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Summary

The conceptual ideas behind isogeometric analysis (IGA) are aimed at unifying com-
puter aided design (CAD) and finite element analysis (FEA). Isogeometric analysis
employs the non-uniform rational B-spline functions (NURBS) used for the geomet-
ric description of a structure to approximate its physical response in an isoparametric
sense. Due to the tensor product property of multi-variate NURBS, it is difficult to
represent complex topological shapes with a single NURBS patch. Multiple, often
non-conforming patches are needed to tackle increasing complexity of the geome-
try. To further facilitate the modeling of complex shapes and geometric features
trimming technology is widely used in CAD software, however, the trimmed do-
main is only visually unseen and the trimming features can not be utilized directly
for the analysis. To overcome these difficulties, extra efforts are needed to make
isogeometric methods adapted to engineering related cases.

Thin-walled structures, such as plates and shells, excel in optimal load-carrying be-
havior and are of major importance in the design of aerospace components and the
automotive engineering. Isogeometric analysis is an ideal candidate for the modeling
and simulation of shell structures, especially for rotation-free Kirchhoff-Love type
shells, which profit from the exact description of the geometry and from the higher
continuity properties of NURBS. Furthermore, it favorably supports continuity re-
quirements for flexible through-the-thickness design of laminate composites.
Laminated composite materials are increasingly used in the aerospace industry this
asks for reliable and computationally efficient lamina theories. The classical lam-
ination theory belongs to the class of equivalent-single-layer methods (ESL), it is
computationally efficient but often fails to capture the 3D stress state accurately.
The demand for an accurate 3D stress state within laminates is mainly driven by
the need to identify and to evaluate potential damage of lamina structures. While
a full 3D layerwise (LW) model is computationally expensive, a combined approach
considering both concepts, ESL and LW, seems to be a natural choice to tackle the
computational costs of increasing model size and model complexity.

In this thesis, a layerwise method for laminated composite structures is proposed in
the framework of isogeometric analysis. A highly accurate prediction of the state of
stress for thick and moderately thick laminate composite shells including transverse
normal and shear stresses is demonstrated. The layerwise theory is successfully
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vi SUMMARY

extended to linear buckling analysis of delaminated composites where a contact
formulation is added to eliminate physically inadmissible buckling states which may
result from overlapping plies. Furthermore, a Nitsche type formulation is introduced
to enforce both weakly, essential boundary conditions and multi-patch coupling con-
straints for trimmed and non-conforming isogeometric rotation-free Kirchhoff-Love
shell patches. The proposed formulation is variationally consistent and excels in a
high level of stability and accuracy. A built-in stabilization, used to ensure coercivity
of the formulation, prevents ill-conditioning of the physical problem. The inherent
trimming problem is tackled with a fictitious domain extension for the trimming
domain following the principles of the finite cell method to facilitate the workflow
for geometrically complex structures in engineering practice. Computational effi-
ciency is significantly increased with a blended coupling, taking continuum-like shell
elements and thin shells elements, according to the theory of Kirchhoff-Love, into
account. The blended approach provides access to the full 3D state of stress within
selected subdomains while preserving the computational efficiency of the overall
analysis.
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Chapter 1

Introduction

1.1 Background and motivation

Thin-walled structures are widely used in the aerospace, automotive and shipbuilding
industries. Typical applications are fuselage structures, automobile bodies, the hulls
of submarines and rockets. With a much better strength-to-weight ratio compared to
metallic structures, laminate composites have become increasingly important over
the decades in lightweight designs, and have superseded conventional engineering
structures in many applications, in particular in aerospace engineering. Laminated
composites are made of stackings of fiber reinforced layers with different fiber angles
embedded within matrix materials. The layered structures are known to be prone
to damage at layer interfaces such as delamination. Other failure modes in compos-
ites include matrix cracks, fiber pull-out, intralaminar matrix cracking, fiber/matrix
debonding and fiber fracture. The prediction and evaluation of damage and failure
in composite laminates demands an accurate evaluation of the three-dimensional
state of stress in the critical sub-domains of the composites, however, mathemati-
cally, thin-walled structures are often considered as two dimensional surfaces. This
geometric reduction is based on a condensation of the three dimensional structural
response to certain types of membrane and bending actions. Typically, two dimen-
sional shell models are computationally inexpensive compared to full three dimen-
sional models, but they often fail to capture the three dimensional stress state with
sufficient accuracy. In the past, various layerwise concepts have been developed
which allow a separate modeling of in-plane and through-the-thickness properties to
tackle better the numerical complexity of multi-layer composites for which accurate
three-dimensional stress components are needed. Other concepts proposed to reduce
the computational cost consider a combination of different mathematical models of
different effort-to-accuracy ratios to handle an increasing model size with sufficient
efficiency, an approach which is also favoured in the thesis at hand.

1



Chapter 1

Isogeometric analysis (IGA) is an emerging analysis concept proposed by Hughes
et al.[1] aimed at unifying computer aided design (CAD) and finite element analy-
sis (FEA). The IGA concept is based on the use of non-uniform rational B-spline
(NURBS) functions for both the representation of the geometry model and the ap-
proximation of the physical field and state variables of the analysis. NURBS are
a standard technology for the representation of geometry in CAD which builds the
basis for the traditional modeling of structures applied in FEA. The conflation of
CAD and FEA simplifies the modeling and analysis pipeline and supports a more
efficient engineering workflow. Compared to the traditional Lagrange-based finite
element method, IGA excels with the following superior properties:

◦ the NURBS used in IGA allow an exact representation of geometry and thus
provide highest smoothness properties as desired for contact problems or for
the analysis of shells and membranes. The geometry of a finite element model
is typically approximated linearly, in a few cases quadratically or cubically.

◦ the geometry does not change during model refinement which is in contrast to
the refinement principles of the finite element method.

◦ the higher order approximation capabilities of NURBS provide control about
the discretization error and allow for exponential rates of convergence where
the solution field is smooth. This is in contrast to the prevailing h-refinement
of the finite element method which is limited with regard to the model size
and which results in algebraic rates of convergence.

◦ the unique k-refinement in IGA ensures higher order continuity among the
elements of a patch up to a degree of p− 1 which is in contrast to the intrinsic
C0-continuity of finite elements.

In particular, the surface model character of NURBS, the higher order approximation
and higher order continuity properties, make IGA an excellent candidate for the
analysis of thin-walled structures where curved geometries are captured exactly.
The superiority of IGA has been demonstrated successfully in other fields, e.g. in
solids and structural mechanics [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], in fluid mechanics
[14, 15, 16, 17, 18, 19, 20, 21], in structural vibration [22, 23, 24], in thermal analysis
[25, 26, 27], in contact mechanics [28, 29, 30, 31, 32, 33], in multi-field problems
[34, 35, 36], in design and optimization [37, 38, 39, 40].

Thin-walled structures in engineering practice typically exhibit complex geometries
and geometry features, such as holes, openings or stringer folds. The modeling of
such geometric features in IGA often requires multiple patches which should be cou-
pled such that displacements and tractions are transferred properly. Furthermore,
CAD modelers generally use trimmed NURBS geometries which fade out subdo-
mains for visualization purposes but leave the underlying geometry unchanged. As
a result, the trimmed geometry, which is in the focus of the analysis, has no para-
metric description and cannot be utilized directly for the analysis without special
treatment. An isogeometric analysis framework addressing these challenges should
be able to deal with both, multiple patches and trimming geometries, to ensure a

2



Introduction

seamless integration of CAD and FEA in an engineering design environment. Other
aspects supporting the idea of a design-through-analysis framework for laminate
composite structures include flexible refinement capabilities which allow simple re-
finement through the laminate thickness. Considering the two-dimensional surface
model characteristic of thin-walled structures, the complete three-dimensional stress
state should be accessible in critical subdomains, e.g. at layer interfaces or free
edges, to allow for an accurate prediction of strength and failure.

The aim of the research presented in this thesis was to develop a flexible analysis
framework for engineering shell structures that supports a design-through-analysis
workflow according to the isogeometric analysis paradigm [41]. At the heart of
this thesis lies the numerically efficient, accurate and reliable modeling and analysis
of laminate composite shells as increasingly used in innovative primary aerospace
structures. The thesis revisits the most attractive properties of isogeometric analysis
for shell structures, reveals critically the major challenges of NURBS-based analysis
models and proposes a solution approach which overcomes the currently existing
severe limitations of isogeometric analysis and the related workflow for arbitrary
structures of engineering relevance.

1.2 State of the art

The state-of-the-art discussion that follows covers various fields of research and is
presented topic-wise and then merged in the course of the thesis, enhanced by new
aspects and developments, to produce an engineering design tool.

1.2.1 Design and analysis of laminate composites

Due to their strength and light-weight, laminate composites are becoming increas-
ingly attractive in many engineering fabrication areas, from military to civil appli-
cations and from high-cost to low-cost products. The following examples are typical
representatives of today’s application domains for composites, cf. Figure 1.1: the
Boeing 787 Dreamliner, the Airbus A350 commercial aircraft, wind turbine blades,
car passenger cabins, tennis rackets, offshore platforms and pipelines. Through care-
ful design of laminated composites, the weight of a structure can often be greatly
reduced while maintaining its strength and stability. Today’s research activities with
respect to laminated composite structures cover a broad range of areas: stress analy-
sis [42, 43, 44, 45, 46] to study possible damages of the structure; dynamic responses
[47, 48, 49, 50] to reveal frequency properties and the performance of composites
under cyclic loading; thermal analysis [51, 52, 53, 54] to understand high temper-
ature gradient effects such as those commonly seen in engines; damage prediction
and propagation [55, 56, 57, 58] investigating damage mechanisms and the influence
of the stacking sequences; fatigue [59, 60, 61, 62] to predict the failure properties of
composite structures under periodic loading; structural stability [63, 64, 65, 66, 67]

3
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(a) Boeing 787 (b) Boeing 787 noses ahead

(c) Composite wing

Figure 1.1: Commercial aircraft using composites. (a) Boeing 787 (Source: http://
www.boeing.com), (b) composite fuselage (Source: http://www.lambolab.org), (c)
composite wing (Source: http://www.renishaw.com).

where the buckling behavior and buckling loads are investigated; design and opti-
mization [68, 69, 70, 71] of structures to find the optimal shape or sizes for given
constraints.
The industrial importance of laminate composites has been boosted significantly
by the further development and application of advanced manufacturing techniques
such as automated fiber placement (AFP) machines. In parallel to this development,
intensive research, experimental and simulation-based, has driven the development
of this technology to a level which provides insight into the physical mechanisms
on multiple scales. In particular, computer simulations, classically governed by the
finite element method, reveal on one hand physical insight across the scales and
provide on the other hand an attractive extension to experiments to accelerate and
to economize the design circle of a product.

The finite element method originated in the early 1950s, and in parallel, computer
aided design evolved steadily at the end of the same decade. The different fields of
application, namely computer aided geometric design and engineering design, gave
rise to the independent development of the two technologies resulting in different,
and in general incompatible, model descriptions. Although various efforts have been
made over the decades to integrate finite element analysis and computer aided design,
a large gap still exists in the treatment of geometry in the two worlds. The typical
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Introduction

work flow for the analysis of structures includes several steps which are dominated
by a CAD design, by mesh generation and finally by the numerical analysis. It is
estimated that almost 80% of the time effort within this workflow is devoted to the
analysis-suited model preparation and mesh generation [1]. In 2005, isogeometric
analysis was proposed by Hughes et al. [1, 22, 72] to bridge this gap and to
eliminate the need for intermediate data transfer and data transformation between
a CAD and FEA software environment which would greatly facilitate the entire
design-through-analysis work flow in engineering.

Given the early state of development of isogeometric analysis, the practical use in
engineering with a focus on laminate composites demands further attention and
more effort must be made to provide the envisaged workflow. First attempts in
the framework of laminate composites have been made to harness the potential of
isogeometric analysis. The implementation of different lamina theories using an iso-
geometric method are discussed in [73, 74, 75, 76, 77, 78]; free vibration and linear
buckling analysis of laminated composites are studied in [79, 80, 81]; geometrically
nonlinear analysis and postbuckling analysis of laminated plates are investigated in
[82, 83] respectively; special attention is paid to interlaminar stress calculations in
[78, 84, 85]; delamination simulation with cohesive elements is reported in [86]; and
the modeling of continuum damage in rotation-free composite shells is demonstrated
in [12]. The application of isogeometric analysis in design and optimization of com-
posite laminates is reported in [87, 88, 89]. The majority of papers mentioned above
deal with simple geometries, which indicates that further investigations are needed
with respect to the modeling of complex geometric structures and the simulation of
different physical phenomena of laminates.

1.2.2 Isogeometric multi-patch modeling

The number of applications using single-patch NURBS models is limited. With in-
creasing geometric complexity the number of patches needed to represent a structure
increases accordingly. Furthermore, engineering relevant structures often consist of
many different parts with distinct material properties and must be modeled by a
larger number of patches. Topological restrictions of patches which result from the
tensor product character of multivariate NURBS geometries or patch-spanning mesh
refinement properties are other important aspects which call for modeling with mul-
tiple patches.

In multi-patch analysis, the different patches involved need to be connected along
their patch interfaces. A strong coupling on the basis of degrees of freedom belonging
to the control points of adjacent patches is reported in [90]. This type of coupling is
typically restricted to the primal unknowns and ensures in general only C0-continuity
across the coupled domains. It is also reported that higher order continuity can be
achieved by applying similar constraints in the normal direction of coupling interface
[90]. Alternatively, the coupling constraints can also be satisfied weakly, i.e. they are
satisfied in an integral sense as done in various approaches such as e.g. the penalty
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method [91, 92, 93] which is a simple approach in terms of implementation and which
does not add extra degrees of freedom to the system equations but which destroys
inevitably the well-posedness of the problem; the Lagrange multiplier method [94,
95, 96, 97, 98] which models additional flux unknowns with additional equations
to satisfy the coupling constraints; the mortar-type weak substitution method [99,
100] and Nitsche-based methods [101, 102, 103, 104, 105, 106, 107, 108, 109, 110,
111]. Nitsche’s approach [101] was first proposed to enforce essential boundary
conditions for the Poisson problem and has been adapted successfully for structural
mechanics problems [112, 102, 103, 105]; biomechanics [106]; thermo-elasticity [107]
and fluid mechanics [108, 110, 111]. Nitsche’s method is variationally consistent
and does not introduce additional degrees of freedom that need to be solved. The
coercivity of the governing problem can be ensured with additional stability terms
without compromising the conditioning properties of the algebraic equations. The
method has been successfully applied to the weak enforcement of essential boundary
conditions of trimmed NURBS patches [104] and to the weak enforcement of coupling
constraints of non-matching and non-conforming NURBS patches [113, 109] in the
framework of isogeometric analysis and the finite cell method [114].

Recently, special attention has been paid to multi-patch coupling of shell struc-
tures. The NURBS patches for thin shells according to the Kirchhoff-Love theory
[87, 82, 2] are endpoint interpolatory providing only C0-continuity at the coupling
interface which results in a hinge effect, i.e. bending moments are not transmitted
properly and G1-continuity [115] can not be preserved. Kiendl et al. [116] pro-
pose the use of a bending strip which ensures continuity and which prevents the
hinge effect between adjacent Kirchhoff-Love shell patches. The strip has zero mem-
brane stiffness and non-zero bending stiffness only in the direction transverse to the
strip. Benson et al. [117] propose a blended shell formulation which combines the
Kirchhoff-Love theory with the Reissner-Mindlin theory. This approach enables the
elimination of rotational degrees of freedom while it provides an effective treatment
of shell intersections and a merge of NURBS patches. In [118], a special method is
proposed to deal with shell geometries including kinks using Reissner-Mindlin type
elements. In addition to the above mentioned coupling of multiple shell patches, a
mixed-dimensional coupling which allows the replacement of two-dimensional sub-
domains with three-dimensional patches represents a valuable extension with regard
to thin shell theories. The analysis of laminate composite shells is one example
where the local replacement of a sub-domain, modeled according to the theory of
Kirchhoff-Love, with a layerwise-modeled shell domain allows the evaluation of the
three-dimensional stress state, at reasonable computational cost. The full three-
dimensional stress state can be utilized for further damage analysis, for example
initiation and propagation of delamination phenomena.

1.2.3 Analysis with trimmed geometries

Recalling the tensor product properties of NURBS, cf 1.2.2, patch geometries are
topologically restricted to simple shapes, i.e. quadrangles in 2D and hexahedrals in
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3D. Although topologically more complex shapes, in general, can be divided into
multiple simple shapes following a NURBS tensor product, additional modeling ef-
fort is needed, in particular, where multiple patches should be joined seamlessly
together. In cases where geometric complexity refers to a common plane or body
that can be modeled with a single patch the trimming concept will greatly ease
the modeling effort. The trimming concept employs boolean operations between
various CAD objects to introduce arbitrary cut-outs used for the visual geometry
representation. For example, a trimmed surface can be defined by a NURBS surface
and a set of NURBS curves on the surface which define trimmed areas, cf. Fig-
ure 2.13. The trimming area remains visually unseen and the data structures of
original geometries remain unchanged. Using trimmed geometries in isogeometric
analysis was first proposed in [119] where a NURBS enhanced integration scheme
is adopted for trimmed elements. In [120], a local geometric reconstruction tech-
nique was developed to deal with trimmed elements of shell structures and applied
to multi-patch shell modeling. Another approach introduced in [121, 122], follows
the idea of a fictitious domain representation for the trimmed domain. The ap-
proach adopts the fictitious domain-based finite cell method (FCM) [123] which was
initially introduced for the analysis of complex problem domains on an embedding
Cartesian analysis grid using the approximation space of the p-version of the finite
element method [124, 106]. In [121, 125] and later in [122, 41, 104, 113] the ap-
proach is further developed and applied to B-splines and NURBS, respectively. In
the NURBS-version FCM, the mesh of the fictitious domain is no longer specified
on Cartesian grids. Instead, it is adapted to the framework of isogeometric analysis
where the smoothness, the higher order and higher continuity properties of NURBS
are fully exploited for both the geometry and solution fields of the physical and ficti-
tious extension domain. Another approach for the analysis with trimmed geometries
is proposed in [126] where the quadrature rule is adapted to the trimmed domain.
In [93], a workflow for the analysis of shell structures based on the B-Rep, boundary
representation, is proposed which allow consideration of trimmed NURBS surfaces.
A major challenge for trimmed NURBS and boundary fitted NURBS analysis do-
mains is the imposition of essential boundary condition along arbitrary boundary
segments. An elegant solution strategy to this problem is the use of a Nitsche-based
approach [121, 106, 104]. Other strategies include the penalty method [92] and the
Lagrange multiplier method [127, 128, 129].

To conclude, efficient techniques for the enforcement of boundary and coupling con-
straints and a simple approach to handle trimmed geometries in isogeometric anal-
ysis will greatly facilitate the modeling and analysis workflow in future engineering
design.

1.3 Thesis layout

This thesis is organized as follows: in chapter 1 the background and motivation of
the current research is presented, followed by the state of the art in the field of
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laminate composites, isogeometric analysis and trimming technologies. Chapter 2
introduces the fundamentals of isogeometric analysis including the definition of B-
splines and NURBS, the representation of NURBS geometries, the construction of
an approximation basis and related refinement techniques. Furthermore, the con-
ceptual aspects of isogeometric analysis are explained in the context of continuum
mechanics. Finally, the trimming concept for CAD geometries are discussed in de-
tail.
The application of isogeometric analysis for laminate composites is presented in
chapter 3. Special attention is paid to the through-thickness modeling of laminates
where a layerwise method is proposed to capture accurately the transverse shear
and normal stresses. A multi-model analysis technique using an equivalent-single-
layer approach and a layerwise method in different sub-regions of the structure is
introduced in chapter 4. The approach allows for an efficient stress analysis of pre-
existing delaminations. In addition, the buckling of laminated composite plate-like
structures with pre-existing delamination zones is studied. Physically inadmissible
buckling states with overlapping plies are repaired with a step-wise contact anal-
ysis to reduce the ply overlap. The fundamentals of thin shells according to the
Kirchhoff-Love theory are provided in chapter 5. The weak form of the shell for-
mulation is extended variationally consistent to enforce weakly essential boundary
conditions and multi-patch coupling constrains for thin isogeometric shells. Further-
more, the trimming of NURBS geometries is taken into account by the conceptual
use of the finite cell method. In chapter 6 a Nitsche-based weak coupling formulation
is extended for a blended coupling of thin shell patches with solid-like shell patches,
including both, isotropic materials and laminated composites. Finally, conclusions
and suggestions for future work are given in chapter 7.

8



Chapter 2

Design-through-analysis: the

isogeometric analysis

framework

In the standard workflow of a finite element analysis (FEA), cf. top branch of
Figure 2.1, the geometry of the model is designed and generated in a computer aided
geometric design (CAGD) environment and exchanged with other computer aided
engineering (CAE) applications in standard file formats, like iges1. The designed
geometry often contains certain ambiguities and small features, such as gaps between
different patches or a chamfer at corners, which are undesired features for mesh
generation and which should be repaired and defeatured before further used in the
modeling pipeline. The modified geometry is called Analysis Suitable Geometry
(ASG) [90]. On the basis of the ASG, an analysis-suited mesh is generated which
approximates the geometry. In general, linear Lagrange polynomials are used to
interpolate the mesh geometry which introduces a geometric discretization error.
Additionally, the volume of a solid model in CAGD is often represented as a union of
water-tight boundary surfaces, called boundary representation (b-rep) [131]. Hence,
the volumetric mesh of a solid model is generated based on a boundary surface
tessellation or meshes and does not provide a parametric description of the solid’s
interior. It is worth noting that shell structures which can be described solely with
surfaces do not suffer from the aforementioned problems.

In [132] it was reported that commonly 57% of the overall analysis time is spent
on the generation of an analysis-suited geometry and another 20% is needed for
mesh generation. Considering the typical scenario of repeated modifications during
the design phase, this modeling effort of almost 80% of the overall analysis time

1iges denotes “initial graphics exchange specification”, and is a neutral data format for the
transmission of CAD data between dissimilar CAD/CAE systems [130].

9



Chapter 2

becomes even more dramatic. A more tight connection between geometric modeling
and the actual analysis, a connection that omits defeaturing, geometry repair and
mesh generation, would significantly ease this enormous, labour intensive modeling
step.

Isogeometric analysis (IGA) represents a conceptual renewal of the established mod-
eling and analysis workflow which conflates CAD and FEM by employing the basis
used for the geometric representation as an appropriate approximation basis for the
numerical analysis. CAD-derived NURBS geometries typically represent the coars-
est available mesh instance and need further refinement to ensure a sufficiently high
quality of the analysis results. One of the unique features of NURBS-based IGA
is that the refinement of a NURBS basis does not change the geometry model, cf.
bottom branch of Figure 2.1. Besides the classical h- and p-refinement, IGA pro-
vides a unique continuity preserving k-refinement. In [133, 134], it is demonstrated
that the higher continuity k-refinement poses better approximation properties on a
per-degree-of-freedom basis compared to its h- and p-refinement counterparts. The
details of the various types of refinement using NURBS will be explained in the
following sections.

In this chapter, the fundamentals of B-splines and NURBS are introduced in 2.1.
The introduction of continuum mechanics and the basic concept of isogeometric
analysis are presented in 2.2. The strategy used to deal with trimmed geometries
in CAGD is discussed and a possible solution to the problem of trimmed geometries
using the finite cell method (FCM) is explained in 2.3.

Conceptual 

Design

Surface 

Representation

Boundary 

Representation 

(b-rep)

Trim

Mesh 

Quality

FE 

Analysis

Isogeometric 

Analysis

Model

Quality

Repair

Repair

Boundary 

Model
Reparametrization

Remeshing

Surface 

Mesh

Figure 2.1: Comparison of analysis process of traditional finite element method (top
branch) and isogeometric analysis (bottom branch).
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2.1 Geometric modeling using NURBS

In this section, the fundamentals and basic properties of B-spline and NURBS ba-
sis functions are presented and their use for the constructions of line and surface
geometries is discussed.

2.1.1 B-spline functions

In 1D, a B-spline basis of polynomial order p is defined by n basis functionsNi,p(ξ)(i =
1, . . . , n) in the parameter space ξ. The functions Ni,p(ξ) are specified by a knot
vector

Ξ = ξ1, . . . , ξn+p+1, ξ1 ≤ ξ2 ≤ · · · ≤ ξn+p+1 (2.1)

consisting of a non-decreasing sequence of coordinates ξi, denoted as knots. The
construction of the B-spline basis follows the Cox-de-Boor recursion formula [135,
72], and starts from degree p = 0:

Ni,0(ξ) =

{

1 if ξi ≤ ξ < ξi+1

0 otherwise
(2.2)

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ) (2.3)

The functions Ni,p(ξ) are piecewise defined over p + 1 knot-spans forming a Cp−1

continuously differentiable basis. Repeated knots lower the continuity of the basis
functions. A knot multiplicity of p + 1 for the first and last knot makes the basis
interpolatory resulting in a B-spline patch with open knot vector, cf. Figure 2.2.
B-spline functions satisfy the partition of unity property and ensure linear inde-

0,0,0,0 1 2 3 4,4,4,4 

0.0 

0.5 

1.0 N 1,3 
N 2,3 

N 3,3 
N 4,3 N 5,3 N 6,3 

N 7,3 

Figure 2.2: 1D cubic B-spline shape functions Ni,3(i = 1, . . . , 7) across an open knot
vector of four knot-span-elements.

pendence. Compared to Lagrange polynomials, B-spline functions are non-negative
Ni,p(ξ) ≥ 0 and Cp−1 continuous at the element boundaries.

A multi-variate B-spline basis, for example of dimension three, is constructed by
the tensor product Ξ × H × Z of univariate B-spline basis functions, defined by
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the knot vectors Ξ = {ξ1, ξ2, . . . , ξn+p+1}, H = {η1, η2, . . . , ηm+p+1} and Z =
{ζ1, ζ2, . . . , ζl+p+1} [72, 136]. Each shape function is specified as:

Qijk,p(ξ, η, ζ) = Ni,p1
(ξ)Mj,p2

(η)Lk,p3
(ζ) (2.4)

where Ni,p1
(ξ),Mj,p2

(η) and Lk,p3
(ζ) are 1D basis functions of polynomial degree ps

in each parametric direction s ∈ {1, 2, 3}, respectively, and where i, j and k indicate
the position of basis functions within the product space.

2.1.2 B-spline geometries

B-spline geometries follow from a linear combination of control points P ∈ R
d,

where d denotes the geometric dimension, with the corresponding set of B-spline
basis functions. A B-spline curve is defined as:

c(ξ) =

n
∑

i=1

Ni,p(ξ)Pn (2.5)

where n is the number of basis functions, Pn is the position vector of the n-th control
point. An example of a cubic B-spline curve is shown in Figure 2.3 where the red

P1

P2

P3

P4

P5
P6

P7

P6

0.25 0.5 0.75 1.0

0.5

1.0

0

N1,3

N2,3 N3,3

N4,3 N5,3 N6,3

N7,3

(a) geometries (b) basis

Figure 2.3: An example of cubic B-spline curve where the dashed identities represent
the curve and control polygon due to the movement of control point P6 (a), cor-
responding basis functions with knot vector Ξ = {0, 0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1, 1}
(b).

points are the control points and where the blue points are physical points on the
curve corresponding to the internal knots of the knot vector. At the two ends of
the curve, the control points are interpolatory due to a p-fold knot repetition. A
control polygon, shown in green, is obtained from linear interpolation between the
control points with tangential orientation at the end points of the polygon. The
corresponding B-spline curve conforms to the strong convex hull property for which
the curve is self-contained in the convex hull of its local control polygon. It is
this property which leads the local support phenomenon [72]. The local support
property of B-splines is shown in Figure 2.3 where the position of control point P6 is
changed resulting in a locally confined modification of the geometry, see the dashed
red curve. The influential segments of the ith control point Pi spread across the
knot span [ξi, ξi+p+1].

