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a b s t r a c t

A novel approach to Multiphase-Particle-in-Cell (MP-PIC), called Continuum Particle Model (CPM), is
developed for dense gas-particle flows. CPM has high computational speed, comparable to that of MP-
PIC, but a robustness and accuracy closer to that of a Discrete Element Model (DEM). The gas phase is
treated as a continuum phase and particles are tracked discretely, but particle collisions are modelled
by considering the divergence of the continuum particle stress tensor. Details on efficient solution to
the model are presented. For comparison, a parametric study is performed for quasi-2D fluidized beds.
Comparison of CFD-CPM is made with MP-PIC and CFD-DEM. The particle stress models by Harris and
Crighton, and by Srivastava and Sundaresan are tested in our CFD-CPM. Results from CFD-CPM based
on the Srivastava and Sundaresan particle stress model show good agreement with CFD-DEM results.
We validate our model by comparison with experimental benchmark results from Gopalan et. al. (2016).
� 2019 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Fluidized beds are widely applied in the chemical, petrochemi-
cal, metallurgical, environmental and energy industries due to
their favourable mass and heat transfer characteristics (Kunii and
Levenspiel, 1991). The complex hydrodynamics of fluidized beds
has been extensively studied numerically and experimentally.
Due to computational complexities and challenges in experimental
measurements, fluidized beds studies are usually limited to a small
scale set-up. Information from a small scale reactor is used to pre-
dict the hydrodynamics in a large scale reactor. However failure
has been reported (Squires, 1982) with this principle, as flow struc-
tures in large scale reactors are quite different from those observed
in a small scale reactor (Verma et al., 2015). Therefore the study of
sufficiently large scale fluidized beds is important. New coarse-
grained model developments are of vital importance for the
advancement of large-scale modelling of gas-particle flows. In
the past few decades, the role of computational fluid dynamics to
predict the hydrodynamics of gas-solid fluidized beds has
increased considerably. A multi-scale modelling approach has been
adopted to study micro and macro characteristics of gas-particle
flows (Van der Hoef et al., 2006). The Euler-Lagrange Computa-
tional Fluid Dynamics-Discrete Element Model (CFD-DEM) (Tsuji
et al., 1993; Deen et al., 2007) is effective and has proved to me
more accurate in the modelling of gas-particle flows. In CFD-DEM
the fluid phase is treated as a continuum and the individual parti-
cles are traced using Newton’s second law of motion to update the
particle positions and velocities. The gas-particle interactions have
to be calculated from effective drag correlations. To account for
particle-particle and particle-wall collisions, a standard soft-
sphere collision model is usually used (Tsuji et al., 1993), which
includes energy dissipation and friction. The particle-particle colli-
sions are fully resolved, which necessitates using a very small time
step. DEM is typically limited to a few tens of thousands of parti-
cles per processor. The evaluation of the forces on the particles is
usually the most time-consuming part of CFD-DEM simulations
because this involves calculating the interaction between all neigh-
boring pairs of particles. The amount of computations are lowered
by using a neigbourlist which contains the close neighbours of each
particle. However, when the number of particles is very large, even
generating a neighbour list by evaluating all pair distances is com-
putationally demanding. The concept of a cell-linked list can then
be used to optimize the generation of a neighbour-list or even
for the direct calculation of particle interactions. Recent improve-
ments in computer hardware have allowed for an increase in the
number of solid particles (Jajcevic et al., 2013; Govender et al.,
2016; Norouzi et al., 2017). However the available computational
resources are often still too limited to be able to study truly
large-scale gas-particle flows. When it is not feasible to resolve
every individual particle collision due to the large number of
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particles, the effects of collisions should be modelled with an aver-
aged approach, with an appropriate particle collision closure
relation.

The Two-Fluid model (TFM) (Ding and Gidaspow, 1990; Kuipers
et al., 1992; Verma et al., 2013) and Multiphase Particle-in-Cell
(MP-PIC) (Andrews and O’Rourke, 1996; Snider, 2001) method
are two common approaches to deal with large numbers of parti-
cles. In TFM, both the gas and solids phase are treated as fully
interpenetrating continua. The kinetic theory of granular flow
(KTGF) is used to describe particle-particle interactions on a more
fundamental basis (Gidaspow, 1994). In the KTGF, the particles are
assumed to be perfectly smooth, and particle velocity changes in
the tangential impact direction are usually neglected. Only the nor-
mal impact and rebound velocities of two colliding particles is
taken into account using the coefficient of normal restitution.
The TFM is fast, but limited to spherical particles and not-too-
dense flows of nearly-elastic particles. The reason for this limita-
tion is that the Eulerian particle updates depend on theoretical
expressions for the solid stress and granular temperature, usually
based on the KTGF. In the KTGF far-reaching assumptions are made
to make the theoretical calculations tractable, such as particle
sphericity and isotropy, molecular chaos (no pre-collisional veloc-
ity correlations) and binary interactions. However, it is known that
correlations in the velocities build up in denser flows (Balzer,
2000), and multiple simultaneous particle contacts can no longer
be ignored for particles with finite stiffness. The two-fluid
approach has trouble modeling flows with particle type and size
distributions because separate continuity and momentum equa-
tions must be solved for each size and type (Van Sint Annaland
et al., 2009). While a continuous-fluid description of the solids
phase has application in some solid-fluid flow regimes, it is inaccu-
rate in others. For dilute solid flows, closure models based on the
assumption of high collision frequencies are questionable. More-
over, the non-linear behaviour of some solid flows is difficult to
model with a Navier-Stokes momentum equation. In addition,
the two-fluid approach cannot easily take into account the shape
of particles. Most importantly, for non-spherical particles all distri-
bution functions become non-isotropic and the standard kinetic
theory can no longer be applied. A new kinetic theory should be
developed for non-spherical particles that allows stress transmis-
sion through the particle (continuum) phase. The kinetic energy
per unit mass (i.e. granular temperature) associated with the fluc-
tuating motion of the non-spherical particles relative to the local
average velocity of the particle phase is a topic of current research.
Similar to spherical particles, the particle phase stress for non-
spherical particles can be expressed in terms of local particle vol-
ume fraction, granular temperature and local rate of deformation
and orientation of the particles. From our understanding, it is still
challenging to establish an accurate hydrodynamic and rheological
description for non-spherical particles, i.e. to treat non-spherical
particles as a continuum phase.

Another approach to circumvent the limitation on the number
of particles that can be simulated, is the parcels of point particles
approach developed by Andrews and O’Rourke (1996). In the mul-
tiphase particle-in-cell (MP-PIC) method, the fluid phase is treated
as a continuum and the particles are traced in a lagrangian fashion,
including a parcel approach where each simulated particle repre-
sents a large collection of real particles. Each parcel follows New-
ton’s equations of motion, where inter-phase momentum
transfer is accounted for by mapping and interpolating quantities
back and forth between parcel locations and the Eulerian grid.
Particle-particle collisions in MP-PIC are not fully resolved but
are derived from particle stresses. For dense phases, the particle
stress for spherical particles is given by Harris and Crighton,
1994 and by Srivastava and Sundaresan (2003). The particle stress
gradient is difficult to calculate for each particle, but is usually cal-
culated as a gradient on the Eulerian grid and is then interpolated
to discrete particles. Lu et al., 2017 compared experimental results
with CFD-DEM and MP-PIC from the opensouce code MFiX (Garg
and Dietiker, 2013) and the commercial MP-PIC code Barracuda
(CPFD) for small scale bubbling fluidized beds. They compared
the particle velocity profile and found that only CFD-DEM could
predict the rising solid velocity distribution in agreement with
experiments. MP-PIC from both MFiX and CPFD from Barracuda
predict significant differences in particle velocity. They clearly
reported quantitative and qualitative disagreements for a small-
scale system between MP-PIC and CFD-DEM results. Similar dis-
agreement with MP-PIC results were reported by Liang et al.
(2014), who reported that the MP-PIC version of CPFD predicts a
reasonable profile for the solid velocity, but cannot correctly simu-
late the bubble coalescence phenomena in bubbling fluidized beds.
On the basis of their analysis, they suggested improvement in MP-
PIC and importantly the particle stress model in MP-PIC.

