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a b s t r a c t

Ontology alignment is vital in Semantic Web technologies with numerous applications in diverse
disciplines. Due to diversity and abundance of ontology alignment systems, a proper evaluation can
portray the evolution of ontology alignment and depicts the efficiency of a system for a particular
domain. Evaluation can help system designers recognize the strength and shortcomings of their
systems, and aid application developers to select a proper alignment system. This article presents a new
evaluation and comparison methodology based on multiple performance metrics that accommodates
experts’ preferences via a multi-criteria decision-making (MCDM) method, i.e., Bayesian best–worst
method (BWM). First, the importance of a performance metric for a specific task/application is
determined according to experts’ preferences. The alignment systems are then evaluated based on
proposed expert-based collective performance (ECP) that takes into account multiple metrics as well as
their calibrated importance. For comparison, the alignment systems are ranked based on a probabilistic
scheme, where it includes the extent to which one alignment system is preferred over another. The
proposed methodology is applied to six tracks from ontology alignment evaluation initiative (OAEI),
where the importance of performance metrics are calibrated by designing a survey and eliciting the
preferences of ontology alignment experts. Accordingly, the participating alignment systems in the
OAEI 2018 are evaluated and ranked. While the proposed methodology is applied to six OAEI tracks
to demonstrate its applicability, it can also be applied to any benchmark or application of ontology
alignment.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Ontology alignment is the process of finding similar entities
in two different ontologies stating similar pieces of information
in distinct ways. Since ontology alignment has extensive ap-
plications and can address many real-world problems, there is
numerous research on this problem in the literature as well as
a significant number of alignment systems. Ontology alignment
evaluation initiative (OAEI) has been taken place for more than a
decade whose objectives are to monitor the advancement of this
field and compare systematically various alignment systems on
several standard benchmarks with known reference alignment.
Despite the tremendous progress for developing alignment sys-
tems for different challenges such as complex and large-scale
ontologies [1,2], little efforts have been taken for developing a
reliable means for evaluation and comparison of the systems [3].

∗ Corresponding author at: The Jheronimus Academy of Data Science,
’s-Hertogenbosch, The Netherlands.
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There are different problems which have been solved by using
ontology alignment. In semantic web service discovery, ontology
alignment is used to help better discovery of services, or respond
to a request by a composition of services [4,5]. In agent-based
modeling, the communication between agents with different syn-
taxes is possible by using ontology alignment [6]. Or, ontology
alignment is used to enable interoperability in logistics by align-
ing different logistics standards and transforming the associated
instances [7]. Other applications of ontology alignment include,
but not limited to, ontology integration [8,9], linked data [10], and
peer-to-peer information sharing [11].

The existence of tools for evaluation and comparison is of
the essence for several reasons. First, the evaluation of ontol-
ogy alignment systems helps system designers to estimate the
strengths and weaknesses of their systems that can be further
used to enhance them. In addition, it guides the developers to
select a proper alignment system for their matching tasks. It is
particularly essential because there are numerous ontology align-
ment systems in the literature. Moreover, it is the primary aim
of the OAEI to evaluate and compare the participating alignment
systems on various matching tasks.

https://doi.org/10.1016/j.websem.2020.100592
1570-8268/© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Multi-criteria decision-making (MCDM) is a sub-discipline of
Operation Research that concerns with decision-making with re-
spect to multiple conflicting criteria. A typical MCDM problem
includes a set of alternatives and a set of criteria, and the aim is
to rank, sort, or select the best alternative(s). This paper models
the evaluation and comparison of ontology alignment systems
as an MCDM problem, where the performance metrics and on-
tology alignment systems served as criteria and alternatives, re-
spectively. Then, MCDM techniques can be used to evaluate the
performance metrics as well as evaluating and comparing the
alignment systems.

1.1. Related work

The typical way of ontology alignment evaluation is to use
several performance metrics. Two widely-used performance met-
rics for ontology alignment are precision and recall. Given an
alignment A and a reference A∗, precision is the ratio of true
positives to the total correspondences in an alignment generated
by a system and can be written as:

Pr(A, A∗) =
|A ∩ A∗

|

|A|
, (1)

where Pr is precision and |.| is the cardinality operator. Recall is
another popular metric that is computed as the ratio of the true
positives to the total number of correspondences in the reference.
Thus, it can be calculated as:

Re(A, A∗) =
|A ∩ A∗

|

|A∗|
, (2)

where Re is recall.
While precision and recall are arguably the most popular

performance metrics in ontology alignment, they have several
generalizations that address some of their shortcomings. One
extension is confidence-based precision and recall that take into
account the confidences of each identified correspondence by a
system. The underlying idea is that if a system identifies an incor-
rect (correct) correspondence with a low confidence, it should be
penalized (rewarded) by the confidence of the related correspon-
dence. Accordingly, the weighted precision PrW of an alignment
A is defined as:

PrW (A, R) =

∑
c∈A 1 − |ηA(c) − ηR(c)|

|A|
, (3)

and weighted recall is given by

ReW (A, R) =

∑
c∈A 1 − |ηA(c) − ηR(c)|

|R|
, (4)

where ηA(c) and ηR(c) give the confidences of correspondence c
in alignment A and reference R, respectively.

