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A B S T R A C T

A hybrid methodology based on numerical and non-destructive experimental schemes, which is able to predict
the structural level strength of composite laminates is proposed on the current work. The main objective is to
predict the strength by substituting the up to failure experiments with non-destructive experiments where the
investigated specimen is loaded up to 20% of its maximum load. A significant gap exists between the 20%
and the 100% load which is proposed to be treated by high fidelity physics-based numerical models, deep
learning techniques, and non-catastrophic experiments. Thus, a deep learning algorithm is developed, based
on the convolutional neural networks and trained by probabilistic failure analysis datasets which result from
the utilization of the stochastic finite element method. Also, the Monte Carlo dropout technique is embedded
into the developed convolutional neural network to estimate the uncertainty induced by the investigated
variations between the simulated and experimental data. The current paper provides a thorough description
of the proposed methodology and a practical example which demonstrates the validity of the method.
1. Introduction

Composite materials play a crucial role in the aerospace, wind
energy, and automotive industries, as they offer a unique combination
of low weight and high strength compared to traditional materials. This
has led to a growing demand for the design and analysis of composite
structures, as well as an increased need for experiments to verify and
validate the design and analysis process with the final product and
its desired specifications. However, experiments are costly in terms of
energy, carbon emissions, human effort, and time, which can increase
the total cost of the final product and the time it takes to bring a
concept to market. Therefore, there is a need to explore alternative,
more efficient methods to substitute the majority of the experimental
effort in order to actively contribute to the verification and validation
of the design and analysis process of composite structures.

The exploitation of digitalization and computer science can lead to
trustworthy results by reducing significantly the experimental effort.
More specifically, high fidelity simulations which resulted from the
area of computational mechanics and robust machine learning (ML)

Abbreviations: 2D, two-dimensional; ANN, artificial neural networks; BI, Bayesian inference; BNN, Bayesian neural networks; CDF, cumulative distribution
function; CFRP, carbon fiber reinforced polymer; CNN, convolutional neural networks; DIC, digital image correlation; DL, deep learning; FC, fully connected;
FE, finite element; FEA, finite element analysis; FEM, finite element method; FSDT, first-order deformation theory; GP, Gaussian process; K–L, Karhunen–Loève;
KL, Kullback–Leibler; LHS, latin hypercube sampling; MC, Monte Carlo; MCS, Monte Carlo simulation; ML, machine learning; MLP, multi-layer perceptron; PDF,
probability density function; RF, random field; SFEM, stochastic finite element method; VI, variational inference
∗ Corresponding author.
E-mail address: D.Zarouchas@tudelft.nl (D. Zarouchas).

techniques could be integrated in order to establish a sophisticated
methodology of conducting virtual and hybrid (i.e. realistic and vir-
tual) experimental procedures for the investigation of the mechanical
response in composite structures.

The scope of current work is to develop and present a prognos-
tic methodology which can predict the strength values in composite
structures by avoiding the conduction of experimental procedures that
lead to catastrophic failures. This practically means, that the strength
of a composite structure is aimed to be predicted by conducting non-
catastrophic tensile experiments up to 20% of maximum strain of
the structure. The developed methodology encompasses the inherent
stochastic nature of composite materials by utilizing the stochastic
finite element method (SFEM). The dataset acquired by the prob-
abilistic numerical analysis, is exploited as a training dataset to a
two dimensional convolutional neural network (CNN) as it helps with
automatic feature extraction and dimensionality reduction, since there
is a spatial relationship between the data, making this type of artificial
neural network (ANN) advantageous. Afterwards, the validity of the
vailable online 17 February 2023
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proposed methodology is investigated in terms of strength prediction
in quasi-isotropic carbon fiber reinforced polymer (CFRP) laminates
by performing realistic tensile experiments. From the ML’s point of
view, it is challenging to treat data that comes from different sources
for training and testing processes, because mostly the simulated data
diverge from the experimental. Although the mismatch between data
is a common issue in ML, the proposed method bounds successfully the
acquired experimental data within the strain range calculated by the
high fidelity SFEM. Regarding the induced uncertainty in the interval,
a state-of-art technique is embedded into the CNNs for its estimation.
In fact, it is possible to estimate this uncertainty even in black-box
deep learning (DL) models by utilizing the Monte Carlo (MC) dropout
technique which is completely integrated inside the ANN. The proposed
methodology is expected to reduce substantially, the time required
for a product to enter the service life, the material waste, the carbon
emissions and consequently the final cost of the product.

Over the past decades, various numerical methods have been inves-
tigated and employed for the simulation of the mechanical response in
composite structures. Fully analytical [1,2] and semi-analytical finite
element methods [3,4] result in accurate solutions, but they are ap-
plicable to limited types of structural configurations (e.g. semi infinite
strips and plates) and boundary conditions. On the other hand, the
finite element method (FEM) is extensively used as a trustworthy nu-
merical tool for the simulation of engineering problems including more
complex geometry and boundary conditions [5]. The spectral element
method seems more promising than the FEM especially, in the transient
response analysis of composite structures. This is due to the exploitation
of high order polynomial shape functions and Gauss–Lobatto–Legendre
quadratures, which yield to fast and accurate solutions with consis-
tent diagonal mass matrices [6,7]. However non-uniform remeshing
is required when increasing the order of polynomial shape functions,
which is a time-consuming process. The non-uniform remeshing and
the consistent diagonal mass matrices are remedied simultaneously by
the exploitation of modern wavelet-based elements which were recently
reported in high demanding wave propagation simulations [8,9]. The
main disadvantageous aspect that all the aforementioned numerical
methods retain in common, is their deterministic nature. This means
that they consider the mechanical properties of the composite mate-
rials as deterministic values, which may lead to significant deviations
between the simulations and the experimental data.

To overcome this limitation, various stochastic finite element meth-
ods have been arisen which consider the inherent randomness of the
composite materials and consequently the uncertainties on the investi-
gated composite structures. The SFEM provides the ability to perform
probabilistic analysis including material and/or loading stochasticity
and predict the mechanical response in a probabilistic way, which is
the most realistic approach. It is an extension of the deterministic finite
element (FE) approach and is able to treat random effects by modeling
uncertainties during the simulation of engineering problems [10]. The
Monte Carlo simulation (MCS) and perturbation methods have been
mainly utilized for the conduction of stochastic finite element analysis
(FEA). However, the MCS is hindered by the demanding computational
effort due to the large number of samples required [11] and the
perturbation technique is limited to small perturbations and does not
readily provide information on high-order statistics [12,13]. On the
other hand, the combination of the Karhunen–Loève (K–L) expansion
method with the Latin Hypercube Sampling (LHS) method have shown
a great potential in terms of validity and computational efficiency.
A recent work, presents that the aforementioned scheme is able to
perform reliable probabilistic failure analysis for CFRP structures in a
computationally efficient way [14].

Apart from the computational engineering methods, the recent rise
of data-driven techniques has emerged new approaches for material
strength estimation. ML has been proven to be a powerful data-driven
technique for strength prediction using various algorithms [15–19].
2

From these methods, deep learning (DL), a subfield of ML, is reported
to be the leading data-driven tool for failure analysis in composite
structures that utilize large datasets. DL is a special kind of ML that
uses an ANN inspired by the biological structure of the brain. In this
regard, Hossain et al. [20] developed an ANN model to determine the
compressive and tensile strength of engineered cementitious composite
based on the mix design parameters. The model was trained and tested
on experimental data and demonstrated more than 95% accuracy on
the predicted experimental strengths. Deng et al. [21] reported a CNN
model for compressive strength prediction of recycled concrete using 74
experimental sets of concrete block masonry with different mix ratios.
Since this type of ANN captures spatial relationships inside each input
sample, its properties are desirable for these varying mix ratios of the
multi-dimensional recycled concrete experiments. The efficiency of the
proposed CNN model was found to be higher than the traditional ANN
models.

Previous studies for strength prediction through ML techniques exist
in the literature, however intense experimental campaigns have been
conducted in order to train the ML algorithms. Mangalathu et al. [22]
have performed more than 500 experimental tests om reinforced con-
crete beam–column joints in order to train the ML algorithms to clas-
sify the failure modes and predict the shear strength values. Chopra
et al. [15] have compared three ML techniques, the decision tree
model, the random forest model and the neural network model in
order to predict the compressive strength of concrete during three age
levels, 28, 56 and 91 days. The ML algorithms have been trained by
experimental data and the neural network method was found to provide
the best predictions. Feng et al. [16] have developed an adaptive
boosting approach based on ML methods to predict the compressive
strength of concrete. Their method was compared with the ANN, the
support vector machine, the linear regression and the classification and
regression trees algorithms, obtained from the literature and found to
outperform the latter. However, more than 1000 experimental tests
were utilized to train the proposed boosting approach. On the same
way, Abuodeh et al. [23] have reported a study based on the prediction
of shear strength on externally strengthening reinforced concrete struc-
tures by the exploitation of ML techniques. A parametric study has been
conducted to investigate the parameters effect on the shear capacity
of strengthened reinforced concrete beams, whilst the ML algorithms
were trained by an experimental campaign. Karina et al. [24] have
reported a hybrid way for the prediction of tensile strength of corroded
steel plates, which results from the combination of material charac-
terization experiments with FE models used for the development of a
machine learning predictor. All the aforementioned studies are focused
on concrete structures with applications for the civil engineering sector.

