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A B S T R A C T

In this paper, a micromechanical framework for modeling the rate-dependent response of unidirectional
composites subjected to off-axis loading is introduced. The model is intended for a thin slice representative
volume element that is oriented perpendicular to the reinforcement of the composite material. The testing
conditions from a uniaxial off-axis test are achieved by a dedicated strain-rate based arclength formulation. The
constraint equation of the arclength model is constructed such that the deformation state of the micromodel,
as imposed in its local coordinate system, corresponds to the strain-rate applied on the material in global frame
of reference. The kinematic description allows for finite strains in the material, meaning that the micromodel
changes orientation during the deformation process. This geometric nonlinear effect is also included in the
evaluation of external loading, ensuring that the external forces are equivalent to the applied off-axis stress
in global coordinate system. Several examples are considered in order to show that the model resolves
rate-dependency of the material, accounts for different off-axis loading, and captures finite strains exactly.
Additionally, a small strain version of the model is derived from the general nonlinear framework. Results
obtained with this simplified approach are compared to results of the large deformation framework.
1. Introduction

Continuous fiber reinforced composites are used in many load-
carrying applications where structural reliability is of great importance.
The ability to accurately predict the mechanical response of the mate-
rial for different loading scenarios is essential in the optimal process of
design and maintenance of those structures. In last decades the concept
of the Representative Volume Element (RVE) has been used frequently
to study the mechanics of heterogeneous materials on a scale of obser-
vation finer than the macroscopic scale. Several features of composite
materials have been investigated through such microscale simulations.
Melro et al. (2012) analyzed elastic properties of composites that differ
from the properties of the individual constituents. Van der Meer (2016)
compared the behavior of a homogenized orthotropic plasticity model
for fiber reinforced composites with that of an RVE with plastic matrix
and elastic fibers. Totry et al. (2008) calculated the strength of a
composite lamina for different loading scenarios. Rocha et al. (2017)
studied hygrothermal aging in laminated composites in a multiscale
FE2 framework. The in-situ effect in polymer composite laminates
has been investigated by Arteiro et al. (2014). Naya et al. (2017)
included environmental conditions, such as temperature and humidity,
in predicting stiffness and strength properties of one ply. In a multiscale
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approach, Govaert et al. (2001) modeled the rate-dependent off-axis
strength of unidirectional (UD) laminates.

Even though many features of UD composites can be studied on
two-dimensional (2D) RVE, modeling of stress states that arise in off-
axis testing requires formulation in 3D space because of the presence
of stress in fiber direction and longitudinal shear stress. The aim of this
work is to develop a micromechanical framework that accommodates
geometric and material nonlinear analysis of UD composites exposed
to uniaxial loading at a predefined strain-rate, with an arbitrary ori-
entation of the reinforcement with respect to the loading direction,
i.e., different off-axis angles. The framework is designed for the RVE
of a thin slice of fiber reinforced composite material that is oriented
perpendicular to the direction of the reinforcement. By using a thin
slice, excessive computational costs that would be associated with a full
3D RVE with geometric representation of the off-axis fibers are avoided.
The challenge addressed in this work is to satisfy the requirement that
the deformation and stress state of the RVE, in its local coordinate
frame, are equivalent to the state of the lamina in the global coordinate
system of the off-axis experiment. The exact solution to this problem
demands control over the update in nodal displacements of the RVE,
which determines the strain-rate in the global frame of reference. Also,
vailable online 11 May 2022
020-7683/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a
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it requires control over the external load level on the RVE, which is
related to the uniaxial stress state in the global frame. Because of the
requirement to simultaneously control both the displacements and the
load level in the analysis, an arclength control formulation is pursued.

Arclength control methods stem from the work of Wempner (1971)
and Riks (1972). In order to solve the problem of snap-back or snap-
through behavior that may arise in a structural analysis, Riks added
an auxiliary equation with a path following constraint to the existing
set of equations. This framework is versatile in the sense that an
arbitrary constraint can be defined. Initially the constraint equation
was mostly based on a proper geometrical combination of norms of the
nodal displacements and load increment. It was realized by De Borst
(1987) that the constraint equation which includes all nodal degrees
of freedom cannot be successfully applied to strain-softening problems,
but that specific degrees of freedom can be selected to control the
crack opening displacement. A more general solution that does not
require a priori information on where the localization will take place,
introduced by Gutiérrez (2004), is a constraint based on the global en-
ergy release rate in the framework of a geometrically linear continuum
damage model, which was foundation for the class of dissipation based
arclength models. This idea was later extended by Verhoosel et al.
(2009) to account for geometrically linear plasticity and geometrically
nonlinear damage. Van der Meer et al. (2010) extended the constraint
equation to account also for the presence of thermal strains in the
dissipation process. A common element among all mentioned arclength
formulations is that they work with a fixed unit load vector and a
predefined constraint equation. For off-axis loading at constant strain-
rate on an RVE, such unit force vector and constraint can also be
defined, depending on the mapping between local and global coor-
dinates. In geometric nonlinear context which is relevant for shear
loading of polymer composites, however, this mapping will change as
a consequence of deformations.

In this study a strain-rate based arclength model is proposed. The
constraint equation is constructed such that the deformation pattern
of the RVE satisfies that the strain-rate in the global loading direction
equals a prescribed value. To exactly capture the finite strains, the
orientation of the RVE is updated, followed by a change in the unit
force vector applied in the arclength method. Closed-form expressions
for the unit force components are derived.

In the next section, the formulation for the strain-rate based ar-
clength model is presented, first accounting for geometric nonlinear
effects in a general nonlinear framework, and then reduced to a small
strain version. After that, the Eindhoven Glassy Polymer (EGP) constitu-
tive law that is used for the bulk (matrix) part of the composite material
is introduced. Then a transversely isotropic material model is presented
to simulate the response of the reinforcement - in this study carbon
fibers. Subsequently the model is validated through examples on the
rate-dependent isotropic material (EGP) and the transversely isotropic
material. Eventually the off-axis response of a fiber reinforced compos-
ite material with thermoplastic matrix is simulated to demonstrate the
envisioned use case of the proposed model.

2. Formulation

2.1. Problem statement

A composite material with unidirectional reinforcement is subjected
to a constant strain-rate �̇�𝑦𝑦 at uniaxial stress conditions, Fig. 1(left).
The uniaxial loading will make the material undergo the deformation
shown in Fig. 1(middle). Finite strains are allowed to take place,
meaning that the local coordinate frame aligned with the fibers changes
orientation from the initial angle 𝜃0 to a new angle 𝜃1. Given the angle
𝜃1, transformation of the stress state from global to local frame of ref-
erence results in the Cauchy stress components shown in Fig. 1(right).
We aim to simulate this experiment with an RVE that is a 3D slice with
random fiber distribution and periodic boundary conditions (Van der
2

Meer, 2016), picked from the composite lamina, where one axis of the
RVE is aligned with the reinforcement direction, Fig. 2. The implemen-
tation of periodic boundary conditions is explained in the appendix.
Unlike a 2D RVE in the plane perpendicular to the fibers, the 3D slice
enables representation of the stress state that is encountered in the
off-axis loading of composites.

