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Optimal Distributed Composite Testing in
High-Dimensional Gaussian Models

With 1-Bit Communication
Botond Szabó, Lasse Vuursteen , and Harry van Zanten

Abstract— In this paper we study the problem of signal
detection in Gaussian noise in a distributed setting where the
local machines in the star topology can communicate a single bit
of information. We derive a lower bound on the Euclidian norm
that the signal needs to have in order to be detectable. Moreover,
we exhibit optimal distributed testing strategies that attain the
lower bound.

Index Terms— Testing, distributed algorithms, hypothesis test-
ing, minimax lower bounds, Gaussian noise, federated learning.

I. INTRODUCTION

THE rapidly increasing amount of available data in many
fields of application has triggered the development of

distributed methods for data analysis. Distributed methods,
besides being able to speed up computations considerably,
can reduce local memory requirements and can also help in
protecting privacy, by refraining from storing a whole dataset
in a single central location. Moreover, distributed methods
occur naturally when data is by construction observed and
processed at multiple locations, for instance in astronomy,
meteorology, seismology, military radar or air traffic control
systems.

In the context of decentralized detection, the task of dis-
tinguishing between different signals based on information
provided from a network of sensors has been investigated
since the late seventies. Motivated by applications such as
surveillance systems and wireless communication, statistical
hypothesis testing with distributed sensors has received consid-
erable attention over the past few decades, e.g. [1]–[4]. Most of
this literature has been concerned with distinguishing between
finitely many signals, by combining the decisions of sensors
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or machines receiving (noisy) data from the same underlying
signal [5], [6]. The statistical hypotheses considered at the
time where either simple, or reduce to a simple hypothesis.
Under the name of multiterminal data compression, hypothesis
testing and estimation with observations in fixed finite sample
spaces (alphabets) was investigated [7]–[12]. In this body of
literature, each terminal observes a stream of iid observations
in some alphabet, where the different terminals might receive
observations from different distributions on different alphabets.
Each of the terminals compresses the iid observations into
a message that is sent to a central terminal, at which some
inference goal is to be achieved based on the messages. For
an overview, see [13].

The information theoretic aspects of distributed statistical
methods have only been studied rigorously in terms of sample
complexity relatively recently. The problem of distributed
testing with a composite alternative hypothesis about a high-
dimensional parameter with limited communication was first
considered in a few recent papers. In [14], theoretical guaran-
tees are derived for distributed uniformity testing of a discrete
distribution in the case that a collection of machines each
receive one observation. Here, sample complexity (in the
sense of minimax convergence rate) is assessed in terms the
cardinality of the sample space, the number of bits available
for communication and the number of observations. In that
paper, it is also shown that in the distributed setting with many
local machines, testing performance can strictly improve when
all machines have access to a shared source of randomness,
a so-called public coin. Distributed uniformity testing of a
discrete distribution when multiple observations per machine
are available is considered in [15] and [16].

Most of the work, studying distributed inference in terms
of sample complexity, up until now has focused on distrib-
uted methods for estimating a signal in the normal-means
model under bandwidth, or communication restrictions (see
for instance [17]–[21]). The canonical normal-means model
postulates that we have an observation X satisfying

X = μ +
1√
n

Z,

where μ ∈ R
d is the unknown signal, Z ∼ Nd(0, Id) is

an unobserved noise vector with a d-dimensional standard
Gaussian distribution, and n is the signal-to-noise ratio. Note
that this is equivalent to observing n independent copies of a
Nd(μ, Id)-vector. In the distributed setting considered in the
aforementioned articles, n such observations are distributed
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across m machines, which then communicate a transcript
to a central machine. The central machine then forms an
estimate of μ on the basis of these transcripts. The sample
complexity of such a problem is expressed in n, m, the
number of bits available for communication of the transcripts
and the properties of μ (e.g. Euclidian norm). Related to
this normal-means model, on deriving minimax lower bounds
and optimal distributed estimation strategies in the context
of nonparametric regression, density estimation and Gaussian
signal-in-white-noise models (e.g. [20], [22]–[25]).

In this paper, we investigate the information theoretic
properties of distributed methods for testing for the presence of
a signal in the normal-means model. The theory on distributed
testing in this setting is much less developed than that for
estimation. Testing for the presence of a signal in the normal-
means model translates to testing the null hypothesis H0 :
μ = 0 that the sequence is identically equal to 0. Rejecting
this hypothesis means declaring that there is a non-zero signal.
A fundamental question is how large the signal should be
in order to be detectable. It is well known that in this non-
distributed model, the size of the signal (by which we mean
the Euclidean norm) has to be of order d1/4/

√
n in order for

the signal to be detectable (see e.g. [26]). An optimal test is for
instance obtained by rejecting the hypothesis H0 if �X�2 is
above a specific threshold, depending on d and n (see also
Section III-B).

The question we address in this paper is how this changes
in the distributed setting. In our analysis we consider the
distributed version of the normal-means model, where the
data (n independent draws from the Nd(μ, Id)-distribution)
is divided over m ≤ n local machines, or cores. Equivalently,
we assume that at each local machine j ∈ {1, . . . , m} we
observe a vector X(j) which satisfies

X(j) = μ +
�

m

n
Z(j), (1)

where again μ ∈ R
d and the Z(j) are independent Nd(0, Id)-

distributed vectors. Each machine carries out a test for the
hypothesis H0 : μ = 0 using its local data X(j), where we
allow that the machines use a public coin, i.e. a common
random vector U that is available to all local machines.
Subsequently, the outcomes of the m local tests (which are
single bits) are sent to a central machine, where they are
combined into a single, overall test. We prove that in this
distributed setting, the size of the signal has to be of the order
(d(m ∧ d))1/4/

√
n in order for the signal to be detectable.

Moreover, we exhibit optimal distributed tests that achieve this
detection bound.

The detection bound has a remarkable “regime change” or
“elbow effect” at m = d. As m grows from 1 to d the testing
problem becomes more difficult, in the sense that the signal
needs to be ever larger to be detectable using an increasing
number of machines. This is intuitively understandable, since
as m grows, the local signal-to-noise ratio decreases, so it is
reasonable to expect that the signal needs to be larger to be
able to detect it. The detection bound stops increasing if m
grows above d however. In that range, the decrease of the local
signal-to-noise ratios is apparently balanced by the increase of

the number of bits that are transmitted from the local machines
to the central one.

The regime change is also reflected by the fact that we
need different testing strategies depending on how m and d
are related. If m is below some threshold, and in particular it
does not increase with n, then, not surprisingly, we can simply
use the classical non-distributed test mentioned above at one
of the local machines. If m is larger than this threshold but
m ≤ d, then it is still possible to construct an optimal test
by combining local tests that are based on the test statistics
�X(j)�2, but the test needs to be constructed more carefully.
In the range m ≥ d this strategy becomes sub-optimal and we
have to adopt a different approach, using the fact that we have
a public coin at our disposal. For this case we construct an
optimal distributed test by appropriately combining local tests
that use local test statistics of the form U�X(j), where U is
a public random vector.

The approach to finding the lower bound can be sumarized
as follows. As a first step, we lower bound the testing risk
by a type of Bayes risk, where μ is drawn from a prior
such that it either belongs to the null hypothesis of the
alternative, as in for example [27]. This Bayes risk can be
related to the mutual information between the testing outcome
and which hypothesis is selected, akin to techniques common
in tackling (distributed) estimation problems through Fano-
like inequalities in for example [17], [28]. In particular, the
tensorization property of the mutual information is used and
combined with a so called strong data processing inequality to
quantify the loss incurred in the distributed setup, similar to
the approaches to distributed estimation in [18], [19], and [21].

Upon completion of this work, we came across the
paper [29], which considers a setting similar to ours and claims
some partly overlapping results. There are also important
differences between the papers, however. Most importantly
perhaps, our proof strategy for the lower bound is rather
different. As a result our proof is arguably easier to verify
and at least provides an alternative to the approach proposed
in [29]. Furthermore, the paper [29] does not allow the number
of machines (our m) to vary. Essentially, only the case that
m = n is considered.

The remainder of the paper is organized as follows.
In Section II we formally describe the model and the distrib-
uted testing problem, and introduce notations used throughout
the paper. In Section III we present our main results. We state
the detection lower bound in Section III-A, and we provide
novel distributed tests achieving the theoretical limits in
Section III-B. We provide a short simulation study demon-
strating the regime change observed in the theoretical analysis
in Section IV. The proofs for the distributed tests achieving the
minimax rate is given in Section V, while the proofs of cor-
responding (technical) lemmas are deferred to Sections A-C.

II. PROBLEM SETTING AND NOTATION

We assume we have m local machines. For j = 1, . . . , m,
we have an observation X(j) at machine j, which satisfies

X(j) = μ +
�

m

n
Z(j).
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Here μ ∈ R
d is the unknown signal of interest and

Z(1), . . . , Z(m) are independent, Nd(0, Id)-distributed vectors.
We allow both the dimension d = dn and the number of
machines m = mn to depend on the overal signal-to-noise
ratio, or “sample size” n. In fact, the interesting cases (from
an asymptotic perspective) are the ones where both d and m
are tending to infinity with n. Nevertheless, we do not restrict
ourselves to this asymptotic regime and cover the finite m and
d cases as well.