All of the above ML techniques have one common limitation which
is the lack of estimating the induced uncertainty that results from dif-
ferent sources, such as environmental conditions, sensor noise, human
errors, model’s approximations, along with others. Consequently, the
uncertainty estimation is a key factor that should be considered during
the development of a ML model. There are numerous works related to
reliability analysis after predicting the mechanical properties of com-
posite materials. Yan et al. [25] proposed a method for the prediction
of the probability of failure for a bridge due to traffic overloading by
combining an ANN and the MCS. The ANN was trained and tested
on simulation data while the MCS technique managed to estimate
the fatigue failure probability by randomly sampling the overloaded
truck traffic and bridge parameters from a normal distribution. An
estimation of the compressive strength of high-performance concrete
via the Gaussian process (GP) has been established by Hoang et al. [26].
The GP has the privilege to automatically capture the uncertainty that
comes from noisy data, nonetheless, it is computationally expensive
when the training set consists of hundreds or thousands of samples with
increasing dimensions.

Although the aforementioned approaches supported the proposed
models with uncertainty, they considered only the one that results from

noisy data, usually defined as aleatoric or data uncertainty. However,
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in realistic applications, it is also very common to have a variation
between the distributions of the training and testing sets leading to poor
predictions even though the aleatoric uncertainty has been estimated.
This variation could be detected by the model itself as another measure
of the uncertainty that is known as epistemic or model uncertainty.
The epistemic uncertainty could be the dominant uncertainty especially
when the training set comes from simulations while the testing set
comes from real experiments. In particular, for strength prediction
models, a denoised version of training data could be generated from the
finite element methods, whilst the trained model could be evaluated to
the corresponding real structure. In such cases, the aleatoric uncertainty
could be neglected, however the predictions during the testing phase
may still be far from accurate, indicating that the epistemic uncertainty
dominates. Consequently, it is also compulsory to estimate this source
of uncertainty as its existence highlights a possibly large variation
between training and testing sets or a suboptimal trained model.

Regarding the area of composite materials, a deep learning method
which predicts the delamination in fatigue loaded composites is re-
cently reported [27]. Strain patterns acquired by an experimental
campaign, were employed as the training data to a CNN which is shown
to have the potential for delamination prediction. In a different way,
Chen et al. [28] have reported a ML technique to predict the failure
of a unidirectional lamina subjected to triaxial loading conditions. The
ML system has been previously trained by micromechanics-based FE
models based on deterministic input. Gu et al. [29] have performed
a parametric study on the prediction of joint strength in adhesive
bonded joints with composite materials via FE models. The output of
the FE models were exploited for the training of ML models in order to
construct a rapid method to explore specific design variables and their
effect on the joint strength. On a similar way, recent reports [30,31]
utilize the combination between FEA and fracture models in order
to train ML models and as a result to substitute the computationally
demanding FE simulations with them.

According to the literature review, the exploitation of artificial intel-
ligence and ML methods for the prediction of the mechanical response
and the diagnosis of the damage state in both concrete and composite
structures is very recently reported and seems to have a growing poten-
tial on engineering. At present, there are several reports which employ
costly and time consuming experimental procedures to train the ML
algorithms and some studies which employ deterministic FE models for
the training process. However, to the authors best knowledge, there is
no reported method which trains the ML algorithms with data obtained
from FE analysis and test them with experimental data in order to
validate the efficiency of the algorithm in a more realistic way. The
novelty of current research is that a DL method utilizes numerical data
obtained from the stochastic finite element method as a training data
set. The SFEM encompasses the inherent uncertainties of the composite
materials, thus leads to a more efficient training process. Afterwards,
the validity of the DL method is investigated by performing realistic
experiments and providing them as input to the ML algorithms which
were previously trained by numerical stochastic data. As a consequence
of this sim-to-real process, the potential shift of the data distribution
due to the experimental data is estimated via epistemic uncertainty for
strength prediction problems for the first time.

The current article is organized as follows. Section 2 presents a brief
description of the stochastic finite element method, which is employed
for the training process. A stochastic distribution algorithm is encap-
sulated on the FEM and stochastic stiffness matrices for probabilistic
analysis are derived. Section 3 describes the theoretical background
of the CNN and the uncertainty estimation process included on the
current work. Section 4 describes the concept and implementation of
the proposed methodology and mentions all the parameters used on the
SFEM and CNN algorithms for the non-destructive strength prediction
in composite laminates. Section 5 presents a demonstrative example of
the proposed method, where the strength values of ten quasi-isotropic
specimens are predicted by conducting non-destructive tensile tests up
to 20% of the maximum strain and inserting the obtained full-field
strain field as input to the DL models which were previously trained
3

by the respective stochastic finite element model.
2. The stochastic finite element method

The integration of the K–L expansion and LHS method into FEA
leads to a beneficial SFEM in terms of probabilistic distribution and
computational efficiency among the others. Thus, the present work
exploits the LHS method to generate an adequate sampling size of
random values and the K–L method to distribute the uncertain material
properties along the random field (RF) mesh. The RF is the mesh of the
investigated structural domain where random mechanical properties
are distributed. A mapping interpolation algorithm is used to ensure the
linking of the RF nodes with the Gaussian integration points exist on
the FE mesh. The first-order shear deformation laminated plate theory
(FSDT) is employed for the calculation of stochastic stiffness matrices
and for the development of the proposed SFEM. During the stochastic
finite element analysis, the Puck’s failure criterion is exploited to
evaluate the existence and the type of failures on the matrix and on
fibers as well.

2.1. The spatially varying random field distribution method

The spatially varying random field distribution method employed
on the current paper, encompasses the K–L expansion, the LHS and
the mapping interpolation method. A continuous random function can
be represented by a complete set of deterministic functions with cor-
responding random coefficients. Based on this idea, the K–L expansion
was introduced by Spanos and Ghanem [32]. The K–L expansion can be
seen as a special case of the orthogonal series expansion where the or-
thogonal deterministic functions, the eigenfunctions of the covariance
function for the random field and the uncorrelated random variables
are involved [33]. The current paper employs the K–L expansion to
discretize spatially varying random fields in the two-dimensional (2D)
domain. Thus, both the material properties (elastic modulus, shear
modulus, Poisson ratios) and the strengths (tensile, compressive) on
fiber and matrix direction are decomposed into a deterministic and a
stochastic part as well. Consider a random field 𝑤(𝐱, 𝜃) with mean value
𝜇𝑤(𝐱), the K–L expansion is written as [34]

𝑤(𝐱, 𝜃) = 𝜇𝑤(𝐱) +
𝑀
∑

𝑖=1

√

𝜆𝑖𝜙𝑖(𝐱)𝜉𝑖(𝜃) (1)

here 𝜇𝑤(𝐱) could be any of the randomly distributed values along the
F mesh, 𝜇𝑤(𝐱) is the mean value, 𝑀 is the number of K–L terms,

√

𝜆𝑖
and 𝜙𝑖(𝐱) are the eigenvalues and the eigenvectors respectively resulted
rom the eigenvalue analysis of the Fredholm integral equation of the
econd kind, 𝜉𝑖(𝜃) are the uncorrelated zero mean random variables
btained from the LHS method and 𝜃 is the size of the random variables
enerated by the LHS. The LHS method is reported to outperform
he MCS, since it spreads the sampling points more evenly across all
ossible values by decreasing substantially the size of samples and
onsequently the computational effort [35,36]. The calculation of the
igenevalues and eigenvectors results from the solution of Eq. (2).

𝐃 = Λ𝐂𝐃 (2)

=
𝑁𝑅𝐹
∑

2𝑒=1

𝑁𝑅𝐹
∑

1𝑒=1
∫𝛺1𝑒

∫𝛺2𝑒

𝐶(𝐱1; 𝐱2) < 𝐍(𝐱1) >𝑇< 𝐍(𝐱2) >

|𝐉𝑒|2𝑑𝐴2𝑒𝑑𝐴1𝑒

(3)

=
𝑁𝑅𝐹
∑

𝑒=1
∫𝛺𝑒

< 𝐍(𝐱) >𝑇 < 𝐍(𝐱) > |𝐉𝑒|𝑑𝐴𝑒 (4)

here 𝑁𝑅𝐹 is the number of RF elements used for the stochastic
istribution, 𝐍(𝐱) are the shape functions used as basis functions for
he RF mesh, 𝐉𝑒 is the Jacobian and 𝐶(𝐱1; 𝐱2) is the covariance function
or spatially varying fields derived in Eq. (5).

(𝐱1; 𝐱2) = 𝜎2𝑤𝑒𝑥𝑝
(

−
|𝑥1 − 𝑥2| −

|𝑦1 − 𝑦2|
)

, 𝐱1, 𝐱2 ∈ 𝛺 (5)

𝑏𝑐1𝐿𝐷1 𝑏𝑐2𝐿𝐷2
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𝑏𝑐1, 𝑏𝑐2 are the correlation length parameters of the two different
irections of the domain, 𝐿𝐷1, 𝐿𝐷2 are the physical characteristic
engths and 𝜎𝑤 is the standard deviation of the random property 𝑤.

The combination of Eqs. (2)–(5) leads to the solution of Eq. (1)
hich practically calculates the random distribution of the desired
roperty 𝑤 on the nodes of the RF mesh. The mapping interpolation
lgorithm is a stepwise procedure and is employed in order to transfer
he calculated stochastic properties from the RF nodes to the FE nodes
nd subsequently to the Gaussian integration points included in the
E mesh. The number and location of the Gaussian integration points
epends on the selection of the polynomial order of the shape functions.
he current work exploits the 9-node quadratic quadrilateral FEs for the
F and the FE mesh as well. The link between the RF nodes and the FE
odes is described in Eq. (6), where the eigenfunctions are transferred
rom the RF to the FE nodes.

