, emphasis can be placed on one of the output’s
behaviour rather than another output when using methods like H∞.

2.1.2. Mixed-sensitivity & H∞ Loop-shaping
The H∞ method is powerful when it comes to setting performance requirements to systems, one of
which is loop-shaping. A method used to achieve a certain loop-shaping requirement is weighted
sensitivity, the ”weight” representing a bound over the frequency domain that e.g. the sensitivity function
of the system has to adhere to. Since a control system has to often satisfy multiple requirements, the
use of mixed sensitivity is possible, in which multiple weights can be assigned and solved through
stacking them. Consider the generalized feedback system:
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Figure 2.1: Generalized feedback system [30]

Here, w represents the exogenous signals such as reference or noise, z the ”error” signals, v the
measured outputs and u the controller inputs. A problem formulation can be illustrated by the following
generic case. Consider the following system, with its outputs multiplied with the loop-shaping weights:

Figure 2.2: Example of block diagram with loop-shaping weights and (exogenous) output noise [30]

This corresponds to the stacked H∞ problem [30]:

min
K

||N(K)||∞, N =

 WuKS
WTT
WPS

 (2.9)

with S the sensitivity function, KS the ”control effort” function and T the complementary sensitivity
function. The H∞ norms of the stacked function’s components are simultaneously optimized, the re-
quirement being that the individual ∞-norms do not exceed the inverse of the weighting functions.
MATLAB functions such as mixsyn create controllers that satisfy the requirements as close as possi-
ble depending on the weight selection [32].

Unlike the name might suggest, a similar yet slightly different approach is H∞ loop-shaping con-
troller design. The mixed-sensitivity approach involves shaping the closed-loop performance of the
system by certain weights and evaluating its robustness and performance afterwards in an iterative
fashion. For H∞ loop-shaping, the procedure is slightly different, as it first ”shapes” the open loop
performance of the system to meet certain requirements or good robustness traits (such as roll-off
behaviour):

Figure 2.3: Open-loop plant shaping using central controller KS [30]

Note that the weights W1 and W2 are part of the controller, the plant itself is not actually altered.
After this, the procedure optimizes the closed-loop system performance for robustness against coprime
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factor uncertainty (see 2.2.1) while not deviating in large extents from the initially shaped plant for
certain allowable values of coprime error |∆N∆M |∞ < ϵ (i.e. the open-loop performance/behaviour of
plant-controller combination |KS(jω)GS(jω)| does not deviate much from the open-loop performance
of shaped plant GS(jω)) [3]. This allows for the initial shaping traits to not be lost depsite having been
optimized.

After the shaped plant is determined, the closed loop controllerKS is then determined for a specified
ϵ < ϵmax (which can already be determined beforehand) [3]:∣∣∣∣∣∣∣∣( KS

I

)
(I −GK)−1M−1

l

∣∣∣∣∣∣∣∣
∞

=

∣∣∣∣∣∣∣∣( KS

I

)
(I −GK)−1

(
I GS

)∣∣∣∣∣∣∣∣
∞

< 1/ϵ (2.10)

which is equivalent to [30] [3] [9]:∣∣∣∣∣∣∣∣( KSSS KSSSGS

SS SSGS

)∣∣∣∣∣∣∣∣
∞

=

∣∣∣∣∣∣∣∣( w1

w2

)
→

(
z1
z2

)∣∣∣∣∣∣∣∣
∞

< 1/ϵ (2.11)

Here the similarity to Mixed-sensitivity becomes obvious, as it takes into account all sources of un-
certainty and the effect they have on all system input and output relations as illustrated (note that
K = W1KSW2):

Figure 2.4: Input output effects covered by equation 2.11 [3]

The solutions to these optimization problems can be solved by Ricatti equations or non-smooth opti-
mization for the structured case [1] [3] [31]. H∞ loop-shaping has many benefits over Mixed-sensitivity,
the primary ones being no γ iteration is needed, it enjoys the benefits of coprime factor uncertainty de-
scribed in section 2.2.1, no pole-zero cancellations, clear(er) management of conflicting requirements,
providing a balanced robustness performance approach, guaranteed simultaneous gain and phase
margins and exact observer implementation using shaped plant matrices [3].

As described in [35], the so-called Gap-Metric can be used which gives an indication on how much
plant uncertainty a given controller can tolerate.

Structured vs unstructured controllers
For agile vehicle control, the H∞ approach (despite working well for specific operating conditions) can
lead to high order controllers that can be difficult to implement [10]. This is therefore something to
be considered in the design of the autopilot. In this section, the meaning and definition of controller
structure along with its significance is discussed.

Referring to figure 2.1, controller K can be described as a state-space system [38]:

ẋK(t) = AKxK(t) +BKuK(t)

yK(t) = CKxK(t) +DKuK(t)
(2.12)

The control action yK(t) is related to the controller state vector xK(t) ∈ RnK , with nK the order of
the controller. If nK is equal to the number of states of the controlled system nx, the controller is a
full-order controller, whereas for the case 0 ≤ nK < nx the controller is of reduced-order (in the case
where nK = 0, the controller can be seen a simple gain, i.e. a feed-through system) [38]. Note that
the closed loop state-space system of controller and plant can be defined due to the simplifying effect
direct feed-through (Dyu) has. This however can only be done with unstructured controllers [38].
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In the case where a controller is unstructured, the controller matrices AK , BK , CK and DK along
with the order of the controller nK are free to be chosen [38]. With this freedom, given a design opti-
mization problem for e.g. H∞, the optimization problem is convex and can be solved by LMIs that reach
the global feasible optimum [38]. Often, however, this leads to a full-order (which is often high-order)
controller, especially when performance weights are introduced [38]. LMI optimization does not allow
for controller structure constraints [38]. As stated, high-order controllers are difficult to implement in
already existing controllers and can lead to high computation times, which is especially problematic
when speed is of the essence and computational power and memory are limited [38].

In the case when a controller is structured, the structure of the controller matrices and its order are
imposed, as stated by Toscano [38]. Apkrarian gives the definition that a controller is called structured
if the controller matrices depend smoothly on a design parameter vector varying in some parameter
space or in a constrained subset thereof [1]. The free parameters denote the parameters that can be
altered/tuned, for example the gains in a PID controller, as shown below:

Figure 2.5: General structure of a MIMO-PID controller [38]

Despite leading to relatively lower performance compared to unstructured (and therefore unre-
stricted, purely optimal) controllers, structured controllers represent far more realistic controllers (e.g.
due to hardware/software limitations, certification, complexity) along with certain benefits, such as the
relative ease of gain-scheduling [3]. The problem with structured controllers is that the optimization
is non-convex due to the constroller structure constraints, making this a significantly more difficult op-
timization problem to solve. Apkarian and Noll solved this issue in 2006 by using non-smooth opti-
mization techniques, and their methods having been incorporated in the MATLAB function systune
and hinfstruct [1]. This has enabled control system designers to find optimal H∞, H∞/H2, H∞/H∞
(multi-plant, single controller) and µ-synthesis solutions with structured controllers [1].

Finally, another way to deal with high-order controllers (and systemswithmany states) is the concept
of model reduction. A method of model reduction is model truncation, in which part of the dynamics
are left out in the reduced model (e.g. a state is neglected). In general not a lot can be said about the
differences between the original and truncated model, except that the truncated and original model are
equivalent at infinite frequencies [30]. However, if the state matrix A is in Jordan form, one can quantify
the differences more accurately (defined as the ∞-norm of the error ||G − Ga||∞) [30]. An advantage
of truncation is that the poles of the truncated model is a subset of the poles of the original, making the
physical interpretations valid in the truncated case. Another method if model residualization, in which
some state derivatives are put to zero and are then determined by solving for the affected state in terms
of other states. The steady state response of the reduced model and the original are equivalent in this
case (since only the derivative is put to zero) [30].

In general, truncation is preferred when accuracy at high frequencies is deemed important, while
residualization is preferred for low frequency modelling [30]. In order to get the best of both worlds,
an alternating approach between the two is possible [3]. The state selection for truncation or residu-
alization in order to have the minimum model error can be done by balanced truncation / realization,
where the states with the smallest Hankel singular values (guaranteeing that the max error is smaller
than the combination of singular values of the neglected states); and the states that are the least ob-
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servable and controllable are selected respectively. The method of order reduction and its specific
model requirements (e.g. error versus frequency) can be defined and used by matlab functions such
as balred. Special attention is needed for unstable model-reduction which depends on the separation
of the system into stable and unstable parts (the reduction is then executed on the stable part) and the
use of coprime factors [3].

It should be noted that it has been demonstrated that in general for H∞ controllers controller order
reduction does not yield optimal static controllers compared to (pre-)structured controllers that have
been optimised [3], highlighting the significance of the non-smooth optimization approach by Apkarian
and Noll that essentially solved the structured H∞ controller problem. This drawback obviously does
not necessarily apply to model reduction applied on the plant.

2.1.3. µ synthesis
Similar to H∞ synthesis, µ synthesis uses the structured singular value µ to optimize for given control
problem and is further elaborated in section 2.2.2. The optimization can use methods like DK-iteration,
but suffers from inherent problems like non-convexity which can lead to only finding a local optimum
[30]. This is especially a problem when the structure of the controller is fixed. A method to deal with
this is using non-smooth optimization [1].

2.2. Model Uncertainty & Robustness Analysis
For certification and (robust) performancemeasurement reasons, taking into account model uncertainty
is necessary for designing (automatic) control systems, the extent of which depends on the application.
It gives an indication of the origin and effect that certain sources of uncertainty have on the model
and its severity, in turn making this an objective for the robustness requirements of the control system.
This helps to avoid getting into scenarios where the control system might become unstable for certain
uncertainties or (simultaneous) combinations of those, while also taking into account to not be too
conservative / pessimistic of its effects such that agility / performance is negatively impacted to a too
large extent, which is of special importance for high-performance vehicles.

Classical methods like gain and phase margin are useful for SISO systems as they are even able to
take into account simultaneous perturbations by e.g. using the Nichols exclusion regions [3]. However,
applying these methods for the MIMO case, aspects like cross-coupling effects can give a unreliable
indications of robustness (i.e. although methods like the Nichols exclusion region can be extended
to MIMO, the fact that all possible gain and phase perturbation combinations need to be considered
makes it a cumbersome method especially for multiloop systems with many sources of uncertainty [3]).
Therefore, this section provides an overview of uncertainty modelling methods that are applicable for
multivariable systems, along with what information they may provide on robustness. Note that classic
SISO methods (e.g. parametric uncertainty, Nyquist uncertainty illustrations) are not mentioned here
and is deemed background information.

2.2.1. Unstructured Uncertainty
Unstructured uncertainty is the type of uncertainty that makes no assumption about the exact origin
or structure of a certain uncertainty source ∆, but assumes a defined effect of the system, that is also
bounded [3].

Additive & multiplicative uncertainty
Additive and multiplicative uncertainty models, given a theoretical system model P0(s) and the model
that includes uncertainty P (s), are of the form [3]:

P (s) = P0(s) + ∆A(s)

P (s) = P0(s)(I +∆I(s))

P (s) = (I +∆O(s))P0(s)

(2.13)

The uncertainty ∆(s) is allowed to be any stable complex matrix satisfying ||∆||∞ ≤ 1 [30]. Given
a plant and controller combination M and uncertainty ∆, the structure of the system with uncertainty
included is of the form [3]:
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Figure 2.6: Uncertainty interconnection structure [3]

From the small gain theorem, this system fulfils the robust stability condition (the system is stable
for all possible uncertainty perturbations given a controller K) when the following condition is met [3]
[30]:

||M ||∞||∆||∞ < 1 (2.14)

The considered uncertainties can be applied to input-output and/or output-input uncertainty e.g. in
terms of the sensitivity function [3]. Methods for analyses can be applied in terms of determining the
smallest destabilizing perturbation [30]. Furthermore, stability analysis can also be conducted using
the MIMO disk [33].

Coprime factor uncertainty
Another method that canmodel certain effects that additive/multiplicative uncertainty cannot (e.g. desta-
bilizing parameter variations, resonance frequency change etc.) is coprime factor uncertainty (albeit
with the disadvantage that it can lack physical interpretation) [3]. Next to this, H∞-loop shaping uses
coprime factor uncertainty to optimize the system.