We are interested in distributed tests for the hypotheses

H0 : μ = 0, against Hρ : �μ� ≥ ρ, (2)

for ρ > 0. We consider public coin protocols, where each
machine has access to a shared random vector U , which is
independent of the observations X(1), . . . , X(m). Each local
machine j carries out a local test. Using the local data X(j)

and the public coin U it produces a binary, {0, 1}-valued
outcome T (j). The outcomes T (1), . . . , T (m) of the local tests
are transmitted to a central machine where they are aggregated
into a global test, described by a {0, 1}-valued variable Tdist.
Schematically, a distributed test looks as follows:

(X(1), U) �
T (1)���

... � ... �

(X(m), U) �
T (m)���

Tdist. (3)

We denote the collection of all distributed tests of this form
by Tdist.

The testing error, or risk of a distributed test Tdist, is defined
as usual by

R(Hρ, Tdist) = P0 (Tdist = 1) + sup
�μ�≥ρ

Pμ (Tdist = 0) , (4)

i.e. as the sum of the type one and type two errors of the
test. (Here, and elsewhere, we denote by Pμ the underlying
distribution assuming that μ is the true signal.) Uniform lower
bounds for this risk express the impossibility of detecting a
signal of size ρ. Indeed, fix a level α ∈ (0, 1). If ρ > 0 is such
that R(Hρ, Tdist) > α for all Tdist ∈ Tdist, then it means that
there exists no consistent level-α test for testing H0 against
Hρ. In other words, no distributed test of level α is able to
detect all signals that are larger than ρ in Euclidean norm.

Our aim is to find the detection threshold, i.e. the cut-off
ρdist such that no consistent level-α test exists if ρ < ρdist

and at least one consistent level-α test exists if ρ ≥ ρdist.
We will show that, up to constants depending on the chosen
level α, the detection threshold is given by

ρ2
dist 	 min

�√
dm

n
,
d

n

�
.

Moreover, we exhibit optimal tests for the case ρ ≥ ρdist.

A. Notation

We write a∧b = min{a, b} and a∨b = max{a, b}. For two
positive sequences an, bn we use the notation an � bn if there
exists a universal positive constant C such that an ≤ Cbn.
We write an 	 bn which holds if an � bn and bn � an

are satisfied simultaneously. The Euclidean norm of a vector
v ∈ R

d is denoted by � · �. For absolutely continuous
probability measures P � Q, we denote by DKL(P�Q) =�

log dP
dQdP their Kullback-Leibler divergence.

III. MAIN RESULTS

A. Lower Bound for the Detection Threshold

The following theorem establishes the detection threshold.
Its proof is described in the remainder of the subsection.

Theorem 1: Fix α ∈ (0, 1) and suppose that

ρ2 < cα

�
d(m ∧ d)

n
(5)

for cα ≤ (1 − α)2/384. Then,

inf
T∈Tdist

R(Hρ, T ) > α,

where infimum is over all distributed tests T ∈ Tdist given
in (3).

The result tells us that if (5) holds, there does not exist
a consistent test in Tdist of level α ∈ (0, 1) for the hypothe-
ses (2). In other words, no distributed test can detect all signals
of size ρ. It should be noted that we did not optimize for the
value of the constant cα and the statement is likely to be still
true for larger values of cα.

The proof of the theorem relies on three key lemmas, which
we state below after introducing some necessary notations.
As a first step, we use the basic fact that the supremum of the
probability of a type two error of a test can be lower bounded
by a Bayesian type two error, i.e. for any prior distribution Π
supported on Hρ

sup
μ∈Hρ

Pμ (T = 0) ≥
�

Hρ

Pμ (T = 0) dΠ(μ).

To further lower bound the risk we construct an appropriate
Markov chain and relate the testing problem to an information
transfer problem through the chain. Consider V ∼ Ber(1/2),
i.e. a V is 0 or 1, each with probability 1/2, independent
of the public coin random vector U , such that the random
vectors X(j)|(V = 0), j = 1, . . . , m follow (1) with
μ = 0 and X(j)|(V = 1) follows a Gaussian mixture
PΠ defined as PΠ(A) =

�
Pμ(A) dΠ(μ) for all Borel sets

A ⊂ R
d. Let us denote by P the joint probability measure

describing the corresponding Markov dynamics

V � μ
��� (X(1), U) �

T (1)���
� ... � ... �

��� (X(m), U) �
T (m)���

T. (6)

We then have that for any distributed test T ,

R(Hρ, T ) ≥ P(T = 1|V = 0) + P(T = 0|V = 1) (7)

= 2P(T 
= V ).

The right hand side of (7) can be further bounded from
below using the mutual information between T and V in the
chain (6), defined by

IΠ(V, T ) = DKL

�
P

V ×T � P
V × P

T
	
,
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where P
V , P

T and P
V ×T denote marginal- and joint distribu-

tions of V and T , and the subscript Π is used to indicate the
dependence on the prior Π. Informally, the mutual information
measures how much knowing T reduces uncertainty about
V and vice versa. The lower bound based on the mutual
information is given in the following lemma. The proof of
the lemma is deferred to Section B-A.

Lemma 1: Let Π be a prior on Hρ and consider the
dynamics (6). We have

inf
T∈Tdist

R(Hρ, T ) ≥ 1 −
�

2IΠ(V, T ).

In view of the usual data processing inequality we have
IΠ(V, T ) ≤ IΠ(V, (T (1), . . . , T (m))). The following lemma
asserts that, up to an additional term, this further tensorizes
conditional on the public coin randomness.

Lemma 2: Consider the dynamics (6). We have

IΠ(V, (T (1), . . . , T (m))) (8)

≤
m


j=1

IΠ(V, T (j)|U) +
m


j=1

IΠ(μ, T (j)|U, V ).

The proof of this lemma is given in Section B-B. This
bound, combined with Lemma 1, allows us to break down
the difficulty of the ’global’ testing problem in terms of the
difficult of the m ’local’ testing problems, captured by the
quantities IΠ(V, T (j)|U). These conditional local mutual infor-
mations quantify the capacity of the local tests to distinguish
a signal drawn from the prior Π from the zero signal. The
second sum in the display of the lemma captures dependency
between the transcripts and the prior draw μ ∼ Π. Essentially,
it captures how well the signal can be estimated by the local
tests.

We now discuss the choice of prior distribution Π. Let us
set � = ρ/

√
d, let R be a d-dimensional vector of independent

Rademacher random variables, and define the prior Π as the
distribution of �R. Note that Π has support contained in Hρ.
(Such choices are typically considered as least favorable priors
supported on signals that are difficult to detect, see for instance
Section 3.2 of [27].)

Since V , μ and X(j) are independent of U , conditioning
on U does not distrupt the Markov chain property: we have
the chain V |U → μ|U → X(j)|U → T (j)|U . Consequently,
the “estimation term” IΠ(μ, T (j)|U, V ) can be handled using
strong data processing techniques employed in distributed
estimation, see for example Lemma 11 in [21]. For com-
pleteness, we adopted the aforementioned lemma for the
above choice of prior distribution in the form of Lemma 9
in the appendix, which yields that IΠ(μ, T (j)|U, V ) ≤
128nρ2

dm IΠ(X(j), T (j)|U, V = 1). Using that T (j) is binary
valued, we obtain that the second term in (8) is bounded above
by 128nρ2

d .
The loss of information about V resulting from the compres-

sion of X(j)|U into T (j)|U in this Markov chain is quantified
by Lemma 3 below. The lemma comes in the form of a strong
data processing inequality for the testing problem and forms
the crux of the proof of the lower bound. It captures the
difficulty of the local testing problem in terms of n, m, d
and ρ.

Lemma 3 (Public Coin Strong Data Processing Inequality):
With Π as defined above we have

IΠ(V, T (j)|U) ≤ (48β ∧ 1)IΠ(X(j), T (j)|U),

where

β =

�
n2ρ4

dm2 if m
nρ2 < 1/2,

2nρ2

dm if m
nρ2 ≥ 1/2.

(9)

We give the proof of the lemma in Section B-C. By combin-
ing the information theoretic inequalities above with the fact
that I(X(j), T (j)|U) ≤ H(T (j)|U) ≤ 1, which is true because
T (j) is a binary variable, we get that

IΠ(V, T ) ≤
m


j=1

IΠ(V, T (j)|U) +
m


j=1

IΠ(μ, T (j)|U, V )

≤ 48βm + 128
nρ2

d
.

Therefore, in view of Lemma 1,

R(Hρ, T ) ≥ 1 − 4

�
6
nρ2

d



max

�
nρ2

m
, 2

�
+ 8/3

�
.

For ρ satisfying (5), the right-hand side is bounded from below
by α for an arbitrary distributed test T ∈ Tdist.

B. Optimal Tests Attaining the Lower Bound

In this section, we exhibit a distributed testing procedure
that is optimal in the sense that it attains the lower bound
of Theorem 1. More precisely, we show that if ρ2 is larger
than a multiple of the right-hand side of (5), there exists a
distributed test for H0 against Hρ with risk bounded by a
chosen level α ∈ (0, 1). Summarising, we have the following
theorem, complementing the lower bound of Theorem 1.

Theorem 2: Fix α ∈ (0, 1) and suppose that

ρ2 ≥ Cα

�
d(m ∧ d)

n
(10)

for Cα > 0 a constant depending only on α as given in (15).
Then there exists a test T ∈ Tdist such that R(Hρ, T ) ≤ α.