𝑗𝐹𝐸
𝑖 =

9
∑

𝑚=1
𝑁𝑚(𝜉

𝑗
𝑖 , 𝜂

𝑗
𝑖 ) 𝜙

𝑗𝑅𝐹
𝑚 (6)

here 𝜉𝑗𝑖 , 𝜂
𝑗
𝑖 are the isoparametric coordinates attached to the 𝑗th RF

lement, which correspond to the 𝑖th FE node and are calculated within
ach RF element. A nonlinear system of equations that relates the FE
odal coordinates (𝑥𝑗𝑖 , 𝑦𝑗𝑖 ) within the 𝑗th RF element with RF nodal
oordinates (𝑋𝑗

𝑚, 𝑌
𝑗
𝑚) of the same 𝑗th RF element has to be solved and

s shown in Eq. (7).
9
∑

𝑚=1
𝑁𝑚(𝜉

𝑗
𝑖 , 𝜂

𝑗
𝑖 )𝑋

𝑗
𝑚 − 𝑥𝑗𝑖 = 0

9
∑

𝑚=1
𝑁𝑚(𝜉

𝑗
𝑖 , 𝜂

𝑗
𝑖 )𝑌

𝑗
𝑚 − 𝑦𝑗𝑖 = 0

(7)

he next step is to transfer the random properties from the FE nodal
oints to the Gaussian integration points included on each FE element
or the consistent calculation of the stochastic stiffness matrices. Eq. (8)
escribes the link between the FE nodes and the Gaussian integration
oints for each random property and each 𝜃 random case generated by
he LHS method.

𝐺(𝝃, 𝜃) =
9
∑

𝑖=1
𝑁𝑖(𝝃)𝑤𝐹𝐸

𝑖 (𝐱, 𝜃) (8)

here 𝝃 are the local coordinates of the FE field (𝜉𝑗 , 𝜂𝑗 ) for the 𝑗th
RF element. A thorough description of the spatially varying random
field distribution method used in the current research can be found
in [14,37].

2.2. Formulation of the stochastic laminated composite plate element

The integration of the aforementioned spatially varying random
field distribution method is performed within the first-order shear
deformation laminated plate theory, where the transverse normals do
not remain perpendicular to the midsurface after deformation [38].
The kinematic assumptions used to describe the stochastic displacement
field for each random case 𝜃 is of the form
𝑢(𝑥, 𝑦, 𝑧, 𝜃) = 𝑢0(𝑥, 𝑦, 𝜃) + 𝑧 ⋅ 𝛽𝑥(𝑥, 𝑦, 𝜃)

𝑣(𝑥, 𝑦, 𝑧, 𝜃) = 𝑣0(𝑥, 𝑦, 𝜃) + 𝑧 ⋅ 𝛽𝑦(𝑥, 𝑦, 𝜃)

𝑤(𝑥, 𝑦, 𝑧, 𝜃) = 𝑤0(𝑥, 𝑦, 𝜃)

(9)

where 𝑢0, 𝑣0, 𝑤0 denote the stochastic displacements on the 𝑥-axis, 𝑦-
axis, and 𝑧-axis at the mid-plane of the plate respectively; 𝛽𝑥, 𝛽𝑦 denote
the stochastic rotations of the cross-section and 𝑧 is the local thickness
coordinate.

After the derivation of the displacement field into the strain field,
the principle of virtual work is employed and finally the calculation of
the stochastic stiffness matrices [𝐊𝑒(𝜃)] for each element 𝑒 and for each
randomly generated sample 𝜃 is described in Eq. (10).

[𝐊𝑒(𝜃)] = [𝐑𝑇 ][𝐊𝐿(𝜃)][𝐑]𝑑𝑉 (10)
4

∭𝑉
𝐊𝐿(𝜃) includes the 𝐴(𝜃)′𝑠, 𝐵(𝜃)′𝑠 and 𝐷(𝜃)′𝑠 terms which are the
extensional, bending and bending-extensional coupling stiffnesses for
each random 𝜃 case and 𝐑 is the matrix resulted from the derivation
of shape functions according to the FSDT. A detailed description of the
stepwise formation of stochastic finite elements based on the FSDT for
laminated composite plates is reported in [14].

3. Convolutional neural networks and uncertainty estimation

The current section describes briefly the theoretical background of
DL starting from the ANN to the CNN and mentions the significant
importance of the latter and the method to integrate the uncertainty
estimation into neural networks.

3.1. Convolutional neural networks

Deep learning is a subfield of ML that uses ANN as its key com-
ponent. These networks are based on a collection of connected units
or nodes called artificial neurons where each neuron receives an infor-
mation and processes it, then it passes the information to its neighbor
neurons, and so on. Technically, typical neurons are composed by
weights and biases that adjust as learning proceeds. The mathematical
process inside a neuron is defined as

𝑁𝑗 =
𝐾
∑

𝑖=1
𝑤𝑙

𝑗𝑖𝑥𝑖 + 𝑏𝑙 (11)

where 𝑁𝑗 is the initial output of neuron and 𝑤𝑙
𝑗𝑖 is the weight relevant

to the connection between the 𝑗th neuron at the 𝑙th layer to the
(𝑙 − 1)𝑡ℎ layer’s 𝑖𝑡ℎ neuron. The neuron also contains 𝑏𝑙 to consider the
bias. The weights and biases are the parameters of the ANN that are
being adjusted during training via the backpropagation algorithm. This
algorithm starts by calculating the gradients of the error between the
ANN’s outputs and the corresponding true values and it goes backwards
towards the calculation of the gradients of all the parameters with
respect to the error. Details about the backpropagation algorithm can
be found in [39]. The vanilla ANN presented above is called multi-layer
perceptron (MLP) [40] and uses fully connected (FC) layers, i.e. each
neuron of a layer is connected with all the neurons of the next one. The
CNN is a specific kind of ANN that performs better than the MLP when
a spatial or temporal relationship between the data exists as it automat-
ically extracts features through convolution, thus keeping important
spatio-temporal information by also reducing processing requirements.
CNN could be 1-dimensional (CNN1D), 2-dimensional (CNN2D), or 3-
dimensional (CNN3D). CNN1D is used to extract features from spectral
data, such as time-series [41], CNN2D is applied with spatial data
(e.g. images, 2D structures) [42,43] and CNN3D for spatio-temporal
data, such as gesture recognition [44]. A CNN architecture usually
consists of some convolutional layers followed by pooling layers, and
then FC layers. Features are automatically learned and extracted layer
by layer through multiple convolution layers and pooling layers, and
then usually passed into an FC layer to produce the final output. Similar
to MLPs, the calculation process of a convolutional layer uses again
weights and biases, but the array of weights is an array of matrices
where each matrix represents a filter or kernel that is convolved with
the input matrix. Assuming the input of a convolutional layer is 𝑋 ∈
𝑅𝐻×𝐵 where 𝐻 and 𝐵 are the two input dimensions representing the
height and width, respectively, then the output of the convolutional
layer is calculated as follows:

𝑧𝑙𝑖,𝑗,𝑘 = 𝑥𝑙𝑖,𝑗𝑤
𝑙
𝑘 + 𝑏𝑙𝑘 (12)

𝑎𝑙𝑖,𝑗,𝑘 = 𝐹 (𝑧𝑙𝑖,𝑗,𝑘) (13)

where 𝑧𝑙𝑖,𝑗,𝑘 is the 𝑘th feature map of the 𝑘th filter or kernel, centered
at location (𝑖, 𝑗) of the 𝑙th layer, 𝑎𝑙𝑖,𝑗,𝑘 denotes the output after applying

𝑙 𝑙
a nonlinear activation function 𝐹 to the feature map, 𝑤𝑘 and 𝑏𝑘 are the
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Fig. 1. An example of 2-dimensional convolution operation followed by a 2-dimensional pooling technique.
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eight vectors and bias of the 𝑘th filter and 𝑙th layer, and 𝑥𝑙𝑖,𝑗 is the
orresponding input of that layer. It should be noted that the weights of
he kernel 𝑤𝑙

𝑘 that produce the feature map 𝑧𝑙𝑖,𝑗,𝑘 are shared for different
ocations (𝑖, 𝑗). This sharing mechanism reduces the model complexity,
nd makes the network easier to train, while it retains the nonlinearities
rom the activation function which are needed for the detection of
onlinear features. After the kernel is applied around the location (𝑖, 𝑗)
f the input matrix, it slides to the neighboring locations resembling to
2-dimensional overlapping window, called a stride. Applying a stride
𝑥𝑠𝑡𝑟𝑖𝑑𝑒, 𝑦𝑠𝑡𝑟𝑖𝑑𝑒) moves the kernel to be centered firstly, at the location
𝑖 + 𝑥𝑠𝑡𝑟𝑖𝑑𝑒, 𝑗) and then at (𝑖 + 𝑥𝑠𝑡𝑟𝑖𝑑𝑒, 𝑗 + 𝑦𝑠𝑡𝑟𝑖𝑑𝑒). If the stride is large and
xceeds one of the dimensions of the input, then the input matrix is
ero-padded to increase the size of dimensions accordingly. Padding
ould be also applied to upsample the input dimensions if the dataset
as relatively small 𝐻 and 𝐵. Finally, backpropagation is applied in the
ame way as in the MLP.