The coprime factorization is not unique and can be left or right handed for a system G(s):

G(S) = Nr(s)M
−1
r (s) = M−1

l (s)Nl(s) (2.15)

for which a stable coprime factorisation is when N includes the right-half plane zeros and M the right-
half plane poles [3]. The uncertainty for a perturbed system Gp(s) can in turn be noted as:

Gp(s) = (Ml +∆M )−1(Nl +∆N ) (2.16)

For which ||[∆N ∆M ]||∞ ≤ ϵ. The equation can be visualized:

Figure 2.7: Coprime factor uncertainty block diagram [30]

Using equation 2.14 and figures 2.6 and 2.7, M and its infinity norm can be written as follows:

||M ||∞ =

∣∣∣∣∣∣∣∣( K
I

)
(I −GK)−1M−1

l

∣∣∣∣∣∣∣∣
∞

< 1/ϵ (2.17)

where ||M ||∞ < 1/ϵ ensures the condition of equation 2.14 is met (as ||[∆N ∆M ]||∞ ≤ ϵ holds). Meth-
ods like Nichols exclusion zones can be used to visualize perturbations for the SISO system (which
can tell us something about the MIMO case in turn) [3].
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2.2.2. Structured Uncertainty
As mentioned in the introduction of this section, it is important to not be too optimistic or pessimistic
of the severity of uncertainty in a system. Being too optimistic is dangerous for obvious reasons, but
too pessimistic (i.e. being too conservative) may come at the price of performance to account for the
(too) severe uncertainties. Structured uncertainty may give way of avoiding the relatively pessimistic
approach of unstructured uncertainty.

The ”problem” is in the structure of ∆. Unlike the case for unstructured uncertainty where the
singular values of full-block uncertainty are considered, the structured singular values allow for tighter
robust stability by taking into account the structure of the uncertainty (e.g. when ∆ is block-diagonal,
it is structured) [30]. The structured singular value µ is used to evaluate structured uncertainty and it
is the generalisation of the singular value and spectral radius of a system [30]. The larger the value of
µ the smaller the perturbation that can cause the system to turn unstable. Structured singular values
give the generalized small-gain theorem [30]:

µ(M(jω))σ̄(∆(jω)) < 1 ∀ω (2.18)

The structured singular value can provide a variety of information (e.g. factor by which the uncertainties
have to be reduced to guarantee stability, or part of uncertainties by using the skewed-µ) and can be
used for different perturbations, such as complex perturbations along with a variety of useful properties
[30]. Therefore, the structured singular value gives a solid indication of robust stability when detailed
uncertainty analysis is conducted. It also forms the basis of µ-synthesis where robustness/performance
requirements can be imposed.

2.3. State of the art H∞ Robust control
2.3.1. Overview
The most recent study on state of the art robust agile vehicle control is given in [29], where an LPV/LFT
approach is taken to construct a fixed-structure controller that uses the bounded-range angle of attack
as the LPV gain-scheduling parameter (and the bounded-range mach number as uncertainty) to meet
certain requirements posed by integral quadratic constraints (IQC) and H∞ mixed-sensitivity weights
for robustness. This study builds upon a previous study given in [26], this time putting the emphasis
on maintaining a very simple controller (in terms of order and the scheduling parameter) by using
non-smooth optimization. Despite the controller order being significantly lower and therefore simpler,
identical performance was reached. This study demonstrated the power of the LPV/LFT methods to
meet certain criteria posed by mixed-sensitivity weights, despite the controller being limited to being
simple. Thismethodwas applied to a fixed-altitude 2-dimensional model first given in [23] (amodel used
by many academic studies and by industry). A similar study is given in [34]. A LPV application (mixed-
sensitivity) with a 5-DOF model is given in [14]. In a previous study described in [4], an introduction is
given to using LPVs for this purpose, yet giving the disclaimer that the technology is not on point yet
and development is needed, highlighting the significance of the previously mentioned studies.

Using the same model, a gain-scheduled controller is designed in studies like [37] and [36]. Using a
Mixed-Sensitivity approach, a gain-scheduled controller is designed by using point-linearizations solved
in two methods: point-by-point (a posteriori) and all simultaneously (a priori). Note that the effect of
nonlinearities are treated as uncertainties in the design. On top of the H∞ approach that is used, a
reference model is used (also the case in a previous study in [27]). This lead to the design of an
effective and robust autopilot. An important part of the studies is that the controller structure is fixed
and therefore uses non-smooth optimization. In fact, the controller structure is such that it uses the
improved version of the classical 3-loop autopilot form as proposed in [15]. The latter study improved
the classical autopilot by investigating a formed Mixed-Sensitivity autopilot and incorporating its ”effect”
in the classical autopilot.

In [39], stabilization and control of a highly unstable supersonic air-breathing vehicles is described
using a mixed LQR and mixed-sensitivity H∞ approach, the former being used to guarantee stability
and good gain and phase margins of the nominal plant, while the latter is used for robustness. The
control method was successfully implemented. A mixed H2/H∞ approach is used in [40].

In [8] a minimum H∞ Entropy method is used by minimizing an entropy function, after which it is
compared to a classical LMI method and applying both on a model. The latter still outperforms the the
entropy method which is largely to be attributed to the lack of transient response specifications, yet is
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robust. The paper suggests more studies to be conducted into information theoretic functions being
used for this control purpose. An application using neural networks is also suggested.

Unlike most studies, in [21] a robust controller is developed and applied to a 6-DOFmodel and evalu-
ated in a realistic simulation. The controller is developed using a mixed-sensitivity approach. Emphasis
is put into model order reduction techniques such that the reduced model still represents the true model
sufficiently. The same model order-reduction technique is also used on the determined controllers. In
terms simulation scenarios, synthesis and order reduction a similar study is presented in [25]. In addi-
tion, different weighting functions are used in this study. An interesting aspect is its clear demonstration
of how a robust controller has a consistent performance compared to classical controllers. Unlike the
mentioned studies so far that used mixed-sensitivity, another study applying control to a 6-DOF model
is presented in [19] in which two controllers are developed for different mach numbers using H∞ Loop-
Shaping. Order reduction is applied on the controller. The controller is compared to and outperforms a
backstepping controller, primarily in terms of stable commands and in terms of the amount of feedback
information needed. A simulated scenario is created to demonstrat its capabilities. An interesting as-
pect to note lies in how two robust controllers are combined for smooth controller transfer which avoids
gain-scheduling needs to a certain extent, however clearly shows a sub-optimal controller (next to the
fact that it is order-reduced).

On H∞ Loop-Shaping, a comparison of the performance of a H∞ Loop-Shaping and a mixed sen-
sitivity controller are compared when applied to a pitch model in [12]. A more systematic procedure
for gain-scheduled (by linearization) H∞ Loop-Shaping 2-DOF controllers is given in [35]. The gap-
metric is used in this study to evaluate uncertainty tolerances and extensive procedures are described
in terms of e.g. flight envelope synthesis points. In [7] H∞ Loop-Shaping is applied on a 6-DOF model
while also using the ν-tool for analysis. An interesting (and highly related to H∞ control) method is
µ-synthesis as studied in [24] and [5]. For this, the type of (structured) uncertainty needs to be accu-
rately modelled as opposed to e.g. H∞ Loop-Shaping where a more generic (also more conservative)
unstructured uncertainty method used, namely coprime-factor uncertainty.

Other methods such as machine learning and adaptive control are covered in [41, 17, 20, 6]. It has
been mentioned however that H∞ control and Non-linear control are deemed of special interest in the
control of agile vehicles, with H∞ control being an industry standard [10].

Conclusion
This section has provided a range of state of the art studies when it comes to using H∞ Robust control
methods and has proven its usefulness in terms of guaranteed stability and performance . Mixed-
sensitivity applied on 2-DOF models is well represented in recent studies and vary from describing
effective agile vehicle controller synthesis procedures to evaluating appropriate weighting functions.
LPV also holds high potential and is used in extremely recent state of the art studies. Significant
emphasis is placed on designing and optimizing fixed-structure and simple controllers which represent
realistic controllers that could be used in real vehicles, which is fairly recently made possible by non-
smooth optimization [1]. More recent control methods like dynamic-inversion methods and artificial
intelligence control show great potential in this field [10], with active research being conducted for
various applications. However, these methods have as of now their own drawbacks which prevent it
from becoming extensively used in industry.

2.4. Challenges
Classical (robust) control methods function by linearizing a to be controlled non-linear system around
a set of design points that define the flight envelope [22]. The individual controllers are then to be
combined, such that the implemented controller uses the right linear controller depending on its flight
condition and its corresponding values of the scheduling variables. This process is known as gain
scheduling.

Robust linear control combined with gain scheduling has been criticised for being complex in the
design phase and challenging to implement while requiring extensive manual intervention throughout
[36, 16], especially when fast dynamics are involved as is the case in agile vehicles. A major reason
for these issues is the often high order of the robust controller (as discussed earlier) using classical
robust control (convex optimization problems solved by Linear Matrix Inequalities and Algebraic Ricatti
Equations), requiring order-reduction that often leads to loss of robustness [1, 3, 36]. Robustifying
controllers with pre-imposed structures suffer from being non-convex optimization problems that cannot
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be solved using conventional optimizationmethods [3, 1]. This has been solved in [1] and used in recent
studies, it is to be explored further in other applications such as H∞ Loop-Shaping.

A well-known issue with common robust control methods like Mixed-Sensitivity H∞ is the often
conflicting design requirements and other issues like pole-zero cancellations [36, 16]. Among other
reasons, the H∞ control methods are challenging to automate [36, 16], which is a major issue in terms
of design difficulty when in combination with many design points, which is often the case with gain
scheduling. In addition, H∞ control methods are known to be quite conservative [30].

Finally, implementing gain-scheduled controllers with fast dynamics pose issues in terms of pre-
dictability, for which special implementation methods can be used as covered in e.g. [11].

2.5. Conclusion
The literature research started off with the basic concepts of robust control methods. The concepts
discussed are potent and well-established control methods and allow model-based control design, a
fundamental part of today’s control industry. The strength of robust control methods lies in their ability
to have guaranteed stability for part of the/ the entire flight envelope with performance requirements
taken into account. Despite the methods being well understood with old roots and largely applied, it is
still is a very active research field, especially for agile vehicles.

The combination of robust control methods with gain scheduling do involve certain limitations and
challenges. The most important challenges involve the complexity of the design phase and the imple-
mentation issues that arise from high-order controllers. Simplicity of the design procedure combined
with low-order controllers are therefore important points that are to be improved upon.



3
Research Goals

3.1. Research Gap and Contribution
It is clear from the previous section that robust control methods are well-established and form the
industry standard for agile vehicle control. Along with this, certain challenges and limitations to the
methods are covered in recent studies. With respect to these challenges, certain subjects are less
represented in recent literature, offering a research gap. H∞ Loop-Shaping, despite being used in
some studies and having been proven to be a potent synthesis tool [3], seems to be less represented
in its application to agile vehicles. Additionally, using the specific combination of H∞ Loop-Shaping
and structured controllers seems to be relatively uncovered ground.

As mentioned in the literature survey,H∞ Loop-Shaping has certain benefits over Mixed-Sensitivity,
its most important aspects being its a-priori guarantees of robustness and its inherent balance between
robustness and performance. Its 2-stage design process additionally offers an attractive design philoso-
phy which has high potential for design automation with minimal manual intervention. The combination
of the design procedure with structured robustification in turn may yield a widely-applicable design pro-
cedure that offers easy automation and implementation into the non-linear system. The latter in turn
offers a test of the quality of the design procedure along with insights into the challenges that this pro-
cedure poses while implementing the controller. It is expected that since the control of agile aerospace
vehicles is an active research field, the application of the design procedure will additionally yield insight
into the control of such systems.

It is for these reasons chosen to demonstrate and introduce a design method using H∞ Loop-
Shaping in combination with structured controllers. Specifically, the design method is applied on an
agile aerospace vehicle due to the fast dynamics involved, posing a challenging control problem. The
most important robust control limitations that this combination thus tackles are the limitation of extensive
manual intervention and difficulty of implementation, next to offering additional insight into the robust
control of aerospace vehicles with fast dynamics.

