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ABSTRACT:

One of the biggest challenges for an autonomous vehicle (and hence the WEpod) is to see the world as humans would see it. This
understanding is the base for a successful and reliable future of autonomous vehicles. Real-world data and semantic segmentation
generally are used to achieve full understanding of its surroundings. However, deploying a pretrained segmentation network to a new,
previously unseen domain will not attain similar performance as it would on the domain where it is trained on due to the differences
between the domains. Although research is done concerning the mitigation of this domain shift, the factors that cause these differences
are not yet fully explored. We filled this gap with the investigation of several factors. A base network was created by a two-step fine-
tuning procedure on a convolutional neural network (SegNet) which is pretrained on CityScapes (a dataset for semantic segmentation).
The first tuning step is based on RobotCar (road scenery dataset recorded in Oxford, UK) while afterwards this network is fine-tuned
for a second time but now on the KITTI (road scenery dataset recorded in Germany) dataset. With this base, experiments are used to
obtain the importance of factors such as horizon line, colour and training order for a successful domain adaptation. In this case the
domain adaptation is from the KITTI and RobotCar domain to the WEpod domain. For evaluation, groundtruth labels are created in
a weakly-supervised setting. Negative influence was obtained for training on greyscale images instead of RGB images. This resulted
in drops of IoU values up to 23.9% for WEpod test images. The training order is a main contributor for domain adaptation with an
increase in IoU of 4.7%. This shows that the target domain (WEpod) is more closely related to RobotCar than to KITTI.

1. INTRODUCTION

For a WEpod or a self-driving vehicle in general to safely navi-
gate over the road, it needs to understand road scenes that appear
in our daily life. The WEpod is an autonomous shuttle (figure
1) and is able to transfer up to six people. As most autonomous
vehicles it is equipped with camera, LiDAR and RaDAR sensors.
One common way to achieve this awareness of the environment,
is to use semantic segmentation. Semantic segmentation is the
assignment of each pixel of an image to a semantically mean-
ingful class. A simple reconstruction of the environment can be
achieved by identifying three classes: occupancies, drivable path
and unknown area.

Figure 1: WUrbie: one of the two WEpods in the Netherlands.

Detecting obstacles is a critical aspect for realising autonomous

driving. Static obstacles such as buildings and trees, as well as
dynamic obstacles such as other traffic participants have to be
detected with great accuracy in order to avoid accidents. A possi-
ble trajectory which the vehicle can follow is called the drivable
path. This path can play an important role for in-lane localisa-
tion. In order to determine this path and avoid accidents, obsta-
cle sensing plays an important role. From the aforementioned
definition of drivable path it can be concluded that this term is
not necessarily bounded to one ”solution”. Intersections can be
thought of as an example of a combination of solutions. Often
there will be locations which are neither a drivable path nor an
obstacle. Typically these areas correspond to the road area out-
side the lane which is occupied by the vehicle (including lanes
for oncoming traffic), curbstones, empty pavements and ditches
(Barnes et al., 2017). It is important to mention the difference
with free space, since free space is defined as the space where
a vehicle can move freely without colliding with other objects
(Lundquist et al., 2009). Hence, unknown area does not repre-
sent the same volume as free space although free space often is a
part of unknown area.

Initially, no large amount of sensor data was available for the
WEpod. Therefore use is made of already available (external)
datasets. Weak labels are created for a subset of two large road
scenery datasets, KITTI and RobotCar. These datasets not only
contain the recorded image sequences but also laser, GPS and
IMU data. The created labels are not perfect by means of clear
boundaries for all three categories (obstacles, drivable path and
unknown area). The quality of these labels is to a certain extent
dependent on the sensor quality of the recording platform (both
camera and LiDAR). By treating these labels as groundtruth, it is
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possible to produce a vast amount of labels which will enable us
to create a (large) set of training images.