Usually, between two convolutional layers, there is a pooling layer
hat aims to reduce (downsampling) the dimensionality of the activated
eature maps 𝑎𝑙𝑖,𝑗,𝑘. For each 𝑎𝑙𝑖,𝑗,𝑘 the pooling process is as follows:

𝑙
𝑖,𝑗,𝑘 = 𝑝𝑜𝑜𝑙(𝑎𝑙𝑎,𝑏,𝑘), ∀𝑎, 𝑏 ∈ 𝑉 𝑖𝑗 ⊆ R (14)

here 𝑝𝑜𝑜𝑙(⋅) is the pooling function and 𝑉 𝑖𝑗 is a sub-space around
ocation (𝑖, 𝑗) where pooling is applied. In CNNs two pooling operations
re often applied; max pooling or average pooling [45]. Fig. 1 shows
he convolution operation which is usually followed by a pooling
echnique to further reduce the input dimensions. In this example, a
× 6 input array and a 3 × 3 filter are convolved with the input to

ive the feature map. Here, the stride is equal to 1 for both dimensions,
ence the filter slides by one position to the right or down giving a
× 4 output after doing element-wise multiplication. For simplicity,

he activation function is assumed to be the identity function, so the
eature map remains the same. Next, the feature map is passed through
max pooling operation, i.e. the maximum around a location is taken,
ith a 2 × 2 filter and 2 × 2 stride to give the final reduced 2 × 2
utput.

Summarizing, the CNNs start from a convolutional layer, a nonlin-
ar activation function is applied, and the new array is passed through
pooling layer. This is a group of layers that forms the first part of
typical CNN architecture. The second part is the MLP with some FC

ayers. Before applying FC layers, it is necessary to reshape the array to
ecome 1-dimensional, thus a special layer termed as flattening layer
s used that simply concatenates the dimensions of the output of the
irst part of the group in one dimension. Additionally, in the first part
f the group, some other layers could be added, such as dropout [46]
hich is a simple technique to avoid overfitting by regularizing the
eural network, and a batch normalization layer [47], which is a
ethod to normalize the output of each convolutional layer for re-
ucing the intrinsic covariance shift induced by the neural network
tself. The accuracy of the CNN is improved by stacking many groups
f layers together for confronting problems with spatial or temporal
elationships.
5

.2. Uncertainty estimation in artificial neural networks

Uncertainty exists in every type of ML problems and sometimes
t may be so large that the model could not provide any reliable
rediction. In the literature, there are many different definitions of
ncertainty, but the most widespread is its decomposition into epis-
emic and aleatoric uncertainty [48]. On the first hand, epistemic or
odel uncertainty confronts the fact that no precise ML model exists

hat completely understands the training and testing distributions as
ell. Having high epistemic uncertainty means that the model is unable

o effectively capture the entire distribution of the dataset. The out-of-
istribution data may arise at the testing phase and could be completely
ifferent from the training set. A mismatch between test and training
istributions is called dataset shift [49]. This shift in data, could be
etected via epistemic uncertainty and reduced by acquiring more data
hat could assist the model to better extract features from the inputs.
t should be noted that the term ‘‘out-of-distribution’’ data used in the
iterature may confuse the readers as it does not necessarily mean that
he input data are out of the boundaries of the training set, but they can
ie inside those boundaries at locations where data does not exist. In
he current case, the SFEM that provides the training data set has been
lready validated with experiments [14] and guarantees that the testing
et is enclosed in the training one. On the other hand, the aleatoric
ncertainty arises due to the complexity, noise, and random nature
f the data. This type of uncertainty cannot be reduced by acquiring
ore data, hence it is an irreducible uncertainty. The total uncertainty

s simply the sum of the aleatoric and epistemic.
Compared with ANNs, the epistemic uncertainty could be detected

n the model’s weights and be further reduced by tuning the hyper-
arameters of the ANN or by acquiring more data for training. The
etection of the aleatoric uncertainty is demanding and should be
xpressed as an additional output neuron that predicts the variance
n regression tasks [48] or to measure the model’s entropy on the
utputs in classification tasks [50]. In the current study, the aleatoric
ncertainty is treated by the SFEM, which distributes successfully the
ncertain mechanical properties resulted from the manufacturing pro-
ess. However, the exploitation of simulation data for training while
esting on experimental data can result in alternate distributions for
hose two phases leading to a potential dataset shift. In this regard,
he estimation of epistemic uncertainty is crucial for ensuring the
roposed model’s strength predictions. Instead of outputting a single
eterministic value which is usually an overconfident prediction of the
odel, the mean value and the variance of stochastic predictions is

stimated, hence a distribution over each prediction is achieved which
nhances the reliability of the proposed model.

.2.1. Estimation of epistemic uncertainty
As mentioned before, the epistemic uncertainty emerges mainly

hen there is a large variation between the training and testing sets or
hen the model is poorly trained. This type of uncertainty is mistakenly

gnored in many situations and, in this study, it is the dominant source



Composite Structures 311 (2023) 116815C. Nastos et al.

d
d

w

𝑝

T
𝑌
c

𝑝

𝑞

p
t
a
c

𝑝

H
i
i
r
t
o

𝐿

𝑝

𝑞

I
t
K
o
m
𝑝
k

w
𝜃
n
t
w
t
i
c

3

i
h
b
p
e
p
r
T
e
i
d
s
v
a
i
r
u

f
c
t
t
t
e
u
c
t
t

of uncertainty. This can be easily understood as the training data
comes from the stochastic finite element method while the testing
data comes from a real case study, thus the variation between those
sets is expected to be large. To capture the epistemic uncertainty in
an ANN, one approach is to use deep ensembles [51–53]. Instead of
using one ANN, with ensembles, a discrete number of models can be
used that would converge differently due to the random initialization
of the parameters. This implies that each ANN model is expected to
give different outputs for a specific input sample, hence a measure
of the epistemic uncertainty over the parameters could be achieved.
Despite the effectiveness of deep ensembles, they are computationally
prohibitive for large or high-dimensional datasets. A more attractive
approach is to convert the model’s deterministic parameters into dis-
tributions, for instance, a Gaussian distribution: 𝜃𝑁𝑁 ∼ 𝑁(0, 𝐈), where
𝜃𝑁𝑁 = {𝑤, 𝑏} denotes the parameters of ANN (weights, biases), and
𝐈 is the identity matrix. These models are known as Bayesian Neural
Networks (BNN) [54–57] and are considered as a special case of the
ensembles [58]. Instead of optimizing those parameters directly, they
are updated via the Bayes’ theorem at first, and then marginalization
is performed by averaging over the sampled parameters. To achieve
this, the Bayesian approach defines a model likelihood 𝑝(𝑦|𝑥, 𝜃𝑁𝑁 ) with
istributed parameters 𝜃𝑁𝑁 , and it is possible to calculate the posterior
istribution 𝑝(𝜃𝑁𝑁 |𝑋, 𝑌 ) according to Bayes’ theorem.

𝑝(𝜃𝑁𝑁 |𝑋, 𝑌 ) =
𝑝(𝑌 |𝑋, 𝜃𝑁𝑁 )𝑝(𝜃𝑁𝑁 )

𝑝(𝑌 |𝑋)
(15)

here the denominator is calculated by:

(𝜃𝑁𝑁 |𝑌 ,𝑋) = ∫𝜃𝑁𝑁

𝑝(𝑌 |𝑋, 𝜃)𝑝(𝜃𝑁𝑁 ) (16)

he probability 𝑝(𝑌 |𝑋) represents the uncertainty of a set of outputs
given a set of inputs 𝑋. Given a sample 𝑥 from inputs 𝑋 the

orresponding output is predicted 𝑦:

(𝑦|𝑥,𝑋, 𝑌 ) = ∫𝜃𝑁𝑁

𝑝(𝑦|𝑥, 𝜃𝑁𝑁 )𝑝(𝜃𝑁𝑁 |𝑋, 𝑌 )𝑑𝜃𝑁𝑁 (17)

Eq. (17) is the marginalization process mentioned above or inference,
otherwise, and the output probability distribution is called predictive
distribution. Unfortunately, the posterior 𝑝(𝜃𝑁𝑁 |𝑋, 𝑌 ) cannot be com-
puted analytically because the denominator of Eq. (15) is intractable,
however it can be approximated via the Bayesian inference (BI) or
variational inference (VI). In case of BI, the posterior distribution is
directly computed effectively via the MC techniques, but these tech-
niques are extremely slow, especially when it comes to training neural
networks. Since BI requires large computation power and resources,
VI is preferred in Bayesian neural networks (BNNs). In VI the aim
is to approximate the posterior distribution with another distribution
𝑞𝜙(𝜃𝑁𝑁 ), with 𝜃𝑁𝑁 representing the weights of the BNN, and 𝜙 the
additional variational parameters to approximate the posterior distri-
bution of those parameters 𝜃𝑁𝑁 . After training, the distribution of
𝜙(𝜃𝑁𝑁 ) should converge to the posterior. In this regard, the Kullback–

Leibler divergence (KL) [59] is computed and minimized to update the
variational parameters 𝜙:

𝐾𝐿(𝑞𝜙(𝜃𝑁𝑁 ) ∥ 𝑝(𝜃𝑁𝑁 |𝑋, 𝑌 )) =

∫𝜃𝑁𝑁

𝑞𝜙(𝜃𝑁𝑁 )𝑙𝑜𝑔
𝑞𝜙(𝜃𝑁𝑁 )