3.2. Research Questions
The goal is to develop and demonstrate an effective design procedure which combines H∞ Loop-
Shaping with structured controller design. The method is to be applied on an agile aerospace vehicle,
for which the non-linear implementation and non-linear results are to be covered. In summary, the
research objective is thus defined to be:

Develop and demonstrate an effective design procedure using structured H∞ Loop-Shaping
with a focus on automation; implemented into and evaluated against the non-linear system

Research Objective

For an effective overview of the research objective, the following main- and sub-questions need to
be answered. The questions are tackled in the scientific article of Part II and discussed in the closure,
Part III.

14
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Main research question:
What is an effective agile vehicle autopilot design method using Structured H∞ Loop-
Shaping with a focus on automation?
Sub-questions:

1. What agile aerospace vehicle model is used and what are its control
requirements?

1.A What are the non-linear dynamics of the model?
1.B What are the linearized models/ design points to be used?
1.C What are the specific robustness and performance requirements of the final
system?

2. How is H∞ Loop-Shaping applied?

2.A What is the magnitude of the uncertainty?
2.B How are shaping functions W1 and W2 defined and applied for
Loop-Shaping?
2.C How is the shaped plant robustified and what is the structure of the
robustifying controller?
2.D How is the time-domain performance enhanced?
2.E How well are the requirements met by the individual design points?

3. How is the the autopilot implemented and what is its non-linear performance?

3.A What implementation methods are required and used?
3.B What is the time-domain performance of the autopilot?
3.C How does the system handle uncertainty?
3.D How does the system perform in a practical scenario?

Research Questions
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Robust Gain-Scheduled Autopilot Design
by Structured 𝐻∞ Loop Shaping
for an Agile Aerospace Vehicle

Chari Loukisas
Delft University of Technology

Faculty of Aerospace Engineering, Department of Control & Simulation

This study demonstrates an effective systematic control design procedure by applying
𝐻∞ Loop-Shaping with a structured controller on an agile aerospace vehicle with a
focus on automation. The gain-scheduled implementation is additionally described and
tested with non-linear simulations, including a realistic moving point-hit scenario with
guidance. The imposed robustness and performance requirements are met for most
linear design points and for the non-linear simulations. The resulting autopilot design
procedure is deemed effective in both the design procedure and implementation. It is
subject to certain recommendations for improvement and extension.

Nomenclature
| | . | |∞ = 𝐻∞-norm
𝛼 = Angle of attack
�̄� = Flight path angle
𝑞 = Dynamic pressure
𝛿 = Actuator deflection
𝛿𝑐 = Commanded actuator deflection
𝜖 = Worst-case normalized coprime factor uncertainty magnitude
𝛾 = Stability margin
𝜎 = Maximum singular value
𝜃 = Attitude
𝜎 = Minimum singular value
𝑎𝑥 = Longitudinal acceleration
𝑎𝑧 = Normal acceleration
𝐶𝑚 = Aerodynamic coefficient of the pitching moment
𝐶𝑥 = Aerodynamic coefficient of the longitudinal force
𝐶𝑧 = Aerodynamic coefficient of the normal force
𝑔 = Gravitational constant
𝑀 = Mach number
𝑞 = Pitch rate
𝑢 = Body longitudinal velocity
𝑉 = Airspeed
𝑤 = Body normal velocity

1



I. Introduction

Control of (agile) aerospace vehicles is an active and well-known research field, with no exception to
the rule in recent years [1–3]. The essence of modern control is based on mathematical models of the

controlled vehicles that are used in the design phase [2]. The natural disadvantage of this approach is that
models are not capable of fully capturing the complexity and detail of real life’s dynamics and (environmental)
effects [2]. This misalignment of models and real system behaviours can be seen as "uncertainties", which
can lead to unexpected control system behaviours if not accounted for properly. Uncertainties may find
their origin from different sources, including misalignment in plant-parametric models and real life due to
modelling errors, sources of noise or environmental factors.

Robust control is a discipline of special significance for Aerospace Vehicles (manned and unmanned)
due to the often critical operating conditions and situations inherent to them. Exposure to (unexpected)
uncertainty is therefore a major challenge for control system designers, to which rigorous research has been
dedicated to in the last decades and still poses a challenge in modern days [4, 5]. The essence of many robust
control methods is to account for these uncertainties by incorporating their worst-case condition in the design
phase [2, 6], with the goal to design a control system that remains stable with adequate stability margins while
also still being able to complete their control task successfully despite these uncertainties.

Robust control of agile aerospace vehicles vary across studies in methodology from Linear / LPV methods
[1, 3, 7–10] to Non-Linear (and comparisons between the two) [11–14] and other methods such as machine
learning and adaptive control [15–18]. In particular 𝐻∞ control and Non-linear control are deemed of special
interest in the control of agile vehicles , with 𝐻∞ control being an industry standard [1, 5].

Robust linear control combined with gain scheduling has been criticised for being complex in the design
phase and challenging to implement while requiring extensive manual intervention throughout [1, 11],
especially when fast dynamics are involved as is the case in agile vehicles. A major reason for these issues is
the often high order of the robust controller using classical robust control (convex optimization problems
solved by Linear Matrix Inequalities and Algebraic Ricatti Equations), requiring order-reduction that often
leads to loss of robustness [1, 19, 20]. Robustifying controllers with pre-imposed structures suffer from being
non-convex optimization problems that cannot be solved using conventional optimization methods [19, 20].
Additionally, a well-known issue with common robust control methods like mixed-sensitivity 𝐻∞ is the often
conflicting design requirements and other issues like pole-zero cancellations [1, 19].

With recent advances in non-smooth optimization techniques, the non-convexity issue has been resolved
and incorporated in commercially available software packages, namely the functions systune() and
hinfstruct() [20]. This implies simpler / lower-order (i.e. fixed-structure) controllers can be optimized
with multiple objectives and can in turn often get close to the robustness of the unstructured / full-order
controllers, as effectively demonstrated in e.g. [1, 3]. This ability is of special significance to 𝐻∞ problems,
given that these inherently are used in combination with gain scheduling where controller order / structure
plays a significant role.

The method of 𝐻∞ Loop Shaping introduced in [21] is a powerful robust control method with numerous
advantages. The important advantages include an inherent balance between robustness/ performance
properties without the need for weighting function definitions (hence simpler design objectives compared to
mixed-sensitivity); a-priori robustness measures / goals (hence no need for 𝛾-iteration) and simultaneous
gain/ phase margin guarantees [19]. Along with these advantages is the method’s widely-applicable 2 stage
design process which inherently gives room for automation as opposed to e.g. mixed-sensitivity [19].

With respect to the mentioned criticisms, the goal of this article is to demonstrate a systematic, widely
applicable autopilot design procedure that combines 𝐻∞ Loop Shaping with structured robustification applied
on an agile aerospace vehicle, due to the numerous automation and implementation benefits this combination
yields. Along with this, this combination applied on an agile aerospace vehicle is not largely represented in
literature to the best of the author’s knowledge, and will therefore yield useful insights from the application
alone. This article hence aims to demonstrate an effective application of this design procedure and its
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result, showing its relative simplicity and automation capability. Additionally, next to the description of the
non-linear implementation, an unconventional but intuitive approach is covered to solve the issue related to the
neglected dynamics-induced steady-state error. The linear design points are analysed individually with respect
to the imposed requirements. The non-linear results are compared to a reference model for time domain
performance, while the uncertainty handling qualities are shown for a number of uncertainty realizations.

The article initiates with a description of the non-linear model’s dynamics and its imposed requirements
in section II. The process of trimming and subsequent linearizations are additionally discussed and analysed.
Classic 𝐻∞ Loop Shaping theory is in turn briefly covered for the unstructured robustification case in section
III. The linear control design procedure in section IV initiates by converting the sets of linearized models into
time-scale separated and stabilized SISO systems. The model’s imposed parametric uncertainty is analysed
with respect to Normalized Coprime Factor uncertainty and its magnitude (with respect to the SISO systems).
The 𝐻∞ Loop Shaping procedure with structured controller optimization is then applied on the linearized
models and extensively analysed, the sets of which are eventually used for direct gain-scheduling. The article
finishes with the non-linear implementation of the scheduled autopilot along with its full non-linear simulation
results, showing the autopilot’s uncertainty handling and (time-domain) agility in section V. In the same
section, as a demonstration of the successful autopilot design, a more realistic non-linear scenario is created
which involves proportional guidance with the goal that the vehicle hits a rapidly-moving point in space. The
observations and conclusions are subsequently covered, along with certain recommendations for future work
in section VI. The software used is MATLAB and Simulink by MathWorks.

II. Aerospace Vehicle Model
The non-linear agile aerospace vehicle model that is used is given in [22] and further analysed in [1], the
results of which (including the body reference frame conventions) are used throughout this study. The
tail-controlled (hence non-minimum phase) vehicle is described by its non-linear 2-dimensional dynamics at
fixed altitude at supersonic air speeds. The vehicle is in a so-called burn-out phase, where no thrust is being
produced, implying no shift in the center of gravity is taking place and the aerodynamic drag is the dominant
longitudinal force. However, high performance time-domain requirements are imposed. The model is used in
numerous studies like [1, 3, 8, 22] and therefore suitable for cross-verification of model results and control
performance. Its simplifying assumptions allow for an effective demonstration, yet still pose a challenging
control problem given its dynamics and requirements as discussed later.

As linear control is being applied, the non-linear model needs to be linearized at a defined set of points
within the considered flight envelope. These linear sub-models are subject to requirements that should be
satisfied as closely as possible by the local linear controller covered in section IV, such that the non-linear
gain-scheduled autopilot also satisfies these requirements as close as possible by locally reflecting the
behaviour of the linearized system.

A. Non-Linear Flight Dynamics
The non-linear model consists of (symmetrical) non-linear airframe dynamics and a linear second-order
actuator model. They hold for a flight envelope defined by the mach-number and angle of attack for domains
1.5 ≤ 𝑀 ≤ 3 & −20◦ ≤ 𝛼 ≤ 20◦. The analysis of [1] is used and described.

3



1. Airframe & Actuator
The pitch-axis state dynamics of the airframe are a function of the angle of attack 𝛼 and the pitch rate 𝑞 given
by: 

¤𝛼 =

(
�̄�𝑆

𝑚𝑉

)
𝐶𝑧 (𝛼(𝑡), 𝛿(𝑡), 𝑀 (𝑡)) cos𝛼(𝑡) + 𝑞(𝑡)

¤𝑞 =

(
�̄�𝑆𝑙

𝐼𝑦

)
𝐶𝑚 (𝛼(𝑡), 𝛿(𝑡), 𝑀 (𝑡))

(1)

The aerodynamic coefficients of the normal force 𝐶𝑧 and pitch moment 𝐶𝑚 are given by:

𝐶𝑧 (𝛼, 𝛿, 𝑀) = 𝐶𝑧𝑎 (𝛼, 𝑀)𝛼 + 𝑑𝑛𝛿 (2)

and:
𝐶𝑚(𝛼, 𝛿, 𝑀) = 𝐶𝑚𝑎

(𝛼, 𝑀)𝛼 + 𝑑𝑚𝛿 (3)

The respective angle of attack derivatives are given to be:

𝐶𝑧𝑎 (𝛼, 𝑀) = 𝑎𝑛𝛼2 + 𝑏𝑛𝑠𝑔𝑛(𝛼)𝛼 + 𝑐𝑛
(
2 − 𝑀

3

)
(4)

and:
𝐶𝑚𝑎
(𝛼, 𝑀) = 𝑎𝑚𝛼2 + 𝑏𝑚𝑠𝑔𝑛(𝛼)𝛼 + 𝑐𝑚

(
−7 + 8𝑀

3

)
(5)

The Mach number is given by 𝑀 = 𝑉/𝑎, with 𝑎 the speed of sound. The dynamic pressure is given by
𝑞 = 1

2 𝜌𝑉
2. The atmospheric variables are given for a fixed altitude of ℎ = 6096𝑚 (20000 𝑓 𝑡). These are given

along with the model parameters in Table 1. The rate of change of the Mach number (with 𝐶𝑥 constant):

¤𝑀 =

(
𝑞𝑆

𝑚𝑎

)
(𝐶𝑥 cos 𝑎 + 𝐶𝑧 sin 𝑎) (6)

The output dynamics (i.e. observable/measured states) of the system consist of the pitch rate 𝑞 and the
normal acceleration 𝑎𝑧 , the latter of which given by:

𝑎𝑧 =

(
𝑞𝑆

𝑚

)
𝐶𝑧 (𝛼(𝑡), 𝛿(𝑡), 𝑀 (𝑡)) (7)

The actuator of the model controls a tail-fin, which is modelled by the following linear second-order
system: (

¤𝛿
¥𝛿

)
=

(
0 1
−𝜔2

𝑎 −2𝜁𝑎𝜔𝑎

) (
𝛿

¤𝛿

)
+

(
0
𝜔2
𝑎

)
𝛿𝑐 (𝑡) (8)

In Figure 1 the angle of attack derivatives of the aerodynamic normal force and moment coefficient are
shown, giving the same results as [1].
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Figure 1. Angle of attack derivatives of aerodynamic coefficients

A noteworthy result from 𝐶𝑚𝑎
can be seen, as 𝐶𝑚𝑎

> 0 holds for a small region of the flight envelope,
indicating an unstable region.