Convolutional Neural Networks (CNN) have become a dominant
player in the world of computer vision during recent years. With
this emerging field, a large number of different CNN architec-
tures are available today. When a CNN is trained on a certain
source domain (e.g. CityScapes, a dataset for semantic urban
scene understanding) and then deployed on a different (target)
domain, the network will often execute the task (e.g. segmenta-
tion) poorly because of the differences between target and source
domain (i.e. the domain shift). This limited ability of a CNN
to adapt itself to new domains is a common problem of transfer
learning. For our implementation the goal of transfer learning is
to transfer the ”knowledge” of the pretrained CNN towards the
specific task of segmenting images into the three aforementioned
classes. In general transfer learning can be very useful since it
limits the required amount of training data and computational
time needed to successfully train a CNN. Factors that influence
the success of domain adaptation are identified and it is shown
how they influence the result. The goal of this paper is to obtain
an idea if and how several factors influence the domain shift from
the KITTI and RobotCar domain towards the WEpod domain.

The rest of this paper is organised such that section 2. will sum
up the most important and/or recent research on CNNs, seman-
tic segmentation and domain adaptation. Section 3. will walk
through different aspects of the workflow such as the datasets, la-
belling technique and the used CNN architecture. All performed
experiments are described in section 4. while the results of these
experiments with a small discussion can be found in section 5..
The conclusion in section 6. will complete the paper.

2. RELATED WORK

Convolutional Neural Networks have proven to achieve impres-
sive results on a wide range of computer vision tasks, such as
semantic segmentation (Long et al., 2015) and object recognition
(He et al., 2016). Except for new architectures, improvements of
already existing networks have been examined via dilated convo-
lution (Yu and Koltun, 2015) and conditional random fields (Chen
et al., 2018). Since interest in semantic segmentation increases
due to the diverse applications such as autonomous driving, de-
velopment on CNNs for semantic segmentation is a dynamic area
of research. This results in continuously increasing state-of-the-
art results such as reported in (Zhao et al., 2017) and in (Huang
et al., 2017).

Semantic segmentation is an important tool for several applica-
tions because it is enables the understanding of a scene based
on an image. However, because fine annotation and quality con-
trol for one single image will take up to 1.5 hour (Cordts et al.,
2016), most datasets do not have a comprehensive groundtruth
set which results in usage of weakly- or semi-supervised labels
to boost performance of semantic segmentation. (Pathak et al.,
2014) approached this as multiple instance learning and (Papan-
dreou et al., 2015) developed expectation-maximisation methods
for semantic segmentation under weakly-supervised and semi-
supervised training setups. (Hong et al., 2016) make use of aux-
iliary weak annotations from semantic segmentation for different
categories to assist segmentation of images with only image-level
class labels.

All methods, use annotations in both source and target domain
except for (Hoffman et al., 2016), who use strong supervision in
the source domain but no supervision in the target domain. Our
work considers a combination of strong and weakly-supervised

Figure 2: The main workflow of the applied approach.

labels in the source domain and no annotation in the target do-
main. The goal of domain adaptation is to be able to transfer the
knowledge of the source domain to a different but related domain
by handling the variation between the two data distributions. Ini-
tially domain adaptation has centred around image classification
where the domain shift between stock photographs and real world
cases of certain objects had to be overcome (Zhuo et al., 2017).

Some approaches for domain adaptation include the aim for max-
imal domain confusion (making domain distributions as similar
as possible) (Tzeng et al., 2015) while others align the features
in source and target domain by assuming that the source classi-
fier and target classifier differ by a residual function (Long et al.,
2016).

Domain adaptation for semantic segmentation is initiated by
(Hoffman et al., 2016) who considered the learning scenario of
strong supervision in the source domain while no supervision was
available in the target domain with the goal of semantically seg-
menting images. (Chen et al., 2017) proposed an unsupervised
learning approach for road scene segmentation in order to adapt
to different environments of cities around the world.

Although research on different approaches to mitigate domain
shift is known, only few resources target to explore the factors
causing effects of domain shift on semantic segmentation. (Kalo-
geiton et al., 2016) analysed possible domain shift parameters for
object detection by examining four factors. To the best of our
knowledge, analysis of domain parameters for semantic segmen-
tation is an untouched field of research. This work can be seen as
a first step towards a deeper understanding of the influencing fac-
tors of the domain shift within the area of semantic segmentation.