Therefore in this work we propose a new model, called Compu-
tational Fluid Dynamic -Continuum Particle Model (CFD-CPM) for
gas-particle flows. The new model grew out of CFD-DEM and
MP-PIC models, where now we still treat the particles as discrete
but particle-particle collisions are modelled via a continuum
approach to obtain collisions forces from solid stress relations. By
accounting for particle collisions via a continuum approach, we
substantially reduce the computational time which allows us to
simulate large numbers of particles efficiently. The main difference
with MP-PIC is that our approach (i) is based on a robust measure-
ment of the local rate of solids deformation, which is important for
local stress estimates, (ii) uses particle velocity updates that are
simply based on the local divergence of the solid stress tensor.
Note that to avoid particle over packing, MP-PIC (MFiX-PIC from
Garg and Dietiker, 2013) uses complicated ad hoc conditional
updates of the particle velocities, depending on whether a particle
is moving towards or away from a high density region. Such com-
plicated conditional updates are avoided in our approach. Details
on the CFD-CPM model are explained in Section 2.

This paper is organized as follows: first a general description of
the continuum particle model for gas-particle flows is given, then
details of CFD-CPM are discussed, followed by the numerical
approach to solve the governing equations of CFD-CPM including
boundary conditions. Then we present a parametric study to quan-
tify the sensitivity of the parameter used in our model. We also
present a validation of our model by comparing with experimental
and simulations benchmark data from Gopalan et al. (2016) and Lu
et al., 2017.
2. Continuum particle model

We developed an in-house multiphase Continuum Particle
Model (CFD-CPM), the structure of which is in line with CFDEM
(Goniva et al., 2010, 2012) using LIGGGHTS (CFD-DEM) where
the fluid phase is solved using the OpenFoam Solver (OpenCFD,
2004) and a new solver was developed for the particle phase.
The new CFD-CPM model grew out of DEM and MP-PIC models.
The MP-PIC model was originally proposed by Andrews and
O’Rourke (1996) later improved by Snider (2001); O’Rourke and
Snider, 2010. Another version of MP-PIC is available in commercial
packages CPFD (Barracuda), DDPM (ANSYS FLUENT) and open
source codes MPPICFoam (OpenFoam) and MFiX-PIC (MFiX). We
will show that our model CFD-CPM has an improved capability
to simulate gas-particle flows. In CFD-CPM, the fluid phase is trea-
ted as continuum and particles are treated both as particles and as
a continuum. Particles are treated as continuum phase only to cap-
ture the effect of particle collisions from the particle stress gradi-
ent. The particle stress gradient is difficult to calculate for each
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particle. Therefore the particle stress is first calculated for each
computational cell and then the numerically estimated stress gra-
dients are interpolated to the discrete particles. Details of the
model are sequentially discussed in the following sections.

2.1. Governing equations for the gas phase

The fluid-phase hydrodynamics are calculated from the volume-
averaged Navier-Stokes equation (Eqs. (1) and (2)) with gas volume
fraction �f , constant gas viscosity lf , gas density qf , gravity g, fluid
stress tensor sf and gas-solid momentum transfer term F. The sub-
script f represents fluid phase. The formulation of gas-solid momen-
tum transfer for CFD-CPM is discussed in the following section.

@�fuf

@t
þr � �fufuf

� � ¼ 0 ð1Þ

@�fuf

@t
þr � �fufuf

� ��r � �fsf ¼ �rp
qf

þ �fg� F
qf

ð2Þ

Here the fluid stress tensor, using the unit tensor I and shear viscos-
ity lf , and bulk viscosity kf is given by Eq. (3), where bulk viscosity
kf for gas phase is set to zero.

sf ¼ � kf � 2
3
lf

� �
r � ufð ÞI� lf ruf þ rufð ÞT

� �
ð3Þ
2.1.1. Formulation of gas-solid momentum transfer
By switching from the discrete particle description to a contin-

uum description we define the inter-phase momentum transfer
term F (in Eq. (2)) which contains both momentum transfer due
to drag and buoyancy, given by Eq. (4). Here Vcell is the volume
of the computational cell, Vp the volume of the particle and rpi

the locally averaged fluid pressure gradient evaluated at the loca-
tion of particle i.

F ¼
X
i

f i ¼
1

Vcell

X
i

f drag � Vprpi

� � ¼ Fdrag � 1
Vcell

X
i

V irpi ð4Þ

In a continuum description we can write 1
Vcell

P
iV irpi ¼ 1� �f

� �rp

and rewrite Eq. (2) as Eq. (5) by substituting F from Eq. (4).

@�fuf

@t
þr � �fufuf

� ��r � �fsf ¼ � �frp
qf

þ �fg� Fdrag

qf
ð5Þ

Fdrag is the drag force on particles due to fluid flow (relative to the
particles) in a computational grid cell, given by Eq. (6) as a function
of inter-phase momentum transfer coefficient b and slip velocity
ui � uf jið Þ, where ui is the particle velocity and uf ji is the fluid veloc-
ity interpolated to the position of particle i;wic is the interpolation
operator for interpolating properties from particle position i to a
computational cell c. The momentum transfer coefficient from
Gidaspow (1994) is used in this study. The Gidaspow drag model
is a combination of the Wen and Yu (1996) and the Ergun (1952).
Note that in Eq. (5) Fdrag is not fully a source term since the drag
is proportional to the slip velocity.

Fdrag ¼ 1
1� �f
� �

Vcell

X
i

wicVib ui � uf jið Þ ð6Þ

Another way of incorporating buoyancy via the pressure gradient is
by explicitly adding a local acceleration term and an adjustment to
the drag (OpenCFD (2004)) as:

F ¼ 1
Vcell

X
i

f drag
�f

� qf V i g� Duf

Dt

� 	
i

� �� �

¼ Fdrag

�f
þ 1
Vcell

X
i

qf V i g� Duf

Dt

� 	
i

� �
ð7Þ
where Duf

Dt

h i
i
is the locally averaged fluid acceleration at the location

of particle i. Using the fact that the gravity field is uniform and using
1

Vcell

P
iqVig ¼ 1� �f

� �
qfg we take this term out of the interaction

term and we can write Eq. (2) as:

@�fuf

@t
þr� �fufuf

� ��r��fsf ¼�rp
qf

þg�Fdrag

�fqf
� 1
Vcell

X
i

V i
Duf

Dt

� 	
i

ð8Þ
using the continuity equation and product rule we get:

Duf

Dt
�r � �fsf ¼ �rp

qf
þ g� Fdrag

�fqf
ð9Þ

Multiplying Eq. (9) by �f should give same equation as (5), however
it is not. Omitting the viscous fluid stresses would result in Eqs. (9)
and (5) being equal. Neglecting the laminar fluid viscous terms gen-
erally has a negligible effect on dense particle flows, and laminar
terms can easily be included in the fluid equation set (Snider,
2001). Another approach to line up Eqs. (9) and (5) is to distribute
the viscous fluid stress in the same way the pressure is accounted
for in both the fluid phase momentum equation and the particle
momentum transfer term:

@�fuf

@t
þr � �fufuf

� ��r � sf ¼ �rp
qf

þ �fg� F
qf

ð10Þ

F ¼ Fdrag � 1
Vcell

X
p

Vi rpi þr � sið Þ ð11Þ

combining the above Eqs. (10) and (11) we end up with:

�f
Duf

Dt
� �fr � sf ¼ ��f rp

qf
þ �fg� Fdrag

qf
ð12Þ

Similarly if we use Eq. (2) we can follow the same steps when incor-
porating buoyancy via the local acceleration and we obtain Eq. (13)
instead of Eq. (9). Multiplying Eq. (13) by �f , gives the same equa-
tion as (5), which is consistent.