B. Linearized Flight Dynamics
The model is extensively analysed in terms of linearization in [1], the main points of which are described here.
Jacobian linearization is used as opposed to velocity-based or LPV methods for simplicity’s sake, which has
implications that are to be addressed for the non-linear implementation in section V.

Trimming is conducted such that the dynamics at a certain to-be-linearized point do not suffer from fast
changes (i.e. the changing speed from a given confidence region of a linear point is minimized) which can
lead to rapid deviation from the confidence region and yielding unrepresentative dynamics [23]. Due to the
nature of the vehicle considered, a trim point is differently defined than for a conventional aircraft. Since the
flight envelope is defined by 𝛼 and 𝑀 , their values are imposed. With the exception of the Mach number (due
to drag), the angle of attack is imposed to be steady state. Additionally, 𝑞 is imposed to be steady state only.
For a given combination of trim variables that satisfy the impositions for a given deflection 𝛿, let T̄ be the
trim vector defined as:

T̄ =

(
𝛼

𝑀

)
¤𝛼, ¤𝑞=0

∈ F (9)

with F the set of all 𝛼 and 𝑀 that define the flight envelope. The MATLAB functions operspec(),
findop() and linearize() can be used for this purpose. As derived in [1], the linearized airframe
dynamics are given in state-space form, where the state values form the differences from their trim values:(

¤̃𝛼
¤̃𝑞

)
=

(
𝑍𝛼 (T̄) 1
𝑀𝛼 (T̄) 0

) (
�̃�

𝑞

)
+

(
𝑍𝛿 (T̄)
𝑀𝛿 (T̄)

)
𝛿 (10)

(
�̃�𝑧

𝑞

)
=

(
𝐴𝛼 (T̄) 0

0 1

) (
�̃�

𝑞

)
+

(
𝐴𝛿T̄)

0

)
𝛿 (11)

It is for the purposes of this project assumed there is access to the observable states without noise, hence
state-feedback is assumed possible. The respective derivative maps are shown below in Figure 2, giving the
same results as given in [1].
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Figure 2. Angle of attack derivatives of Aerodynamic Coefficients

As shown clearly for 𝑀𝛼 in Figure 2, there is a small region for which the derivative is positive, implying
instability. Figure 3 shows the complete unstable region for the airframe. The unstable region has a substantial
impact on the design process as discussed in section IV.

Figure 3. Unstable flight envelope region

Figure 4. Trim values for linearized points
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The derivatives were determined with the trim values shown in Figure 4, giving similar smooth results as
in [1].

C. Autopilot Requirements
The requirements that have to be satisfied by the autopilot can be categorized into robustness requirements
and (time-domain) performance requirements. The requirements are drawn from the same source as the
vehicle model [22]:

• Robustness requirements:
1) Maintain robust stability for the complete flight envelope defined by 1.5 ≤ 𝑀 ≤ 3 & −20◦ ≤

𝛼 ≤ 20◦. The requirement refers to robustness against uncertainty in the aerodynamic pitching
moment coefficient 𝐶𝑚, with aerodynamic parameters 𝑎𝑚, 𝑏𝑚, 𝑐𝑚 & 𝑑𝑚 varying independently
by up to 25%.

2) Sufficient attenuation should be achieved at higher frequencies, namely at least −30 𝑑𝐵 at
300 𝑟𝑎𝑑/𝑠 with the loop opened at the actuator input. This is to avoid exciting unmodeled
structural dynamics in a potentially real vehicle.

• Performance requirements:
1) The maximum actuator deflection rate should not exceed 25 𝑑𝑒𝑔/𝑠 for a 1 𝑔 step command

which scales proportionally for step commands of different magnitudes.
2) Step commands are to be tracked within 5% of the reference signal within 0.35 𝑠 where possible

given the actuator rate saturation.
3) Maximum overshoot should not exceed 10%

It is worth noting that instead of a maximum actuator deflection, it is logical from a control design
point of view to use an actuator rate limit. This is because the actuator rate can be controlled in the linear
design process by e.g. imposing maximum frequency domain gains, thus indirectly controlling the maximum
deflection angle for a certain state and reference signal combination. Imposing an actual maximum deflection
angle directly cannot be taken into account in linear control. In addition, actuator deflection saturation is
a non-linear phenomenon that can be taken into account using anti-windup techniques, which is out of the
scope of this study.

III. 𝐻∞ Loop Shaping Theory
The method of 𝐻∞ Loop Shaping was introduced in [21] and further described in [4] and [19], consisting of a
systematic two-step process. In the first step the open loop performance of the plant is shaped using weighting
functions for desirable characteristics in the frequency domain (which in turn affect the time-domain), guided
by the desired robustness and performance characteristics. The second step involves robustifying the shaped
plant with a controller in terms of normalized coprime factor (NCF) uncertainty [19]. The section provides a
brief overview of 𝐻∞ Loop Shaping theory, starting by an introduction of the uncertainty modelling method
used, after which the loop shaping procedure is described followed finally by robustification.

A. Normalized Coprime Factor Uncertainty
As described in [4] and [19], a given plant 𝐺 can be decomposed in its unique (left) normalized coprime
factors (NCF):

𝐺 = 𝑀−1𝑁 (12)

For the purposes of this study, using the right NCF is identical to using the left NCF, since an optimal
controller for NCF uncertainty is optimal for both left and right variants [8]. The set of plants 𝐺 𝑝 perturbed
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with bounded NCF uncertainty is given to be:

𝐺 𝑝 = {(𝑀 + Δ𝑀 )−1 (𝑁 + Δ𝑁 )} :
������ [Δ𝑁 Δ𝑀

] ������
∞
< 𝜖} (13)

with Δ𝑀 and Δ𝑁 being unknown stable transfer functions and 𝜖 their maximum magnitude. Including a
controller 𝐾 the description of Figure 5 holds.

Figure 5. Left normalized coprime factor uncertainty

The best achievable stability margin 𝛾𝑚𝑖𝑛 given the optimal controller 𝐾 from the set of all stabilizing
controllers, the following holds:

𝛾𝑚𝑖𝑛 =

�����
�����
[
𝐾

𝐼

]
(𝐼 − 𝐺𝐾)−1 𝑀−1

�����
�����
∞
≤ 𝜖−1

𝑚𝑎𝑥 (14)

The uncertainty modelling method is extremely generic given its ability to model plant-destabilizing
uncertainties or e.g. to model uncertainty-induced resonance frequency shifts, unlike multiplicative and
additive uncertainty [19]. The uncertainty modelling method forms the basis of 𝐻∞ Loop Shaping.

B. Loop Shaping
The first step in the design process is to shape the open-loop frequency-domain (in terms of the plant’s maximum
and minimum singular-values 𝜎 & 𝜎) behaviour of a given plant 𝐺 using two pre- and post-weighting
functions,𝑊1 and𝑊2 respectively, giving the shaped plant:

𝐺𝑠 = 𝑊2𝐺𝑊1 (15)

As proven in [21], in order to achieve good robustness against NCF uncertainty along with desirable
performance behaviour, the following summarized guidelines may be followed [4, 19]:

• High gain at low frequencies for good reference tracking
• Low gain at high frequencies for noise attenuation
• Roll-off rate of approximately −20 𝑑𝐵/𝑑𝑒𝑐 at the desired crossover region
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Figure 6. Loop shaping guideline

Figure 6 summarises the guidelines. In addition to these, no hidden dynamics should be present in 𝐺𝑠.
The robustness of the final system is heavily dependent on the quality of the loop shape. A noteworthy
result from [21] is essentially that the less the robustifying controller needs to "intervene", that is, the more
similar the loop shape post-robustification is to the loop shape of the shaped plant 𝐺𝑠, the higher the achieved
robustness. In general however, a trade-off needs to be made between desirable time-domain performance and
robustness, an example of which is the selection of the crossover frequency: a higher crossover frequency
constitutes to better tracking performance but comes at the cost of robustness. The quality of the loop shape
can be determined by the alternate expression of Equation 14 [4].

𝛾𝑚𝑖𝑛 = 𝜖
−1
𝑚𝑎𝑥 =

[
1 −

������ [𝑁 𝑀

] ������2
𝐻

]− 1
2

= (1 + 𝜌 (𝑋𝑍))
1
2 (16)

With | |.| |𝐻 signifying the Hankel norm, 𝜌 the spectral radius and 𝑋 and 𝑍 the solutions to the Algebraic
Ricatti Equations given in Equations 19 and 20 respectively. Depending on the robustification problem to
be solved, general guidelines of good loop shapes are given in [21] and [4]. In the case that insufficient
robustness is achieved, the process starts over again given the new knowledge.

C. Robustification
In this section the unstructured robustification is covered as a fundamental introduction. Structured
robustification is covered in section IV. With loop shaping completed, the shaped plant 𝐺𝑠 is used for
robustification. For this, the normalized coprime factors of 𝐺𝑠 are used in order to find a controller 𝐾∞ that
satisfies [4, 21]: �����

�����
[
𝐾∞

𝐼

]
(𝐼 − 𝐺𝑠𝐾∞)−1 𝑀−1

𝑠

�����
�����
∞
≤ 𝛾 (17)

for a selected 𝛾 > 𝛾𝑚𝑖𝑛 from Equation 16. In the unstructured case, the selection of the factor of 𝛾

𝛾𝑚𝑖𝑛
can

be drawn from guidelines (e.g. 10% as suggested in [4] to avoid near-singular matrices), but in practice is
dependent on the numerical capabilities of the software used. Figure 7 illustrates the robustification. Equation
17 can also be interpreted as the 𝐻∞ norm from plant input and output to and from controller input and output,
i.e. a 4-block system [21].
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Figure 7. Shaped plant with robustifying controller

As given in [4], the analytical solution of 𝐾∞ to Equation 17 is determined from solution to the following
Algebraic Riccati Equations, for a given minimal realization of plant 𝐺, for 𝑋:(

𝐴 − 𝐵𝑆−1𝐷𝑇𝐶
)𝑇
𝑋 + 𝑋

(
𝐴 − 𝐵𝑆−1𝐷𝑇𝐶

)
− 𝑋𝐵𝑆−1𝐵𝑇𝑋 + 𝐶𝑇𝑅−1𝐶 = 0 (18)

with 𝑅 = 𝐼 + 𝐷𝐷𝑇 and 𝑆 = 𝐼 + 𝐷𝑇𝐷 , which for strictly proper plants simplifies to 𝑅 = 𝐼 and 𝑆 = 𝐼,
yielding: (

𝐴 − 𝐵𝐷𝑇𝐶
)𝑇
𝑋 + 𝑋

(
𝐴 − 𝐵𝐷𝑇𝐶

)
− 𝑋𝐵𝐵𝑇𝑋 + 𝐶𝑇𝐶 = 0 (19)

and for 𝑍: (
𝐴 − 𝐵𝐷𝑇𝐶

)
𝑍 + 𝑍

(
𝐴 − 𝐵𝐷𝑇𝐶

)𝑇
− 𝑍𝐶𝑇𝐶𝑍 + 𝐵𝐵𝑇 = 0 (20)

Finally, the controller 𝐾∞ is given by:

𝐾∞ =

[
𝐴 + 𝐵𝐹 + 𝛾2(𝐿𝑇 )−1𝑍𝐶𝑇 (𝐶 + 𝐷𝐹) 𝛾2(𝐿𝑇 )−1𝑍𝐶𝑇

𝐵𝑇𝑋 −𝐷𝑇

]
(21)

where 𝐹 = −𝑆−1(𝐷𝑇𝐶 + 𝐵𝑇𝑋) and 𝐿 = (1 − 𝛾2)𝐼 + 𝑋𝑍 . The controller that results has an order equal to
that of the shaped plant. This in turn leads to high order controllers, conventionally needing order reduction
for implementation, which is important for simplicity of implementation in real systems while also providing
transparency and clarity of its functionality [19].