12



Design-through-analysis: the isogeometric analysis framework

Following the tensor product property of a multi-variate B-spline basis, the definition
of a B-spline surface reads:

r(ξ, η) =
∑

m

Qm,p(ξ, η)Pm (2.6)

where m = m(i, j) and Pm ∈ R
3 and r the surface coordinates referred to the global

coordinate system. An example of a B-spline surface is shown in Figure 2.4. The

Pm

control net

r (ξ,η)

Figure 2.4: Example of B-spline surface with control net and control points.

construction of a B-spline solid follows in analogy to the B-spline surface and hence
is not discuss further here.

2.1.3 NURBS and NURBS geometries

Non-uniform rational B-splines (NURBS) are a generalization of B-splines that allow
the exact geometric representation of entities which cannot be represented by B-
splines, such as circles, spheres or tori. Such conic sections can be constructed from
B-splines by a piecewise projective transformation of the B-spline curve leading to
rational functions. The definition of the NURBS basis function reads:

Ri,p(ξ) =
wi Ni,p(ξ)

∑n
î=1 wî Nî,p(ξ)

(2.7)

where wi is the weight assigned to the ith basis function. Multi-variate NURBS basis
functions are constructed in analogy to (2.4) by a d-dimensional tensor product. As
an example, the definition of 3D NURBS basis function reads:

Rm,p(ξ, η, ζ) =
wijk Ni,p1

(ξ)Mj,p2
(η)Lk,p3

(ζ)
∑n1

î=1

∑n2

ĵ=1

∑n3

k̂=1
wîĵk̂ Nî,p1

(ξ)Mĵ,p2
(η)Lk̂,p3

(ζ)
(2.8)

The NURBS basis has all the properties of B-spline basis functions, for example,
partition of unity, continuity and non-negative etc.

13
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The definition of a NURBS-based curve follows in analogy to (2.5) and reads:

c(ξ) =

n
∑

i=1

Ri,p(ξ)Pi (2.9)

with Ri,p(ξ) defined in (2.7).

From a geometric point of view, the definition of NURBS geometries in R
d follow

from a projective transformation of B-spline entities in R
(d+1) [137, 135, 138], see

Figure 2.5. The geometry of the B-spline curve is obtained through interpolation of
homogeneous control points with B-spline basis functions:

cw(ξ) =
n
∑

i=1

Ni,p(ξ)P
w
i (2.10)

where

Pw
i =

(

Pi wi

wi

)

(2.11)

and where finally the projected NURBS curve reads:

c(ξ) =
[cw(ξ)]j
w(ξ)

(2.12)

where j = 1, ...d, represents the first d components of the position vector cw(ξ),
and where w(ξ) =

∑n
k=1 wk Nk,p(ξ) represents a weighting function. The projected

function becomes rational when considering the projection height of the B-spline
geometry, thus introducing weights wi at each control point Pi as form parameters
to control the NURBS shape. It can be seen that (2.9) and (2.12) come to the same
representation of the NURBS curve.

The influence of the weight on the geometry of a NURBS curve is shown in Figure
2.6(a), where the weight of control point P3 is increased from w3 = 0.2 to w3 = 1.0
and further to w3 = 5.0. The increasing weight has the potential to pull the curve
towards the corresponding control point. The influence of the weight on the NURBS
basis are shown in Figure 2.6(b) and (c).

2.1.4 Refinement of B-splines and NURBS

An interesting property of B-spline objects is that the refinement of the basis does
not change the corresponding B-spline geometry and its parametrization. The three
typical refinement methods of B-spline include: knot insertion, order elevation and
the higher order and higher continuity preserving k-refinement. The refinement of
a NURBS basis involves the refinement of the B-spline functions in the R

(d+1) ho-
mogeneous space followed by projection to the R(d) rational space. In the following,
the above mentioned three types of refinement techniques are introduced briefly and
basic properties are discussed.
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cw(ξ)

o
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w
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Pi

w

Figure 2.5: Projective transformation of homogeneous B-spline curve cw(ξ) in R
(d+1)

to the NURBS curve c(ξ) in R
d.

Knot insertion

Knot insertion, as the name suggests, is a procedure adding one or more knots
into the original knot vector Ξ (2.1) to generate a refined knot vector Ξ̄. The
refined B-spline basis is generated based on the new knot vector Ξ̄. The new set of
control points is a linear combination of the original set of control points, a detailed
algorithm can be found in [135, 72].

An example of knot insertion of a B-spline curve is illustrated in Figure 2.7. Firstly,
two knots ξi = 0.25, 0.75 are inserted into the original knot vector Ξ = {0, 0, 0, 0, 0.5,
1, 1, 1, 1}, cf. Figure 2.7(b) and (e). In this case, the continuity of the basis at
the inserted knots remains Cp−1, where p = 3 is the order of the basis functions.
Secondly, we repeat the previous step twice till the multiplicity of inserted knots is p,
which reduces the continuity of the basis at the inserted positions to C0-continuity.
With the increase of multiplicity of inserted knots, the continuity of the basis at that
knot drops. If the multiplicity of the knot is q, then the continuity is Cp−q. There
are some similarities between knot insertion and h-refinement of the finite element
method, however, h-refinement produces C0-continuity across element boundaries,
which is a special case of knot insertion.

Order elevation

In contrast to knot insertion, another possibility to enrich the basis functions is to
increase the order of the basis. The basic procedures of order elevation consist of
three steps. One, the multiplicity of each interior knot is raised to the order of basis
p which separates the original B-spline curve into segments of Bézier curves. Two,
the order of each Bézier curve is elevated. Three, the multiplicity of the repeated
interior knots is removed or reduced to keep the continuity across element boundaries
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P1

P2

P3

P4

P5 P6

P7

w3 = 1.0

w3 = 5.0

w3 = 0.2

N1,3 N2,3
N4,3

N5,3 N6,3

N7,3

0.25 0.5 0.75 1.0

0.5

1.0

0

w3=0.2

 w3=1.0

N3,3 

0.25 0.5 0.75 1.0

0.5

1.0

0

N1,3

N2,3

N3,3, w3=5.0

N4,3 N5,3 N6,3

N7,3

w3=1.0

(a) NURBS curve

(b) modified 

parameter space

(c) final 

parameter space 

Figure 2.6: The influence of weight wi on the geometry of a NURBS curve (a)
and the corresponding NURBS basis functions w3 = 0.2 (b), w3 = 5(c), where the
original and new basis with weight w3 6= 1 are shown with solid and dashed curves,
respectively.

unchanged so that the final geometry is a unified and order-elevated single curve.
The detailed algorithm of order elevation can be found in [135].
An example of order elevation is shown in Figure 2.8, where the original quadratic
basis is elevated to cubic and the internal knot is repeated once to maintain the
continuity of the basis. Order elevation is to some extent similar to p-refinement
in the finite element method. The difference between the two schemes is the inter-
element continuity of the initial state prior to refinement which is C0-continuity for
p-refinement and which is any continuity level smaller than p−1 for order elevation.

k-refinement

The combination of knot insertion and order elevation results in a unique higher
order and higher continuity refinement technique, namely k-refinement. Usually,
the order of the original coarse mesh is elevated to a higher degree, followed by knot
insertion to create multiple knot elements. Here the multiplicity of each knot is set
to one to keep the highest continuity, that is Cp−1, across element boundaries. One
may also duplicate the inserted knots to lower the continuity of the basis at element
interfaces where needed. Notice that each inserted knot will generate one more basis
function. A simple example of k-refinement of the B-spline basis is shown in Figure
2.9.
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0.5 1.0

1.0

0

0.25 0.5 0.75 1.0

1.0

0

0.25 0.5 0.75 1.0

1.0

0

(a)

(b)

(c)

(d)

(e)

(f)

Figure 2.7: Knot insertion: (a) original geometry and its control poly-
gon, (b)-(c) refined geometries and control polygons, (d) original basis
with knot vector Ξ = {0, 0, 0, 0, 0.5, 1, 1, 1, 1}, (e)-(f) refined basis func-
tions with knot vector Ξ = {0, 0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1, 1} and Ξ =
{0, 0, 0, 0, 0.25, 0.25, 0.25, 0.5, 0.75, 0.75, 0.75, 1, 1, 1, 1}.

2.2 Isogeometric analysis - basic concept

In this section, a brief summary of fundamentals of continuum mechanics used in
the following chapters is introduced, and the derived variational principles of elas-
tostatics and isogeometric discretizations are discussed.

2.2.1 Fundamental aspects of continuum mechanics

A concise description of the essential ingredients of continuum mechanics is presented
to provide the basic notations and formulations for the contents afterwards. Detailed
descriptions of continuum mechanics can be found in [139, 140, 141, 142]. Following
tradition, we use an upper case notation for quantities which refer to the undeformed
reference configuration, and a lower case notation for quantities which refer to the
current configuration of a body. The discussed content is restricted to the quasi-
static state, therefore, the time variable t is used only to distinguish different states
of configurations, corresponding inertia effects are neglected.

A body is identified as a set B of connected material points M, its boundary is
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0.5 1.0

1.0

0 0.5 1.0

1.0

0

(a) (b)

(c) (d)

Figure 2.8: Order elevation: (a) original geometry and its control polygon, (b)
the geometry and its control polygon after order elevation, (c) original basis with
knot vector Ξ = {0, 0, 0, 0.5, 1, 1, 1}, (d) basis after order elevation with knot vector
Ξ = {0, 0, 0, 0, 0.5, 0.5, 1, 1, 1, 1}.

denoted by ∂B. Each material point M occupies a position in the three-dimensional
space Ω ∈ R

3 at a given time t(t ∈ [t0,∞]), and can be identified by a location
vector x = xiei in the Cartesian coordinate with basis vectors ei, (i = 1, 2, 3) and
corresponding coordinates xi. The term configuration is used to denote the mapping
of the body to the three-dimensional space: χ : (B, t) → Ω, cf. Figure 2.10. The
current configuration of the body at time t 6= t0 follows the mapping Φ : (X, t) → R

3

from its reference configuration for which the position vector x is a function of X
and t: x = x(X, t) = Φ(X, t). The displacement of the body follows as:

u(X, t) = x−X. (2.13)

For curved shell structures it is common to represent the material points of the body
in a curvilinear coordinate system, cf. Figure 2.11. The following definitions refer
to the deformed state of the body in the current configuration. Equivalently, the
notation can be used to specify the undeformed state of the reference configuration.
The covariant basis vectors are defined as the partial derivatives of the position
vector x with respect to the curvilinear coordinates θi:

gi = x,i =
∂x

∂θi
(2.14)

From the scalar product of the basis vectors follows the metric tensor coefficients:

gij = gi · gj (2.15)
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(a) Ξ = {0, 0, 1, 1} (b) Ξ = {0, 0, 0, 0, 0, · · ·

· · · 1, 1, 1, 1, 1}

(c) Ξ = {0, 0, 0, 0, 0, 0.2, · · ·

· · · 0.4, 0.6, 0.8, 1, 1, 1, 1, 1}

Figure 2.9: Illustration of k-refinement: (a) original linear basis, (b) B-spline basis
of order p = 4, (c) knot insertion at ξ = 0.2, 0.4, 0.6, 0.8.
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Figure 2.10: Mapping of material point B to physical space Ω and mapping Φ from
reference configuration Ω to the current configuration Ω′.

which include the information of the tangent space such as length of base vectors
and angles between them. Correspondingly, the contravariant basis vectors gi span
the dual space of the covariant space and can be calculated according to:

gi =
∂θi

∂x
(2.16)

hence gi and gj are orthogonal base vectors with the relation gi · gj = δji , where

δji is the Kronecker delta. The construction of the contravariant metric tensor gij

follows in analogy to gij with the relations:

[gij ] = [gij ]
−1 (2.17)

and

gi = gij · gj (2.18)

The deformation of the body can be represented as the change of the geometrical
tangent spaces at each point, where the tangent space is specified in the covariant
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Figure 2.11: Curvilinear coordinate description of a three dimensional body.

basis. The deformation gradient F defines the relation between the base vectors in
the reference and current configurations:

F = gi ⊗Gj (2.19)

The Green-Lagrange strain tensor is defined as:

E =
1

2
(FT · F− I) = EijG

i ⊗Gj (2.20)

which includes rigid body motions, and where the tensor I is the identity tensor,
and where the components of strain tensor Eij read:

Eij =
1

2
(u,i ·Gj + u,j ·Gi + u,i · u,j)

=
1

2
(gij −Gij) (2.21)

which includes large strains in the definition. For small strains, the linearized ex-
pression of the strain tensor is furnished as [142]:

Eij =
1

2
(u,i ·Gj + u,j ·Gi)

=
1

2
(gi ·Gj + gj ·Gi −Gij) (2.22)

The second Piola-Kirchhoff stress tensor S, referring to the reference configuration,
is the energy conjugate stress state to the Green-Lagrange state of strain:

S =
∂WI

∂E
= SijGi ⊗Gj (2.23)

where WI is the strain energy density of the body. The energetic conjugate pair
relates each other linearly via the material tensor C as:

S = C : E (2.24)
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where C is a fourth order tensor Cijkl. The true physical stresses of the current
configuration are obtained with the Cauchy stress tensor σ which follows from the
second Piola-Kirchhoff stress tensor as:

σ = (detF)−1 · F · S · FT (2.25)

2.2.2 NURBS-based isoparametric finite elements

The the balance equations governing linear elastostatics are expressed using (2.20)
and (2.24):

0 = div(F · S) + ρb (2.26)

The static equilibrium (2.26) neglects inertia effects and can be derived from the
balance of linear momentum. The parameter ρ is the material density and the term
(ρb) represents the body force per unit volume. The formulation of the boundary
value problem for linear elasticity is completed by including Dirichlet and Neumann
boundary conditions:

u = u0, x ∈ Γu (2.27)

S · d = t0, x ∈ Γt (2.28)

where Γ = Γu ∪ Γt and Γu ∩ Γt = ∅, and where d is the outward pointing unit
normal vector along the force boundary Γt and where u0 and t0 are the prescribed
displacement and traction, respectively.

Only in a few very simple cases it is possible to find an exact solution for the
strong form of the boundary value problem ((2.26) - (2.28)). All other problems
are commonly approximated numerically on the basis of a weak form following the
principle of virtual work.

The principle of virtual work states that the work done by external and internal
forces due to the arbitrary small virtual displacements δu is zero if the system is in
equilibrium [142]:

W(u, δu) = WI(u, δu) +WE(u, δu) = 0 (2.29)

with the internal and external work integrals:

WI(u, δu) = −
∫

Ω

S : δE dΩ (2.30)

WE(u, δu) =

∫

Ω

ρb · δu dΩ+

∫

Γt

t0 · δu dΓ (2.31)

where Ω denotes the analysis domain, where δu and δE denote the variation of
displacements and strains, respectively. The vector t0 denotes prescribed traction
per unit area along the Neumann boundary Γt. Equation (2.29) is subjected to

21



Chapter 2

the kinematic equation (2.20), the constitutive equations (2.24) and the Dirichlet
boundary conditions (2.27).

Following the isoparametric concept of isogeometric analysis, the displacement field
u is interpolated using NURBS basis functions:

u =

n
∑

i

Ri Ui (2.32)

where Ui denotes the unknowns in terms of control point displacements. Substi-
tution of (2.32) into (2.29) and using (2.21) and (2.24), the discrete form of the
principle of virtual work results in a set of algebraic equations representing the force
equilibrium:

fI + fE = 0 (2.33)

where fI and fE are the internal and external force vector, respectively, which read:

fI =
∂WI

∂Ur
(2.34)

fE =
∂WE

∂Ur
(2.35)

Linearizing Eq. (2.34) at the reference configuration yields the governing algebraic
equilibrium equations:

Ku = fE (2.36)

where K is the linear stiffness matrix of the reference configuration:

K =

∫

Ω

BTCB det(J) dξ (2.37)

where B is the strain-displacement interpolation matrix, and where J denotes J =
dxi/dξj is the Jacobian representing two geometry mappings: one, a mapping be-
tween the physical space and the NURBS parameter space and two, a mapping
between the parameter space and the normalized element space used for an element-
wise numerical integration. The detailed integration scheme is illustrated in Figure
2.12, where the integration is performed on the normalized parent element. The local
stiffness matrix and external load vector are computed within each knot span, i.e.
element, using Gaussian quadrature and then are assembled into the global system.

2.3 The concept of trimming and finite cell method

Single-patch NURBS surfaces and solids are defined by a tensor product of one di-
mensional NURBS entities, cf. section 2.1, which limit their capability to represent
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Figure 2.12: Schematic illustration of integration in isogeometric analysis.

topologically more complex geometries. Although certain shapes can be resolved by
an assembly of multiple NURBS patches the additional modeling effort introduced
to create seamless interfaces remains a limiting factor for an efficient modeling and
analysis. In CAD-derived models the concept of trimming is usually applied to
overcome these limitations. Trimming provides a simple mechanism to introduce
arbitrary complexity to a single patch. The idea of trimming is to fade out subdo-
mains in the visualization that are defined, in general, by a parametric trimming
object, cf. Figure 2.13. For surface models as used for shell structures, NURBS
curves which are defined on the NURBS-surface are suitable trimming objects com-
monly applied in CAD applications [143, 144]. It is apparent from Figure 2.13(b)
that the parameter space of the shell defined by the NURBS tensor product remains
untouched by the trimming object. For the visual representation of the trimmed ge-
ometry appropriate rendering techniques are applied to handle both, the shell patch
and the trimming object [145] whereas for the physical approximation of the field
variables in an isogeometric sense the knowledge about the trimmed subdomain is
lost. A detailed review of various techniques developed to overcome the trimming
problem can be found in chapter 1. In the following, a brief summary of the basic
principles of the finite cell method used for the trimmed geometries is given. Very
detailed reviews of the method can be found in [146, 147].

The basic principle of the finite cell method is depicted in Figure 2.14. The trimmed
sub-domains typically are specified by a spline curve which is specified on the under-
lying NURBS patch, cf. Figure 2.14(a). In the context of the finite cell method the

23



Chapter 2

r (ξ,η)

trimming curve

θ

x

yz R3

physical

space

t
d

parameter

space

ξ

η

10

1

0

C(  )

(a) trimmed geometry (b) parametric space

 θ

Figure 2.13: NURBS surface patch with trimming curve (a), corresponding para-
metric space (b).

trimmed area can be understood as a fictitious domain extending the true physical
domain to an analysis suited NURBS structure, cf. Figure 2.14(b)-(c).

Ω
α

Γ
trim

α = 1

α ≈ 0

Ω

Γ
t0

u0

Ω
ext

∂Ω = 0

=

(a) trimmed NURBS (b) physical domain Ω (c) extension domain Ωext

∩

Figure 2.14: Principle of the finite cell method for trimmed domains: (a) trimmed,
discretized NURBS structure, (b) true physical analysis domain with boundary con-
ditions along the domain boundary Γ, (c) fictitious extension domain with zero
Neumann boundary conditions ∂Ω = 0.

The simulation domain Ωα is discretized with high-order elements. The NURBS
elements used in the context of isogeometric analysis provide the necessary high order
approximation properties which ensure a sufficient quality of the analysis result.
The influence of the fictitious domain on the total potential energy of the analysis
model is mitigated by penalization of the stresses and forces in that area. The
penalization of the stresses and forces in the fictitious domain is realized at the level
of numerical integration by introducing a penalty function α(x) which indicates
where the integration points are located within Ωα. The value of penalty factor α
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varies at different locations:

α(x) =

{

1.0 ∀x ∈ Ω
10−q ∀x ∈ Ωext

(2.38)

where α should be as small as possible outside the true physical domain. Typically,
α can be chosen as exactly zero when the basis function is quadratic or cubic, for
higher order basis, the value of α is between 10−8 to 10−14 to ensure the conditioning
of the stiffness matrix. Elements which are completely outside the physical domain
Ω are discarded from the model to account for sufficient numerical stability of the
solution step.

Γtrim

Ω

Ωext

(a)

(b) k=1 (c) k=2

(d) k=3 (e) k=4

Figure 2.15: Adaptive quadrature based on recursive bisection: (a) original embed-
ded domain, (b)-(e) generation of quadtree from level k = 1 to k = 4.

In order to regain control over the true domain Ω, adaptive Gaussian integration is
used in elements which are cut by the boundary of the physical domain Γ or Γtrim,
respectively. The basic principle of the composed Gauss quadrature is illustrated in
Figure 2.15 where the original finite cell mesh, shown in red and being cut by the
domain boundary is sub-divided into sub-cells by recursive bisection, Figure 2.15
(b)-(c), up to a predefined granularity level k. The sub-cell approach corresponds
to a cell-wise tree-based decomposition and results in a quadtree representation for
plane problems. It is important to note that the approach does not change the
original problem but remains restricted to the numerical integration and can be
replaced cell-wise by any other quadrature method. A major advantage of the sub-
cell approach is the uniqueness of the cell decomposition and its high qualification for
shared memory parallelization [148, 149]. The integration of each sub-cell uses full
Gaussian quadrature and includes (p+1)×(q+1) integration points for a 2D problem.
With increasing quadtree depth the integration effort also increases. Nevertheless,
for plane problems the total effort remains reasonable for k = 4 which has proven
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sufficient accuracy for a large number of test examples. Other integration strategies
include: a pre-computation scheme for voxel-based models which drastically reduces
computational efforts [150], a tessellation-based integration for trimmed elements
[151].
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Isogeometric methods for

laminate composites1,2

Laminate composite plates and shells are widely used in aerospace and mechanical
engineering due to their high strength-to-weight ratio. Traditional laminate com-
posites are made of a stacking of fiber reinforced plies with different fiber angles
stacked on top of each other. The discontinuity introduced with the jump in the
material properties at the orthotropic ply level along with geometrical discontinu-
ities are typical failure domains near laminate edges where singular stress fields may
arise and initiate matrix cracks [152].

To date, various methods have been proposed for the analysis of composite laminates,
see e.g. the classical references by Carrera [153] or Reddy [154]. Depending on
the displacement and/or stress expansions through the laminate thickness, two main
categories of theories can be distinguished: the equivalent-single-layer (ESL) and the
layerwise (LW) theories. The ESL models are computationally less demanding but
often fail to capture the three-dimensional state of stress accurately at ply level, while
LW models provide a 3D theory equivalent state of stress at higher computational
costs.

In this chapter, we focus on through-the-thickness modeling of laminated composites
in the framework of higher order and higher continuity NURBS. The superiority
of the isogeometric paradigm with regard to the modeling of laminate composites
is demonstrated with several numerical examples including beams and shells. In
particular, we exploit the unique k-refinement capabilities of isogeometric analysis
to reveal the method’s potential for models based on the proposed layerwise theory.

1This chapter is based on the paper “Y. Guo, A.P. Nagy, Z. Gürdal, A layerwise theory for
laminated composites in the framework of isogeometric analysis, Composite Structures, 107, 447-
457, 2014”

2This chapter is based on the paper “Y. Guo, M. Ruess, A layerwise isogeometric approach for
NURBS-derived laminate composite shells, Composite Structures, 124, 300-309, 2015”
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We use a reduced geometric shell description based on a mid-surface NURBS and a
thickness function and combine our approach with the fictitious domain idea followed
in [122] to overcome the challenge of trimmed NURBS domains.

This chapter is built up as follows. The details of isogeometric equivalent-single-
layer methods are given in section 3.1, the layerwise methods for beams and shells
are presented in section 3.2 and corresponding examples are shown in section 3.3.
The stresses along trimmed free edges using the finite cell approach are studied and
discussed in section 3.4. Finally, conclusions are given in section 3.5.

3.1 Equivalent-single-layer methods

Equivalent-single-layer methods can be classified into classical shell formulations
and homogenization-based approaches. Classical shell formulations reduce a three-
dimensional continuum problem to a two-dimensional one by expanding the displace-
ment field as a linear combination of predefined or known functions of the thickness
coordinate and integrating the constitutive law through the thickness either an-
alytically or numerically [142]. Such methods include among others the classical
lamination theory (CLT), first order shear deformation theory (FSDT)[155, 156]
and higher order shear deformation theory (HSDT)[157, 158]. Alternatively, stiff-
ness properties may be homogenized through the thickness of the laminate without
reducing the geometric dimension of the problem. Although ESL theories may be
adequate for describing the behavior of thin composite shells, they typically fail to
capture accurately the complete three-dimensional stress state at the ply level in
moderately thick, and thick laminates. This deficiency is primarily associated with
the fact that transverse strain components are incorrectly assumed to be continuous
across the interface of dissimilar materials, which entails non-physical local discon-
tinuity of the transverse stresses. In this chapter, the used equivalent-single-layer
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Figure 3.1: ESL discretisation using k-refinement along the width and through the
thickness direcion.

model is constructed by invoking standard material homogenization methods. The
stiffness of the laminate is computed as the weighted average of the individual ply
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stiffnesses. Hence, the homogenized stiffness tensor is calculated as:

C =
1

t

n
∑

k=1

Cktk (3.1)

where t, tk, and n denote the thickness of the laminate, the thickness of the kth
layer, and the number of layers in the laminate. The isogeometric discretisation of
all ESL models are constructed using k-refinement in both parametric directions.
An example is depicted in Figure 3.1 where quadratic and cubic basis functions,
i.e. p1 = 2 and p2 = 3, are used along the width and in the through the thickness
direction, respectively. Note that k-refinement preserves inter-element continuity of
the initial basis functions.

3.2 Layerwise methods

In contrast to ESL theories, displacement-based layerwise techniques assume sepa-
rate displacement field expansions within each layer. Following equilibrium consid-
erations, the transverse displacement component is defined to be C0-continuous at
ply interfaces and thereby yield a more accurate description of the complete stress
state. For layerwise methods based on mixed formulations, which include both in
the variational formulation, displacements and stresses, the C0-continuity of trans-
verse stresses at layer interfaces should also be enforced [159, 160, 161]. In most
displacement-based layerwise models [162, 163, 164, 165, 166, 167, 168, 169], C0-
continuity of the displacement field across layer interfaces is imposed through con-
structing elaborate displacement functions or through adding constraint equations at
layer interfaces. For instance, in reference [166] each layer is modeled as an indepen-
dent plate, then the compatibility of displacement components at layer interfaces are
imposed through the use of Legendre polynomials. Alternatively, one-dimensional
through the thickness Lagrangian finite elements are used to approximate the three
displacement components which automatically enforces C0-continuity conditions at
layer interfaces, see e.g. [170, 171, 172]. The latter approach results in a contin-
uous in-plane and discontinuous transverse strain field, allowing for the possibility
of continuous transverse stresses at the layer interfaces. Furthermore, compared to
conventional 3-D finite element models, the layerwise model is computationally more
efficient while retaining the same modeling capabilities [171].