𝑝(𝜃𝑁𝑁 |𝑋, 𝑌 )
𝑑𝜃𝑁𝑁

(18)

the KL estimates the level of similarity between the assumed distri-
bution 𝑞 modeled with parameters 𝜙 and the posterior distribution
roduced from Bayes’ theorem which updates the parameters 𝜃𝑁𝑁 of
he BNN. The 𝑞∗𝜙(𝜃𝑁𝑁 ) term is denoted as the optimized distribution
fter minimizing the KL, then the predictive distribution of Eq. (17)
an be approximated:

(𝑦|𝑥,𝑋, 𝑌 ) = ∫𝜃𝑁𝑁

𝑝(𝑦|𝑥, 𝜃𝑁𝑁 )𝑝(𝜃𝑁𝑁 |𝑋, 𝑌 )𝑑𝜃𝑁𝑁

≈ 𝑝(𝑦|𝑥, 𝜃𝑁𝑁 )𝑞∗𝜙(𝜃𝑁𝑁 )𝑑𝜃𝑁𝑁

(19)
6

∫𝜃𝑁𝑁
t

𝑞∗𝜙(𝜃𝑁𝑁 ) = 𝑎𝑟𝑔𝑚𝑖𝑛[𝐾𝐿(𝑞𝜙(𝜃𝑁𝑁 ) ∥ 𝑝(𝜃𝑁𝑁 |𝑋, 𝑌 ))] (20)

owever, one problem still exists; KL minimization process is still
ntractable as it demands the posterior distribution, hence the denom-
nator of Eq. (15) is needed. Fortunately, it is proven that after rear-
anging KL into the evidence lower bound (ELBO) maximization [60],
he intractable denominator could be avoided and lead to the objective
f VI:

𝑉 𝐼 =∫𝜃𝑁𝑁

𝑞𝜙(𝜃𝑁𝑁 )𝑙𝑜𝑔𝑝(𝑌 |𝑋, 𝜃𝑁𝑁 )𝑑𝜃𝑁𝑁

− 𝐾𝐿(𝑞𝜙(𝜃𝑁𝑁 ) ∥ 𝑝(𝜃𝑁𝑁 ))
(21)

(𝑦|𝑥,𝑋, 𝑌 ) ≈∫𝜃𝑁𝑁

𝑞∗𝜙(𝜃𝑁𝑁 )𝑙𝑜𝑔𝑝(𝑌 |𝑋, 𝜃𝑁𝑁 )𝑑𝜃𝑁𝑁

− 𝐾𝐿(𝑞∗𝜙(𝜃𝑁𝑁 ) ∥ 𝑝(𝜃𝑁𝑁 ))
(22)

∗
𝜙(𝜃𝑁𝑁 ) = 𝑎𝑟𝑔𝑚𝑎𝑥[𝐿𝑉 𝐼 ] (23)

nterested readers may refer to [60–62] for the analytical approxima-
ion of the posterior distribution via the VI and for the proof of the
L rearrangement that leads to Eq. (21). Notice that the minimization
bjective now becomes a maximization of the 𝐿𝑉 𝐼 as KL should be
inimized and contributes negatively to Eq. (21). The prior distribution
(𝜃𝑁𝑁 ) over the parameters 𝜃𝑁𝑁 and the likelihood 𝑝(𝑌 |𝑋, 𝜃𝑁𝑁 ) are
nown, thus the predictive distribution is now tractable.

The main idea in VI is to choose the parameterized distributions 𝑞𝜙,
hich for the BNNs are the distributions from which the parameters
𝑁𝑁 are being sampled. For example, if one assumes an initial family of
ormal distributions 𝑞𝜙(𝜃𝑁𝑁 ) ∼ 𝑁(𝜇, 𝜎2) for each parameter 𝜃𝑁𝑁 , then
he parameters to be optimized are 𝜙𝑖 = {𝜇𝑖, 𝜎2𝑖 }, 𝑖 = {0, 1,… , 𝑁𝜃𝑁𝑁

},
here 𝑁𝜃𝑁𝑁

is the total number of the BNN parameters. After finding
he corresponding 𝜙 that optimizes 𝑞𝜙, a good approximation of the
ntractable posterior distribution is obtained and the parameters 𝜃𝑁𝑁
ould be updated by sampling over those distributions.

.2.2. Monte Carlo dropout
Despite VI being a great approximation of the posterior distribution,

t is still practically challenging, especially when it comes to tuning the
yperparameters of the ANN where the same training process should
e processed in an iterative way prior selecting the optimal hyper-
arameters. It should be noted that the term hyperparameter implies
very constant variable which value is used to control the learning
rocess, such as the number of neurons and layers, and the learning
ate for updating the weights and biases during the backpropagation.
hereby, the Monte Carlo dropout [63] is a simple and computationally
fficient technique for estimating the epistemic uncertainty by approx-
mating the predictive distribution described in Eq. (22). In general,
ropout [46] is used as a regularization term in ANNs. In every training
tep, binary variables for each layer’s neuron are sampled. Each binary
ariable has a value of 1 with a probability 𝑝𝑖 for the 𝑖th layer, and
value of 0, otherwise. If the value is equal to 0, then the neuron

s dropped and is not used for calculating the layer’s output, while it
emains active, if it is equal to 1. The same binary variable values are
sed during backpropagation. The probability 𝑝𝑖 is called dropout rate.

Dropout is an effective technique for solving the problem of over-
itting, which is when the model perfectly fits the training data and
annot generalize to the unseen one. Usually, dropout is enabled during
he training process and then is disabled during the testing, in order
o provide a deterministic output. In case of retaining it active during
he test phase, the ANN would provide a variety of output values for
ach specific input. This provides an estimation about the epistemic
ncertainty. Therefore, during the testing phase 𝑁 different outputs
ould be produced by inferring over each input 𝑥𝑖 as in the MC
echniques. The process that enables dropout during the testing phase
o apply inference is termed as MC dropout.

The MC dropout is a special case of BNN and an easy-to-implement

echnique since it can be applied naturally inside the ANN. Fig. 2
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Fig. 2. A graphical representation of: (a) BNN; (b) dropout.
illustrates a BNN and a vanilla ANN including dropout. As already
mentioned, in case of BNN, the weights are distributed by selecting a
prior distribution and then the VI is applied to update the weights using
another parameterized distribution 𝑞𝜃𝑁𝑁

called variational distribution.
Dropout randomly removes some neurons in layer 𝑖 with probability
𝑝𝑖, hence it could be considered as a special case of a variational
distribution [64].

Since dropout provides a binary condition for each neuron (enable,
disable), the distribution that manipulates the neurons is mostly a
Bernoulli distribution. To relate the VI, the BNN, and the MC dropout,
the variational distribution 𝑞𝜙(𝜃𝑖𝑁𝑁 ) used in the current research is
defined for every layer 𝑖 as:

𝜃𝑖𝑁𝑁 = 𝜙𝑖 ⋅ 𝑑𝑖𝑎𝑔([𝑢𝑖,𝑗 ]𝐾𝑗=1) (24)

𝑢𝑖,𝑗 ≈ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑖), 𝑖 = {1,… , 𝐿}, 𝑗 = {1,… , 𝐾𝑖−1}, where 𝑢𝑖,𝑗 denotes
he random variable of the 𝑖th layer and 𝑗th neuron that follows a
ernoulli distribution with probability 𝑝𝑖, 𝐿 is the number of layers,
nd 𝐾 is the number of neurons for the 𝑖th layer. The 𝑑𝑖𝑎𝑔(⋅) operator
aps vectors to diagonal matrices whose diagonals are the elements

f the vectors. The authors in [63] suggest that the dropout should be
pplied after every layer that has weights and biases with a dropout
ate value of around 0.5, except the input layer that should have less
eurons zeroed than the other, thus a lower dropout rate to avoid
osing important information from the input data. Consequently, the
osterior distribution could be approximated over the parameters 𝜃𝑖𝑁𝑁
y updating the variational parameters 𝜙𝑖 via the loss function:

𝑑𝑟𝑜𝑝𝑜𝑢𝑡 =
1
𝑁

𝑁
∑

𝑖=1
𝑀𝑆𝐸(𝑦𝑖, 𝑦̂𝑖) + 𝜆

𝐿
∑

𝑖=1

‖

‖

𝑤𝑖
‖

‖

2
2 (25)

here 𝑁 is the number of samples and the second term is equivalent to
he 𝐿2 weight regularization assuming a normal prior distribution over
he parameters. Using the current loss function for training the model,
he approximation of the integral of the predictive distribution during
nference is achieved in Eq. (22)

(𝑦|𝑥,𝑋, 𝑌 ) ≈ ∫𝜃𝑁𝑁

𝑝(𝑦|𝑥, 𝜃𝑁𝑁 )𝑞∗𝜙(𝜃𝑁𝑁 )𝑑𝜃𝑁𝑁

≈ 1
𝑇

𝑇
∑

𝑖=1
𝑝(𝑦|𝑥, 𝜃̂𝑖𝑁𝑁 )

(26)

where 𝑇 denotes the MC samples and 𝜃̂𝑖𝑁𝑁 is the estimation of the up-
dated parameters 𝜃𝑖𝑁𝑁 . Usually, some tens or hundreds of 𝑇 predictions
are adequate [46,63] for calculating the uncertainty. The summation
operation in Eq. (26) provides an array of predictions for each 𝑥𝑖 from

hich the estimation of the epistemic uncertainty is achieved for the
roposed model. The uncertainty can be expressed via the probability
ensity function (PDF) in many ways. In this study, a non-parametric
ensity function called kernel density estimator [65] has been chosen
o approximate the PDF that expresses the epistemic uncertainty. More-
ver, the 95% confidence intervals are calculated by using the variance
7

f the predictions.
4. The concept and implementation of the method

The current section describes the concept of the proposed methodol-
ogy in a stepwise procedure from the beginning where the initial lamina
properties and the geometry of the investigated composite laminate
are inserted, until the final prediction of the strength distribution of
the specific laminate. In addition, all the parameters employed for the
implementation of the SFEM and of the CNN algorithms are presented.

