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Abstract

Cardiovascular diseases are the leading cause of mortality and early assessment of carotid
artery abnormalities with ultrasound is key for effective prevention. Obtaining the carotid
diameter waveform is essential for hemodynamic parameter extraction. However, since it is
not a trivial task to automate, compact computational models are needed to operate reliably
in view of physiological variability. Modern machine learning (ML) techniques hold promise
for fully automated carotid diameter extraction from ultrasonic data without requiring annota-
tion by trained clinicians. Using a conventional digital signal processing (DSP) based
approach as reference, our goal is to (a) build data-driven ML models to identify and track
the carotid diameter, and (b) keep the computational complexity minimal for deployment in
embedded systems. A ML pipeline is developed to estimate the carotid artery diameter from
Hilbert-transformed ultrasound signals acquired at 500Hz sampling frequency. The pro-
posed ML pipeline consists of 3 processing stages: two neural-network (NN) models and a
smoothing filter. The first NN, a compact 3-layer convolutional NN (CNN), is a region-of-
interest (ROI) detector confining the tracking to a reduced portion of the ultrasound signal.
The second NN, an 8-layer (5 convolutional, 3 fully-connected) CNN, tracks the arterial
diameter. It is followed by a smoothing filter for removing any superimposed artifacts. Data
was acquired from 6 subjects (4 male, 2 female, 37 + 7 years, baseline mean arterial pres-
sure 86.3 = 7.6 mmHg) at rest and with diameter variation induced by paced breathing and a
hand grip intervention. The label reference is extracted from a fine-tuned DSP-based
approach. After training, diameter waveforms are extracted and compared to the DSP refer-
ence. The predicted diameter waveform from the proposed NN-based pipeline has near per-
fect temporal alignment with the reference signal and does not suffer from drift. Specifically,
we obtain a Pearson correlation coefficient of r= 0.87 between prediction and reference
waveforms. The mean absolute deviation of the arterial diameter prediction was quantified
as 0.077 mm, corresponding to a 1% error given an average carotid artery diameter of 7.5
mm in the study population. This work proposed and evaluated an ML neural network-based
pipeline to track the carotid artery diameter from an ultrasound stream of A-mode frames.
By contrast to current clinical practice, the proposed solution does not rely on specialist
intervention (e.g. imaging markers) to track the arterial diameter. In contrast to conventional
DSP-based counterpart solutions, the ML-based approach does not require handcrafted
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heuristics and manual fine-tuning to produce reliable estimates. Being trainable from small
cohort data and reasonably fast, it is useful for quick deployment and easy to adjust
accounting for demographic variability. Finally, its reliance on A-mode ultrasound frames
renders the solution promising for miniaturization and deployment in on-line clinical and
ambulatory monitoring.

Author summary

The carotid artery diameter waveform is highly relevant for cardiovascular diagnostics
and typically acquired using ultrasound imaging. Our work focuses on a novel machine
learning-based approach to track the carotid artery diameter in ultrasound data. Opposed
to conventional digital signal processing strategies, which require manual fine-tuning, a
key advantage of the machine learning approach (implemented as a sequence of neural
network models) is the automated learning process. Going even further, we combine the
strength of automated learning with relevant domain knowledge on identifying the anat-
omy of interest, such that the devised models do not require a large dataset to learn from.
Eventually, the evaluation of the proposed method results in merely a 1% deviation of the
identified and tracked carotid diameter in comparison to reference data. Not only do we
achieve an effective tracking performance, but we also foresee the models to be computa-
tionally affordable and embedded on small-size devices like wearables for application out-
side of the clinical settings.

Introduction
Background

Cardiovascular Diseases (CVDs) are the leading cause of premature human mortality globally
[1]. CVDs are posing an insidious danger as they typically evolve asymptomatically before hav-
ing lethal consequences like strokes and heart attacks, or leading to costly chronic conditions
like kidney disease and neural impairments from brain damage [2]. Various interventions to
assess CVD risk involve the assessment and monitoring of the carotid artery health by means
of ultrasonography. Besides conventional hemodynamics like arterial blood flow (e.g., to detect
stenosis), arterial stiffness based on pulse wave velocity measurements is becoming increas-
ingly relevant as biomarker in CVD diagnostics and prevention as it reflects the vascular aging
and individual susceptibility to hypertension-mediated organ damage [3,4]. However, in the
first instance, these markers require high-quality arterial diameter waveforms, which subse-
quently feed into advanced analyses of the pulse waveform.

Prior Work & State of the Art

Although the understanding of arterial physiology and hemodynamics is well developed, and
advanced imaging modalities are available, novel methods towards fully automated tracking of
the carotid artery and its distension are lacking in clinical practice. Given that arterial monitor-
ing is typically accompanied by motion artifacts (e.g., resulting from breathing, swallowing, or
coughing), precision tracking to obtain detailed information on arterial dynamics and
mechanical properties like elasticity remains challenging. To this end, research has established
ultrasound as a non-invasive, safe, yet reliable method for imaging of soft tissues like arteries,
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with the required resolution and accuracy for precision measurements also over longer periods
of time [5-7]. However, current clinical use of ultrasound imaging relies on bulky infrastruc-
ture and premises a skilled operator with anatomical domain knowledge to manually annotate
the arterial wall positions from the images. This manual dependency makes the process costly,
time-consuming, thus unscalable to large widespread screening or long-term monitoring. To
overcome these limitations, recent research based on digital signal processing (DSP) algo-
rithms has strived to enable (semi-)automatic tracking of the carotid artery diameter [8-18].