Duf

Dt
�r � sf ¼ �rp

qf
þ g� Fdrag

�fqf
ð13Þ

In literature the CFD-DEM momentum equation has been derived
by two different approaches; the Jackson (1963) approach, in which
the viscous stress has a fluid fraction term outside the divergence
term, but also includes the effect of viscous stress in the particle
momentum equation; and secondly the Ishii (1975) approach in
which the fluid fraction is inside the divergence of the viscous stres-
ses but not included in the particle equations. These two
approaches are known as Model A and Model B, and cause some
amount of confusion when the formulation is used in discrete and
continuum two fluid model approaches. In our model we imple-
mented and validated both approaches.

2.2. Particle phase

In CFD-CPM all particles are treated as discrete particles, where
the position and velocity of each particle is traced. Newton’s equa-
tions of motion are integrated using the force on each particle. The
force F i on particle i is calculated using Eq. (14). The first two terms
on the RHS are the contribution from fluid induced forces, i.e.
buoyant force on particle i, driven by macroscopic pressure gradi-
ents in the surrounding fluid, and the drag force due to the slip
velocity i:e: the difference between the local (interpolated) fluid
velocity and particle velocity. The third term is the force due to
gravity. The fourth term takes into account the particle-particle



Table 1
Particle shear stresses.

ss ¼ PsI� 2�slsS

Harris and Crighton (1994):

Ps ¼ P��bs
max �max � �s; d 1� �sð Þð Þ

Lun et al. (1984):

Ps ¼ 1þ 2 1þ enð Þ�sqsg0ð Þ�sqsH

Srivastava and Sundaresan (2003):

ss ¼ PcI� Pc

ffiffiffi
2

p
sin/

Sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S : Sþ H

d2

q
where:

S ¼ 1
2

< rus > þ < rus>
T

� �� 1
3

r � usð ÞI

H ¼ 1
3
< u2

s � u2
s >

Pc ¼
Fr �s��min½ �r

max �s;max��s ;h 1��fð Þð Þ½ �s ; �s > �min

0 �s 6 �min

8><
>:
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interaction i:e: force due to neighbouring particles. The fluid
induced forces are well defined in the literature (Deen et al.,
2007), which are treated in similar fashion as in CFD-DEM.

F i ¼ mi
dui

dt
¼ Virpf






i

þ Vib
�f

uf






i

� ui

� �
þmigþ Fp—p ð14Þ

The main difference between CFD-CPM and CFD-DEM resides in the
calculation of Fp�p. In DEM this force is calculated by modelling
particle-particle collisions through a linear spring-mass viscous
damped system in normal and tangential directions. Details of
particle-particle contact forces in DEM can for instance be found
in (Tsuji et al., 1993; Deen et al., 2007). In CPM the particle-
particle contact forces are modelled from the divergence of the par-
ticle stresses (which include both deviatoric stress and pressure
terms). The idea which resulted in the CPM is to apply these contin-
uum expressions directly to discrete particles. Details on the force
obtained from the particle stress divergence are given in the follow-
ing section. A similar approach of treating particle collisions from
the particle pressure gradient was adopted in the MP-PIC approach
by Snider (2001). However, in MP-PIC particle velocities are explic-
itly calculated from the particle pressure gradient with the goal to
estimate the relative motion of the particle. To avoid particle over
packing, MP-PIC uses complicated ad hoc conditional updates of
the particle velocities, depending on whether a particle is moving
towards or away from a high density region. In contrast, CFD-CPM
uses particle velocity updates that are simply based on the local
divergence of the solid stress tensor.

2.2.1. Particle stresses
Particle stresses originate from compressive, shearing and

elongational deformations of the particle suspension. Forces
between particles caused by compression lead to an isotopic par-
ticle pressure and bulk viscous stress, while forces between par-
ticles caused by volume conserving deformation lead to particle
shear stresses and normal stress differences. Expressions for par-
ticle pressure and stresses are given in Table 1. For dilute sys-
tems the particle pressure is predicted by kinetic theory (Lun
et al., 1984). For dense systems, a frequently used particle pres-
sure model is given by (Harris and Crighton, 1994). This expres-
sion only considers the particle volume fraction �s, and neglects
the physical details of the particles and the effect of shearing or
elongational deformations. The particle pressure is more impor-
tant in the dense regime near the close packing limit. The con-
tribution from particle viscous stresses have been ignored so-
far in MP-PIC models, where only the particle pressure expres-
sion from (Harris and Crighton, 1994) is used. However, besides
particle pressure forces, there may also be frictional forces acting
on particles when they try to slide past each other in shearing or
elongational motion. Calculating such viscous stresses is chal-
lenging, since it involves calculating the particle bulk and shear
viscosity and the locally averaged particle velocity gradient
< rus >. One option is to use the particle shear and bulk viscos-
ity as predicted by KTGF based on the local volume fraction and
granular temperature. However solving for the granular temper-
ature is not the scope of this work and will be a future extension
of this work. Here we focus on the viscous stresses in the dense
limit. Srivastava and Sundaresan (2003) derived particle stresses
for dense solid suspensions, making use of a critical state pres-
sure pc �sð Þ and an effect of strain rate fluctuations on the fric-
tional stresses to calculate the frictional viscosity. Their
expression is given in Table 1. In their equation, the addition
of a term H

d2p
avoids a numerical singularity in the region where

S : S approaches zero as long as the granular temperature is
non-zero. Note that the granular temperature in dense regions
is generally very small. Here we calculate the granular tempera-
ture H from the mean fluctuating particle velocity as given in
Table 1, where the mean particle velocity us in a computational
cell is calculated from all particles in the cell. The expression for
the critical pressure pc �sð Þ is given equation by Johnson and
Jackson (1987), which is modified to remove the singularity at
close packing by adding the h expression in the denominator.
The h is a small number of the order of 10�7. This approach of
removing the singularity from the Harris and Crighton model
was also adopted by Snider (2001). The particle stress is unaf-
fected by this modification except when the volume fraction is
close to close packing. The close pack limit is somewhat arbi-
trary and depends on the size, shape, and ordering of the parti-
cles. Now the challenge is to calculate the particle velocity
gradient in a fluid cell. Because all particle positions and veloci-
ties are known within a computational grid cell, the particle
velocity gradient can be calculated very efficiently from Eq.
(15), where G and C are the gyration tensor and position-
velocity correlation tensor of all N particles present in the com-
putational grid cell, given by Eqs. (16) and (17) respectively.
Here ri and vi are the position and velocity of particle i, whereas
M is the total mass of particles in the computational grid cell,
Rcm, and Vcm are the center of mass of position and velocity of
all particles present within the computational grid cell. These
expressions simplify for systems of particles with equal mass.
Note that the tensor G and C individually are biased by the
shape of the cell. For example, in a homogeneously filled cell
more particles are present in cell diagonal directions than along
the lattice direction. Fortunately this bias is exactly cancelled by
combining C with the inverse of G. This makes the method of
estimating the solids velocity gradient also amenable to more
complicated cell shapes.
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< rus >¼ G�1 � C ð15Þ