The key idea of layerwise methods is to split and separately expand the displacement
field within each layer. The general formulation in two dimensions can be written
as:

uk(x1, x2) =
∑

i

fki(x1)gki(x2) (3.2)

where uk is the displacement field in the kth layer, xi, with i = 1, 2, the spatial co-
ordinates, and the symbols fki and gki refer to the ith part of the in-plane and out-of-
plane displacement field expansions, respectively. Note, depending on the kinematic
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assumption, if any, and the number and type of the individual functions per ply,
equation (3.2) includes a myriad of theories [173]. The rationale behind separating
the displacement field and distinguishing the functions aimed at representing the
in-plane and out-of-plane components is physically motivated. That is, due to the
balance of linear momentum and continuity of the traction field in multilayered
composite materials, the function describing the transverse displacement field should
be C0-continuous at the interface between plies of different fibre angle orientation.
The tensor product formulation of bivariate rational functions provides us with a
natural way to formulate an isogeometric layerwise theory, cf. Figure 3.2. Put
simply, one may easily construct an appropriate basis for the analysis of multilayered
composite parts by adjusting the continuity properties along knots which represent
ply interfaces in the physical space. The construction of an adequate basis can be
described as follows. Considering the in-plane direction, the use of (univariate) basis
functions with higher-order inter-element continuity, i.e. Ck with k ≥ 1, is desirable
as it yields smooth gradient operators and hence stresses. In contrast, invoking
(univariate) basis functions with C0-continuity at the interface of adjacent plies in
the out-of-plane direction is required to ensure continuity of transverse, i.e. through
the thickness stresses, which can be enforced via knot repetition at ply interfaces, cf
chapter 2. To improve the quality of the physical approximation, however, one may
further wish to enrich the basis using an arbitrary refinement technique ply-wise.
In Figure 3.2 the basis functions within (m+ 1)th layer are enriched with one more
knot insertion compared to the (m)th layer.

The refinement of the in-plane basis is typically performed through k-refinement to
preserve the continuity properties of the initial basis used to encapsulate the geom-
etry at the coarsest level. Depending on the geometry of the structure, higher-order
continuity of the in-plane basis may not be fulfilled across the entire domain. Finally,
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Figure 3.2: Isogeometric layerwise kinematics.

a few thing are worth highlighting. First, the proposed model is in the absence of
any kinematical assumptions on the layer interfaces. Second, the C0-continuity con-
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dition can be naturally facilitated by applying the h- and p-refinement schemes in
the correct sequence. Third, strictly speaking in the proposed isogeometric layerwise
model the displacement field is not formally split as shown in equation (3.2), rather
the local continuity properties of employed bivariate basis are adjusted.

3.2.1 Layerwise shell model

In the following we provide a shell formulation based on the layerwise concept. We
will repeatedly refer to shells considering plates as a flat special case of the presented
shell theory. The layerwise shell model exploits the capabilities of NURBS to repre-
sent smooth curvature and further profits from a geometric model description which
refers to a NURBS mid-surface plane and a thickness information thus the model
supports a simple model transfer from NURBS-based CAD modelers [143, 144] into
the isogeometric analysis framework. The CAD models are typically boundary repre-
sentations which do not provide parametric descriptions of the interior of volumetric
geometries [131]. We therefore use the geometry reduced description for layerwise
shells. The number of degrees of freedom and the computational effort for the so-
lution of the equilibrium equations does not differ from standard solid continuum
formulations. We adopt the lower case and upper case notation of chapter 2 to
distinguish between the deformed and undeformed configuration of the shell body,
respectively.

The position vector x of each material point in the three-dimensional shell body, cf.
Figure 3.3, is described uniquely by the position vector of the corresponding point
r and of the normal vector a3 on the mid-surface:

x(ξ1, ξ2, ξ3) = r(ξ1, ξ2) + ξ3 t · a3(ξ1, ξ2) (3.3)

where ξ1, ξ2, ξ3 are the curvilinear parameter coordinates and where t denotes the
thickness of the laminate shell which is considered to be constant throughout the
body. It is convenient to introduce locally a covariant basis to describe the kine-
matics of the shell body. The corresponding base vectors are defined as the par-
tial derivatives of the position vector x with respect to the curvilinear coordinates
ξ1, ξ2, ξ3:

gα = x,α = aα + ξ3 t · a3,α α = 1, 2 (3.4)

g3 = t · a3 (3.5)

where (·),α represents the partial derivatives with respect to the curvilinear coordi-
nate ξα and where aα are the covariant base vectors defined on the mid-surface:

aα =
∂r

∂ξα
= r,α (3.6)

The normal vector of the mid-surface is defined as:

a3 =
a1 × a2
|a1 × a2|

(3.7)
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W

G

Figure 3.3: Shell geometry description.

The derivatives of normal vector a3 with respect to ξα follows:

a3,α =
â3,α · ā3 − â3 · ā3,α

ā23
(3.8)

where â3 = a1 × a2, â3,α = a1,α × a2 + a1 × a2,α, ā3 = |a1 × a2| and

ā3,α =
â3 · â3,α

ā3
(3.9)

The description of the differential geometry is further facilitated by the introduction
of a contravariant basis. The relations between covariant and contravariant basis
can be found in chapter 2.

The three-dimensional strain tensor of the solid-like layerwise shell is expressed as:

E = Eij G
i ⊗Gj (3.10)

Assuming small strains, the strain tensor coefficients Eij are:

Eij =
1

2
(u,i ·Gj + u,j ·Gi) (3.11)

Stresses and strains are related by the constitutive relation

S = C : E (3.12)

with the forth order elasticity tensor C. The orthotropic material properties of the
fiber reinforced layers are defined in a local Cartesian coordinate system which is
specified by the basis vectors ēi(i = 1, 2, 3), where one coordinate axis is aligned
with the fiber direction. The corresponding elasticity tensor is denoted by C̄. The
layerwise changing fiber angles between −90◦ to 90◦ require a transformation of C̄
into the local Cartesian reference coordinate system defined by the basis vectors
ei(i = 1, 2, 3) in which the material properties of all layers are defined. The strain
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tensor coefficients Eij (3.11) are then transformed into the local coordinate system
with:

Ekl = Eij(ek ·Gi)(Gj · el) (3.13)

followed by substitution into the stress strain relation, see e.g. [154].

3.2.2 Layerwise shell discretization

Confining our discussion to linear elasticity and neglecting the influence of body
forces, the principle of virtual work can be stated as:

0 =

∫

Ω

S : δE dΩ−
∫

Γt

t0 · δu dΓ (3.14)

ui = ui0 ∀x ∈ Γu and Γ = Γu ∪ Γt

where t0 is the vector of prescribed tractions on the part Γt of the boundary Γ,
where ui0 denotes prescribed displacement coordinates on Γu and where δ denotes
the variation of the corresponding quantities. Following the basic concept of the
layerwise theory the displacement field u is discretized through the thickness with a
layerwise Cp−1-continuous function depending on ξ3:

u(ξ1, ξ2, ξ3) =

m
∑

i=1

Ui(ξ1, ξ2)Ni(ξ3) (3.15)

where Ui(ξ1, ξ2) represents the displacement field at discrete points through the
thickness, and where Ni(ξ3) is a corresponding B-spline function. The in-plane
displacement field at the ith plane is approximated according to:

Ui(ξ1, ξ2) =
n
∑

j=1

Uij Rj(ξ1, ξ2) (3.16)

in which, Rj(ξ1, ξ2) is the two dimensional NURBS basis functions, and where Uij

denotes the introduced degrees of freedom at each control point. Similar approach
was found in [174].

Using (3.11) and (3.15)-(3.16) a discrete form of the strain tensor is found with
separate interpolation rules for the in-plane strain components Eαβ , the out-of-plane
shear strain component Eα3 and the out-of-plane normal strain component E33:

Eαβ =

m
∑

i=1

1

2

(

gβ ·Ui,α(ξ1, ξ2)Ni(ξ3) + gα ·Ui,β(ξ1, ξ2)Ni(ξ3)
)

(3.17a)

Eα3 =
m
∑

i=1

1

2

(

g3 ·Ui,α(ξ1, ξ2)Ni(ξ3) + gα ·Ui(ξ1, ξ2)Ni,3(ξ3)
)

(3.17b)

E33 =

m
∑

i=1

g3 ·Ui(ξ1, ξ2)Ni,3(ξ3) (3.17c)
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The above strain tensor coordinates are defined in the local contravariant basis and
should be transformed to the local Cartesian reference basis using equation (3.13).

3.3 Through-the-thickness modeling

In the following we demonstrate the performance of the proposed layerwise approach
for through-the-thickness modeling with regard to accuracy and convergence prop-
erties. To this end we consider benchmark problems from literature which provide
an analytical reference solution. The selected examples include a laminate compos-
ite plate and laminate composite shell structures. In the numerical examples given
in this chapter, we use σij to represent the stresses of laminates considering that
Cauchy stress is equal to the second Piola-Kirchhoff stress in Cartesian coordinates.

3.3.1 Cylindrical bending of laminates

In this example, cylindrical bending of two simply supported cross-ply laminates with
[0◦/90◦] and [0◦/90◦/0◦] stacking sequence is considered. The plates are subjected
to a transverse sinusoidal load q(x) = q0 sin(πx/w) as shown in Figure 3.4. Each
layer in the laminate is of equal thickness.

ξ
1

ξ
3

t

q

Figure 3.4: Geometry, boundary conditions, and loading of the [0◦/90◦/0◦] bench-
mark laminate (s = 2).

The plies are orthotropic with the following material properties:

E1 = 2.5× 107psi, G13 = 5.0× 105psi,

E3 = 1.0× 106psi, G23 = 2.0× 105psi,

ν13 = ν23 = 0.25.

The elasticity solution of the problem is given in Pagano [42]. In this example
the exact solution is compared to the layerwise finite element model of Robbins
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Figure 3.5: Convergence of the error in the energy norm with respect to the 3-D
exact solution for the [0◦/90◦] laminate.

and Reddy [170] and compared to the isogeometric layerwise approach proposed
in this work. The aim is to verify the current model and to assess the accuracy and
efficiency of the competing numerical methods. The comparison is based on normal-
ized quantities. According to the adhered notation these normalized quantities are
distinguished with an over-bar notation, i.e:

σ̄11(z) =
σ11(w/2, z)

q0
, σ̄33(z) =

σ33(w/2, z)

q0
, (3.18)

σ̄13(z) =
σ13(0, z)

q0
, ū3(t/2) =

100E3 t
3 u3(w/2, t/2)

q0w4
, (3.19)

z̄ = z/t, (3.20)

where σ11, σ33, σ13, and u3 are the in-plane normal, inter-laminar normal and shear
stress components, and the transverse displacement, respectively. The symbols w
and t denote the width and thickness of the laminate as shown in Figure 3.4, which
defines the aspect ratio of the plate, i.e. S = w/t. Since the primary focus of this
sub-section is on thick laminates, the aspect ratio was set to S = 2 in the example.
In all the presented cases, quadratic basis functions were used along the width of
the plate, i.e. p1 = 2. Considering Lagrange polynomials and spline-based models,
different mesh densities and degree of the basis functions were employed to analyse
the response. To this end, the degree of the basis function in the thickness direction
was set to p2 = 1, 2, 3. Preserving the unit element aspect ratio, different mesh
densities were obtained by setting the number of elements through the thickness of
a single layer as nl = 1, 2, 4. As a result, nine distinct cases were considered for each
stacking sequence.

In comparison to traditional FEA-based layerwise models, the proposed isogeometric
layerwise model proved to be more efficient when considering the number of basis
functions. It was found that the isogeometric model outperformed its Lagrange
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polynomial-based counterpart on a per-degree-of-freedom basis. This is clearly
demonstrated in the error plots presented in Figures 3.5 and 3.6 which showed the
convergence of the energy and the stress infinity norms, respectively. The normalized
through-the-thickness stress distributions of the different laminates was illustrated
in Figures 3.7 and 3.8. The solutions of isogeometric and Lagrange polynomial-based
layerwise models showed excellent agreements with the exact solution. One may ob-
serve that, unlike the Lagrange polynomial-based layerwise model, the isogeometric
model resulted in continuous stress distributions within each layer, however, stress
discontinuities were recorded at the physical layer boundaries using both approaches.
This defect can be explained by the fact that no explicit constraints were set on the
interlaminar stress distribution. We emphasize that this is merely an approxima-
tion error and its severity will be gradually reduced when refining the mesh in the
thickness direction.

3.3.2 Laminate composite square plate

Using the example of a simply supported cross-ply laminate plate we tested the
performance of the isogeometric layerwise model in terms of accuracy of the com-
plete three-dimensional stress state. The square plate has a stacking sequence of
[0◦/90◦/0◦] and is subjected to an sinusoidal pressure on the top surface. A 3D
elasticity solution provided by Pagano [43] was used as a reference solution. The
geometric properties of the plate are depicted in Figure 3.9, in which, S = L/t =
W/t = 4.

The sinusoidal surface load was computed as:

q = q0 sin
(πx

L

)

sin
(πy

W

)

(3.21)

Each ply is of equal thickness (t/3) and the material properties of the laminate plate
are:

E1 = 2.5× 107psi, G12 = G13 = 5.0× 105psi,

E2 = E3 = 1.0× 106psi, G23 = 2.0× 105psi,

ν12 = ν13 = ν23 = 0.25.

The following normalized reference values were taken from [170]:

σ̄11 =
σ11(a, a, z)

q0S2
, σ̄33 =

σ33(a, a, z)

q0
, (3.22)

σ̄13 =
σ13(b, a, z)

q0S
, σ̄23 =

σ23(a, b, z)

q0S
, (3.23)

a = 1.105662(L/2), b = 1.894338(L/2). (3.24)

Unlike the quarter model used in Robbins’ paper [170], we modeled the complete
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Figure 3.6: Maximum error in the in-plane normal stress σ̄11, transverse normal
stress σ̄33 and transverse shear stress σ̄13 with respect to the 3-D exact solution in
the [0◦/90◦] laminate.
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Figure 3.7: Normalized stress distributions through the thickness of the [0◦/90◦]
laminate (nl = 2, p2 = 3).
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Figure 3.8: Normalized stress distributions through the thickness of the [0◦/90◦/0◦]
laminate (nl = 2, p2 = 3).
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Figure 3.10: Through thickness stresses comparison, [0◦/90◦/0◦] square plate: (a)
in-plane normal stress σ̄11, (b) transverse normal stress σ̄33, (c) transverse shear
stress σ̄13, (d) transverse shear stress σ̄23.

plate with a coarse mesh of 4 × 4 × 3 elements which resulted in a through-the-
thickness discretization with one element per layer. In Figure 3.10 we show the
normalized stresses for polynomial degrees p = 3 and p = 4 in comparison with
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the solution of Pagano [43] based on (3.18)-(3.23). Already for p = 3 the results
virtually coincided with the exact solution and showed only an insignificant deviation
for the transverse normal stresses σ33 at the free boundary and the ply interfaces
and for the transverse shear stresses σ13 at the ply interface and the position of the
maximum stress value. For a polynomial degree p = 4 any non-physical jumps were
completely removed showing a highest level of smoothness. In the previous example,
it was shown that a similar accuracy can be obtained by discretization with more
elements through the thickness of the plate at the price of a higher numerical effort.

3.3.3 Laminate cylindrical shell

Using the example of an isogeometric layerwise shell model with varying thickness we
demonstrated the range of validity and accuracy of our approach for curved NURBS
structures. We compared our results with existing analytical reference solutions
found in Varadan and Bhaskar [175].

A simply supported cross-ply laminate cylindrical shell subjected to an internal
sinusoidal pressure loading was considered. The geometry properties of the shell
and the applied boundary conditions are depicted in Figure 3.11, in which, L/R =
4, R/t = S, θ = π/2. Here R is the mid-surface radius of the cylindrical shell. Due
to symmetry properties, only a quarter of the cylindrical shell was modeled. Two

x y

zR t

L

θ

ξ
1

ξ
2

ξ
3

Figure 3.11: Cylindrical shell model.

different stacking sequences for the laminate shell were taken into consideration, a
[0◦/90◦] and a [0◦/90◦/0◦] ply stacking. Each laminate layer is of equal thickness
and has the same material properties as 3D plate in section 3.3.2.

The sinusoidal internal pressure load is described as:

q = −q0 sin
(πx

L

)

cos(4θ) (3.25)

where q0 is a positive constant load per unit area.
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The exact three-dimensional solution of Varadan and Bhaskar [175] was used
to verify the method’s potential in terms of accuracy and efficiency for shell models
with the following normalized quantities:

(σ̄αα) =
10× (σαα)(L/2, π/4, z̄)

q0S2
, σ̄12 =

10× σ12(0, π/8, z̄)

q0S2
, (3.26)

σ̄α3 =
10× σα3(0, π/4, z̄)

q0S
, σ̄33 =

σ33(L/2, π/4, z̄)

q0
, (3.27)

ū3 =
10× E1 u3(L/2, π/4, 0)

q0RS3
, z̄ =

z

t
, (3.28)

where σij(x, θ, z) denotes the corresponding unscaled stress tensor coordinates of
the computation.
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Figure 3.12: Through thickness transverse stresses comparison of [0◦/90◦] cylindrical
shell: (a) transverse shear stress σ̄13, (b) transverse shear stress σ̄23, (c) transverse
normal stress σ̄33.

We show the analysis results through the shell thickness for [0◦/90◦] and [90◦/0◦/90◦]
ply stacking sequences, respectively, in Figures 3.12 and 3.13. With a radius-to-
thickness ratio of S = 4 we considered a relatively thick shell model. A discretization
of 16×16×2 elements for the two layer model and 16×16×3 elements for the three
layers model, respectively, was chosen at a polynomial degree p = 4, isotropic. Both
models, the [0◦/90◦] and the [90◦/0◦/90◦] configuration, were in good agreement
with the reference solutions for the transverse shear and normal stresses. The σ13

component behaved slightly weaker for the [0◦/90◦] model than the reference solution

41



Chapter 3

while still reproducing reliably the characteristic stress distribution through the layer
thickness.
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Figure 3.13: Through thickness transverse stresses comparison of [90◦/0◦/90◦] cylin-
drical shell: (a) transverse shear stress σ̄13, (b) transverse shear stress σ̄23, (c) trans-
verse normal stress σ̄33.

Next, we studied the effect of a varying radius-to-thickness ratio S on the transverse
normal stresses for both, the [0◦/90◦] and the [90◦/0◦/90◦] models. The ratio S
was increased from S = 4 (thick shell) to S = 50 (moderately thick shell). The
stress plots are shown in Figure 3.14. For the configurations S = 4, 10 the numeri-
cally predicted stresses fully coincided with the available analytical solutions. With
increasing radius-to-thickness ratio S, both transverse normal stress components in-
creased at the layer interfaces with an influence on the location of the maximum
transverse normal stress component.

A baseline study of the deflection and stress components for the [0◦/90◦] model, the
[90◦/0◦/90◦] model and a ten layer [90◦/0◦/90◦/0◦/90◦]s laminate model for vari-
ous radius-to-thickness ratios is provided in tables 3.1 - 3.3. The ten-layer shell was
discretized with 16 × 8 × 10 elements with a polynomial degree p = 3 in all three
directions. We collated the results with the 3D analytical solution from [175] and
found an overall good agreement. An equally distributed average relative deviation
of 2− 4% from the reference solution was observed for all radius-to-thickness ratios
S of the three laminate composite models.
For thick and moderately thick laminate composite models the presented isogeo-
metric layerwise approach clearly outperformed equivalent-single-layer methods as
expected, at the price of a larger model size. In [156] high-order Lagrange elements
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Figure 3.14: Cylindrical shell - influence of a varying radius-to-thickness ratio S on
the transverse normal stresses: (a) [0◦/90◦] model, (b) [90◦/0◦/90◦] model.

based on a first and third order shear deformation theory were tested against the
reference solution and were used here with a relative deviation of 10 − 30% and
higher for small radius-to-thickness values S < 20.
Despite the higher number of degrees of freedom for the layerwise approach the iso-
geometric framework provided a much better trade off compared to a classical finite
element-based layerwise approach due to the many shared basis functions among the
patch elements and the continuity preserving high-order approximation capabilities.
In particular, the overlapping support of the spline functions in combination with
the continuity properties allowed a significant reduction of the numerical integration
effort at patch level as reported in [176].

Table 3.1: Displacement and stress comparison for a [0◦/90◦] cylindrical shell model

S ū3 σ̄11 σ̄22 σ̄12 σ̄13 σ̄23 σ̄33

(z = t

2
) (z = t

2
) (z = − t

2
) (z = − t

4
) (z = t

4
) (z = t

4
)

2 IGA 14.346 0.2650 9.925 -0.5231 0.4734 -3.146 -0.32
Ref.[175] 14.034 0.2511 9.775 -0.5016 0.4786 -2.931 -0.31

4 IGA 6.085 0.2150 10.29 -0.3021 0.2642 -4.531 -0.70
Ref.[175] 6.100 0.2120 10.31 -0.2812 0.2758 -4.440 -0.70

10 IGA 3.238 0.2004 10.46 -0.2517 0.1468 -5.363 -1.65
Ref.[175] 3.330 0.1930 10.59 -0.2325 0.1591 -5.457 -1.68

In a second example we changed the length of the shell from L/R = 4 to L/R =
2 as proposed in a reference analysis provided in [156]. We use this example to
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Table 3.2: Displacement and stress comparison for a [90◦/0◦/90◦] shell model.

S ū3 σ̄11 σ̄22 σ̄12 σ̄13 σ̄23 σ̄33

(z = − t

2
) (z = − t

2
) (z = − t

2
) (z = − t

6
) (z = 0) (z = 0)

2 IGA 10.48 -0.8590 -18.81 -0.2968 0.3144 -1.443 -0.36
Ref.[175] 10.11 -0.8428 -18.19 -0.2922 0.3006 -1.379 -0.34

4 IGA 4.046 -0.2700 -9.391 -0.1694 0.1816 -2.373 -0.62
Ref.[175] 4.009 -0.2701 -9.323 -0.1609 0.1736 -2.349 -0.62

10 IGA 1.221 -0.0771 -5.204 -0.0799 0.0866 -3.257 -1.27
Ref.[175] 1.223 -0.0791 -5.224 -0.0729 0.0826 -3.264 -1.27

Table 3.3: Displacement and stress comparison for a [90◦/0◦/90◦/0◦/90◦]s shell
model

S ū3 σ̄11 σ̄22 σ̄12 σ̄13 σ̄23 σ̄33

(z = t

2
) (z = t

2
) (z = − t

2
) (z = 0) (z = 0) (z = 0)

2 IGA 11.84 0.1767 7.243 -0.3415 0.3109 -2.715 -0.43
Ref.[175] 11.44 0.1691 7.202 -0.3363 0.3019 -2.608 -0.42

4 IGA 4.246 0.1258 6.529 -0.1708 0.2120 -3.173 -0.72
Ref.[175] 4.206 0.1243 6.635 -0.1652 0.2117 -3.154 -0.71

10 IGA 1.374 0.0873 5.714 -0.0917 0.1047 -3.434 -1.32
Ref.[175] 1.380 0.0877 5.875 -0.0869 0.1084 -3.479 -1.32

demonstrate that the proposed layerwise approach retains the aforementioned error
level for higher radius-to-thickness ratios. The reference solution is based on a third-
order shear deformation theory (TSDT) [156] which has been proven to have a very
high correlation with analytical results for high radius-to-thickness values S. A
[0◦/90◦] stacking sequence was used, the shell boundaries were simply supported
and the shell was subjected to the following two types of loads: a uniform and a
sinusoidal inner pressure load:

q = q0 (3.29)

q = q0 sin(
πx

L
) sin(2θ) (3.30)

Following [156] we report the results as dimensionless quantities:

σ̄ij =
10× σij(0, 0, z)

q0 S2
(3.31)

The layerwise results and Reddy’s TSDT results [156] are compared in table 3.4, in
which UP and SP abbreviate the uniform pressure load and the sinusoidal pressure
load, respectively. The comparison confirms the results shown in tables 3.1 to 3.3
for thick and moderately thick shell models with an overall average relative error of
2%.
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Table 3.4: Displacement and stresses comparison for simply supported [0◦/90◦] shell
under uniform and sinusoidal pressure load

S load ū3 ū3[156] σ̄11 σ̄11[156]

20 UP 3.02684797 3.09815750 0.423040 0.421970
SP 2.07509133 2.12361760 0.056647 0.050227

50 UP 0.33677661 0.33826747 0.499850 0.500950
SP 0.34820978 0.35165462 0.378360 0.381070

100 UP -0.02637450 -0.02976034 0.099092 0.099164
SP 0.08762443 0.08812624 0.249930 0.250990

S load σ̄22 σ̄22[156] σ̄12 σ̄12[156]

20 UP 1.79370 1.86990 1.50200 1.53390
SP 2.46630 2.54050 0.70477 0.72257

50 UP -0.96642 -0.97074 0.71776 0.72642
SP 0.65139 0.66125 0.27005 0.27258

100 UP -1.20170 -1.22470 0.44982 0.45458
SP 0.25976 0.26264 0.13156 0.13212

3.4 Trimmed geometries - free edge stress analysis

The existence of free edge effects is mainly due to the presence of geometrical or ma-
terial discontinuities at layer interfaces near laminate edges where three dimensional
and singular stress fields may arise [152]. These stresses, especially interlaminar
shear and normal stresses may produce material failures such as matrix cracks near
free edges. The straight free edge problems have been studied by a number of re-
searchers using various methods [177, 178, 179, 180, 181, 170, 53], while fewer studies
have been done on curved free edges due to their complexities. The variations of
stresses and displacements in straight free edge problems can sometimes be viewed as
a two-dimensional problem, while for curved free edges, it is a full three-dimensional
problem and more difficult to deal with [182]. An analytical method has been de-
veloped by Ko et al. [183] to calculate the interlaminar stresses around a circular
hole of a thin laminate. Hu and Soutis [184] use a three-dimensional finite ele-
ment model to evaluate the accuracy of Ko’s analytical model. It was found that
the analytical model predicts poor transverse stresses around the hole while the FE
models are more accurate and could be applied to thicker laminates. Particularly,
Iarve [185] proposes a method for the analysis of laminates with open holes, in
which, spline functions are used to approximate the displacement and interlaminar
tractions, independently. Following that, a method of superposition of a hybrid and
displacement approximation has been developed by Iarve and Pagano [186] in
which the displacement is approximated with B-spline functions. The results show
that the proposed method predicts accurate stress fields in the vicinity of hole edge
and ply interfaces of laminated composites.

In this section, an example is used to study the free edge effect of a laminate com-
posite structure with a hole under in-plane tension and to test the proposed iso-
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geometric layerwise approach for trimmed structures. The fictitious domain exten-
sion described in chapter 2 was used to handle the trimmed domain. The geom-
etry of the plate and the applied boundary conditions are shown in Figure 3.15.
Symmetry properties were used to reduce the model size. The stacking sequence
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Figure 3.15: Geometry and boundary conditions of the plate with hole under in-
plane tension.

of the plate is [90◦/0◦]s with the following material properties: E1 = 138 GPa,
E2 = E3 = 14.5 GPa, G12 = G23 = G13 = 5.86 GPa, ν12 = ν23 = ν13 = 0.21. All
stress quantities were normalized with respect to the applied traction load Sx:

σ̄x =
σx

Sx
, σ̄z =

σz

Sx
, σ̄xz =

σxz

Sx
. (3.32)

We compared the proposed layerwise model with a fully three-dimensional ABAQUS
[187] finite element solution. For the layerwise IGA model we used 42× 38 elements
in the plane and discretized each layer with one and two elements, respectively. The
ABAQUS reference model was discretized with 20-node quadratic brick elements
(C3D20R). The complete applied model data is provided in table 3.5.