The kinematic relations between microscopic displacements and ho-
mogenized strain are calculated numerically, following displacements
of the master nodes of the RVE. Displacement components of the master
nodes not indicated in Fig. 2 are set to zero. Master node 0 is fixed
to prevent rigid-body translations. It should be noted that we are not
applying a macroscopic strain tensor on the RVE to define Dirichlet
boundary conditions, in which case rigid-body rotations would be a
priori prevented. Contrary to this, we are imposing forces on the RVE
as part of the arclength methodology. Hence, it is necessary to fix three
more degrees of freedom to prevent rigid-body rotations. Fixing master
node 1 in 𝒆2 and 𝒆3 directions ensures that the fibers remain oriented
in 𝒆1 direction. The vector 𝒆2 remains perpendicular to 𝒆1 and therefore
oes not necessarily stay parallel to the line between master nodes 0
nd 2.

The formulation of the model is derived such that the deformation
attern and stress state of the RVE in the local frame of reference are
quivalent to the global state of deformation and stress in the lamina,
ee Fig. 1. With the proposed model it is possible to analyze UD com-
osite systems on the microlevel, accounting for different orientations
f the reinforcement and a predefined strain-rate, while using the same
nitial geometry of the RVE. The derived model is valid for both tension
nd compression. Furthermore, the framework is independent of the
aterial model applied to represent nonlinear processes in the com-
osite constituents. Beside capturing the rate-dependent (visco-plastic)
ffects in the material, it is also possible to include damage mechanisms
n the RVE model. For example, a cohesive surface methodology or a
meared crack model can be applied to represent degradation in the
aterial. However, not all failure mechanisms may be represented by

he thin slice RVE. The case of fiber kinking or fiber pull-out would
equire a longer piece of material to capture longitudinal variations
n the fiber deformation and, therefore, cannot be simulated with the
roposed model.

In the following, the general nonlinear framework of the model is
ntroduced. Afterwards, the small strain version of the model that is
impler to implement is presented. In the numerical examples, the loss
n accuracy when using the small strain version will be assessed.

.2. Arclength control method

The discrete equilibrium equation of the RVE, in the absence of
racks and body forces, can be written in Voigt notation as follows:

𝛺
𝐁T(𝗮)𝝈(𝗮)𝑑𝛺 = ∫𝛤𝑡

𝐍T𝐭p𝑑𝛤 (1)

here 𝐁 is the strain - nodal displacement matrix, 𝝈 is the Cauchy
tress, 𝐍 is the shape function matrix, 𝐭p is the prescribed external
raction, and 𝗮 is the vector of nodal displacements. The left hand side
f this equation represents the internal nodal force vector 𝐟int, whereas
he right hand side stands for the external force vector 𝐟ext, leading to:

int(𝗮) = 𝐟ext(𝗮) (2)

n the light of the arclength control method, 𝐟ext is written as the
roduct of the load factor 𝜆 and the unit force vector 𝐟 :

ext(𝗮) = 𝜆𝐟 (𝗮) (3)

n the present case, the vector 𝐟 depends on the deformation state
nd, therefore, is a function of the nodal displacements. With periodic
oundary conditions implemented as linear constraints, the right hand
ide vector of Eq. (1) translates to a force vector with nonzero values
n the entries associated with the master nodes as shown in Fig. 2.
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Fig. 1. Strain-rate imposed on unidirectional composite material (left); deformed material due to uniaxial loading (middle); Cauchy stresses in local coordinate system (right).
Fig. 2. RVE with active displacements 𝑢𝑖𝑗 and applied unit force components 𝑓𝑖𝑗 on
master nodes 0, 1, 2, 3.

The system of Eqs. (2) consists of 𝑁 equations and counts 𝑁 + 1
unknowns (𝑁 nodal displacements plus the load factor 𝜆), rendering
the system indeterminate. In order to solve this issue, a path following
constraint equation is added, which in the general case has the form:

𝑔(𝗮, 𝜆, 𝜏) = 0 (4)

where 𝜏 is an arclength parameter that defines the calculation step
size. The combination of Eqs. (2)–(4) forms the augmented system of
equations:
[

𝐟int − 𝜆𝐟
𝑔

]

=
[

𝟎
0

]

(5)

This is solved for the unknown nodal displacements and the load factor
𝜆 following the linearized Newton–Raphson procedure:

⎡

⎢

⎢

⎣

𝐟int,𝑗 +
𝜕𝐟int
𝜕𝗮 𝑑𝗮𝑗+1 − 𝜆𝑗 𝐟 − 𝑑𝜆𝑗+1𝐟

𝑔𝑗 +
(

𝜕𝑔
𝜕𝗮

)T
𝑑𝗮𝑗+1 +

(

𝜕𝑔
𝜕𝜆

)

𝑑𝜆𝑗+1

⎤

⎥

⎥

⎦

=
[

𝟎
0

]

(6)

The solution at iteration 𝑗 + 1 is obtained by solving:
[

𝐊 −𝐟
𝐡T 𝑠

] [

𝑑𝗮𝑗+1
𝑑𝜆𝑗+1

]

=
[

𝟎
0

]

(7)

where the tangent stiffness of the system 𝐊, vector 𝐡 and scalar 𝑠 are
defined as:

𝐊 =
𝜕𝐟int
𝜕𝗮

,𝐡 =
𝜕𝑔
𝜕𝗮

, 𝑠 =
𝜕𝑔
𝜕𝜆

(8)

In this paper a two-stage solution procedure, first introduced
by Ramm (1981) and Crisfield (1982), and later elaborated by De Borst
et al. (2012), is used to update the unknown variables. At iteration 𝑗+1
3

the partial contributions to the nodal displacements are calculated as:

𝑑𝗮I
𝑗+1 = 𝐊−1𝐟

𝑑𝗮II
𝑗+1 = 𝐊−1𝐫𝑗

(9)

where 𝐫𝑗 is the residual force vector at iteration 𝑗. Eq. (9) is followed
by calculating an iterative increment to the load factor:

𝑑𝜆𝑗+1 = −
𝑔𝑗 + 𝐡T𝑑𝗮II

𝑗+1

𝑠 + 𝐡T𝑑𝗮I
𝑗+1

(10)

to finally get the total iterative contribution to the nodal displacements:

𝑑𝗮𝑗+1 = 𝑑𝜆𝑗+1𝑑𝗮
I
𝑗+1 + 𝑑𝗮II

𝑗+1 (11)

In Eq. (6) it is assumed that 𝜕𝐟∕𝜕𝗮 = 𝟎, while in the present case the
unit force vector does become a function of the deformation. In order
to keep optimal convergence, while avoiding further complications in
the formulation, the unit force vector 𝐟 is only updated at the beginning
of the time step, i.e.:

𝐟𝑛 = 𝐟 (𝗮𝑛−1) (12)

2.3. Arclength constraint equation

The constraint equation of the model is derived from a relation
between the RVE deformation gradient in the local coordinate system
�̄� and the deformation gradient of the UD composite material in the
global frame 𝐅. To this end, the RVE with periodic boundary conditions,
whose initial orientation with respect to the global 𝑥-axis defines the
angle 𝜃0, is picked from the composite lamina, see Fig. 3(left) for top
view and Fig. 2 for 3D view. Due to the applied loading, the initial
RVE denoted by the shape ‘‘a’’ will deform into the shape ‘‘b’’ defined
by the deformation gradient �̂� in the original local frame, Fig. 3(right).
The deformation gradient �̂� describes the exact same deformation as
the global deformation gradient 𝐅. The two are related through a
transformation operation as:

�̂� = 𝐐0𝐅𝐐T
0 (13)

where the transformation matrix 𝐐0 reads:

𝐐0 =
⎡

⎢

⎢

⎣

cos(𝜃0) sin(𝜃0) 0
− sin(𝜃0) cos(𝜃0) 0

0 0 1

⎤

⎥

⎥

⎦

(14)

A simulation performed on the RVE should resemble this actual defor-
mation state. In the actual state of shape ‘‘b’’ it can be observed that
the vector 𝒆1 that is tied to the RVE edge 0–1 rotates with an angle 𝜙.
However, inside the RVE, this rotation is by definition of the boundary
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Fig. 3. RVE picked from composite lamina such that one side is parallel to the reinforcement (left); deformed RVE present in simulation and actual state it is in due to the applied
loading (right).
conditions not described.1 In order to relate the homogenized stresses
n the RVE simulation to the stress in global frame, the magnitude
f the rotation 𝜙 needs to be determined from the RVE simulation.
his is achieved by considering that the RVE present in the simulation

s in shape ‘‘c’’, with deformation gradient �̄�, see Fig. 3(right). The
deformation gradient �̄� is then related to the actual state �̂� by a rigid
rotation:

�̂� = 𝐑(𝜙)�̄� (15)

where the rotation tensor 𝐑 has the following form:

𝐑 =
⎡

⎢

⎢

⎣

cos(𝜙) − sin(𝜙) 0
sin(𝜙) cos(𝜙) 0
0 0 1

⎤

⎥

⎥

⎦

(16)

With the imposed Dirichlet boundary conditions and active displace-
ments shown in Fig. 2, the homogenized deformation gradient of the
RVE is:

�̄� =
⎡

⎢

⎢

⎣

𝐹11 𝐹12 0
0 𝐹22 0
0 0 𝐹33

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

1 + 𝑢11
𝑙01

𝑢21
𝑙02

0

0 1 + 𝑢22
𝑙02

0

0 0 1 + 𝑢33
𝑙03

⎤

⎥

⎥

⎥

⎥

⎦

(17)

uch that 𝑢𝑖𝑗 is the displacement on master node 𝑖 in direction 𝑗,
hereas 𝑙0𝑖 is the initial length of the RVE in direction 𝑖.

Combining Eqs. (15) and (13) it is possible to relate 𝐅 to �̄� as:

= 𝐐T
0𝐑�̄�𝐐0 (18)

aking the fact that 𝐐T
0𝐑 = 𝐐T

1 , Eq. (18) can be rewritten as:

= 𝐐T
1 �̄�𝐐0 (19)

ere, the transformation matrix 𝐐1 depends on the angle 𝜃1 = 𝜃0 + 𝜙,
ee Fig. 3(right):

1 =
⎡

⎢

⎢

⎣

cos(𝜃1) sin(𝜃1) 0
− sin(𝜃1) cos(𝜃1) 0

0 0 1

⎤

⎥

⎥

⎦

(20)

he angle 𝜙 marks the change in orientation of the RVE with respect
o the global frame of reference from the angle 𝜃0 to the angle 𝜃1.
his change in the orientation stems from the finite deformation that

1 An assumption that the master node 2 does not move in the local direction
, while the node 1 moves in the direction 2, would result in different
xpressions for the RVE kinematics, but the overall simulation results would
e the same if a derivation similar to the one outlined here is followed.
4

Fig. 4. Deformed RVE present in simulation and actual state it is in due to the applied
loading on isotropic material.

the RVE undergoes, and is present also for an isotropic material: if
we consider from the tensile specimen a slice of material initially
aligned with an angle 𝜃0 unequal to 0◦ or 90◦, the orientation of
this slice will change as the material deforms, see Fig. 4. The shear
deformation of an orthotropic material under uniaxial loading further
contributes to this reorientation. In order to compute 𝜙 from �̄� we
make use of the knowledge on the deformation gradient 𝐅, which
has 𝐹𝑦𝑥 = 0. We assume that the experimental boundary conditions
are such that rotation of the specimen edges on which the stress is
applied is prevented, while relative transverse translation of these edges
is free. The specimen then deforms into the shape of the outermost
parallelogram shown in Fig. 3. With loading in 𝑦-direction, this implies
that the gradient of 𝑢𝑦 in 𝑥-direction is equal to zero, while the gradient
of 𝑢𝑥 in 𝑦-direction can take a nonzero value. Therefore, 𝐹𝑦𝑥 = 0 and 𝐅
has the following form:

𝐅 =
⎡

⎢

⎢

⎣

𝐹𝑥𝑥 𝐹𝑥𝑦 0
0 𝐹𝑦𝑦 0
0 0 𝐹𝑧𝑧

⎤

⎥

⎥

⎦

(21)

An expression for the angle 𝜙 is determined by equating the 𝐹𝑦𝑥

component of the global deformation gradient 𝐅 from Eq. (18) to zero.
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This condition leads to the following expression for 𝜙:

𝜙 = arctan

(

−𝐹11𝑐0𝑠0 + 𝐹12𝑠20 + 𝐹22𝑐0𝑠0
𝐹11𝑐20 − 𝐹12𝑐0𝑠0 + 𝐹22𝑠20

)

(22)

where 𝑠0 and 𝑐0 denote sin(𝜃0) and cos(𝜃0).
In order to derive the strain-rate based constraint equation, the

𝐹𝑦𝑦 component of the lamina deformation gradient 𝐅 is picked from
Eq. (19), and equated to the corresponding value imposed from the
input:

𝑔 = 0 ∶ 𝐹11𝑠0𝑠1 + 𝐹22𝑐0𝑐1 + 𝐹12𝑐0𝑠1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐹𝑦𝑦 calculated from RVE

− exp(𝜀𝑛−1𝑦𝑦 + �̇�𝑦𝑦𝛥𝑡)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐹𝑦𝑦 imposed from input

= 0 (23)

where 𝑠1 and 𝑐1 stand for sin(𝜃1) and cos(𝜃1), 𝜀𝑛−1𝑦𝑦 is the total strain in
the loading direction from last converged time step, �̇�𝑦𝑦 is the strain-
rate imposed in the analysis, and 𝛥𝑡 is the time increment. The 𝐹𝑦𝑦 term
imposed from the input derives from the true-strain definition in the
loading direction:

𝜀𝑦𝑦 = ln

(

𝑙0𝑦 + 𝑢𝑦𝑦
𝑙0𝑦

)

= ln(𝐹𝑦𝑦) (24)

n which 𝑙0𝑦 is the initial length of the lamina in the loading direction,
nd 𝑢𝑦𝑦 is the displacement in the same direction. The true strain in the
oading direction at the current time step is numerically represented as:

𝑛
𝑦𝑦 = 𝜀𝑛−1𝑦𝑦 + �̇�𝑦𝑦𝛥𝑡 (25)

hich after substitution in Eq. (24) yields:
𝑛
𝑦𝑦 = exp(𝜀𝑛−1𝑦𝑦 + �̇�𝑦𝑦𝛥𝑡) (26)

he term �̇�𝑦𝑦𝛥𝑡 plays the role of the arclength parameter in Eq. (4)
nd ensures that the deformation pattern of the RVE corresponds to
he global strain-rate imposed in the analysis.

