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SUMMARY

Improving the efficiency in deploying deep neural networks (DNNs) and processing com-
plex high-dimensional data has drawn increasing attention in recent years. Yet, the de-
ployment of large DNN models is challenged by the high computational complexity and
energy consumption, making it difficult to run on resource-constrained devices such
as mobile phones. Moreover, the exploding amount of high-dimensional data requires
large storage and transmission capacities which is infeasible to be processed on mobile
devices.

To alleviate these limitations, this dissertation focuses on binarization techniques,
including model binarization and data binarization, to improve the efficiency in terms
of storage, computation and energy.

In model binarization, we binarize both the weight and activation of DNN models
which can reach up to 32× memory saving and a speed up of 58×. We also develop prun-
ing algorithms to further compress the binarized network while maintaining accuracy.
To efficiently train the binarized networks, we discover new optimization methods that
has less hyper-parameters and can improve the accuracy.

In data binarization, we propose deep hashing algorithms that learn smaller binary
data representation. Deep hashing methods have become an effective technique for
fast and efficient similarity search and retrieval of high-dimensional data items in large
databases.
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SAMENVATTING

Het verbeteren van de efficiëntie bij het implementeren van diepe neurale netwerken
(DNNs) en het verwerken van complexe, hoog-dimensionale data heeft de laatste ja-
ren steeds meer aandacht gekregen. Enerzijds wordt de implementatie van grote DNN
modellen belemmerd door de hoge rekencomplexiteit en energieverbruik, waardoor het
moeilijk is om ze uit te voeren op apparaten met beperkte middelen zoals mobiele tele-
foons. Anderzijds vereist de groeiende hoeveelheid hoog-dimensionale data grote opslag-
en transmissiecapaciteiten, wat onuitvoerbaar is om te verwerken op mobiele appara-
ten.

Om de beperkingen te verlichten, richt het proefschrift zich op binarisatietechnie-
ken, waaronder modelbinarisatie en databinarisatie, om de efficiëntie te verbeteren op
het gebied van opslag, berekening en energie.

Bij modelbinarisatie binariseren we zowel het gewicht als de activatie van DNN mo-
dellen, wat kan leiden tot een geheugenbesparing tot wel 32× en een versnelling van de
inferentie tot wel 58×. We passen ook het pruning-algoritme toe om het binariseerde
netwerk verder te comprimeren, terwijl we toch de nauwkeurigheid behouden. Om de
binariseerde netwerken efficiënt te trainen, hebben we nieuwe optimalisatiemethoden
ontdekt die minder hyperparameters hebben en de nauwkeurigheid kunnen verbeteren.

Bij gegevensbinarisatie stellen we diepe hash-algoritmen voor om een kleinere bi-
naire gegevensrepresentatie te leren. Diepe hash-methoden zijn een effectieve techniek
geworden voor snelle en efficiënte gelijkeniszoekopdrachten en opvraging van hoog-
dimensionale gegevenselementen in grote databases.

De voorgestelde begeleide hash-methode in hoofdstuk 2 behaalt een betere nauw-
keurigheid in vergelijking met de onbegeleide hash-methode zoals in hoofdstuk 3, maar
met als nadeel dat er dure geannoteerde labelbegeleiding door mensen nodig is.
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1
INTRODUCTION

Nearly everyone now has a personal smartphone. This smartphone has a high-quality
video camera, which, together with the popularity of current social media gives rise
to huge quantities of high-dimensional digital data like video, images, and audio. An-
alyzing such large quantities of on-device media manually is difficult, and automatic
tools are essential. To automatically process complex high-dimensional data, deep neu-
ral networks (DNNs) have received increasing attention in recent years because DNNs
do exceptionally well in automatically extracting information from such unstructured
data types. The rapid developments of DNNs have brought significant improvements in
many applications including computer vision [1], machine translation [2], natural lan-
guage processing [3] and generative models [4]. For instance, the top-1 classification
accuracy on ImageNet has increased from 63.3% in 2012 by AlexNet [5] to 90.45% in 2022
by a current scaled vision transformer [6]. The successful development of DNNs allow to
learn complex patterns and relationships from large-scaled datasets, fueling the deploy-
ment of more powerful AI applications which, ideally, can be applied on the phone of a
user.