Table 3.5: Model data: ABAQUS reference model and IGA-layerwise model.

model no elements (px, py, pz)-degree no degrees of freedom

ABAQUS 42240 2, 2, 2 544611
IGA-LW-2 3192 3, 3, 3 38745
IGA-LW-4 6384 3, 3, 3 49815

We show a comparison of the in-plane normal stress σx at the 0◦ and 90◦ layer
interfaces of the two models around the circular hole in Figure 3.16. For both layers,
the 0◦ layer and the 90◦ layer, we observed excellent agreement of the two models’
results at significantly reduced computational effort for the IGA-LW-2 model due to
a smaller model size which was more than one order of magnitude smaller in terms
of degrees of freedom.
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We show a comparison of the transverse normal stress σz along the circular hole for
a varying thickness of the two analysis models in Figure 3.17(left). Due to the used
composed integration for the fictitious domain approach we tapped the stresses at
a distance of (r − R)/R = 0.001 around the circular hole to prevent any influence
of the piecewise linear approximated hole boundary. The comparison revealed the
range of validity of the used model theory and corresponding discretization. The ap-
plied model configurations showed a reliable response for thick and moderately thick
layers, while for a decreasing layer thickness the solution oscillates for both models.
Higher oscillations were observed for the IGA model which can be attributed to the
significantly smaller model size and the higher polynomial degree. For sufficiently
thick layers both model results were in overall good agreement showing a smooth
stress curve.

The transverse shear stress σxz for a layer thickness tply = 0.25 is shown to the
right of Figure 3.17, this is virtually identical with the highly refined reference FE
solution. For the transverse shear stresses we used the IGA-LW-4 model with four
cubic elements through the thickness. Even for the more refined IGA-LW-4 model
the total number of degrees of freedom was almost one order of magnitude less than
for the FE reference model. It is also worth noting that the model refinement,
in particular the doubling of elements through the thickness, resulted only in a
moderate increase (< 30%) of degrees of freedom which is attributed to the inherent
overlapping support of NURBS basis functions.
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Figure 3.16: In-plane stress distribution around the circular hole.

3.5 Summary

A displacement-based isogeometric equivalent single layer method and layerwise
method were introduced. The introduced approaches followed closely the isogeo-
metric paradigm which uses the CAD-derived NURBS model as a mathematical
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Figure 3.17: Out-of-plane normal stress σz (left) and transverse shear stress σxz

(right) at the 0◦/90◦ layer interface along the circular hole at (r −R)/R = 0.001.

basis for the approximation of the physical model in an isoparametric sense. Our
approach was completely based on the mid-surface NURBS description of the shell
body thus supporting the direct application of the surface-defined CAD represen-
tation of shells. We used k-refined B-splines to interpolate the displacement field
through the ply thickness of the laminate composite which exhibits C0-continuity at
the ply interface to account for a jump in the material properties and to ensure the
balance of linear momentum and continuity of the traction field. Trimmed NURBS
geometries which are common in CAD-derived models were tackled using the finite
cell method, a fictitious domain extension of the analysis model that fades out the
influence of the strain energy in the trimmed region and that ensures the numerical
performance known for untrimmed structures.

We demonstrated the reliability, accuracy and numerical efficiency of the proposed
method with various examples: for a cross-ply laminates under cylindrical bending
and a thick laminate plate example we demonstrated the high-order capabilities of
our layerwise isogeometric approach which showed superior agreement with the an-
alytical reference solution. It was found that the introduced isogeometric layerwise
approach outperformed the traditional Lagrange polynomial-based counterparts on
a per degree of freedom basis. Similar results were found for the prediction of the
through-the-thickness stress components of a cylindrical shell with varying stack-
ing and thickness properties. We provided a baseline study for varying radius-to-
thickness ratios using the isogeometric layerwise approach and collated the analysis
results with a 3D analytical solution showing good agreement. Finally, we compared
our fictitious domain extended layerwise IGA method with a classical finite element
model to reveal the efficiency of the method in terms of solution quality and numer-
ical effort. A similar solution quality was observed for an IGA model size of almost
one order of magnitude less degrees of freedom.
The examples discussed in this chapter showed that the proposed method is very
well suited to predict accurately the three-dimensional stress state in NURBS-based
shell models. Furthermore, using the proposed fictitious domain extension, higher
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geometric complexity can be easily tackled without the need for sub-structuring
or re-parametrization, while still providing the highest level of numerical solution
quality.
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Chapter 4

Multi-lamina-model analysis

with delaminations: strong

coupling and linear

buckling1,2

The equivalent-single-layer method and layerwise method in the framework of iso-
geometric analysis were introduced in the previous chapter. It is interesting to note
that equivalent-single-layer and layerwise theories may be successfully cast into a
unified framework making them more practical to use, see e.g. [173, 188]. The
non-evident choice between various ESL and LW models is primarily driven by the
geometry of the structure, the material properties, or even the stacking sequence
of the laminate. Equivalent-single-layer models tend to require less modeling ef-
fort from the designer and in most cases offer reduced computational times. These
benefits come at the expense of incomplete or even inaccurate results. In contrast,
layerwise models provide more accuracy and are computationally more intense. Con-
sequently, combining these two types of models should allow us to solve structural
problems using a reasonable amount of computational resources at a reduced cost.
This method is often denoted multiple model or multi-model analysis [154], and it is
a general case of the commonly used simultaneous global-local strategy [189]. Here
global refers to the entire structure modeled using an ESL theory except for a set of
critical subdomains described by a layerwise model.

1This chapter is based on the paper “Y. Guo, A.P. Nagy, Z. Gürdal, A layerwise theory for
laminated composites in the framework of isogeometric analysis, Composite Structures, 107, 447-
457, 2014”

2This chapter is based on the paper “Y. Guo, M. Ruess, Z. Gürdal, A contact extended isoge-
ometric layerwise approach for the buckling analysis of delaminated composites, Composite Struc-

tures, 116, 55-66, 2014”
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In multi-model analysis, the main difficulty often lies in the coupling of incompatible
meshes and/or different mathematical models, i.e. to maintain the kinematic com-
patibility and continuity of traction at the boundaries of adjacent regions. In order
to address this difficulty, Whitcomb and Woo [190, 191] have developed an itera-
tive method to establish the force equilibrium conditions at global-local boundaries.
In some other works, multipoint constraints [192] or transition elements [193] are
used to connect different mathematical models. Reddy et al. [194, 189] proposed
a more robust global-local analysis method which allows to invoke locally the desired
displacement components in specified sub-domains. Their variable displacement field
method enforces only continuity of the displacements among the different regions.

Delamination in composite laminates is a common defect either pre-existing or gen-
erated during service by impact, fatigue etc. The presence of delamination may cause
an obvious reduction of the load carrying capacity of a laminate. For example, due
to the local instability in the vicinity of a delamination, the laminate may buckle
at a level of compressive loads well below the design value for the undelaminated
composite structure.

Depending on the design phase of a structure and related design rules, linear and
nonlinear buckling analyses are distinguished and applied. Linear analyses, as dis-
cussed in the course of this chapter, are based on the solution of a partial generalized
eigenvalue problem to reveal the critical buckling mode and associated buckling load
[195]. In general, the analysis results in a conservative yet often sufficiently accu-
rate estimate of the true buckling state for a pre-design at reasonable computational
cost. Nonlinear analyses allow us to trace the complete load-displacement history
of stability problems [196, 65, 66, 67, 197]. Sophisticated algorithms and modeling
strategies allow a much more refined analysis of the buckling phenomena at the price
of a full nonlinear analysis. A one-dimensional analytical model was first proposed
by Chai et al. [63] to investigate the buckling behavior of a delaminated compos-
ite structure. Following Simitses et al. [198, 199], proposing a one-dimensional
beam-plate theory to predict the buckling loads and growth of delamination, the
influences of delamination geometries and positions of the buckling loads are stud-
ied. Kardomateas [200] and Chen [201] include the shear deformation effect in
the one-dimensional model which reduces the overestimation of the buckling load
for a delaminated composite structure. Apart from the above one-dimensional mod-
els, Barbero [202] proposes a layerwise plate theory to model the delamination
in composite laminates, in which, the displacement field is enriched with a unit
step function to allow for separation and slipping at delamination surfaces. Lee et

al. [172] follows this layerwise approach to study the buckling problem of axially
loaded composite beam plates based on the solution of an eigenvalue problem. The
proposed layerwise approach yields accurate results at a reduced computing time.
Most of the references above which address the buckling of single or multiple de-
laminations of laminated composites, e.g. [172], do not consider buckling modes
where contact between delaminated plies occurs. In general, physically inadmissible
mode shapes with overlapping plies may appear, hence, it is necessary to include
a contact treatment in the buckling analysis of delaminated laminates. Peck and
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Springer [203] include a contact model in the eigenvalue buckling analysis with
reasonable results. Their contact model considers a delaminated ply resting on an
elastic foundation. Regarding the contact problem, Suemasu [204] adds imaginary
springs between two delaminated layers to provide the resistance forces and moments
eliminating the inadmissible mode shapes. The same idea is adopted in Sekine’s

[205] and Kouchakzadeh’s [195] work. A similar artificial spring approach based
on contact forces is presented in Hu [206] for Reissner-Mindlin plates. The contact
forces of this approach are found from a sensitivity-based update iteration scheme.

In this chapter, a strong coupled multi-model approach including delaminations is
presented and tested using several linear elastic benchmark problems in section 4.1.
In section 4.2, the set of equations governing the linear buckling analysis is provided.
We introduce the contact kinematics used in our method and a surface-to-surface
contact element formulation. Various examples addressing accuracy, reliability and
convergence behavior of the proposed contact extended linear buckling formulation
are presented in section 4.3.

4.1 Strong coupled multi-model approach

The use of variationally coupled multiple patches [1, 90] in isogeometric analysis
makes the joining of incompatible meshes and even different mechanical models
possible. In the present work, through-the-thickness patch boundaries of LW and
ESL models are connected, and thereby an attempt is made to limit computational
time and costs while maintaining sufficient solution accuracy. The two patches shown
in Figure 4.1 were chosen to illustrate the basic principles of the coupling concept
applying different basis functions through the thickness of a laminate. The proposed
concept even allows the coupling of incompatible patches. To the left of Figure 4.1
a layerwise model of cubic order is shown. Each of the two layers is modeled with
a single knot-span element with a C0-continuous interface in between, resulting in
seven control points across the thickness direction of the composite laminate, to the
right an equivalent single layer (ESL) model consisting of a single element of same
polynomial order is given. The sets of control points P(i)(i = 1, 2) were split into

subsets P
(i)
f and P

(i)
n for further considerations. The subscripts f and n denote

the interface domain Ωf and the non-interface domain Ωn, respectively, whereas the
superscripts identify the different models. The knot vector Ξ1 was obtained from Ξ2

by knot insertion. The relationship between the subsets of control points P
(1)
f and

P
(2)
f along the coupling interface of the two patches was established by the extension

operator Tf which interpolates the additional control points of P
(1)
f from the basic

set of control points P
(2)
f :

P
(1)
f = TfP

(2)
f (4.1)
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Ξ1 = {0, 0, 0, 0, 1/2, 1/2, 1/2, 1, 1, 1, 1} Ξ2 = {0, 0, 0, 0, 1, 1, 1, 1}

Figure 4.1: Multi-patch connection: distribution of the control points and applied
basis functions over the laminate thickness, defined by the knot spans Ξ1, Ξ2.

Equation (4.1) maintains the C0-continuity of the geometry across the interface
between the two patches. The relation of the displacements introduced at the control
points of each domain was established analogously:

U
(1)
f = TfU

(2)
f (4.2)

The governing linear system of equations of each patch was split according to the
degrees of freedom introduced at the corresponding control points of the subdomain
Ωf and Ωn,





K
(i)
nn K

(i)
nf

K
(i)
fn K

(i)
ff









U
(i)
n

U
(i)
f



 =





f
(i)
n

f
(i)
f



 , i = 1, 2 (4.3)

Using (4.2) in (4.3), the coupled system of equations could be written in the form
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


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f f

(1)
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









(4.4)

The unknown variablesU
(1)
f were condensed out and can be recovered using equation

(4.2) [90].

4.1.1 Multi-model stress analysis

In the following example, cylindrical bending of a simply supported cross-ply lam-
inates with stacking sequence [0◦/90◦] is considered, cf. Figure 4.2. The plate is
subjected to a spline shaped concentrated transverse load q(x) = q0N2(x) at the top
surface of the plate, where q0 is a constant and N2(x) is quadratic spline function.
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The material properties of the laminate are:

E1 = 2.5× 107psi, G13 = 5.0× 105psi,

E3 = 1.0× 106psi, G23 = 2.0× 105psi,

ν13 = ν23 = 0.25.

In this case, the critical areas may be located in the middle and at both ends of the
structure, hence, two different multi-patch models were constructed to investigate
the transverse normal stress, cf. Figure 4.2(a), in the middle of the laminate, and
shear stress, cf. Figure 4.2(b), in the end areas of the laminate, where α and β are the
fraction of the length of the beam section modeled by layerwise model, and the span
of a B-spline shape load with respect to the length of the plate w, respectively. The

LayerwiseESL ESL ξ1

ξ3

t

q

(a)

ESLLayerwise Layerwise

2 2

ξ1

ξ3

t

q

(b)

Figure 4.2: Model description. (a) Multi-patch model 1 with one layerwise model
in the middle, two ESL models at the ends. (b) Multi-patch model 2 with one ESL
model in the middle, two layerwise models at the ends.

influence of aspect ratios α and β on the accuracy of transverse normal and shear
stresses were evaluated for the work presented here, and all the resulting quantities
presented were normalized according to equation (3.18).

The three dimensional exact solution was obtained from Pagano’s work [42]. It is
convenient to approximate the spline shape load using a Fourier series:

q(x) = q0N2(x) ≈ q0

k
∑

n=1

fn sin
(nπx

w

)

(4.5)

where k depends on the required accuracy, and fn can be calculated as:

fn ≈ 2

w

∫ w

0

q(x) sin
(nπx

w

)

dx (4.6)

Consequently, Pagano’s exact solution could be found for each term in the sum-
mation of equation (4.5), and superimposed to obtain the total load q(x).

The plots of normalized transverse normal and shear stresses, σ̄33 and σ̄13, with
different values of aspect ratio α are shown in Figure 4.3. In this case, the number
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Figure 4.3: Plots of σ̄33 and σ̄13 with respect to α, in which, β is set to be β = 0.1.
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Figure 4.4: Error in the normal stress L∞-norm with respect to the α and β param-
eters.

of through-the-thickness elements used in the ESL model and within each layer of
the layerwise model were set to be nESL

l = 2 and nLW
l = 2, with the aspect ratio of

each element being one. Looking at Figure 4.3, it can be seen that the stresses of
σ̄33 and σ̄13 approach the three dimensional exact solutions along with the increase
of aspect ratio α, and very close results for both stresses to the exact solutions can
be obtained rapidly using α = 0.3.

Error studies with respect to Pagano’s exact solutions were carried out for the
stress components σ̄33 and σ̄13 and the results are shown in Figures 4.4 and 4.5.
The parameter β represents the extent of load concentration. The values of α and
β change from α = 0.1 ∼ 0.5 and β = 0.1 ∼ 0.25, respectively, and β ≤ α, to assess
the error of σ̄33. The influence of α on the relative error of σ̄13 is presented in Figure
4.5, the value β was kept constant at β = 0.1. The number of elements used through
the thickness of the ESL and layerwise model was the same as adopted in Figure
4.3. In addition, the total load was kept constant when changing the value of β.

56



Multi-lamina-model analysis with delaminations: strong coupling and linear
buckling

From Figure 4.4 we can see that the maximum error of σ̄33 with respect to the
exact solution decreased with an increase of either the value of α or the value of
β. Moreover, according to the contour plot, the maximum error was more sensitive
to α than to β. Once the load is determined, the designer can easily choose an α
according to the accuracy requirements of the analysis. The relationship between
the maximum error of σ̄13 and the value of α is illustrated in Figure 4.5, as can
be seen when α was increased from 0.1 ∼ 0.5, the maximum error decreased from
11% ∼ 0.54%, and the gradient of maximum error decreased gradually.
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Figure 4.5: Error plot for σ̄13 with respect to a varying value of α at β = 0.1.

4.1.2 Initial delaminations

The isogeometric layerwise model can be further generalized to model delaminations.
The classical modeling approach of delamination enriches the displacement field with
a Heaviside function to allow discontinuities at the ply interface [202, 172, 207]. In
the isogeometric framework, the discontinuity condition can be simply ensured by
knot repitition, cf. Figure 4.6, as discussed in section 2.1.4.

A schematic representation of a two layer laminate of cubic order with pre-existing
delamination is shown in Figure 4.6. The laminated and delaminated regions were
modeled as separate patches and connected according to the previous section. This
technique is useful to asses stress intensity factors at the crack-tip and consequently
to perform a preliminary laminate design.

We tested the multi-model approach for laminates with pre-existing delamination
in a stress analysis. Thus, a two layered [0◦/90◦] laminate with a centrally located
pre-existing delamination was considered as shown in Figure 4.7. The body was in
a state of plane strain with respect to the xz plane. The material properties of the
laminate are the same as those for the previous examples. The simply supported
plate was subjected to a transverse sinusoidal load q(x) = q0 sin(πx/w) at the top
surface of the plate, where q0 is a constant. Each layer is of equal thickness, and α
is the fraction of the length of delamination patch with respect to the length of the
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DelaminationLayerwise Layerwise
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Figure 4.6: Strong coupled four patch delamination model

plate w. The presented quantities were normalized according to (3.18) except for
σ13 which was normalized as:

σ̄13 =
σ13(x, z0)

q0
(4.7)

where z0 designates the location of Gauss points nearest to the interface. The length-

900 DelaminationLayerwise Layerwise

00 ξ1

ξ3

t

q

Figure 4.7: Layerwise model with delaminations.

to-thickness ratio was set to s = w/t = 5, and the aspect ratio of delamination patch
with respect to the length of plate w was chosen to be α = 0.4. The number of ele-
ments used through the thickness of each lamina was nl = 2 and the element aspect
ratio was set to be one. In addition, the delamination model shown in [207] with
linear displacement-strain relations was implemented for comparison. The results
of the normalized transverse displacement ū3, the shear stress σ̄13 and the in-plane
normal stress σ̄11 obtained from the isogeometric model were in very good agreement
with those given in reference [207], and are shown in Figures 4.8-4.10, respectively.
From Figure 4.8 we can see that the transverse displacement exhibits an obvious
jump at the delamination interface and amount of displacement jump is captured
very well by the isogeometric delamination model. The same accuracy is obtained
for the in-plane normal stress σ̄11. The location of the Gaussian quadrature points
used to calculate the transverse shear stresses for both models is z0 = 0.5281754 · h.
It is no surprise that the shear stress is symmetric about the beam center, as shown
in Figure 4.10. The jumps in the stress at the interlaminar crack front indicate the
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existence of a stress singularity.
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Figure 4.8: Distribution of transverse displacement ū3 through the thickness of a
delaminated laminate.
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Figure 4.9: Distribution of in-plane normal stress σ̄11 through the thickness of a
delaminated laminate.

0.5 1.0

1.5 2.0 2.5

4

2

2

4

6
13

IGA

Wook & et al. (2009)

Figure 4.10: Distribution of transverse shear stress σ̄13 along the length of a delam-
inated laminate.
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4.2 Linear buckling analysis

Starting from the total potential energy of the 2D laminate model under transverse
loading the equation governing the buckling analysis can be formulated as:

Π = ΠI +ΠE (4.8)

with

ΠI =
1

2

∫

Ω

E : S dΩ (4.9)

representing the strain energy of the deformed system domain Ω where E(u)(=
1
2 (∇uT +∇u)) denotes the linear strain tensor, and S is the stress tensor introduced
in (3.12). The potential of the external forces, restricted to a 1D in-plane loading
across and along the boundary domain Γ as considered in this chapter is:

ΠE =
1

2

∫

Γt

tx0

(

du3

dx

)2

dΓ (4.10)

The variable tx0
denotes the prescribed membrane force and u3 represents the trans-

verse displacement.

The quantities of (4.9) are discretized according to the interpolation rules introduced
in chapter 2 with the displacement vector U = [U1,U3] tailored to the state of plane
strain. The change of u3 with respect to the global coordinate x1 follows by applying
the chain rule with respect to the coordinate ξ of the NURBS parameter space:

du3

dx
=

N
∑

k=1

dRk,p(ξ, η)

dξ

dξ

dx1
Uk(3) = NT

,x1
U3 (4.11)

Governing algebraic equations

Using the NURBS interpolation of the displacements and the strains of chapter 2 and
using (4.11), the potential (4.8) can be discretized. The governing algebraic equa-
tions follow from element-wise integration and assembly of the element contributions
to system level:

Π =
1

2
UT

s (K−KG)Us (4.12)

with Us = [U1,U3], K the linear-elastic stiffness matrix of the system and

KG = Ane

e

{∫

x3

tx0
NT

,x1
N,x1

dx3

}

e

(4.13)

representing the assembly of the geometric element stiffness matrices due to the ap-
plied membrane forces. From the stationary condition δΠ = 0 follows the eigenvalue
problem:

(K− λKG)Us = 0 (4.14)

60



Multi-lamina-model analysis with delaminations: strong coupling and linear
buckling

with the critical load factor λ determined as the eigenvalue of smallest magnitude
[208, 154].

4.2.1 Contact model enriched buckling analysis

The buckling eigenvalue problem (4.14) is unconstrained in the sense that the upper
and lower delaminated layers can move in the lateral direction independently. As
a consequence, physically inadmissible buckling modes may appear that include
penetration between the upper and lower delaminated layers. This phenomenon
is illustrated in Figure 4.11 where it can be seen that local buckling has induced a
partial penetration of the upper ply into the lower region. In the following we propose

Figure 4.11: Inadmissible buckling mode of penetrating plies.

a contact model to “repair” stepwise inadmissible buckling modes. In general, a
contact search algorithm is required to determine which parts of the delaminated
regions are in contact. In the following, we model all delaminated regions with a
single patch which makes an expensive global contact search superfluous and restricts
any contact search locally to the patch level.

Contact kinematics

Let x(a) (a = 1, 2) denote the position of a material point in Ω(a) and let Γ(a) denote
the boundary of Ω(a), specifically, the opposite boundaries of the delaminated regions
as illustrated in Figure 4.12. We assume the lower and upper delamination domains
to be convex regions or at least locally convex regions, such that for any given
point x(2) ∈ Γ(2), there exists a unique point x(1) ∈ Γ(1) that satisfies the minimum
distance condition

d(ξ) = min
x(1)∈Γ(1)

∥

∥

∥x(2) − x(1)(ξ)
∥

∥

∥ (4.15)

where ξ is the coordinate of the corresponding NURBS parameter space Ξ that is, for
convenience, chosen in the interval [0, 1]. The point x̂ indicates the closest projection
point, thus satisfying (4.15). The determination of x̂ requires the inverse mapping
ξ(x) of the geometry interpolation rule satisfying the condition for a minimum of
the distance function [209]

x(2) − x̂(1)(ξ)

‖x(2) − x̂(1)(ξ)‖ · x̂(1)
, (ξ) = n(1) · x̂(1)

, (ξ) = 0 (4.16)

A Newton iteration is applied to determine the parametric coordinate ξ such that
equation (4.16) is satisfied, with i indicating the current iteration step. Starting
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from the ith iteration step we determine the new value of ξ using:

ξi+1 = ξi −
x(1)
, (ξi) ·

[

x(1)(ξi)− x(2)
]

x(1)
,, (ξi) ·

[

x(1)(ξi)− x(2)
]

+
∣

∣x(1)
, (ξi)

∣

∣

2 (4.17)

where x(1)
, (ξ) and x(1)

,, (ξ) signify the first and second derivative of x(1) with respect
to the parametric coordinate ξ. With knowledge of x̂(ξ) the relative position of the
lower and upper boundaries can be characterized by the gap function:

gn =
[

x(2) − x̂(1)(ξ)
]

· n(1) (4.18)

in which n(1) is the outward pointing unit normal at x̂(1) on Γ(1).

Using the value of gn the contact situation can be uniquely characterized [210]. For
gn > 0 the boundaries are separated, whereas gn < 0 indicates penetration of the
domains. For gn = 0 perfect contact exists between Γ(1) and Γ(2).

Г(1) X
(1)(ξ(1))

n(1)

Г(2)
X(2)

ˆ ˆ

Figure 4.12: The closest point projection.

The contact formulation is significantly simplified by the fact that tangential contact
is not considered for the presented buckling analysis thus omitting any complex
friction model. All constituents of the following formulation therefore refer to the
normal contact of the delaminated plies.

Surface-to-surface contact element formulation

We follow a master-slave concept to account for the non-symmetry of the gap func-
tion, where Γ(1) is chosen as the master and Γ(2) the slave surface of a surface-to-
surface contact element comprising contact conditions at a set of Gaussian quadra-
ture points and corresponding projection points along the contact boundary. The
Gaussian quadrature points are denoted G(2), as they are located on the boundary
Γ(2). Based on a penalty formulation, the potential (4.8) is extended by a penalty
energy term. The variation of this contact potential energy term is written as:

δΠc =

∫

Γc

ǫ gn δgn ds (4.19)
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where ǫ denotes the penalty factor, Γc = Γ(1) ∩ Γ(2) denotes the contact boundary,
and ds denotes the length of the delamination boundary Γ(2). The variation of the
gap function includes the variation of (4.16) and simplifies due to the orthogonality
properties of gn to the variation of its constituents. Substitution of (4.18) into (4.19)
gives:

δΠc =

∫

Γc

ǫ
[

x(2) − x̂(1)(ξ)
]

·
[

δx(2) − δx(1)
]

ds (4.20)

The geometry and the variation of equation (4.20) is discretized with NURBS. The
integral in equation (4.20) is evaluated at a set of Gaussian quadrature points which
are also used for the calculation of closest projection points. Through linearization,
the contact stiffness can be written as:

Kc =

[

K
(11)
c −K

(12)
c

−K
(21)
c K

(22)
c

]

(4.21)

where K
(ab)
c , (a, b = 1, 2), are the simplified components from the reference [211],

and its formulation in element level is written as:

K
(ab)
c(mn) =

∑

i∈ G(2)

ǫwiJ
(2)(ξgi)R

(a)
m (ξai)R

(b)
n (ξbi) [I] (4.22)

where a, b and m,n denote the indices of the contact surfaces and the basis functions,
respectively, wi are the weights of the Gaussian quadrature, J (2)(ξgi) is the Jacobian
of the boundary Γ(2) and can be calculated as J (2) = ds(2)/dξ =

∥

∥dx(2)/dξ
∥

∥, and

R
(a)
m and R

(b)
n are the NURBS basis functions corresponding to the contact surfaces

Γ(a) and Γ(b). The parameter ξgi corresponds to the ith Gaussian quadrature points
in the set G(2), and the parameters ξai and ξbi correspond to either the set of closest
projection points ξpi, when a, b = 1, or Gaussian quadrature points ξgi, when a, b =
2. In addition, I is the 2× 2 identity matrix.