3. METHODOLOGY

The main workflow of this project is presented in figure 2.
As a first step, LiDAR, GPS and IMU data are used to cre-
ate groundtruth (noted as weakly-supervised labels in figure 2)
for the raw input images. This weakly-supervised labelling is
done for three datasets, KITTI, RobotCar and WEpod (section
3.1). The groundtruth, together with the input imagery is used
to fine-tune a base network. This base network is pretrained
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Figure 3: Example images and created labels of the KITTI raw dataset (left), Oxford RobotCar (middle) and the WEpod dataset (right).
Red refers to occupancies, blue to unknown area and the drivable path is depicted as green.

on the CityScapes dataset and will be fine-tuned in two stages.
The workflow shows that the first fine-tuning step occurs on the
RobotCar dataset. The final weights, resulting from a second
fine-tuning (on KITTI) will serve as test weights of the CNN for
new, unseen imagery (KITTI, RobotCar and WEpod).

3.1 Datasets

Three datasets have been used in order to train a neural net-
work based on weakly-supervised labels, to perform pixel-wise
labelling. Weakly-supervised is referring to the approach of cre-
ating labels and thus creating training images without any man-
ual labelling and is further explained in section 3.2. Our network
is pretrained on the CityScapes dataset (Cordts et al., 2016) and
fine-tuned on both the RobotCar dataset (Maddern et al., 2017)
and the KITTI dataset (Geiger et al., 2013).

The platforms of RobotCar and KITTI are both equipped with a
laser scanner, camera, IMU and a GPS navigation system. These
sensors are vital for training the network. The laser scanner is
used for obstacle sensing. In the case of KITTI, GPS is used to
obtain the trajectory of the vehicle and obstacles are sensed by
a Velodyne HDL-64E scanner. For RobotCar the trajectory is
obtained by means of visual odometry and scanning is performed
using a SICK LD-MRS 3D LiDAR.

CityScapes
The original CityScapes dataset consists of images with corre-
sponding semantic labels which are subdivided into 5 000 fine
annotated images and 20 000 coarsely annotated images. 19 se-
mantic classes are present in the original dataset. This dataset is
the base for our network because it is a high quality dataset for
semantic segmentation. Additionally it has off-the-shelf weights
available for SegNet (section 3.3) on the 11 class version of the
CityScapes dataset1.

Oxford RobotCar
(Maddern et al., 2017) have collected more than 1000 km of
recorded driving over a period of a year. One route in central
Oxford is covered twice a week. This driving scheme lead to
large variations in scene appearance due to illumination, weather

1Obtained from the SegNet Model Zoo:
https://github.com/alexgkendall/SegNet-
Tutorial/blob/master/Example Models/segnet model zoo.md

and seasonal changes and dynamic objects (Janai et al., 2017).
Weakly-supervised segmentation is applied on the Oxford Robot-
Car dataset, labelling a total of 3033 images. These images are
randomly subdivided into a training set of 2730 images and a val-
idation set of 303 images.

KITTI
The KITTI vision benchmark suite is a well-known dataset re-
lated to different computer vision problems. In contrast to Robot-
Car, KITTI has large diversities in environmental changes but
lacks this diversity in seasonal changes and weather conditions.
The raw recordings were used for creating weakly-supervised la-
bels. From the raw KITTI dataset (City), a total of 1174 images
are labelled. From this total set, 1060 training images and 114
validation images are separated.

WEpod
KITTI and the largest part of CityScapes are recorded in Ger-
many, while the United Kingdom is the setting for RobotCar.
WEpod is recorded in the Netherlands in different settings. Data
obtained from the WEpod is obtained in only one day and there-
fore does not have the diversity which CityScapes, KITTI (en-
vironment) and RobotCar (weather/season) do have. WEpod
imagery is only available as greyscale images where all other
datasets contain RGB images.

3.2 Weakly-supervised labels

Traditionally, a neural network needs a lot of training images in
order to make good predictions. Transfer learning is one way to
reduce the amount of data that is needed. However, even in the
case of transfer learning, annotations are often still required. With
an annotation time of 1.5 hour per image, this will lead to a signif-
icantly large annotation time for a complete training set. Weakly-
supervised labels can be a solution to create a vast amount of
groundtruth. These can be created by using sensor data of the
recording platform.

In order to create labels in an automated fashion, the segmenta-
tion method from (Barnes et al., 2017) is adapted which consists
of three parts. First, the drivable path is projected into the im-
age assuming this is equivalent to the actual driven path in con-
secutive timestamps. This path refers to the outermost points of
contact of the tires with the ground.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2, 2018 
ISPRS TC II Mid-term Symposium “Towards Photogrammetry 2020”, 4–7 June 2018, Riva del Garda, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-141-2018 | © Authors 2018. CC BY 4.0 License.