The automatic analysis capacity of DNNs, however, comes at the cost of huge amounts
of computational power and built-in storage memory. For example the ResNet-152 [7]
network contains about 60 million 32-bit floating-point parameters. The entire net-
work needs to occupy more than 230 megabytes (MB) of storage space and use 11.3 bil-
lion floating point operations (FLOPs) to process a single 224x224 image. Running this
ResNet-152 in recent smart-phone with 4K video recording at 30 frames/sec requires the
device hardware to deliver 11.3 GFLOPs × 30 frames/sec × 3840 × 2160 /(224 x 224) = 56
TeraFLOPs/sec computational throughput. Yet, recent powerful mobile phone proces-
sors can achieve 2 TeraFLOPs/sec at peak. As this example illustrates, the computational
demands make it difficult to deploy DNNs on devices with limited computational re-
sources like a mobile phone.

Another key challenge related to large amounts of digital data is the transmission and
storage consumption. For example, storing 1 hour YUV422 format video on a current
Apple iPhone 14 Pro Max with 4K video recording at 30 frames/sec, requires 1,668 GB
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storage space. Yet, mobile devices such as smartphone have limited memory space. In
addition, transmitting live video with YUV422 format from your Apple iPhone 14 Pro Max
to other smartphones needs about 3.98 Gbps data rate for communication which is well
beyond current 4G technology’s peak data rate of up to around 0.1 Gbps.

Automatically analyzing large digital media on mobile devices with deep neural net-
works need efficient computations and also efficient storage.

1.1. MOTIVATION

The purpose of this thesis is to improve the efficiency of DNNs models and compress
large-scale data sets to smaller, more manageable sizes. The following gives the motiva-
tions for these aspects.
DNN Model Compression. A smaller model means less required memory budget in de-
ploying a DNN model. For example, mobile phone App services often prohibit users
from downloading a mobile applications above 100 MB until the users connect to Wi-Fi
while an original ResNet-152 model based mobile application is at least 230 MB. Typi-
cally the size of models deployed on current smartphones needs to be less than 5 MB.
Another example is to deploy DNNs model on microcontrollers, the model size typically
needs to be constrained to less than 250 KB. Thus, putting a large DNN model in the
microcontrollers, which have extremely limited on-chip memory and flash storage, is
infeasible.

Additionally, a smaller model helps improve inference speed. Many real world ap-
plications require low-latency and real-time inference. In this thesis, the compressed
binary network models enable more efficient (bit-count) operations to speed up infer-
ence, showing great benefits on computationally limited platform.

Because inference speed is reduced, a smaller model also reduces the energy con-
sumption to extend battery life. The energy consumption is mostly dominated by the
memory access, where [8] shows that the energy consumed by both the on-chip and
off-chip memory access contributes to 96% of the total energy consumption. The most
expensive operation is the off-chip DRAM accesses which requires orders-of-magnitude
higher energy and latency. Thus, reducing off-chip DRAM accesses can significantly im-
prove the energy efficiency. This thesis compresses the large DNN models to fit in the
on-chip SRAM memory to reduce energy cost.
Data Compression. First, a smaller data file is easy to access and store. For exam-
ple, recently millions of high-dimensional images or videos generated from high resolu-
tion mobile phone cameras are uploaded to the Internet every day, which require huge
amount of storage space. Compressing large data file to a smaller data file can reduce
the storage consumption.

Second, a smaller data file takes less time to transmit. A high resolution image by a
recent smart-phone with its main camera at 48 Megapixel (MP) needs about 1.17 Gbps
data rate. Such a single high resolution image data will take long time to transmit, e.g.,
upload or download, with a limited data transfer rate.

Third, a smaller representation of the data helps improve searching speed. The up-
loaded massive high-dimensional images or videos make it quite difficult to find relevant
images according to different requests by users. Even a linear search over the database
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Figure 1.1: Thesis contributions, including model compression in Chapter 4, Chapter 5 and data compression
in Chapter 2, Chapter 3.

would cost a huge amount of time and memory. Embedding high-dimensional data to
low dimensional binary codes can benefit the low computational cost of approximate
nearest-neighbour search in the Hamming space, delivering more effective large-scale
data search.

Fourth, a smaller data file helps save the energy cost potentially. Wireless transmis-
sion of a single bit requires over 1000 times more energy than a single 32-bit computation
operation [9]. In other word, if one bit of the data is compressed by taking less than 1000
computation operations, the energy can be saved.