Notice that, it is shown in [205, 195] how the penetration of the inadmissible buckling
states can be eliminated by adding fictitious springs between the overlapping nodes.
This approach works well but is limited to the case of matching nodes along the
two delaminated layers. Correspondingly, the control points of the NURBS modeled
contact domains can be employed in the isogeometric analysis approach presented
here, if a matching set of control points can be found for both domains. In general,
this is not the case and thus requires a more sophisticated approach. An example
of non-matching control points between the delaminated laminas is shown in Figure
4.13.

Analysis concept

We propose a stepwise procedure, illustrated in Figure 4.14, to remove iteratively
the domain overlap of inadmissible buckling states. The input data of the shown
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flowchart is a buckling shape with overlapping plies, an inadmissible state that is
found from a segment-to-segment contact search. The iteration loop comprised the
following steps:

1. In a first step we determined the maximum overlap of the plies for the given
buckling mode and check against a given threshold µ which controls the desired
accuracy of the enforced contact constraint.

2. For an overlap larger than µ we introduced a penalty constraint for each Gauss
point along the delaminated boundary of the slave domain Γ(2) that does not
satisfy the relation gn > 0 to close the gap function at x(2)(ξgi). The stiffness
matrix was updated with the penalty contribution.

3. The general eigenvalue problem (4.14) was solved for the eigenstates with
eigenvalue of smallest magnitude using a subspace eigenvalue solver.

4. We check the updated eigenstate for a change in the sign and flip over if
necessary by scaling with (−1).

5. We continue the loop until the stopping criteria, formulated in 1, is satisfied.

The iterative procedure of the proposed analysis concept for inadmissible states is
necessary for two reasons. One, direct constraining of the original buckling eigen-
value analysis is not possible since a possible overlap and the corresponding overlap
location are a priory unknown. Two, a single step solution does not prevent more
inadmissible overlap configurations.

Г(1)

Г(2)

P
(2)

P(1)

Figure 4.13: Overlapping NURBS-domain edges with non-matching control points.

4.3 Buckling of delaminated composites

The performance of the proposed isogeometric analysis contact approach with regard
to reliability, accuracy and numerical effort is analyzed in the following for variable
model parameters. We show the effects of stacking sequences of the laminates and
the influence of different values of slenderness. We further dissect the influence of
the position and length of the delamination zone.

Throughout the following numerical analyses we demonstrate our tests using a two
layer laminate plate structure with pre-existing delamination at the ply interface
and clamped essential boundary conditions. The geometry of the structure and its
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Figure 4.14: Iterative contact extended analysis concept for inadmissible buckling
states.

delamination zone, the material parameters and the applied loading is depicted in
Figure 4.15. A state of plane strain with respect to the x − z plane is assumed for
all the derived model configurations.

We introduce two geometric parameters, normalized to the total plate length L. A
form parameter α is defined as the ratio of the delamination length with respect
to the plate length L. A location factor β is used to denote the location of the
delamination factor with respect to the length L. A fixed thickness is chosen for all
layers of the laminated composite structure.

4.3.1 Convergence study and contact demonstration

The convergence study of a [0◦/0◦] lay-up laminate was carried out with different
discretization levels. The orthotropic material properties are:

E1 = 1.81× 102 GPa, G13 = G23 = G12 = 7.17 GPa,

E3 = 1.03× 101 GPa, ν13 = ν23 = 0.28.

The geometric model has a slenderness S = L/t = 10 and delamination zone param-
eters α = 0.4 and β = 0.5. A h-refinement study followed by a p-refinement study is
used to reveal the basic convergence properties of the proposed analysis approach.
For the h-refinement study, each layer of the laminated composite was modeled with
cubic NURBS in both the in-plane and through-thickness directions. The number
of elements through the thickness of each single ply varied from 1 to 8 such that a
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unit aspect ratio for each element was preserved. Monotonic convergence behavior is
shown in Figure 4.16. An approximation for the exact reference solution was found
from an extrapolation based on the results of the three most refined models [212].
For the p study, we kept the number of elements through the thickness of each
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β∙L

L

tNN
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90°
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x

Figure 4.15: Delamination model of a two layer composite plate.
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Figure 4.16: Convergence of the critical buckling load for a [0◦/0◦] laminate.

layer at 4, and uniformly increased the degrees of basis from p, q = 2 to p, q = 6
in both directions. The results are listed in the table 4.1, where N is the critical
buckling load and ∆ is the relative error in percent with respect to the reference
solution extrapolated from the h-refinements study. Again monotonic behavior was
observed. The effectiveness of the proposed contact treatment is illustrated in the

Table 4.1: Convergence of the buckling load for p-refinement of a [0◦/0◦] laminate,
providing buckling loads N and relative error ∆.

p, q = 2 p, q = 3 p, q = 4 p, q = 5 p, q = 6 exact
N [×102] 12.414 12.389 12.378 12.373 12.369 12.359
∆[%] 0.445 0.243 0.154 0.113 0.081 -

following. The stacking sequence of the laminate was changed to [0◦/90◦]. The
geometric parameters and the delamination zone parameters of the model were kept
the same as in the previous example.
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The buckling analysis revealed the first buckling mode to be admissible and the
second buckling mode to be inadmissible with penetrating plies for which a contact
analysis was performed. The history of the stepwise contact analysis starting from
the initial inadmissible state to the final accepted buckling state is illustrated in
Figure 4.17. A penalty value of (ǫ = 1010) was found to be sufficient for convergence

(a) initial mode shape

(b) mode shape in step 3

(c) mode shape in step 5

(d) accepted buckling state

Figure 4.17: History of the contact extended buckling analysis of the second buckling
mode.

and was kept constant throughout the iteration procedure. The final mode shape
with contact constraints is presented in Figure 4.17(d). The overlap region at the
various iteration steps, shown in red in Figure 4.17, decreases with an increasing
number of iterations until the final admissible buckling state has converged with a
buckling load of 7.733× 102 N.

The free scalability of the eigenvectors allowed us to consider both eigenmodes, u
and −u as valid solutions. Nevertheless, for local buckling modes scaling with −1
may result in another, or even new, overlap situation as depicted in Figure 4.18,
in which the stacking sequence of the laminate is [0◦/90◦] and the geometric and
delamination zone parameters of the model are: S = L/t = 10, α = 0.5 and β = 0.5.
As a consequence the flip-over scaled mode shape must be considered in the buckling
analysis as a separate solution that possibly requires a contact enriched analysis as
proposed in this chapter. The third buckling mode shown in Figure 4.18 has already
been identified as an inadmissable mode without negative scaling. A small overlap
at the middle of the delamination zone was noticed, and the negative counterpart
strongly illustrates the overlap problem for a flip-over situation. The buckling mode
shapes after the contact analysis are shown in Figure 4.19. The corresponding
buckling loads were 6.497×102 N and 16.062×102 N, respectively. The lower of the
two buckling load and corresponding mode shape was considered to be the relevant
solution.
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u(a) initial third buckling mode 

-u(b) flip-over mode 

Figure 4.18: Overlap situation from a flip over of a local buckling mode by scaling
with −1.

(a) buckling load N = 649.7 N (b) buckling load N = 1606.2 N

Figure 4.19: Final result for the third buckling mode after necessary overlap correc-
tion from flip over.

4.3.2 Midplane delamination of a [0◦/0◦] laminate

The following benchmark model has been used in several publications as a test case
for the buckling analysis of laminate composites providing reference solutions of
similar quality [198, 201, 172, 206]. We chose the same example to demonstrate
the accuracy of the proposed contact extended buckling analysis and to compare
our solution to the results reported in the literature. The geometry, the material
properties and loading conditions of the current example correspond to the model
depicted in Figure 4.15. The stacking sequence of the laminate was chosen as [0◦/0◦].

In a first test we analysed the influence of the delamination length, expressed by
the form parameter α, on the buckling load of the first buckling mode. The model
had a length-to-thickness ratio of S = L/t = 400 and a location factor of β =
0.5. The presented normalized buckling loads were obtained by dividing the critical
buckling loads of the delaminated plate with Ncr, the buckling load of the laminated
composite structure without delamination.

Our solution compared to the reference solutions found in [198, 201, 172, 206] is
shown in table 4.2. A very good overall agreement of the buckling loads was observed
for an increasing value of α. Most of the buckling modes were global symmetric with
a relative deviation from our solution of below ∼ 0.3%. Except for α = 0.4 where we
obtained an anti-symmetric buckling mode. For this case the solution obtained in
Chen [201] is a global symmetric one and seems to be an outlier result with a relative
deviation of above 1.1%. This is attributed to the fact that symmetry assumptions
in the axial direction were made in [201], thus excluding anti-symmetric modes. In
a second test we varied the values of α and computed the buckling loads for global
symmetric, anti-symmetric and local symmetric buckling modes. The length-to-
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Table 4.2: Comparison of normalized buckling loads for an increasing form parameter
α: present solution, reference values and relative deviation ∆[%].

α Simitses[199] ∆[%] Chen[201] ∆[%] Lee[172] ∆[%] Hu[206] ∆[%] Present

0.1 0.9999 0.00 0.9999 0.00 0.9999 0.00 - - 0.9999
0.2 0.9956 0.02 0.9956 0.02 0.9956 0.02 - - 0.9954
0.3 0.9638 0.07 0.9638 0.07 0.9639 0.08 0.9606 0.26 0.9631
0.4 0.8481 0.15 0.8561 1.10 0.8482 0.17 0.8445 0.27 0.8468
0.5 0.6896 0.29 0.6896 0.29 0.6898 0.32 0.6860 0.23 0.6876
0.6 0.5411 0.26 0.5411 0.26 0.5413 0.30 0.5384 0.24 0.5397
0.7 0.4310 0.23 0.4310 0.23 0.4311 0.26 0.4288 0.28 0.4300

thickness ratio for this test was set to S = L/t = 10. Our results were compared
to a reference solution provided by Jaehong [172] and are shown in Figure 4.20, in
which a displacement-based one-dimensional finite element model based on Reddy’s
layerwise plate theory is used. The results of the proposed isogeometric buckling
analysis agreed very well with the reference solution. No difference can be observed
for the global symmetric and anti-symmetric modes virtually. The IGA solution
of the local symmetric case deviated only insignificantly from the reference curve
showing a slightly smoother curve. The slight deviation can be explained by the
different kinematic models been used for this example. In Jaehong [172], the out-
of-plane displacement u3 is assumed to correspond to the mid-surface displacement,
which means no relative displacement exists through the thickness of a laminate.
In contrast, in our isogeometric layerwise model, both the in-plane and out-of-plane
displacement components are interpolated using NURBS basis functions, hence al-
lowing for the change of the displacements through the thickness direction.
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Figure 4.20: Buckling loads for an increasing delamination length.
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Figure 4.21: Influence of the delamination zone position on the buckling load for a
[0◦/0◦] laminate.
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Figure 4.22: Influence of the delamination zone position on the buckling load for a
[0◦/90◦] laminate.

4.3.3 Influence of the axial location of delamination

The following reveals the influence of the axial location of the delamination, ex-
pressed by the location factor β, on the first buckling mode and corresponding
buckling load. In Figures 4.21 and 4.22, respectively, we show results for both stack-
ing configurations, the [0◦/0◦] and [0◦/90◦] laminates. In addition, the reference
results from Jaehong [172] are also shown in Figure 4.21. The depicted curves rep-
resent different dimensions of the delamination zone, expressed by the form factor
α. The length-to-thickness ratio S = L/t for this analysis was set to S = 10.

With a value β = 0.5, indicating the delamination zone in the center of the plate, the
symmetry of the model and location of the delamination zone clearly dominated the
results with a maximum value of the buckling load, cf Figure 4.21. With increasing
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delamination length α the peak value smoothed out and even dropped down for the
IGA solution at α = 0.6 indicating severe loss of stiffness as consequence of the large
delamination zone.

For the short delamination length models, α = 0.2 and α = 0.3, respectively, we
observed an increased stiffening in the case where the delamination center moves
towards the ends of the plate. This behavior is reducible to the clamped boundary
conditions applied at the ends of the plate and becomes more obvious for the smaller
delamination zones. For longer delamination zones, e.g. α = 0.5 and α = 0.6, the
buckling loads were less sensitive to the delamination locations, and stayed almost
unchanged for β between 0.45 and 0.55.

The variation of α and β for the [0◦/90◦] laminate composite are depicted in Figure
4.22. The buckling load showed significant less sensitivity to the location of the
delamination and the size of the delamination zone, compared to the [0◦/0◦] stacking
results shown in Figure 4.21. Analogously, increasing stiffness of the delaminated
plate towards the ends was observed.

4.3.4 Influence of the contact constraints

We use the following example to show the influence of the introduced contact con-
straints on the results of the buckling analysis. We considered the first three buckling
modes and corresponding loads of the [0◦/90◦] laminated composite model intro-
duced earlier. The results for α = 0.4 and α = 0.6, respectively, with varying
location factor β are shown in Figures 4.23 and 4.24. The first buckling mode was
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Figure 4.23: Influence of the contact constraints on the buckling load of a [0◦/90◦]
laminate composite with α = 0.4.

found to be uncritical for both cases, α = 0.4 and 0.6, since no overlap appeared. We
concentrated on the second and third buckling mode which were both inadmissible
due to an overlap in the initial analysis step. As demonstrated before, the stepwise
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introduced constraints significantly influenced the final mode shape and correspond-
ing buckling load. For the second and third buckling mode of both cases (α = 0.4
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Figure 4.24: Influence of the contact constraints on the buckling load of a [0◦/90◦]
laminate composite with α = 0.6.

and α = 0.6), the buckling loads after contact repair increased evidently compared
to the original inadmissible states. In both cases we observed the highest buckling
load for the delamination zone located at the boundary of the structure. This stiff
boundary phenomenon was more evident when the delamination length increased.
For α = 0.4 the buckling load of the second mode jumped down followed by a
monotonic increase when relocating the center of the delamination zone towards the
center of the structure. With increasing length of the delamination zone, cf α = 0.6,
the curves for the second mode flatten, i.e. the buckling load became less sensitive
with respect to location of the delamination zone. The third buckling mode showed
reverse behavior. The buckling load decreased for a relocation of the buckling zone
towards the center of the structure, however, an analogous decreasing sensitivity of
the buckling load with increasing delamination size was observed as noticed already
for the second buckling mode.

It is worth noting that at the center positions the initially lower buckling load of
the second buckling mode for α = 0.6 changed to a load higher than the load of
the third mode after repair. Obviously the second and third buckling state changed
significantly in both, buckling mode and buckling load.

4.3.5 A model with two delaminations

We will now demonstrate the applicability and extensibility of the proposed approach
for two or more delamination zones. We used a model of a random short-fiber
composite structure with two delaminations near to the surface. The problem was
first analysed by Wang [213]. The geometric parameters and the delamination
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parameters are shown in Figure 4.25. The length-to-thickness ratio was set to S =
L/t = 16, and the center of each delamination zone was located in the middle of
the structure (β = 0.5). The two delamination cracks were located symmetrically
to the middle surface of the structure with a deepness parameter td = 0.25t. The
orthotropic material properties of the composite are:

E1 = 2.29× 106 psi, G13 = G23 = G12 = 0.36× 106 psi,

E3 = 1.2× 106 psi, ν13 = ν23 = 0.22.
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Figure 4.25: Two symmetrically located delaminations through the thickness.
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Figure 4.26: Normalized buckling loads vs delamination length for a random short-
fiber composite with two delamination cracks.

In the isogeometric layerwise approach, the above model can be modeled as a four
layered laminate with equivalent material properties for each layer. Two buckling
modes were considered in this example, a mixed mode combining global and local
buckling and a local buckling mode, which were normalized with the critical buckling
load (Ncr) of an undelaminated composite. The two buckling modes obtained using
the isogeometric model were plotted against the delamination length parameter α,
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and compared to the reference solutions provided by Wang [213], cf Figure 4.26. In
Figure 4.26, the red points represent the mixed buckling modes and the blue points
refer to the local buckling modes. Most of the mixed buckling modes are inadmissible
buckling states as depicted in Figure 4.26. Thus, a contact treatment was added
to repair the overlap of the above modes. The normalized repaired buckling load
values of the mixed modes are plotted in green in Figure 4.26. Both the mixed
mode and local buckling mode of the isogeometric model agreed very well with the
reference solutions. The repaired buckling loads of the mixed modes were slightly
lower than the local buckling modes. This seemed to be reasonable because the
repaired buckling modes were locally dominant with only one buckle layer while the
local buckling modes have two buckle layers.

4.4 Summary

A multi-model analysis technique was developed and discussed in this chapter, this
enabled us to use either an equivalent-single-layer or the proposed layerwise theories
within the different regions of a structural model. The approach was extended to
investigate laminates with pre-existing damage, i.e. delamination. The method was
compared to existing solutions and shown to be in good agreement for both the
displacement and stresses values that were obtained.

In addition, the buckling of laminated composite plate-like structures with pre-
existing delamination zones was studied. The particular focus of the presented
analysis concept was the repair of physically inadmissible buckling states with over-
lapping plies concentrating the developed procedure and the numerical studies on
the through-thickness behavior of the relevant buckling states with smallest buckling
load. Based on the multi-patch strong coupling approach, the delaminated zone was
enriched by additional stiffness contributions considering the normal contact force of
the overlap domain. Using a step-wise procedure we demonstrated the ply overlap
reduction towards physically admissible buckling modes.

Using several numerical examples we revealed the reliability and accuracy of the
proposed procedure. A refinement study showed monotonic convergence of the buck-
ling load for uniform h-refinement and uniform p-refinement of the contact enriched
model. We demonstrated the influence of the free scalability of the inadmissible
buckling modes from the eigenvalue analysis on the finally repaired buckling state
and corresponding buckling load. We further showed the decrease of the buckling
load for increasing delamination and compared our results to finite element approxi-
mations taken from the literature, with overall high agreement. A detailed study on
the influence of size and position of the delamination zone was done which revealed
the strong dependencies for the final buckling load and buckling shape. The buckling
load tended to increase for a relocation of the buckling zone towards the boundary
of the composite structure. For a [0◦/90◦] laminate, in which the material properties
of the two plies vary greatly, the penetration phenomenon was observed to be more
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likely than for a [0◦/0◦] stacking, with large influence on buckling load and buckling
mode. Using a four layer model we showed the applicability of our proposed method
for composites in the presence of multiple delaminations. A comparison of the re-
sults to a reference FEM solution proved reliability and accuracy of our method, an
indispensable prerequisite for future studies of more complex shell-like structures.
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Analysis of multi-patch

models for thin-walled

structures1,2

Thin-walled structures demonstrate optimal load-carrying behavior and are of major
importance in the design of structures in aerospace and automotive engineering.
Using higher order and higher continuity NURBS basis of isogeometric analysis, a
rotation-free shell element can be formulated based on the Kirchhoff-Love theory.
An isogeometric rotation-free shell element does not need extra rotational degrees of
freedom which saves computational efforts compared to Reissner-Mindlin type shell
elements. The kinematics of the isogeometric shell formulation can be described
fully with translational degrees of freedom of mid-surface. In addition, second order
derivatives of the basis functions are needed to describe the change of curvature of
the shell mid-surface.

The absence of rotational degrees of freedom in the formulation lends the formu-
lation the label ‘rotation-free’ and requires special treatment of essential boundary
conditions to regain control of rotatory constraints along the shell mid-surface [214].
In [215] it is shown that clamped or symmetric boundary conditions can be main-
tained if the direction of the tangent normal to the geometry boundary is preserved
during deformation. The above is also a challenge for the continuity-preserving
coupling of isogeometric rotation-free shell patches. The NURBS patches used are
end-point interpolatory thus providing only C0-continuity at the coupling interface.

1This chapter is based on the paper “Y. Guo, M. Ruess, Nitsche’s method for a coupling of
isogeometric thin shells and blended shell structures, Computer Methods in Applied Mechanics

and Engineering, 284, 881-905, 2015”
2This chapter is based on the paper “Y. Guo, M. Ruess, Weak Dirichlet boundary conditions for

trimmed thin isogeometric shells, Computers and Mathematics with Applications, 70, 1425–1440,
2015”
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A proper transfer of bending moments requires G1-continuity among the coupled
patches which cannot be ensured by the use of C0-continuous functions without fur-
ther model enrichment [216]. Furthermore, the inherent trimming problem adds to
the difficulty of achieving accurate and reliable enforcement of both the continuity-
preserving coupling constraints and the essential boundary conditions.

In this chapter we use a stabilized weak approach to enforce both essential boundary
conditions and multi-patch coupling constraints of rotation-free Kirchhoff-Love shell
patches including trimmed domains, non-conforming discretizations and overlapping
patches.

This chapter is organized as follows: a concise summary of the Kirchhoff-Love theory
for thin shells is presented in section 5.1 followed by an extension of the principle
of virtual work in sections 5.2 and 5.3 to handle essential boundary conditions and
coupling constraints, respectively, in a weak, integral sense. The performance of the
developed extensions is documented with various test examples in sections 5.4 and
5.5. Conclusions for this chapter are drawn in section 5.6.

5.1 Isogeometric rotation-free Kirchhoff-Love shells

In the following, the fundamentals of a rotation-free Kirchhoff-Love shell [2] formula-
tion are presented in compact form. Again, the upper case and lower case notations
refer to the undeformed and current configurations, respectively. The geometric de-
scription of the Kirchhoff-Love shell follows the definitions introduced in chapter 3,
cf. equation 3.3. The definitions of co- and contravariant bases are given in chapters
2 and chapter 3.

Based on the assumptions of Kirchhoff-Love [142, 154] the 3D strain tensor E (2.20)
reduces to the in-plane strain components:

E = Eαβ G
α ⊗Gβ , α, β = {1, 2} (5.1)

Eαβ =
1

2
(gαβ −Gαβ) (5.2)

referring to the contravariant base vectors Gα (α = 1, 2) of the undeformed con-
figuration. Correspondingly gα (α = 1, 2) denote the contravariant base vectors of
the deformed configuration. The strain tensor (5.1) is further split into in-plane and
out-of-plane contributions:

Eαβ = εαβ + ξ3 t καβ (5.3)

with εαβ representing membrane and (ξ3 t καβ) representing the bending effects in-
dependently. The membrane strains are given by:

εαβ =
1

2
(aαβ −Aαβ) (5.4)

aαβ = aα · aβ (5.5)

Aαβ = Aα ·Aβ (5.6)
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The bending strains are defined as:

καβ = Bαβ − bαβ (5.7)

bαβ = aα,β · a3 (5.8)

Bαβ = Aα,β ·A3 (5.9)

where ai and Ai (i = 1, 2, 3) denote the basis at location r and R, respectively and
where a3 and A3 are the unit normal vector of mid-surface in the deformed and
undeformed configurations, respectively, cf. Figure 5.1, and where καβ represents
the curvature of the shell mid-surface.
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Figure 5.1: Shell geometry description in undeformed and deformed configurations.

The strain relations are defined in the contravariant basis and a transformation to
the local Cartesian coordinate system is needed to apply the constitutive equations.
The local Cartesian basis of a shell body is specified with the basis vectors:

e1 =
G1

|G1|
(5.10)

e2 =
G2 − (G2 · e1)e1
|G2 − (G2 · e1)e1|

(5.11)

e3 = A3 (5.12)

With (5.10) to (5.12) the strain tensor in the local coordinate system follows as:

Ēγδ = Eαβ(eγ ·Gα)(Gβ · eδ), γ, δ = 1, 2 (5.13)

containing only in-plane strain components.
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The relation between stresses and strains is established with the constitutive equa-
tions in Voigt notation:





S̄11

S̄22

S̄12



 = Ĉ





Ē11

Ē22

2 Ē12



 (5.14)

where Sαβ denotes the stress tensor coefficients and Ĉ is the reduced material matrix
for plane stress problems [154]. Integration of the stress components over the shell
thickness provides the force and moment stress resultants n̄ and m̄, respectively,
written in Voigt notation as:





n̄11

n̄22

n̄12



 = t · Ĉ





ε̄11
ε̄22
2 ε̄12



 (5.15)





m̄11

m̄22

m̄12



 =
t3

12
· Ĉ





κ̄11

κ̄22

2 κ̄12



 (5.16)

In this thesis, laminate composite shells are modeled according to the classical lam-
ination theory [154] which specifies the through-thickness homogenized elasticity
properties with three matrices A, B, D:

A =
t

n

n
∑

k=1

Ĉortho
k (5.17)

B =
t2

n2

n
∑

k=1

Ĉortho
k

(

k − n+ 1

2

)

(5.18)

D =
t3

n3

n
∑

k=1

Ĉortho
k

[

(

k − n+ 1

2

)2

+
1

12

]

(5.19)

where n is the number of layers and where the material matrix Ĉortho
k is defined in

the local Cartesian reference coordinate system, representing orthotropic material
behavior. The matrices A and D represent the extensional and bending stiffness
matrices, respectively, and the B matrix represents the coupling of membrane and
bending actions and vanishes for symmetric stacking sequences. The membrane
forces and bending moments of the laminates are obtained as:





n̄11

n̄22

n̄12



 = A ·





ε̄11
ε̄22
2 ε̄12



+B ·





κ̄11

κ̄22

2 κ̄12



 (5.20)





m̄11

m̄22

m̄12



 = B ·





ε̄11
ε̄22
2 ε̄12



+D ·





κ̄11

κ̄22

2 κ̄12



 (5.21)
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5.1.1 Governing equations and isogeometric discretizations

Using the principle of virtual work, we obtain a variational form of the elasticity
problem satisfying the equilibrium:

W(u, δu) = WI(u, δu) +WE(u, δu) = 0 (5.22)

with the internal and external work integrals:

WI(u, δu) = −
∫

Ω

(n : δε+m : δκ) dA (5.23)

WE(u, δu) =

∫

Ω

p · δu dA+

∫

Γt

t0 · δu dS (5.24)

where dA denotes a differential element of the mid-surface area of the shell domain
and where correspondingly dS denotes a differential element of the domain boundary
and where δu, δε and δκ denotes the variation of displacements and strains, respec-
tively. Vector t0 denotes the traction per unit length along the Neumann boundary
Γt and p is the domain load per unit area on the mid-surface. At this position we
assume the boundary conditions, u = u0, along the Dirichlet boundary Γu to be
satisfied in a strong sense by the choice of adequate interpolation functions. A more
flexible weak enforcement is introduced and discussed in the following sub-section
5.2.

Following the concept of isogeometric analysis, the geometry and displacement field
of the mid-surface are discretized with the same NURBS basis functions as:

u =
∑

i

Ri Ui (5.25)

where Ui denotes the unknowns in terms of mid-surface control point displacements.