By replacing the 𝐹𝑖𝑗 components in Eq. (23) with corresponding
xpressions from Eq. (17), the constraint equation 𝑔 = 0 is expressed in
erms of nodal displacements:

1 +
𝑢11
𝑙01

)

𝑠0𝑠1 +

(

1 +
𝑢22
𝑙02

)

𝑐0𝑐1 +
𝑢21
𝑙02

𝑐0𝑠1 − exp(𝜀𝑛−1𝑦𝑦 + �̇�𝑦𝑦𝛥𝑡) = 0 (27)

It is obvious that the equation does not depend on the load factor 𝜆.
Therefore:

𝑠 =
𝜕𝑔
𝜕𝜆

= 0 (28)

An assumption is introduced that the angle 𝜙 is calculated given the
deformation state from last converged time step. With this, it is true
within each time step that:
𝜕 cos(𝜃1)

𝜕𝗮
=

𝜕 sin(𝜃1)
𝜕𝗮

= 𝟎 (29)

his simplifies the linearization of the constraint equation with respect
o the displacements of the master nodes, such that:

T =
(

𝜕𝑔
𝜕𝗮

)T

=
[

0 0 0
⏟⏞⏞⏟⏞⏞⏟

node 0

𝑠0𝑠1∕𝑙01 0 0
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

node 1

𝑐0𝑠1∕𝑙02 𝑐0𝑐1∕𝑙02 0
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

node 2

0 0 0
⏟⏞⏞⏟⏞⏞⏟

node 3

]

(30)

2.4. Unit force vector

Another essential ingredient of every arclength control method is
the unit force vector 𝐟 . It is applied at nodes where the external force
level needs to be controlled. In the context of a uniaxial test, 𝐟 should
correspond to unit applied stress. Since the model aims at capturing
finite strains in the material, the relative magnitude of the forces
5

defined on the master nodes and the homogenized applied stress cannot
be set on the initial configuration of the RVE, in the sense of small strain
theory. The geometrically nonlinear effect on the unit force vector is
twofold. Firstly, the change in the initial geometry of the RVE from the
shape ‘‘a’’ to the shape ‘‘c’’, see Fig. 3, asks for an update in 𝐟 . Secondly,
the actual change in orientation of the RVE for the angle 𝜙 introduces
nother geometric effect to the unit force vector. With this in mind it
ecomes apparent that 𝐟 depends on the deformation state of the RVE,

and is a function of the nodal displacements.
The unit force vector is applied on the RVE such that the cor-

responding stress state is equivalent to the global stress state of the
material, see Fig. 1. The components of this vector are derived consid-
ering the formula for internal nodal forces (Belytschko et al., 2014), for
a single hexahedral finite element with the size and orientation of the
initial RVE domain in the local coordinate system:

𝐟int = ∫𝛺0

�̄�T
0 �̄�

−1�̄�𝐽𝑑𝛺0 (31)

here �̄�0 is the strain - nodal displacement matrix defined for trilinear
hape functions defined over the whole RVE domain, while 𝐽 is the
eterminant of the RVE deformation gradient �̄�.2 The Cauchy stress
ensor �̄� comes from the transformation of the global stress state to
he local frame, see Fig. 1:

̄ = 𝐐1𝝈𝐐T
1 = 𝜎𝑦𝑦

⎡

⎢

⎢

⎣

𝑠21 𝑐1𝑠1 0
𝑐1𝑠1 𝑐21 0
0 0 0

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝜎11 𝜏12 0
𝜏21 𝜎22 0
0 0 0

⎤

⎥

⎥

⎦

(32)

or the problem at hand, the load factor 𝜆 is identical to the magnitude
f the stress component in the global loading direction:

≡ 𝜎𝑦𝑦 (33)

he stress state of Eq. (32) and the imposed Dirichlet boundary condi-
ions imply that three components of the unit force vector acting on the
VE are nonzero, see Fig. 2. Expressions for these components follow

rom evaluating Eq. (31):

1̂1 = 𝐴0
1𝐽

(

𝑠21
𝐹11

− 𝑐1𝑠1
𝐹12

𝐹11𝐹22

)

𝑓21 = 𝐴0
2𝐽

𝑐1𝑠1
𝐹22

𝑓22 = 𝐴0
2𝐽

𝑐21
𝐹22

(34)

Here 𝑓𝑖𝑗 is the unit force component on master node 𝑖 in direction 𝑗,
whereas 𝐴0

𝑖 represents an initial surface (side of the RVE) on which a
corresponding stress component is acting. From Eq. (34) it is clear that
𝐟 depends on the deformation state of the RVE through its deformation
gradient components, but also on a proper transformation that relies
on the change in the RVE orientation through the angle 𝜙, as needed
for 𝑐1 and 𝑠1.

2.5. Implementation

Time discretization in Eq. (27) is exact and so far all equations are
derived in the current configuration. The angles 𝜙 and hence 𝜃1 are a
function of the current displacements. For a fully implicit formulation,
𝜙 would need to be updated every iteration, rendering the linearization
of Eq. (6) inexact. To keep optimal convergence without the need to
extend the arclength solution algorithm with additional linearization
terms, the angle 𝜙 is only updated between time steps and in every time
step the 𝑐1, 𝑠1 and �̄� in Eqs. (23) and (34) are based on the converged
deformation from the previous time step.

The algorithmic details of the model, adjusted for the present case
from De Borst et al. (2012), are summarized in Table 1. It is important

2 The relevant quantities here are written in tensor notation, making 𝐟int
matrix of the size Nnodes × 3, such that each row represents three components
of the force vector at one node.
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Table 1
Algorithm of the strain-rate based arclength model for time step 𝑛.

(1) set step size 𝛥𝑡; set 𝑗 = 0, 𝛥𝗮0 = 0
(2) given �̄�𝑛−1, compute 𝜙 from Eq. (22); set 𝜃1 = 𝜃0 + 𝜙
(3) update the unit force vector 𝐟 , Eq. (34)
(4) compute the tangent stiffness matrix of the system 𝐊𝑗
(5) set prescribed displacements
(6) compute 𝑑𝗮I

𝑗+1 and 𝑑𝗮II
𝑗+1, Eq. (9)

(7) compute 𝑑𝜆𝑗+1, Eq. (10)
(8) compute 𝛥𝗮𝑗+1 = 𝛥𝗮𝑗 + 𝑑𝜆𝑗+1𝑑𝗮I

𝑗+1 + 𝑑𝗮II
𝑗+1

(9) given 𝛥𝗮𝑗+1, compute 𝛥�̄�𝑖,𝑗+1 for every integration point
(10) compute deformation gradient �̄�𝑖,𝑗+1 = 𝛥�̄�𝑖,𝑗+1 ⋅ �̄�𝑛−1

𝑖 for every integration point
(11) given �̄�𝑖,𝑗+1, compute 𝝈𝑖,𝑗+1 for every integration point
(12) compute the internal force vector 𝐟int,𝑗+1
(13) check convergence Eq. (5); if converged go to the next time step, otherwise
go to 4

to note that in these steps �̄�𝑖 represents the deformation gradient at
ntegration point 𝑖 of the RVE, and is not to be confused with the
eformation gradient 𝐅 of the lamina as a whole, and the homogenized
eformation gradient �̄� of the RVE as a whole.

.6. Small strain version

The elaborated formulation does not impose any restriction on the
inematics relations and is considered as the general nonlinear frame-
ork. However, in many applications of practical interest structural

omponents made of composites remain in the small strain regime,
ven in a failure event. Therefore it is relevant to show equations
pplicable in the range of small deformations which allow for a more
traightforward implementation.