Semantic precision and recall are another extensions of preci-
sion and recall that consider the proximity of an alignment to the
reference, instead of the strict size of their overlaps. The problem
of precision and recall is that the unidentified correspondences
are not considered, making them not differentiate between an
alignment that is close to the reference and the one remote
from it. Semantic precision and recall regard the proximity of the
alignment with the reference, which is particularly a more proper
indicator for the required efforts from a user to scrutinize the
alignment. Given a proximity function ω, semantic precision and
recall are defined as follows:

Prω(A, R) =
ω(A, R)

|A|
, Reω(A, R) =

ω(A, R)
|R|

, (5)

where ω is a proximity function that must satisfy positiveness,
maximality, and boundedness [12]. In some cases where the

reference alignment is not available, mainly due to the sizes
of the input ontologies, sample-based precision and recall are
introduced as well [13].

While precision and recall (and their extensions) are both
essential in many applications [14] as well as all OAEI tracks
based on the literature, F-measure is another popular metric and
is computed as the harmonic mean of precision and recall:

F (A, R) =
2Pr(A, R)Re(A, R)
Pr(A, R) + Re(A, R)

. (6)

F-measure for other extensions of precision and recall is also
computed accordingly.

Aside from these popular performance metrics, experts iden-
tified two important principles for a given alignment. The first
is conservativity [15,16], which states that the alignment being
identified by a system must not impose any new semantic re-
lationship between the concepts of each of ontologies involved.
The second is consistency, which states that the discovered corre-
spondences should not lead to unsatisfiable classes in the merged
ontology [16]. Furthermore, Recall+ shows the portion of corre-
spondences that a system cannot readily detect, and its higher
values indicate that the associated system is able to identify the
non-trivial correspondences. In addition, the execution time is
another critical performance metric that must also be included.

Each of the performance metrics introduced above is im-
portant in some application domains and unessential in some
others. Euzenat and Shvaiko [14] studied the importance of four
performance metrics, i.e., precision, recall, speed, and an automa-
tion measure (i.e., a measure to show if the alignment system
is automatic), for different applications of ontology alignment
such as ontology evolution, Web service composition, and data
integration. The importance of each performance metric in each
domain is measured by three levels: low, medium, and high. Based
on these levels, a weight is elicited by assigning a value to each
level (i.e., low=1, medium=3, high=5) and then normalizing the
values for each task. Then, the performance of an alignment A
with respect to several performance metrics Mi, i ∈ I is defined
as the weighted harmonic mean of all the performance scores,
e.g.,

Agg(A, R) =

∑
wi∑ wi

Mi(A,R)
, (7)

where Agg is the aggregated performance metric, and wi is the
normalized value of Mi. Notice that F-measure is not considered
here, since Eq. (7) contains F-measure that is the combination of
precision and recall. In other words, F-measure is the weighted
harmonic mean of precision and recall, where the weights of
precision and recall are set to 0.5. This is due to the fact that there
is no available information to favor precision over recall, or vice
versa, so they are assumed equally important. In Eq. (7), on the
other hand, the weights are computed, not only for precision and
recall, but for other performance metrics based on the expert’s
preferences, therefore, F-measure is not correctly considered.

For comparing ontology alignment systems, the dominant
strategy is to first select a performance metric and then com-
pare the systems based on the averages or micro-averages of
the same metrics over multiple benchmarks. Since averaging is
not statistically safe and appropriate, several statistical methods
have been recently put forward for evaluation and comparison
of alignment systems [17–19]. In particular, the Bayesian model
in [19] estimates the performance of an alignment system by a
distribution instead of a ratio. For instance, the model outputs a
precision distribution rather than a precision score. Such distri-
butions provide more information about the overall performance
of alignment systems that can be further used for comparison.
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As a result, the Bayesian model is able to calculate the ex-
tent to which one alignment system is superior to one another
based on the computed distributions. Although the statistical
methods are a reliable means for evaluation and comparison,
especially as opposed to averaging, they can only encompass one
performance metric for comparison and evaluation. However, a
more thorough evaluation or comparison should include multiple
performance metrics, each represents an aspect of the alignment
system accomplishment.

One way to taking two performance metrics into account is to
use different curves such as precision–recall and receiver oper-
ating characteristic (ROC) [14]. These models, though efficient in
several situations, have several pitfalls. First and foremost, they
can only take two performance metrics into account. In addition,
while they present a broad picture of the performance of systems,
they cannot systematically compare or rank ontology alignment
systems.

1.2. Contribution

All the performance metrics introduced so far are essential
in ontology alignment, each of which has different importance
in different ontology alignment applications/tasks. For instance,
the execution time is much more important for the on-the-fly
matching, while recall is much more preferred over recall for the
semi-automatic matching, since removing false mappings is much
simpler than detecting the missed ones. In this paper, we put
forward the use of MCDM methods for evaluating and comparing
alignment systems. To this end, we model the evaluation and
comparison of alignment systems as an MCDM problem, where
different performance metrics are served as criteria, different
systems are considered to be the alternatives, and the decision-
makers (DMs) are the ontology alignment experts (or users).
Based on this formulation, we propose a methodology for eval-
uating and comparing different alignment systems with respect
to multiple performance metrics. The methodology presented in
this article can consider the importance of a performance metric
for a particular ontology matching application/task, according to
which it amalgamates multiple performance metrics.