1.2. CONTRIBUTION AND THESIS OUTLINE

We optimize the efficiency with centering around compression techniques. This thesis
proposes the techniques for model compression and data compression, illustrated in
Fig. 1.1. This thesis has the following contributions:

• Data Compression. This thesis proposes deep hashing algorithms for data compres-
sion. Hashing represents high-dimensional data contents to low dimensional binary
codes, achieving effective improvement of speed and storage. In this thesis, Chapter 2
and Chapter 3 are on deep hasing, as visualized in Fig. 1.2.

• Model Compression. The thesis proposes the DNN model compression techniques
that binarize both the weight and activation of DNNs as 1-bit, reaching up to 32× mem-
ory saving and 58× inference speed up. A binary network optimizer is proposed which
has less hyper-parameters and more intuitive, thus makes the optimization by humans
easier. Here, Chapter 4 and Chapter 5 are on binary convolutions, which is visualized
in Fig. 1.3.

Chapter 2 describes a deep supervised hashing method which maps high-dimensional
images onto compact binary codes with leveraging human-annotated class labels, thus
reduces storage and computational cost. We maximize the binary distances between
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Input image Hashing Network Hashing Code
Hashing Code

Similarity Matrix 

Figure 1.2: Framework of deep hashing. The hash codes are produced by a deep hashing network. We optimize
the hash code within same class to be same and be different for different class.

different classes and at the same time minimize the binary distance of images within
the same class to learn compact hash codes. We also show how to optimize this under
discrete constraints. The content of this chapter is based primarily on [10].

Chapter 3 describes a deep unsupervised hashing method that learns compact binary
codes without using any annotated label supervision. A simple parameter-free layer
is designed to maximize hash channel information capacity as measured by the en-
tropy [11]. An optimal transport cost as measured by the Wasserstein distance [12] is
minimized end-to-end to align continuous features with the optimal discrete distribu-
tion. The content of this chapter is based primarily on [13].

Chapter 4 describes the binarization technique to reduce the bit of weight and activa-
tion in DNNs to 1-bit. We propose a method to add a hard constraint to binary weight
distribution offering precise control for any desired bit ratio including equal prior ratios.
We validate the assumption that equal bit ratios are preferable and show its optimization
benefits such as search-space reduction and good minima. The content of this chapter
is based primarily on [14].

Chapter 5 presents a new understanding of optimization in the context of binary neural
network. In specific, we provide an analysis of standard magnitude based hyperparam-
eters such as weight initialization, learning rate and its decay, weight decay, and mo-
mentum. The magnitude is interpretable for real-valued weights, but loses its meaning
for binary weights. In the context of the latent-weight free interpretation, we interpret

1-1-11-1-1

-11111-1

1-11-11-1

1-11-1-11

-1-111-11

-111-11-1

1-1-1

11-1
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-111

1-11

11-1
-3

Binary input activation

a patch binary weight

-11-111-11-1-1

11-11-11-111

-1111-1-1-1-1-1
xnor

!

bit countBIT-WISE

MUL/ADD

Output activation

conv

Figure 1.3: A binary convolution involves binary input and binary weights. For typical convolution operation in
real-valued CNNs this is implemented by an expensive real value multiplication and addition (top row; center).
Yet, when both weight and activation are binary values, the convolution operation can be implemented by a
much more efficient bitwise XNOR operation and a bit-count operation (bottom row; center).
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these traditional optimizer hyperparameters based on higher-order gradient filtering by
an impulse response filters on the gradients during network optimization. This under-
standing reduces the number of hyperparameters that need to be tuned. The content of
this chapter is based primarily on [15].
Chapter 6 concludes the thesis and discusses the possible research directions in the fu-
ture work.
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2
PUSH FOR QUANTIZATION: DEEP

FISHER HASHING

Current massive datasets demand light-weight access for analysis. Discrete hashing meth-
ods are thus beneficial because they map high-dimensional data to compact binary codes
that are efficient to store and process, while preserving semantic similarity. To opti-
mize powerful deep learning methods for image hashing, gradient-based methods are
required. Binary codes, however, are discrete and thus have no continuous derivatives.
Relaxing the problem by solving it in a continuous space and then quantizing the so-
lution is not guaranteed to yield separable binary codes. The quantization needs to be
included in the optimization. In this paper we push for quantization: We optimize maxi-
mum class separability in the binary space. To do so, we introduce a margin on distances
between dissimilar image pairs as measured in the binary space. In addition to pair-wise
distances, we draw inspiration from Fisher’s Linear Discriminant Analysis (Fisher LDA)
to maximize the binary distances between classes and at the same time minimize the bi-
nary distance of images within the same class. Experimental results on CIFAR-10, NUS-
WIDE and ImageNet100 show that our approach leads to compact codes and compares
favorably to the current state of the art.