G ¼ 1
M

XN
i¼1

mi ri � Rcmð Þ ri � Rcmð Þ ð16Þ

C ¼ 1
M

XN
i¼1

mi ri � Rcmð Þ vi � Vcmð Þ ð17Þ

Note that the expression by Srivastava and Sundaresan (2003) takes
into account both particle pressure and viscous stresses for the
dense regime, giving rise to two separate forces i.e. from particle
pressure and from viscous stresses. We have modelled these forces
as discussed in Section 2.2.1. We have implemented and compared
both particle pressure from Harris and Crighton (1994) and particle
stresses from Srivastava and Sundaresan (2003).

2.3. Mapping and interpolation

In CFD-CPM quantities from the Eulerian grid are needed at par-
ticle locations, and vice versa. We refer to ’mapping’ when consid-
ering particle properties transferred to the Eulerian grid cell and to
’interpolation’ when considering grid cell quantities estimated at
particle locations. Since a collocated grid is used, a single map-
ping/interpolation scheme is implemented in a generic way that
can be applied for quantities of any tensorial rank (scalar, vector
or tensor). Interpolation from fluid cell values to the particle loca-
tion is needed for the local fluid velocity ug ji, local pressure gradi-
ent rpg ji, particle stress divergence r � rsji and the interpolated
volume fraction fields �f and �s. Mapping of quantities from the
particle location is equivalent to defining a weight for the particle
with respect to the fluid cell. This is used to determine the particle
drag coefficient in Eq. (6), as well as for construction of the solid
volume fraction from particle locations. We distinguished two dif-
ferent mapping categories: mapping based on the actual space the
particle is occupying or smearing out the influence of the particle
on the surrounding cells, not taking into account the physical space
occupied by the particle. The latter one is suitable for when the cell
size is large compared to particle diameter. In the former case
when cell size is in range of the particle diameter, the intersection
of a grid cell with the particle is calculated (Deen et al., 2007). To
enhance the computational speed CFD-CPM is preferred for a suf-
ficiently large grid cell therefore interpolation schemes are used
to weight the contribution of the particle within the computational
grid cell.

We implemented trilinear interpolation and mapping schemes.
In trilinear interpolation, quantities at particle locations are deter-
mined as weighted averages of the eight surrounding cell points
(Snider, 2001). For mapping an inverse-trilinear scheme is imple-
mented. Interpolation and mapping near to wall boundaries are
treated separately. A particle is considered near to the boundary
when its center of mass is less than half a cell length away from
the boundary. For interpolation near the boundary, the fields (such
as velocity, pressure) are defined on the boundary and a barycen-
tric interpolation scheme from openFoam is applied. For mapping,
a folding approach is applied (Link, 2006). In the folding approach a
particle will contribute to the surrounding cells, but if such a cell is
outside the domain, it is folded back on the Eulerian grid where the
boundary is the folding line.

2.4. Numerical implementation

For the fluid phase, the OpenFoam flow solver is used to solve
the Navier-Stokes Eqs. (1) and (2). A separate repository for CFD-
CPM is created, importing the fluid phase (CFD) solver from open-
Foam and coupling it with the newly developed particle phase sol-
ver (CPM). We use a regular rectangular mesh for both the gas and
(continuum)-particles phase. We note that a different mesh could
be used for the gas phase and particles phase with appropriate
interpolation and mapping functions when transferring informa-
tion. In OpenFoam the Navier-Stokes equations are approximated
by finite volumes with a collocated grid, where scalar, vectors
and tensor variables are defined on the cell center. The collocated
grid gives rise to the checkerboard problem when using a central
differencing scheme. This problem is handled using the Rhie-
Chow interpolation scheme. The advantage of using a collocated
scheme is the use of only single cell center interpolation operators
for mapping particle properties to and from the grid cells. The dis-
cretised form of the momentum equation is solved using the PIM-
PLE algorithm, a combination of PISO and SIMPLE. Since pressure
and velocity are implicitly coupled in the Navier-Stokes equations,
a pressure-velocity decoupling algorithm is used. The fluid solver
from OpenFoam uses the GAMG (Generalised Geometric-
algebraic multi-grid) matrix solver. For more details on the fluid
phase solver readers are referred to OpenFoam (OpenCFD, 2004).

In the Navier-Stokes equations the gas void fraction �f is
obtained from the particle phase calculations �f ¼ 1� �s. The par-
ticle volume fraction �s for cell c is given by Eq. (18), where wic is
the mapping operator for particle i in cell c and NP is the number
of particles influencing the value of the particle volume fraction
in cell c. Details on interpolation and mapping are given in Sec-
tion 2.3. The inter-phase momentum transfer term is treated in a
semi-implicit fashion, i:e. split into an explicit and implicit part
as given by Eq. (19), where superscripts ”*” and ”⁄⁄” represent
quantities at new and old time-step respectively. Setting these
quantities leads to the numerical solution of the Navier-Stokes
equations for fluid velocity and pressure fields.

�s ¼ 1
Vcell
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i

V iwic ð18Þ

F�
drag ¼

1
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Given the fluid velocity and pressure field over the domain, the par-
ticle positions are updated knowing the particle velocity (Eq. (20)).
The velocity of the particle is calculated from integration of the
forces acting on it (Eq. (14)). However the continuum particle-
particle collision force obtained from the divergence of particle
stresses tends to be either dominant or insignificant due to the high
non-linearity of the particle stresses. It is highly sensitive to a
change in solid volume fraction near to close packing (Snider,
2001). Therefore the continuum force on particles due to solids
stresses is treated explicitly. This means that the net particle veloc-
ity change can be divided into different parts (Eq. (21)) i.e. an inter-
mediate particle velocity un0

p , and the velocity change due to solid
stresses ups. First the intermediate velocity un0

p is calculated from
all acting forces except the force due to particle collisions (solid
stresses) (Eq. (14), without the last term). The intermediate velocity
un0
p is computed according to the velocity Verlet algorithm

(OpenCFD, 2004) given in Table 2 with those steps applied to all
particles. Once the intermediate particle velocities are known, the
new solid volume fraction is calculated. Given the updated solid
volume fraction, the particle velocity change due to solid stresses
ups is obtained from the gradient of solid pressure sIs and divergence
of viscous stresses sIIs is interpolated to the particle position.

rnþ1
p ¼ rnp þ Dtunþ1

p ð20Þ
unþ1
p ¼ un0

p þ upsIs
þ upsIIs

� �
ð21Þ



Table 2
Velocity-Verlet algorithm.

1. Calculate half velocity implicitly from equation

vi t þ Dt=2ð Þ ¼
vi tð Þ þ 1

2Dt
1
mi
Fi tð Þ þ Vib

�smi
vi t � Dt=2ð Þ

� �
1þ 1

2
Vib
�smi

Dt

2. Update position of particle i : ri t þ Dtð Þ ¼ ri tð Þ þ vi t þ Dt=2ð ÞDt
3. Given the updated particles position ri t þ Dtð Þ, the new �s and �g is cal-

culated (only once).
4. Calculate Fi t þ Dtð Þ explicitly from ri t þ Dtð Þ and vi t þ Dt=2ð Þ, i.e.