4.1. The concept

The objective of the current method is to perform non-destructive
strength predictions for composite laminates by utilizing DL techniques,
the SFEM and experimental data acquired from tensile/compressive
experiments. The overall concept is illustrated in Fig. 3 in a stepwise
procedure:

• Step 1. Define the lamina (ply) mechanical properties, the orien-
tation and geometry (length, width, thickness) of the investigated
laminated composite.

• Step 2. Exploitation of the K–L expansion and the LHS method
to distribute the stochastic ply-level mechanical properties along
the structural domain and to generate 𝑛 random structures respec-
tively.

• Step 3. Perform probabilistic failure analysis by employing the
SFEM for the calculation of: (i) the full-field axial strains on
the load steps of 10% and 20% of the maximum load (ii) the
probability density function (PDF) regarding the strength of the
entire laminate.

• Step 4. Insertion of the strains and strengths acquired from the
SFEM as the input required by the DL algorithms for the training
process.

• Step 5. Perform the non-destructive tensile/compressive experi-
mental test for the investigated laminate coupon until 20% of
the maximum load and acquire the full-field axial strains for both
10% and 20% loading steps by the digital image correlation (DIC)
method.

• Step 6. Insert the two full-field axial strains of the investigated
composite laminated specimen into the DL algorithms and pre-
dict a distribution of strength values including the epistemic
uncertainty by utilizing the MC dropout technique.

Steps 1 to 4 are performed offline before the actual non-destructive
testing process of the real specimen begins. This improves substantially
the execution time of the proposed method.

The proposed method avoids the tensile/compressive tests until
failure initiation or breakage in order to extract the overall strength
of the laminated structure, since it is predicted by a high-fidelity

stochastic numerical method and a trained DL algorithm.
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Fig. 3. The concept of the non-destructive methodology for prediction of strength in composite laminates.
Fig. 4. A sketch of the quasi-isotropic laminate model clamped on its left edge and subjected to tensile loading on its right.
4.2. Implementation

The current subsection describes the implementation of the training
process followed for the proposed DL method in order to achieve a
non-destructive strength prediction for composite laminates. All the
parameters employed in both the stochastic failure analysis models and
the deep learning algorithms are described.

4.2.1. Description of the stochastic finite element model
A stochastic numerical model for the probabilistic failure analysis of

a quasi-isotropic CFRP is developed by exploiting the aforementioned
SFEM. The dimensions of the simulated composite laminate are 250 ×
25×2 mm3 with lamination of [(0∕90∕±45)𝑠]2. The boundary conditions
of the simulated component are shown in Fig. 4 where a clamp on
the left edge and a distributed incremental load on the right edge are
enforced.

The 9-node quadratic type of finite element is exploited for both
the RF and the FE mesh. The first type of mesh ensures the adequate
distribution of the randomness in terms of mechanical properties and
the latter ensures the convergence of the obtained solution in terms
of displacements, stresses and strains. For that reason, a RF mesh size
of 30 × 3 elements and a FE mesh size of 60 × 6 are used. The
K–L expansion parameters employed by the stochastic FE model are
shown in Table 1. The selection of the parameters is explained in the
authors recent work [14], where convergence studies are reported. The
only difference between the current and the previous work in terms of
stochastic parameters is the number of randomly generated samples.
It has been previously shown that 100 samples obtained by the LHS
method are adequate in order to describe the uncertainties along the
structural domain, since it is a more efficient method than the MCS.
However, on the current work 1000 samples are used, in order to
8

Table 1
K–L expansion parameters used for the development
of the stochastic finite element model.
Property type (Symbol) Values

K–L terms (𝑀) 12
Correlation length 𝑥-axis (𝑏𝑐1) 0.1
Correlation length 𝑦-axis (𝑏𝑐2) 0.1
Number of samples (𝜃) 1000

achieve improved results regarding the training process of the DL algo-
rithms. During the current research, the Puck’s failure criterion [66] is
exploited at each incremental solution for the probabilistic assessment
of different failure modes. Obviously, the proposed method is able
to accommodate any type of failure criterion according to the user’s
selection.

4.2.2. Implementation of the deep learning techniques
Each sample in the input data consists of a 3D array with shape (6,

60, 2), where the first two dimensions represent the specimen’s strain
values and the last one the 10% and 20% strain conditions, termed as
features in the area of ANN. The values 6, 60 result from the number
of FEs employed on the 𝑦- and 𝑥-axis (Fig. 4) respectively. The output
shape of each sample is a single value representing the specimen’s
strength. The training set consists of 1000 samples that are randomly
split into 90%/10% representing training/validation sets. The valida-
tion technique is employed during the training process to evaluate the
current model on a small unseen dataset and to check for any potential
overfit to the training data. This is also useful if in the future the
model needs retraining to predict the strength of varying structures
by securing an appropriate learning process on the simulation data
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Fig. 5. The architecture of the proposed CNN model.
before applying to the real cases. Before training the model, the training
set was randomly shuffled to avoid learning any sequential pattern of
the data. After the training process, the developed model is evaluated
on experimental data resulted from tensile experiments during the
testing phase. The experimental dataset consists of full-field strain
measurements and was acquired by the DIC method for 10 specimens
at 10% and 20% of the maximum strain level, without inducing any
failures on the specimens. The testing data has the same dimensions as
the training one. 200 MC samples are executed by following the MC
dropout technique instead of just outputting a single value for each of
the 10 specimens representing their predicted strength. In this regard,
the dropout layers should be manually activated during the testing
phase to lead in different predictions given an input.

To apply any ANN model, the dataset should be normalized or
standardized. In this work, the input data is normalized to the range
of [−1, 1] using min–max normalization scaling across each feature:

𝑛𝑜𝑟𝑚𝑖 =
𝑥𝑖 − 𝑚𝑖𝑛(𝑥𝑖)

𝑚𝑎𝑥(𝑥𝑖) − 𝑚𝑖𝑛(𝑥𝑖)
(𝑏 − 𝑎) + 𝑎 (27)

where [𝑎, 𝑏] is the desired rescaled range. In this case 𝑎, 𝑏 are equal to
unit (𝑎 = −1, 𝑏 = 1). The same normalization technique was applied
to the outputs. The minimum and maximum values of the training set
were used to normalize also the validation and testing set to avoid
data leakage. Fig. 5 illustrates the architecture of the proposed CNN
model. A CNN2D is applied with 3 groups of layers and the MLP. Each
group is composed of a convolution layer, a max pooling layer, and a
dropout layer, with the latter one to be used for both regularization and
estimation of the epistemic uncertainty at the testing phase. The output
of the last group of layers is flattened into a 1-dimensional array to be
fed into the MLP which consists of 3 FC layers with 4096, 8, and 1 neu-
ron, respectively. The last neuron represents the model’s output, i.e. the
strength prediction given the 3D input. Table 2 summarizes the input
dimensions of each layer and the hyperparameters that are needed for
each layer. An important remark is that the dropout rate after the
input layer is equal to 0.2 and lower than the dropout rates for the
hidden layers as dropping the input neurons, and thus, the input data
massively may adversely affect training. Lastly, the weights for each
layer’s neuron were initialized by the standard normal distribution.

After the investigation of different nonlinear activation functions
that could fit the current problem, such as Softplus, ReLU, LeakyReLU,
Tanh, Sigmoid, and ELU (Fig. 6), the one with the optimal performance
which was applied after each convolutional and FC hidden layer, is the
Softplus. For the output layer, the Tanh activation function is employed
as the SFEM guarantees that the testing set is a sub-space encapsulated
in the training set. Therefore, none of the experimental values are
9

expected to lie outside the training space, i.e. out of the range [−1, 1],
created by the Tanh. Because tuning the hyperparameters via trial and
error is a time-consuming and error-prone process, every hyperparam-
eter was tuned in an automatic way via the Bayesian optimization
process [67]. Table 3 depicts the chosen range of the hyperparameters
to be included for the Bayesian optimization and their optimized values
to be used for the training process. After the optimization, the values
were rounded to the closest integers as the optimized values could be
float numbers. For memory optimization [68], mini-batches, neurons,
and filters were rounded to the closest power-of-two value. It should
be noted that because the first FC layer that comes after the flattening
layer accepts the flattened output of the convolutional and pooling
layers, it must have a number of neurons equal to that output, therefore
it should be excluded from Bayesian optimization. Furthermore, in-
creasing the ranges of hyperparameters, requires a larger computation
time for the algorithm to find the optimal hyperparameters, thus an
appropriate rate has been decided.