The first and second derivatives of the virtual work integrals with respect to the
introduced unknown displacement components of (5.25) provide the residual forces
and the shell stiffness, respectively:

R =

(

∂WI

∂Ur
+

∂WE

∂Ur

)

= fI + fE (5.26)

K = −
(

∂2WI

∂Ur∂Us
+

∂2WE

∂Ur∂Us

)

= KI +KE (5.27)

where

fI = −
∫

Ω

(

n :
∂ε

∂Ur
+m :

∂κ

∂Ur

)

dA (5.28)

fE =

∫

Ω

p · ∂u

∂Ur
dA+

∫

Γt

t0 ·
∂u

∂Ur
dS (5.29)
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and

KI =

∫

Ω

(

∂n

∂Us
:

∂ε

∂Ur
+ n :

∂2ε

∂Ur∂Us
+

∂m

∂Us
:

∂κ

∂Ur
+m :

∂2κ

∂Ur∂Us

)

dA

(5.30)

KE =

∫

Ω

∂p

∂Us
· ∂u

∂Ur
dA+

∫

Γt

∂t0
∂Us

· ∂u

∂Ur
dS (5.31)

The external work contribution KE is associated with the displacement-dependent
load and can be neglected when the load is constant. The partial derivatives of ε,
κ, n and m with respect to the displacement variables Ur and Us, respectively, is
provided in Appendix A.

Confining our discussion to linear elastostatics, the linear stiffness matrix reads:

K =

∫

Ω

(

∂n

∂Us
:

∂ε

∂Ur
+

∂m

∂Us
:

∂κ

∂Ur

)

dA (5.32)

The area element dA is calculated using:

dA =
√

|Aαβ |dξ1dξ2 (5.33)

The differential boundary element dS in (5.24) is found accordingly as the line
increment.

5.2 Weakly enforced essential boundary conditions

The essential boundary conditions of the isogeometric Kirchhoff-Love shell are ex-
pressed in terms of mid-surface displacements u and rotations Φ, respectively:

u− u0 = 0 x ∈ Γu (5.34)

Φ−Φ0 = 0 x ∈ Γθ (5.35)

where a subscript 0 denotes prescribed values, and where Φ = a3 −A3 denotes the
angle between the deformed and the undeformed shell configuration. The domain
boundaries Γu and Γθ denote the Dirichlet boundary of prescribed essential boundary
conditions. The total domain boundary Γ follows by unification with the Neumann
boundary Γt of prescribed natural boundary conditions such that Γ = Γu ∪ Γθ ∪ Γt

and (Γu ∪ Γθ) ∩ Γt = ∅.

5.2.1 Governing equations of the Nitsche extension

The basic idea of Nitsche [101] originally referred to the enforcement of essential
boundary conditions for the Poisson problem. The weak form (5.22) is extended
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variationally consistent considering flux terms along the Dirichlet boundary which
naturally derived from a weighted residual formulation satisfying the displacement
and rotational boundary conditions in an integral sense. Stabilization terms are
added to ensure the ellipticity of the original problem [217, 103]. The enforcement
of essential boundary conditions for solid elements in the framework of isogeometric
analysis is elaborately presented in [104]. For a detailed discussion of the consis-
tent derivation of the principle of virtual work which reveals the consistency terms
presented in the following we refer the reader to [218, 219].

Considering the Nitsche extension the equilibrium follows as:

WE(u, δu) +WI(u, δu)−WNIT (u, δu) = 0 (5.36)

where WNIT (u, δu) represents the work contributions of the Nitsche extension and
the corresponding stabilization terms.

In the following we split the Nitsche work expression into an internal and external
work contribution. For the internal work contribution follows:

WNIT
I = −

∫

Γu

δ
(

Nα + bαγM
γ
)

· u(α) dS −
∫

Γu

(

Nα + bαγM
γ
)

· δu(α) dS

−
∫

Γu

δ
(

Q+M(d),s

)

· u(3) dS −
∫

Γu

(

Q+M(d),s

)

· δu(3) dS

−
∫

Γθ

δM(t) · Φ(d) dS −
∫

Γθ

M(t) · δΦ(d) dS

+

∫

Γu

τS δu · u dS +

∫

Γθ

τS
t2

12
δΦ ·Φ dS (5.37)

+

∫

Γu

τN
(

d · δu
)(

u · d
)

dS +

∫

Γθ

τN
t2

12

(

d · δΦ
)(

Φ · d
)

dS

where the first six terms in (5.37) are the Nitsche-based consistency terms, where the
last four terms are stabilization terms, and where d is the in-plane normal vector
along the boundary Γ, cf. Figure 2.12(a), which is perpendicular to the normal
vector a3 of the shell surface, where dS denotes a differential line element of the
mid-surface shell boundary and where the term (Φ(d) = Φ · d) denotes the rotation
along the normal direction of the boundary. Further, the term (Nα + bαγM

γ) is the
effective membrane force, where (Q+M(d),s) is the effective shear force and where
(M(t)) is the bending moment in direction of the boundary normal d with:

Nα + bαγM
γ =

(

nβα + 2 bαγ mβγ
)

dβ (5.38)

Q = mαβ |α dβ (5.39)

M(d),s =
(

mαβ dα tβ
)

,s
(5.40)

M(t) = mαβ dα dβ (5.41)
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and

u = u(α) a
α + u(3) a3 (5.42)

u(α) = u · aα (5.43)

u(3) = u · a3 (5.44)

where the stress resultants nαβ and bending moments mαβ refer to the covariant
basis, and where (u(α), u(3)) represent the covariant displacement components ex-
pressed in the contravariant basis, where dα, tα are the covariant components of the
normal and tangent vector of the boundary Γ, and where a3 = a3. The term bαγ in
(5.38) represents the mixed components of surface’s second fundamental form which
is expressed as:

bαγ = aαβ bγβ (5.45)

Equation (5.39) represents the shear force where the vertical stroke before the sub-
script α denotes the covariant surface differentiation with respect to the curvilinear
coordinate ξα. The covariant derivatives of tensor and vector fields, respectively, are
expressed as:

mαβ |γ = mαβ
,γ + Γα

λγ mλβ + Γβ
λγ mαλ (5.46)

tα|β = tα,β − Γλ
αβ tλ (5.47)

where Γλ
αβ is the Christoffel symbol on a surface. For more details about equations

(5.38)-(5.47) we refer the reader to [220, 221]. Equation (5.40) represents the deriva-
tives of the twisting moment along the boundary, together with (5.39), they represent
the effective shear force. The subscript (·),s denotes the derivatives with respect to
the arc length along the boundary. Equation (5.40) can be further expressed as:

(

mαβ dα tβ
)

,s
=

(

mαβ dα tβ
)

,γ
tγ (5.48)

where the derivatives of the twisting moment with respect to the curvilinear coor-
dinates is written as:

(

mαβ dα tβ
)

,γ
= mαβ |γ dα tβ +mαβ dα|γ tβ +mαβ dα tβ|γ (5.49)

The first six consistency terms in (5.37) refer to the general form for linear Kirchhoff-
Love shell models. For shallow shell or plate models some of the terms simplify or
even vanish. For plates, equation (5.37) further simplifies since the out-of-plane
curvature is equal to zero. The stabilized terms presented in equations (5.37) and
(5.50) correspond to fully involved boundary conditions where both, displacements
and rotations in all directions, are constrained. For partial constraints considering
only part of the displacements or rotations, terms are dropped, correspondingly.
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The external work integral of the Nitsche contribution is:

WNIT
E = −

∫

Γu

δ
(

Nα + bαγM
γ
)

· u0(α) dS −
∫

Γu

δ
(

Q+M(d),s

)

· u0(3) dS

−
∫

Γθ

δM(t) · Φ0(d) dS

+

∫

Γu

τS δu · u0 dS +

∫

Γθ

τS
t2

12
δΦ ·Φ0 dS (5.50)

+

∫

Γu

τN
(

d · δu
)(

u0 · d
)

dS +

∫

Γθ

τN
t2

12

(

d · δΦ
)(

Φ0 · d
)

dS

in which u0 = {u0(α), u0(3)} and Φ0 = {Φ0(t),Φ0(d), 0} represent the prescribed
displacements and rotations along the Dirichlet boundary. The extensions (5.37)
and (5.50) used in our framework applies two terms for stabilization. Without
stabilization the formulation remains variationally consistent but coercivity is lost,
i.e. the system stiffness matrix becomes singular [96]. A penalty-like stabilization
with a free parameter τS is used to counteract the singular system of equations. In
[104, 113] the use of an additional stability term with a free parameter τN , acting
towards the normal part of the interface traction, is motivated from an expansion
of the constitutive relation.

For optimal convergence properties we choose τS and τN proportional to the material
properties, here the Lamé constants λ and ν and inversely proportional to the ele-
ment diameter h. Two remaining constants CS and CN , respectively, are influenced
by the polynomial degree of the applied approximation space [222, 217]:

τS = CS(p)
ν

h
(5.51)

τN = CN (p)
λ

h
(5.52)

Sufficiently large values for CS and CN ensure non-singularity of the governing equa-
tions and the aspired positive definiteness of the corresponding coefficient matrix.

The constants CS and CN can be bounded explicitly by the consideration of dis-
crete trace inequalities [223]. Alternatively, reliable values can be determined self-
controlled by the partial solution of an eigenvalue problem for the largest eigenvalue
which gives a suitable value for a stable computation scheme [104, 113]. In [113] it
was shown that optimal choices for CS and CN , optimal in terms of optimal con-
vergence properties, exist. Beside this optimal values a wide range of values can be
chosen empirically without significantly compromising the accuracy of the solution
which is the preferred approach pursued in the following examples. For the moderate
polynomial values used in the examples of section 5.4 and section 5.5 these values
are typically of order O(1).
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5.2.2 Discretization aspects

The internal work integrals (5.37) and (5.50) of the Nitsche extension contribute to
the stiffness matrix and load vector of the governing system of equations, respec-
tively. Following the discretization of the elastic shell in section 5.1.1, the additional
stiffness and load contributions of the Nitsche terms extend the algebraic equations:

(

KINT
rs −KNIT

rs −KNIT
sr +KSTB

rs

)

ur = fEXT
r − fNIT

r + fSTB
r (5.53)

where (KINT
rs ur) and fEXT

r denote the internal elastic and external forces of the
standard shell problem. The matrix KNIT

rs , its transpose KNIT
sr and the vector

fNIT
r refer to the stiffness and load contributions of the consistency terms, respec-
tively. The quantities KSTB

rs and fSTB
r are the contributions used to stabilize the

formulation. Both the total number of equations and the symmetry properties are
retained by the additional contributions. The matrix and vector coefficients of the
discrete equations follow from the partial derivatives of equations (5.37) and (5.50)
with respect to the displacement degrees of freedom in analogy to (5.30).

The discretized form of the consistency and stabilization terms of equations (5.37)
follow as:

KNIT
rs =

∫

Γu

∂
(

Nα + bαγM
γ
)

∂Ur
· ∂u(α)

∂Us
dS +

∫

Γu

∂
(

Q+M(ν),s

)

∂Ur
· ∂u(3)

∂Us
dS

+

∫

Γθ

∂M(t)

∂Ur
· ∂Φ(ν)

∂Us
dS (5.54)

KSTB
rs =

∫

Γu

τS
∂u

∂Ur
· ∂u

∂Us
dS +

∫

Γθ

τS
t2

12

∂Φ

∂Ur
· ∂Φ

∂Us
dS (5.55)

+

∫

Γu

τN
(

d · ∂u

∂Ur

)( ∂u

∂Us
· d

)

dS +

∫

Γθ

τN
t2

12

(

d · ∂Φ

∂Ur

)( ∂Φ

∂Us
· d

)

dS

The transposed consistency term KNIT
sr follows in analogy to (5.54).

The vector contributions of the consistency and stability terms of the Nitsche ex-
tension are computed according to:

fNIT
r =

∫

Γu

∂
(

Nα + bαγM
γ
)

∂Ur
· u0(α) dS +

∫

Γu

∂
(

Q+M(d),s

)

∂Ur
· u0(3) dS

+

∫

Γθ

∂M(t)

∂Ur
· Φ0(d) dS (5.56)

fSTB
r =

∫

Γu

τS
∂u

∂Ur
· u0 dS +

∫

Γθ

τS
t2

12

∂Φ

∂Ur
·Φ0 dS (5.57)

+

∫

Γu

τN
(

d · ∂u

∂Ur

)(

u0 · d
)

dS +

∫

Γθ

τN
t2

12

(

d · ∂Φ

∂Ur

)(

Φ0 · d
)

dS
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where the partial derivatives with respect to Ur follow from linearization at u = 0:

∂
(

Nα + bαγM
γ
)

∂Ur

∣

∣

∣

∣

u=0

=
(

nβα
,r + 2 bαγ mβγ

,r

)

dβ (5.58)

∂M(d),s

∂Ur

∣

∣

∣

∣

u=0

=
(

(

mαβ |γ
)

,r
dα tβ +mαβ

,r dα|γ tβ +mαβ
,r dα tβ|γ

)

tγ

(5.59)

∂Q

∂Ur

∣

∣

∣

∣

u=0

=
(

(mαβ
,α ),r + Γα

λαm
λβ
,r + Γβ

λαm
αλ
,r

)

dβ (5.60)

∂M(t)

∂Ur

∣

∣

∣

∣

u=0

= mαβ
,r dα dβ (5.61)

The derivatives and covariant derivatives of the stress resultants nαβ , the bending
moments mαβ can be found in Appendix A. The covariant derivatives of the nor-
mal and tangential vector components dα and tα for boundary fitted NURBS shell
patches can be first expanded according to equation (5.47). Then, the derivatives
dα,γ and tα,γ follow the same way as the derivatives of surface normal vector a3.
This issue is revisited and discussed in section 5.2.3 for trimmed NURBS bound-
aries. The derivatives are evaluated coefficient-wise and will assemble to a strain
interpolation matrix with three columns representing ndof contributions according
to in-plane forces in directions (α1, α2) and according to shear forces in direction of
the normal a3, with ndof being the number of discrete element equations.

5.2.3 Treatment of trimmed boundaries

In general, the trimming curves C(θ) and the trimmed surface x(ξ, η) have inde-
pendent parameterizations (θ) and (ξ, η) for which, in general, no simple analytical
relation can be found. As a consequence, special attention must be given to the
derivatives of the normal and tangent vector d and t, respectively, along the domain
boundary. These derivatives are required when essential boundary conditions are
satisfied weakly with the proposed Nitsche approach (5.37)-(5.50).
The covariant derivatives of dα|γ and tβ|γ used in (5.59) can be expressed as:

dα|γ = dα,γ − Γλ
αγdλ (5.62)

tβ|γ = tβ,γ − Γλ
βγtλ (5.63)

where dλ and tλ can be computed based on the trimming curve C(θ) and the base
vectors of the underlying shell surface x(ξ, η) and where the derivatives dα,γ and
tβ,γ are:

dα,γ = (d ·Aα),γ = d,γ ·Aα + d ·Aα,γ (5.64)

tβ,γ = (t ·Aβ),γ = t,γ ·Aβ + t ·Aβ,γ (5.65)
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with

t̂ =

(

∂C
∂θ

)

(5.66)

t̂,γ =

(

∂C
∂θ

)

,γ

=
∂2C
∂θ2

∂θ

∂γ
(5.67)

and where

∂θ

∂γ
=

1

t̂ ·Aγ
(5.68)

We use a hat symbol to indicate that the tangential and normal vectors used in
(5.66)-(5.70) are no longer of unit length and require normalization to be used in
(5.64) and (5.65).
The normal vector along the trimmed boundary is constructed as:

d̂ = t̂×A3 = A1(t̂ ·A2)−A2(t̂ ·A1) (5.69)

with the derivative

d̂,γ = A1,γ

(

t̂ ·A2

)

+A1

(

t̂,γ ·A2 + t̂ ·A2,γ

)

−A2,γ

(

t̂ ·A1

)

−A2

(

t̂,γ ·A1 + t̂ ·A1,γ

)

(5.70)

5.3 Weakly enforced coupling constraints

Following the Nitsche extension for the weak enforcement of essential boundary
conditions a modified formulation can be obtained to enforce coupling constraints
between patches. The extension to a weak coupling method becomes straightforward
when considering the interface of the coupled domains to be mutually influencing
boundaries [113], cf. Figure 5.2. The displacement continuity and force compatibility

Гu

Гt

Ω(1)

Ω(2)

u = u0

t0
σ
(1)d(1)

σ
(2)d(2)

Г ∩

Figure 5.2: Computational domain of multiple patches.
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conditions at the coupling interface of the two mutually influencing domains are:

u(1) − u(2) = 0 on Γ∪ (5.71)

σ(1) d(1) + σ(2) d(2) = 0 on Γ∪ (5.72)

where the superscripts (·)(1),(2) refer to the two coupling domains and where (σ d)
is the traction along the coupling interface Γ∪. The governing equations of the
principal of virtual work (5.22) are extended according to 5.36. Notwithstanding the
formulation for essential boundary conditions, the Nitsche term WNIT contributes
only to the internal work since the external work contributions cancel out.

For a pure Kirchhoff-Love patch coupling, the consistency terms of the Nitsche
extension reads:

WNIT
cs = −

∫

Γ∪

δ{Nα + bαγM
γ} · {u(α)} dS −

∫

Γ∪

{Nα + bαγM
γ} · δ{u(α)} dS

−
∫

Γ∪

δ{Q+M(d),s} · {u(3)} dS −
∫

Γ∪

{Q+M(d),s} · δ{u(3)} dS

−
∫

Γ∪

δ{M(t)} · {Φ(d)} dS −
∫

Γ∪

{M(t)} · δ{Φ(d)} dS (5.73)

The stability terms of weak coupling extension are reformulated in terms of displace-
ments of the mid surface u and the normal vector a3 as:

WNIT
st =

∫

Γ∪

τS t δ{u} · {u} dS +

∫

Γ∪

τS
t3

12
δ{Φ} · {Φ} dS (5.74)

+

∫

Γ∪

τN t
(

d · δ{u}
)(

{u} · d
)

dS +

∫

Γ∪

τN
t3

12

(

d · δ{Φ}
)(

{Φ} · d
)

dS

where the terms in brackets are defined as follows:

{Nα + bαγM
γ} := β

(

Nα + bαγM
γ
)(1)

+ (1− β)
(

Nα + bαγM
γ
)(2)

(5.75)

{Q+M(d),s} := β
(

Q+M(d),s

)(1)
+ (1− β)

(

Q+M(d),s

)(2)
(5.76)

{M(t)} := βM
(1)
(t) + (1− β)M

(2)
(t) (5.77)

{u} := u(1) − u(2) (5.78)

{Φ} :=
(

a
(1)
3 − a

(2)
3

)

−
(

A
(1)
3 −A

(2)
3

)

(5.79)

The discretization of the consistency and stabilization terms of the coupling con-
straint follows in analogy to section 5.2.2. The value of β in (5.75) - (5.77) decides
the contribution of each of the two coupled domains, Ω(1) and Ω(2), to enforce the
traction compatibility condition. In the extreme cases β = {0, 1} the condition is
fully shifted to one of the participating domains, leaving the kinematic conditions
(5.78) and (5.79) untouched. When not stated differently we use the setting β = 0.5.
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5.4 Numerical examples: weak boundary condi-

tions

We selected two benchmark problems to demonstrate the performance of the pro-
posed method. The first example is the benchmark problem of Scordelis and Lo
[224] to assess the convergence behaviour of our method. This problem is discretized
boundary fitted. With the second example of an embedded, simply supported cir-
cular plate we introduce the finite cell method to overcome the trimming problem
of CAD-derived models.

5.4.1 Scordelis-Lo shell problem

Using the Scordelis-Lo benchmark problems we tested the performance of our method
with regard to the convergence behaviour [225] for an untrimmed NURBS shell struc-
ture. The geometry, the boundary conditions and the material properties of the shell
model are given in Figure 5.3(a). The roof structure has rigid diaphragms at the
curved boundaries, zero traction boundary conditions along the free edges and is
subjected to a gravity load. Due to its symmetry, only a quarter of the geometry
was modeled as depicted in Figure 5.3(b). The convergence of the deflection at the

symsym

uy= uz =0 xy
z

φ

E =

ν =

R =

L =

t = 0.25 mm

50.0 mm

25.0 mm

0.0

4.32 e + 8 N / mm2

= 80°

ρ = 7850.0 kg / m3

10.0 m / s2G =

(a) shell structure (b) quarter analysis model

free

Figure 5.3: Scordelis-Lo problem: problem definition (a), applied boundary condi-
tions (b).

midpoint of the free edge (point A) is shown in Figure 5.4 for a uniform h-refinement.
For both polynomial degrees, cubic and quartic, we observed fast convergence to a
value of u = 0.30059 which corresponds to the value reported in [2]. In Figure 5.5
we show the convergence behavior in terms of the relative error in strain energy.
An ad-hoc choice of CN = CS = 30 was used and kept constant throughout the re-
finement steps which revealed an overall cubic rate. A reference strain energy value
was obtained from extrapolation on the basis of the three most refined solutions of
a uniform mesh refinement as proposed in [226].
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Figure 5.5: Scordelis-Lo problem: convergence for uniform mesh refinement – strain
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5.4.2 Bending of an embedded circular plate

With the following example we studied a circular plate of radius R which was em-
bedded within a rectangular area. The geometry and material properties are shown
in the Figure 5.6. The plate is subjected to uniform pressure p̄ = 1.0N/mm2, and
simply supported along the circular boundary. Due to symmetry, only a quarter of
the plate was modeled. All boundary conditions were enforced weakly at the true
physical domain boundary Γ.

An analytical reference solution for the plate deflection was taken from [227]:

u = − p̄ (R2 − r2)

64D

(

5 + ν

1 + ν
R2 − r2

)

(5.80)
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Figure 5.6: Geometry description of a simply supported circular plate embedded
within a square domain.

where

D =
Eh3

12(1− ν2)
(5.81)

The embedding domain was discretized with 8 × 8 elements of polynomial degree
p = q = 3. The finite cell method used to account for the trimmed area requires inte-
gration of the governing equations inside the physical domain Ωphys and the fictitious
extension domain Ωfict [114]. We used the composed integration of the equations as
it was introduced in section 2.3, cf. Figure 5.6. A quadtree depth ofm = 4 was found
to be sufficient for an accurate integration over the two domains, Ωphys and Ωfict.
Constants CS = CN = 40 were chosen empirically to stabilize sufficiently the anal-
ysis. The convergence behavior for uniform h-refinement is depicted in Figure 5.7.
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Figure 5.7: Circular plate: convergence for uniform mesh refinement.

The analysis results showed some dependency on the accuracy of the element-wise
integration of the elasticity equations. The completely embedded domain boundary
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was integrated with much higher accuracy for the Nitsche terms than for the domain
integrals of the stiffness terms. For a higher resolution of this integration approach
the quality of the analysis results will slightly increase at a much higher computa-
tional cost, see [104]. We think that the resolution used is a fair trade-off between
accuracy and acceptable integration effort. Exact integration could be introduced
by an element-wise use of the blending function method restricted to the numerical
integration and without affecting the chosen approximation space as shown in [228].

In Figure 5.8(a) we show the deflection of the plate model and in Figure 5.8(b)
we show the corresponding absolute error. For the cubic p-degree used the error
distribution of the displacements is smooth and shows two peaks with a maximal
error of roughly 0.001%.

(a) deflection (b) error

e = |u−uh|D
p̄R4

Figure 5.8: Circular plate: plate deflection (a) and absolute error (b).

We tested the error performance for a varying stability value CS , where we set
CN = CS , cf. Figure 5.9. The graph, Figure 5.9, shows the typical behavior with
a peak indicating an optimal solution in terms of the error in strain energy. In
[104, 113, 105] the computation of a suitable value for the constants CS and CN

is documented. The computation of the values is based on a partial solution of a
generalized eigenvalue problem approximating the upper bounds of a corresponding
inequality typical for the estimation of the governing error bounds [223, 102]. Based
on these computations we chose all values empirically in the examples shown in this
manuscript.

5.5 Numerical examples: weak coupling constraints

In the following we reveal the overall performance of the proposed coupling approach
with a series of examples to demonstrate the strength of the method for shell struc-
tures in the isogeometric analysis framework.
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Figure 5.9: Circular plate: parameter study for stability value CS .

First, we introduce the basic behavior and the unique properties of a pure Kirchhoff-
Love patch coupling with two simple plate examples. In particular, we demonstrate
the capability of the method to overcome the problem of a ‘hinge-effect’ due to
the inherent C0-continuity along the patch interfaces. We show that the bending
moments are of the same quality as those for single patch models. Increasing com-
plexity is introduced with the coupling of curve-bounded patches which assemble to
the Scordelis-Lo benchmark problem. Then we select a Kirchhoff-Love shell patch
T-joint model to demonstrate the successful coupling of folds. Finally, we present
a joint tube problem to demonstrate the applicability of the proposed Nitsche ap-
proach for enforcing boundary conditions and coupling constraints in the complex
engineering related structures.

5.5.1 Plate bending – simply supported rectangular domain

A two patch rectangular plate model was chosen to study the behavior along a curved
coupling interface for pure bending. The geometry and the material properties of
the plate model are depicted in Figure 5.10. The plate of thickness t is simply
supported and subjected to a uniform pressure p̄. Each of the two NURBS patches
was discretized with 8×8 elements with polynomial degrees p = q = 4. We compare
the results of the coupled model with a single patch Kirchhoff-Love model of the same
polynomial order with 32× 16 elements. The vertical displacement is shown on the
deformed model in Figure 5.11(a). A comparison of the chosen discretization with
the analytical solution shows a relative error of ∼ 0.1% for the maximum deflection.
An overall impression of the quality of the bending moments is given exemplarily
in Figures 5.11(b),(c). Both, the bending moment mx and mxy, respectively, show
perfect smoothness of the solution field along the interface.

A representation of the bending moments mx and my along the curved NURBS
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Figure 5.10: Two-patch rectangular plate domain coupled along a curved NURBS
interface.
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Figure 5.11: Deformed two-patch model: vertical displacements (a), bending (b)
and twisting moment (c).

interface, cf. Figure 5.12, confirms the high accuracy of the results. Compared to an
even more refined single patch solution there is virtually no visible difference in the
solution quality. The patch coupling was stabilized using empirically chosen stability
constants CS = CN = 10. Smaller stability constants are possible and retained the
positive definiteness of the system matrix without influence on the quality of the
shown solution fields.

The convergence behavior of the coupled plate model is shown in Figure 5.13. The
depicted graphs, Figure 5.13, show the relative error in energy norm for a uniform
h-refinement for two different coupling interfaces, the NURBS interface, shown in
Figure 5.10, and a straight interface dividing the plate domain into two square
coupled patches. Both models show monotonic convergence with a rate equivalent
to the single patch solution for which the convergence curve was identical to the
straight interface solution.
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Figure 5.12: Plate bending: bending moments along the coupling interface.

h

B-spline

straight

10
0

re
l.

 e
rr

o
r 

in
 e

n
er

g
y

 n
o

rm

10
-1

10
-1

10
-2

3

10
-2

10
-3

10
-4

1

Figure 5.13: Convergence behavior of the simply supported plate.