9
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2.1. INTRODUCTION

Image hashing aims to map high-dimensional images onto compact binary codes where
pair-wise distances between binary codes corresponds to semantic image distances, i.e.,
Similar binary codes should have similar class labels. Binary codes are efficient to store
and have low computational cost which is particularly relevant in today’s big data age
where huge datasets demand fast processing.

A problem in applying powerful deep learning methods for image hashing is that
deep nets are optimized using gradient descent while binary codes are discrete and thus
have no continuous derivatives and cannot be directly optimized by gradient descent.
The current solution [1–6] is to relax the discrete problem to a continuous one, and af-
ter optimization in the continuous space, quantize it to obtain discrete codes. This ap-
proach, however, disregards the importance of the quantization, which is problematic
because image class similarity in the continuous space is not necessarily preserved in
the binary space, as illustrated in Fig. 2.1. The quantization needs to be included in the
optimization.

V3 V4

V1

Class 1

Class 2

V2

Figure 2.1: Example of two separable classes in a
continuous space. After quantization (assign to
grid cells) the classes are no longer separable. In
this paper we aim for separability in the binary
space.

In this paper we go beyond preserving se-
mantic distances in the continuous space: We
push for quantization by optimizing maxi-
mum class separability in the binary space. To
do so, we introduce a margin on distances be-
tween dissimilar image pairs explicitly mea-
sured in the binary space. In addition to
pair-wise distances, we draw inspiration from
Fisher’s Linear Discriminant Analysis (Fisher
LDA) to maximize the binary distances be-
tween classes and at the same time minimize
the binary distance of images within the same
class

We have the following contributions. 1)
Adding a margin to pairwise labels pushes dissimilar samples apart in the binary space;
2) Fisher’s criterion to maximize the between-class distance and to minimize the within-
class distance leads to compact hash codes; 3) We show how to optimize this under dis-
crete constraints and 4) We outperform state-of-the-art methods on two datasets, being
particular advantageous for a small number of hashing bits.

2.2. RELATED WORK

Amount of supervision. Existing hashing methods can be grouped on the amount of
prior domain knowledge. Hashing methods without prior knowledge are applicable to
any domain and include well-known methods such as Locality-Sensitive Hashing (LSH) [7]
and its extensions [8–12]. If some knowledge about the data distribution is known in
the form of an unlabeled training set, this knowledge can be advantageously exploited
by unsupervised methods [13–19] which learn hash functions by preserving the train-
ing set distance distribution. With the availability of additional prior knowledge about
how samples should be grouped together, supervised methods [20–26] can leverage such
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Figure 2.2: Images with class labels (red and green) are input to a CNN which outputs a k-dimensional con-
tinues representation U. Module 1 maximizes a margin between dissimilar images in binary space (LPair).
Module 2 minimizes binary distances within the same class (LIntra) and pushes different classes away (LInter)
while quantizing U as binary codes (LQuant).

label information. Particularly successful supervised hashing methods use deep learn-
ing [4, 27–30] to learn the feature representation. Supervision can be in the form of pair-
wise label information [1, 3, 6, 31, 32] or in the form of class labels [21, 25, 28, 32]. In this
paper we exploit both pairwise and class label knowledge, leading to highly compact and
discriminative hash codes.

Quantization in hashing. Several methods optimize the continue space and apply the
sign to obtain binary codes [1–6, 18, 20, 33]. A quantization loss is proposed in deep
learning based hashing [1–4, 6, 33] to force the learned continuous representations to
approach the desired binary codes. However, optimizing quantization alone may not
preserve class separability in the binary space. An elegant solution is to employ sigmoid
or tanh to approximate the non-smooth sign function [31, 34], but unfortunately comes
with the drawback that such activation functions have difficulty to converge when using
gradient descent methods. We circumvent these limitations by imposing the quantiza-
tion loss in the discrete space, optimizing the separability in the hashing space directly
while guiding parameter optimization in the continuous space.

Discrete optimization. Another branch of hashing methods to solve the discrete opti-
mization is to utilize the class information to directly learn the hashing codes. For in-
stance, SDH [25], as well as its extensions such as FSDH [21] and DSDH [32], propose
to regress the same-class images to the same binary codes. While this kind of methods
encourages a close binary distance between samples from the same class, they cannot
guarantee the separability of samples from different classes. In contrast, we propose to
explicitly maximize the binary distances between classes and at the same time minimize
the binary distances within the same class.