Before revisiting relevant work, it is vital to understand the three basic modes of displaying
ultrasound data: 1) A-mode, or amplitude mode, reveals the pulse-echo amplitude information
for a single ultrasound transducer element or scanline in depth/axial (z) direction; 2) B-mode,
or brightness mode, reveals a 2D spatial contrast image in axial (z) and lateral (x) dimensions
along a linear array of transducer elements, and 3) M-mode, or motion mode, reveals the
information of a single A-mode scanline over time. Fig 1 illustrates the pulse-echo acquisition
with a linear array transducer from a cross-sectional carotid artery, including respective dis-
play modes. Note that the radio frequency (RF) signal envelope smoothly outlining the signal
magnitude, constitutes the main contrast mechanism based on the ultrasonic echo intensity.

Most prevalent research has tried to address the challenge of (semi-)automatic carotid
artery tracking with 2D image processing on B-mode [8,14-16,19], or M-mode [13,20] frames.
A less common approach (as it is more challenging to build robust models with less and more
noisy data), yet more promising for miniaturized automated solutions (less voluminous data
and processing hardware for imaging), is to regress the artery wall positions using the 1-D sig-
nal from A-mode frames [9-12,17] from 1 or few adjacent scanlines only. Image processing
algorithms using B-mode or M-mode 2-D images are generally computationally more inten-
sive and have higher latency than processing unidimensional A-mode frames. Moreover, B-
mode requires an array transducer with multiple scanlines while algorithms using A-mode
1-D signals, in compromise, can be lower in robustness and accuracy.

Effective DSP-based algorithms require clever hand-crafted heuristics [12,17] and labor-
intensive manual annotation [21], both of which render personalization challenging. A less
explored but very promising alternative are machine learning based algorithms where a model
is learned through training from real data in a supervised [22] or unsupervised way [23]. The
challenge in this approach is the acquisition of sufficiently large datasets for model training:
the larger the model the more data it needs for training to produce a robust and accurate algo-
rithm. For example, to train the models of the algorithms in a previous supervised approach,
the authors claim they used data captured from 107 subjects, with 300-2000 A-mode frames
(data points) per subject [22]. Datasets of this size are not readily available in general.

Finally, between entirely machine-learning algorithms and DSP-based algorithms there are
"hybrid" or ML-assisted approaches where parts of an algorithm pipeline use a trained model
from data and the rest relies on heuristics and DSP [15,20,24-27]. This in fact is the more com-
monplace use of ML, that reflects an incremental adoption in an otherwise DSP dominated
field; or some more complex needs that are not easily addressed at the DSP level such as feature
extraction and fusion [27].

Aim of this study

As a step out towards addressing these technology limitations, this paper proposes a machine
learning based algorithm pipeline that can automate detection and tracking of the artery diam-
eter, without a specialist intervention for annotations and thus self-compensating for the phys-
iological/anatomical variability of different subjects. The proposed pipeline consists of a small
set of neural networks each trained on user data that operate in tandem to segment, localize,

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000659 December 2, 2024 3/19


https://doi.org/10.1371/journal.pdig.0000659

PLOS DIGITAL HEALTH

Neural network-based arterial diameter estimation from ultrasound data

(a)

(b)

(c)

Fig 1.

f,=7.8 MHz
A=0.2mm

Transmit
A -
Receive
ﬁ o,
v U v U » Z
A-mode —REF signal
. 4000 - ——Envelope
5
S,
o 2000 -
©
2 -
. 0
£
< 2000 -
-4000 L I | 1 L I 1 | 1 |
0 100 200 300 400 500 600 700 800 900 1000
Depth [samples]
B-mode M-mode
(d)
g‘ 200 E‘ 200
e o
£ 400 £ 400
(0] ©
2, 2,
= 600 < 600
5 g
S 800 A 800
1000 1000
1 16 32 48 64 1000 2000 3000 4000 5000
Scanlines Frames

() Pulse-echo acquisition of carotid artery. (b) A-mode with radio frequency (RF) ultrasound signal from the center scanline. (c)
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data is presented with depth information along z-axis, scaled at 24.65 um per sample, and lateral scanlines along x-axis, while the
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https://doi.org/10.1371/journal.pdig.0000659.9001

track, and estimate the artery diameter from one ultrasound scanline. The use of ML algo-
rithms and more recently neural networks in medical ultrasound imaging is not new [28-33],
but has been so far confined to non-temporal tasks of image registration, segmentation, and
classification of various conditions based on ultrasound images. By contrast to other ML-
based offline use-cases, here we take advantage of time-series regression in order to benefit
from low computation, low latency, inference on A-mode images, that can be done in a real
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time streaming application context. For validation, the results are compared against a refer-
ence / ground truth those from the DSP-based approach in [17], providing insights on the
trade-off between a ML and a DSP-based solution.