A first simplification comes from the fact that the angle 𝜙 re-
ains close to zero in the case of a small strain deformation process.
orrespondingly, the constraint Eq. (27) reduces to a new form:

1 +
𝑢11
𝑙01

)

𝑠20 +

(

1 +
𝑢22
𝑙02

)

𝑐20 +
𝑢21
𝑙02

𝑐0𝑠0 − exp(𝜀𝑛−1𝑦𝑦 + �̇�𝑦𝑦𝛥𝑡) = 0 (35)

n which the transformation completely depends on the initial angle 𝜃0,
ee Fig. 3, through sin(𝜃0) and cos(𝜃0) terms.

Another simplification concerns the unit force vector, which in the
vent of small deformations will be the same in every time step:

1̂1 = 𝐴0
1𝑠

2
0

2̂1 = 𝐴0
2𝑐0𝑠0

2̂2 = 𝐴0
2𝑐

2
0

(36)

ompared to Eq. (34) the terms in Eq. (36) do not depend on the
omponents of the RVE deformation gradient �̄�, which means that the
ight hand side of Eq. (1) is calculated on the initial configuration, in
he small strain sense. Furthermore, the transformation is conducted
ith the constant angle 𝜃0.

These two simplifications mean that geometric nonlinear effects are
eglected in the constraint equation and the unit force vector, and
hroughout the simulation the RVE is taken to be in the shape ‘‘a’’, see
ig. 3.

. The Eindhoven glassy polymer constitutive model

In this section, the governing equations of the Eindhoven Glassy
olymer (EGP) model that is used to describe the matrix behavior in the
omposite material are summarized. The EGP model will also be used
n a standalone manner in a single element test, to test the performance
f the arclength model.

The EGP is an isotropic, elasto-viscoplastic, 3D constitutive law. It
s based on the Eyring flow theory (Eyring, 1936), in the sense that an
yring-based viscosity exponentially reduces with applied stress, also
6

educing the material relaxation time. Consequently, the plastic flow b
t yield is regarded as a stress-induced melting, and there is no need
or an explicit yield surface.

Description of the formulation starts from the deformation gradient
f a material point. Let that material point be integration point 𝑖 whose

deformation gradient is denoted with 𝐅𝑖.3 It is decomposed in the elastic
and the plastic part (Senden et al., 2012):

𝐅𝑖 = 𝐅𝑖e ⋅ 𝐅𝑖p (37)

The plastic deformation preserves volume, so that the volumetric
change is purely elastic:

𝐽𝑖 = det(𝐅𝑖) = det(𝐅𝑖e) (38)

n additive decomposition of the Cauchy stress is assumed:

= 𝝈h + 𝝈r + 𝝈s (39)

here 𝝈h is the hydrostatic component, 𝝈r is the hardening stress, and
s is the driving stress contribution. The hydrostatic stress depends on

he bulk modulus 𝜅 and the change in volume 𝐽𝑖:

h = 𝜅(𝐽𝑖 − 1)𝐈 (40)

here 𝐈 is the unit tensor. The hardening stress, explained as a rubber
lastic response due to orienting of the entangled network, emerges as:

r = 𝐺r�̃�d (41)

n which 𝐺r is the strain hardening modulus, and �̃�d is the deviatoric
art of the isochoric left Cauchy–Green deformation tensor:

̃ d =
(

�̃�𝑖 ⋅ �̃�T
𝑖
)d = 𝐽−2∕3

𝑖
(

𝐅𝑖 ⋅ 𝐅T
𝑖
)d (42)

The driving stress in the EGP model, ascribed to intermolecular
interactions of the polymer, may also account for thermorheologically
complex behavior (Klompen and Govaert, 1999). The deformation ki-
netics are then governed by multiple molecular processes, here denoted
for two different ones as 𝛼 and 𝛽:

𝝈s = 𝝈𝛼 + 𝝈𝛽 (43)

In addition to this, every relaxation process may be represented by a
spectrum of viscosities (or relaxation times) and corresponding shear
moduli (Van Breemen et al., 2011). Mechanically this is achieved by a
number of Maxwell elements connected in parallel:

𝝈s =
𝑛
∑

𝑘=1
𝝈𝛼,𝑘 +

𝑚
∑

𝑙=1
𝝈𝛽,𝑙

=
𝑛
∑

𝑘=1
𝐺𝛼,𝑘�̃�d

e𝛼,𝑘 +
𝑚
∑

𝑙=1
𝐺𝛽,𝑙�̃�d

e𝛽,𝑙

(44)

n this equation, 𝐺𝑥,𝑗 stands for the shear modulus of Maxwell element
belonging to process 𝑥, where 𝑥 is either 𝛼 or 𝛽. �̃�d

e𝑥,𝑗 is the elastic
part of the isochoric, deviatoric left Cauchy–Green deformation tensor,
that describes the deformation process in the spring of 𝑗th Maxwell
element of the relaxation process 𝑥. Because of the time- and history-
dependence of a polymer material, the elastic deformation measure is
calculated by integrating the evolution equation of �̃�e𝑥,𝑗 :

̇̃𝐁e𝑥,𝑗 =
(

�̃� − 𝐃p𝑥,𝑗
)

⋅ �̃�e𝑥,𝑗 + �̃�e𝑥,𝑗 ⋅
(

�̃�T − 𝐃p𝑥,𝑗
)

(45)

where �̃� is the isochoric velocity gradient. To solve the evolution
equation for �̃�e𝑥,𝑗 , a constitutive relation is introduced for the plastic
part of the rate of deformation tensor:

𝐃p𝑥,𝑗 =
𝝈𝑥,𝑗

2𝜂𝑥,𝑗 (𝜏𝑥, 𝑝, 𝑆𝑥)
(46)

3 𝐅𝑖 is the same as �̄�𝑖 in Table 1, but for the sake of simplified notation the
ar sign is omitted in this and the subsequent section.
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Table 2
Material parameters of the EGP model.
𝜅 [MPa] 𝐺r [MPa] 𝜏0𝛼 [MPa] 𝜇𝛼 𝑆a𝛼 𝑟0𝛼 𝑟1𝛼 𝑟2𝛼
5475 14.2 1.386 0.08 3 0.95 1 −5

𝐃p𝑥,𝑗 is given in the form of a non-Newtonian flow rule, such that the
viscosity is a function of the equivalent stress, which is an Eyring-based
feature. Additionally the viscosity depends on two other parameters,
the hydrostatic pressure 𝑝 = −tr(𝝈)∕3, and the thermodynamic state
parameter 𝑆𝑥

4:

𝜂𝑥,𝑗 = 𝜂0𝑥,𝑗
𝜏𝑥∕𝜏0𝑥

sinh(𝜏𝑥∕𝜏0𝑥)
exp

(

𝜇𝑥𝑝
𝜏0𝑥

)

exp(𝑆𝑥) (47)

ere, 𝜂𝑥,𝑗 is the viscosity in the dashpot of Maxwell element 𝑗 as part of
elaxation process 𝑥, 𝜂0𝑥,𝑗 is the corresponding initial viscosity, 𝜏0𝑥 is the
haracteristic shear stress, while 𝜇𝑥 represents the pressure-dependency
arameter. The equivalent stress is computed according to:

𝜏𝑥 =
√

1
2
𝝈𝑥 ∶ 𝝈𝑥 (48)

he state parameter 𝑆𝑥 takes into account the thermodynamical history
f the polymer. In the EGP model, it is a product of two compet-
ng mechanisms: the aging parameter 𝑆a𝑥, and the softening function
𝛾𝑥(�̄�p).