 
143



The 64-beam LiDAR used by KITTI also senses the road, these
points need to be removed. All points that lie at least 10 cm
above the ground plane in the LiDAR coordinate frame (with the
origin at the laser scanner) are retained. To represent the slope of
the road ahead, the height difference between the future poses is
used. After filtering the ground scatter, the image is subdivided
in 100 vertical bins. For each bin, all pixels above the lowest
projected laser point are labelled as obstacle in that specific bin.
When there is no laser point present in a bin, no pixels in that
bin are labelled as obstacle. In case a pixel obtains labels both
as drivable path and obstacle, the obstacle label is superimposed
over the drivable path.

As third and last step, pixels without a label at this point will be
labelled as unknown area. These areas often consist of sidewalks,
road and depending on the LiDAR (4-beam; RobotCar and WE-
pod) sometimes will include small areas of other vehicles and
buildings. This characterises that we are using weak labels. Fig-
ure 3 shows example images from KITTI, RobotCar and WEpod
with the corresponding weak labels.

3.3 Architecture

The SegNet architecture (Badrinarayanan et al., 2017) is fine-
tuned and deployed in this segmentation problem. SegNet has
proven to obtain robust accuracies for semantic segmentation
and provides real-time deployment, a critical requirement for au-
tonomous vehicles. SegNet is an encoder-decoder network and
has a symmetrical shape because encoder and decoder are simi-
lar.

Figure 4: Encoder-decoder architecture of the implemented
CNN. Image modified from (Badrinarayanan et al., 2017).

The encoder of SegNet is identical to the VGG16 network (Si-
monyan and Zisserman, 2014) except for the three fully con-
nected layers of VGG16, these are not present in SegNet. This
results in an encoder of 13 convolutional layers. Every convo-
lutional layer (except the last layer in the decoder) is followed
by a batch normalisation layer (Ioffe and Szegedy, 2015) and a
Rectified Linear Unit (ReLU) activation function. The pipeline
of these operations is presented as a blue layer in figure 4. The
encoder is subdivided into five blocks. These blocks differ by
the shape of the input (feature) map. This is realised by a max-
pooling layer which appear after the second, fourth, seventh,
tenth and thirteenth convolutional layer (the green layers in fig-
ure 4). During these downsampling steps, indices of the pooled
(maximum) values are transferred to the corresponding upsam-
pling layers (red layers in figure 4) in the decoder, aiming to keep
part of the spatial content of the original input (feature) maps.
The last layer of the decoder consists of a softmax layer (yellow
layer in figure 4) which results in a pixel-wise segmented image.

Equation 1 represents the original cross-entropy loss of one ob-
servation where C represents the total number of classes. yc is a
binary indicator. It is equal to 1 when the observation is classified

correctly and it takes a value of 0 otherwise. ŷc is the predicted
probability that the observation is classified as class c.

To tackle the problem of class imbalance (i.e. more pixels are
classified as obstacles and unknown area than drivable path), the
original cross-entropy loss is weighted in the SegNet architecture.
These weights are class dependent and different for each dataset.
The imbalance weights are not trainable which means that they
are constant throughout training. Computation of the weights is
according to equation 2 which represents median frequency bal-
ancing (Eigen and Fergus, 2015).

In equation 2, f(c) stands for the frequency of c (i.e. the number
of pixels of class c divided by the total amount of pixels in the
image). M(F) is equal to the median of frequencies of all classes.
This weighting procedure results in low weights for the larger
classes while the smaller classes (drivable path in our case) has
the highest value and hence, will cause the loss to increase. In
order to determine these values, we based the weight for occu-
pancy, drivable path and unknown area on a subset of the training
data consisting of 256 images.

The objective or cost function of SegNet is a weighted cross-
entropy loss, summed over all pixels of the mini-batch and is
shown in equation 3 (note that the regularisation term in this loss
function is ignored). P is the total amount of pixels in each mini-
batch (containing four images).