We prove the theorem by constructing three concrete dis-
tributed tests, for three different ranges of m. We outline
the construction of these tests in this section. The detailed
verification that they are consistent at the level α for testing
H0 against Hρ in their respective ranges is deferred to
Section V.

First assume that the number of machines is large enough,
but does not exceed the dimension d, i.e. Mα ≤ m ≤ d,
for a large enough constant Mα > 0 given in (15). In this
case, Theorem 1 asserts that the detection lower bound for
ρ is a multiple of (dm)1/4/n1/2. We propose the following
distributed test that is able to detect signals with Euclidian
norm of that order if Mα ≤ m ≤ d. In this case no public
coin is needed. In this setting we first compute the local test
statistic S

(j)
m≤d = (n/m)�X(j)�2 at every machine j. Under

the null hypothesis, S
(j)
m≤d follows a chi-square distribution

with d degrees of freedom, i.e. S
(j)
m≤d ∼ χ2

d. Then for every j
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we consider the randomized test T
(j)
m≤d using Bernoulli random

variables

T
(j)
m≤d|S

(j)
m≤d ∼ Ber

�
Fχ2

d

�
S

(j)
m≤d

��
,

where Fχ2
d

denotes the distribution function of χ2
d. Under

the null hypothesis the T
(j)
m≤d are independent and Ber(1/2).

At the central machines we combine the local test in a global
test Tm≤d ∈ Tdist by setting

Tm≤d = �

⎧⎨
⎩
������

m

j=1

(T (j)
m≤d − 1/2)

������ ≥
√

mκ̄α

⎫⎬
⎭ , (11)

with κ̄2
α = 3 log (4/α). By a standard Chernoff bound, the

type one error of this test is bounded by α/2 for m large
enough. In Section V-A, we prove that the same is true for
the type two error if �ρ�2 ≥ Cα

√
dm/n. as posed by Theorem

Next we assume that m ≥ d ∨ Mα, in which case the
detection lower bound for ρ is a multiple of

�
d/n. When

m/d → ∞, tests based on the statistics S
(j)
m≤d cannot

reach the detection lower bound anymore as can be observed
by inspection of the variance of (18), or through Theorem
16 in [29]. We propose a novel distributed test using a public
coin. Specifically, we assume all machine have access to a
vector U = (U1, . . . , Ud) of independent standard normal
random variables. For j = 1, . . . , m we compute the local
test statistics S

(j)
m≥d =

�
n

mdUT X(j) and the corresponding
local tests

T
(j)
m≥d = �

�
S

(j)
m≥d ≥ 0

�
.

Then we aggregate these local tests in the central machine to
a distributed test Tm≥d ∈ Tdist by defining

Tm≥d = �

⎧⎨
⎩
������

m

j=1

(T (j)
m≥d − 1/2)

������ ≥
√

mκ̃α

⎫⎬
⎭ , (12)

with κ̃2
α = (1/3) log (16/α). In Section V-B we prove that

this test satisfies the required error bound if ρ2 ≥ Cαd/n.
Finally, we consider the case m ≤ Mα for completeness.

We have to treat it separately for technical reasons, although
in practice we would probably simply use the first test above
for all cases m ≤ d. To achieve optimality in this case
we can simply choose a single machine and conduct the
hypothesis test we would use in the classical, non-distributed
setting. Specifically, we can for instance use as global test
Tm�1 ∈ Tdist the test given by

Tm�1 = �

�
n√
dm

�X(1)�2 −
√

d ≥ κα

�
, (13)

with κα = 2/
√

α. See Section V-C for details.

IV. SIMULATION EXPERIMENTS

In this section we investigate the performance of the tests
Tm≤d and Tm≥d that were proposed in the preceding section,
in particular with regards to the “elbow effect” when m � d
that we observed in our theoretical results. We visualize the
performance using two different simulation experiments.

In the first experiment we consider two fixed choices of m, n
and d, one with m < d and one with m > d. We simulate
data with a signal with increasing strength ρ and then assess
the performance of the tests by computing the “true positive
rate” (TPR), i.e. the fraction of the simulations in which they
correctly detect the signal.

For the second experiment we also consider two scenarios,
one with m � d and one with m � d. But now we fix the
signal strength ρ a little above the detection limit in both cases
and investigate how the performance of the tests depends on
the total signal-to-noise ratio, or sample size n.

A. First Experiment

In the first simulation we consider fixed values for n, m and
d and we simulate data in which we let the strength �μ� of the
unobserved signal vary between 0 and 1. We investigate how
well each of the distributed tests manages to correctly reject
the null hypothesis, i.e. detect the signal.

In Figure 1, we consider two different scenarios. In both
scenarios we choose n = 104 and we have specified the
rejection criterion for both tests such that they have a type
one error probability of less than α = 0.05. The signal μ is
drawn according to

μ =
ρ√
d
R, (14)

where R is a vector of independent Rademacher random
variables, and we let the signal strength ρ = �μ� vary
from 0 to 1.

In the m < d scenario corresponding to the plot on the left-
hand side in Figure 1, we see that the test Tm≤d outperforms
the public coin test Tm≥d, in accordance with our theoretical
results. In the m > d scenario on the right-hand side we see
that the test Tm≥d detects the presence of the signal much
earlier than the test Tm≤d.

B. Second Experiment

In the second experiment we also consider two scenarios.
The first scenario corresponds to a situation in which a

fixed number of machines m receive more observations as
n increases, but the dimension of the signal increases as well.
Specifically, we take d = n

2
3 and m = 500. We set the signal

strength slightly above the detection limit for this case, namely
ρ = log(d)(dm)1/4/

√
n. Note that ρ → 0 as n → ∞. In view

of the theory we expect that the test Tm≤d detects the signal
consistently, whereas the public coin test Tm≥d should have a
worse performance, since it requires that ρ �

�
d/n.

In the second scenario we take m = n/10 and d = 5 and
set ρ = 2 log(m)

�
d/n, which is again slightly above the

detecting limit. This corresponds to the situation in which for
each 10 additional observations a new machine is added, whilst
the dimension of the signal remains fixed. In this case we also
have ρ → 0 as n → ∞. We expect that for large n the test
Tm≤d will fail to consistently detect the signal, as it requires
ρ � (md)1/4/

√
n to do so.

The resulting plots can be found in Figure 2. The results are
again in accordance with our theoretical findings. We note in
particular that the public coin test Tm≥d is a suitable choice in
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Fig. 1. The horizontal axes correspond to the Euclidian norm �μ� = ρ of the signal (14) used in the simulations. In the plot on the left we have m = 50 and
d = 500, on the right we have m = 5000 and d = 5. For each ρ in a grid between 0 and 1, 100 datasets were simulated. The solid lines give the TPR, i.e.
the fraction of the 100 runs in which the tests correctly detected the signal. The red lines correspond to Tm≤d , the blue lines to Tm≥d.

Fig. 2. The horizontal axes corresponds to the total sample size n. In the plot on the left we have d = n2/3, m = 500, and ρ = log(d)(dm)1/4/
√

n.
On the right, m = n/10, d = 5 and ρ = 2 log(m)

�
d/n. For every n in a grid ranging from 1 to 3 · 104, 100 datasets were simulated. The solid lines give

the TPR, i.e. the fraction of the 100 runs in which the tests correctly detected the signal. The red lines correspond to Tm≤d , the blue lines to Tm≥d .

the realistic scenario where the number of machines m scales
with n, so batches of additional observations are distributed
over additional machines, while the dimension of the signal
remains fixed or at least relatively small compared to the
number of observations.

V. PROOF OF THEOREM 2

Let α ∈ (0, 1) be given, recall that κ̄2
α = 3 log (4/α), κ̃2

α =
(1/3) log (16/α), κ2

α = 4/α, and set

Mα := max
�

(255κ̄α)2, D̄, 36κ̃2
α, 4e2πκ̃2

αα1/2
�

,

Cα := max
�

24M2
ακ2

α, 2(1 +
√

2)καMα, 80κ̄α,

212e2κ̃2
αα−5/2

�
, (15)

where D̄ is defined in Lemma 4. Then we show below that
for all d, m, n ∈ N at least one of the three distributed
tests Tm≤d, Tm≥d, Tm�1, given in (13)-(12), achieves uniform
consistency at level α, i.e.

R(Hρ, T ) ≤ α, (16)

for some T ∈ {Tm�1, Tm≤d, Tm≥d}.
We distinguish three regimes in view of the interplay of

m and d, and show in the following subsections that the
corresponding tests reach uniform consistency:

• Case 1: Mα < m ≤ d.
• Case 2: Mα ∨ d < m.
• Case 3: m ≤ Mα.

with corresponding tests Tm≤d, Tm≥d, Tm�1, respectively.
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A. Case 1: Mα < m ≤ d

In view of Chernoff’s bound, see Lemma 6, for m > 4κ̄2
α,

P0 (Tm≤d = 1) = P0

⎛
⎝ m


j=1

(T (j)
m≤d − 1/2) ≥ κ̄α/

√
m

⎞
⎠

≤ 2 exp
�
−2κ̄2

α/3
	

< α/2. (17)

We now turn to bounding the type II error probability. For
arbitrary μ = (μ1, . . . , μd) ∈ Hρ,

S
(j)
m≤d =

d

i=1


�
n

m
μi + Z

(j)
i

�2

(18)

with Z
(j)
i

iid∼ N(0, 1), follows a noncentral chi-square distrib-
ution with d degrees of freedom and noncentrality parameter
δ := (n/m)�μ�2

2, i.e. S
(j)
m≤d

ind∼ χ2
d(δ).