In particular, we take six OAEI tracks as the case study, for
each of which proper performance metrics are identified by in-
specting the literature of the OAEI and asking the experts in
the domain. Then, the preferences of domain experts over the
identified performance metrics are elicited by designing a survey
based on the Bayesian best–worst method (BWM) [20], which
is a pairwise comparison-based MCDM method for aggregating
the preferences of a group of experts or DMs. Accordingly, the
importance of different performance metrics for six OAEI tracks is
calibrated based on experts’ preferences, as well as the extent to
which one performance metric is more important than another.

Another contribution is the evaluation and comparison of
alignment systems for each OAEI track based on multiple per-
formance metrics and their identified importance. For evaluation,
expert-based collective performance (ECP) is proposed that is the
weighted mean of all scores, where weights are calculated based
on experts’ preferences. The ECP is used to compare two different
alignment systems and rank them accordingly. Since Bayesian
BWM is a stochastic model, ranking of alignment systems are also
probabilistic, which means that we can find the extent to which
one alignment system is superior to one another with respect
to multiple performance metrics and experts’ preferences. We
visualize the comparison of performance metrics and alignment
systems using a weighted directed graph.

In summary, the contributions of this article can be itemized
as follows:

• A methodology for evaluation and ranking of ontology align-
ment systems is presented based on multiple performance
metrics and experts’ preferences.

• For evaluation of alternatives, we introduce ECP which takes
into account multiple performance metrics and their impor-
tance.

• A probabilistic ranking of alignment systems is presented.
• As a case study, six OAEI tracks are used, for each of which

the importance of different performance metrics is cali-
brated based on the preferences of multiple ontology align-
ment experts.

Some of the ontology alignment tasks are general and can
be representative of some ontology alignment applications. We
ask the ontology alignment experts to express their preferences
over different performance metrics to calibrate the importance
of metrics in general. However, the importance of metrics can
be different in view of some specific applications. In that regard,
the proposed methodology can be used, but it is required to
elicit the preferences of experts again and the evaluation and
comparison need to be made according to the new preferences.
In addition, the proposed methodology can be used for any other
ontology alignment task or application, where the goal is to
evaluate, compare, and rank alignment systems with respect to
multiple performance metrics as well as the preferences of single
or multiple experts or users. Further, note that ECP is identical
to any other composite score, such as F-measure, which are very
common in situations where a set of systems are characterized
by a set of performance metrics. Although the individual scores
per performance metric could be insightful, a composite score
could be useful to provide a holistic evaluation of a system and
can be used to compare and rank the alignment with respect to
multiple metrics and experts’ or users’ preferences. This would al-
low, among others, application developers to select an alignment
system based on the need of the application they develop. The
implementation of the proposed method in this article as well
as the preferences of the ontology matching experts on six OAEI
tracks are publicly.1

1.3. Organization

Section 2 contains the methodology used for this article, in-
cluding the selection of performance scores for different OAEI
track, Bayesian BWM for eliciting the preferences of ontology
alignment experts, and the definition of ECP as well as an out-
ranking method for evaluating and comparing alignment systems.
We apply the overall methodology to the outcome of the systems
participated at the OAEI 2018, and the results are presented in
Section 3. The discussion and important lessons learned from us-
ing MCDM method for evaluation and comparison are presented
in Section 4, and the paper is concluded in Section 5.

2. Ontology alignment evaluation and comparison based on
MCDM

In this section, we discuss the steps required to use the MCDM
methods for evaluating and comparing ontology alignment sys-
tems that are displayed in Fig. 1. In the following, the steps in
the figure are explained in more details.

1 https://github.com/Majeed7/OM_MCDM.

https://github.com/Majeed7/OM_MCDM
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Fig. 1. The workflow of applying MCDM methods for comparing ontology alignment systems. The outputs of the methodology are twofold; (1) The importance of
different performance metrics for a task/application are calibrated based on the experts’ preferences, as well as the extent to which one performance metric is more
important than one another in the given task/application; (2) The alignment systems are ranked based on experts’ preferences and multiple performance metrics.

Table 1
The selected performance measures of five tracks of the OAEI.
OAEI track Performance measures/indicators

Anatomy Time, precision, recall, recall+, consistency
Conference Precision, recall, conservativity, consistency
Multifarm Time, precision, recall
LargeBioMed Time, precision, recall
Disease and Phenotype Time, precision, recall
SPIMBENCH Time, precision, recall

Step 1: Selecting performance metrics

The first step is to specify the performance metrics for each
OAEI track. To that end, we inspected the ontology alignment
literature and OAEI website to accumulate the appropriate per-
formance metrics for each track. Accordingly, we created a list
of metrics for each track, and then ask the ontology alignment
experts, who were mainly the OAEI organizers, for their suit-
ability. After the solicitation, the list of performance metrics got
completed, which is tabulated in Table 1 for six OAEI tracks.

Step 2: Creating and sending out a survey

After the determination of performance metrics, we need to
elicit the preferences of different experts in the domain in order
to specify the importance of these metrics with respect to each
other. In this regard, a survey was designed in Microsoft Excel
based on the best–worst method (BWM) [20] so that experts can
specify their preferences for different OAEI tracks. The devised
survey contained instruction and an example describing the way
the experts can correctly evaluate different performance metrics.
Experts were asked to fill out only the survey of the tracks with
which they are familiar. Overall, 13 experts participated in this
study, each of whom expressed their preferences over at least one
of the six tracks.