D. Aspects
The main benefits of 𝐻∞ Loop Shaping for this study make it an extremely powerful robust control method
[19]:

• Normalized coprime factor uncertainty is a very generic modelling method. Its ability to model
destabilizing perturbations and complex dynamic alterations makes it unique compared to other
uncertainty modelling methods.

• The uncertainty magnitude and therefore the robustness goal is clear from the start of the design process.
No 𝛾-iteration is required, which is conventionally the case for solving 𝐻∞ problems.

• No pole-zero cancellations, avoiding hidden dynamics in the robustification process, as opposed to
Mixed Sensitivity𝐻∞ problems.

• Balanced robustness and performance, next to providing a clear method to manage the trade-off between
robustness and performance

10



• Guaranteed simultaneous disk gain and phase margins. Using the stability margin 𝛾 = 𝜖−1 for the
Single-Input Single-Output (SISO) case (the SIMO case is half of that of the SISO case):

−20 log 10
1 + 𝜖
1 − 𝜖 𝑑𝐵 ≤ 𝐺𝑀 ≤ 20 log 10

1 + 𝜖
1 − 𝜖 𝑑𝐵 (22)

−2 sin −1𝜖 𝑑𝑒𝑔 ≤ 𝑃𝑀 ≤ 2 sin −1𝜖 𝑑𝑒𝑔 (23)

𝐻∞ control in general combined with NCF uncertainty has been criticised for being conservative as
opposed to other methods using e.g. the structured singular value 𝜇 [4]. However, this can be used to a
control designer’s advantage if a simple control method is preferred that gives clear guarantees, and therefore
inherently providing high robustness against potentially unforeseen or more complex situations.

IV. Flight Control Design
The design procedure involves 𝐻∞ Loop Shaping on the set of linearized plants that cover the entire flight
envelope. The aim is to make the set of linear models satisfy the requirements, such that the same behaviour
is reflected in the non-linear system while also making sure the process is suitable for automation. The
plant linearization and control design is performed for 100 points in the flight envelope (determined by the
similarity of the systems and the resulting smooth controller gains), divided in 10 x 10 points for the Mach
number and angle of attack. The resulting points are combined to form the gain surfaces to be implemented
in the gain-scheduled autopilot. Minor point-surface deviations are smoothed by averaging.

A. Pitch Rate Stabilization
The linearized vehicle system (Airframe and Actuator) is a Single-Input Multiple-Output (SIMO) system as
seen in Equations 8, 10 and 11. Due to the nature of the controlled vehicle, the reference signal to be followed
is a normal acceleration command, hence 𝑎𝑧 is the reference-tracking signal.

In order to gain transparency into the loop-shaping process (with respect to 𝑎𝑧) and in order to provide
time-scale separation from the fast dynamics of 𝑞 and the slower dynamics of tracking signal 𝑎𝑧 , the system
loop is closed with proportional feedback of 𝑞 by 𝐾𝑞, yielding a stabilized SISO plant a shown in Figure 8.

Figure 8. Stabilized plant

The fixed-structure controller is designed by imposing the requirement that the transfer function from
𝑟 → 𝑞 has a minimum damping ratio of 𝜁 = 0.7, as this is commonly known to be a balanced value for
reference tracking and fast enough damping (which constitutes to robustness). The optimization problem can
be solved by using the function systune(). The requirement applies for the dominant poles of the system,
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which originate from the airframe dynamics 𝐺𝐴𝐹 . However, as systune() considers all poles involved
equally, a virtual control problem is solved instead which ignores the actuator dynamics in order to isolate the
dominant airframe poles as shown in Figure 9.

Figure 9. Virtual control problem

The gain surface for the flight envelope is shown in Figure 10 , the minimum damping ratio having been
met for all design points. The effect of the unstable region is clearly shown in the jump of the gain surface,
yet is required for good handling of the non-linear system as was seen during the non-linear implementation
covered later.

Figure 10. Gain Surface of 𝐾𝑞

The fact that the nominal plant is equated to the SISO stabilized system has implications for the design
procedure, namely that the guarantees that the 𝐻∞ Loop Shaping gives applies for the SISO plant only, and
thus not the SIMO plant. However, given that the goal of this study is to describe a widely applicable design
procedure, starting the design phase in this manner yields transparency and can form the basis for the SIMO
plant robustification. General aerospace robustness guidelines can be used to determine the robustness for the
SIMO case as well as covered in IV.D. In this case, the conservative nature of 𝐻∞ Loop Shaping provides an
indication the the SIMO plant will likely be robust aswell.

B. Normalized Coprime Factor Uncertainty Modelling
The aerodynamic uncertainty introduced on the vehicle as described in section II.C is to be translated into its
NCF uncertainty description. This is done by taking the worst-case combination of the parametric uncertainty
in terms of NCF uncertainty. In an iterative method, the set of perturbed plants are compared in terms of their
coprime factors (𝐺 𝑝 = 𝑀−1

𝑝 𝑁𝑝) to the nominal plant’s coprime factors (𝐺𝑛𝑜𝑚 = 𝑀−1
𝑛𝑜𝑚𝑁𝑛𝑜𝑚):

Δ𝑀 = 𝑀𝑝 − 𝑀𝑛𝑜𝑚
Δ𝑁 = 𝑁𝑝 − 𝑁𝑛𝑜𝑚

(24)
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As can be derived from section II.B and [1], the uncertainty affects the state dynamics of derivatives 𝑀𝛼

and 𝑀𝛿 of Equation 10. Hence, a two-dimensional iteration is used in terms of the minimum and maximum
values of the derivatives, which in turn is determined using the function wcgain(). The worst-case NCF
uncertainty magnitude 𝜖 is determined:

| |Δ(𝑠) | |∞ =

������ [Δ𝑁 −Δ𝑀
] ������
∞
< 𝜖 (25)

Note that the nominal plant used is the closed-loop SISO system as covered in section IV.A. The magnitude
of epsilon is given for the flight envelope’s local plant linearizations in Figure 11.

Figure 11. NCF Uncertainty magnitude for flight envelope

The magnitude of uncertainty is relatively large, the maximum point occurring at 𝑀 = 1.5 & 𝛼 = 20◦
with 𝜖 ≈ 0.34.

C. Loop Shaping
The SISO plant of Figure 8 is used for loop shaping, implying that the tracking signal 𝑎𝑧 is shaped for
performance and robustness. Since SISO is used,𝑊1 and𝑊2 may be used interchangeably and𝑊1 is chosen
to be the main loop shaping function. Commonly used functions for𝑊1 are of a lead-lag filter form [8, 21, 24]
which gives freedom to alter the crossover slope as well as the crossover frequency itself while being able to
provide high frequency attenuation. An important function of𝑊1 is also the integrating action on the tracked
signal-error.

A trade-off between simplicity of the loop shaping process and the loop shape quality becomes apparent,
depending on the controlled system. For effective automation, i.e. shifting the robustification process to 𝐾∞
as much as possible, it was chosen to make𝑊1 of a pure integrator form shown in Equation 26 for which only
the desired crossover frequency needs to be selected,

𝑊1 =
𝐾𝑖

𝑠
(26)

The gain 𝐾𝑖 allows for the choice of crossover frequency, for which a simple bisection search-algorithm
is used shown in Algorithm 1 in the appendix. In order to avoid gain-surface chattering which may induce
issues in the non-linear implementation (such as unexpected fluctuation behaviours), the crossover frequency
is chosen to be the same for all linear systems. The exact selection of crossover frequency is dependent on the
following considerations:

• The crossover frequency for which the system remains robust, i.e. a good quality of the loop shape

13



• The crossover frequency for which (most of ) the linear systems have at least −30 𝑑𝐵 attenuation from
section II.C (partially dependent on the robustifying controller 𝐾∞)

• The frequency range for which the crossover slopes of most linear systems approaches −20 𝑑𝐵/𝑑𝑒𝑐
• The resulting 𝐾∞ controller should not exceed 25 𝑑𝑒𝑔/𝑠 for disturbances at input and output, while

giving decent disturbance-rejection speeds
Note that for the last consideration, no explicit requirement is defined, but it is taken into account that fast

disturbance rejection speeds are preferred. Also note that reference tracking performance is not considered
here but covered in section IV.E. The aim of this Loop Shaping method is to minimize manual interventions of
the mentioned considerations by only having to select the crossover frequency, albeit that a designer becomes
more dependent on the controlled system. Since satisfying the design requirements for as many points as
possible requires design iterations (i.e. trial of different crossover frequencies), the automation accommodated
by the simplicity of𝑊1 is deemed an important benefit.

From the design iterations performed, it was concluded that a crossover frequency of 3 𝑟𝑎𝑑/𝑠 offered a
balanced trade-off between the design aspects. The resulting bode plots of all linear points being shown in
Figure 12.

Figure 12. Loop shapes of linear systems

Figure 13. Achieved crossover slopes of the open loop of 𝐺𝑠
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The majority of the linear points share a similar crossover slope for the selected crossover frequency, with
the exception of the linear points of the unstable region as shown in Figure 13. Figure 13 thus indicates that
most points are sufficiently close to the desired roll-off rate, with the exception of the unstable region for
which robustification needs to compensate. The best achievable stability margin 𝛾 per linear point is shown in
Figure 14.

Figure 14. Loop shape robustness quality

The gain surface of 𝐾𝑖 from Equation 26 is shown in figure 15, its smoothness indicating suitability for
direct implementation.

Figure 15. Gain surface of 𝐾𝑖 for𝑊1

On a general applicability level, the loop-shaping results indicate that the method gives desirable results
for the majority of design points despite its simplicity. The limitation however is that there may be exceptions
in terms local controller quality for points in the unstable region, which in turn depends on the severity of the
lower quality and the context of the control problem.

D. Robustification
It is important for the implementation of the gain-scheduled autopilot to have the least number of gains that is
achievable in order to have desirable and predicable behaviour of the non-linear system [19]. For this reason,
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a structure is imposed on 𝐾∞ of the lead-lag form shown in Equation 27.

𝐾∞ = 𝐾𝑠
𝑠 + 𝑧
𝑠 + 𝑝 (27)

with 𝐾𝑠 the controller gain, 𝑧 the zero and 𝑝 the pole. The structure is selected such that the freedom for
effective 𝐻∞ Loop Shaping is maintained as discussed in section IV.C. It is also the lowest order controller
that has the freedom to robustify the system other than lowering its gain (by using its pole and zero), as
opposed to a 0𝑡ℎ order (proportional) controller. Since the latter is thus only able to lower the gain of the
controller for robustification, this comes directly at the cost time-domain performance. Another benefit of the
combination of a simple𝑊1 in combination with the lead-lag controller being subject to robustification, is
that there is no risk of pole-zero cancellation (which induces hidden dynamics) [19], which would be the case
if the zero and pole had to be manually selected (requiring pole-zero analysis post-design).

Imposing a structure on the controller yields a non-convex optimization problem for which conventional
optimization methods cannot be used [19, 20]. In [20] the issue is resolved using non-smooth optimization
techniques embedded in the function systune(). The 𝐻∞ problem posed from Equation 17 can be re-written
as shown in Equation 28, with 𝑆𝑠 the sensitivity function of the shaped plant[4, 21].�����

�����
[
𝐾∞

𝐼

]
(𝐼 − 𝐺𝑠𝐾∞)−1 𝑀−1

𝑠

�����
�����
∞
≡

�����
�����
[
𝐾∞ 𝐾∞𝑆𝑠𝐺𝑠

𝑆𝑠 𝑆𝑠𝐺𝑠

] �����
�����
∞
≡

�����
�����
[
𝑑𝑖

𝑑𝑜

]
→

[
𝑢

𝑦

] �����
�����
∞

(28)

Equation 28 essentially minimizes the 𝐻∞ norm of the shaped plant 𝐺𝑠 at its input and output as shown
in Figure 16.