Methods

The proposed solution is a neural-network based processing pipeline that consists of an ROI--
Detection module, a tracking module, and a post-processing smoothing module. Each neural
network is trained with a small dataset created for this purpose from recordings in a clinical
setting. As a starting point and baseline for comparison for the work in this paper, we used a
DSP-based approach as reference [17]. In the following sections we outline the data acquisition
setup and dataset creation process, and the design of the individual neural networks. For the
experiments in this paper the DSP-based reference was developed in Matlab 2018 (Mathworks,
Inc.) while the neural-network-based approach was trained and evaluated in Python using the
PyTorch framework (https://pytorch.org/). For the hyperparameter tuning and neural archi-
tecture search of the neural network models we used grid-search with the help of an Nvidia
Quadro M4000 GPU.

Data acquisition and dataset preparation

We built a dataset based on data acquired from 6 apparently healthy human subjects (4 male, 2
female, 37 + 7 years of age; mean arterial pressure 86.3 + 7.6 mmHg), ranging from optimal
blood pressure to hypertension, though without diagnosed cardiovascular disease. All subjects
gave their written informed consent. The study was reviewed by the institutional review board
of the Maxima MC Hospital (Eindhoven, NL) and procedures followed clinical practice guide-
lines wherever applicable in compliance with the declaration of Helsinki [34]. Data was col-
lected in three repeated measurement sessions, spread over three weeks, to account for
physiological intra-subject variability as well as technical measurement bias, e.g., due to sensor
reattachment and probe repositioning. All data was recorded at constant room temperature
(22°C), in supine position to eliminate the hydrostatic BP component, and with an initial rest-
ing phase of 10 minutes to bring hemodynamics and vasomotor tone as close as possible to
baseline [35]. Each session, in turn, comprised three interventions. First, 2 minutes in resting
condition were recorded for best inter-subject comparability. Second, the subject was asked to
perform 2 minutes of paced breathing to induce cyclic BP variation at 7.5 cycles per minute,
guided by an acoustic reference signal. Third, to induce a short-term gradual BP and hence
diameter increase, the subject was asked to perform a hand grip dynamometer exercise with
the sensor free hand for 1 minute at maximal voluntary contraction, followed by 1 minute of
recovery. Continuous non-invasive and intermittent blood pressure (BP) readings were
obtained using the Finapres NOVA (Finapres Medical Systems B.V., NL). Overall, this setup
provides sufficient variability in terms of number of subjects and physiological conditions as
well as length of recordings to produce a substantial number of A-mode or B-mode frames
(each recording contains 65000-70000 time frames, with 1020 samples in depth on 32 trans-
ducer elements) for a general-purpose dataset which also allows exploration of personalization
aspects.

The measurements setup is shown in Fig 2. The ultrasound transducer deployed in the data
acquisition is the L11-5v, and the ultrasound system is a Verasonics Vantage 64 model (Vera-
sonics Inc., USA). The transducer consists of 128 elements in a linear array, working on a cen-
ter frequency (fc) of 7.8 MHz, acquiring a 19.2 mm wide segment with a custom plane wave
sequence of sampling frequency 500 Hz from the center 64 transducer elements. Furthermore,
with the center frequency of the RF ultrasound signal and the assumed propagation speed of
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Fig 2. Measurement setup with instrumentation and subject lying in supine position. Ultrasound (US) was
acquired with a Verasonics Vantage 64 system (Verasonics Inc., USA) and a transducer (L11-5v) of 128 elements,
placed perpendicular to the common carotid artery of the test subjects. The center frequency (fc) of the transducer is
7.8MHz, and the sampling frequency is 500Hz. Simultaneously, an electrocardiogram (ECG) was acquired using a
Biopac MP-160 base module (fs = 500 Hz) and ECG100C module (Biopac Inc., USA). Recordings of both modules
were synchronized by an external trigger signal.

https://doi.org/10.1371/journal.pdig.0000659.9002

ultrasound (1540 m/s in soft tissue, 1580-1630 m/s in the arterial wall and 1570 m/s in blood),
the wavelength A is approximately 0.2 mm for a single pulse and hence, the spatial resolution
(A/2, 0.1 mm) satisfies requirements of artery wall detection in the axial resolution. With RF
data sampling at 31.25 MHz, a spatial sampling distance of 50 um can fully recover the original
signal with sufficient accuracy. Simultaneously, an electrocardiogram (ECG) was acquired in
lead II configuration using a Biopac MP-160 base module (fs = 500 Hz) and ECG100C module
(Biopac Inc., USA). Verasonics and Biopac recordings were synchronized by an external trig-
ger signal. The transducer is placed horizontally perpendicular to the common carotid artery
of the test subjects, resulting in the maximum detection response in the radial direction.