Step 3: Computing the priorities of all experts

Since the survey was created based on the BWM, we use it to
calibrate the priorities of different performance metrics for each
expert as well as the aggregated priorities. In this regard, we
use the Bayesian BWM [20], which is able to take into account
the preferences of multiple experts (or DMs) and provide a final
aggregated priorities reflecting the group opinions. The priori-
ties for each expert is a Dirichlet distribution computed by the
Bayesian BWM. In addition, we can calibrate the extent to which
a group of experts prefers one performance metric to one another.
As a result, the first outcome of this study is the importance
or priorities of different performance metrics for six OAEI tracks
based on experts’ preferences.

Assume that K experts evaluate n performance metrics C =

{c1, . . . , cn} for an OAEI track. In order to apply the Bayesian
BWM, the following steps must be taken for each OAEI track:

Step 1: Expert k first selects the best (ckB) and the worst (ckW )
performance metrics from C .

In this step, each expert needs to select only the best
and the worst performance metrics from the ones that
previously identified for the corresponding track. The ex-
pert does not make any pairwise comparison between
performance metrics at this stage. In addition, the best
performance metric is the most important, while the worst
is the least important metric only for the associated track.

Step 2: Expert k makes the pairwise comparison between the
best (ckB) and the other performance metrics.

In this step, each expert expresses his/her preferences of
the best performance metric to the other metrics by a
number between one and nine, where one means equally
important and nine means extremely more important. The
pairwise comparison of expert k in this stage leads to the
‘‘Best-to-Others’’ vector Ak

B as

Ak
B =

(
akB1, a

k
B2, . . . , a

k
Bn

)
, k = 1, 2, . . . , K , (8)
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where akBj represents the preference of the best perfor-
mance metric (ckB) over metric cj ∈ C for expert k.

Step 3: Expert k makes the pairwise comparison between the
worst (ckW ) performance metrics and the other metrics
from C .

In this step, each expert needs to express his/her pref-
erences of the other performance metrics over the worst
metric by a number between one and nine. The outcome
of this step for expert k is the ‘‘Others-to-Worst’’ vector Ak

W
as

Ak
W =

(
ak1W , ak2W , . . . , aknW

)T (9)

where akjW represents the preference of metric cj ∈ C over
the worst metric for expert k (ckW ).

Step 4: Obtaining the aggregated weights w∗
= (w∗

1, w
∗

2, . . . , w
∗
n)

and the weight for each expert wk, k = 1, . . . , K based on
the following probabilistic model:

Ak
B

⏐⏐wk
∼ multinomial(1/wk), ∀k = 1, . . . , K ,

Ak
W

⏐⏐wk
∼ multinomial(wk), ∀k = 1, . . . , K ,

wk
⏐⏐w∗

∼ Dir(γ × w∗), ∀k = 1, . . . , K ,

γ ∼ gamma(0.1, 0.1),

w∗
∼ Dir(1), (10)

where multinomial is the multinomial distribution, Dir
is the Dirichlet distribution and gamma(0.1, 0.1) is the
gamma distribution with shape parameters of 0.1. Since
this model does not have a closed-form solution, Markov-
chain Monte Carlo (MCMC) [21] methods like JAGS [22]
must be used. As a result of sampling, S samples from
the posterior distribution of w∗ are then available and can
be used for studying the preferences of experts. First, the
credal ranking of performance metrics is derived based on
these samples.

Definition 2.1 (Credal Ordering [20]). For a pair of performance
metrics ci and cj, a credal ordering O is defined as

O = (ci, cj, R, d) (11)

where

– R is the relation between the performance metrics ci and cj,
i.e., <, >, or =;

– d ∈ [0, 1] is the confidences of the relation.

Definition 2.2 (Credal Ranking [20]). For a set of performance
metrics C = (c1, c2, . . . , cn), the credal ranking is a set of credal
orderings which includes all pairs (ci, cj), for all ci, cj ∈ C .

Credal ranking provides the extent to which one performance
metric is more important than one another, which are obtained
after computing w∗ for each OAEI track. The degree in credal or-
dering for each pair of performance metrics ci and cj is computed
as:

P(ci > cj) =
1
S

S∑
s=1

I(w∗s
i > w

∗s
j ). (12)

Step 4: alignment systems evaluation and comparison

After summarizing the priorities of all experts in w∗, we can
evaluate and rank the alignment systems with respect to multiple
performance metrics. For evaluation, we can aggregate different

performance metrics into one based on experts’ preferences. To
this end, expert-based collective performance (ECP) for alignment
Ai is defined as

ECP(Ai) = Ew∗

(
PT
i w∗

)
= PT

i Ew∗

(
w∗

)
(13)

where Ew∗ () is the mathematical expectation with respect to
w∗, and Pi ∈ Rn is the vector of all performance scores for
alignment system Ai. Since the expectation with respect to w∗ can
be estimated by the MCMC samples, ECP can be approximated as

ECP(Ai) = PT
i ŵ∗

=

n∑
j=1

Pijw̄∗

j , where w̄∗
=

1
S

S∑
s=1

ws∗. (14)

In fact, Eq. (14) is the weighted mean of all performance scores,
where the weights are calculated based on experts’ preferences.
Similarly, one can compute the harmonic mean, similar to Eq. (7).
Since the harmonic mean of zero with any number is zero and we
have zero scores for some performance metrics in some domains
(e.g., consistency in conference track), we use Eq. (13) for the
evaluation. As a result, the overall performance of an alignment
system with respect to multiple performance metrics can be sum-
marized into one score given the experts’ preferences. The use of
such a score is to basically compare two alignment systems based
on multiple metrics as well as users’ preferences, so that it can
be used to rank the alignment systems. Another important point
here is the type of performance metrics. Some of the metrics, like
time, are cost, a lower value of which is desired, while a higher
value for the benefit metrics, like precision and recall, is desired.
The types of criteria are also considered in computing equation
(14).