Let us take independent random variables V δ
d ∼ χ2

d(δ) and
Ud ∼ χ2

d(0). Then in view of Lemma 4, for c > 1/40 and for
all d ≥ D̄,

Eμ(Fχ2
d
(S(j)

m≤d)) = Pr
�
V δ

d ≥ Ud

	
≥ 1

2
+ c



δ√
d
∧ 1

2

�
,

where Eμ is the expectation corresponding to Pμ. This further
yields

Pμ

⎛
⎝
������

m

j=1

�
T

(j)
m≤d − 1

2

������� ≤
√

mκ̄α

⎞
⎠

≤ Pμ


 m

j=1

 
T

(j)
m≤d − Eμ(Fχ2

d
(S(j)

m≤d))
!

≤
√

mκ̄α



1 − c

√
m

κ̄α



δ√
d
∧ 1

2

���
.

In view of Chernoff’s bound and the inequality
Eμ(Fχ2

d
(T (j)

m≤d)) ≤ 1, this is further bounded by
2 exp(−κ̄2

α/3) = α/2, given that

c
√

m

κ̄α



δ√
d
∧ 1

2

�
≥ 2. (19)

This last inequality follows from the assumption (10)�
m

d
δ =

n�μ�2
2√

dm
≥ Cα ≥ 2κ̄α/c and m > 16κ̄2

α/c2.

B. Case 2: Mα ∨ d < m

For the choice and m > 4κ̃2
α the same bound as in (17)

holds for P0 (Tm≥d = 1).
For the type II error, consider μ = (μ1, . . . , μd) ∈ Hρ.

Define for η > 0, ν > 0 the events Dη := {�U�2/
√

d ≤ η},

Aν,η :=

�√
n√
d

d

i=1

μiUi > ν

"
∩ Dη

and

Bν,η :=

�√
n√
d

d

i=1

μiUi < −ν

"
∩ Dη,

where U = (U1, . . . , Ud) ∼ N(0, Id) is the public coin
random vector, whose probability distribution we shall denote
by Q. We set

η = 4α−1/2 and ν = 4e
√

2πκ̃α
√

η, (20)

and note that Cα ≥ 27ν2/(πα2).
Then the type II error is bounded from above as

EQPμ (Tm≥d = 0|U = u)

≤
�

Aν,η

Pμ

⎛
⎝ m


j=1

(T (j)
m≥d − 1/2) ≤

√
mκ̃α

����U = u

⎞
⎠ dQ(u)

+
�

Bν,η

Pμ

⎛
⎝ m


j=1

(T (j)
m≥d − 1/2) ≥ −

√
mκ̃α

����U = u

⎞
⎠ dQ(u)

+ Q(Ac
ν,η ∩ Bc

ν,η). (21)

We show below that each of the first two terms on the right
hand side are bounded by α/8 and the third term by α/4,
resulting our statement.

First we deal with the third term in (21). Since
√

n√
d

d

i=1

μiUi ∼ N (0,
n

d
�μ�2

2),

the set (Aν,η ∪Bν,η)c = Ac
ν,η ∩Bc

ν,η , in view of Chebyshev’s
inequality, assumption (10), and definitions (20), satisfies that

Q(Ac
ν,η ∩ Bc

ν,η) ≤ Pr


�
n

d
�μ�2|Z| ≤ ν

�
+ Q(Dc

η)

≤ 2ν√
2πCα

+
2
η2

≤ α/4,

where Z ∼ N(0, 1).
Next we deal with the first term on the right hand side

of (21). For u ∈ Aν,η , we have �u�2/
√

d ≤ η, hence for
m ≥ ν2/(2η2),

Pr

#
− ν√

m
<

1√
d

d

i=1

uiZi ≤ 0

$
≥Pr



− ν√

mη
< Z ≤ 0

�

≥ e
− ν2

2mη2

√
2π

ν√
mη

≥c�
ν√
mη

,

where Z, Z1, . . . , Zd
iid∼ N(0, 1) and c� = (e

√
2π)−1.

Therefore,

Pμ



S

(j)
m≥d ≥ 0

����U = u

�

= Pr

# √
n√

dm

d

i=1

μiui +
1√
d

d

i=1

uiZi ≥ 0

$

≥ Pr

#
ν√
m

+
1√
d

d

i=1

uiZi ≥ 0

$

=
1
2

+ Pr

#
− ν√

m
<

1√
d

d

i=1

uiZi ≤ 0

$

≥ 1
2

+ c�
ν

√
ηm

.
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Then in view of Chernoff’s bound

�
Aν

Pμ

⎛
⎝ m


j=1

(T (j)
m≥d − 1/2) ≤

√
mκ̃α

����U = u

⎞
⎠ dQ(u)

≤
�

Aν

Pμ


 m

j=1

 
T

(j)
m≥d − Eμ(T (j)

m≥d|U = u)
!

≤
√

m
�
κ̃α − c�ν

√
η

	����U = u

�
dQ(u).

Since by definition (20) κ̃α−c�ν/
√

η = −3κ̃α, in view of
Chernoff’s bound (Lemma 6), for 36κ̃2

α < m the preceding
display is further bounded by 2e−3κ̃2

α = α/8.
We can deal with the second term on the right hand side

of (21) similarly. First, we obtain for u ∈ Bν,η that

Pμ



S

(j)
m≥d ≥ 0

����U = u

�
≤ 1/2 − c�

ν
√

ηm
.

And then we can derive as above that

EQ�Bν Pμ

⎛
⎝ m


j=1

�
T

(j)
m≥d − 1

2

�
≥ −

√
mκ̃α

⎞
⎠ ≤ α/8,

concluding the proof of case 2.

C. Case 3: m ≤ Mα

Finally, for completeness, we deal with the case when the
number of machines is limited and we are back bascially to
the single server, centralized case from a minimax rate point
of view.

Under the null hypothesis, (n/m)�X(1)�2
2 follows a chi-

square distribution with d degrees of freedom, so by
Chebyshev’s inequality

P0 (Tm�1 = 1) ≤ 2/κ2
α = α/2.

For any μ ∈ Hρ, it holds that

Pμ



n√
dm

�X(1)�2
2 −

√
d ≤ κα

�

= Pr


���� n√
dm

�μ�2
2 + 2d−1/2

d

i=1

μiZi

+ d−1/2
d


i=1

(Z2
i − 1)

���� ≤ κα

�
,

where Zi
iid∼ N(0, 1), i = 1, . . . , d. By the reverse triangle

inequality, we can bound the previous probability with

Pr

#�����2d−1/2
d


i=1

μiZi

����� ≥ n�μ�2
2

2
√

dm

$
+

Pr

#�����d−1/2
d


i=1

(Z2
i − 1)

����� ≥ n�μ�2
2

2
√

dm
− κα

$
.

In view of Chebyshev’s inequality and �μ�2
2 ≥ ρ2 ≥

Cα

√
d/n,

Pr

#�����2d−1/2
d


i=1

μiZi

����� ≥ n�μ�2
2

2
√

dm

$
≤ 16m2

n2�μ�2
2

≤ 16m2

Cα
≤ α

4

for Cα ≥ 26M2
α/α. Likewise, for Cα ≥ 2(1 +

√
2)καMα

n�μ�2
2

2
√

dm
− κα ≥

√
2κα

and consequently, by applying again Chebyshev’s inequality,
the second term is bounded by

Pr

#�����d−1/2
d


i=1

(Z2
i − 1)

����� ≥
√

2κα

$
≤ 1

κ2
α

≤ α

4
.

Hence we can conclude that for Cα ≥
max{26M2

α/α, 2(1 +
√

2)καMα},

Pμ

�
Tm�1 = 0

	
≤ α/2,

concluding the proof of the theorem.

APPENDIX A
LEMMAS FOR THEOREM 2

In this section we collect the proofs of the lemmas used to
derive the minimax testing upper bound.

Lemma 4: Let Ud and V δd

d be independent chi-square
distributed random variables with d degree of freedom and
non-centrality parameters zero and δd > 0, respectively. Then
for a universal D̄ ∈ N, not depending on δd, we have for all
d ≥ D̄ that

Pr
�
V δd

d − Ud ≥ 0
�
≥ 1

2
+

1
40

(
δd√
d
∧ 1

2
). (22)

Proof: First note that the function δ �→ Pr
�
V δ

d − Ud ≥ 0
	

is monotone increasing. Then

Pr
�
V δd

d − Ud ≥ 0
�
≥ Pr

�
V

δd∧
√

d/2
d − Ud ≥ 0

�
,

so without loss of generality we can assume that δd ≤
√

d/2.
The density of V δd

d is

∞

k=0

e−δd/2 (δd/2)k

k!
pd+2k,

where pk denotes the χ2
k-density. By the independence of Ud

and V δd

d ,

Pr
�
V δd

d − Ud ≤ 0
�

=
∞


k=0

e−δd/2 (δd/2)k

k!

�
{v−u≥0}

pd+2k(v)pd(u) d(v, u).