5.5.2 Plate bending – cantilever plate

We choose a cantilever plate to demonstrate that the proposed approach is capable
of overcoming the problem of a hinge effect due to the C0-continuity along coupled
patch boundaries. We chose a straight interface to couple two B-spline patches for
this continuity test case. A strong, C0-continuous coupling for the current configura-
tion will fail since the hinge effect produces a kinematic system resulting in singular
governing equations. The geometry, boundary conditions and material properties
of the cantilever plate are depicted in Figure 5.14. The discretization was chosen
in analogy to the example given in 5.5.1. Values of CS and CN equal to 10 were
found to be sufficient to ensure a stable and accurate solution. We show the analysis
results for the moment stress resultants mx and my in Figure 5.15. All results show
complete smoothness of the corresponding solution fields. Discontinuities are absent
and the results do not show any hinge effect. This observation is supported by the
plot of the moment stress resultant along the diagonal from free to clamped end,
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shown in Figure 5.15(c).
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Figure 5.15: Two-patch cantilever plate model: plot of bending moments (a), (b),
and results along a diagonal from free to clamped end (c).

5.5.3 Scordelis-Lo roof

We tested the performance of the shell coupling approach using the Scordelis-Lo
benchmark [225, 224]. The geometry, the boundary conditions and the material
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properties of the shell model are given in Figure 5.16(a). The roof structure has
rigid diaphragms at the curved boundaries, free boundary conditions along the free
edges and is subjected to a gravity load. We used a composed patch assembly
consisting of three patches with curved coupling interface as depicted in Figure
5.16(b) to test for the accuracy of the coupled model. Sufficient convergence with a
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Figure 5.16: Scordelis-Lo problem: problem definition (a), three patch model (b).

relative error in energy norm below 1% was observed for a discretization with 36×6
elements for each of the patches with a polynomial degree p = 4 which resulted in
conforming patch interfaces. To account for non-conforming coupling we considered
a second coupled discretization with 18× 6 elements for the center patch. We used
empirically chosen values CS = CN = 20 for both models. The maximum vertical
displacement at the mid-point of the outer shell rim (point A, Figure 5.16(a)) exactly
met a reference value of uz = 0.3006mm. The bending moments along the curved
coupling interface are depicted in Figure 5.17. We show the results of the single
patch solution with 36×18 elements, and averaged values from two coupled patches
of the conforming and non-conforming model in Figure 5.17. A comparison of the
results shows virtually no difference in the solution results despite that we noticed
an insignificant loss in quality for m11 of the non-conforming model. In particular,
the solution is free of any discontinuity across the coupling interface as shown in
Figure 5.18.

5.5.4 Shell structures with folds – T-beam problem

So far we have concentrated on examples which are coupled in-plane as typically
required for large and complex multi-patch shell structures, however, in practical
applications different patches may meet at a specific angle other than zero leading
to a fold between the patches. In the following example such a shell fold is presented
with the example of a T-beam for which a 90◦ angle must be preserved during de-
formation. The geometry and material properties of the T-beam model are depicted
in Figure 5.19. The T-beam is clamped at one end and loaded with a point load at
the end of the flange of patch 1, both patches are modeled as Kirchhoff-Love shells.
The coupling interface for patch 2 is defined through-the-thickness of the shell patch
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Figure 5.18: Scordelis Lo: analysis results.

while for patch 1 the interface is a strip of width t parallel to its mid surface. The
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Figure 5.19: T-beam problem description.

base bar, patch 2, is discretized with 8 × 4 elements. For the flange, patch 1, we
consider two different discretizations. Model A consists of 8 × 3 elements whereas
model B consists of 8 × 4 elements, cf. Fig. 5.20. For the discretization model A
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the coupling interface strip of the base bar touches the flange elements centrically.
For the discretization model B the interface strip couples in each case three ele-
ments touching two flange elements along their element boundary. All patches use
a polynomial degree of p = q = 3. A value of 40 was empirically chosen for the sta-
bilization constants CN and CS which showed sufficient stability. We demonstrate
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Figure 5.20: Different mesh configurations: piecewise coupling of two and three
elements, respectively.

the convergence for the tip deflection of the two discretizations, model A and model
B, and compare their results with a finite element shell solution obtained from an
ABAQUS [187] analysis, see Figure 5.21. Uniform mesh refinement shows fast con-
vergence for the three depicted solutions. A marginal difference in the converged
solution is observed between discretization model A and the finite element reference
solution. The non-conforming discretization of model B, piecewise involving three
coupling elements, converges to a slightly higher value deviating by roughly 1.5%
from the reference solution. Next we will demonstrate our method’s capacity to
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Figure 5.21: T-beam analysis results: convergence of the tip deflection (a), final
configuration (b).
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retain the 90◦ angle between the coupled patches. The applied tip load induces a
bending and a torsional elastic response which requires an adequate corner stiffness.
We show the relative error of the coupling angle along the center line of the interface
strip in Figure 5.22. Between the length coordinate 0 ≤ L ≤ 15 we observe a relative
error close to zero. In the last quarter the error increases by one order of magnitude,
still providing an acceptable result for practical applications without significant con-
sequence for the tip deflection. A further element-wise increase of the stability value
in this last quarter by a value ∆ allows the method to be fully controlled. A value
of ∆ = 2 was sufficient for a reduction of the error into the prevalent range.
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Figure 5.22: Relative error of the 90◦ angle along the length of T-beam.

5.5.5 Pipe junction under pressure loading

Finally, the applicability of our approach for a complex geometry of practical rel-
evance is demonstrated. We consider in this example a junction of a pipe system.
The numerical model was derived from a CAD design which was assembled of three,
partially trimmed, NURBS-patches, cf. Figure 5.23. The connected pipes were as-
sumed to be of infinite length thus calling for symmetric boundary conditions at the
circumferential pipe boundaries. Symmetric boundary conditions were also applied
along the symmetry axis of the structure to account for considering only its sym-
metric part. Additional boundary conditions were introduced at the upper face of
the horizontal tube to prevent rigid body motions.

The three NURBS patches were discretized independently which resulted in non-
conforming meshes. The weakly enforced essential boundary conditions and coupling
constraints are depicted in Figure 5.23, indicated in blue and red, respectively, where
we also provide the geometry and material properties of the model. In Figure 5.24
we provide a detail view of the connector which was derived from a connector control
NURBS curve specified with the shown control net. The connector NURBS surface
around the circumference of the upper tube was created with a sweep along the
upper and lower model interfaces, indicated in red.

The coupling of the used three patch model results in a redundant area on the hor-
izontal pipe surface which we trimmed by introducing a fictitious domain according

101



Chapter 5

R1

R2

L

H1

H2

sym

sym

sym

R3

Trimmed

Patch 1 

Patch 2

P
a
tc

h
 3

 

x
y

z

o

coupling 
interface

coupling 
interface

E =

ν =

L =

H1 = 22.0 mm

60.0 mm

0.3

3. e + 6 N / mm2

t = 0.2 mm

H2 = 5.0 mm

R1 = 10.0 mm

R2 = 4.0 mm

R3 = 7.0 mm

(a) model (b) patches
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Figure 5.24: Front view of the connector and the boundary curve geometry repre-
sentations

to the finite cell method. For the composed integration of the governing equations of
the finite cell method we used a quadtree of tree depth four. As an alternative this
redundant area can be avoided by a split of the horizontal patch into three coupled
patches, each providing the topology of a quadrangle. We think that the applica-
tion of the finite cell method is the more elegant approach following very closely the
trimming principles of CAD software packages [143].

The tube is subjected to an inner pressure load of p̄ = 1.0N/mm2. For simplicity,
the values of CS and CN were set to a value of 30 for both the essential boundary
conditions and the coupling constraints. Patch 1 was discretized with 48 × 26 ele-

102



Analysis of multi-patch models for thin-walled structures

ments, patch 2 with 28× 24 elements and patch 3 with 24× 16 elements, cf. Figure
5.23(b). A p-degree p = 4 was chosen for all three NURBS patches. In Figure
5.25(a) we depict the deformed model as an overlay to the undeformed structure.
The deformed model is fully symmetric and has a smooth displacement field along
all constraint boundaries and interfaces. In Figure 5.25(b) we show that the von
Mises stresses are of the same quality as the displacement field. The stress distribu-
tion is free of any discontinuities and provides the expected higher order smoothness
according to the usual properties of isogeometric single patch analysis models with
strongly enforced essential boundary conditions. An equivalent solution quality was
observed for the moment stress resultants, depicted in Figure 5.26 and the normal
and shear stress resultants as shown in Figure 5.27. The only visible deviation from
a continuous smoothness of the solution was observed for the in-plane shear moment
m12, Figure 5.26(c), which we consider to be insignificant since the visible jump in
the moments is locally bounded and is not of influence for the overall response of
the complex structure. A comparison of the displacement field along the coupling

(a) displacements |u| (b) von Mises stress

Figure 5.25: Scaled displacement field (factor 2400) of the deformed structure and
von Mises stress distribution.

interfaces of the pipes is shown in Figure 5.28. The two solution show virtually
no difference. The ABAQUS reference solution was obtained with 13521 quadratic
Mindlin shell elements.

5.6 Summary

A variationally consistent extension for the weak enforcement of essential bound-
ary conditions and multi-patch coupling constraints of isogeometric Kirchhoff-Love
shells was presented in this chapter. We showed the fundamentals of the applied
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(a) bending moment m11 (b) bending moment m22 (c) shear moment m12

Figure 5.26: Moment bending and shear resultants.

(a) stress resultant n11 (b) stress resultant n22 (c) stress resultant n12

Figure 5.27: Normal and shear force resultants.

mathematical models and provided a corresponding discretization with regard to
the additional consistency and stabilization terms with NURBS. The trimming of
NURBS geometries was taken into account by the conceptual use of the finite cell
method.

For the enforcement of essential boundary conditions, we demonstrated the poten-
tial of the proposed approach with two benchmark tests revealing a high accuracy
of the results in combination with optimal convergence behavior. The method’s
performance was demonstrated using the Scordelis-Lo benchmark problem where
symmetry boundary conditions were directly applied to the shell boundary without
the need for additional control points inside the shell domain to ensure properly
enforced rotational boundary constraints. The problem of trimmed NURBS struc-
tures was addressed with a circular plate problem which was embedded in a square
analysis domain.

For the enforcement of coupling constraint, we demonstrated, with several examples,
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Figure 5.28: Displacements along the coupling interfaces – comparison with an
ABAQUS reference solution.

that a hinge effect for C0-continuous patch boundaries is completely removed using
the proposed weak coupling strategy and that bending moments are correctly trans-
ferred between adjacent patches. The presented examples showed highest smooth-
ness across the coupling interface for displacements and moment stress resultants in
the quality of single patch solutions. The example of a T-beam was chosen to demon-
strate the coupling approach for folded shell models where the angle of the fold must
be preserved. The results demonstrated a reliable and accurate coupling behavior
for different discretizations. Finally we used a pipe junction under inner pressure to
demonstrate the reliability and applicability of the method for engineering relevant
structures. The high quality of the solution in terms of displacements and moment
and force stress resultants confirmed the efficiency of the proposed method and the
potential for further developments. An inevitable stabilization of the weak boundary
and weak coupling method was ensured on the basis of ad-hoc choices for the two
free parameters to demonstrate its high robustness. None of the examples required
additional studies on optimal stability values to ensure a sufficiently high solution
quality.

We believe that the method has the potential to become a standard in the framework
of isogeometric analysis. The method shows a high degree of robustness, it fully re-
tains the basic and beneficial properties of higher order methods such as excellent
convergence behavior and increased per-degree-of-freedom accuracy. The combina-
tion of the finite cell method with the weak enforcement of essential boundary and
coupling constraints provides a highest level of flexibility in the modeling chain of
NURBS-based shell structures.
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Blending of multi-patch

composite shell models1

Three-dimensional continuum-like shell elements are computationally less efficient
compared to their geometry-reduced shell element counterparts but provide a sound
complete three-dimensional stress state. Despite the sophistication of geometry re-
duced shell models such as Kirchhoff-Love type shells or Reissner-Mindlin type shells,
a need still exists for a highly accurate three-dimensional stress state, at least in lo-
cally bounded domains. Edge effects in composite shells [53, 229], crack models
[230, 231] or the problem of delamination in laminated composites [201, 232] are
examples of where the failure model requires knowledge of an accurate stress state.
A blending of the two shell models, Kirchhoff-Love models and solid-like models
increases the computational efficiency for large scale models which require only a
locally bounded insight into the full three-dimensional stress state. The different
elements request a coupling which ensures continuous displacements and force equi-
librium at the interface. In [233, 234, 235], constraint equations are used to couple
models with different geometric dimensions and stress states. Alternatively, transi-
tion elements are used by a number of researchers to couple beam, plate and shell
elements with solid elements [236, 237, 238, 239].

In this chapter, Nitsche’s method is extended to the blended coupling of isogeometric
shell patches based on the theory of Kirchhoff-Love and solid-like continuum shells.
The solid-like shell element used in this chapter can be naturally derived from the
layerwise shell theory presented in chapter 3. We introduce an equivalent geometric
model definition, a mid-surface description, for both shell types which facilitates a
generalized and more flexible geometry modeling. The proposed approach further
allows the coupling of conforming and non-conforming patches with trimmed cou-

1This chapter is based on the paper “Y. Guo, M. Ruess, Nitsche’s method for a coupling of
isogeometric thin shells and blended shell structures, Computer Methods in Applied Mechanics

and Engineering, 284, 881-905, 2015”
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pling interfaces which greatly facilitates the modeling and analysis of a larger class
of structures in engineering and science.

This chapter is organized as follows: in section 6.1, a concise description of the
solid-like shell model is presented followed by the Nitsche’s extension for a blended
coupling of shell patches and followed by the approach used to determine suitable
stability constants. The performance of the proposed method is documented with
several numerical examples in section 6.2. Conclusions and main findings are drawn
in section 6.3.

6.1 Nitsche’s method for coupling constraints in

blended shell models

In a first step the principal strategy for the coupling of different shell lamina theories
is developed and tested for single layer shell structures. Nitsche’s method is used
to couple isotropic solid-like shell elements and Kirchhoff-Love elements. Using the
findings of single layer coupling the principle is extended in a second step to blended
multi-layer lamina models.

6.1.1 Isogeometric solid-like shells

The solid-like shell model for isotropic materials can be naturally derived from the
layerwise shell element of chapter 3. The differences are in the through-the-thickness
interpolation of displacement field and the constitutive equations. For composite
laminates, the continuity of transverse displacement field at ply interfaces is de-
creased to C0 to account for the balance of linear momentum of dissimilar layers, cf.
Figure 3.2, while for isotropic materials, the natural continuity of the used B-spline
is kept through the shell thickness. The governing equations and the correspond-
ing discretization of both, the solid-like shell element and layerwise shell element is
according to section 3.2.2.

6.1.2 Nitsche’s extension of coupling constraints

The extended principle of virtual work (5.36) is used to introduce the Nitsche work
contribution for the coupling of pure isotropic solid patches:

WNIT = −
∫

Γ∪

δ{Sd} · {u} da−
∫

Γ∪

δ{u} · {Sd} da+

∫

Γ∪

τS δ{u} · {u} da

+

∫

Γ∪

τN
(

d · δ{u}
)(

{u} · d
)

da (6.1)
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where d is the in-plane unit normal vector along the coupling interface Γ∪, in this
case is a 2D surface, where S denotes the stress tensor referred to the global coor-
dinate system, where τS and τN are stabilization parameters corresponding to the
shear and normal related components of the traction [104, 113], and:

{u} := u(1) − u(2) (6.2)

{Sd} := βS(1)d(1) + (1− β)S(2)d(2), β = [0, 1] (6.3)

The extension terms are expressed in terms of the unknown displacements of the
formulation and thus fully contribute to a modified stiffness matrix on the left hand
side of the discretized system of equations. The superscripts (·)(1),(2) refer to the
two coupling domains.

For the blended coupling, the weak enforcement of the coupling conditions extends
over the complete coupling interface, as illustrated in Figure 6.1. Integration of (6.1)
over the coupling interface between the solid and Kirchhoff-Love interface requires
the evaluation at integrations points in both domains. For the Kirchhoff-Love shell,
the assumption of a linear displacement field through the shell thickness is taken
into account. The consideration of transverse shear in the Kirchhoff-Love model
can either be taken into account by an assumed parabolic shear stress distribution
through the thickness or by a one-sided coupling as used here. For the former, the
transverse shear force is first obtained by using force and moment equilibrium equa-
tions of the shell, then, a parabolic shape distribution is assumed for the recovering
of the transverse shear stress. For the latter the parameter β of (6.3) is set to the
extreme values such that the compatibility condition is fully shifted to the solid
patch to adopt the three-dimensional stress state. The one-sided coupling results in
the following consistency terms:

WNIT
cs = −

∫

Γ∪

δ (Sd)
(solid) · {u} da−

∫

Γ∪

δ{u} · (Sd)
(solid)

da (6.4)

the stability terms for isotropic shells remain as introduced in (6.1). For the coupling
of laminated composite shells, the stability terms are introduced in subsection 6.1.3.

Discrete Kirchhoff-Love shell kinematics - blended coupling

The displacement field of the Kirchhoff-Love shell follows from the shell kinematics
introduced in section 5.1, and is assumed to be linear through the shell thickness:

u = u0 + ξ3 t (a3 −A3) (6.5)

where we denote the mid-surface displacement of the Kirchhoff-Love shell with u0.
The derivatives of u with respect to the displacement variables Ur follow as:

u,r = u0
,r + ξ3 ta3,r (6.6)
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Figure 6.1: Illustration of the weak coupling of Kirchhoff-Love and solid-like shell
patches.

where A3 is independent of Ur and therefore vanishes in the above equation. The
derivatives u0

,r provide the interpolation rule for the components of the linear strain
operator B. The derivatives a3,r are calculated according to Appendix A.

6.1.3 Blended coupling of composite laminates: evaluation of

stabilization constants

In general, the coupling extension (5.36) for isotropic materials in our framework
applies two terms for stabilization, τS and τN , to counteract the singular system
of equations. For optimal convergence properties, the choice of τS and τN should
be proportional to the material properties, here the Lamé constants λ and ν [208],
inversely proportional to the element diameter h and in dependence of the constants
CS , CN which depend on the polynomial degree of the applied approximation space
[222, 217], cf. (5.51) and (5.52). The constants CS and CN can be bounded explic-
itly by the consideration of discrete trace inequalities [240]. Alternatively, reliable
values of CS and CN can be determined by the partial solution of an eigenvalue
problem for the largest eigenvalue which provides a suitable estimate for a stable
computation scheme [104, 113]. For laminate composite shell structures the split
according to Lamé constants introduces an unnecessary complexity which is avoided
in the following by a simplified approach which replaces the computation of CS and
CN by the computation of τS only. The example of sub-section 6.2.4 show that for
materials values used in engineering this stabilization is sufficient to ensure optimal
convergence properties. The eigenvalue problem used to compute adequate stability
constants is presented in the following. First, the case of pure thin laminate com-
posites is considered and second the blended formulation is taken into consideration.

110



Blending of multi-patch composite shell models

Thin shell patches

The stabilization terms of equation (5.74) are modified in the following:

WNIT
st =

∫

Γ∪

αu δ{u} · {u} da+

∫

Γ∪

αθ δΦ ·Φ da (6.7)

where αu and αθ refer to the stabilization parameters of the displacements and
rotations of shell’s midsurface, respectively.

According to the generalized inverse estimates [241], there exist mesh-dependent
positive constants CF and CM such that the boundary reactions of the two coupled
shell patches are bounded by the strain energy of the two boundary domains in the
form:

‖ {F} ‖2Γ∪
≤ CF (W(1)

I (u, δu) +W(2)
I (u, δu)) (6.8)

‖ {M(t)} ‖2Γ∪
≤ CM (W(1)

I (u, δu) +W(2)
I (u, δu)) (6.9)

where the expresion ‖ · ‖ denotes L2-norm of a vector or a quantity, the subscript
signifies the integration domain, and a bracket {·} denotes the two mutually influ-
encing coupling domains defined according to (5.75)-(5.77). The term F is the force
vector assembled from the effective in-plane membrane force Nα + bαγM

γ and the
effective transverse shear force Q+M(d),s.

Making use of Young’s inequality, a lower bound of the inner work enriched with
Nitsche terms can be obtained (see [241, 113]) and the coercivity of the formulation
is ensured when α(∗) > 2C(∗), where the constants C(∗) are chosen as the largest
eigenvalue of the generalized eigenvalue problem which is defined in consideration of
(6.8) and (6.9), respectively:

A(∗)u = λ(∗) Bu (6.10)

where matrix B of the two coupled domains is defined as:

B =

2
∑

k=1

∫

Ωk

(

∂n

∂Us
:

∂ε

∂Ur
+

∂m

∂Us
:

∂κ

∂Ur

)

dA (6.11)

and A(∗) is defined in accordance to the L2-norm defintion:

A =

∫

Γ∪

[

AF
]T

AF da (6.12)

A =

∫

Γ∪

[

AM
]T

AM da (6.13)
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with

AF =













· · · β
(

N1 + b1γM
γ
)(1)

,i
· · · · · · (1− β)

(

N1 + b1γM
γ
)(2)

,j
· · ·

· · · β
(

N2 + b2γM
γ
)(1)

,i
· · · · · · (1− β)

(

N2 + b2γM
γ
)(2)

,j
· · ·

· · · β
(

Q+M(d),s

)(1)

,i
· · · · · · (1− β)

(

Q+M(d),s

)(2)

,j
· · ·













(6.14)

AM =
[

· · · βM
(1)
(t),i · · · · · · (1− β)M

(2)
(t),j · · ·

]

(6.15)

in which, without specific notification it is assumed that, β = 0.5, and that the
derivatives (Nα + bαγM

γ),i, (Q + M(d),s),i and M(t),i are linearized at u = 0 cf.
(5.58)-(5.61).

Blended shell patches

For the blended coupling of laminated composite shell patches, a single-sided cou-
pling has proven to be a sufficient stable and accurate approach for the engineering
problems considered in this thesis. For a single-sided coupling the parameter β
takes the extreme values 0 or 1, respectively, so that the coupling conditions are
fully shifted to the layerwise patch. In this case, the stabilization terms of Nitsche’s
extension (6.1) are:

WNIT
st =

∫

Γ∪

α δ{u} · {u} da (6.16)

where the stability parameter α is estimated using (6.10). Again, it is assumed
that there exist mesh-dependent positive constants CL such that the L2-norm of the
boundary reactions of the layerwise patch is bounded by the strain energy:

‖ (Sd)
(solid) ‖2Γ∪

≤ CL

∫

Ω

(S : δE)
(solid)

dΩ (6.17)

The matrices A and B read:

A =

∫

Γ∪

(Sd)
T
(Sd) da (6.18)

B =

∫

Ω

(S : δE)
(solid)

dΩ (6.19)

where the coercivity of the blended coupling formulation is ensured when α > CL,
and the constant CL is chosen as the largest eigenvalue of the generalized eigenvalue
problem. One may refer to [113] for more details of the estimation of stabilization
parameters for solid patch coupling.
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6.2 Numerical examples

In the following, several numerical studies are presented for the blended coupling of
shell patches with different mathematical models, namely the Kirchhoff-Love shell
and a 3D-solid or layerwise shell [78, 232]. Such a blended coupling will allow us to
obtain a more accurate insight into the complete state of stress at selected locations
of interest within larger multi-patch structures.

6.2.1 Consideration of refined patches – pinched cylinder prob-

lem

In the following example of a pinched cylinder we turn to blended shell structures
and study the options for simple model refinement using a locally bounded solid
patch around the loading zone. The geometry, boundary conditions and the mate-
rial properties for this problem are depicted in Figure 6.2. The cylinder is supported
by rigid diaphragms at both ends and subjected to a pair of concentrated opposing
unit forces F . As the cylinder is symmetric we modeled only half of the cylinder
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Figure 6.2: Pinched cylinder problem: (a) geometry, material properties and bound-
ary conditions, (b) multi-patch analysis model.

which is assembled from three NURBS patches. The patches are coupled in radial
direction along straight interfaces and symmetry boundary conditions are applied
along the symmetry boundary. We avoid a further model reduction along the re-
maining symmetry axes to allow visual inspection of the symmetry properties of the
analysis results. Furthermore, a locally more bounded refinement area is avoided
to keep the number of patches to a minimum and to avoid sharp patch corners or
trimmed patches which would require additional extensions and modifications of
the presented theory. The discretization of the outer patches consists of 10 × 37
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elements. The refined inner solid patch of smaller dimension was discretized with
18× 37× 1 elements. The results were compared to a three patches pure Kirchhoff-
Love model with equivalent discretization. The polynomial degree was kept constant
for all patches of the two models at p1 = p2 = 4. This degree was also chosen for the
through-thickness direction of the solid-like patch. The empirically chosen stability
values were chosen to be CS = CN = 20 for both, the pure Kirchhoff-Love shell
coupling and the blended coupling.

In Figure 6.3 we show the convergence of the displacements under a unit point load
and compare the result with a reference value of 1.8248 × 10−5 provided in [225].
Both models converge with two refinement steps, starting from the initial minimal
NURBS-patch configurations, to the reference value. Both solutions overshoot in-
significantly as already reported in [72]. A considerable difference in the number

uz

15000

1.5×10-5

D.O.F.

Kirchhoff-Love Coupling

Blended Coupling

1000050000 20000

1.0×10-5

5.0×10-6

2.0×10-5

Figure 6.3: Pinched cylinder problem: convergence of the displacements.

of degrees of freedom is attributed to the different mathematical models used for
the center patch, namely two geometry-reduced Kirchhoff-Love patches and a 3D
thin solid model. This difference again supports the attempt to couple various shell
models for an optimal performance trade off in terms of computational effort and
expected accuracy. The total displacements of the shell are shown at the deformed
model in Figure 6.4 with virtually no visible difference in quality. In Figure 6.5 we
depict a cut of the solid patch through the point load location showing the trans-
verse normal and transverse shear stress in full quality of the 3D elasticity theory.
The Kirchhoff-Love theory does not provide these stress quantities as part of the
mathematical model. In general they are retrieved in a post-processing step from
the 3D equilibrium equations, typically at a much lower quality since second and
third order derivatives of the displacement quantities are involved.

6.2.2 Blended coupling of Scordelis-Lo roof

We reconsider the Scordelis-Lo roof from sub-section 5.5.3 for a blended coupling
with refined solid boundary patches of the model. The middle patch, cf. Figure
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(a) KL–KL–KL (b) KL–solid–KL

Figure 6.4: Total displacement of pinched cylinder problem: three patch Kirchhoff-
Love (KL) model (a) and blended Kirchhoff-Love–solid model (b).

(a) s23 (b) s33

Figure 6.5: Pinched cylinder problem: transverse shear stress (a) transverse normal
stress (b).

5.16 (b), remains a Kirchhoff-Love patch. We have chosen this example to show
that the proposed method provides sufficient accurate stress results in the solid
refinement patch. The discretization follows sub-section 5.5.3 with a single quartic
element through thickness to model the solid-like patches. Again we compare our
solution with a single patch solution of equivalent discretization. For both models,
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Figure 6.6: Stress plot of blended coupled and single solid-like shell patch Scordelis-
Lo roof: (a) von Mises, (b) transverse shear stress σ13.

the pure Kirchhoff-Love model and the blended model, convergence in the energy
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norm under uniform k-refinement was observed. A reference value was obtained
from extrapolation of the three most refined solutions of a single patch model. A
comparison of the models reveal a difference in the modeling error expressed by
the relative error in energy norm. For the three patches Kirchhoff-Love model we
observed a relative error of ∼ 1.0% while the error of the blended model was at
∼ 5.0%.