Figure 16. Equivalent 𝐻∞ problem

The achieved robustness margins across the flight envelope are illustrated in Figure 17 together with the
NCF uncertainty magnitude. For comparison, the robustness of the unstructured controller as derived in
section III.C is additionally shown (𝛾 = 1.01𝛾𝑚𝑖𝑛 selected for numerical stability).
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Figure 17. Achieved robustness of structured & unstructured controllers

Figure 17 shows that the system is robust against NCF uncertainty for the SISO system. This can be
concluded as the values of the NCF uncertainty margins of the structured and unstructured controllers
(𝛾−1
𝑠𝑡𝑟/𝑢𝑛𝑠) of are larger than the NCF magnitude 𝜖 . As can be expected, the lower-order controller gives lower

robustness margins than the unstructured controller, yet high robustness in absolute terms along with being
significantly less challenging to implement. The general robustness is lower for small angles of attack near the
stable-unstable transition at approximately Mach 2.6, yet sufficient. This is a direct effect of the loop shaping
quality in the unstable region and was to be expected. However, given that this occurs at small angles of attack,
it may be expected that the controller in the non-linear implementation "catches" a potential near-instability
as the angle of attack increases into the more robust regions for higher angles of attack for all Mach numbers.

The figures below show the effects of the structured and unstructured controllers on the loop shapes,
yielding similar results to each other. The crossover frequency is minimally altered for both controllers. The
most profound alterations of the controllers on the initial loop shapes are for the roll-off rates of certain
systems and the high frequency attenuation, the latter of which both controllers show the largest difference
from each other.

Figure 18. Loop shapes of𝑊1 combined with
the structured robust controller

Figure 19. Loop shapes of𝑊1 combined with
the unstructured robust controller
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The figures in turn indicate by similarity the effectiveness of the structured robustification compared to
the "ideal case" unstructured controller. In addition, the effect the structured robust controller has on the
roll-of rates of the design points is shown in Figure 20. The robust controller clearly "pushes" the roll-off rate
to its desired value of −20 𝑑𝐵/𝑑𝑒𝑐, serving as an additional verification of the robustification procedure.

Figure 20. Roll-off rate comparison of loop shapes pre- and post structured robustification

The structured controller is placed in the feedback path in order to avoid the reference signal directly
exciting the controller’s dynamics [4], requiring reference scaling by the scheduled gain 𝐾𝑑𝑐 as shown in
Figure 21.

Figure 21. 𝐾∞ implementation

The respective gains of 𝐾∞ are shown in Figure 22. The gain surface of 𝐾𝑑𝑐 is given in Figure 46 in the
appendix. The smoothness of the gains indicate consistent results for the robustification across all design
points (i.e. a verification of the procedure and robustification) as well as sufficient smoothness for direct
implementation. Note that Num 𝑠 / Gain 𝐾∞ required slight normalization along the 𝛼 = 0 line by averaging.
Points like these can likely be avoided by using more initial points within the function systune(), though
may also be an effect of the unstable region.
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Figure 22. 𝐾∞ gains

In order to verify the robustness, both the SISO case and the full system in the SIMO case need to
considered. For the SISO case, the gain and phase margins are guaranteed (as mentioned in section III.D).
The respective disk gain and phase margins are given in fFigure 23. The disk gain and phase margins are used
for insight in the simultaneous gain and phase variations as opposed to gain / phase variations only. As shown
in Figure 23 and a-priori guaranteed from Figure 17, the gain and phase margins exceed the required margins
by a substantial amount, guaranteeing local robustness against the NCF uncertainty for the SISO plant. To
verify the robustness for the full SIMO system, the loops are opened at both outputs of the plant and at the
actuator input (loop-at-a-time), for which the disk gain and phase margins are shown in Figure 24.

Figure 23. SISO disk gain and phase margins

Figure 24. SIMO loop-at-a-time disk gain and phase margins

Although a SIMO design procedure is required in order to have guarantees of robustness against the
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NCF uncertainty, Figure 24 show significant amounts of gain and phase margins coherent with the common
loop-at-a-time aerospace requirement of 6 𝑑𝐵 of gain margin and 38◦ of phase margin. The requirement
holds for the entire flight envelope, with the exception of 𝑀 ≈ 2.6 and 𝛼 = 0, which is not deemed an issue as
explained earlier for Figure 17, despite it being a limitation of the procedure. For additional insight into the
stability performance of the SIMO systems, the Nichols chart for the input and outputs with corresponding
Nichols exclusion zones for all design points (with the lower-robustness point excluded) is shown in Figure 25.

Figure 25. Nichols chart for SIMO system input and outputs

With the loop opened at the actuator input, the frequency for which the attenuating gain of −30 𝑑𝐵 is first
crossed is shown in Figure 26. The figure shows that the attenuation requirement is met for the whole flight
envelope, with the exception occurring at 𝑀 = 3 and 𝛼 = 0. As only one point violates the requirement along
with this issue also being addressed in [8], the attenuation quality is deemed sufficient.

Figure 26. High frequency attenuation verification

The input-output disturbance-rejection performance is shown in Figures 47 and 48 in the appendix. The
output disturbance (e.g. a wind gust effect) is translated into a change in the angle of attack, the most directly
relevant effect of which is the change in the normal acceleration, which is deemed the most interesting
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signal due to its reference-tracking function. For this reason, an 𝑎𝑧 output disturbance of 1 𝑔 is deemed
representative. Additionally an input disturbance is introduced which showed good results for 𝛿 = 0.01 𝑟𝑎𝑑
(≈ 0.57◦), which induces a maximum 𝑎𝑧 disturbance of approximately 0.5 𝑔 at 𝑀 = 3 and 𝛼 = 0. For other
points in the flight envelope there is room for larger disturbance sizes.

E. Feed-Forward controller
The robustness and disturbance-rejection properties of the controller are discussed thus far. In order to meet
the time-domain (tracking) performance requirements of the system, a separate feed-forward controller is
introduced and designed in order to create a 2 degree-of-freedom (2-DOF) controller. Unlike the method
where the 2-DOF controller is taken directly into the 𝐻∞ process (as shown in [4] and applied in [24]) the
approach taken here treats the robust optimization and time-domain improvement separately. This was chosen
in order to asses the controller quality when keeping a clear distinction between agility and robustness, but it
is recommended to explore the latter method in future similar studies.

The controller is constructed such that the system follows a reference model that shows similar non-
minimum-phase behaviour. and satisfies the performance requirements For sufficient response speed, the
output is injected into the inner loop dynamics of the system as shown in Figure 27.

Figure 27. Complete linear autopilot with feed-forward controller

Since the feed-forward controller is not part of the feedback system, the robustness and stability of the
system is unaffected. The reference model is generated by imposing a desired overshoot, settling time,
non-minimum-phase zeros (from the respective linear vehicle model), damping ratio and natural frequency as
shown in Table 2 in the appendix. The values are then used to find a 2𝑛𝑑-order system with "optimal" 𝜁 and
𝜔𝑛 values that best satisfy the overshoot and settling time requirements (i.e. an optimization problem that can
be solved with function fminunc()). The table values are determined by trial-error based on the combination
that best represents all linear systems across the flight envelope, while satisfying the requirements the best for
the derived feed-forward controller.

The controller is imposed to be of 2𝑛𝑑 order and solved for step model-following using systune().
Given no extra constraints, the resulting feed-forward controller satisfies the time domain requirements for all
linear points, but severely violates the actuator rate constraint for lower Mach numbers (as control authority is
decreased with lower air speeds). This required the additional constraint of a frequency domain maximum
gain limit from the reference signal to the actuator deflection rate. As control authority (and therefore actuator
rate saturation) varied substantially across the flight envelope, the gain is made a function of the Mach number
as shown in Figure .49 in the appendix. A typical step response is shown in Figure 28.
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Figure 28. Typical step response (𝑀 = 3, 𝛼 = 10)

The achieved settling times and overshoots are shown in Figure 29.

Figure 29. Settling time and overshoot across the flight envelope

The overshoot requirement is met for the entire flight envelope. The step response settling time requirement
is met for most of the flight envelope, but is higher for small Mach numbers and small angles of attack due
to the actuator rate saturation. The larger values for the settling time are due to the last phase of settling
taking a longer time due to overshoot and undershoot, yet closely represent the other points where the settling
time requirement is achieved. The respective actuator deflection (rate) is shown in Figure 30, indicating the
actuator rate saturation requirement is met.
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Figure 30. Actuator maximum deflections & deflection rates for a 1 𝑔 step reference

The respective smoothed gain surfaces of the 2𝑛𝑑 order feed-forward controller is shown in Figure 50 in
the appendix. It was chosen to implement the feed-forward controller on an averaging basis, as described in
section V.A.1.

V. Non-Linear Results
The full non-linear simulations serve the purpose of testing the uncertainty handling (stability & handling
similarity of random uncertainty realizations) and performance qualities of the gain-scheduled autopilot.
Since linear short-period dynamic models were used for the controllers, an unknown confidence region
around each linearized point is present [23] that was compensated by the relatively numerous linearized
models / grid points. This is especially relevant due to the fast dynamics that are involved. Therefore, a
number of randomized-parameter simulations is performed to verify that the system performs as desired. The
step reference signals from [1] and [22] are used, along with a more realistic scenario with simple guidance
incorporated. The latter is to intuitively asses the uncertainty handling performance of the autopilot with a
more practical example.

A. Implementation
The implementation of the gain-scheduled controller required special points of attention and minor manual
corrections due to the neglected dynamics and other non-linear effects which are hard to predict beforehand.

1. Feed-forward controller
The feed-forward controller performed poorly in its gain-scheduled form largely due to the relatively high
order and due to some regions of the gain surface not being smooth enough as shown in Figure 50. However,
it is clear that the gains are smooth and highly similar for large portions of the flight envelope with a clear
Mach number-based distinction. It was therefore chosen to average the values, giving the transfer function
shown in Equation 29 (the respective bode plot of 𝐾𝐹𝐹 is given in Figure 51 in the appendix).

𝐾𝐹𝐹 =
7.7𝑠2 + 121.1𝑠 + 5686.1
𝑠2 + 41.1𝑠 + 529.3

10−4 (29)

Additionally, the transfer function is made semi-dynamic based on minor manual tuning as a function of
the Mach number, the result of which can be found in Figure 52 in the appendix. The implementation scheme
is shown in Figure 31.
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Figure 31. Base autopilot implementation

2. Velocity-based implementation
The initial non-linear results showed high overshoots and steady-state errors for high reference values. A
method to improve this behaviour is to use the velocity-based implementation introduced in [25]. This
involves differentiating the secondary (non-reference-tracking) state (in this case pitch rate 𝑞) and using
the integrator of the state tracking controller to integrate this value again. The velocity-based autopilot is
implemented by approximating ¤𝑞 with the transfer function 𝑠

𝜖 𝑠+1 with 𝜖 << 1 as shown in Figure 32.

Figure 32. Velocity-based implementation

The integrator of𝑊1 is moved forward, leaving 𝐾𝑖 behind. The effect of the velocity-based implementation
is shown in Figure 33.
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Figure 33. Effect of velocity-based implementation

The overshoot of the system is improved by using the velocity-based implementation. The steady-state
error is improved in section V.A.3.

3. Mach correction
Neglected dynamics and hidden coupling terms are common problems with gain-scheduling and covered in
literature in e.g. [26]. The issue posed in Figure 33 is however resolved by a simple observation.

The steady-state error occurs more severely for high reference values. The effect of high angles of
attack and therefore force generation causes the Mach number to decrease more rapidly than for smaller
reference values (Equation 6). The observation is made that the actuator "recognises" the steady-state error,
but compensates for this too slowly, likely due to the relatively low crossover frequency chosen during
loop-shaping. From this it is theorized that the Mach number rate has an influence on the steady-state error,
since it is dropped as a state in the linearized (short-period) dynamics. Assuming this is the case, Equation 30
holds:

𝑒𝑠𝑠 = 𝑟𝐾𝑑𝑐 (𝛼, 𝑀) − 𝑎𝑧𝐾∞(𝛼, 𝑀) + 𝑓 ( ¤𝑀) (30)

If it is assumed that 𝑓 ( ¤𝑀) = 𝑐 ∗ ¤𝑀 (𝑡) & ¤𝑀 ≠ 0, rewriting yields:

𝑐 =
𝑟𝐾𝑑𝑐 − 𝑎𝑧𝐾∞

¤𝑀
(31)

for which 𝑐 ≈ 90 for 𝑟 > 20 and 𝑐(𝑡) ≈ 30 for 𝑟 < 20 while remaining relatively constant. In essence,
this means a Mach number rate-based correction can be added to the scaled reference signal, which can be
scheduled and has no effect on robustness. The adjusted autopilot system is shown in Figure 34.
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Figure 34. Neglected dynamics correction

The effect of this neglected dynamics correction using only the 2 scheduled values is shown in Figure 35.