As illustrated in Fig 1, the acquired ultrasound data are typically organized along 3 dimen-
sions: tissue depth, scanlines (width) and frames (time). The depth dimension corresponds to
the half-distance travelled by a single ultrasonic pulse between the transmission and detection
of the back-reflected pulse wave. The amplitude in the A-mode representation as well as the
brightness in the M-mode representation corresponds to the intensity of the received
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ultrasound echoes. Along the time dimension, recorded reflections of ultrasound pulses emit-
ted with a pulse repetition frequency of 500 Hz (2 ms per sample) can reveal the temporal evo-
lution of the artery, i.e., pulsatile distension and respiratory movement. The scanlines (width)
dimension refers to the linear arrangement of the elements in the transducer as they detect the
information on the transverse plane of the artery, generating spatial B-mode images. Without
loss of generality, for the machine learning pipeline described in the following sections we only
used a single (center) scanline from the transducer, and we process a single pulse-echo signal
at a time. In other words, we perform time-series regression on the M-mode plane by process-
ing sequentially A-mode frames.

Ground truth label data was generated from a conventional DSP-based approach [17],
which implies an echo tracking algorithm that is commonly used in clinical ultrasound prac-
tice [9,23]. This reference dataset was reviewed by experts in vascular ultrasound and, in the
rare case of misdetections from the DSP-based algorithm, corrected by manual annotations.
Key labels from this data are the arterial lumen center position, the arterial wall positions, and
the resulting diameter waveforms in previously specified temporal (2 ms per sample) and spa-
tial (24.65 pm per sample) resolutions.

Region of Interest (ROI) detection

The raw ultrasound data is rather noisy due to tissue consistency and measurement artifacts as
illustrated in Fig 3, showing an A-mode plot (echo amplitude per axial depth for a single scan-
line and time instance per sampling period), and an M-mode plot (single scanline echo ampli-
tude in brightness per time instance). While irrelevant low noise may originate from scatterers
like blood cells, tissue structures different from the actual arterial wall (e.g. veins, muscles or
ligaments) can lead to high-contrast artifacts. To increase the robustness of artery diameter
tracking system against these noise artifacts, we decided to introduce a “hard-attention” mech-
anism that narrows down the field-of-view of the artery tracker to a confined region-of-inter-
est (ROI) within the entire A-mode signal that contains the lumen and arterial walls.

a b
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= ! a
700 - I E 1 o8} e 1
= 307t s 1
600 1 i E : g
I el b
o i 206 Z 2
ke ; £ &
= . L y
(o}
E400f : 1 X
© 04 i
300 : | E
r So3f 1
1 e
200 : 1 0.2 - g
100 : . o1k f ]
|
0 L ¥ o i L 0 R i [ e & L
0 200 400 600 800 1000 1200 0 600 800 1000 1200

Depth [samples] Depth [samples]

Fig 3. (a) Left plot shows the complete A-mode ultrasound return and the identification of the lumen center as the center of the hypoechoic region. (b)
Right plot shows the respective response vector computed as a label for training the ROI detector neural network, as well as the ROI part cropped out
for further downstream processing after the ROI detector has been trained. Depth axis sample points can be multiplied by 24.65um to obtain the actual

depth.

https://doi.org/10.1371/journal.pdig.0000659.g003
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convi

We design a ROI detector model as a first-stage neural network and to train it we exploit
the heuristic that the lumen of the artery is a hypoechogenic area whose center is the most qui-
escent part of the A-mode signal reflections. The input to the network is the envelope (of the
signal magnitude) of the A-mode ultrasound echo signal, extracted through a Hilbert trans-
form. As the envelope is a smooth outline of the raw signal magnitude, this also gives us a
means to adjust the temporal resolution of the input signal (depth resolution of A-mode) for
the sake of confining the neural network’s input layer size for computational efficiency. The
output of the network is the location of the lumen center where the ROI window should be
centered to clip the A-mode signal. We use a feed-forward convolutional model that tries to
regress for every (depth) position the centered distance from the lumen center (for the place-
ment of the ROI window). The reason for training a regressive model with distances instead of
as binary classification for each position is to avoid working with largely imbalanced training
label data (since in every echo signal series there is only one correct position for the lumen cen-
ter). The generated labels are therefore error gradient-based masks (we call them “response
vectors”) that localize the lumen center for every A-mode ultrasound echo, and are extracted
from the ground truth DSP-based approach, following an annotation procedure that will be
described in detail later.

The neural network architecture consists of just two 1D convolutional layers followed by an
average pooling layer, as shown in Fig 4. The 1D kernel sizes of the first layer relates to the
maximum possible anticipated diameter of the artery and should therefore be “wide” enough
to account for the demographic physiological variability across different subjects. The number
of kernels (output channels) of the input layer can be used to account for spatial variability
between the maximum and minimum diameter of the lumen as the artery expands, but since it
is merely used to reinforce the depth of the lumen center, only a small number of channels suf-
fices (we used 3); thereby confining significantly the number of required parameters to be
trained as well as the number of computations during inference. At the second convolutional
layer a small 1x1 kernel summarizes the per channel (distance from lumen center position)
information at each depth position, with depth-wise convolution. The two convolutional layers
are followed by a parameterless (non-weighted) average pooling layer that consolidates
(smoothens) the distance estimates to the lumen center by using information across a neigh-
borhood of depths. Finally, a simple argmax operation produces the estimated position of the
lumen center which is used to center and apply a (fixed-size) clipping window over the A-
mode signal, the size of which currently matches the input layer kernel sizes. Notably, none of

Setting Type or Value
Activation Function Leaky RelLU

Loss Function MSE

Optimizer Adam
Regularization L2-norm, Dropout
Dropout Probability 0.05

Weight Decay le-4

Initialization Xavier Uniform
Normalization Batchnorml1d

argmax

S
S
&

conv2 avgpool

Fig 4. ROI Detection Neural Network Structure and configuration parameters.

https://doi.org/10.1371/journal.pdig.0000659.g004
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the layers reduce the input width (with appropriate zero-padding employed), because as we
see later, we care to preserve the association between layer size and depth information.