𝑥(�̄�p) = 𝑆a𝑥𝑅𝛾𝑥(�̄�p) (49)

here �̄�p is the equivalent plastic strain. The state parameter initially
as the value 𝑆a𝑥 which causes an increase in the yield stress due to
ging effects. On the other side, the softening function tends to reverse
his process and bring it to mechanically rejuvenated reference state.
𝛾𝑥(�̄�p) varies from 1 at the onset of yielding, to 0 at fully rejuvenated

tate. This implies that, in the same range, the state parameter 𝑆𝑥
aries from 𝑆a𝑥 to 0. The softening function, included in the EGP model
y Klompen et al. (2005), is represented as a modified Carreau–Yasuda
unction:

𝛾𝑥(�̄�p) =

{

1 + [𝑟0𝑥 exp(�̄�p)]𝑟1𝑥

1 + 𝑟𝑟1𝑥0𝑥

}

𝑟2𝑥−1
𝑟1𝑥

(50)

Fitting parameters 𝑟0𝑥, 𝑟1𝑥, 𝑟2𝑥 are usually taken the same for both
relaxation processes. The equivalent plastic strain is calculated by
numerically integrating the rate of equivalent plastic strain:

̇̄ p =
𝜏𝛼,1
𝜂𝛼,1

, 𝜏𝛼,1 =
√

1
2
𝝈𝛼,1 ∶ 𝝈𝛼,1 (51)

t is assumed that accumulation of the equivalent plastic strain is driven
y the evolution of the mode with the highest initial viscosity. Usually
his is the viscosity of the first Maxwell element of the 𝛼 process 𝜂𝛼,1.

Input data for the EGP model as used in this paper are listed in
ables 2 and 3. The data correspond to polyether ether ketone (PEEK)
aterial. Only the relaxation process 𝛼 is considered.

. Transversely isotropic constitutive model

In this study carbon fibers are considered as reinforcement, where
he carbon fibers themselves have transversely isotropic elastic prop-
rties. The constitutive law selected to model the carbon fibers is the
yperelastic, transversely isotropic material model developed by Bonet
nd Burton (1998). The constitutive law derives from the strain energy
ensity function, that is split in an isotropic and a transversely isotropic
omponent:

(𝐂) = 𝛹iso(𝐂) + 𝛹tri(𝐂) (52)

4 There are versions of the EGP model where the viscosity depends on
dditional parameters, see e.g. Senden et al. (2012).
7

Table 3
Relaxation spectrum of the EGP model.
𝑥, 𝑗 𝐺𝑥,𝑗 [MPa] 𝜂0𝑥,𝑗 [MPa⋅s]

𝛼, 1 721.05 7.5900 ⋅ 1021

𝛼, 2 275.88 4.2510 ⋅ 1020

𝛼, 3 31.77 1.2852 ⋅ 1019

𝛼, 4 60.19 9.2160 ⋅ 1018

𝛼, 5 49.95 2.9562 ⋅ 1018

𝛼, 6 43.47 9.9600 ⋅ 1017

𝛼, 7 31.35 2.7600 ⋅ 1017

𝛼, 8 29.26 9.9360 ⋅ 1016

𝛼, 9 34.90 4.5990 ⋅ 1016

𝛼, 10 57.89 1.1358 ⋅ 1016

𝛼, 11 53.30 4.3782 ⋅ 1014

𝛼, 12 41.80 1.4370 ⋅ 1013

𝛼, 13 39.08 5.6358 ⋅ 1011

𝛼, 14 3.20 1.9254 ⋅ 1010

𝛼, 15 36.58 9.1980 ⋅ 108

𝛼, 16 2.36 2.4804 ⋅ 107

𝛽, – – –

Fig. 5. Preferential stiffness direction 𝑨 of the transversely isotropic material model
aps to vector 𝒂 upon deformation process.

he strain energy function refers to any material point in the initial
onfiguration. Let a material point represent an integration point 𝑖
hose deformation gradient is denoted with 𝐅𝑖. With this, the right
auchy–Green deformation tensor reads:

= 𝐅T
𝑖 𝐅𝑖 (53)

he isotropic strain energy function used in this paper is a neo-Hookean
otential of the form presented in, e.g., (Belytschko et al., 2014):

iso =
𝜇
2
(𝐼1 − 3) − 𝜇 ln(𝐽𝑖) +

𝜆
2
[

ln(𝐽𝑖)
]2 (54)

where 𝐼1 is the trace of 𝐂, 𝐽𝑖 is the determinant of 𝐅𝑖, 𝜆 and 𝜇 are
material constants. The corresponding strain energy function in the
reference paper (Bonet and Burton, 1998) assumes (𝐽𝑖 − 1)2 instead of
[ln(𝐽𝑖)]2 in Eq. (54). The transversely isotropic potential is constructed
s:

tri =
[

𝛼 + 𝛽(𝐼1 − 3) + 𝛾(𝐼4 − 1)
]

(𝐼4 − 1) − 1
2
𝛼(𝐼5 − 1) (55)

ere 𝛼, 𝛽 and 𝛾 denote material constants, whereas the pseudo invari-
nts 𝐼4 and 𝐼5 are defined as:

4 = 𝑨 ⋅ 𝐂𝑨

5 = 𝑨 ⋅ 𝐂2𝑨
(56)

o that the vector 𝑨 signifies the preferential stiffness direction of
he material in the initial configuration, Fig. 5. Upon deformation 𝑨
aps to vector 𝒂, the preferential stiffness direction in the current

onfiguration:

= 𝐅𝑖𝑨 (57)

Knowing the strain energy density function, the second Piola–
irchhoff stress emerges as:

= 2 𝜕𝛹 (58)

𝜕𝐂
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Fig. 6. The EGP response for �̇�𝑦𝑦 = 10−4∕ s with the small strain version (left); with the nonlinear version with 𝜙 = 0 (right).
Table 4
Material parameters of the transversely isotropic constitutive law.
𝐸1 [GPa] 𝐸2 [GPa] 𝐺12 [GPa] 𝜈12 𝜈23
125 15 45 0.05 0.3

This stress measure can be pushed forward to obtain expressions for the
Cauchy stress contributions:

𝝈iso =
𝜇
𝐽𝑖
(𝐁 − 𝐈) + 𝜆

𝐽𝑖
ln(𝐽𝑖)𝐈 (59)

and:

𝝈tri = 𝐽−1
𝑖 {2𝛽(𝐼4−1)𝐁+2[𝛼+𝛽(𝐼1−3)+2𝛾(𝐼4−1)]𝒂⊗𝒂−𝛼(𝐁𝒂⊗𝒂+𝒂⊗𝐁𝒂)}

(60)

with the pseudo invariant 𝐼4 = 𝒂 ⋅ 𝒂. In Eqs. (59) and (60) 𝐁 represents
the left Cauchy–Green deformation tensor.