Fi t þ Dtð Þ ¼ �Virpg tð Þji þ
Vib
�s

ug tð Þji � vi t þ Dt=2ð Þ� �þmig

where b ¼ b ug tð Þj ;vi t þ Dt=2ð Þ� �
and �s ¼ �s t þ Dtð Þj ; �g ¼ �g t þ Dtð Þj ,
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As explained in Section 2.2 the model from Harris and Crighton
(1994) accounts only for the isotropic particle pressure and neglects
the viscous stresses, whereas the model from Srivastava and
Sundaresan (2003) includes the viscous stress. The particle-
particle collision force on a single particle i is given by Eq. (22),
where the stress tensor ss is in the form of Eq. (23) and is calculated
accordingly from the Srivastava and Sundaresan (2003) model, or
from the Harris and Crighton (1994) model (Table 1). Substituting
ss in Eq. (22) gives rise to two separate forces on particle i given
by Eq. (25).

Fssi ¼ mi

�sqs
r � ss

� �
i

ð22Þ

i i i

i.e. we use fluid fields from the previous step.
5. Calculate final velocity implicitly

vi t þ Dtð Þ ¼
vi t þ Dt=2ð Þ þ 1

2Dt
1
mi
Fi t þ Dtð Þ þ Vib

�smi
vi t þ Dt=2ð Þ

� �
1þ 1

2
Vib
�smi

Dt
ss ¼� psIþ 2�slsS ð23Þ

¼ � psIþ �sr ð24Þ
Fssi ¼ Fs
I
s

i þ Fs
II
s

i ¼ � mi

�sqs
rps

� �
i

þ mi

�sqs
r � �sr

� �
i

ð25Þ

Corresponding to the above force, the particle velocity change due
to the solids pressure upsIs

is calculated from Eq. (26). The gradient
of the solid pressure rps is defined on the cell faces while the pres-
sure itself is defined on cell centres. The interpolation operator is
used to interpolate the gradient of solid pressure from cell faces
to the particle positions i.e. rps½ �i. The effective particle velocity
change u0

psIs
arising from solid pressure is updated according to Eq.

27, where dui is the relative velocity of particle i in the grid cell

dui ¼ ui �
PNp

j ujwcj

� �
and e is the coefficient of restitution of the

particle. The MinMod operator applied on a particle velocity vector
is imported from OpenFoam. The particle velocity change due to the
solids pressure upsIs

in Eq. 27 is calculated (from Eq. (26)) only when
the relative velocity is oriented towards increasing solids volume
fraction i:e: dui � r�s > 0ð Þ otherwise upsIs

is set to zero. Note that
the magnitude of particle velocity is calculated taking into account
the coefficient of restitution of the particle that define particle-
particle collision characteristics. In this way the continuum particle
normal stress gradient applied to discrete particle is limited by par-
ticle velocity relative to mean flow velocity, and is dominant close
to dense particle packing.

Next the forces due to the divergence of the viscous stress ten-
sor are applied to the discrete particles. For this, the forces within
each cell are obtained from Gauss theorem (Eq. (28)), transforming
the divergence of the stress tensor, integrated over the cell volume,
to a simple sum over all cell faces f of the stress tensor contracted
with the normal vector Sf (with magnitude equal to the area of that
face). Note that is basically going back to the very definition of a
stress tensor, as the force per unit area exerted by the phase on
one side of an (imaginary) surface on the phase on the other side.
The viscous stresses on the cell faces are obtained from simple lin-
ear interpolation between the cell nodes adjusted to the faces. Note
that the viscous forces on the cell now no longer depend on the
stress values of that particular cell, hence avoiding the checker-
board problem. The viscous force on a specific particle i can then
be written as a weighted sum with the interpolation function wci

over all the cell c (Eq. (29)). The expression in Eq. (29) is distribut-
ing the viscous force experienced within a cell over all particles in
or near that cell (depending on the shape of the distribution func-
tion). Once the forces on particles due to viscous stresses are
known, the corresponding particle velocity upsIIs

is obtained from
Eq. (30). The discussed numerical algorithm is performed for each
time step. At each time step fluid pressure, volume fraction of gas
and solid, fluid velocity, particle velocity, and particle position are
updated.

upsIs
¼ �Dt rps½ �i

qp�sji
ð26Þ

u0
psIs

¼ MinMod upsIs
;� 1þ eð Þ duið Þ juij

jduij
� 	

ð27Þ
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upsIIs ¼ �DtFsIIsi
mi

ð30Þ
2.4.1. Boundary conditions
For wall boundaries, a no slip boundary condition is applied for

the fluid phase, whereas particles collide with the wall to prevent
them from leaving the domain. Since the desired time-step is rela-
tively large, we can use a hard-sphere collision model for the
particle-wall interaction. Details on the hard-sphere model are
given in Deen et al. (2007). For instance, consider a particle with
velocity vi. Prior to collision with a wall, the particle velocity can
be decomposed in a tangential and normal component relative to
the wall, vi;t and vi;n, respectively. The hard-sphere model is char-
acterized by three collision parameters, the coefficient of normal
restitution en, the coefficient of tangential restitution b0 and the
coefficient of friction l. Given these coefficients the velocities after
collision with a wall are calculated from Eqs. (31) and (32).

v0i;n ¼ �envi;n ð31Þ

v0
i;t � vi;t ¼

� 2
7 1þ b0ð Þvi;t ; if � l 1þ enð Þvi;n P 2

7 1þ b0ð Þvi;t ;

l 1þ enð Þvi;n; otherwise:

(

ð32Þ
2.5. Results and discussions

Test simulations were carried out to show the validity of the
model. First we performed a parametric study on a small scale
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pseudo �2D bed, and compared the CFD-CPM results with CFD-
DEM and MP-PIC (from OpenFoam) simulations. The parametric
study is focused to quantify the influence of cell size and particles
stress model in CFD-CPM. Next we performed a model validation
by comparison against experimental and simulation data from
Gopalan et al. (2016) and Lu et al., 2017.

2.6. Parametric Study

In this parametric study we quantify the influence of the com-
putational cell size and particles stress models in CFD-CPM on
the hydrodynamics of a pseudo 2D fluidized bed. The bed dimen-
sions and particle properties are chosen equal to the case of
Goldschmidt et al. (2004). The reason for the choice of a small
2D bed is the feasibility to compare our model with collision
resolved DEM simulations. For comparison CFD-DEM simulations
were performed using CFDEM (from LIGGGHTS) where the fluid
phase is solved using OpenFoam solver. Moreover, we compare
our results with MP-PIC simulations, also implemented in Open-
Foam. Details of the simulation settings used in CFD-CPM, CFD-
DEM, and MP-PIC are given in Table 3. Simulation were performed
for a total time of 20 s, and time-averaged data is considered by
ignoring the initial 2 s to exclude start-up effects. Comparisons
are made on the basis of particle/gas fraction distribution across
the bed, average particle bed height, averaged axial particle veloc-
ity, and bubble properties such as equivalent bubble diameter, and
the bubble distribution. The average particle bed height is calcu-
lated from the maximum gradient of porosity as the particle bed
enters the free board region. The equivalent bubble diameter in a
2D bed is calculated by area equivalent to a circular bubble, where
a gas fraction greater than 0.8 in a cell contributes to the gas bub-
ble. Details on the bubble detection algorithm are given in Verma
et al. (2015).