For the training of the ROI detector, we generate “response vectors” as labels from the
training data, characterizing the lumen region and lumen center. Essentially, the response vec-
tor serves as a weight profile for computing an error gradient that measures the degree of mis-
alignment of the center of the ROI window from the lumen center. It is generated based on
visual inspection and manual annotation of the approximate position of lumen center in a A-
mode or M-mode ultrasound frames. Precision noise in the approximate annotations is easily
averaged out during model training. It is essentially this manual intervention by a human spe-
cialist, which we wish to factor out by means of the neural network during inference. The
lumen center position is identified as the middle point of the hypoechogenic area of the A-
mode signal and is defined as

PC:(PA+PP)/2

where P, is the position of anterior artery wall, Pp is the position of posterior wall.
We set two cut-off points halfway between the lumen center and the posterior and anterior
walls at the depths where the signal peaks laterally from the lumen center.

Pcut—oﬂ(A) = (PC + PA)/2

Pcut—off(P) = (PC + PP)/2

Within the cut-off region, the Euclidean distance d; of the current i-th depth point p;
towards the lumen center can be computed as

2 .
di = (.pi - PC) 7Pcut70ff(A) <1< Pcutfoﬂ(P)

We finally normalize the distance values in the range (0-1] and use them to set the response
vector R; values as
d,

l1—-——F—— P <i<P

29 % cut—off (A) cut—off (P)
R,’ = (PC - Pcutfoﬁ')

0, Other

Fig 3 illustrates a response vector centered at the lumen center of an A-mode frame and the
respective output of the trained ROI detector model.

Note that since the average pooling layer has been chosen instead of a fully connected layer,
for being parameterless (fewer parameters allow model training with less training data without
risk of overfitting), we can already measure and correct the misalignment by computing the
total pointwise mean square error (MSE) between the response vector and the output of the
last convolution layer, then directly applying updates to the two convolution layers’ parame-
ters; instead of backpropagating the error from the output of the average pooling layer. This
empirically seemed to be giving a “crisper” gradient for training faster, and with less computa-
tions involved.

Finally, to avoid degenerate training and overfitting because of relatively limited range in
the depth position of the lumen center across subjects, we have augmented the dataset with
translations of the A-frame at different depths. This allows the network to learn to place the
ROI at different depths by looking for the signal peaks of the wall positions. The most critical
parameterization aspects of the neural network model and its training, that contributed in the
results presented later, are given in the table in Fig 4. The choice of the hyperparameters for
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the regularizer, optimizer, dropout and minimum adequate number of input layer filters were
determined empirically based on grid-search. The training in most cases took about 10 epochs
after which the error plateaus or improves very slowly (for the specific choice of hyperpara-
meters). Finally, the choice of the network architecture is mainly based on the heuristics
described earlier in this section and motivated by the need for compactness.

Artery distension tracking

Given a ROI of the A-mode frame envelope that contains the artery walls without other high
amplitude artifacts, a second stage neural network model is trained to calculate as reliably as
possible a running estimate (trace) of the arterial wall distension.

Since the task is one of a temporal regression nature, the apparent candidate neural network
model types could include recurrent neural network models, which like low-pass infinite
impulse response filters digest the input signal frame-after-frame to produce a smooth disten-
sion estimate. However, since the data is univariate and compressible in fast-time, and that
predictions are made after an entire A-mode frame is processed, each A-mode frame is possi-
ble to be treated as a single data point for feed-forward models as well, which produce diameter
estimates for each frame separately and independently from previous estimates. In the latter
case smoothing is often required as a post-processing step to eliminate potentially high-fre-
quency artifacts. After experimenting with both, it turns out that between the two options, the
latter attains easier good performance, with less training time and data.

After a grid-search exploration and different configurations (numbers of layers, number of
channels, sizes of filter kernels), the leanest structure and topology that we resorted to is illus-
trated in Fig 5. It consists of five convolutional layers of similar width, but incrementally
increasing in number of channels and then down-sampling them, followed by a hierarchy of 3
fully connected layers that gradually combine and summarize the convolutional features to
compute an estimator of the distension. Between convolutional layers there is batch-normali-
zation. While we up-sample and then down-sample across channels we do not apply max-
pooling across layers, and apply zero-padding at the convolution layers, because we care about
the relative position information of the arterial walls to estimate the distension, so distorting
this information with max-pooling makes training harder and deteriorates the performance.