The alignment systems can also be ranked based on experts’
preferences. Since w∗ is a distribution, the ranking will be proba-
bilistic as well that shows to what degree one alignment system is
preferred over another. For two alignment systems Ai and Aj and
the aggregated priorities w∗, the probability that Ai being superior
to Aj is computed as

P(Ai > Aj) =

∫
I
(
PT
i w∗ > PT

j w∗
)
P

(
w∗

)
dw∗. (15)

Since we have S MCMC samples of w∗, then equation (15) is
estimated as

P(Ai > Aj) ≈
1
S

S∑
s=1

I
(
PT
i ws∗ > PT

j ws∗) (16)

where ws∗ is sample s of w∗. Eq. (16) needs to be computed
for each pair of systems. To distinguish the credal ranking of
alignment systems with the ranking of alignment systems, we call
the latter outranking.

3. Experiments

In this section, we evaluate and compare the alignment sys-
tems with respect to multiple performance metrics based on
experts’ preferences. The alignments produced by various sys-
tems are available on the OAEI website. For each of the tracks, we
first evaluate the performance scores by plotting a graph for their
corresponding credal ranking, and we then evaluate and compare
the alignment systems using ECP and credal outranking.
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Fig. 2. The credal ranking of performance metrics for the anatomy track.

Table 2
Evaluation of alignment systems on the OAEI anatomy track.

Time (s) Precision Recall Recall+ Consist. ECP F-measure

LogMapBio 808 0.89 0.91 0.76 1 0.85 0.90
DOME 22 1.00 0.62 0.01 0 0.52 0.76
POMAP++ 210 0.92 0.88 0.70 0 0.78 0.90
Holontology 265 0.98 0.29 0.01 0 0.40 0.45
ALIN 271 1.00 0.61 0.00 1 0.60 0.76
AML 42 0.95 0.94 0.83 1 0.98 0.94
XMap 37 0.93 0.87 0.65 1 0.90 0.90
LogMap 23 0.92 0.85 0.59 1 0.87 0.88
ALOD2Vec 75 1.00 0.65 0.09 0 0.54 0.79
FCAMapX 118 0.94 0.79 0.46 0 0.69 0.86
KEPLER 244 0.96 0.74 0.32 0 0.62 0.84
LogMapLite 18 0.96 0.73 0.29 0 0.63 0.83
SANOM 48.7 0.89 0.84 0.63 0 0.76 0.87
Lily 278 0.87 0.80 0.52 0 0.68 0.83

Weight 0.0913 0.261 0.248 0.283 0.115

3.1. Anatomy track

The anatomy track involves the alignment of the adult mouse
anatomy to a part of NCI thesaurus describing the human
anatomy. In the OAEI 2018, 14 systems participated in this track
that are compared based on the execution time, precision, recall,
consistency, and recall+. 10 out of 13 experts filled the associated
survey to this track and evaluated the corresponding performance
metrics. One expert identified precision, recall, and recall+ as the
most essential metrics by assigning one to the pairwise compar-
ison associated with these metrics, one expert selected solely
precision and another picked recall alone. Among others, five
experts identified only recall+ as the most important performance
metric and the remaining two experts opted for consistency. In
addition, five of the experts picked time as the least important,
one selected consistency and time together, two recall+, and three
experts opted for consistency as the least important performance
metrics for this track. We applied the Bayesian BWM to the
preferences of all experts to compute the aggregated priorities as
well as the credal ranking of performance metrics. We summarize
the outcome of credal ranking in a weighted, directed graph,
where nodes are the performance metrics and each edgeM v

⇒ M ′

indicates that performance metric M is more important than M ′

with confidence v. Fig. 2 shows the credal ranking of performance
metrics for the anatomy track. Based on this figure that reflects
the aggregated preferences of all 10 experts, recall+ is the most
important metric, followed by precision and recall. Consistency
and time are also the least important metrics according to the
aggregate preferences of all experts.

We also evaluate the alignment systems with respect to multi-
ple performance metrics and experts’ preferences. Table 2 shows
the performance scores of different alignment systems along with
their ECP and F-measure, as well as the mean of the weight
distribution in the last row. We particularly compare ECP and
F-measure, since the latter is typically used for comparing align-
ment systems. Based on both ECP and F-measure, AML is the
top system in this track with an ECP of 0.98 and a F-measure of
0.94. XMap is the second system based on ECP, while it shares
it with LogMapBio and POMAP++ in terms of F-measure. The
execution time of XMap is far lower than that of LogMap, and
that is basically the reason that XMap is superior to LogMapBio
in terms of ECP. In addition, recall and recall+ of XMap is sig-
nificantly better than that of POMAP++ that makes it a better
system in terms of ECP, though their F-measure is equivalent.
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Table 3
Evaluation of alignment systems participated in the 2018 OAEI conference track.