2.6.1. Effect of cell size
CFD models have limitations with respect to the allowable

range of grid cell size for accurate simulation predictions. Several
researchers (Cloete et al., 2015; Uddin et al., 2017) have studied
the influence of cell size on simulations results. In our continuum
particle model, quantities related to the solid phase such as drag,
solid volume fraction, particle shear stress etc. are calculated for
Table 3
Simulation settings for parametric study.

Parameter CFD-CPM

Depth x-direction (m) 0.015
Width x-direction (m) 0.15
Height x-direction (m) 0.45
Grid Cells (x,y,z) (3,15,45)
Number of particles 24,750
Particle diameter (mm) 2.5
Particle density (kg/m3) 2526
en (particle-particle) 0.97
en (wall) 0.97
l (wall) 0.35
�max 0.64
Dt (s) [Fluid] 2x10�4

Dt (s) [DEM particle] -

Drag model Gidaspow (1994)
uinlet (m/s) 1.875
Particle stress model (HC) Harris and Crighton (1994)

(P⁄ = 10, b =2)
Particle stress model (SS) Srivastava and Sundaresan (2003)

(Fr = 0.05 Nm�2, r = 2, s = 3
�min ¼ 0:5;/ ¼ 28o)

Interpolation Trilinear
Mapping Inverse Trilinear
each cell and then interpolated to particle positions. The number
of particles in the cell determines not only the gas/solid volume
fraction for each cell, but also the statistical accuracy with which
solid quantities can be determined. Therefore, the model could
be sensitive to the computational cell size. A too coarse cell can
smear out the solid particle properties too much while a too fine
grid can introduce statistical errors related to a too low number
of solid particles per cell, which will influence the interpolation
and mapping, as well as the estimate of the local rate of deforma-
tion C. An optimum choice of cell size is necessary for accurate sim-
ulation predictions. Therefore we performed simulations on
different cell sizes; the ratio of volume of the cell to the volume
of a particle ranged from 10 to 250, assuming 60% of the cell is
occupied by particles. This choice of 60% corresponds to a densely
packed system where particles stresses are high and therefore
most relevant. Fig. 1 shows the average axial particle velocity for
different cell sizes at the height of 6 and 12 cm, respectively.
Fig. 1a shows that there is no significant difference in the lower
region of the particle bed at a height of 6 cm. However, significant
difference is observed at the height of 12 cm in Fig. 1b. The average
axial particle velocity is lower for both very coarse (NP = 250) and
fine grids (NP = 15), when compared with CFD-DEM simulations.
Moreover a much lower particle velocity near to the wall is
observed. This is due to the wall boundary conditions and the uni-
form mesh sizes in CFD-CPM, which may not be small enough to
catch the small-scale wall effects on local hydrodynamics. This is
clear because for very fine cell size near to the walls the particle
velocity follows a trend similar to that of CFD-DEM simulations.
The CFD-DEM simulations predicts a slightly asymmetric axial par-
ticle velocity. Yang et al. (2016) also observed such asymmetry in
axial particle velocity, the reason for which is explained later when
we compare porosity distributions. Overall, the particle velocity at
both heights is in good agreement with CFD-DEM simulations, if
the cell contains 35 to 55 particles for dense packings. Therefore,
the computational domain is divided into 3x15x45 cells, which is
equivalent to a maximum of 35 particles in a single cell and is used
further in this study.

2.6.2. Effect of solid pressure
The main difference between CFD-CPM and CFD-DEM lies in the

treatment of particle-particle interactions as discussed in Sec-
MP-PIC CFD-DEM

0.015 0.015
0.15 0.15
0.45 0.45
(3,15,45) (2,30,90)
24,750 24,750
2.5 2.5
2526 2526
0.97 0.97
0.97 0.97
0.35 0.35
0.64 -

2x10�4 2x10�4

- 10�5

Gidaspow (1994) Gidaspow (1994)
1.875 1.875
Harris and Crighton (1994) -
(P⁄ = 10, b =2) -
- -
- -

- -
Dual Averaging (OF) -
- -
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tion 2.2.1. Several researchers (Lu et al., 2017; Liang et al., 2014;
Yang et al., 2018) have found that the MP-PIC model with the
Harris and Crighton (1994) particle pressure model has limitations
in simulating dense fluidized beds. These studies concluded that
further development and improvement in the particle pressure
and stress model is required. In this study, we have implemented
the particle stress model by Srivastava and Sundaresan (2003)
(SS), as well as the particle pressure model by Harris and
Crighton (1994) (HC). The HC model takes into accounts only iso-
topic pressure, and SS accounts total particle stresses including
particles pressure and viscous stresses (see Table 1). The SS model
is based on the theory of critical state pressure by Johnson and
Jackson (1987), which is activated at a threshold cut-off solid frac-
tion value greater than 0.5. In contrast, the particle pressure from
the HC model is applied without any cut-off which means that it
is applied for both dilute and dense flow regimes.
Fig. 1. Averaged solid vertical velocity for different cell sizes calculated at a height
of (a) 6 cm and (b) 12 cm from the bottom.
2.7. Porosity distribution and particle flow patterns

Fig. 2 shows snapshots of instantaneous fluidizing particles
from the simulations. Fig. 2a and b are from CPM based on the
two particle stress models HC and SS, and Fig. 2c and d are from
MP-PIC and CFD-DEM simulations respectively. It is clear that all
models show gas bubble formation in the particle bed. For these
instantaneous images, shown at a simulation time of 10 s, the qual-
itative gas-particle flow behaviour is typically similar. However,
there are quantitative difference in the bubble characteristics.
Details on time-averaged bubbles characteristics will be discussed
in this later section. Fig. 3 shows the time averaged porosity distri-
bution predicted from different models. In fluidized beds with
spherical particles, bubbles grow near to the wall and move
towards the center across the bed height (Verma et al., 2013;
Werther, 1974; Werther, 1975). The continuous passage of bubbles
through the center leads to a higher porosity distribution in the
center of the bed. This phenomenon of a higher porosity distribu-
tion in the center is predicted by the CFD-CPM based on SS particle
stress and is in good agreement with the more detailed CFD-DEM
simulations. In contrast, CFD-CPM based on the HC particle pres-
sure shows nearly homogeneous porosity distribution and the
MP-PIC model predicts a very distinct porosity distribution with
asymmetric flow behaviour.

The maximum gradient in the average porosity at the height of
0.2 m is indicative of the average particle bed height, where col-
lapsing of bubbles and flashing of particles into the freeboard
region occurs. The width of the porosity distribution near the free-
board region indicates the rate with which bubbles gradually burst
into the freeboard region. These bubble bursting phenomena near
the freeboard are well known for fluidized beds (Kunii and
Levenspiel, 1991) and are well predicted by both CFD-DEM and
CFD-CPM with the SS particle stress model. In contrast, CFD-CPM
with the HC particle pressure model predicts a much sharper tran-
sition. This shows that the HC particle pressure model fails to pre-
dict the gradual collapse of bubbles into the free-board region. The
reason for this will be explained later when we discuss particle bed
height and bubble size. A thick solid shear zone near to the side
walls is predicted by both CFD-CPM and CFD-DEM simulations.
In CFD-DEM, a difference in thick particle shear zone near to the
left and right walls leads to a slightly asymmetric particle vertical
velocity, as seen in Fig. 1. Yang et al. (2016) observed a similar
asymmetry in particle vertical velocity in experiments and in
CFD-DEM simulations. This is due to the very narrow depth of a
pseudo-2D bed, which has significant influence of walls. The steady
particle circulation patterns which develop in a narrow fluidized
beds, often show dead particle zones near to the side walls. To
develop a perfect symmetry in particle vertical velocity, the parti-
cle dead zone near the walls need to be destroyed by fluidizing par-
ticles, which usually requires an extremely long period of time.