L(y, ŷ) = −
C∑

c=1

yc ln(ŷc) (1)

Wc =
M(F )

f(c)
(2)

LSegNet(y, ŷ) = −
P∑

p=1

Wc ·
C∑

c=1

yc ln(ŷc) (3)

To make sure the applied network is suitable for the task, as as-
sumed based on the literature (Barnes et al., 2017), some basic
implementations are carried out. The baseline setup can be seen
in figure 2. After the first fine-tuning step based on RobotCar, a
second fine-tuning step is executed with the KITTI dataset. Fur-
thermore, three datasets (KITTI, RobotCar and WEpod) are com-
bined into one mixed dataset and the network is fine-tuned at once
on this mixed dataset in order to set an upper bound for the prob-
lem.

4. EXPERIMENTS

Several experiments are carried out to explore the factors that in-
fluence the grade of success of a domain adaptation. All factors
that are investigated are explained below.
The network is fine-tuned using the a modified version of the
Caffe deep learning framework (Jia et al., 2014) and all exper-
iments are carried out using a NVIDIA GeForce 1080 Ti GPU.

Baseline and upper bound As mentioned in section 3.3 a base-
line is created through some simple setups. The results of the
network on RobotCar are good when the network is fine-tuned
on RobotCar while not producing useful results when segment-
ing KITTI test images. When we fine-tune the network a second
time (this time on KITTI) the opposite is true. Tests on KITTI
data have high evaluation values while, apparently, the network
”forgot” how to segment RobotCar images and segmentation re-
sults are bad.
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Besides this baseline, an upper bound is created in order to show
to what extent it is possible to achieve good results when all do-
mains are included in the training phase in one fine-tuning step.
Results are visible in table 1.

Number of classes The initial proposal included three classes as
proposed in section 1. Because our target platform is equipped
with a LiDAR, it would be possible to deploy it during test phase.
Therefore, occupancies can be processed on the fly and only two
classes need to be present in the segmentation: drivable path and
non-drivable path. The idea behind the focus on path proposal es-
timation is that fusing two chaotic classes will increase the over-
all accuracy. Occupancies and unknown area are referred to as
chaotic because they do not have clear distinguishable features.
Reducing the number of classes for the groundtruth of all train-
ing images also affects the weight values as calculated in equa-
tion 2 since the ratio between the classes is shifted and imbalance
weights will therefore be recalculated.

Colour Originally, SegNet is intended for RGB images. How-
ever the target imagery (WEpod) is only available in greyscale.
Initially this was handled by copying the greyscale channel three
times such that these images could be used as input for the Seg-
Net trained on RGB images. However, this implies that features
which are learned primarily by colour are not obtained when
tested on target imagery. Therefore, another setup was made
by fine-tuning the neural network on the same images but con-
verted to greyscale. The comparison of these setups will indicate
to what extend colour is important for creating features, which is
automatically done by the neural network.

Horizon The height of the horizon line in the image for a certain
camera is the result of the camera height, roll and pitch. KITTI
and RobotCar data have a similar horizon height in the images
(they only differ by a few pixels). However, WEpod images have
a relatively low horizon line due to the significant lower place-
ment of the camera ( 0.8m versus 1.65m for KITTI and 1.52m
for RobotCar), resulting in a smaller part of the image contain-
ing road and potentially a crucial difference between the datasets.
To examine this, the horizon height of the WEpod test images is
changed such that it is similar to KITTI and RobotCar.

Order of training Another training setup is effecting the order in
which the network will be fine-tuned. As a first approach, SegNet
is fine-tuned on RobotCar first and later on it is fine-tuned on
KITTI. To exclude the effect of tuning order, the setup is reversed;
first train on KITTI and later on RobotCar. Exactly the same data
is used to train with exactly the same settings. The only difference
is the order of tuning and hence the workflow depicted in figure
2 does not match with this setting.

Left-hand traffic The RobotCar dataset is recorded in Oxford
and consequently trajectories of the vehicle are located on the
left side of the road. The opposite is true for KITTI and the target
domain of WEpod, thus an experiment where the training and
validation images are flipped is executed. An example is shown
in figure 5.

Data equalisation The initial dataset combination of RobotCar
and KITTI consisted of 2730 and 1060 training images respec-
tively. In contrast to the imbalance in classes, the imbalance
between these two domains is not resolved in the loss function.
Therefore, equalising the number of training images from these
datasets will potentially resolve a bias towards the larger dataset
in the feature space.