2.3. DEEP FISHER HASHING WITH PAIRWISE MARGIN
In Fig. 2.2 we illustrate our model. Two components steer the discrete optimization:
1) A Pairwise Similarity Learning module to preserve semantic similarity between im-
age pairs while using a margin to push similar and non-similar images further apart
(Lpair). 2) A Quantized Center Learning module inspired by Fisher’s linear discriminant
that maximizes the distance between different-class images (Linter) whilst minimizing
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the distance between same-class images (Lintra) where the binarization requires mini-
mizing quantization errors Lquant. These two modules are optimized jointly on top of a
convolutional network (CNN).

For a train set of N images X = {xi}N
i=1, with M class labels Y = {yi }N

i=n ∈RM×N , where

yi ∈ RM is a vector with all elements ≥ 0 that sums to 1, representing the class pro-
portion of sample xi. For single-label (multi-class) yi reverts to a one-hot encoding
{0,1}M . If xi has m multiple labels, each has a value of 1/m in yi . The last layer of
the CNN U = {ui }N

i=1 ∈ RK×N is the learned representations of X. The output codes

B = {bi }N
i=1 ∈ {−1,1}K×N are the discretized binary values corresponding to U with each

image encoded by K binary bits.

2.3.1. PAIRWISE SIMILARITY LEARNING

The main goal of hashing is to have small distances between similar image pairs and
large distances between dissimilar image pairs in the binary representation. For binary
vectors bi,bj ∈ {−1,1}K , the Hamming distance DH (bi ,b j ) = 1

2 (K −bᵀ
i ·b j ) = 1

4 DE (bi ,b j ).

Since K is a constant, it can be left out and we define the dissimilarity D(bi ,b j ) =− 1
2

(
bᵀ

i ·b j
)
.

Note that larger dissimilarity D indicates larger Hamming distance and less similarity.

-5 0 5
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Figure 2.3: Our symmetric large margin logistic
loss of both same-class and different-class cases
as a function of the dissimilarity with different
margin m. Larger m encourages separation.

Similar images should share many binary
values while dissimilar images should share
few binary values. Given the dissimilarity
D(·, ·) ∈ (− 1

2 K , 1
2 K ), a dissimilarity of 0 be-

tween binary vectors bi and b j means that
half of their bits are different. To encourage
more overlapping bits for similar images and
less overlapping bits for dissimilar images, we
add a margin m to a symmetric logistic loss
centered at 0:

LS (D) = log(1+eD+m);LD (D) = log(1+e−D+m).
(2.1)

The hyper-parameter m Ê 0 controls separa-
tion between similar pairs S and dissimilar pairs D . When m = 0, our model will turn
into the classical way used in [3, 32]. Fig. 2.3 illustrates the loss curves of same-class
pairs and different-class pairs as a function of dissimilarity calculated by our dissimilar-
ity measure with various values of m. Larger margin can help to pull same-class pairs
together while push different-class pairs far away.

The Pairwise Similarity module minimizes the large margin logistic loss:

Lpair =
∑

(i , j )∈S

LS (D
(
bi ,b j )

)+ ∑
(i , j )∈D

LD (D
(
bi ,b j

)
)

s.t . bi ,b j ∈ {−1,1}K , i , j = 1, ..., N .
(2.2)

Since bi and b j are discretized hashing codes from the continuous output of the CNN
(ui and u j ), thus it is hard to back-propagate gradients from Lpai r to parameters of the
CNN. To make the CNN trainable with Lpai r , we introduce an auxiliary variable ui = bi .
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Then we apply Lagrange multipliers to get the Lagrangian:

L̃pair =
∑

(i , j )∈S

LS (D
(
ui ,u j )

)+ ∑
(i , j )∈D

LD (D
(
ui ,u j

)
)+ψ

N∑
i=1

‖ui −bi‖2
2,

s.t . bi ,b j ∈ {−1,1}K , i , j = 1, ..., N ,

(2.3)

where ψ is the Lagrange multiplier. The term
∑N

i=1 ‖ui −bi‖2
2 can be viewed as a con-

straint to minimize the discrepancy between the binary space and the continuous space.

