BIO-COMPOSITES FROM FOOD WASTE

Exploring the impact of waste sourced fillers from the food industry on the functional and mechanical characteristics of biocomposites for the possible application as a façade product

LARA NEUHAUS

THE IDEA

WHY IS THAT RELEVANT?

Depletion of Fossil Resources

Construction Waste going to Landfills

Emission of Greenhouse-gases

Limited Renewable Resources

WHY IS THAT RELEVANT?

The benefit of using waste:

- spare materials from landfill
- save on carbon emissions on new materials
- conserve renewable material sources

HOW COULD WE DO IT?

Which waste could be used for building materials?

Which building-product could we make with it?

WASTE-STREAMS IN THE NETHERLANDS

WASTE-STREAM: TEXTILES

- fibres
- variety of waste streams/ materials

WASTE-STREAMS: AGRI-FOOD WASTE

- yearly ~9million tonnes
- bio-based
- various shapes/forms
- steady quantity and quality

HOW COULD WE DO IT?

Which Waste could be used for building materials?

Which building-product could we make with it?

COMPOSITE MATERIALS

BIO-COMPOSITES

BIO-COMPOSITES

BIO-PLASTIC MATRICES

Thermoplastics: (Polypropylene (PP), Polystyrene (PS), Polylactic acid (PLA), PHA, TPS etc.):

- Melt at high temperatures
- Can be remelted

Thermoset Resins: (Polyurethane (PU), Epoxy, Silicone, Furan Resin)

- Liquid Resin solidify at raised temperatures
- Resistant to higher temperatures
- Not re-meltable

NATURAL FIBRES

Short Fibres

Reed

Wheat Straw

FILLERS

Functional Fillers (<5wt%) used for:

- Colouring (pigments, colourants)
- Fire resistance (bromine, chlorine, borate and phosphorus)
- UV resistance (ultraviolet absorbers, stabilizers)
- Ease of processing (waxes, oils, clay, silica)
- Electric conductivity (metal powder, carbon particles)

Bulk Fillers (~40-60wt%):

- Calcium carbonate (mineral) from limestone, marble or seashells
- Kaolin (mineral) mined clay
- Alumina trihydrate and Calcium sulphate (mineral) - frequently used for their flame and smoke retarding properties and low cost

Bio-based alternatives?

- Wood flour
- Biochar
- Waste-Based Biomatter ???

BIO-COMPOSITES AS A SOLUTION?

Potentials:

- Potential for low embodied energy
- Avoiding fossil resources by going bio-based
- Highly engineerable
- Can include **small particles** (waste)
- New aesthetics and new design options

BOUNDARY CONDITIONS

Mono-filler (no fibre)

RESEARCH QUESTION

Partially Waste-Based

RESEARCH QUESTION

"HOW CAN WE INTEGRATE WASTE-BASED FILLERS INTO BIO-BASED COMPOSITE FAÇADE PANELS?"

THE WASTE

CRITERIA FOR WASTE STREAM SELECTION

Selection Criteria

- Locality (Local availability of processes that produce waste in the Netherlands)
- Usefulness of the waste-stream to other functions
- Ease of Processing (How much pre-processing is needed and how easy is it to handle?)
- Scalability (How much is available, could a stable material flow be established?)

20/06/2024 BIO-COMPOSITES FROM FOOD WASTE 21

THE SELECTION

1. Cacao-Shells, Raw

Source: Chocolate/Cocoa Industry

Current Uses: Soil Improver, Fuel Pellets

2. Cacao-Shells, Roasted

Source: Chocolate/Cocoa Industry

Current Uses: Soil Improver, Fuel Pellets

THE SELECTION

3. Spend Coffee Grounds

Source: Café Chains, Drinks and Dessert Industry

Current Uses: Composting, Biofuel

4. De-oiled Coffee Grounds

Source: Industrial Seller (caffe.inc)

Current Uses: Composting, Biofuel

THE SELECTION

5. Walnut Shells

Source: Bakery and Snack Industry

Current Uses: Incineration, Gardening

6. Cherry Pits

Source: Cultivator or Preserves/Jams Industry

Current Uses: Cosmetics, Incineration

THE APPLICATION

RAINSCREEN FAÇADE CLADDING

RAINSCREEN FAÇADE CLADDING

Exposure:

Requirements:

- Water/ Humidity resistance
- Ability to take wind-loads and selfweight
- Ability to withstand impacts (nature, human caused, weather related)
- Heat and UV resistance

THE PHASES OF EXPLORATION

1

Comparing
Waste sources
as Fillers

Which waste materials have potential as fillers and why?

2

Integration into Composite

How can we implement the filler in the best way?

3

Composite Façade panelling

How does the material perform as façade panelling?