Table 4 presents the values of the additional hyperparameters that
do not belong to the model’s architecture but are mandatory to train
the CNN model. Some of them were optimized via the Bayesian op-
timization (learning rate, mini-batches, epochs) and the others were
tuned manually. In deep learning, using only one sample at a time to
update the parameters is not efficient for applying a gradient descent
algorithm, and it is shown that the performance is increased remarkably
by using a small set of samples at a time called mini-batch [69] which
has a value of 32 in the current case. Moreover, the model updates its
parameters with a learning rate equal to 5 ⋅ 10−4 and the entire dataset
is passed 200 times which represents the epochs hyperparameter. It
should be noted that after 50 subsequent epochs where the validation
loss remains constant, the training is terminated to avoid a potential
overfitting. This process is called early stopping [70] and is exploited
when the model needs to be trained for many epochs without knowing
when the loss will stop decreasing. Thus, each number of epochs that
is tried during the Bayesian optimization represents the maximum
possible times that the model should observe the whole dataset. Finally,
the model is trained using the Adam optimizer [71] by minimizing the
mean square error (MSE).

5. Results and discussion

The current section is divided in six subsections which are in line
with the six steps that are followed during the proposed methodology
and presents the functionality of the method for the strength predic-
tion of the aforementioned quasi-isotropic laminate. Hence, indicative
results are presented in a stepwise way for each described step.
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Table 2
Input dimensions of each layer of the current CNN model architecture.
Layer name Output shape (MB, H, W, F) Hyperparameters

Input layer (32, 6, 60, 2) –
Convolutional layer 1 (32, 13, 56, 256) Filters=256, kernel size=(2,5), strides=1, pad=4
Max pooling layer 1 (32,12,27,256) Kernel size=(2, 4), strides=(1,2), pad=0
Batch normalization, Dropout rate (32, 12, 27, 256) –, 0.2
Convolutional layer 2 (32, 11, 25, 128) Filters=128, kernel size=(2,3), strides=1, pad=0
Max pooling layer 2 (32, 10, 12, 128) Kernel size=(2,3), strides=1, pad=0
Batch normalization, Dropout rate (32, 10, 12, 128) –, 0.5
Convolutional layer 3 (32, 9, 10, 64) Filters=64, kernel size=(2,3), strides=1, pad=0
Max pooling layer 3 (32, 8, 8, 64) Kernel size=(2,3), strides=1, pad=0
Flattening layer (32, 4096) –
FC layer 1 (32, 4096) Neurons=4096
Dropout rate (32, 4096) 0.5
FC layer 2 (32, 8) Neurons=8
Dropout rate (32, 8) 0.5
Output Layer (32, 1) Neurons=1
Fig. 6. Different activation functions that were tested during the development of the DL model.
Table 3
Input dimensions of each layer of the current CNN model architecture.

Learning rate Mini-batches Epochs Neurons for 2nd
FC layer

Filters per convolutional layer Kernel size per layer

Range 10−5 − 10−2 8–128 100–700 4–128 512–1024, 64–256, 16–128 (1, 1)–(10, 10)
Optimized value 5 ⋅ 10−4 32 (28) 200 8 (10) 256 (247), 128 (151), 64 (53) (2, 5), (2, 4), (2, 3), (2, 3), (2, 3), (2, 3)
5.1. Step 1. Material characterization

First of all, the initial mechanical properties regarding the lamina
level of the investigated structure should be defined in terms of mean
10
value and deviation as well. These values consist the input for the
stochastic finite element analysis model. Material characterization ex-
periments were conducted in order to extract the ply properties of the
Hexply® F6376C-HTS(12 K)-5-35 prepreg used for the manufacturing
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Table 4
Values of additional hyperparameters used for training
and evaluating the proposed CNN model.
Learning rate 0.0005
Mini-batches 32
Epochs 200
Early stopping (after No. epochs) 50
Train/Validation (%) 90/10
Optimizer Adam
Loss MSE

Table 5
Elastic and strength properties obtained from material characterization
experiments for the Hexply® F6376C-HTS(12 K)-5-35.
Property type
(Units)

No. of
Specimens

Mean value Deviation

𝐸11 (GPa) 11 143.7 18.4
𝐸22 (GPa) 7 9.2 2.0
𝐺12 (GPa) 5 5.1 0.7
𝑣12 (−) 11 0.37 0.14
𝑋𝑇 (MPa) 11 1924 146.9
𝑌𝑇 (MPa) 7 107.6 9.1
𝑆 (MPa) 5 96.3 0.8

of the quasi-isotropic laminated specimens with lamination of [(0∕90∕
45)𝑠]2. The number of specimens, the mean values and deviations of

ach property extracted by the material characterization process are
nlisted in Table 5.

In order to emphasize the inherent uncertainty of the composite
aterials, the current work provides the cumulative distribution func-

ions (CDFs) of the mechanical properties, acquired by the material
haracterization procedure. Fig. 7 shows the CDF curves of the elastic
odulus on the fiber (𝐸11), matrix (𝐸22) and shear (𝑆) direction

espectively. On the same way, Fig. 8 depicts the CDF curves of the
ensile strengths on the fiber (𝑋𝑇 ), matrix (𝑌𝑇 ) and shear direction (𝑆).

The confidence bounds are larger on the cases of 𝐸2, 𝑌𝑇 , 𝐺12 and 𝑆 in
comparison with the case of 𝐸1, 𝑋𝑇 , due to the smaller amount of tested
specimens.

5.2. Step 2. Stochastic distribution of the material properties

The inherent uncertainty of the composite materials, which was
shown in Section 5.1 during the material characterization procedure,
motivates the authors to implement the SFEM in order to distribute
this uncertainty along the structural domain. The exploitation of the
K–L expansion ensures that each mechanical property is distributed in
a random way by defining the mean values, the deviation, the size
of the RF mesh and the rest K–L parameters already mentioned in
Table 1, Table 5. Figs. 9, 10 demonstrate the random distribution of the
mechanical properties on a ply level for a 𝜃 sample, which is arbitrarily
selected. In practice, each ply and each sample 𝜃 are described by a
different stochastic distribution.

5.3. Step 3. Probabilistic finite element analysis

After distributing the uncertainty of the mechanical properties into
the Gauss integration points for each ply and for each sample 𝜃, the
stochastic stiffness matrices are calculated for each sample by the
Eq. (10). The axial strains 𝜖𝑥 at levels 10%, 20% of the maximum strain
are calculated by the stochastic FEA and are exploited as a part of the
input dataset for the training process. In addition, the strength values
of the investigated structure are calculated for each virtual specimen 𝜃
by utilizing the Puck’s failure criterion and by considering the strength
as the load in which the last-ply-failure exists on each case. Fig. 11
shows the calculated strain values 𝜖𝑥 along the domain of an arbitrarily
selected 𝜃 specimen at 10% and at 20%. Fig. 12 depicts the CDF curve
of the strength values, which is exploited as a training data set on the
DL algorithm as well.
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5.4. Step 4. The learning process of the deep learning model

During the current step, the axial strain and the strength values
obtained by the SFEM are employed as the training dataset for the
learning process. The learning process is depicted in Fig. 13. In partic-
ular, the training and validation of the MSE loss (Fig. 13(a)), and the
average strength prediction error in MPa for the train and validation set
of the simulation data (Fig. 13(b)) are presented. To compute the aver-
age strength prediction error, the absolute value after the substraction
between the real and predicted strengths was considered and then the
mean of this value was computed. One may notice that the validation
loss is constantly lower than the training loss before they are converged.
This is rational since dropout, which is a regularization technique, has
been used to avoid overfitting by increasing the stochasticity of training
process. Since training and validation sets converge to similar errors
in the learning curves, one could agree that the learning process is
successful. Indeed, after 200 epochs none of the model’s average predic-
tions over a mini-batch of unseen simulation data is more than ±4 MPa
(Fig. 13(b)) of the corresponding true simulated strengths. However, an
increase in the prediction error is expected for the experimental data
at the testing phase due to the sim-to-real deviations which lead to the
aforementioned dataset shift.

5.5. Step 5. Measuring the experimental strains

After the completion of the training process on Step. 4, the DL
model is functional and capable of predicting the strength value of the
quasi-isotropic laminate, once the 10% and 20% strain measurements
acquired by the non destructive tensile experiment. To demonstrate the
validity and the repeatability of the proposed methodology, 10 tensile
experiments with 1 mm/min loading rate were conducted and the full-
field strain measurements were acquired by the DIC. Fig. 14 shows the
speckle pattern of a specimen clamped into the tensile machine. A pair
of 5 Megapixel cameras with 23 mm lens and 75 frames-per-second
was placed in the front side of the specimen. The post-processing
was performed using the commercial software VIC-2D® by Correlated
Solutions. A subset size of 29 pixels and step size of 7 pixels were
selected for correlation analysis and the obtained strains were stored
in a 6 × 60 matrix.

Fig. 15 depicts the axial strains 𝜖𝑥 measured by the DIC on 10%,
20% strain levels respectively. The strains acquired near the bound-
aries are excluded, as their values diverge highly and relegate the
performance of the DL algorithm.