2.3.2. QUANTIZED CENTER LEARNING

The Quantized Center Learning module, see Fig. 2.4, maximizes the inter-class distances
whilst minimizing the intra-class distances in a quantized setting. To represent class-
distances we learn a center for each of the M classes: C = {ci }M

i=1 ∈ {−1,1}K×M , where
each center c is encoded by K bits of binary codes. Let u be the network output rep-
resentation. We then encourage the learned binary code(vertex) of each representation
to be close to the corresponding class center while the distance between different class
centers is maximized, taking quantization to binary vectors into account.
Minimizing intra-class distances (Lintra). This minimizes the sum of Euclidean distance
between the binary codes bi of the N training images to their class center:

Lintra =
N∑

i=1
‖bi −Cyi‖2

2, (2.4)

where all class centers C are indexed by bi ’s class membership vector yi .
Maximizing inter-class distances (Linter). We maximize the sum of pairwise Euclidean
distance between different class centers to maximize the inter-class distance of training
data:

N∑
i=1

N∑
j=1, j 6=i

‖ci −c j ‖2
2 =

N∑
i=1

N∑
j=1, j 6=i

(2K −2cᵀi c j ). (2.5)

Since ci ,c j ∈ {−1,1}K and cᵀi c j 6=i ≥−K , maximizing Eq. (2.5) is equivalent to minimizing

N∑
i=1

N∑
j=1, j 6=i

(cᵀi c j − (−K ))2 = ‖CᵀC−K (2I − JK )‖2
F , (2.6)

where ‖ · ‖F denotes the Frobenius norm, I is the identity matrix and JK is the all-ones
matrix. Simplifying the notation where A replaces K (2I − JK ) yields

Linter = ‖CᵀC− A‖2
F . (2.7)

Minimizing quantization cost (Lquant). The Center Learning module exploits label in-
formation to learn binary codes by minimizing Lintra and Linter simultaneously. We also
need to encourage the learned representation to be close to the quantized binary codes.
Lquant minimizes the total quantization cost in moving representations ui towards the
desired bi ,

Lquant =
N∑

i=1
‖bi −ui‖2

2. (2.8)
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Figure 2.4: Illustration of Quantized Center learning. All points denote 2D representations extracted by a CNN
model from randomly selected two classes samples of CIFAR-10, for 100 samples per class. Binarization is
illustrated by quantization sg n(·) (black lines). (a): Inefficient hashing: Binarization will assign same-class
points to different bins, while assigning different-class points to the same bins. (b): Using Lintra clusters classes
together and hashing is improved since binarization will assign the classes to different, neighboring bins: class
1 to [−1,1] and class 2 to [1,1]. (c): Using Lintra + Linter also pushes the classes away from each other, improving
the hashing further since after binarization class 1 is [−1,1] and class 2 is [1,−1] making the difference between
class samples two bit flips.

2.4. OPTIMIZATION

Our proposed Pairwise Similarity module and Quantized Center Learning module are
optimized jointly in an alternating fashion where their gradients are back-propagated to
train the upstream CNN. Combining the loss functions L̃pai r in Eq. (2.3), Lintra in Eq. (2.4),
Linter in Eq. (2.7) and Lquant in Eq. (2.8), the optimization of the whole framework is

min
bi ,ui ,C

[
ϕ

( ∑
(i , j )∈S

LS (D
(
ui ,u j )

)+ ∑
(i , j )∈D

LD (D
(
ui ,u j

)
)
)

+ µ
N∑

i=1
‖bi −Cyi‖2

2 +ν‖CᵀC− A‖2
F +

N∑
i=1

‖bi −ui‖2
2

]
,

s.t. C ∈ {−1,1}K×M , bi ∈ {−1,1}K , i = 1,2, . . . , N ,

(2.9)

where ϕ, µ and ν are hyper-parameters that balance the effect of three objective func-
tions.

Optimizing Eq. (2.9) involves the interaction of two types of variables: discrete vari-
ables {B = {bi }N

i=1, C} and continuous variables U = {ui }N
i=1. A typical solution to such

multi-variable optimization problem is to alternate between two steps. In particular:
1) optimize U while fixing B and C focusing on Lpair in the Pairwise Similarity Learn-
ing module, 2) fixing U and optimize discrete variables B and C in the Quantized Center
Learning.
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2.4.1. OPTIMIZING PAIRWISE SIMILARITY LEARNING

Given B = {bi }N
i=1, it is straightforward to optimize U = {ui }N

i=1 by minimizing the sub-
problem resolved from Eq. (2.9) corresponding to Lpair by gradient descent:

min
U

m∑
i=1

‖bi −ui‖2
2 +ϕ

( ∑
(i , j )∈S

LS (D
(
ui ,u j )