Cropping The original resolution differs for all three datasets.
Changing this is done by cropping an area equal to the size of

Figure 5: Original image of the RobotCar training set (left), after
the flipping procedure (middle) and after cropping (right).

the KITTI images before resizing these images such that they can
serve as input image for SegNet. As a consequence of cropping,
the bonnet and a large part of the sky are eliminated in the Robot-
Car imagery (this was also done for KITTI before publishing the
raw dataset). After resizing, the image has changed as can be
seen in figure 5.

4.1 Evaluation

Several classical metrics are available to evaluate the perfor-
mance of semantic segmentation on pixel-level. Since there is
no benchmark suite for the semantic classes that are applied, no
comparison with respect to the current state-of-the-art concerning
semantic segmentation can be made.

To evaluate the results both quantitatively as qualitatively,
groundtruth is required for the test images. Groundtruth is cre-
ated by labelling test images similar to the labelling technique
used on the training images (explained in section 3.2).

The following metrics are taken into account for each class sepa-
rately (Fritsch et al., 2013):

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

IoU =
TP

TP + FP + FN
(6)

where TP, FP, TN and FN denote True Positive, False Positive,
True Negative and False Negative respectively. Accuracy is left
out since it is misleading in most cases, being biased towards
large classes. When qualitatively evaluating a drivable path it is
important that occupancies are not segmented as drivable path.
This situation is potentially more catastrophic than drivable path
segmented as occupancies or unknown area as occupancy. Stated
otherwise, it is important to have as few false positives as possible
and thus, precision is a more informative metric than recall in the
case of drivable path estimates.

For occupancies, the opposite is true. Qualitatively it is better to
have classified too many pixels as occupancy than missing a lot
of occupancies. Therefore, it is important to have as few false
negatives as possible which means sensitivity is a more informa-
tive score than precision.
However, it has to be stressed that the performance cannot be
summarized in one metric. It is a combination which will deter-
mine the performance. This combination is evaluated according
to the Jaccard index, also known as the Intersection-over-Union
metric (IoU) and is stated in equation 6.

5. RESULTS

A common problem in machine learning is overfitting. This hap-
pens when the model is overly complex for the data and usually is
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the case when the number of parameters is larger than the num-
ber of constraints (images in this setup). Since overfitting is a
potential explanation for insufficient adaptation, it is important
to check for each fine-tuning step (training) that the model is not
overfitting. Overfitting can be recognised by examining the learn-
ing curve. A continuously decreasing training loss but simultane-
ous decreasing validation accuracy is a sign of overfitting. How-
ever, when examining the learning curves of both training setups
(figure 6), because validation loss is not increasing, it is clear that
no overfitting has occurred.

Figure 6: The learning curve for both fine-tuning steps in the
baseline network.

The remaining results are divided into two parts. First, some
generic outcomes are shown and compared to the baseline we
have set. Some specific use cases that show noteworthy results or
an exception on the rule are illustrated in subsection 5.2.

5.1 Generic results

Baseline The original setup is shown in figure 2 and was intended
to act as a baseline for the experiments. The evaluation results
of this setup are shown in the upper part of table 1. The table
represents metric values for drivable path and occupancies tested
on RobotCar, KITTI and WEpod data. Unknown area is left out
because no conclusions can be made based on this class since
this class is the remainder of the image and contains unknown
space (e.g. road but also sidewalks and even parts of obstacles).
Hence this class is not useful for autonomous vehicles. After
analysing the results it is clear that tests on the KITTI dataset
succeeded the best. This is likely to be caused by the order of
training which is confirmed by the experiment where the order
of training is reversed. Another confirmation of this reason is
the comparison of results after the first and second fine-tuning
(not shown in table 1). It is remarkable that differences between
RobotCar and WEpod concerning drivable path estimation do not
differ more since the network received training images from the
RobotCar domain but not from the WEpod domain.
For both RobotCar and KITTI, there is a considerable difference
between the metrics for occupancies and metrics for drivable path
with higher values for performance on occupancies. However, the
opposite is true for the WEpod data.