We trained this model with the Huber loss, instead of the more common MSE loss, because
of its robustness in face of the abrupt high-amplitude difference variations of the A-mode

Settin, Zgtivation o Optimi. Regularization Dropeut Welght Initialization Normalization
g Function Function pHmizer g Probability Decay

Dpeor | cay HUCEr | s E2spu; 0.08 le-4 aavier Batchnorm1D

Value Loss Dropout Uniform

Fig 5. Artery diameter tracking Neural Network Structure and configuration parameters.

https://doi.org/10.1371/journal.pdig.0000659.g005
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signal across depths as the ultrasound pulse enters and exits the lumen region of the artery. As
with the ROI the key parameterization and training configuration that contributed to the
results presented later are provided in the table in Fig 5. The training hyperparameters were
determined empirically based on grid-search. We needed about 20 training epochs for this
configuration for the error to reach an initial plateau. The architecture of the network was
inferred (as discussed above) partly heuristically and partly empirically by starting from a two-
layer model progressively increasing depth and channel width to reach an acceptable
performance.

Post-processing / filtering

Finally, as alluded above, the output of the feed-forward neural network estimator for the
artery diameter is not a smooth waveform because of the per-single point estimation noise.
Therefore, to eliminate the high-frequency noise, we postprocess the output trace with a
Savitzky-Golay filter [36], which is commonly applied to time-series signals to reduce high-fre-
quency noise without distorting the signal tendency. The order of the Savitzky-Golay filter is
set to 5, and the window size to 31 samples (corresponding to 62 ms), hence preserving actual
higher frequency components in the waveform. For comparison we also considered a simple
moving average FIR filter with the same window size. As the filter parameters are not trainable,
the entire pipeline consists of approximately 1 million trainable parameters in total (combined,
the ROI detection and diameter tracking networks).

Evaluation

The ultrasound dataset consists of recordings from 6 subjects, obtained in repeated sessions
under varying physiological conditions. From these recordings, we extract approximately
600.000 data points (i.e. A-mode frames) in total. Following a leave-one-subject-out cross-vali-
dation scheme to obtain unbiased results, each subject is iteratively left out and tested on the
neural network models for ROI detection and diameter tracking, respectively trained on the
approximately 500.000 data points from all other subjects. For the reported results, per neural
network model for ROI detection and diameter tracking, the average of the 6 unbiased model
performances is reported. Training results are quantified by the respective loss function
among the 6 models. Ultimately, to evaluate the NNs performance and sensitivity to changing
inputs, correlations and error metrics are computed between their predicted results, (i.e. the
detected lumen center and arterial diameter) and corresponding label data from the conven-
tional DSP-based approach described in [17], serving as ground truth reference.

Results

The result section is divided into the ROI detector network and the diameter tracking network.
Firstly, Fig 6 illustrates the qualitative performance of the ROI detector network by providing
a typical example. Fig 6(A) is the M-mode signal that contains the arterial walls near sample
depth 300 and 600 as well as other artefacts around sample depth 200, 650, 900 and 1000. Fig 6
(B) shows in M-mode only the response vector labels (white region) and the lumen center
(blue line). Fig 6(C) shows in M-mode the output of the ROI detector before the argmax oper-
ation, depicting as probabilities (intensity) the likely location of the lumen center. Despite the
artifacts at locations 100, 800, and between 400-500, the argmax operation will only select the
highest intensity point (red line).

To quantitatively validate the performance of the ROI detector, we calculated the correla-
tion between the DSP-based label signal of the lumen center and the estimation, resulting in
Pearson correlation r = 0.9742, while the coefficient of determination is R* = 0.7194, and the
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Fig 6. Typical example of M-mode recordings during 2 minutes of rest (a) with labeled lumen center (b) and ROI network results for lumen
centers (c) and their correlations (d). Depth axis sample points can be multiplied by 24.65 pum to obtain the actual depth. Conversion factor
from time samples to time is 500 samples per second.

https://doi.org/10.1371/journal.pdig.0000659.9006

concordance correlation coefficient is CCC = 0.8388. Data appears to be normally distributed
based on the moments of the distribution of the differences between ground truth and pre-
dicted values (mean = 4.3252, median = 4.3897, skewness = -0.14, kurtosis relative to Normal
distribution = 0.2315) and the corresponding p-value for lack of a linear relationship (Hy),
based on a 2-sided t-test, is virtually 0 (t-value = 763.7324). Furthermore, Table 1 reports the
average per subject Mean Absolute Error (MAE) in the estimation of the lumen center. The
overall across all subjects’ average absolute error is 6.4724x24.65 pm~0.2 mm. For reference,
the average carotid artery diameter in the study population is 7.5 mm.

Regarding the output of the diameter tracking network, Fig 7 shows the inferred signals of
the artery diameter over time overlayed with the reference. The first (visual) confirmation is

Table 1. Average results of the ROI network in samples. Conversion factor from samples to depth and diameter dis-
tances is 24.65 um per sample. MSE: Mean squared error (normalized without dimension), MAE: Mean absolute error.