In Figure 6.6 (a) we compare the von Mises stresses in the solid patch along the
free boundary with the corresponding single patch solution. In Figure 6.6 (b) the
accuracy of transverse shear stresses through the shell thickness are disclosed. Both
results, compared to the single patch solution, showed an equivalent accuracy and
smoothness. We noticed only a slight difference of the solution curves with a maxi-
mum deviation of roughly 5% which we consider to be an acceptable result.

6.2.3 Frequency analysis of a stringer stiffened shell panel

The example of a stringer stiffened shell panel is used to demonstrate the applica-
bility of the presented method for industry relevant structures, cf. Figure 6.7. The
surface of the panel was modeled with a solid-like shell patch while the stiffeners
were modeled as Kirchhoff-Love shell patches. The panel surface was discretized
with 16 × 16 × 1 elements and a quartic polynomial degree was chosen in the solid
shell in-plane directions and a quadratic degree was used in thickness direction. The
stringer stiffeners were discretized with 16× 26 elements, with a polynomial degree
p1 = p2 = 4. We used empirically chosen stability constants CS = CN = 80 to
ensure a reliable coupling between stiffener and shell surface. The frequency anal-
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Figure 6.7: Model of a stringer stiffened panel.

ysis was performed for a free and undamped system with a row-sum lumped mass
matrix. The mode shapes of the first three non-zero frequencies are shown in Figure
6.8. The mode shapes and the frequencies were verified using an ABAQUS reference
model. Our model reproduced the mode shapes of the reference solution with slightly
deviating frequencies which we attribute to the simplified cross-section modeling of
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the stringer stiffeners of the ABAQUS reference model. The first modes correspond-
ing to the smallest eigenvalues show torsion and bending of the significantly weaker
shell surface compared to the stiffeners. All modes depicted in Figure 6.8 show the
expected symmetry and asymmetry axes according to the symmetry in the patch
geometry.

(a) f = 3.131[Hz] (b) f = 4.113[Hz] (c) f = 8.710[Hz]

Figure 6.8: Stringer stiffened panel: mode shapes of lowest non-zero frequencies.

6.2.4 Laminated plate with hole: free edge analysis

In this example, the laminated composite plate with a centrally located hole of
section 3.4 is reconsidered. The plate was modeled with four layers with ply thickness
equals to tply = 0.125mm and with dimensions and material properties as given in
section 3.4. Material failure such as delamination is more likely to initiate around
the hole due to free edge effects, while the remaining domain is relatively resistant.
The blended patch concept was adopted here to capture the complete state of stress
around the hole. The plate was modeled as a Kirchhoff-Love patch using classical
lamina theory while a layerwise patch was used in the vicinity of the hole, cf. Figure
6.9 (a). Two different models were considered: the model depicted in Figure 6.9 (b)
uses three Kirchhoff-Love patches to describe exactly the geometry of the thin plate
domain. The three patches were discretized with 8×8 elements for patch 1 and 16×8
elements for patches 2 and 3, respectively. The model shown in Figure 6.9 (c) uses a
trimmed single patch with 17× 16 elements to represent the thin plate domain. All
Kirchhoff-Love patches use polynomial degrees p1 = p2 = 4. The layerwise model
patch around the hole was chosen with a radial dimension L1 = 2.5mm. Larger
values for L1 were used but did not show any effect on the solution quality. The
layerwise patch was discretized with 10 × 16 elements for model 6.9 (b) and with
11×16 elements for model 6.9 (c) and a polynomial degree p1 = p2 = 4 in the in-plane
direction. Through the thickness of the layerwise patch 4 and 8 elements of cubic
polynomial were considered, respectively. We compare the blended models with a
three-dimensional ABAQUS [187] finite element solution which was discretized with
20-node quadratic brick elements (C3D20R). The model data is summarized in
table 6.1, where IGA-BL(b)-4 and IGA-BL(c)-8 refer to the blended coupling model
shown in Figure 6.9 (b) and 6.9 (c) with 4 and 8 elements through the thickness,
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Figure 6.9: Blended coupling of laminated composite plate with hole: (a) model illus-
tration, (b) blended coupling model of layerwise shell with non-trimming Kirchhoff-
Love patches, (c) blended coupling of layerwise shell with trimmed Kirchhoff-Love
shell patch.

Table 6.1: Used model data: ABAQUS reference model and IGA blended coupling
model.

model no elements (p1, p2, p3)-degree no degrees of freedom

ABAQUS 50160 2, 2, 2 643077
IGA-BL(b)-4 4264 4, 4, 3 12792
IGA-BL(b)-8 5384 4, 4, 3 16152
IGA-BL(c)-4 4320 4, 4, 3 12960
IGA-BL(c)-8 5520 4, 4, 3 16560

A comparison of the transverse stresses along the circular hole of the three models is
shown in Figure 6.10. The stresses are evaluated in a distance of (r−R)/R = 0.001
around the circular hole and at the lower [90◦/0◦] interface which is opposite to
the previous example of section 3.4. We used one element through the thickness
of each layer to evaluate σz for the two blended coupling models IGA-BL(b)-4 and
IGA-BL(c)-4. For the evaluation of σxz and σyz, two elements per layer were used in
both models. It was observed that, the transverse stresses of both blended coupling
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models were in an overall good agreement with the reference ABAQUS solution
showing smooth stress curves, however, even for the more refined IGA-BL-8 model,
the number of elements and degrees of freedom of the IGA models are far less than
the ABAQUS models. It is also worth to note that the model refinement, in par-
ticular the doubling of elements through the thickness, results only in a moderate
increase (< 30%) of degrees of freedom which is attributed to the inherent overlap-
ping support of NURBS basis functions. In addition, using the finite cell method,
three coupled Kirchhoff-Love shell patches in Figure 6.9 (b) can be replaced with
single trimmed patch, which facilitates the modeling efforts on the one hand, while
on the other, the good agreement of the transverse stresses are maintained.
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Figure 6.10: Plate with hole - comparisons of transverse stresses with different mod-
els: (a) σz, (b) σxz, (c) σyz.

6.2.5 Stiffened cylinder panel with opening

The applicability of the proposed blended coupling approach is shown for a stiffened
cylinder panel with a circular opening. The geometry of the model is shown in
Figure 6.11 (a) where the thickness of the cylinder skin and the stiffeners are tskin =
0.5mm and tstiff = 0.1mm, respectively. The stacking sequence of the cylinder
is [90◦/0◦/90◦] with a 0◦ fiber angle parallel to the longitudinal direction of the
cylinder (ξ1). The two stiffeners have a [0◦/90◦]s stacking sequence with 0◦ and 90◦

fiber angles corresponding to the directions (ξ1) and (ξ2), respectively. The material
properties of the laminate were chosen according to the example of sub-section 3.4.
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The cylinder was subjected to an inner pressure load of p̄ = 1.0N/mm2. Symmetry
boundary conditions were applied along the longitudinal direction and along the
symmetry axis, shown with blue curves in Figure 6.11. In order to capture the three
dimensional stresses better around the free edge of the hole, we replaced a sub-
domain around the hole with a layerwise shell patch, cf. Figure 6.11 (b). The radial
patch dimension was chosen to be a2 = 5.0mm. The analysis model was assembled
from four patches: one cylinder, two stiffeners, and a layerwise patch. The cylinder
was trimmed around the hole to fit with the coupling boundary of the layerwise
patch. Equivalently, the crossing of the two stiffeners was modeled with a trimmed
cut-out, cf. Figure 6.11 (b). The layerwise patch was discretized with 19 × 32
elements in the in-plane direction with polynomial degrees p1 = p2 = 4. Through
the thickness of the cylinder, 3 elements with p3 = 3 and 6 elements with p3 = 2
were tested, respectively. The cylinder, the circular and longitudinal stiffeners were
discretized with 24×32, 16×2 and 16×2 elements, respectively, with p1 = p2 = 4. A
reference solution was obtained from an ABAQUS [187] model which used quadratic
brick (C3D20R) elements and shell elements (S8R). The details of the model data
are shown in table 6.2. The stabilization parameters of the Nitsche coupling were
derived from an element-wise solution of the generalized eigenvalue problem (6.10).
As demonstrated already in [104, 113] the computed stability values vary with the
physical domain share of the trimmed element. With a decreasing share of the
physical domain contributing to the element domain the stability values increase.
An empirically chosen threshold value for the stability values was set to

3
√
E(p+1)
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to prevent a degeneration of the formulation to a pure penalty approach. For the
circular cut elements the stability values were in the range between 8.0 × 105 and
7.8 × 106, and stayed below the threshold. A comparison of the transverse stresses

Table 6.2: Model data, stiffened panel: ABAQUS reference model and IGA blended
coupling model of cylinder with hole and stiffener problem.

model no elements (p1, p2, p3)-degree no degrees of freedom

ABAQUS 63151 2, 2, 2 811966
IGA-BL-3 2656 4, 4, 3 28584
IGA-BL-6 4480 4, 4, 2 28584

along the circular cut-out is shown for the two analysis models in Figure 6.12. The
depicted stress components were evaluated along the rim of the circular cut-out at
the [90◦/0◦] layer interface. In Figure 6.12 (a) and (b), respectively, the transverse
shear stress σ23 and the transverse normal stress σ33 of the IGA-BL-3 and IGA-BL-6
is shown. The comparison of the transverse shear stress σ23 with the significantly
more refined ABAQUS solution showed an overall good agreement of the two models.
In contrast, the transverse normal stress σ33 showed a significant discrepancy within
the domain between 0◦-40◦. The reason for this discrepancy can be attributed
to the model differences between the ABAQUS model and the IGA models. In
particular, the stiffeners were identified as the critical components, as demonstrated
in the following. The blended isogeometric model coupled the stiffeners to the mid-
surface according to the model properties of Kirchhoff-Love. the ABAQUS model
was a three-dimensional continuum model where the stiffeners were coupled to the
lower surface of the solid cylinder. Removing the stiffeners from both models clearly
revealed their influence. The IGA-solution for the unstiffened panel was in very
good agreement with the solution of the ABAQUS model as shown in Figure 6.13.
It is noteworthy that the total degrees-of-freedom of the ABAQUS reference model
was almost 30 times larger than the number of degrees-of-freedom for the blended
coupling model.

6.3 Summary

In this chapter, Nitsche’s method was used to couple thin shell patches and solid-like
shell patches within the isogeometric analysis framework. We presented a variation-
ally consistent extension of the principle of virtual work for blended shell models
assembled from Kirchhoff-Love and solid-like patches and extended to the coupling
of laminated composite shells. We revealed the method’s potential to enrich locally
Kirchhoff-Love models with solid sub-models to profit from the full three-dimensional
stress state in highest quality. Such blended models are of interest in engineering
practice and are of special relevance in e.g. the field of laminated composite struc-
tures. Using a blended pinched cylinder example we illustrated excellent properties
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in terms of convergence and accuracy of the results. A similar solution quality was
observed for a blended Scordelis-Lo model with smooth and accurate transverse
shear stresses. An inevitable stabilization of the weak coupling method was ensured
on the basis of ad-hoc choices for the two free parameters to demonstrate its high
robustness. None of the examples required additional studies on optimal stability
values to ensure a sufficiently high solution quality. Using a stringer stiffened panel,
a frequency analysis was performed to demonstrate the applicability of the blended
coupling approach for different type of analysis.

For the blended coupling of laminated composite shell structures, a laminated plate
with hole and a stiffened cylinder panel were studied. The stabilization constants
needed to ensure ellipticity of the coupled problem were estimated using the element-
wise partial solution of an eigenvalue problem. We revealed the accuracy of the
coupling method for the evaluation of curved free edge stresses around the hole.
Compared to a ABAQUS reference solution, the blended model needs far fewer
degrees-of-freedom than the reference while maintaining an overall equivalent quality
of the stress results.
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Conclusions and future work

7.1 Summary

The work presented in this thesis was aimed at improving the modeling and analysis
of thin-walled laminate composite structures in the framework of isogeometric meth-
ods. To this end two major aspects were highlighted throughout the thesis: under
the aspect of an efficient through-the-thickness modeling of laminate composites the
capacity of NURBS was considered and systematically tested, including linear stress,
ply interface and buckling analysis. Under the aspect of highly performant analyses
of engineering-relevant structures an essential part of the thesis was dedicated to
the coupling of thin-walled, trimmed multi-patch shell structures to offer a suitable
solution approach for one of the most prevalent challenges in isogeometric analysis.

The main developments and results are summarized as follows:

◦ a displacement-based isogeometric layerwise method for laminated compos-
ite was developed, tested and discussed. The method was able to capture
accurately transverse shear and normal stresses in laminate composite struc-
tures. In combination with the finite cell method the proposed layerwise model
handled efficiently trimmed NURBS geometries as they commonly appear in
CAD-derived models. The combined approach demonstrated a highest degree
of flexibility in terms of modeling and provided highly accurate stress compo-
nents, even along free and trimmed edges.

◦ in comparison with equivalent-single-layer methods the layerwise approach pro-
vided the complete three-dimensional stress state, excels by a highest level of
accuracy but is computationally more expensive. Therefore, a focus of this
thesis was the combination of the two methods to profit from both, a com-
putationally efficient, flexible analysis model for laminate composites and a
model which allows insight into the complete state of stresses in critical, locally
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bounded sub-domains. A strong coupling on the basis of boundary degrees of
freedom of adjacent sub-domains was chosen for the analysis of cylindrical
bending states of laminate composite plates. It was shown that a small layer-
wise sub-domain was sufficient to receive transverse shear and normal stresses
with high accuracy. The method was further extended to a model pre-existing
delamination.

◦ the layerwise approach was applied to linear buckling analyses of delaminated
laminates. Physically inadmissible buckling states of overlapping plies were
suppressed by a normal contact model which repaired the penetration problem
in a stepwise manner. Within a few iteration steps the physically meaningful
and relevant buckling states were recovered.

◦ the special importance of thin-walled structures in aerospace engineering was
also central to this thesis with regard to flexible, reliable and accurate NURBS
modeling. Thin-walled structures are often modeled as Kirchhoff-Love-type
thin-shells which manifold profit from the higher continuity and higher or-
der approximation properties of NURBS in the isogeometric framework. A
Nitsche-type extension to a rotation-free Kirchhoff-Love shell model was de-
veloped which satisfies essential boundary condition weakly. Thus, the non-
interpolatory NURBS and trimmed-domain boundary was handled indepen-
dent of the domain interpolation. Both, constrained translatory and rotational
kinematics were reliably enforced without the need for additional degrees of
freedom.

◦ the Nitsche formulation used to enforce essential boundary conditions weakly
was extended to a coupling scheme for multi-patch shell models. The inter-
polation character of NURBS does not provide the indispensable continuity
properties of the Kirchhoff-Love theory across patch interfaces with severe
consequences for the kinematics and statics of strongly coupled shell struc-
tures. The developed coupling approach overcame these problems satisfying
both, continuity and compatibility conditions, in an integral sense. With a
carefully chosen stabilization approach the coupling method retained the alge-
braic properties of single-patch problems and provided the overall smoothness
properties of NURBS across the interface without showing any discontinuity
in displacements and stresses.

◦ a blended coupling of Kirchhoff-Love-type and solid-type shell patches used
the weak coupling idea to allow a local enrichment of thin-shell models with
stress components equivalent to a three-dimensional continuum shell theory. In
particular, the blended coupling was a necessary step for a multi-lamina-model
shell coupling including classical lamination theory and a layerwise theory to
combine computational efficiency and highest model accuracy in regions of
interest.

The developments presented in this thesis were tested with benchmark problems
and with problems of practical relevance from engineering practice. A major aspect
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considered in all tests was the performance of the development in terms of accuracy
and reliability and in terms of convergence properties and modeling flexibility. The
main findings and conclusions can be summarized as follows:

◦ in equivalent-single-layer methods, the strain field is assumed to be continuous
through the thickness which results in a discontinuous stress field at the layer
interface. In contrast, the proposed isogeometric layerwise method uses C0-
continuous B-spline functions through the thickness to account for the material
discontinuities at ply interfaces and allows for a significantly more accurate
representation of the complete stress state. Knot-insertion was found to be a
simple mechanism to control the required continuity property at the ply level.
The presented test results confirmed the superiority of the NURBS functions
compared to a standard Lagrange basis with regard to convergence of the stress
components to the analytical reference solution.

◦ the finite cell method, used to model trimmed domains, significantly reduced
model complexity and prevented the need for a domain reparametrization to
capture parametrically the desired solution domain. The test results revealed
accurate displacement and stress results at the ply interface along trimmed
edges. A comparison of transverse stresses with a classical finite element model
confirmed the efficiency and accuracy of the proposed method. A similar so-
lution quality was observed for an IGA model size of almost one order of
magnitude fewer degrees of freedom.

◦ The mutual influence domain of the different models was tested using the
strong coupling of equivalent single layer and layerwise patches. The study
provided the dimensions of the layerwise patch needed to provide stress results
which are sufficiently close to a given analytic reference solution. The coupling
approach was extended to investigate laminates with pre-existing delamina-
tions. A layerwise model with delamination was easily obtained by (p+1)-fold
knot insertion at the layer interface to generate discontinuous displacements.

◦ linear buckling was studied with several multi-patch models for laminated com-
posite plate-like structures with pre-existing delamination zones showing good
convergence of the buckling load under uniform p-refinement. It was further
demonstrated that a contact algorithm can be successfully used to repair step-
wise inadmissible buckling states with overlapping plies. Several benchmark
problems demonstrated that the approach is capable to reproduce reliably the
finite-element reference solutions reported in literature, even for multiple de-
laminated plies. A detailed study on the influence of size and position of the
delamination zone with regard to the final buckling load and buckling shape
revealed the basic model sensitivity.

◦ the weak enforcement of essential boundary conditions and coupling constraints
was demonstrated with several examples. The Nitsche formulation is variation-
ally consistent but requires a penalty-like stabilization to ensure coercivity. For
optimal convergence properties the stability parameters were chosen propor-
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tional to the material properties and element diameter. A remaining constant
in the stability parameters, which depend on the order of applied approxima-
tion space was approximated by the partial solution of a generalized eigenvalue
problem. It was further shown in the majority of examples that in many cases
a wide range for an empirical selection of this constant exists which ensures
optimal convergence rates.

◦ for the presented shell problems we showed highest smoothness and continu-
ity across the coupling interfaces in terms of displacements and, in particular,
in terms of stresses. The weak coupling approach for Kirchhoff-Love shells
considered in addition transverse shear stresses which ensured kinematic com-
patibility and which removed completely a hinge effect among C0-continuous
coupled patches. The bending moments and stress resultants of all examples
showed highest smoothness across the coupling interface. In addition, the cou-
pling approach was successfully applied to folded shell problems and retained
accurately the angle of the fold during deformation. The applicability of the
Nitsche approach to reliably enforce boundary and coupling constraints was
illustrated with a stress analysis of a trimmed, non-conforming multi-patch
pipe problem and a frequency analysis for a stringer stiffened panes for which
in both cases excellent results were achieved.

◦ using the example of a trimmed multi-model laminated plate with a hole and a
stiffened cylinder with a hole, the practical relevance for aerospace engineering
problems was demonstrated. In a comparison with a finite element reference
solution the developed multi-patch and multi-model modeling and analysis
platform outperformed the reference model on a degree-of-freedom basis with
comparable analysis results

Isogeometric analysis has been proven, throughout the thesis, that it is a suitable
competitor to the well-established finite element method in terms of accuracy and
convergence properties. It outperforms finite element solutions in many respects, in
particular, where the high-order continuity and high-order approximation proper-
ties become dominant as demonstrated for the multi-patch analysis of thin shells.
Still, a limiting factor exists in terms of modeling of large-scale multi-patch models
including non-conforming discretizations and trimming. This thesis was intended
as a contribution to relax the modeling difficulties of isogeometric analysis and to
contribute to a better and more flexible modeling pipeline for the future. Further-
more, the thesis sheds light on the applicability of isogeometric analysis for laminate
composite models in aerospace engineering and beyond.

7.2 Future work

The modeling aspects of isogeometric analysis were found to be a major challenge
and is a problem that requests more attention in the future to provide a competitive
analysis framework for industry relevant models compared to established methods.
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Modeling aspects also dominated the work of this thesis which provided functional
solutions and suitable directions for further development. Based on the developments
discussed in this thesis the following topics would prove very interesting for future
research.

Geometric nonlinear deformation and buckling of shell structures

The developments discussed in this thesis concentrated on problems of linear elastic-
ity, however, geometric nonlinearity is central to thin shell problems and should be
addressed with regard to the presented weak coupling approach. One of the major
challenges of the weak coupling formulation for nonlinear problems is the derivation
and implementation of the covariant derivatives of the corresponding moment and
force stress resultants of the shell. Compared to the linear case, a consistent cou-
pling extension results in a much larger number of additional terms which depend
on current deformation state. The results of a first study presented here revealed
stable and accurate numerical properties as demonstrated below.

A simple benchmark problem of a two-patch plate model subjected to an end shear
force was studied. To keep the example simple the coupling interface was chosen
to be a straight line and the coupled patches were conforming. The geometry de-
scription and material properties are shown in Figure 7.1. Both, the residual forces
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Figure 7.1: Cantilever plate problem under large deformation.

(5.26) and corresponding stiffness contributions (5.27) and the coupling extensions
(5.73) depend nonlinearly on the current displacement state and are linearized for
a stepwise iterative Newton-Raphson solution. A discretization of 16 × 2 elements
with cubic basis functions is used in this example. In Figure 7.2, the horizontal
and vertical tip deflection of cantilever plate are plotted against the shear force and
compared with the reference solutions [242]. The predicted deflection is in very good
agreement with the reference solution. The solution converged within 5-7 iterations
per step.

Using a geometric nonlinear coupling formulation the nonlinear buckling behavior of
thin shells can be analysed. It is expected that the modeling of geometric imperfec-
tions especially will profit from the smoothness properties of NURBS representation,
and used in combination with the finite cell method, the modeling of holes and cut-
outs would be significantly facilitated.
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Damage prediction and propagation

Using the three-dimensional stress state provided by the layerwise approach and
utilized in the blended coupling the door is open for the prediction of damage in large-
scale models. In particular, the prediction of delamination is of major importance for
laminate composites, and this would profit from the proposed combined multi-model
approach. The existing framework can be easily extended to a cohesive zone model
which is capable of predicting the initiation and propagation of delamination within
a layerwise modeled sub-domain of large aerospace or wind energy wing models.
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Appendix A

Derivatives of Kirchhoff-Love

shell quantities w.r.t the

displacement variables

The derivatives of Kirchhoff-Love’s normal vector with respect to the displacement
variables Ur is written as:

a3,r =
â3,r · ā3 − â3 · ā3,r

ā23
(A.1)

with:

â3 = a1 × a2 (A.2)

â3,r = a1,r × a2 + a1 × a2,r (A.3)

ā3 = |a1 × a2| (A.4)

and:

ā3,r =
â3 · â3,r

ā3
(A.5)

The membrane strain is defined in equation (5.4), and its derivative w.r.t. displace-
ment variable Ur is:

εαβ,r =
∂εαβ
∂Ur

=
1

2
(aαβ −Aαβ),r =

1

2
aαβ,r =

1

2
(aα,r aβ + aα aβ,r)

(A.6)

where:

aα,r = Rr
,α ei (A.7)
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where Rr
,α is the first derivative of r-th shape function, and ei is the unit vector of

Cartesian grid.

The derivatives of the bending strains (5.7) w.r.t. displacement variables Ur are:

καβ,r = (Bαβ − bαβ),r = −bαβ,r = −(aα,β,r · a3 + aα,β · a3,r) (A.8)

where:

aα,β =
∑

i

Ri
,αβ ui (A.9)

aα,β,r = Rr
,αβ ei (A.10)

Similarly, the derivatives of the force and moment stress resultants w.r.t. displace-
ment variables are derived from equations (5.15), (5.16), (5.20) and (5.21).
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[113] M. Ruess, D. Schillinger, A. I. Özcan, and E. Rank. Weak coupling for isoge-
ometric analysis of non-matching and trimmed multi-patch geometries. Com-
puter Methods in Applied Mechanics and Engineering, 269:46–71, 2014.

[114] D. Schillinger, M.J. Borden, and H.K. Stolarski. Isogeometric collocation for
phase-field fracture models. Computer Methods in Applied Mechanics and
Engineering, 284:583–610, 2015.

[115] J.D. Foley, A. van Dam, S.K. Feiner, and Hughes J. Computer Graphics:
Principles and Practice 2nd Edition in C. Addison-Wesley, 1995.

[116] J. Kiendl, Y. Bazilevs, M.-C. Hsu, R. Wüchner, and K.-U. Bletzinger. Iso-
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[226] B.A. Szabó and I. Babuška. Finite element analysis. John Wiley & Sons, 1991.

[227] S. Timoshenko and S. Woinowsky-Krieger. Theory of plates and shells.
McGraw-Hill, 1959.

[228] L. Kudela. Highly accurate subcell integration in the context of the finite cell
method. Master’s thesis, Technische Universität München, München, 2013.

[229] J. Lindemann and W. Becker. Analysis of the free-edge effect in composite
laminates by the boundary finite element method. Mechanics of Composite
Materials, 36(3):207–214, 2000.

[230] P. Maimi, J.A. Mayugo, and P.P. Camanho. A three-dimensional damage
model for transversely isotropic composite laminates. Journal of composite
Materials, 42(25):2717–2745, 2008.

[231] P.P. Camanho, C.G. D’avila, S.T. Pinho, L. Iannucci, and P. Robinson. Pre-
diction of in situ strengths and matrix cracking in composites under transverse
tension and in-plane shear. Composites Part A: Applied Science and Manu-
facturing, 37:165–176, 2006.
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Y. Guo, A.P. Nagy, Z. Gürdal: “A layerwise theory for laminated composites in the
framework of isogeometric analysis.” Composite Structures, 107: 447-457, 2014

N. Xu, W. Tang, Y. Cheng, D. Bao, Y. Guo: “Modeling analysis and experimental
study for the friction of a ball screw.” Mechanism and Machine Theory, 87: 57-69,
2015

Conference papers/contributions:

Y. Guo, M. Ruess: “Isogeometric design and analysis framework for multi-patch
laminate composite shells.” Invited speaker at 3rd ECCOMAS Young Investigators
Conference, Aachen, Germany, July, 2015

Y. Guo, M. Ruess: “A lamina-theory-based model refinement approach for isoge-
ometric thin shells.” 3rd International Conference on Isogeometric Analysis, Trond-
heim, Norway, June, 2015

Y. Guo, M. Ruess: “Isogeometric weak coupling of shell structures.” 56th AIAA/
ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Kis-
simmee, USA, January, 2015

155



M. Ruess, Y. Guo: “Coupling and boundary constraints for a NURBS-based im-
mersed boundary approach.” 3rd International Workshop on Computational Engi-
neering, Stuttgart, Germany, October, 2014

Y. Guo, M. Ruess: “Weak coupling of thin isogeometric shell structures.” 17th En-
gineering Mechanics Symposium, Arnhem, The Netherlands, October, 2014 (poster)

S. Duckitt, Y. Guo, M. Ruess: “Isogeometric modeling of delamination of lam-
inated composite structures.” 27th Nordic Seminar on Computational Mechanics,
Stockholm, Sweden, October, 2014
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