The constants in the expressions for the strain energy potentials
and stress tensors in this paper are slightly modified from this in the
reference paper (Bonet and Burton, 1998). Here it is assumed that the
Poisson ratio in the plane of isotropy, marked by 𝜈23, is different from
the Poisson ratio, 𝜈12, for the planes orthogonal to the isotropic plane.
This assumption leads to the following expressions for the constants:

𝑛 =
𝐸1
𝐸2

= 1 − 𝜈23 − 2𝑛𝜈212

𝜆 =
𝐸2(𝜈23 + 𝑛𝜈212)
𝑚(1 + 𝜈23)

𝜇 =
𝐸2

2(1 + 𝜈23)
𝛼 = 𝜇 − 𝐺12

𝛽 =
𝐸2(𝜈12 + 𝜈23𝜈12 − 𝜈23 − 𝑛𝜈212)

4𝑚(1 + 𝜈23)

𝛾 =
𝐸1(1 − 𝜈23)

8𝑚
−

𝜆 + 2𝜇
8

+ 𝛼
2
− 𝛽

(61)

here 𝐸1 is the Young’s modulus in preferential stiffness direction, 𝐸2
nd 𝜈23 define behavior of the material in the plane of isotropy, while
he shear stiffness 𝐺12 and Poisson’s ratio 𝜈12 define the behavior in
lanes perpendicular to that. In the case of 𝜈12 = 𝜈23 the expressions
n Eq. (61) reduce to those in Bonet and Burton (1998). The material
arameters utilized in this study are listed in Table 4.

. Examples

The strain-rate based arclength model has been tested on several
8

xamples, in order to prove the validity of the formulation. The aim is
Fig. 7. The EGP response for �̇�𝑦𝑦 = 10−4∕ s with the general nonlinear framework.

to check whether the model properly accounts for different orientation
of the load relative to the orientation of the reinforcement, i.e., different
off-axis angles, captures finite strains exactly, and reproduces the rate-
dependency of the material. Where appropriate, the distinction is made
between results obtained by applying the small strain version of the
model and the general nonlinear framework. In the following, the angle
𝜒 denotes an initial off-axis angle between load direction and fiber
direction, which from Fig. 3 reads as:

𝜒 = 90◦ − 𝜃0 (62)

The stress–strain curves show the corresponding values in the global
loading direction, see Fig. 1. Those related to the arclength model have
been generated making use of the fact that 𝜎𝑦𝑦 is equal to the load factor
𝜆 of the arclength model, while for every time step 𝜀𝑦𝑦 is updated with
Eq. (25).

The first example is a homogeneous RVE with an isotropic con-
stitutive law, see Fig. 4. For the isotropic material model, no matter
what is the considered off-axis angle, the stress–strain response must
be the same. The RVE with the EGP material model is subjected
to constant strain-rate �̇�𝑦𝑦 = 10−4∕ s, and several different off-axis
angles are considered, covering the range from 0◦ to 90◦. With the
computational efficiency in mind, the analysis has been done on a
single hexahedral finite element. Still, in the homogeneous RVE, one
can expect to find the same results, for any number of finite elements
in the mesh. Fig. 6(left) shows results in case the small strain version
of the arclength model with Eqs. (35) and (36) is used. Here the unit
force vector is not updated for the previous deformation in the RVE

and also there is no change in the orientation of the RVE for the angle
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Fig. 8. Response of the transversely isotropic material for �̇�𝑦𝑦 = 10−4∕ s with the small strain version (left); with the nonlinear version with 𝜙 = 0 (right); solid lines - the arclength
model, dotted lines - reference.
Fig. 9. Response of the transversely isotropic material for �̇�𝑦𝑦 = 10−4∕ s with the general
nonlinear framework; solid lines - the arclength model, dotted lines - reference.

𝜙. These simplifications lead to a large error when compared with the
true stress–strain curve in moderate strain regime.

If in an intermediate formulation an update is made in 𝐟 for the
deformation state of the RVE (shape ‘‘c’’ in Fig. 3), but there is no
update in the orientation (𝜙 = 0), more accurate results are obtained,
Fig. 6(right). For this isotropic material, the angle 𝜙 only becomes
important around the strain level of 0.3, after which the response drifts
away from the reference curve. This deviation is especially noticeable
for the off-axis angles of 30◦, 45◦ and 60◦, when the shear stresses
acting on the RVE increase. For 0◦ and 90◦, there is no need to evaluate
the angle 𝜙 because the edges of the micromodel do not rotate. Finally,
if the model is updated according to the finite deformation framework
including update of the angle 𝜙, i.e. with Eqs. (27) and (34), it exactly
matches the true stress–strain curve for all considered angles 𝜒 , Fig. 7.

The next example focuses on a homogeneous RVE with the hy-
perelastic transversely isotropic constitutive law (Bonet and Burton,
1998). Results obtained with the strain-rate based arclength model are
compared with reference results. For off-axis loading of a homogeneous
orthotropic material, a straightforward approach is available in which
the load direction remains aligned with the global computational do-
main, while the preferential stiffness direction (i.e. the vector 𝑨 in
Fig. 5) is varied. According to this, reference results are generated
from analysis of a simple cube, in which the vector 𝑨 is varied with
respect to the fixed loading direction. In the arclength model, this
preferential stiffness direction always coincides with the local unit
vector 𝒆1, see Fig. 2, while the orientation of the applied stress is varied.
Again, three situations are examined, considering the strain-rate �̇� =
9

𝑦𝑦
Fig. 10. The arclength model with the EGP material under different strain-rates.

Fig. 11. The arclength model with the transversely isotropic material under different
strain-rates.

10−4∕ s. First, the small strain version of the arclength model produces
inaccurate results when compared with the reference case, Fig. 8(left).
This inaccuracy is most pronounced for the off-axis angles of 30◦ and
45◦. Contrary to the isotropic EGP model, an update in 𝐟 for the past
deformation process, but without a proper change in the orientation,
does not lead to significant improvement of the results, Fig. 8(right).
The off-axis angles of 0◦ and 90◦ are indeed exactly reproduced, since
𝜙 = 0 in these cases, but the response for the other angles is markedly
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Fig. 12. Error in 𝜎𝑦𝑦 for different time step sizes at different strain levels, measured relative to the case 𝛥𝑡 = 1 s, for the EGP (left) and the transversely isotropic material (right).
Fig. 13. The arclength model applied on thermoplastic composite RVE, considering
different strain-rates and orientation of the fibers with respect to load direction; solid
lines - general nonlinear framework, dotted lines - small strain version of the model.

incorrect. Finally, the adequately updated arclength model precisely
matches the reference case, Fig. 9. From the same figure it is visible
that the arclength model has not fully traced the equilibrium path of
the reference case for 𝜒 = 15◦. The reason being a numerical instability
in the Newton–Raphson iteration scheme. For all off-axis angles and
all strain levels for which data were obtained, the results are in exact
agreement with the reference results, even for very large strain values.

The following example deals with the rate-dependent aspects of the
arclength model. The EGP is used as the material of the RVE, the off-
axis angle is 45◦,5 and three different strain-rates are considered. The
simulations have been done only with the general nonlinear framework.
From Fig. 10 the conclusion arises that the arclength model is able to
reproduce the rate-dependency of the material.

For completeness, rate dependency is also checked for the trans-
versely isotropic material at two different off-axis angles. For this
material there should be no influence of loading rate on the stress–
strain response. In Fig. 11, the stress–strain curves obtained with three
different loading rates in the general nonlinear framework are plotted.
It can be observed that for both angles a unique rate-independent
response is obtained. These results confirm that the rate-dependence
found with the EGP material completely stems from the constitutive
model.