)+ ∑
(i , j )∈D

LD (D
(
ui ,u j

)
)
)

(2.10)

Since U is the output of the last layer of the upstream CNN, which is denoted as ui =
WᵀFCNNs(xi ;θ)+v. Here W is the transformation matrix of the last fully connected layer
and v is the bias term. θ is the parameters of CNNs before the last layer. For simplic-
ity, we denote all parameters of CNNs models as Θ = {W,v,Θ}. The CNN parameters
are optimized by gradient back-propagation: ∂L

∂Θ = ∂L
∂U

∂U
∂Θ , where L is the Loss function

corresponding to Eq. (2.10).

2.4.2. OPTIMIZING QUANTIZED CENTER LEARNING

With fixed CNN parameters Θ, we learn B and C by optimizing the Quantized Center
Learning module, as:

min
B,C

µ
N∑

i=1
‖bi −Cyi‖2

2 +ν‖CᵀC− A‖2
F +

N∑
i=1

‖bi −ui‖2
2,

s.t. C ∈ {−1,1}K×M , B = {bi }N
i=1 ∈ {−1,1}K×N .

(2.11)

We solve this problem by calling alternating optimization strategy again: optimize vari-
ables B and C by updating one variable with the other fixed.
Initialization of bi and C. Given the representations ui , we initialize bi as bi = sgn(ui ).
In the first iteration we initialize the class centers C with the class mean of the output
representations, later we update C directly.
Fix bi , update C. Keeping bi fixed in Eq. (2.11) reduces this sub-problem to

min
C

µ
N∑

i=1
‖bi −Cyi‖2

2 +ν‖CᵀC− A‖2
F ,

s.t. C ∈ {−1,1}K×M .

(2.12)

Due to the discrete constraints on the class centers C, the minimization of above prob-
lem is a discrete optimization problem which is hard to optimize directly. We introduce
an auxiliary variable V with the constrain C = V, and adding the Lagrange multiplier, the
optimization of Eq. (2.12) is:

min
C,V

µ
N∑

i=1
‖bi −Vyi‖2

2 +ν‖VᵀV− A‖2
F +η‖C−V‖2

F ,

s.t. C ∈ {−1,1}K×M .

(2.13)

Fixing V, since the optimal solution for C for minimizing ‖C−V‖2
F is C = sgn(V), hence

‖C−V‖2
F in Eq. (2.13) can be replaced with ‖sgn(V)−V‖2

F . Let L2 denote the loss function
after applying Lagrange multipliers, then the gradient w.r.t. V is calculated as:

∂L2

∂V
= 2µ(VY−B)Yᵀ+4νV(VᵀV− A)+2η(V− sgn(V)), (2.14)
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approximating the class center C with the learned V.
Fix C, update bi . With the variable C fixed in Eq. (2.11), we optimize the binary code bi

with the sub-problem

min
bi

µ
N∑

i=1
‖bi −Cyi‖2

2 +
N∑

i=1
‖bi −ui‖2

2,

s.t. bi ∈ {−1,1}K , i = 1, . . . , N .

(2.15)

We reformulate the above problem in matrix form as:

min
B

µ‖B−CY‖2
F +‖B−U‖2

F ,

s.t. B ∈ {−1,1}K×N ,
(2.16)

which can be further expanded as:

min
B

µ(‖B‖2
F −2tr(BᵀCY)+‖CY‖2

F )

+ (‖B‖2
F −2tr(BᵀU)+‖U‖2

F )

s.t. B ∈ {−1,1}K×N .

(2.17)

Since ‖B‖2
F , ‖CY‖2

F and ‖U‖2
F are constant, the problem is equivalent to:

min
B

−(
µ2tr(BᵀCY)+2tr(BᵀU)

)
s.t. B ∈ {−1,1}K×N .

(2.18)

Minimizing above problem is equivalent to maximizing

tr
(
Bᵀ(µCY+U)

)= N∑
i=1

K∑
j=1

Bi j Fi j , (2.19)

where Fi j is the elements of F =µCY+U. To maximize Eq. (2.19) with respect to B, Bi j

should be optimized to be 1 when Fi j ≥ 0, and -1 otherwise. Thus, we can derive the
closed-form solution of the problem (2.19):

B = sgn(µCY+U). (2.20)

By defining F = µCY+U as the Fisher’s transformed representations, we note that
F is a translation transformation of original representations U which pushes different-
class points to different vertex and pulls same-class points to same vertex, while F does
not change the relative position between same class. The learned center C determines
where the corresponding class translates to. The 2D example in Fig. 2.4 shows that the
shape within a class does not change, yet the classes do translate.