Let U �
d ∼ χ2

d and U ��
2k ∼ χ2

2k be independent from each other
and Ud. For any given k ∈ N, we have�

{v−u≥0}
pd+2k(v)pd(u) d(v, u) = Pr (Ud − U �

d ≤ U ��
2k) .
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For convenience let us introduce the notation Wd = (Ud −
U �

d)/(2
√

d). Conditioning and using independence once more,
the latter equals�

Pr



Wd ≤ u

2
√

d

�
dPU ��

2k
(u)

=
1
2

+
�

Pr



0 ≤ Wd ≤ u

2
√

d

�
dPU ��

2k
(u).

Since U ��
2k has a median larger than 2k/3 and the map u �→

Pr
�
0 ≤ Wd ≤ u

2
√

d

�
is increasing, we have that the second

term in the last display satisfies�
Pr



0 ≤ Wd ≤ u

2
√

d

�
p2k(u)du

≥ Pr



0 ≤ Wd ≤ k

3
√

d

��
[ 2k

3 ,∞)

p2k(u)du

≥ 1
2

Pr



0 ≤ Wd ≤ k

3
√

d

�
.

By combining the above inequalities we obtain that

Pr
�
V δd

d − Ud ≤ 0
�

≥ 1
2

+
1
2

∞

k=0

e−δd/2 (δd/2)k

k!
Pr



0 ≤ Wd ≤ k

3
√

d

�
. (23)

Assume now that δd � 1. Let kd be the largest integer
such that kd ≤ 3

√
d. We divide the sum on the right hand of

the preceding display to two parts, i.e. k < kd and k ≥ kd.
By applying Lemma 5 with εd = k, it holds that for
c0 = e−9/8/6,

kd

k=0

e−δd/2 (δd/2)k

k!
Pr



0 ≤ Wd ≤ k

3
√

d

�

≥ c0√
d

kd

k=1

e−δd/2 (δd/2)k

(k − 1)!

≥ c0δd

2
√

d

kd−1

k=0

e−δd/2 (δd/2)k

k!
.

We have Pr (0 ≤ Wd ≤ 1) d→ Pr (0 ≤ Z ≤ 1) > 1/3, hence
there exists a D1 ∈ N, such that for all d ≥ D1 we have
Pr (0 ≤ Wd ≤ 1) > 1/3. For k > kd we have k > 3

√
d,

hence for all d ≥ D1,

∞

k>kd

e−δd/2 (δd/2)k

k!
Pr



0 ≤ Wd ≤ k

3
√

d

�

≥ c0

2

∞

k>kd

e−δd/2 (δd/2)k

k!
.

Since δd/
√

d ≤ 1/2, we have for d ≥ D1,

1
2

∞

k=0

e−δd/2 (δd/2)k

k!
Pr



0 ≤ Wd ≤ k

3
√

d

�

≥ c0δd

2
√

d
(1 − e−δd/2 (δd/2)kd

kd!
).

The proof is finished by showing that for large enough d we
have c0/2− 1/40 > (δd/2)kd/kd! > 0. Recalling that 2

√
d ≤

3
√

d − 1 ≤ kd ≤ 3
√

d and hence δd ≤
√

d/2 ≤
√

d/4 we
get in view of Stirling’s inequality, that for some universal
constant C > 0

(δd/2)kd

kd!
≤ (kd/4)kd

kd!
� ekd(1−log 4)k

−1/2
d ,

which is bounded from above by c0/2−1/40 for d ≥ D1, for
some sufficiently large D1 > 0.

Lemma 5: Let Ud, U
�
d

iid∼ χ2
d, and 0 < εd ≤ C

√
d. Then

there exists a large enough D0 ∈ N, such that for all d ≥ D0

Pr



0 ≤ Ud − U �

d

2
√

d
≤ εd√

d

�
≥ e−C2/8

6
εd√
d
.

Proof: The characteristic function of the random variable
Wd := (Ud − U �

d)/(2
√

d) is

φd(t) = EeitWd = Ee
i t

2
√

d
Ud

Ee
−i t

2
√

d
U �

d

= (1 + it/
√

d)−d/2(1−it/
√

d)−d/2

= (1 + t2/d)−d/2 d→∞−→ e−t2/2.

Using the Fourier inversion formula, the density fWd
of Wd

satisfies

fWd
(v) =

1
2π

�
R

eitvφd(t)dt =
1
2π

�
R

cos(tv)φd(t)dt,

where the second equality follows from the symmetry of φd.
Let

g(v) :=
1
2π

�
R

cos(tv)e−t2/2dt =
1√
2π

e−v2/2,

where the last equation follows for instance by contour
integration. Then by the dominated convergence theorem

|fWd
(v) − g(v)| ≤ 1

2π

�
R

|e−t2/2 − φd(t)|dt
d→∞−→ 0.

By the earlier established uniform convergence we have that
for every d ≥ D0, for some large enough D0,

� εd
2
√

d

0

fWd
(v) dv ≥ 1

3
e−ε2

d/(8d) εd

2
√

d
=

e−C2/8

6
εd√
d
,

where the constant 1/3 is arbitrary and could be taken anything
smaller than 1/

√
2π.

Lemma 6 (Chernoff’s Bound): Let Bi
ind∼ Ber(pi),

i = 1, . . . , k, and 0 < δ < 1. Then

Pr

#�����
k


i=1

(Bi − EBi)

����� ≥ δ
k


i=1

pi

$
≤ 2 e−(δ2/3)

�k
i=1 pi . (24)

APPENDIX B
LEMMAS FOR THEOREM 1

In this section we collect the proofs of the lemmas used to
derive the minimax testing lower bound.
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A. Proof of Lemma 1

In view of (7) we have

R(Hρ, T ) ≥ 1 − (P(T = 0|V = 0) − P(T = 0|V = 1))

≥ 1 −
���PT |V =0 − P

T |V =1
��� (T = 0)

≥ 1 − �P
T |V =0 − P

T |V =1�TV .

By the triangle inequality,

�P
T |V =0 − P

T |V =1�TV

≤ �P
T |V =0 − P

T �TV + �P
T − P

T |V =1�TV .

Applying the second Pinsker bound to the two terms on the
RHS and using that 2ab ≤ a2 + b2,

�PT |V =0 − P
T |V =1�2

TV

≤ DKL(PT |V =0�P
T ) + DKL(PT |V =1�P

T )
= 2IΠ(V, T ),

which completes the proof of the lemma.

B. Proof of Lemma 2

We prove a more general lemma, but before stating it we
recall some information theoretic definitions and identities,
see [30], [31].

For discrete random variables X and arbitrary random
variable Y , define the entropy of X as

H(X) = −



x

P(X = x) log P(X = x)

and the conditional entropy of X given Y ,

H(X |Y ) =
�

H(X |Y = y)dP
Y (y)

= −
� 


x

P
X|Y =y(x) log P

X|Y =y(x)dP
Y (y).

We also recall that conditioning reduced entropy
H(X) ≥ H(X |Y ). Following from this conditioning,
on an arbitrary random vector Z , also reduces conditional
entropy

H(X |Y ) =
�

H(X |Y = y)dPY (y)

≥
�

H(X |Y = y, Z)dPY (y) = H(X |Y, Z).

For random variables X, Y, Z we define the mutual infor-
mation between X and Y and conditional mutual information
between X and Y given Z as

I(X ; Y ) = DKL(P(X,Y )�PX × PY ),
I(X ; Y |Z = z) = DKL(P(X,Y )|Z=z�PX|Z=z × PY |Z=z),

I(X ; Y |Z) =
�

I(X ; Y |Z = z)dPZ(z).

Next we recall some conditions of the mutual information.
First we note that I(X, Y ) = 0 if and only if X is independent

from Y . The chain rule for the mutual information between
the random vector Y = (Y (1), . . . , Y (m)) and V is

I(V ; Y ) =
m


j=1

I(V ; Y (j)|Y (1), . . . , Y (j−1)). (25)

For discrete random variable X and arbitrary random
variable Y

I(X ; Y ) = E(X,Y ) log
dP(XY )

dPXdPY

= E(X,Y ) log
1

dPX
− E(X,Y ) log

1
dP(X|Y =y)

= H(X) − H(X |Y ). (26)

In addition, by similar arguments, for arbitrary random
variable Z we have

I(X ; Y |Z) = H(X |Z) − H(X |Y, Z). (27)

Lemma 7: Let us assume that the discrete random variable
V and the discrete random vector F are such that the pair
(V, F ) is independent from the random variable U and the
discrete random vector Y = (Y1, . . . , Ym) satisfies that Yj

is conditionally independent from Y1:j−1 := (Y1, . . . , Yj−1)
given U and (V, F ), then

I(V ; Y ) ≤
m


j=1

I(V ; Yj |U)+
m


j=1

I(F ; Yj |U, V ).

Proof: A non-public coin version of the lemma is given
for instance in [32].

First note that in view of (26) and since conditioning
reduces entropy

I
�
(Y, U); V

	
= H(V ) − H(V |Y, U)
≥ H(V ) − H(V |Y ) = I(Y ; V ).

Furthermore, by the chain rule (25) and the independence of
U and V ,

I
�
(Y, U); V

	
= I

�
Y ; V |U

	
+ I(U ; V ) = I(Y ; V |U).