5 Since the material is isotropic, any other angle has the same relevance,
xcept for 0◦ and 90◦ where some of the terms in the formulation remain 0.
10
It has been stated in the formulation part that some quantities of the
model depend on the deformation state from the last converged time
step. Namely, the unit force vector 𝐟 and the angle 𝜙 for time step 𝑛
are determined from �̄�𝑛−1. This choice leads to an error with respect
to a fully implicit formulation, where the unit force vector and the
constraint equation would be updated every iteration. This error will
vanish upon reducing the time step size 𝛥𝑡. Therefore, it is important
to check how the calculation step size 𝛥𝑡 influences the accuracy of the
output. An error is measured in the stress 𝜎𝑦𝑦, relative to the reference
stress measured for 𝛥𝑡 = 1 s. For this purpose 𝛥𝑡 of: 2.5, 5, 10, 25 and
50 s has been chosen such that:

𝜎error
𝑦𝑦 =

|

|

|

|

|

|

𝜎ref
𝑦𝑦 (𝛥𝑡 = 1s) − 𝜎𝑦𝑦(𝛥𝑡)

𝜎ref
𝑦𝑦 (𝛥𝑡 = 1s)

|

|

|

|

|

|

(63)

The error has been measured at strain levels of: 0.05, 0.35 and 0.7. The
initial off-axis angle is 45◦, since in this case the shear stresses acting
on the RVE reach a maximum value, and the change in orientation is
largest. Fig. 12(left) illustrates the error in a double logarithmic plot
for the arclength model with the EGP material. The trend is such that
the error increases with an increase in 𝛥𝑡. An increase in the strain-rate
applied also increases the error, which is due to the fact that, at the
same 𝛥𝑡, a higher strain-rate means larger strain increments. In the case
of �̇�𝑦𝑦 = 10−3/s, it has not been possible to include a simulation with
𝛥𝑡 = 50 s due to convergence problems. Common to both strain-rates
is that the largest error is observed at the strain level of 0.7, and does
not surpass 3%.

Fig. 12(right) shows the error for the transversely isotropic material.
Here as well, the increase in the strain-rate enlarges the error, but this
time it can exceed 10%. A conclusion drawn from the graphs is that at
a strain-rate of 10−3/s, a time step size of 𝛥𝑡 < 5 s will keep the relative
error below 1%. At higher strain-rates not considered in this study, it
would be necessary to reduce 𝛥𝑡 to a lower value.

The concluding example in this study is an RVE for an actual
fiber reinforced composite material composed of thermoplastic polymer
matrix (PEEK) and carbon fibers. The EGP material model represents
the matrix part, whereas the transversely isotropic constitutive law
with preferential stiffness direction parallel to the fiber axis is used for
carbon fibers. The RVE is exposed to three different strain-rates, while
considering two different orientations of the reinforcement with respect
to the loading direction: 𝜒 = 30◦ and 𝜒 = 60◦. Results of the small
strain version are compared with the stress–strain curves generated
by applying the general nonlinear framework in Fig. 13. Both sets of
results confirm that the strain-rate based arclength model can be used
to simulate the response of UD composite systems on the microlevel,
accounting for off-axis loading and an arbitrary strain-rate. Whereas
the difference between the small strain and the finite strain version of
the model is negligible for 𝜒 = 60◦, it increases for lower off-axis angles.
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Fig. 14. Stress distribution in local coordinate system of the RVE, for 𝜒 = 30◦ and �̇�𝑦𝑦 = 10−4∕ s, at 𝜀𝑦𝑦 = 0.025; finite element mesh is generated with Gmsh (Geuzaine and Remacle,
2009).
The reason for this change in the difference is that in the range of low
off-axis angles, a small variation in this angle significantly changes the
axial stress component in the stiff carbon fibers. This variation in the
off-axis angle is zero in the case of the small strain version model, and
the hardening effect due to the change in orientation is not captured.

The contour plots of Fig. 14 show the distribution of the three stress
components in the local frame of the RVE analyzed with the general
nonlinear framework. While 𝜎22 and 𝜏21 components are distributed
between the matrix and fibers, the 𝜎11 component is almost exclusively
taken by the fibers.

6. Conclusion

In this paper a strain-rate based arclength model that enables ge-
ometric and material nonlinear analysis of unidirectional composite
systems at the microlevel is introduced. The same RVE can be used to
simulate response of a UD composite material subjected to an arbitrary
strain-rate, with an arbitrary orientation of the reinforcement relative
to the loading direction. The constraint equation of the model ensures
that the deformation pattern of the RVE corresponds to the strain-rate
in the global loading direction, imposed in the analysis. Moreover,
in order to ensure that the local stress state remains consistent with
global uniaxial stress even when the RVE deforms and rotates, the
unit force vector of the arclength model is updated as a function
of the deformation state. A simplification is made that the change
in orientation of the RVE and the unit force vector depend on the
converged deformation state from the last time step. The numerical
analysis has shown that the error induced by this explicit approach can
be kept below 1% by properly choosing the size of the time increment.
Several examples have been considered in order to show that the model
accounts for different off-axis angles, captures finite strains exactly,
and resolves the rate-dependency of the material. The intended usage
of the method has been demonstrated with the simulation of the
rate-dependent response of fiber-reinforced thermoplastic composite
material resulting in homogenized stress–strain curves and microscopic
stress distributions.

A small strain version of the model has been derived from the
general nonlinear framework. In the case of the composite RVE, it has
been shown that this version of the model gives results that differ sig-
nificantly from those obtained with the general nonlinear framework,
particularly for lower off-axis angles. For the homogeneous transversely
isotropic material this difference is most pronounced for off-axis angles
in the range 30◦–45◦.

The arclength model has been derived without any assumptions on
the constitutive behavior. Therefore the framework can also be used
to investigate the failure of composite materials under off-axis loading
when softening behavior and/or cohesive cracking is included in the
micromodel formulation.
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Appendix. Periodic boundary conditions

The periodicity in the RVE geometry enables application of periodic
boundary conditions. Linear constraints are imposed between corre-
sponding degrees of freedom on opposite faces of the RVE. For this
purpose, four master nodes are defined at corners of the RVE, see
Fig. 2. Let 𝑥𝑖 represent coordinates in local coordinate frame, where 𝑖 =
1, 2, 3. The relative displacement between matching nodes on opposite
sides of the RVE is equal to the difference in displacement between
corresponding master nodes:

𝘂(𝑙01 , 𝑥2, 𝑥3) = 𝘂(0, 𝑥2, 𝑥3) + 𝘂(𝑙01 , 0, 0) − 𝘂(0, 0, 0)

𝘂(𝑥1, 𝑙02 , 𝑥3) = 𝘂(𝑥1, 0, 𝑥3) + 𝘂(0, 𝑙02 , 0) − 𝘂(0, 0, 0)

𝘂(𝑥1, 𝑥2, 𝑙03) = 𝘂(𝑥1, 𝑥2, 0) + 𝘂(0, 0, 𝑙03) − 𝘂(0, 0, 0)

(A.1)

where 𝑙0𝑖 is the initial length of the RVE in direction 𝑖, 𝘂(𝑙01 , 0, 0),
𝘂(0, 𝑙02 , 0) and 𝘂(0, 0, 𝑙03) are displacements on master nodes 1, 2 and
3, respectively, whereas 𝘂(0, 0, 0) represent displacements on master
node 0. Any added displacement constraint is automatically substituted
in all existing displacement constraints, such that a single degree of
freedom cannot be a slave and a master node simultaneously. As
part of the arclength control method, a unit force vector is specified
on the master nodes, see Fig. 2. The magnitude of every unit force
component, multiplied with the load factor 𝜆 of the arclength method,
is distributed among the nodes belonging to the RVE face on which the
force component is acting when the constraints are applied.
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