Precision Recall AvgConserViol AvgConsisViol ECP F-measure

SANOM 0.78 0.76 5.15 4.60 0.81 0.77
AML 0.83 0.70 1.86 0.00 0.92 0.76
LogMap 0.84 0.64 1.19 0.00 0.91 0.73
XMap 0.81 0.61 2.65 0.70 0.84 0.70
KEPLER 0.76 0.61 5.86 7.57 0.68 0.68
ALIN 0.88 0.54 0.10 0.00 0.90 0.67
DOME 0.88 0.54 5.05 0.48 0.80 0.67
Holontology 0.86 0.55 3.14 0.48 0.83 0.67
FCAMapX 0.71 0.61 5.90 13.00 0.59 0.66
LogMapLite 0.84 0.54 4.57 1.19 0.78 0.66
ALOD2Vec 0.85 0.54 5.90 1.29 0.76 0.66
Lily 0.59 0.63 7.00 6.20 0.62 0.61

Weight 0.35 0.35 0.13 0.17

Another crucial difference is the position of LogMap: It is the
third system in terms of ECP and fifth in terms of F-measure.
The reason for its position regarding ECP is its speed compared
to LogMapBio and its consistency compared to POMAP++. Lily
and KEPLER have also different ranks with respect to ECP and F-
measure: Lily is the eighth in terms of ECP and 10th in terms of
F-measure, while KEPLER is ranked as the 10th regarding ECP and
the eighth concerning F-measure.

In addition, we compute the credal outranking of alignment
systems and visualize the outcome in a weighted, directed graph.
Fig. 3 plots the outranking of alignment systems in the anatomy
track. In this figure, the nodes represent the alignment systems
and each edge A1

v
⇒ A2 says that system A1 is superior to A2

with the confidence v. The overall ranking of alignment systems
are similar to that of ECP, but the outranking provides the extent
to which one system is superior to one another. For instance,
KEPLER is superior to Alin with 0.80 confidence based on multiple
performance metrics.

3.2. Conference track

This track consists of matching seven ontologies from differ-
ent conferences and includes 21 matching tasks with reference
alignment. The performance metrics considered for this track
are precision, recall, consistency, and conservativity. 11 experts
filled the survey of this track, five of whom selected precision
as well as recall as the most important performance metrics.
In addition, two other experts picked only recall as the most
important performance metric, two experts precision, and three
experts consistency. Furthermore, one expert picked consistency
as well as conservativity as the least important metrics, two opted
for consistency alone, and the remaining eight experts selected
conservativity as the least important performance metric. Fig. 4
displays the credal ranking of performance metrics for this track.
According to this figure, precision and recall are the most impor-
tant performance metrics that are significantly more important
than consistency and conservativity.

Table 3 tabulates the result of the analysis on 12 systems par-
ticipated in this track at the OAEI 2018 along with their ECP and
F-measure, as well as the mean of the weight distribution at the
last row. Regarding F-measure, SANOM is the top system, while
it is ranked as the sixth system based on ECP. This is basically
due to the conservativity and consistency violation of SANOM,
while the systems with better ranks in terms of ECP, e.g., AML,
LogMap, and ALIN, have lower violations. Another significant
difference is the rank of ALIN that is the third in terms of ECP
and sixth (jointly with DOME and Holontology) regarding recall.
In addition, KEPLER, that is the fifth system regarding F-measure,
becomes the tenth with respect to ECP, since its conservativity
and consistency violation is significantly high. In addition to ECP,
Fig. 5 plots the outranking of alignment systems participated in
the OAEI 2018 conference track, that provides to what degree an
alignment system is superior to another.

Table 4
Evaluation of the alignment systems on the OAEI Multifarm track.

Time Precision Recall ECP F-measure

AML 26 0.72 0.35 1.00 0.47
KEPLER 900 0.4 0.21 0.50 0.28
LogMap 39 0.72 0.25 0.87 0.37
XMap 22 0.02 0.07 0.23 0.03

0.138 0.426 0.436

Table 5
Ranking of systems participated in the 2018 OAEI disease and phenotype track.
The task involves the alignment of HP and MP.

Time Precision Recall ECP F-measure

LogMap 31 0.875 0.835 0.94 0.85
LogMapBio 821 0.862 0.841 0.92 0.85
AML 70 0.889 0.801 0.93 0.84
LogMapLite 7 0.993 0.609 0.87 0.75
POMAP++ 1668 0.855 0.575 0.75 0.69
Lily 4749 0.682 0.647 0.64 0.66
XMap 20 0.994 0.314 0.71 0.48
DOME 46 0.997 0.308 0.71 0.47

Weight 0.12 0.42 0.46

3.3. Multifarm track

This track involves the alignment of ontologies in different lan-
guages. The ontologies of this track are the ones in the conference
track that are translated into eight different languages. For this
track, execution time, precision, as well as recall are considered
for evaluation and comparison. Out of 13 experts, 10 filled the
survey regarding the performance metrics of this track, five of
whom selected both precision and recall as the most important
performance score for this track. Three experts opted for only
metric and the remaining two selected precision alone as the
most important metrics. On the other hand, all experts identified
the execution time as the least important metric for this track.
Fig. 6 plots the credal ranking of performance metrics of the
Multifarm track. According to this figure, recall is slightly more
important than precision based on all experts’ preferences, and
they are both significantly more important than time.

Table 4 tabulates the results of alignment systems participated
in the OAEI 2018 Multifarm track, along with their precision, re-
call, and the average weight distribution of performance metrics
at the last row. According to this table, AML is the best system,
followed by LogMap, KEPLER, and XMap in terms of both ECP
and F-measure. In addition, Fig. 7 plots the credal outranking of
alignment systems participated in the Multifarm track.
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Fig. 3. The outranking of alignment systems in the OAEI 2018 anatomy track.