Similarly, by the chain rule and nonnegativity of mutual
information,

I
�
V ; Y |U

	
= I

�
(V, F ); Y |U

	
− I

�
F ; Y |U, V

	
≤ I

�
(V, F ); Y |U

	
.

By the identity (27) and the chain rule (25),

I
�
(V, F ); Y |U

	
= H(Y |U) − H(Y |V, F, U)

=
m


j=1

[H(Yj |Y1:j−1, U) − H(Yj |V, F, Y1:j−1, U)].

Since conditioning reduces entropy we have
H(Yj |Y1:j−1, U) ≤ H(Yj |U). Furthermore, by the conditional
independence of Y1:j−1 and Yj given (U, V, F ) results in
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H(Yj |V, F, Y1:j−1, U) = H(Yj |V, F, U). Using these two
facts, we obtain that

I
�
(V, F ); Y |U

	
≤

m

j=1

H(Yj |, U) − H(Yj |V, F, U)

=
m


j=1

I
�
(V, F ); Yj |U

	
.

Combining the above displays and again applying the chain
rule we now obtain that

I(Y ; V ) ≤
m


j=1

I
�
(V, F ); Yj |U

	

=
m


j=1

%
I
�
V ; Yj |U

	
+ I

�
F ; Yj |U, V

	&
.

C. Proof of Lemma 3

Using the sub-Gaussianity of the likelihood PΠ =�
PμdΠ(μ) verified in Lemma 8, we adapt the proof of

Theorem 3.7 in [32] to the present continuous setting with
public coin protocol.

Proof: We start by noting that if 48β ≥ 1, the result fol-
lows immediately from the regular data processing inequality
for mutual information.

In view of the definition of the conditional mutual infor-
mation and noting that P

V |U=u(v) = P
V (v) = 1/2 by

independence of U and V , I(V, T (j)|U) equals

1
2

� 

v∈{0,1}

DKL

�
P

T (j)|(V,U)=(v,u); PT (j)|U=u
�

dP
U (u).

(28)

By Lemma 13 below,

DKL

�
P

T (j)|(V,U)=(v,u)�P
T (j)|U=u

�

≤



t∈{0,1}
P

T (j)|U=u(t)

#
P

T (j)|(V,U)=(v,u)(t)
PT (j)|U=u(t)

− 1

$2

(29)

P
U -almost surely. Furthermore, by Bayes rule,

P
T (j)|(U,X(j))=(u,x)(t)

PT (j)|U=u(t)
=

dP
X(j)|(U,T (j))=(u,t)

dPX(j)|U=u
(x) =: gt,u(x),

(30)

where the equality holds in an L1

�
P

X(j)
�

sense P
U -almost

surely.
For v ∈ {0, 1}, define

Lv(X(j)) :=
dP

X(j)|V =v

dPX(j) (X(j)).

Since V → (X(j), U) → T (j) forms a Markov chain, we can
write

P
T (j)|(V,U)=(v,u)(t)

PY (j)|U=u(t)

=
�

P
T (j)|(U,X(j))=(u,x)(t)

PT (j)|U=u(t)
dP

X(j)|V =v(x)

= EX(j)

 
gt,u(X(j))Lv(X(j))

!
.

Then in view of EX(j)Lv(X(j)) = 1 = EX(j)gy,u(X(j)),
P

U -a.s., the right hand side of (29) equals

t∈{0,1}

P
T (j)|U=u(t)Cov

�
Lv(X(j)), gt,u(X(j))

�2

, P
U -a.s.

By Theorem 4.13 in [33], we have that

EGH ≤ EH log H + log EeG

for any random variables G, H with EH = 1 and EeG < ∞.
Applying this to G = s(Lv(X(j)) − 1), H = gt,u(X(j)) we
obtain

sCov
�
Lv(X(j)), gt,u(X(j))

�
≤ log EX(j)

 
es(Lv(X(j))−1)

!
+ EX(j)

 
gt,u(X(j)) log gt,u(X(j))

!
.

By display (30) and the independence of X(j) and U ,

EX(j)

 
gt,u(X(j)) log gt,u(X(j))

!
= DKL(PX(j)|(U,T (j))=(u,t)�P

X(j)|U=u).

Furthermore, in view of Lemma 8, Lv(X(j)) is
√

24β-sub-
Gaussian, hence

log EX(j)

 
es(Lv(X(j))−1)

!
≤ 24βs2/2.

Taking s = (24β)−1Cov
�
Lv(X(j)), gt,u(X(j))

	
and combin-

ing the above displays we obtain

Cov
�
Lv(X(j)), gt,u(X(j))

�2

≤ 1
2

Cov
�
Lv(X(j)), gt,u(X(j))

�2

+ 24βDKL(PX(j)|(U,T (j))=(u,t)�P
X(j)|U=u),

which holds P
U -almost surely. We now have shown that�

DKL

�
P

T (j)|(V,U)=(v,u)�P
T (j)|U=u

�
dP

U (u)

≤ 48β

� 

t∈{0,1}

P
T (j)|U=u(t)D(u, t)dP

U (u)

= 48βI(X(j), T (j)|U),

where

D(u, t) = DKL(PX(j)|(U,T (j))=(u,t)�P
X(j)|U=u).

In view of (28), this concludes the proof.
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D. Sub-Gaussianity Lemma

First we recall some notations from Section III-A. Let us
denote by Π the distribution of the random vector �R, where
R = (R1, . . . , Rd) has independent Rademacher marginals
and � > 0 is small (it is taken to be � = ρ/

√
d). We take

V ∼ Ber(1/2) and set X |(V = 0) ∼ N(0, σ2Id) and
X |(V = 1) ∼ PΠ, where PΠ =

�
PμdΠ(μ) and Pμ

is a multivariate Gaussian distribution with mean μ and
σ2 times the identity variance. Let P

X and P
X|V denote the

corresponding distributions of X and X |V .

Definition 1: A random variable X is called β-sub-
Gaussian if for all s ∈ R,

Ees(X−EX) ≤ eβ2s2/2.

The lemma below shows that the likelihood ratios
dP

X|V =0

dPX (X) and dP
X|V =1

dPX (X) are sub-Gaussian.
Lemma 8: The likelihood ratios

dP
X|V =0

dPX
(X) and

dP
X|V =1

dPX
(X)

are
√

24β-sub-Gaussian with

β =

�
d�4/σ4, if σ2/�2 < d/2,

2�2/σ2, if σ2/�2 ≥ d/2.
(31)

Proof: Using the notation

Lv(X) :=
dP

X|V =v

dPX
(X), v ∈ {0, 1},

we show below that for all t ∈ R,

EXet(Lv(X)−EXLv(X)) ≤ e24βt2/2.

This is implied by

P
X (|Lv − EXLv| ≥ s) ≤ 12 exp



− s2

2β

�
for all s > 0,

(32)

where the equivalence is well known, but a proof can be found
in Lemma 11. Since |Lv(X)−EXLv(X)| = |Lv(X)−1| ≤
1, it is enough to consider 0 < s < 1.

To prove (32), let us first introduce the notation L := dPπ

dP0
,

and note that

L0 =
2

1 + L
and L1 =

2
1 + L−1

.

Then for x ∈ {L0 − 1 ≥ s} we have

2
1 + L

(x) = L0(x) ≥ s + 1

and

0 ≤ 2L

1 + L
(x) = 1 − 1 − L

1 + L
(x) ≤ 1 − s,

where the last inequality follows from L0 − 1 = 1−L
1+L .

Consequently, L−1(x) ≥ s+1
1−s . Similarly, for

x ∈ {L0 − 1 ≤ −s},

0 ≤ 2
1 + L

(x) ≤ 1 − s and
2L

1 + L
(x) ≥ 1 + s

and thus L(x) ≥ s+1
1−s . Combining the above bounds results in

for x ∈ {|L0 − 1| ≥ s} that

| log L(x)| ≥ log



1 + s

1 − s

�
≥ 2s

1 + s
≥ s,

where the last two inequalities follow from log x ≥ 1− 1
x and

0 < s < 1.
Through the same computation, the above display is also

true for x ∈ {|L1 − 1| ≥ s}. Consequently, for v = 0, 1,

P
X (|Lv − ELv| ≥ s)

≤ P
X (| log L| ≥ s)

=
1
2
P0 (| log(L)| ≥ s) +

1
2
Pπ (| log(L)| ≥ s) .

Using Markov’s inequality the terms on the right hand sides
can be further bounded as

P0 (|ν log(L)| ≥ νs) ≤ e−νs(EX|V =0L
ν + EX|V =0L

−ν),
(33)

for ν > 0 and

Pπ (|λ log(L)| ≥ λs)

≤ e−λ1s
EX|V =1L

λ1 + e−λ2s
EX|V =1L

−λ2 (34)

for λ1, λ2 > 0. Note that EX|V =1L
λ = EX|V =0L

λ+1, hence
choosing λ1 = ν − 1 and λ2 = ν + 1 in display (34), we get
by combining the above two displays that for v ∈ {0, 1},

P
X (|Lv − ELv| ≥ s)

≤ 1
2
%
1 + e−s + es

&
e−νs(EX|V =0L

ν + EX|V =0L
−ν).