The estimation of the time-averaged solid fraction distribution
across the bed height is shown in Fig. 4a, where we see that the
slope of the curve from CFD-CPM (with the SS model) is in good
agreement with CFD-DEM simulations. A slight deviation in solids
distribution is predicted in the middle of particle bed (z � 0.1–
0.15 m), compared to CFD-DEM simulations. The sharper solid dis-
tribution beyond the height of 0.2 m (which is the region of surface
of the particle beds) for the HCmodel is consistent with Fig. 3a. The
MP-PIC model predicts a very different solid distribution both in
the lower and upper region of the particle bed. The standard devi-
ation from the time averaged solid volume fraction is shown in
Fig. 4b. The HC based CPM simulation underestimate the standard
deviation of the time averaged volume fraction. This gives evidence
of less pronounced bubbling of fluidized beds. The particles are less
heterogeneously distributed because of the more diffusive inter-
face of the bubble surface (Schneiderbauer et al., 2013), which is
also confirmed by Figs. 2a and 3a. From instantaneous (individual
frame) porosity distributions in the bed, we observed that the MP-
PIC model predicts regions with unrealistically dense packing of
particles near to 75%, which is far beyond the closest random pack-
ing of spherical particles. The CFD-CPM model does not display
such artefacts.



Fig. 2. Instantaneous particle distribution at t = 10 s from (a) CFD-CPM (Ps:HC) (b) CFD-CPM (ss: SS) (c) MP-PIC (Ps:HC) (d) CFD-DEM.

Fig. 3. Time-averaged porosity distribution from (a) CFD-CPM (Ps:HC) (b) CFD-CPM (ss: SS) (c) MP-PIC (Ps:HC) (d) CFD-DEM.
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Fig. 5 shows the fluctuations in particle bed heightwith time. The
corresponding dashed lines represent the mean particle bed height.
For clarity, the fluctuations in bed height are shown from 5 to 10 s,
whereas themean bed height is obtained by averaging over a longer
time between 2 and 20 s. The higher and lower amplitudes in fluc-
tuations indicate the presence of larger and smaller bubbles in the
bed, respectively. The fluctuations in the instantaneous bed height
and themeanbedheight predicted by CFD-CPMbased on the SS par-
ticle stress is in good agreement with the more detailed CFD-DEM
simulations whereasMP-PIC and CFD-CPMbased on the HC particle
pressure predict lower fluctuations and a lower mean bed height.
The smaller fluctuations in bed height for HC models are cause by
diffusive bubbles that collapse into the freebroad region less vio-
lently compared to sharp bubbles. More details on the bubble size



Fig. 4. (a) Time-averaged solid volume fraction distribution; (b) Standard deviation from the time-averaged solid volume fraction, as a function of axial position.

Fig. 6. Equivalent bubble diameter as a function of height from different CFD
models.

Fig. 5. Fluctuations in instantaneous particle bed height. The corresponding dashed
line represents mean particle bed height averaged for 2–20 s.
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will be discussed in the following section. The horizontal lines for
mean bed height from CFD-DEM (red dashed) and CFD-CPM with
SS particle stress (black dashed) show such a good agreement that
they are overlapping and are difficult to distinguish. These results
are consistent with our previous discussion on Fig. 3a–d, where a
more gradual change in porosity distribution occurs at a height of
0.2 m. The porosity distribution and beds height are macroscopic
measured quantities generally used to quantify the fluidization in
a large scale industrial fluidized beds. We can conclude that these
quantities are accurately captured by CFD-DEMandCFD-CPMbased
on the SS particle stress model.
2.8. Bubble hydrodynamics

Bubble properties are important characteristics of fluidized
beds that define their hydrodynamics. Bubbles grow at the bottom
near to the walls and move towards the centre, and due to coales-
cence these bubbles grow in size while moving upwards through
the particles bed (Kunii and Levenspiel, 1991). Many researchers
developed correlations for the bubble size for different particle
types. Werther (1975) developed a correlation to calculate the
bubble size in a fluidized bed at a given excess gas velocity, for dif-
ferent classifications of particles (Geldart A, B, and D). Since our
glass particles of 2.5 mm fall in the Geldart D classification, we
compared the equivalent bubble diameter predicted from simula-
tions with the (Werther, 1975) correlation suitable for Geldart D
particles. Fig. 6 shows that the bubble diameter continuously
increases with height in the particle bed. CFD-CPM based on the
SS particle stress model predicts a bubble size in good agreement
with CFD-DEM simulations. The bubble size from the Werther cor-
relation is generally overpredicting the observed bubble size from
the simulations. This is because their correlation did not consider a
zero initial bubble size at the bottom which is the case in numer-
ical studies. Note that MP-PIC predicts a much smaller bubble size
in comparison to CFD-DEM and CFD-CPM. CFD-CPM based on the
HC model underpredicts the bubble size in the higher section of
the beds (beyond a height of 0.1 m) this due to the diffusive nature
of bubbles that makes it difficult to trace the bubble surface accu-
rately. This is evident from the bubble counts in Fig. 7a, where less



Fig. 7. (a) Bubble distribution as a function of height. (b) Bubble distribution as a function of bubble size.
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bubbles are detected in the lower section of the bed and bubbles of
size less than 3 cm are not detected. Higher in the bed, nearly the
same number of bubbles are detected both with HC and SS models
but bubbles larger than 9 cm are not predicted by the HS model as
revealed from Fig. 7b. CFD-CPM (based on SS particle stresses) and
CFD-DEM simulations predict nearly the same number of bubbles
statistically (Fig. 7a–b). On the other hand MP-PIC poorly predicts
the bubble growth in fluidized beds, where the bubble size shown
in Fig. 6 is much lower. This is due to the occurrence of small bub-
bles throughout the particle bed, as shown in Fig. 7b. It is know
that, as bubbles grow in size due to bubble coalescence, they con-
tinue to extract gas from the emulsion phase. However the exis-
tence of many small bubbles and few large bubble in MP-PIC
shows that coalescence of small bubbles to form large bubbles is
rare. Similar observations were done by Liang et al. (2014) based
on their CPFD (which is MP-PIC with a parcels approach) simula-
tions for bubbling fluidized beds for geldart B particles. They
demonstrated that the CPFD model cannot predict the right bubble
coalescence mechanism in a bubbling fluidized bed. The bubbles in
a fluidized bed by the CPFD model tend to rise to the bed surface
Fig. 8. Averaged particle vertical velocity in the bed at a h
vertically. There is no observed bubble coalescence phenomenon
even when two bubbles are very near to each other in the same
horizontal plane, although coalescence or merging of bubbles
occurs for vertically trailing bubbles. That is to say, lateral bubble
movement is almost absent. This observation also holds true for
our MP-PIC simulations for Geldart D particles, when analysing
sequences of images visually.
2.9. Average particle velocity

Fig. 8 shows the average axial particle velocity at a height of
6 and 12 cm respectively. This is equivalent to Fig. 1, but now
comparing the different methods. An upward motion of particles
in the centre and downwards particle motion near to the walls is
predicted by both CFD-DEM and CFD-CPM simulations. A slightly
asymmetric particle velocity is predicted from simulations due
differences in the thick particle shear zone near to the side walls
as explained in the previous section for the porosity distribution.
The MP-PIC model fails to predict these phenomena of particle
motions. A distinct asymmetric motion of particles in the bed
eight of (a) 0.06 m and (b) 0.12 m from the bottom.