Data MSE (Response Vectors) MAE (Lumen Center) [Samples]
Subject 1 0.00714 4.5126

Subject 2 0.01028 6.8277

Subject 3 0.00862 5.3201

Subject 4 0.01039 6.0514

Subject 5 0.00821 10.1607

Subject 6 0.01196 5.9619

Avg across subjects 0.00943 6.4724

https://doi.org/10.1371/journal.pdig.0000659.t001
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Fig 7. Example of diameter tracking network results over M-mode (left) with reference label diameter and neural network output, respectively
smoothed with Savitzky-Golay (top right) and moving average filter (bottom right). Conversion factor from samples to depth and diameter distances is
24.65 pm per sample. Conversion factor from time samples to time is 500 samples per second.

https://doi.org/10.1371/journal.pdig.0000659.g007

that the inferred signal tracks the reference without temporal drifts and tracks the systolic and
diastolic variations (upstroke, max slope in the first derivative, etc.) with high fidelity. A closer
observation on a zoomed-in region shows that while the temporal alignment is robust, the
inferred signal does not exactly match the amplitude and microvariations of the reference and
moreover has a superimposed small high-frequency noise component. This noise component
was anticipated and is almost eliminated by the smoothing filter while preserving relevant
physiological information, e.g., in the region around the systolic foot. On the other hand, the
small mismatch between the two signal amplitudes is likely due to imperfections both on the
neural network side as well as in the reference, which is derived from a DSP-based pipeline
[17].

To quantify the discrepancy in Table 2, we report the average root-mean-square error
(RMSE) per subject as well as across all subjects, which amounts to 9.0805x24.65 pm~0.22
mm. Since RMSE is sensitive to outliers, we also report the median-absolute-deviation
(MAD), which is robust to outliers and in this case is 3.1198x24.65 pm~20.077 mm. Given an

error metrics in samples obtained from the arterial diameter tracking network. Conversion factor from samples to depth and diameter distances is

24.65 pm per sample. MSE: Mean squared error (normalized without dimension), RMSE: Root mean squared error, MAD: Mean absolute deviation.

Data

Subject 1
Subject 2
Subject 3
Subject 4
Subject 5
Subject 6

Avg across subjects

Huber Loss Average Diameter (Reference / Label) [Samples] MSE RMSE [Samples] MAD [Samples]
9.6217 292.7785 205.57 14.3377 4.1147
3.3608 286.2240 17.87 4.2507 1.7039
7.8044 311.1213 109.57 10.4715 4.3095
7.0987 319.3344 82.85 9.1027 3.6739
4.0786 302.1867 58.95 7.7113 1.6738
6.0920 314.1656 74.12 8.6092 3.2429
6.3387 304.3018 91.49 9.0805 3.1198

https://doi.org/10.1371/journal.pdig.0000659.t002
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average artery diameter of 7.5 mm for the subjects in this study, this corresponds to a ~1%
error. Finally, the Pearson correlation coefficient between prediction and reference waveforms
averaged across all test subjects is r = 0.8692, corresponding to a coefficient of determination
R* = 0.7243, respectively 72% explained variability.

Discussion

This work proposes a system for automated tracking of the artery diameter consisting of a cas-
cade of two neural networks (NNs): the first network implementing a hard-attention model
for a ROI detection that isolates the region of the wall positions, feeding into the second net-
work responsible for the diameter tracking. Attention models (soft-attention in discrete lan-
guage applications and hard-attention in image processing) are becoming commonplace in
deep learning literature for dealing with the computational efficiency and/or robustness of
very high dimensional inputs. In most cases one seeks to train the attention mechanism end-
to-end or in tandem with the downstream image processing model. It involves a suitably engi-
neered cost-function and (fully, partially or self) supervised learning [37-39], or in the more
challenging cases reinforcement learning [40-43]. This typically requires a substantial amount
of training data to avoid overfitting as the end-to-end model ends up with a very large number
of parameters; and, in the case of reinforcement learning, also a considerable amount of time.
By contrast, in the work presented, the two models are trained independently. This is because
we want the models to be sufficiently shallow for computational economy, and also for being
trainable with a small subject cohort to keep training logistics low, i.e., re-training or fine-tun-
ing to account for demographic adaptation, should be possible with a limited number of sub-
jects. Training two smaller independently regularized models is therefore effective with fewer
data points, while enforcing the a-priori known conditional dependence between the two net-
works. Overall, much of the computational economy of the proposed solution comes from
design choices that are application domain specific. For example, by contrast to general pur-
posed hard attention mechanisms here we do not try to dynamically extrapolate the size of the
attention window, instead we keep it fixed given the limited range variation in the diameter of
the artery, and we only track dynamically the lumen for positioning of the ROI window. For
the same reason, the number of input convolutional filters (2nd layer channels) does not need
to be larger than 3, which turned out to be sufficient after some experimentation. Furthermore,
by keeping the size of the ROI detector layers aligned with the input dimensionality that
reflects the arterial wall depth resolution, the estimation of the lumen location does not need
to be computed but is implicitly represented by the index of the argmax-ed neuron at the out-
put layer.