Number of classes A consequence of converting unknown area
and occupancies to one mixed class (non-drivable path) for all
training images is that the output of the network consists of two
classes and hence only the drivable path can be evaluated. A
strong signature throughout all datasets is the high values for re-
call while the IoU and precision values are low. This is caused
by only few false negatives (instances where the network missed
to classify pixels as drivable path) and a lot of false positives (the
network claimed that pixels are drivable path, while they are not)
compared to the number of pixels which are classified as drivable
path. We do not have an explanation yet for this phenomenon.

Colour Adapting the training images from RGB to greyscale,
has big influence on the quality of the segmentation of WEpod
test images. A small increase in precision (3.6%) and huge in-
crease of recall (46.7%) for occupancies is seen. Even higher
increases are experienced for RobotCar and KITTI has a similar
trend. However, these increases come at the high cost of dramat-
ically decreasing precision, recall and IoU for the drivable path
estimation. IoU values drop with 7.5%, 17.9% and 23.9% for
KITTI, RobotCar and WEpod, respectively. In the case of WE-
pod, the resulting IoU value is 7.2% (while precision is 93.1%)
which means that the number of pixels that are falsely negative
are considerably larger than the portion of pixels that are correctly
classified.

Horizon As changing the horizon line only consists of changes in
the WEpod dataset, only segmentation on the WEpod is explored.
Shifting the horizon line in the target domain results in a positive
effect for the occupancies. A precision increase of 3.3% is seen
while the recall metric has a significant increase of 20.7%, all
relative to the baseline. This translates to less false positives and
more importantly less false negatives or alternatively more true
positives. Changes concerning drivable path are less sensational.
Although, there is an increase of precision (4.4%) the shift of the
horizon line also results in a drop of sensitivity of 3.3%.

Order of training This setup only requires changes in the train-
ing setup. Instead of tuning on RobotCar first, KITTI is now used
as first fine-tuning step. During test phase, this reversed approach
changed the metrics rigorously for the WEpod dataset. Although
there is a slight decrease of recall (3.7%), the strong improvement
of precision to 87.8% (increase of 33.7%) results in an increase of
IoU of 4.7%. Occupancies even see a larger increase in all met-
rics. The resulting IoU for the occupancies of 73.5% is close to
the upper bound (which is 77.9%) and is the result of a high recall
value (97.2%) and high precision value (73.5%). This combina-
tion of metric augmentation is visualised by more unified drivable
paths and better predictions for occupancies. To show these dif-
ferences, figure 10 displays a test image of the WEpod dataset as
output of the baseline network and as output when the order of
training is reversed.

Figure 7: Groundtruth of a test image from the WEpod
dataset(left). The same test image predicted through the baseline
method (middle) and the output of our network when the order of
training is changed in the setup (right).

The influence on RobotCar and KITTI is reversed. Because the
last fine-tuning step is done on RobotCar, the evaluation metrics
are similar to the metrics for KITTI in the baseline case and vice
versa.

Left-hand traffic Flipping the training images of RobotCar, will
lead to similar results as converting the training images from
RGB to greyscale. In the case of WEpod, the resulting precision
is very high (92.4%) with a very low IoU (15.3%) value. This is
caused by a large number of false negatives compared to the true
positives. Otherwise stated, drivable path is only segmented very
sparsely. The same is observed on the RobotCar and KITTI test
images however, less extreme. Throughout all datasets, the oc-
cupancies are better classified when training images of RobotCar
are flipped.
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Metric RobotCar KITTI WEpod
Drivable path Occupancy Drivable path Occupancy Drivable path Occupancy

Precision [%] 66.2 94.9 71.0 96.7 54.1 66.2
Baseline Recall [%] 36.6 77.9 73.6 84.3 42.2 25.8

IoU [%] 31.3 74.4 58.6 82.0 31.1 23.6
Precision [%] 90.8 92.4 83.1 94.8 92.9 81.6

Upper bound Recall [%] 77.7 97.0 75.1 92.5 85.3 94.0
IoU [%] 75.4 89.8 66.8 87.9 79.7 77.9

Table 1: Evaluation values for the baseline and upper bound of the experiments.

Data equalisation Reducing the number of training images for
RobotCar to a total of 1060 and thus setting it equal to the KITTI
dataset does not result in an increase of drivable path estimation
for the WEpod dataset since it decreases all three metric values.
KITTI shows similar behaviour. Although RobotCar only has
half of its initial number of images during the training phase, it
does see a increase in the performance on drivable path estima-
tion.