Fig. 9. Averaged particle vertical velocity in the bed at the height of 0.0762 m. The
experimental, CFD-DEM and MP-PIC simulations data are compared from (Gopalan
et al., 2016; Lu et al., 2017) respectively, where the average is performed for the
depth of 3.0 mm.
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is observed in MP-PIC. When comparing the magnitude of axial
particle velocity from different models, CFD-CPM predicts a par-
ticle velocity in agreement with CFD-DEM simulations at both
height (Fig. 8a–b). Again the magnitude of axial particle velocity
predicted by MP-PIC simulations does not agree with CFD-DEM.
In CFD-CPM the axial partial velocity profile near the wall shows
a larger deviation at both heights, compared to CFD-DEM. This is
due to the difference in wall boundary conditions implementa-
tion in CFD-CPM and CFD-DEM, where an approximate hard-
sphere model is used in CFD-CPM for collisions of particles with
the wall, and a soft sphere model is used in CFD-DEM. Imple-
menting a soft sphere model for particle-wall BC would require
a much smaller time step, which is generally to be avoided for
such coarse grained models. Moreover, during particle interac-
tion with the wall, the rotation of a particle is ignored in CPM,
whereas rotation of a particle is accounted for in DEM modelling.
Finally, the uniform mesh sizes in CFD-CPM may not be small
enough to catch the small-scale wall effect on local hydrody-
namics. This is evident from Fig. 1a and b on cell size effect,
where refining the cell size was found to improve the flow near
to the wall. Using a small time-step and small cell size is not the
scope of CFD-CPM, since this model is geared towards large scale
systems, where large cell size and time step are preferred. In
future improvements of boundary conditions in CFD-CPM, the
collisions between particle and wall could be modelled using
similar continuum approaches as used in two-fluid models
(Yang et al., 2016).
2.10. Comparison between simulations and experimental results

Lu et al. (2017) compared experimental results from the NETL
small scale challenge problem (NETL Challenge problem, 2013;
Gopalan et al., 2016) with CFD-DEM and MP-PIC from the MFiX
code and the commercial MP-PIC based code CPFD Barracuda.
We performed simulations for the same set-up, using our CFD-
CPM model. Details of the simulation settings for bed dimensions
and particle properties are given in Table 4, all other computational
settings for CFD-CPM are the same as in Table 3. The averaging of
the particle velocity is performed in cells of 0.0457 m width,
0.0457 m height and 0.003 m depth, across the full width (of
0.23 m) of the bed, but constrained in depth to the 3 mm closest
to the front wall. This was done to match the experimental setting
of Gopalan et al. (2016) and the simulations setting of Lu et al.
(2017). Fig. 9 shows that the time-averaged particle velocity from
CFD-CPM is in good agreement with the experimental data and
CFD-DEM results. In agreement with experiments, CFD-CPM and
CFD-DEM predict upward motion of particles in the center and
downward near the walls. However MP-PIC from both MFiX and
Table 4
Simulation settings for validation against experimental system of NETL challenge
problem (2013).

Parameter CFD-CPM

Depth x-direction (m) 0.075
Width x-direction (m) 0.23
Height x-direction (m) 1.20
Grid Cells (x,y,z) (4,16,80)
Number of particles 95,000
Particle diameter (mm) 3.256
Particle density (kg/m3) 1131
uinlet (m/s) 3.28
en (particle-particle) 0.84
en (wall) 0.92
l (wall) 0.35
�max 0.64
Barracuda predict a flat vertical particle velocity profile (please
note that the average upward velocity predicted by MP-PIC can
be non-zero because the measurement cells do not span the entire
depth of the simulation box). Gopalan et al. (2016) observed that
the average particle mass flux (Eulerian averaged) and number
averaged particle velocity (Lagrangian averaged) are nearly the
same for sufficiently long time averaging. Therefore, the flat verti-
cal particle velocity by MP-PIC could be because of insufficient
time averaging for the averaged particle velocity to predict a net
up-down flow of particles. Lu et al. (2017) also observed the instan-
taneous particle distribution and flow patterns and found large
slugging bubbles in CFD-DEM simulations, whereas MP-PIC does
not show large bubbles in the centre. CFD-CPM is able to predict
the large bubbles rising in the centre, leading to a higher axial par-
ticle velocity in the center of the bed. This shows the validity of our
model to predict particle hydrodynamics accurately.

2.10.1. Computational time
Of course, the reason for coarse-graining the particle interac-

tions is to make the computation much faster compared to CFD-
DEM simulations. The wall clock computation time on a single
Xeon processor, for the setting in Table 3 and 20 s of real time sim-
ulations, are as follows: 1.5 h for CFD-CPM and 8.5 h for MP-PIC
from OpenFoam. CFD-DEM using CFDEM can only be run on paral-
lel processors, a serial run is not possible with the current version.
However assuming a linear scale up in speed, CFD-DEM takes
around 18 h on a single processor for 20 s of real time simulations.
Therefore CFD-CPM is 12 times faster than CFD-DEM, and 5 times
faster than MP-PIC (from OpenFoam).

3. Conclusions

In this paper, a novel approach to MP-PIC model is presented. A
Computational Fluid Dynamics -Continuum Particle Model (CFD-
CPM) is developed and validated to study gas-solid fluidized beds.
Comparison of CFD-CPM is made with MP-PIC from OpenFoam and
CFD-DEM from CFDEM-LIGGGHTS. Results from CFD-CPM are in
good agreement with CFD-DEM, whereas MP-PIC fails to predict
the hydrodynamics of fluidized beds. Unrealistic over-packing of
solids is predicted in MP-PIC, which does not occur in CFD-CPM.
We studied the effects of particle stress correlations and cell size
in the newly developed CFD-CPM model. Results from CFD-CPM
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based on the particle stress model from Srivastava and Sundaresan
(2003) show good agreement with CFD-DEM for fluidized bed
hydrodynamics. The particle pressure model from Harris and
Crighton (1994) underpredicts the particle and bubble hydrody-
namics. The CFD-CPM model is sensitive to the computational cell
size, where a cell size containing 35 to 55 particles for dense pack-
ing results in a good agreement. In CFD-CPM the average axial par-
ticle velocity near to the wall shows larger deviation from CFD-
DEM results. This is due to the difference in the wall boundary con-
ditions implementation in CFD-CPM and CFD-DEM. Future
improvement of wall boundary conditions in CFD-CPM is sug-
gested by handling the collisions between particles and walls using
similar continuum approaches as used in two-fluid models. CFD-
CPM has a high computational speed compared to that of MP-PIC
and CFD-DEM models. Even for the parcel size 1 studied in this
work, meaning that each particle is explicitly modelled, the CFD-
CPM is 10–15 times faster with a similar accuracy and robustness
as that of CFD-DEM. Future work for the development of CFD-CPM
includes a parcel-based scale-up and implementing algebraic form
of the granular temperature equation, to calculate the random and
dissipative forces originating due to intra-cell particle collisions.
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