Fig. 4. The credal ranking of performance metrics for the conference track.

Disease and phenotype track

The OAEI disease and phenotype track comprises matching
different disease and phenotype ontologies. The OAEI 2018 con-
sisted of two tasks: The first one was to align the human phe-
notype (HP) ontology to the mammalian phenotype (MP), the
second to align the human disease ontology (DOID) and the
orphanet and rare diseases ontology (ORDO). The performance
metrics used for this track are execution time, precision, and
recall. Nine experts participated in evaluating the metrics for
this track, six of whom selected precision as well as recall, and

the remaining three experts identified recall alone as the most
important performance metrics. In addition, all experts identified
the execution time as the least important metric for this track.
Fig. 8 plots the credal ranking of performance metrics for the
disease and phenotype track. According to this figure, recall is
more important than precision, and both are significantly more
important than time based on experts’ preferences.

In the interest of avoiding duplication, we only consider the
alignment of HP to MP, in which eight systems participated in
the OAEI 2018. Table 5 illustrates the results of the systems
participated in the OAEI 2018 disease and phenotype track for
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Fig. 5. The outranking of alignment systems in the OAEI 2018 conference track.

Fig. 6. The credal ranking of performance metrics for the OAEI Multifarm track.

mapping HP and MP ontologies as well as their associated ECP
and F-measure. According to this table, LogMap is the best system
in terms of ECP and is best jointly with LogMapBio in terms of
F-measure. AML is the second-best system in terms of ECP, but
it is the third regarding F-measure. Similarly, LogMapBio is the
first system concerning F-measure, but it becomes the third with
respect to ECP. That main reason for the change of positions is
that AML is significantly faster than LogMapBio that compensates
the better recall of LogMapBio. Another significant difference is
the rank of Lily that is the eighth system in terms of ECP due to
its execution time, but the sixth regarding F-measure. Fig. 9 plots

the outranking of alignment systems on mapping HP to MP in the
OAEI disease and phenotype track.

3.4. Large biomedical track

The track involves finding alignments between the Founda-
tional Model of Anatomy (FMA), SNOMED CT, and the National
Cancer Institute Thesaurus (NCI) ontologies. The ontologies are
large and include tens of thousands of classes. The performance
metrics considered in this track are the execution time, preci-
sion, recall, and consistency. Out of 13 experts, 10 have filled
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Fig. 7. The credal outranking of alignment systems for the OAEI Multifarm track.

Fig. 8. The credal ranking of performance metrics for the disease and phenotype track.

Table 6
Evaluation of the alignment systems taking part in the large biomedical track
for mapping FMA to NCI.

Time (s) Precision Recall Consistency ECP F-measure

AML 55 0.838 0.872 0.007 0.85 0.85
LogMap 51 0.856 0.808 0.006 0.83 0.83
LogMapBio 1072 0.83 0.831 0.006 0.70 0.83
XMap 65 0.878 0.742 0.006 0.81 0.80
FCAMapX 881 0.665 0.841 58.1 0.78 0.74
LogMapLite 6 0.676 0.819 18 0.81 0.74
DOME 12 0.803 0.668 2.5 0.76 0.73

Weights 0.140 0.356 0.378 0.125

the survey of this track. Four experts identified precision and
recall together as the best by assigning one to the associated
pairwise comparison, two experts solely precision, two merely

recall, and two consistency alone. In addition, seven of the experts
picked consistency as the least important performance metric and
the remaining three opted for time. Fig. 10 displays the credal
ranking of four performance scores of this track. According to
this figure, recall is the most important performance metric for
this track, followed by precision. Both precision and recall are
also significantly more important than time, that itself is more
important than consistency.

Table 6 shows the results of the alignment systems on map-
ping FMA to NCI, as well as their ECP, F-measure, and the mean
of the weight distribution at the last row. According to this table,
AML is the best system in terms of both F-measure and ECP.
In addition, while LogMap and LogMapBio have the same F-
measure, the former has better ECP due to its lower execution
time and the latter is ranked as seventh opposed to its second
rank regarding F-measure. Another significant difference is the
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Fig. 9. The credal outranking of systems participated in the OAEI 2018 disease and phenotype track. The tasks involves matching HP to MP.

Fig. 10. The credal ranking of performance metrics for the OAEI large biomedical track.

rank of LogMapLite that is the fifth regarding F-measure, but the
third with respect to ECP. DOME, which is the last system with
regard to F-measure, outperforms LogMapBio due to solely having
a better execution time. Fig. 11 plots the outranking of alignment
systems for mapping FMA to NCI ontologies.

SPIMBENCH track

The SPIMBENCH track is another matching task which is
deemed to determine when two OWL instances describe the same
Creative Work. There are two datasets, called Sandbox and Main-
box, each of which has a Tbox as the source ontology and Abox

Table 7
Results of alignment systems participated in the 2018 OAEI SPEMBENCH track.
The task is Sandbox.

Time Precision Recall ECP F-measure

AML 6220 0.83 0.90 0.79 0.86
Lily 1960 0.85 1.00 0.92 0.92
LogMap 5887 0.94 0.76 0.78 0.84

Weight 0.12 0.42 0.46

as the target. Tbox contains the ontology and instances, and it is
required to be aligned to Abox which contains instances only. The
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Fig. 11. The credal outranking of alignment systems for aligning FMA and NCI in the large biomedical track.