Figure 35. Neglected dynamics correction comparison

It is clear that there is a substantial improvement in both the steady-state error and the overshoot.

B. Simulation Results

1. Staircase reference
The following simulations use a "staircase" reference signal from [22] and an "extended staircase" from [1].
The reference signal profiles allow for representative flight envelope coverage. The time-domain performance
is compared against an ideal 2𝑛𝑑 order reference model determined as discussed in IV.E while using the
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values of Table 2, with this time the desired overshoot being 4.9% and the settling time being 0.349 𝑠. The
results are shown in Figure 36, from which it is clear that the reference model is closely followed by the
system (even outperforming the reference model in the first step), while gradually becoming slower due to
reduced control authority by the reduced airspeed.

Figure 36. Reference model comparison

The respective actuator dynamics are shown in the appendix in Figure 53. For the actuator rate saturation
requirement, the normalized actuator deflections shown in Figure 38 indicate that the requirement is satisfied
by a large margin (max 10 𝑑𝑒𝑔/𝑠 versus the 25 𝑑𝑒𝑔/𝑠 requirement). This is deemed a benefit as well as a
drawback, as better performance could be demanded from the system at the cost of (feasible) higher actuator
rates.

Figure 37. Normalized actuator deflection for the Stairs reference

The behaviour is consistent across the wider flight envelope, for which the extended stairs reference signal
is used in Figure 38. The system closely represents the reference model in most cases and gradually gets
slower due to the actuator rate saturation requirement.
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Figure 38. Reference model comparison extended stairs reference signal

The respective actuator dynamics and covered Mach number - angle of attack domain are shown in
Figures 54 and 55 respectively in the appendix.

In order to asses the autopilot’s uncertainty handling, the system is tested by performing 100 iterations
with randomized combinations of the uncertain aerodynamic parameters as mentioned in II.C. The responses
are shown in Figure 39 and the respective actuator deflections in Figure 40.

Figure 39. Non-linear model robustness, 100 random uncertain realizations
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Figure 40. Actuator deflections of random uncertain realizations

The Figures show the autopilot behaviour under uncertainty, its impact becoming less profound as the
velocity decreases, yet always being consistently controlled for the relatively large magnitude of the uncertainty
imposed, implying desirable uncertainty-handling qualities. For instance, no sinusoidal fluctuations are taking
place, which often indicate near-instability. Initially, a high overshoot is taking place for certain realizations
due to the high control authority combined with high uncertainty. However, most realizations show similar
behaviour to the agile nominal system while providing stability for all of the realizations. Note that to fully
verify robustness of the non-linear system, methods like Monte Carlo simulations can be used. The effect
of the deviations from the nominal system in a practical scenario is discussed and contextualised in section
V.B.2.

The system shows similar disturbance-rejection properties to the linear design points even with uncertainty
present, a realization of which is shown in Figure 56 in the appendix.

2. Guidance scenario
The autopilot follows commands, i.e. the reference normal acceleration signal, for navigation from the
guidance system. Given the agility of the vehicle, a realistic application of the system would be a guidance
system that gives aggressive maneuvering commands to which the vehicle needs to respond rapidly. An
example of such situations is when the guidance system attempts to take the vehicle as close as possible to a
moving point in space. The conversion of the body reference frame to the earth reference frame is described
in Equations 32 and 33 [27, 28]. (

¤𝑢
¤𝑤

)
=

(
𝑎𝑥 − 𝑞𝑤 − 𝑔 sin 𝜃
𝑎𝑧 + 𝑞𝑢 + 𝑔 sin 𝜃

)
(32)

(
¤𝑋𝑒
¤𝑍𝑒

)
=

(
𝑢 cos 𝜃 + 𝑤 sin 𝜃
−𝑢 sin 𝜃 + 𝑤 cos 𝜃

)
(33)
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The guidance system uses proportional navigation as described in [29]. The guidance law essentially uses
a constant factor between the rate of the angle between the vehicle and the point in space ¤𝜆 and the rate of the
vehicle flight path angle ¤̄𝛾, i.e. ¤̄𝛾 = 𝑁 ¤𝜆. From the relation 𝑎𝑧 = 𝑉 ¤̄𝛾, the reference signal is determined by
Equation 34.

𝑟 = 𝑎𝑧𝑐 = 𝑁𝑉 ¤𝜆 (34)

An approximation of ¤𝜆 is used and 𝑁 = 4. The guidance system is activated after 1 second and the
simulation halts when the rate of the relative distance becomes positive: ¤𝑅 > 0 . The full system is shown in
Figure 41.

Figure 41. Full system with guidance

The vehicle is initialized at an altitude of 𝑍𝑒 = 6000 𝑚 and a horizontal distance of 𝑋𝑒 = 0 𝑚, with the
moving point in space being initialized at 𝑍𝑒𝑝 = 6500 𝑚 and 𝑋𝑒𝑝 = 8000 𝑚 with an initial velocity towards
to the vehicle 𝑉𝑝 = −350𝑚/𝑠 (𝛾𝑝 = 𝜋). For a moving point in space with a fixed velocity vector, the result is
shown for 100 random realizations of the aerodynamic uncertainty in Figure 42. The respective reference
following performance and actuator dynamics are shown in Figure 43.

Figure 42. Vehicle trajectories for 100 random realizations with moving point in space
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Figure 43. Reference tracking and actuator dynamics

For a more aggressively moving point in space, the results are shown in Figures 44 and 45.

Figure 44. Vehicle trajectories for 100 random realizations with aggressive target
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Figure 45. Reference tracking and actuator dynamics (aggressive target scenario)

Note that the reference signal differs per uncertain realization, due to the guidance law adjusting the
reference per unique trajectory. It can be concluded that the autopilot performs accurately in a practical
scenario with the present uncertainty. The "miss-distance" for both scenarios vary by small margins, while the
vehicle performs in an agile way even under uncertainty. Despite the large overshoots for certain realizations
as shown in Figure 39, which are induced by the large uncertainty magnitude, the deviation’s effect for a
more practical point-hit application is limited. This section thus offers an intuitive insight into the uncertainty
handling and performance of the autopilot for a more practical application suitable for agile vehicles.

VI. Conclusions & Recommendations

A. Summary and Conclusion
A robust autopilot is designed for an agile aerospace vehicle; selected for its use in other (robust) control
studies, thus yielding the possibility for comparison and cross-verification while also posing a challenging
control problem given its requirements. The model’s non-linear dynamics are analysed and verified, after
which trimming and point-linearization is applied for the flight envelope domain, totalling 100 points. The
linearized points are stabilized into SISO plants by proportional feedback, which allows for time-scale
separation as well as loop shaping the reference-tracking output 𝑎𝑧 . 𝐻∞ Loop-Shaping is applied, with
pre-filter𝑊1 being of an integrator form for simplicity and ease of automation. Having chosen the crossover
frequency through trial and error (simplified by its automation capability), structured robustification is applied
by using non-smooth optimization. A feed-forward controller is in turn designed to enhance reference tracking
performance and speed. The resulting gains are implemented, for which the velocity-based implementation
and the ¤𝑀-correction allowed for accurate tracking of the reference signal. The feed-forward controller
is averaged and implemented with a semi-dynamic transfer function. The autopilot is tested in non-linear
simulations with reference signal profiles and a point-hit scenario with guidance included, showing desirable
behaviour even under uncertainty.
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The robustness requirements are met and verified for the linear SISO plants, while the linear SIMO plants
are verified for having high robustness values. The non-linear simulations showed desirable uncertainty
handling. The actuator saturation rate requirements along with the overshoot limits are met for all linear
design points and non-linear simulations. The settling time guideline is met for the majority of linear design
points while being subject to actuator rate saturation for design points with small mach numbers and angles of
attack, which is also reflected in the non-simulations. High frequency attenuation is met (except for 1 point).

It can be concluded that the given design procedure, combining 𝐻∞ Loop-Shaping and structured
robustification, is extremely potent in its ability to be automated while yielding desirable robustness and
performance results despite its simplicity.

B. Limitations
Despite the simple and effective design structure and the requirements having been met, there are certain
limitations to this design technique which require improvements. An important limitation is the procedure’s
dependence on the similarity of the linearized systems / design points across the flight envelope. This
dependency causes a small number of lower-quality controllers to be formed, which form "exceptions to the
rule" in an otherwise successful set of local controllers as seen for the loop shape qualities and attenuation
values. Next to this, more detailed designs that take into account very specific types of uncertainty may suffer
from the conservatives of 𝐻∞ Loop Shaping [4]. Compared to mixed-sensitivity, 𝐻∞ Loop Shaping offers
less freedom in tuning a system’s individual loops, adding an additional layer of possible conservativeness.
As such, a trade off is to be made between the freedom of design required against the desired automation,
which is in turn dependent on the specific control design problem.

In terms of the model used, it is only representative for a fixed-altitude situation with no shift in its centre
of gravity (due to e.g. fuel burn). These simplifications of reality may yield additional complexities in the
design phase for models that cover an extended flight envelope, for which variables like altitude and fuel
mass have to be used as scheduling parameters. Moreover, access to the states might be limited in other
applications, requiring an observer or countermeasures to noise, for which methods can be used specifically
for 𝐻∞ Loop-Shaping as discussed in e.g. [4]. This is out of the scope of this study.

C. Recommendations
Future work will involve tackling the discussed limitations. Smart design-point gridding using the gap metric
as explored in e.g. [8] may yield useful insights with respect to flight envelope division across multiple
autopilot channels, with each its own set of design points and loop-shaping filters. For the feed-forward
controller it is advised to use a multi-model approach (see [20]) given the high controller order that is required,
instead of the averaging and manual-tuning approach taken here. Furthermore, alternative methods are
recommended to be explored for this application, e.g. the 2-DOF 𝐻∞ Loop-Shaping optimization method as
given in [4, 24].