Cropping The change of aspect ratio for RobotCar training im-
ages is evaluated slightly different from the other experiments.
The network is first fine-tuned on the RobotCar dataset contain-
ing cropped images such that it resembles the KITTI dataset be-
fore resizing. After this first fine-tuning, the network is tested
on the KITTI dataset and compared to evaluation after the first
fine-tuning step in the original setup. Where in the original setup
often no drivable path is recognised after the first tuning step, this
number reduces by 50% when the training images are cropped to
be similar. However, results on recall are still dramatically weak
(10.0%) which means that there are only very few true positives
compared to the amount of false negatives.

5.2 Case study

While results of RobotCar are generally unsatisfactory after the
second round of fine-tuning, there is a remarkable case where the
network does seem to have some decent output. This is shown in
figure 8. This output also results in better metrics when compar-
ing it to the baseline (which is averaged over all test images) of
RobotCar. Concerning drivable path, increases of 32.9%, 21.8%
and 26.8% are seen for precision, recall and IoU respectively. Al-
though there is a small decrease for the precision of occupancies
(5.4%) compared to the baseline, recall (13.2%) and IoU (7.9%)
are significantly better. When doing a visual check on why this
test image is different from the other test images of RobotCar,
the difference in lighting conditions attracts the attention. This
should be considered as potential cause of the domain shift.

Figure 8: Test image from the RobotCar dataset (left). The same
test image but labelled with the weakly-supervised method (mid-
dle) and the output of our network fine-tuned on the combined
dataset (right).

A small part of the KITTI dataset has groundtruth available seg-
menting 94 test images into lane and non-lane labels. This is
shown in the middle section of figure 9. Black represents non-
lane while green equals the lane in the image. From this example,
it is shown that even the upper bound network has trouble with
predicting turns in an image. The logical cause of this problem

is the fact that the vast majority of the training images is dealing
with straight roads without any turns. Besides missing the turn,
another less severe failure can be seen. The image shows a cross-
road where the branch of the road has a steep upward slope. This
branch is not recognised by the network but can be explained by
the fact that groundtruth labels always show drivable path as the
actual driven road and therefore, groundtruth labels do not in-
clude the branches themselves. It is suggested that a more exten-
sive training set would resolve these issues because the number
of crossroads in the current training set is minimal.

Figure 9: Test image from the KITTI dataset (left). Groundtruth
label for the same test image (middle) and the output of our upper
bound network (right).

Figure 10 illustrates two remarkable cases. The first is the ab-
sence of occupancy in the right part of the predicted segments.
Furthermore, the estimated part of drivable path above the hori-
zon stands out. Although, the rest of the drivable path is not per-
fectly segmented, the segment above the horizon is particularly
strange because in none of the groundtruth labels drivable path
will occur above the horizon. Thus, the network assumed this part
of the image to be similar to the road. Despite this false segmenta-
tion, it does recognise the truck which is classified as occupancy.
In contrast to the truck, the white building in the background is
not recognised.

Figure 10: Test image from the WEpod dataset (left).
Groundtruth label for the same test image (middle) and the output
of our baseline network (right).

6. CONCLUSION

In this paper we investigated possible factors for a successful
adaptation from the KITTI and RobotCar domain towards the
WEpod domain. Modifications to the source datasets such as
equalising both KITTI and RobotCar datasets, flipping RobotCar
images and cropping RobotCar images did show small negative
impact on the success of the domain adaptation. Changing the
training images from RGB to greyscale resulted in a bigger de-
crease of domain adaptation success.
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Horizon line change was an adjustment in target domain and
showed only minor effect. Reducing the number of classes in the
created groundtruth for the source domain has a negative effect
on the target evaluation. Changing the setup by reversing the or-
der of training does show an improvement on the target domain.
This implies that the WEpod domain is more closely related to the
RobotCar domain than to the KITTI domain. This is an indication
where to further search the domain bias between the datasets.

Future work can consist of extra experiments such as changing
the lighting conditions (gamma correction) of the image. The
case study of the RobotCar showed potential in this area. Aug-
mentation of the training data (rotate and scale) is not yet exam-
ined and has potential because it generates ”extra” training im-
ages without the need for additional unique images. Hence, data
augmentation should be considered in future work.
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