(35)

We proceed by bounding the expectations in the above
display after which minimizing in ν gives us the result of
the lemma. Recall that X |(V = 0) ∼ N (0, σ2Id) and

Xi|(V = 1) iid∼ 1
2N (�, σ2) + 1

2N (−�, σ2), i = 1, . . . , d.
Consequently, L(X) equals

d

Π
i=1

'
exp

�
− 1

2σ2 (Xi − �)2
	

+ exp
�
− 1

2σ2 (Xi + �)2
	

2 exp(− 1
2σ2 X2

i )

(

=
d

Π
i=1

exp(−1
2
�2/σ2) cosh(Xi�/σ2). (36)

Then by independence of Xj , j = 1, . . . , d

EX|V =0L
ν =

�
e−

ν
2 �2/σ2

E coshν
� �

σ
Z
��d

,

where Z ∼ N(0, 1).
Next we distinguish two cases. Suppose first that

2/d ≤ �2/σ2. Let us take ν = sσ4/(d�4). Then ν�2/σ2 < 1/2,
as 0 < s < 1, and hence in view of Lemma 10

e−sν(E0L
ν + E0L

−ν)

≤ exp



ν2 d�4

2σ4
− sν

��
1 + e(3/2)νd�4/σ4

�

≤ exp


−s2

2
σ4

d�4

��
1 + e(3/2)s

�
.
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The remaining case is when 2/d > �2/σ2. Choosing ν =
sσ2/(2�2) results in ν�2/σ2 < 1/2, hence again in view of
Lemma 10

e−sν(E0L
ν + E0L

−ν) ≤



ν2 d�4

2σ4
−sν

��
1+e(3/2)νd�4/σ4

�

≤ exp


−s2

2
σ2

2�2

��
1 + e(3/2)s

�
.

Hence, by plugging in the last two displays into (35), and
noting that for 0 < s < 1

1
2

�
1 + e(3/2)s

� %
1 + e−s + es

&
≤ 12,

we arrive at (32), for β given in (31), concluding the proof of
the lemma.

APPENDIX C
ADDITIONAL TECHNICAL LEMMAS

In this subsection, we collect technical lemmas and their
proofs.

The following lemma is essentially Lemma 11 in [21]
adopted the setting in this article.

Lemma 9 (Multivariate Gaussian Estimation SPDI): Let R
a d-dimensional vector of independent Rademacher variables,
V be an independent Ber(1/2) random variable and let Π
denote the distribution of μ = �V R where � > 0 is a constant.
Suppose that the random vector X = (X1, . . . , Xd) satisfies
X |μ ∼ N(μ, σ2Id) and that T is a discrete random variable
such that V → μ → X → Y forms a Markov chain. Then,

I(μ; T |V ) ≤ 128
� �

σ

�2

I(X ; T |V = 1).

Proof: Write R1, . . . , Rd for the coordinates of R and
write for k ≤ d, R1:k := (R1, . . . , Rk) and X1:k =
(X1, . . . , Xk). Conditionally on V = 0, μ = 0 with proba-
bility 1, so I(μ; T |V = 0) = 0. Conditionally on V = 1,
μ = �R. Combining these facts with the chain rule for mutual
information,

I(μ; T |V ) =
1
2
I(�R; T |V = 1)

=
1
2

d

k=1

I(�Rk; T |V = 1, R1:k−1)

=
1
2

d

k=1

I(�Rk; T |V = 1),

where the last equality follows from the fact that the coor-
dinates of R are independent, so Rk+1 is independent of
R1:k. Furthermore, Rk|V = 1 → Xk|V = 1 → T |V =
1 forms a Markov chain with (Xk|Rk, V = 1) ∼ N(�Rk, σ2).
Consequently, by applying Lemma 14 in [21],

I(�Rk; T |V = 1) ≤ 64



2�

σ

�2

I(Xk; T |V = 1).

The proof is now finished by observing that Xk+1|V = 1 is
independent of X1:k|V = 1, so combining the above inequality

with the chain rule of mutual information, we obtain

I(μ; T |V ) ≤ 128
� �

σ

�2 d

k=1

I(Xk; T |V = 1, X1:k−1)

= 128
� �

σ

�2

I(X ; T |V = 1).

Lemma 10: Let Z ∼ N(0, 1) and let ν ∈ R such that
|ν|�2/σ2 < 1/2. It holds that

E coshν
� �

σ
Z
�
≤ exp



ν

�2

2σ2
+ ν2 3�4

2σ4
− �{ν<0}

3
2
ν

�4

σ4

�
.

(37)

Proof: First assume that ν ≥ 0. Using cosh(x) ≤ ex2/2

we find
E coshν

� �

σ
Z
�
≤ Eeν �2

2σ2 Z2
.

In view of Lemma 12,

Eeλ(Z2−1) ≤ e2λ2
for all 0 ≤ λ ≤ 1/4.

Applying this to the second last display yields (37).
Consider now the case that ν < 0. We have

d

dx
coshν

� �

σ
x
�

= ν
�

σ
coshν

� �

σ
x
�

tanh
� �

σ
x
�

,

d2

dx2
coshν

� �

σ
x
�

= ν
�2

σ2
coshν

� �

σ
x
�  

(ν − 1) tanh2
� �

σ
x
�

+ 1
!

=: τ(x)

Since cosh(0) = 1 and tanh(0) = 0, a second order Taylor
expansion of x �→ coshν

�
�
σ x

	
about 0 yields

E coshν
� �

σ
Z
�

=E

�
1+

Z2

2!
τ(rZZ)

�
, for some rZ ∈ [0, 1].

Since tanh2(x) ≤ x2 and cosh(x) ≥ 1 for all x ∈ R,

E
Z2

2!
τ(rZZ) ≤ ν

�2

2σ2

�
(ν − 1)

�2

σ2
Er2

ZZ4 + 1
�

≤ ν
�2

2σ2

�
(ν − 1)

3�2

σ2
+ 1

�
.

Then by combining the above two displays

E coshν
� �

σ
Z
�
≤ exp



ν

�2

2σ2
+ ν2 3�4

2σ4
− 3

2
ν

�4

σ4

�
.

The next lemma gives a well-known sufficient (and nec-
essary) condition for the sub-Gaussian distribution. In the
literature we did not find the present, required form of the
lemma, hence for completeness we also provide its proof.

Lemma 11: Let X a mean-zero random variable satisfying

P (|X | ≥ s) ≤ C exp


− s2

2β

�

for some C ≥ 2, β > 0 and for all s ∈ [0,∞). Then,

EesX ≤ e2βCs2/2.
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Proof: For k ∈ N, we have

E|X |k =
� ∞

0

P
�
|X |k > t

	
dt ≤ C

� ∞

0

exp


− t2/k

2β

�
dt.

Changing coordinates to u = t2/k/(2β) yields that the right
hand side display equals

C

2
(2β)k/2k

� ∞

0

e−uuk/2−1du =
C

2
(2β)k/2kΓ(k/2).

By the dominated convergence theorem, EX = 0, and C ≥ 2,

EesX = 1 +
∞


k=2

sk
EXk

k!
≤ 1 +

C

2

∞

k=2

(2βs2)k/2Γ(k/2)
(k − 1)!

≤ 1+
∞


k=1

�
(Cβs2)kΓ(k)

(2k − 1)!
+

(Cβs2)k+1/2Γ(k+1/2)
(2k)!

�
.

Since Γ(k + 1/2) ≤ Γ(k + 1) = kΓ(k) = k! and
(2k)! ≥ 2k(k!)2, the latter is further bounded by

1 +
�
1 +

�
Cβs2

� ∞

k=1

(Cβs2/2)k

k!

= eCβs2/2 +
�

Cβs2(eβCs2/2 − 1).

Since (ex − 1)(ex −
√

x) ≥ 0, we obtain that

EesX ≤ e
2Cβs2

2 .

The following lemma is a well known result and follows
from standard calculus, but we included it as we did not find
a stand-alone proof.

Lemma 12: Let Z be N(0, 1), 0 ≤ λ ≤ 1/4. Then,

Eeλ(Z2−1) ≤ e2λ2
.

Proof: Using the change of variables u = z
√

1 − 2λ,

Eeλ(Z2−1) =
1√
2π

�
eλ(z2−1)e−

1
2 z2

dz

=
e−λ�

2π(1 − 2λ)

�
e−

1
2 z2

dz =
e−λ�

(1 − 2λ)
.

The MacLaurin series of − 1
2 log(1 − 2λ) reads

1
2

∞

k=1

(2λ)k

k
,

which yields that the second last display equals

exp

#
3
2
λ2 +

1
2

∞

k=3

(2λ)k

k

$
.

If λ ≤ 1/4,
∞


k=3

(2λ)k

k
≤ (2λ)3

1 − 2λ
≤ λ2,

from which the result follows.
The next lemma is a standard bound for the KL-divergence,

see for instance Lemma 2.7 of [34].
Lemma 13: Let P, Q probability measures on some measure

space such that Q � P . Then,

DKL(P�Q) ≤
� 


dP

dQ
− 1

�2

dQ.

REFERENCES

[1] R. R. Tenney and N. R. Sandell, “Detection with distributed sensors,”
IEEE Trans. Aerosp. Electron. Syst., vol. AES-17, no. 4, pp. 501–510,
Jul. 1981.