In the design of the ROI detection model, we used the heuristic that the lumen region of the
artery is hypoechoic, in similar spirit as the DSP approach in [17]. While tracking of the lumen
center in that work is based on a hand-crafted cross-correlation filter kernel, here we essen-
tially let the neural network model learn a couple of analogous correlation kernels in the CNN
and combine them in sophisticated ways to account for physiological and measurement vari-
ability. An additional advantage from the automated learning from data approach is that the
resulting models can encode salient features and characteristics that are sometimes missed or
not visible to a human modeler. This information may cover trivialities, like the onset of a new
cardiac cycle, but also complexities like retrieving the arterial location after gradual drift or
incidental interruptions in the images due to motion artifacts, e.g., from coughing or swallow-
ing. Consequently, a prospective system implementation may not need to rely on ECG gating
with periodic resets and potential signal discontinuities as described in [17], and thereby facili-
tate applicability in clinical practice. The ML-based approach is particularly encouraging from
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a computational efficiency point of view because it does not rely on complex analytical signals.
Although it shows noisier waveforms compared to the DSP approach, the finer movements
between neighboring A-mode frames can be compensated through the smoothing filter. More-
over, the deliberate choice of a polynomial smoothing filter over a conventional moving aver-
age filter has shown not only to preserve but also amplify such salient features around the
systolic foot, which may enable advanced pulse waveform analysis [44]. However, their physio-
logical foundation remains to be further validated.

Limitations of the presented work pertain to both physiological and technical consider-
ations. Firstly, the proposed method was developed based on a small-scale cohort. On the one
hand, the good NN pipeline performance provides a solid proof of concept within the pre-
sented inter-subject (i.e. differences in age, gender, and baseline BP) and intra-subject (i.e.
induced BP changes) variability. On the other hand, physiological variability and, hence, infer-
ring the generalizability of the proposed models, is still limited. Therefore, future research will
not only cover wider ranges in baseline determinants of healthy subjects (e.g. age, gender, and
BP)[45], but also relevant patient cohorts with cardiovascular diseases (e.g. atherosclerosis and
carotid stenosis). This will further challenge the proposed method, while expanding training
data and affirming its generalizability.

Technical limitations span from the ultrasound modality to processing architectures. The
proposed NN architecture is tailored to high-quality ultrasound data. On the one hand, the
heuristics-based ROI detection and diameter estimation might be less effective when ultra-
sound data is collected in lower quality configurations (e.g. resolution, noise level, etc.), which
may limit generalization of the models. On the other hand, the processing methods in this
work are confined to operate on raw ultrasound data resolution, whereas complex analytical
signals with preserved phase information, e.g. used in [17], would allow for sub-sample arterial
motion detection. In this sense, this processing pipeline does not yet fully exploit the raw ultra-
sound data information, although potential gains in fineness of the results should remain bal-
anced with computational complexity.

Future work will advance in both the ultrasound modality and processing refinements.
Regarding the ultrasound modality, the proposed neural network for ROI detection in combi-
nation with a large field-of-view US transducer may enable autonomous acquisition without
the need for manual alignment of the transducer to the artery. The machine-learning (ML)
pipeline uses the A-mode signal from a single (center) scanline, even though we used an array-
based transducer of 64 scanlines. Utilizing effectively the remaining scanlines is left as future
work. Although computational complexity shall be balanced, a straightforward approach
would be to leverage all 64 scanlines by means of a ML learning ensemble of models (one for
each scanline), which is expected to increase precision and fidelity while reducing tracking var-
iability [46-48]. Eventually, with wider lateral information, methods may be expanded, e.g. for
B-mode image segmentation methods to assess the degree of carotid stenosis [49].

Given that the scope of this work has been a feasibility study, aiming to provide proof of
concept for ML-based ultrasound signal processing, a systematic quantitative comparison
against the reference DSP approach on the computational and power-efficiency aspects is still
missing and targeted as future work. Such a comparison necessitates on one hand testing on a
small range of embedded micro-controllers or hardware neural accelerators (e.g. AD’s
MAX78000 Cortex, GreenWave’s Gap9[50], imec’s SENECA [51]), and on the other hand a
number of accelerator-friendly refinements for the neural-network models to make them more
compact and more resource efficient (quantization, pruning, distillation, etc). The benefit of
an ML-based approach is that even such optimizations can be automated through in-training
procedures while learning from data, and in stark contrast with tedious handcrafting in DSP
based workflows.
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Conclusion

This work proposed and evaluated a machine learning neural-network based pipeline to detect
and track the carotid artery diameter from an ultrasound stream of A-mode frames. Our eval-
uation showed that the proposed solution results in only 0.6-1.4% deviation in the tracking of
the carotid diameter by comparison to the reference, coming from a DSP-based solution, with
R*=10.7243.

To the best of our knowledge, the herein presented work is one of the first successful imple-
mentations of machine-learning for an ultrasound time-series regression task, i.e., for tempo-
rally tracking the carotid artery diameter. The proposed approach is a fully automated solution
that does not require any intervention from a specialist (e.g., for annotations/markers). Ulti-
mately, the reliance only on A-mode frames, renders the solution promising for miniaturiza-
tion and deployment in on-line clinical and ambulatory monitoring.

The main advantage of a machine learning approach over a DSP approach is the automatic
extrapolation of the right tracking function from data, rather than having to improvise heuris-
tics and perform tedious manual fine-tuning. One of the commonly argued disadvantages of a
learning-from-data approach is that it requires a lot of data to learn large computationally
expensive (deep) models. However, we have shown that by exploiting application domain
knowledge, we can arrive at effective models which are neither too large, nor require much
data for training, and may also be computationally very affordable and appealing for embed-
ded deployment.
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