Fig. 12. The credal ranking of performance metrics for the SPIMBENCH track.

Table 8
Results of alignment participated in the 2018 OAEI SPEMBENCH track. The task
is Mainbox.

Time Precision Recall ECP F-measure

AML 37190 0.84 0.88 0.80 0.86
Lily 3103 0.85 1.00 0.97 0.92
LogMap 23494 0.89 0.71 0.79 0.79

Weight 0.12 0.42 0.46

difference between Sandbox and Mainbox is that the reference
of the former is available to the participant, while the latter is
a blind matching task so that participants do not know the real

alignment beforehand. The performance metrics for this track are
precision, recall, and execution time. Six experts filled the survey
of this track, four of whom selected both precision and recall as
the most important performance metrics, while the remaining
two picked only recall. In addition, all experts unanimously opted
for execution time as the least important metric for this track.
Fig. 12 plots the credal ranking of performance metrics for the
SPIMBENCH track. According to this figure, recall is the most
important metric, followed by precision and time.

There are only three systems that participated in this track at
the OAEI 2018. Tables 7 and 8 tabulates the results of the systems
for the Sandbox and Mainbox tasks, respectively, as well as their
ECP and F-measure. In addition, Figs. 13(a) and 13(b) plots the
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Fig. 13. The credal outranking of alignment systems participated in the OAEI 2018. There are two tasks in this track: (a) Sandbox; (b) Mainbox.

credal outranking of alignment systems participated at the OAEI
2018 for Sandbox and Mainbox, respectively. In both tasks, the
ranking in order of F-measure is in line with that of ECP: Lily is
the best system that is significantly superior to AML and LogMap,
followed by AML and LogMap.

4. Discussion

The experiments on six OAEI tracks show that, as expected,
precision and recall are the most important performance metrics
in almost all tracks, except for anatomy where recall+ is identified
as the most important metric based on experts’ preferences.
While such results seem trivial, the advantage of using MCDM is
that it can also compute the extent to which one metric is more
important than another, allowing us to aggregate the metrics
accordingly. Only knowing that precision and recall are more
important than the other metrics would not help aggregate the
metrics together.

Another essential point about precision and recall is that,
while these two metrics are typically the most important ones
with identical weights, the importance of these two metrics
varies for almost all the OAEI tracks, e.g., anatomy, multifarm,
disease and phenotype, large biomedical, and SPIMBENCH. On the
other hand, F-measure is a weighted harmonic mean of precision
and recall, where the weights of precision and recall are set to 0.5.
What can be done instead is to use the weights of precision and
recall computed based on experts’ preferences and calculate F-
measure accordingly. Such an F-measure is more informative and
can be adapted based on the needs of different ontology matching
application and tasks.

It is important to note that, while the results obtained by the
proposed ECP metric could be compared with those of F-measure,
applying statistical methods to verify the difference between the
rankings of ECP and F-measure do not corroborate the suitability
of the proposed method nor its improperness, and the OAEI tracks
are just to show the applicability of the proposed method.

The proposed MCDM-based approach has been used to evalu-
ate and compare ontology alignment systems based on multiple
performance metrics, where the importance of each performance
metric is identified by using an MCDM method, i.e, Bayesian
best–worst method. Similarly, application developers as well as
other users can also use the proposed methodology to select the
most appropriate ontology alignment system for their task. In
this regard, instead of using experts’ preferences, they should first
identify the appropriate performance metrics for the task at hand,
and then express their preferences over the selected performance
metrics using Bayesian BWM. Then, Steps 3 and 4 of the proposed
methodology shown in Fig. 1 are taken to evaluate, compare, and
rank the alignment systems, or select the best alignment system
for their task.

5. Conclusion

This paper modeled the evaluation and comparison of align-
ment systems with respect to multiple performance metrics as a
multi-criteria decision-making (MCDM) problem, where perfor-
mance metrics and alignment systems served as the criteria and
alternatives, respectively. We elicited the preferences of ontology
alignment experts on the performance metrics for different OAEI
tracks to calibrate the importance of each metric as well as the
extent to which one metric is preferred over another. Based on
this calibration, we introduced the expert-based collective per-
formance (ECP) metric that includes multiple performance scores
for evaluation and comparison of alignment systems. We showed
that the rankings of alignment systems in order of ECP is differ-
ent from those of F-measure, which only includes precision and
recall. In addition, the credal outranking of alignment systems
obtained and visualized by a weighted, directed graph. While
we focused the experiments on the OAEI tracks to demonstrate
the applicability of the MCDM-based comparison and evaluation,
the proposed methodology can be used to evaluate and compare
ontology alignment systems for any tasks or application based on
multiple performance metrics.

A possible way for future research is to use statistical meth-
ods such as Bayesian models proposed in [19] that provides
more information about the performance of alignment systems.
There are few studies in MCDM that can handle distributional
inputs. As a result, a new method should be especially-tailored
for alignment comparison for distributional inputs. In addition,
in some cases, experts have different importance that can change
their influence on the final aggregated weights of criteria. This is
another area that can be studied in future research. An evaluation
and comparison based on Bayesian statistics and MCDM are more
comprehensive and reliable that can shed lights on the alignment
systems performance to further advance them. Further, the same
methodology can be applied to different ontology alignment ap-
plications by devising a survey based on the performance metrics
being important to different applications, according to which the
alignment systems can be compared and ranked.
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