EXPERIMENTS

BOUNDARY CONDITIONS

BOUNDARY CONDITIONS: MATRIX

Matrix Choice:

Furan Resin

- bio-based
- not biodegradable
- dark in colour
- heat resistant

BOUNDARY CONDITIONS: MANUFACTURING METHOD

Manufacturing Technique: Bulk compression moulding

PHASE 1A: COMPARING THE WASTE-FILLERS

Question to be answered:

Which waste materials work well as fillers in a bio-composite? How do the different materials compare?

Samples:

One plate of each filler type

Processing Method:

Compression moulding

Synthesis:

Fillers:

deoiled

roasted

raw cacao shells

walnut shells

cherry pits

Component	Description	Weight %
Resin	Furan resin	50
Filler	Powdered filler, <125 μm	45
Catalyst	HM1448 ((2-hydroxyethyl) ammonium nitrate)	3
Releasing Agent	Linseed oil	2

 $\mathbf{1}_{\mathsf{A}}$

spend coffee

PHASE 1A: COMPARING THE WASTE-FILLERS

Criteria of evaluation:

Mechanical and functional Properties (testing), Ease of material processing

Testing:

Synthesis:

Fillers:

deoiled

spend coffee

roasted

raw cacao shells

walnut shells

cherry pits

Component	Description	Weight %
Resin	Furan resin	50
Filler	Powdered filler, <125 μm	45
Catalyst	HM1448 ((2-hydroxyethyl) ammonium nitrate)	3
Releasing Agent	Linseed oil	2

1_A

SAMPLE PREPARATION

Step 3: Drying Filler Step 2: Sieving Filler Step 1: Milling Filler Step 5: Pressing compound Mixing ingredients Matrix

1_A

SAMPLE PREPARATION

Step 1: Milling Filler Material

Step 2: Sieving Filler

Step 3: Drying Filler

at Onpsp

1_A

SAMPLE PREPARATION

Step 4: Mixing

Step 5: Pressing

at Onpsp 1_A

SAMPLE PREPARATION

CNC-Cutting Samples

PHASE 1A - TESTING

3-Point Bending (ISO 14125A)

Charpy Impact test (ISO 179)

PHASE 1A - TESTING

Water Absorption

Frost Resistance

Time intervals:

Time intervals:

Surface Texture

deoiled coffee

spend coffee

raw cacao shells

walnut shells

Absorption

Visible change after 10 freeze cycles (right)

Mechanical Properties

 1_A

PHASE 1B: COMPARING THE WASTE-FILLERS

Question to be answered:

Which factors might influence filler compatibility? What causes bumps and cracks?

Possible cause of Bubbles and cracks?

- Inadequate mixing
- Inherent moisture
- Thermal expansion mismatch with the resin
- Dispersion problem leading to air pockets

 $\mathbf{1}_{\mathsf{B}}$

PHASE 1B - DENSITY

Measuring Material Volume/ Density

Filler	Average Measured Density [kg/m³]
Cacao, untreated	1070,1
Cacao, roasted	1100,0
Spend coffee grounds	1088,5
Deoiled coffee grounds	1117,3
Walnut shells	1469,6
Cherry pits	1145,1

Furan resin (TFC Biorez)	1210

Density $[kg/m^3] = W/(V_1-V_0)$

V₁: Volume water + filler; V₀: Volume water

Material	Density [kg/m³]
Calcium carbonate	2650- 2710
Kaolin	2500- 2620
Oak (hardwood)	890- 1080
Pine (softwood)	360- 440
Aluminium	2680- 2740
Steel	7800-7900

PHASE 1B - CONTACT ANGLE

Testing Contact Angle of the powdered Filler

PHASE 1B - FRACTURE PATTERNS

Failure mode:

Break patterns of high strength ceramics:

(top) Baudín & Bueno (2007); (bottom) Rizzante et al.(2020)

PHASE 1B - FRACTURE PATTERNS

Mixing problems

Cherry pits

Deoiled coffee

B

PHASE 1B - FRACTURE PATTERNS

<u>Surface smoothness</u>

Spend coffee

Raw cacao shells

1 B

PHASE 1B - POWDER

Different particle shapes and size composition

coffee spend, <500µm

walnut, <500μm

Findings:

- Fracture behaviour comparable to **ceramics**
- Different **grain shapes** for different fillers
- Bio-based fillers are much more lightweight than mineral fillers
- All powders reacted **hydrophobic**
- The least hydrophobic the better mechanical performance was
- Cracks and bumps most likely not caused by dispersion problems or mixing issues.

PHASE 2: COMPOSITION AND GRAIN SIZE

Question to be answered:

How to integrate the fillers best regarding grain size and filler ratio?