5.6. Step 6. Prediction of the strength distribution

Step. 6 is the last step of the proposed methodology where the
full-field axial strains, obtained by the tensile experiments are inserted
in the DL algorithm for the prediction of the strength distribution.
Fig. 16 presents the model’s predictions for each of the 10 specimens
which were previously subjected to tensile experiments. The presented
predictions are satisfying inside an acceptance ratio (tolerance), which
is ±2% from the true experimental strength of each specimen. Undoubt-
edly, an increase in the error for some of the experiments is detected
compared to the training/validating set. This increase is due to the
variations between the training and testing distributions (dataset shift).
The proposed model captures this variation as an epistemic uncertainty
using the MC dropout. In this regard, 200 MC samples produced 200
predictions for each test sample to form the corresponding probability
density distributions functions via the kernel density estimator tech-
nique using a bandwidth according to the Scott’s rule [72]. Although
in some experimental cases (specimen 1, 3, 7, 8) some of the model’s
predictions may be out of the predefined tolerance, the model still pre-
dicts a satisfying average strength and simultaneously, provides a wider
distribution around the mean values. This indicates that the distributed
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Fig. 7. Cumulative distribution function curves including confidence bounds (95%) of the lamina elastic properties: (a) Fiber modulus, 𝐸11; (b) Matrix modulus 𝐸22; (c) Shear
modulus 𝐺12.
strains of the corresponding experiments shifts additionally from the
distributed simulated samples, which have been previously used for
training. Although the model’s predictions even in these extreme cases
are able to approximate the experimental strengths, if the deviation be-
tween the simulation and the experimental sample is further increased,
then the epistemic uncertainty would be also increased which is an
indicator of not trusting the corresponding model’s average strength
prediction. Consequently, the uncertainty estimation further improves
the reliability to the proposed ANN model. Finally, the 95% confidence
intervals for each probability distribution were calculated using the
statistical measure of variance and were interpreted as strengths; 95%
of the predictions fall between the corresponding strength range (in
MPa) around the mean values of strength.

Since the ANN’s predictions are based on its ability to detect the
relationship between the inputs (strains) and the outputs (strengths),
a regression problem exists. In other words, the ANN is seeking a
mapping function between the strains and strengths. To evaluate how
accurate this mapping function is, the regression curves of the re-
sults are presented. Fig. 17 shows the predicted versus the simulated
curves for the training (Fig. 17(a)), validation sets (Fig. 17(b)), and
the predicted versus the experimental curve (Fig. 17(c)). For evaluating
the training, validating, and the testing processes, all of the available
samples are used, hence 900, 100, and 10 samples, respectively. It is
observed that the correlation coefficient (𝑅2) values for the training,
12
Table 6
Statistical measures for train, validation, and test phases.
Statistical Measures MAE (MPa) RMSE (MPa) 𝑅2

Equation Eq. (28) Eq. (29) Eq. (30)
Train 5.0867 5.181 0.972
Validation 5.3417 5.5231 0.9739
Test 8.102 8.3066 0.7992

validating, and testing sets between predicted and true strengths were
recorded as 0.972, 0.9739 and 0.7992 respectively. This indicates that
the goodness of fit of the proposed model is close to the real values.
Indeed, the regression line between the experimental and the predicted
average strengths approximates satisfactorily the diagonal line (perfect
fit) even in the testing set. Although a relatively large drop is shown in
𝑅2 in the testing phase, this is not always a caveat as it indicates that
there is a barrier that prevents the predicted and simulated strengths
to be perfectly correlated. Interestingly, this barrier is produced by the
large variations between the training and testing sets, i.e. epistemic
uncertainty is present. As a result, during the testing process, the
regression curve appears with predictions under epistemic uncertainty.
Therefore, error bars were added that represent the uncertainty by
using the corresponding confidence intervals mentioned before.
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Fig. 8. Cumulative distribution function curves including confidence bounds (95%) of the lamina strength properties: (a) Tensile fiber strength 𝑋𝑇 ; (b) Tensile matrix strength 𝑌𝑇 ;
c) Tensile shear strength 𝑆.
Fig. 9. The random distribution resulted by the K–L expansion of: (a) 𝐸1; (b) 𝐸2; (c) 𝐺12 moduli values on the Gauss integration points of the simulated structure.
Despite the useful information that is given by 𝑅2, it cannot be
used as a standalone metric for the model evaluation as it indicates
the correlation between the examined variables. It is very common,
13
as it is also observed in this study, that a smaller value of 𝑅2 may
come up with low prediction errors in the model. In this regard Table 6
summarizes two additional important statistical measures alongside 𝑅2;
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Fig. 10. The random distribution resulted by the K–L expansion of: (a) 𝑋𝑇 ; (b) 𝑌𝑇 ; (c) 𝑆 strength values on the Gauss integration points of the simulated structure.
Fig. 11. Stochastic distribution of strain values of the investigated quasi-isotropic laminate calculated by the stochastic finite element model at: (a) 10%; (b) 20% strain level
under tensile load.
the mean absolute error (MAE), and root MSE (RMSE). According to
these metric measures, the RMSE indicates that the standard deviation
of the predicted strength errors is fairly low, while the MAE provides an
easy-to-understand measurement of the model’s strength predictions.
One could notice a difference in MAE of train/validation sets from
the ones in Fig. 13(b) after 200 epochs. This is reasonable since a
smaller set (mini-batches) for visualizing the learning process is utilized
than the set for evaluating the model’s training and validating perfor-
mances, where the whole dataset has been considered for extracting
those statistical measures. Consequently, the final MAE measurements
14
provide a better insight of the learning process and they are approx-
imately 5.09 MPa and 5.34 MPa for the training and validating sets,
respectively. As expected in testing phase, the MAE has increased by
approximately 4 MPa on average compared with the predictions during
the train/validation phase, however, the average predictions still lie
inside the ±2% acceptance ratio. This further ensures the efficiency of
the proposed model.
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Fig. 12. Cumulative distribution function curve for the strength values of the
investigated quasi-isotropic laminate calculated by the stochastic finite element method.

Fig. 13. Learning curves using simulation data. (a) Training and validation MSE loss;
(b) Average strength prediction error for the two sets given the true strengths of each
component.
15
Fig. 14. The speckle pattern of a quasi-isotropic laminate clamped into the tensile
machine.
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5.7. Limitations

It is important to note the limitations that exist in the current work
for both the SFEM and the DL model. In regards to the SFEM, which is
used to generate data for the training of the DL model, the considered
stochasticity comes only from the material characterization process
at the mesoscale level. This means that the loading and boundary
conditions are considered equal and deterministic for all samples while
during testing deviations may occur. Additionally, although SFEM al-
lows to integrate several mesoscale failure criteria, it was selected
to employ only Puck and thus the effect of other failure criteria on
the strength predictions was not examined/investigated. However, the
investigation of the efficiency of each criterion is outside the scope of
the current work.

In addition to the limitations of the SFEM, the proposed DL model
also has its own limitations. Firstly, while the proposed integration of
uncertainty quantification into the ANN provides a detailed strength
prediction by giving the entire distribution around each estimation, this
uncertainty cannot be automatically reduced after the training process.
Thus, it will also affect future predictions. Secondly, the training has
been applied in an offline manner rather than online, which could
include an adaptive learning procedure. Continuously updating the
model with new data is crucial for improved strength predictions and
is considered as future work.

6. Conclusions

The current work achieved to predict the probabilistic strength dis-
tribution of laminated CFRP specimens via non-destructive tensile tests
up to 20% of maximum strain and via the advantageous contribution
of high-fidelity stochastic finite element models and DL techniques.
More specifically a DL algorithm consisted of CNNs was developed to
predict the strengths given the corresponding strains as inputs. On the
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Fig. 15. Experimental axial strains (𝜖𝑥) acquired by the DIC at 10%, 20% of the quasi-isotropic laminate under tensile test.
Fig. 16. Model’s predictions on experimental data (testing phase). Using the MC dropout during inference 200 predictions for each test sample were made to produce the
corresponding distributions that capture the epistemic uncertainty. The 95% confidence intervals were calculated using the statistical variance and are interpreted as strengths in
MPa. Every average prediction is inside the range of [−2%, 2%] of the true strength.
other hand, stochastic finite element models were constructed for the
probabilistic failure analysis of quasi-isotropic CFRPs, employed as the
training dataset.
16
The exploitation of SFEM leads to the prediction of probabilistic
strain distributions and strength values, in an efficient way that encom-
passes the uncertainties induced by the manufacturing process of the
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Fig. 17. Regression curves between real strengths and predicted average strengths for: (a) train; (b) validation; (c) test phases.
composites. Its utility was presented in terms of axial strains induced
by tensile loading for the stochastic FEA and the experimental cases
as well. The validity of the SFEM in comparison with the experiments,
enhances the training process of the DL algorithm and consequently its
robustness. Five key advantages were demonstrated: (1) a robust DL
algorithm was developed by the exploitation of CNNs and a state-of-art
uncertainty estimation technique concerning the MC dropout method;
(2) the appealing efficiency of the SFEM including the K–L expansion
and the LHS was utilized in order to encompass the stochastic nature
of composite materials and to decrease the computational demand; (3)
a material characterization process for the Hexply® F6376C-HTS(12
K)-5-35 prepreg material was conducted and mean values, deviation
and CDFs curves of the material properties were inserted to the SFEM
for probabilistic failure analysis; (4) the developed CNN was trained
with numerical data and tested with experimental, which is observed in
limited works on the literature due to the epistemic uncertainty induced
by the dataset shift. The proposed methodology captures successfully
this uncertainty due to the capability of SFEM to bound the calculated
strains within the experimental range, thus limiting the dataset shift
and subsequently the integration of MC dropout technique into the
CNN; (5) the proposed methodology is able to predict the strength of
a composite structure by avoiding the catastrophic experiments which
avoids the sacrifice of manufactured specimens.

In closing, the proposed methodology has the potential to re-
duce substantially the intense experimental campaigns conducted for
17
strength characterization in composite structures, since it is based
on well-established physics-based numerical models and robust deep
learning techniques. This fact, reveals the outstanding potential of
the method and its significant impact on the reduction of carbon
emissions, production time and costs which consist a cornerstone on
the sustainability of composite materials and structures.
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