[2] J. N. Tsitsiklis, “Decentralized detection by a large number of sensors,”
Math. Control, Signals Syst., vol. 1, no. 2, pp. 167–182, 1988. [Online].
Available: http://link.springer.com/10.1007/BF02551407

[3] O. P. Kreidl, J. N. Tsitsiklis, and S. I. Zoumpoulis, “On decentralized
detection with partial information sharing among sensors,” IEEE Trans.
Signal Process., vol. 59, no. 4, pp. 1759–1765, Apr. 2011. [Online].
Available: http://ieeexplore.ieee.org/document/5667065/

[4] A. Tarighati, J. Gross, and J. Jalden, “Decentralized hypothesis testing
in energy harvesting wireless sensor networks,” IEEE Trans. Signal
Process., vol. 65, no. 18, pp. 4862–4873, Sep. 2017. [Online]. Available:
http://ieeexplore.ieee.org/document/7950975/

[5] P. K. Varshney, Distributed Detection and Data Fusion. New York, NY,
USA: Springer New York, 1997, doi: 10.1007/978-1-4612-1904-0.

[6] J.-F. Chamberland and V. V. Veeravalli, “Wireless sensors in dis-
tributed detection applications,” IEEE Signal Process. Mag., vol. 24,
no. 3, pp. 16–25, May 2007. [Online]. Available: http://ieeexplore.
ieee.org/document/4205085/

[7] R. Ahlswede and I. Csiszár, “Hypothesis testing with
communication constraints,” IEEE Trans. Inf. Theory, vol. 32,
no. 4, pp. 533–542, Jul. 1986. [Online]. Available: http://ieeexplore.
ieee.org/document/1057194/

[8] T. S. Han, “Hypothesis testing with multiterminal data compression,”
IEEE Trans. Inf. Theory, vol. 33, no. 6, pp. 759–772, Nov. 1987.

[9] T. Han and K. Kobayashi, “Exponential-type error probabili-
ties for multiterminal hypothesis testing,” IEEE Trans. Inf. The-
ory, vol. 35, no. 1, pp. 2–14, Jan. 1989. [Online]. Available:
http://ieeexplore.ieee.org/document/42171/

[10] S.-I. Amari, “Fisher information under restriction of Shannon
information in multi-terminal situations,” Ann. Inst. Stat. Math.,
vol. 41, no. 4, pp. 623–648, Dec. 1989. [Online]. Available:
http://link.springer.com/10.1007/BF00057730

[11] H. M. H. Shalaby and A. Papamarcou, “Multiterminal detec-
tion with zero-rate data compression,” IEEE Trans. Inf. The-
ory, vol. 38, no. 2, pp. 254–267, Mar. 1992. [Online]. Available:
http://ieeexplore.ieee.org/document/119685/

[12] S. Watanabe, “Neyman–Pearson test for zero-rate multiterminal
hypothesis testing,” IEEE Trans. Inf. Theory, vol. 64, no. 7,
pp. 4923–4939, Jul. 2018. [Online]. Available: https://ieeexplore.
ieee.org/document/8123940/

[13] T. Han and S.-I. Amari, “Statistical inference under multitermi-
nal data compression,” IEEE Trans. Inf. Theory, vol. 44, no. 6,
pp. 2300–2324, Oct. 1998. [Online]. Available: http://ieeexplore.
ieee.org/document/720540/

[14] J. Acharya, C. L. Canonne, and H. Tyagi, “Inference under information
constraints I: Lower bounds from chi-square contraction,” IEEE Trans.
Inf. Theory, vol. 66, no. 12, pp. 7835–7855, Dec. 2020.

[15] I. Diakonikolas, T. Gouleakis, D. M. Kane, and S. Rao, “Commu-
nication and memory efficient testing of discrete distributions,” in
Proc. 32nd Conf. Learn. Theory (Proceedings of Machine Learn-
ing Research), vol. 99. A. Beygelzimer and D. Hsu, Eds. Phoenix,
AZ, USA: PMLR, Jun. 2019, pp. 1070–1106. [Online]. Available:
http://proceedings.mlr.press/v99/diakonikolas19a.html

[16] O. Fischer, U. Meir, and R. Oshman, “Distributed uniformity testing,”
in Proc. ACM Symp. Princ. Distrib. Comput., New York, NY, USA,
Jul. 2018, pp. 455–464, doi: 10.1145/3212734.3212772.

[17] Y. Zhang, J. Duchi, M. I. Jordan, and M. J. Wainwright, “Information-
theoretic lower bounds for distributed statistical estimation with com-
munication constraints,” in Proc. Adv. Neural Inf. Process. Syst., 2013,
pp. 2328–2336.

[18] M. Braverman, A. Garg, T. Ma, H. L. Nguyen, and D. P. Woodruff,
“Communication lower bounds for statistical estimation problems via a
distributed data processing inequality,” in Proc. 48th Annu. ACM Symp.
Theory Comput., Jun. 2016, pp. 1011–1020.

[19] A. Xu and M. Raginsky, “Information-theoretic lower bounds on
Bayes risk in decentralized estimation,” IEEE Trans. Inf. Theory,
vol. 63, no. 3, pp. 1580–1600, Mar. 2017. [Online]. Available:
http://ieeexplore.ieee.org/document/7801953/

[20] L. P. Barnes, Y. Han, and A. Ozgur, “Lower bounds for learning
distributions under communication constraints via Fisher information,”
J. Mach. Learn. Res., vol. 21, no. 236, pp. 1–30, 2020.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 23,2023 at 11:56:25 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1007/978-1-4612-1904-0
http://dx.doi.org/10.1145/3212734.3212772


4084 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 6, JUNE 2022

[21] T. Tony Cai and H. Wei, “Distributed Gaussian mean estimation under
communication constraints: Optimal rates and communication-efficient
algorithms,” 2020, arXiv:2001.08877.

[22] B. Szabó and H. van Zanten, “Adaptive distributed methods under
communication constraints,” Ann. Statist., vol. 48, no. 4, pp. 2347–2380,
Aug. 2020.

[23] Y. Zhu and J. Lafferty, “Distributed nonparametric regression under
communication constraints,” in Proc. Int. Conf. Mach. Learn., 2018,
pp. 6004–6012.

[24] Y. Han, A. Özgür, and T. Weissman, “Geometric lower bounds for
distributed parameter estimation under communication constraints,” in
Proc. Conf. Learn. Theory, 2018, pp. 3163–3188.

[25] B. Szabo and H. van Zanten, “Distributed function estimation: Adapta-
tion using minimal communication,” 2020, arXiv:2003.12838.

[26] Y. Baraud, “Non-asymptotic minimax rates of testing in signal detec-
tion,” Bernoulli, vol. 8, no. 5, pp. 577–606, Oct. 2002. [Online].
Available: https://projecteuclid.org/euclid.bj/1078435219

[27] Y. I. Ingster and I. A. Suslina, Nonparametric Goodness-of-Fit Test-
ing Under Gaussian Models (Lecture Notes in Statistics), vol. 169.
New York, NY, USA: Springer, 2002.

[28] X. Chen, A. Guntuboyina, and Y. Zhang, “On Bayes risk lower bounds,”
J. Mach. Learn. Res., vol. 17, no. 1, pp. 7687–7744, 2016.

[29] J. Acharya, C. L. Canonne, and H. Tyagi, “Distributed signal detection
under communication constraints,” in Proc. 33rd Conf. Learn. Theory
(Proceedings of Machine Learning Research), vol. 125. J. Abernethy
and S. Agarwal, Eds. PMLR, Jul. 2020, pp. 41–63. [Online]. Available:
http://proceedings.mlr.press/v125/

[30] T. M. Cover and J. A. Thomas, Elements of Information Theory.
Hoboken, NJ, USA: Wiley, 2012.

[31] Y. Polyanskiy and Y. Wu, “Lecture notes on information theory,” Lect.
Notes ECE563 (UIUC), vol. 6, nos. 2012–2016, p. 7, Feb. 2014.

[32] M. Raginsky, “Strong data processing inequalities and φ-Sobolev
inequalities for discrete channels,” IEEE Trans. Inf. Theory, vol. 62,
no. 6, pp. 3355–3389, Jun. 2016.

[33] S. Boucheron, G. Lugosi, and P. Massart, Concentration Inequali-
ties: A Nonasymptotic Theory of Independence, 1st ed. Oxford, U.K.:
Oxford Univ. Press, 2013.

[34] A. B. Tsybakov, Introduction to Nonparametric Estimation. New York,
NY, USA: Springer, 2009.

Botond Szabó held positions at Vrije Universiteit Amsterdam, Leiden
University, and the Budapest University of Technology and Economics. He is
an Associate Professor with the Department of Decision Sciences, Bocconi
University, and a fellow of the Bocconi Institute for Data Science and
Analytics (BIDSA). His research focuses on the theory of high-dimensional
and nonparametric statistical and machine learning methods.

Lasse Vuursteen received the bachelor’s degree in econometrics from the
University of Groningen and the master’s degree in stochastics and financial
mathematics from the Vrije Universiteit Amsterdam. He is currently pursuing
the graduate degree with the Delft University of Technology. His research
focuses on information-theoretic properties of distributed inference and more
broadly on high-dimensional and nonparametric statistics.

Harry van Zanten held positions at the Eindhoven University of Technology
and the University of Amsterdam. He is a Professor of statistics with Vrije
Universiteit Amsterdam. His research focuses on the design and analysis of
statistical methods in complex and high-dimensional settings.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 23,2023 at 11:56:25 UTC from IEEE Xplore.  Restrictions apply. 