Next to the recommendations to resolve the limitations, it is recommended to extend the design procedure
and apply it on more complex models, yielding a more representative insight into the proposed design
procedure. An important extension will be the robustification of the SIMO plant (that is, involving 𝑞 in the
robustification), given the loop shaping functions 𝐾𝑖

𝑠
and 𝐾𝑞, which together could form 𝑊2 and with 𝑊1

e.g. a scaling function. This will yield guarantees on the robustness against the NCF uncertainty for the
SIMO system, while potentially providing more control freedom through 𝐾𝑞 (which may in turn improve
the consistency of controller quality in the unstable region). Furthermore, it is recommended to extend the
non-linear simulations by incorporating actuator deflection saturation, for which anti-windup techniques can
be explored. Finally, LPV methods are recommended to be explored in combination with 𝐻∞ Loop-Shaping
and structured robustification due to the potentially numerous benefits (e.g. regional guarantees as opposed to
point guarantees) as shown in e.g. [3] and [30].
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Appendix

Model Values

Table 1. Variables of model dynamics

Variable Value Units Description
𝑚 204.02276 𝑘𝑔 Mass
𝑆 0.04104 𝑚2 Reference surface
𝑙 0.2286 𝑚 Reference length
𝐼𝑦 247.43678 𝑘𝑔𝑚2 Pitch moment of inertia
𝑎𝑛 19.373368 1/𝑟𝑎𝑑3 Force coefficient
𝑏𝑛 −31.022520 1/𝑟𝑎𝑑2 Force coefficient
𝑐𝑛 −9.717364 1/𝑟𝑎𝑑 Force coefficient
𝑑𝑛 −1.948057 1/𝑟𝑎𝑑 Force coefficient
𝑎𝑚 40.439554 1/𝑟𝑎𝑑3 Force coefficient
𝑏𝑚 −64.014724 1/𝑟𝑎𝑑2 Force coefficient
𝑐𝑚 2.922085 1/𝑟𝑎𝑑 Force coefficient
𝑑𝑚 −11.802931 1/𝑟𝑎𝑑 Force coefficient
𝜔𝑎 150 𝑟𝑎𝑑/𝑠 Actuator natural frequency
𝜁𝑎 0.7 − Actuator damping radio
𝐶𝑥 −0.3 − Longitudinal force coefficient
𝜌 0.653118 𝑘𝑔/𝑚3 Air density
𝑎 316.056116 𝑚/𝑠 Speed of sound
𝑔 9.806650 𝑚/𝑠2 Gravitational constant

Feed-forward design reference system

Table 2. Reference system initial values for optimization

Variable Value Units Description
𝑆𝑇 0.349 𝑠 Settling time
𝑂𝑆 1 % Overshoot
𝜁 1 − Damping ratio
𝜔𝑛 9 𝑟𝑎𝑑/𝑠 Natural frequency
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Bisection algorithm

Algorithm 1: Loop Shaping Bisection
tol = 0.001
𝐶𝑂 = 3
𝐾𝑖𝑎0

= 1𝑒 − 5
𝐾𝑖𝑏0

= 1
𝐾𝑖𝑎 = 𝐾𝑖𝑎0
𝐾𝑖𝑏 = 𝐾𝑖𝑏0
repeat

𝑊1𝑎 =
𝐾𝑖𝑎

𝑠

𝑊1𝑏 =
𝐾𝑖𝑏

𝑠

𝐶𝑂𝑎 = getGainCrossover(𝐺 𝑊1𝑎 )
𝐶𝑂𝑏 = getGainCrossover(𝐺 𝑊1𝑏 )

Δ𝑎 = 𝐶𝑂𝑎 − 𝐶𝑂
Δ𝑏 = 𝐶𝑂𝑏 − 𝐶𝑂

𝐾𝑖𝑐 =
𝐾𝑖𝑎+𝐾𝑖𝑏

2
𝑊1𝑏 =

𝐾𝑖𝑐

𝑠

𝐶𝑂𝑐 = getGainCrossover(𝐺 𝑊1𝑐 )
Δ𝑐 = 𝐶𝑂𝑐 − 𝐶𝑂

if and(Δ𝑎 > 0,Δ𝑏 < 0):
if Δ𝑐 > 0: 𝐾𝑖𝑎 ← 𝐾𝑖𝑐
else if Δ𝑐 < 0: 𝐾𝑖𝑏 ← 𝐾𝑖𝑐

vice versa for if and(Δ𝑎 < 0,Δ𝑏 > 0)

until min(|Δ𝑎 | , |Δ𝑏 |) ≤ tol
if |Δ𝑎 | ≤ tol: 𝑊1 ← 𝑊1𝑎
if |Δ𝑏 | ≤ tol: 𝑊1 ← 𝑊1𝑏
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Gain surface of 𝐾𝑑𝑐

Figure 46. Scaling controller gains

Disturbance rejection performance

Figure 47. Input-Output disturbance-rejection settling times

Figure 48. Input-Output disturbance-rejection actuator deflection rate
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Feed-forward design

Figure 49. Mach number dependent frequency-domain gain limit

Figure 50. Gain surfaces of feed forward controller (smoothed)
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Figure 51. Bode plot of the feed-forward controller

Figure 52. Simulink manual switching block of the feed-forward controller
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Actuator dynamics

Figure 53. Actuator dynamics for stairs reference

Figure 54. Actuator dynamics for extended stairs reference
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Covered flight envelope

Figure 55. Mach number - 𝛼 plot

Disturbance rejection of Non-Linear system

Figure 56. Disturbance rejection with 50 random realizations

The figure above consists of 50 random uncertain realizations, on top of which output disturbances (timestamps
0.6 and 2.6) and input disturbances (timestamps 1.6 and 3.6) are added.

42



Part III
Closure
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5
Discussion & Conclusion

This chapter provides a discussion of the achieved results along with the main results and conclusions
with respect to the main- and sub-research questions. The discussion summarizes and comments
on the achieved results, along with certain recommendations for improvements and extensions of the
methods in section 5.1. The conclusions and research questions are discussed in section 5.2.

5.1. Discussion
The requirements are met for the majority of linearized points. Robust stability against the aerodynamic
uncertainty is verified for the SISO plant by the achieved stability margin of K∞ for all points, although
the margin by which this is achieved is lower for 1 point in the unstable (transition) region. Despite
having only used the SISO system, the SIMO system shows high stability margins for all linear points
(with the same exception as for the SISO system), which constitutes to high robustness. The robustness
values satisfy common aerospace robustness requirements, despite having noNCF uncertainty stability
guarantee for which SIMO robustification is needed. The attenuation requirements are met, for which
only 1 point of the 100 does not satisfy the requirement. The actuator saturation requirement as well as
the overshoot requirement are met for all linear design points, which is also the case for the non-linear
simulations. The step-tracking guideline is met for most linear points, and is not met due to the actuator
rate saturation requirement for low air-speeds and small angles of attack, which is also reflected in the
non-linear simulations.

The agile vehicle model used in this study was selected for its use in other (robust) control studies,
thus yielding the possibility for comparison and cross-verification. In addition, the model combined
with its requirements poses a challenging control problem, certainly in combination with its unstable
region. However, the model is only representative for a fixed-altitude situation with no shift in its centre
of gravity (due to e.g. fuel burn). These simplifications of reality may yield additional complexities in
the design phase of models that cover an extended flight envelope that includes e.g. altitude and its
fuel mass as scheduling parameters. It is hence important to test and extend this method into more
complex models, yielding a more representative insight into the proposed design procedure. Access to
the states used in this study may also be limited or polluted with noise in other systems, which is likely
more important for the angle of attack than the (slower) Mach number. The reader is referred to [30]
for observer-based structures for H∞ Loop-Shaping and it is recommended to test and address these
issues further.

Despite the simple and effective design structure and the requirements having been met, there are
certain limitations to this design technique which require improvements. An important limitation is the
procedure’s dependence on the similarity of the linearized systems / design points across the flight
envelope. This dependency causes a small number of lower-quality controllers to be formed, which
form ”exceptions to the rule” in an otherwise successful set of local controllers as seen for the loop
shape qualities and attenuation values. Next to this, more detailed designs that take into account very
specific types of uncertainty may suffer from the conservativeness ofH∞ Loop Shaping [30]. Compared
to Mixed-Sensitivity,H∞ Loop Shaping offers less freedom in tuning a system’s individual loops, adding
an additional layer of possible conservativeness. As such, a trade off is to be made between the
freedom of design required against the desired automation, which is in turn dependent on the specific
control design problem.
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For the non-linear implementation, the direct use of the gain surfaces offered a straight forward
procedure, for which limited intervention was required. The combination of the velocity-based imple-
mentation and mach number rate correction yielded an effective autopilot that behaved desirably for
time-domain performance, despite having used trimmed point-linearization for the controller design.
The uncertainty handling is analysed for 100 random uncertainty realizations. Since the robustness
measures only apply to the linearized design points, this analysis yielded insight into the uncertainty
handling qualities of the non-linear model, but can only be verified by more extended methods like
Monte Carlo simulations. The completed non-linear system is additionally tested in a ”proof of concept”
moving point-hit scenario, for which a simple guidance law is used. The scenario yielded useful addi-
tional insight into the uncertainty handling of the autopilot, which gave highly consistent results while
showing high agility for aggressive guidance commands even under uncertainty.

Future work will involve tackling the limitations discussed. Smart design-point gridding using the
gap metric as explored in e.g. [35] may yield useful insights with respect to flight envelope division
across multiple autopilot channels, with each its own set of design points and loop-shaping filters. For
the feed-forward controller it is advised to use a multi-model approach (see [1]) given the high controller
order that is required, instead of the averaging and manual-tuning approach taken here; to get more
performance out of the controller. Furthermore, alternative methods are recommended to be explored
for this application, e.g. the 2-DOF H∞ Loop-Shaping optimization method as given in [13, 30].

Next to the recommendations to resolve the limitations, it is recommended to extend the design
procedure. An important extension will be the robustification of the SIMO plant (that is, involving q
in the robustification), given the loop shaping functions Ki

s and Kq, which together could form W2

and with W1 e.g. a scaling function. This will yield guarantees on the robustness against the NCF
uncertainty for the SIMO system, while potentially providing more control freedom through Kq (which
may in turn improve the consistency of controller quality in the unstable region). Finally, LPV methods
are recommended to be explored in combination with H∞ Loop-Shaping and structured robustification
due to the potentially numerous benefits (e.g. regional guarantees as opposed to point guarantees) as
shown in e.g. [26] and [29].

The main points of improvement for the non-linear simulations may be its extension into more real-
istic implementations, which for example can include anti-windup techniques for deflection saturation.
Next to this, the feed-forward controller is of a relatively high order and required special attention in
the design phase. The averaging approach of the feed-forward controller yielded stable and desirable
results in the non-linear simulations, yet do not meet their full potential given the large actuator rate
saturation margin.
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5.2. Conclusion
This section evaluates the results and conclusions covered in part II with respect to the posed research
questions. The research questions posed in Chapter chapter 3 are repeated below for convenience.

Main research question:
What is an effective agile vehicle autopilot design method using Structured H∞ Loop-
Shaping with a focus on automation?
Sub-questions:

1. What agile aerospace vehicle model is used and what are its control
requirements?

1.A What is a suitable agile vehicle model to be used?
1.B What are the non-linear dynamics of the model?
1.C What are the linearized models/ design points to be used?
1.D What are the specific robustness and performance requirements of the final
system?

2. How is H∞ Loop-Shaping applied?

2.A What is the magnitude of the uncertainty?
2.B How are shaping functions W1 and W2 defined and applied for
Loop-Shaping?
2.C How is the shaped plant robustified and what is the structure of the
robustifying controller?
2.D How is the time-domain performance enhanced?
2.E How well are the requirements met by the individual design points?

3. How is the the autopilot implemented and what is its non-linear performance?

3.A What implementation methods are required and used?
3.B What is the time-domain performance of the autopilot?
3.C How does the system handle uncertainty?
3.D How does the system perform in a practical scenario?

Research Questions

A robust autopilot is designed for an agile aerospace vehicle, which was selected for its use in other
robust control studies, its imposed requirements making it a challenging control problem. The model
non-linear dynamics are analysed and verified, after which trimming and point-linearization is applied
for the flight envelope domain (Questions 1.A-D answered).

The linearized points are in turn stabilized into SISO plants by proportional feedback, which allows
for time-scale separation as well as loop shaping the reference-tracking output az. H∞ Loop-Shaping
is applied, with pre-filter W1 being of an integrator form for simplicity and ease of automation. Having
chosen the crossover frequency through trial and error (simplified by its automation capability), struc-
tured robustification is applied by using non-smooth optimization. A feed-forward controller is in turn
designed to enhance reference tracking performance and speed (Questions 2.A-D answered). The
robustness requirements are met and verified for the linear SISO plants, while the linear SIMO plants
are verified for having high robustness values. The actuator saturation rate requirements along with the
overshoot limits are met for all linear design points. The settling time guideline is met for the majority
of linear design points while being subject to actuator rate saturation for design points with small mach
numbers and angles of attack. The high-frequency attenuation requirement is met by all linear design
points (except for 1 point) (Question 2.E answered).

The resulting gains are implemented, for which the velocity-based implementation and the Ṁ -
correction allowed for accurate tracking of the reference signal. The feed-forward controller is averaged
and implemented with a semi-dynamic transfer function (Question 3.A answered). The autopilot is
tested in non-linear simulations with reference signal profiles. The actuator saturation rate require-
ments along with the overshoot limits are met. The settling time guideline is met for flight phases of
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high Mach numbers, with the effect of actuator rate saturation being reflected for smaller Mach numbers
(Question 3.B answered). Finally, a point-hit scenario with guidance is created and used for testing,
showing desirable behaviour even under uncertainty (Questions 3.C-D answered).

For the main research question; it can be concluded that the given design procedure combining
H∞ Loop-Shaping and structured robustification is very potent in its ability to be automated while yield-
ing desirable robustness and performance results despite its simplicity. The described procedure is
therefore deemed effective for its application, making the Main Research Question answered.
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