Criteria for Evaluation:

A balance between:

- Mechanical properties
- Waste content
- Processability

Tests:

Synthesis:

Fillers: Spend coffee, Walnut shells

GRAIN SIZE

Samples:

45wt% Filler <125µm (from Phase 1)

45wt% Filler <250μm >125μm 45wt% Filler <500μm >250μm 45wt% Filler Fuller Ratio blend_45

$A = 100 \times (d/D)^n$

A: sieve pass through [%] d: grain size D: biggest grain n: factor for grain shape (n=0.5 perfect sphere; n=0.4 pebbles; n=0.3 grit)

Walnut: n=0.35 Coffee: n=0.4

GRAIN SIZE - OUTCOME

Spend coffee

GRAIN SIZE - OUTCOME

60

Chosen grain sizes

Walnut: "blend"

Coffee: <125 µm

Sample plate	Bending strength [Mpa]	Stiffness [Gpa]	Impact res. [kJ/m²]
walnut_125_45 (P1)	58.71 (±8.37)	5.25	3.34 (±0.52)
walnut_250_45	49.96 (±3.88)	5.67	2.61 (±0.32)
walnut_500_45	41.70 (±2.02)	5.74	2.07 (±0.33)
walnut_blend_45	50.62 (±2.74)	5.23	2.26 (±0.45)
spent_coffee_125_45 (P1)	42.52 (±2.73)	4.12	2.35 (±0.47)
spent_coffee_250_45	33.23 (±3.11)	3.48	1.68 (±0.27)
spent_coffee_500_45	31.00 (±3.81)	3.64	1.79 (±0.46)
spent_coffee_blend_45	27.93 (±6.45)	3.42	1.41 (±0.12)

COMPOSITION

Samples:

35wt% Filler

45wt% Filler (from previous phase) 55wt% Filler

Grain sizes:

Walnut: "blend"

Coffee: <125 µm

COMPOSITION - PROCESS

Spend coffee (<125 µm)

Walnut shells (size blend)

COMPOSITION - OUTCOME

Spend coffee (<125 µm)

Walnut shells (size blend)

PHASE 2 - CONCLUSION

Best recipe

Walnut: mix_55%

- The mixed filler sizes worked out as expected
- Walnut shows more consistent results then coffee grounds

Sample plate	Bending strength [Mpa]	Stiffness [Gpa]	Impact res. [kJ/m²]
walnut_blend_35	35.01 (±3.06)	3.58	1.63 (±0.18)
walnut_blend_45	50.62 (±2.74)	5.23	2.26 (±0.45)
walnut_blend_55	48.98 (±2.49)	5.12	2.33 (±0.31)
spent_coffee_125_35	32.63 (±3.61)	2.98	2.18 (±0.45)
spent_coffee_125_45	42.52 (±2.73)	4.12	2.35 (±0.47)
spent_coffee_125_55	32.00 (±6.20)	3.97	1.53 (±0.32)

PHASE 3: APPLICATION AND DESIGN

Objectives:

- Comparison of the composite in an application
- Determine if structural optimisation is possible
- Illustrate design options

SUSTAINABILITY COMPARISON

SUSTAINABILITY COMPARISON

SUSTAINABILITY COMPARISON

Primary Production

Ingredient	Content [%]	Material Price [€]	CO2-eq [kg/kg]
Walnut Shells	55	(1.5)	-1.76
Furan Resin	41	3.2	2.13
Linseed Oil	2	6.14	2.69
Catalyst (HM1448)	2	10	1.18
Total	100	2.46	-0.02

Processing

Processing step	Emissions (Energy) [kg CO2-eq/ kg composite]
Milling	0.059
Drying	0.426
Kneading	0.021
Moulding	0.099
Total	0.605

CASE STUDY

CASE STUDY - OUTCOME

Comparison per Panel

CASE STUDY - OUTCOME

Facade **Thickness** Weight Material **GWP Panel** [kg] Price [kg [mm] [€] CO2-eq] 8.7 Bio-11 3.54 0.6 Composite 3.29 11.3 23.1 Aluminium 5.69 7.8 18.6 Steel Ceramic 5.18 2.8 10.5 Tile 3.84 22.3 6.5 Granite

Comparison per Panel

STRUCTURAL EFFICIENCY

STRUCTURAL EFFICIENCY

STRUCTURAL EFFICIENCY

3D Cross-section:

M_{max} = **0.102 kNm**Equivalent Rectangular Cross-section:

M_{max} = **0.0304 kNm**

DESIGNING - MACHINEABILITY

Machining

Moulding Rules

DESIGNING - CURVED SHAPES

PHASE 3 - CONCLUSION

DESIGNING - ALTERNTIVE USES

CONCLUSION

QUESTIONS?