2.4.3. JOINT OPTIMIZATION

We update the two modules jointly, which is shown in Algorithm 1. In each iteration,
the Pairwise Similarity Learning module and Quantized Center Learning module are op-
timized in an alternating way to learn the continuous variable U and discrete variables
{B,C}, respectively.
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Algorithm 1: Optimization of our framework

Input: Training data: {xi ,yi }, iterative number: R, parameters: µ,ϕ,ν, bits length:
K , batch size: m;

Output: Optimized network parameters: Θ= {W,v,θ} ;
1 Randomly initialize W,v, initialize θ with pre-trained model, initialize C with the

class mean of the output representations;
2 for r = 1,2, ...,R do
3 Step1:(Pairwise Similarity Learning);
4 Optimize CNN parameters in optimizing pairwise similarity learning ;
5 Step2:(Quantized Center Learning);
6 Initialize: bi = sgn(ui ), iteration: iter ;
7 Fix bi , update C;
8 Introduce an auxiliary variable: V;
9 for iter = 1,2, ..., i ter ;

10 Obtain the gradients;
11 return V;
12 Center C is approximated with V, C = V;
13 Fix C, update bi ;
14 Compute bi using Eq. (2.20);
15 Fisher binary code, B = sgn(µCY+U);

16 return Θ;

2.5. EXPERIMENTS

Datasets. We conduct experiments on three datasets: CIFAR-10, NUS-WIDE and Ima-
geNet100. CIFAR-10 consists of 60k color images with the resolution of 32×32 catego-
rized into 10 classes. Each image has a single label. NUS-WIDE is a multi-label dataset,
which contains 269,648 color images collected from Flickr. There are 81 classes, where
each image is annotated with one or multiple class labels. Following [18, 32, 34], we use
a subset of 195,834 images associated with 21 most frequent classes (concepts) for eval-
uation, among which 105,972 images has more than two labels and 89,862 images have
a single label. Each class contains at least 5,000 samples. ImageNet100 consists of 130K
single labelled images from 100 categories, which is a subset of the large benchmark Im-
ageNet [35].
Experimental settings. For CIFAR-10 and NUS-WIDE datasets, we conduct experiments
under two comparison settings: a small-data setting and a large-data setting. In the
small-data setting, following previous work [3, 32], 1000 images (100 images per class)
in CIFAR-10 are randomly selected to form the test query set and 500 images per class
(5,000 images in total) as the training set. For NUS-WIDE, we randomly select 100 images
per class (for a total of 2,100 images in 21 classes) as test queries and 500 images per class
(10,500 images in total) as the training set. For pairwise ground truth labels we consider
two images sharing at least one common label as similar and otherwise dissimilar. In
the large-data experimental setting, all 1,000 images per class (10,000 images in total) in
CIFAR-10 are used as the test query set while all the remaining 50,000 images are used as
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Table 2.1: Comparative results for our model with differ-
ent components of the Quantized Center Learning mod-
ule on CIFAR-10 and ImageNet100 . We start with the
Pairwise Similarity Learning (Lpair) and augment incre-
mentally with two components: LIntra in Eq. (2.4) and
LInter in Eq. (2.7). For 24-bits in CIFAR-10 the perfor-
mance seems already saturated; for all other settings,
each added component brings an advantage.

Components CIFAR-10 ImageNet100
Baseline LIntra LInter 12 Bits 24 Bits 16 Bits 48 Bits

× × 0.730 0.787 0.431 0.572
Lpair X × 0.746 0.802 0.543 0.696

X X 0.772 0.809 0.576 0.726

Table 2.2: MAP@1K results on for Different Num-
ber of Bits ImageNet100 using AlexNet. Our model
achieves the best performance on all bits except for
the 16 bits.

ImageNet100 (mAP@1K)
Method 16 Bits 32 Bits 48 Bits 64 Bits

CNNH [29] 0.281 0.450 0.525 0.554
NINH [27] 0.290 0.461 0.530 0.565
DHN [6] 0.311 0.472 0.542 0.573
HashNet [31] 0.506 0.630 0.663 0.683
Greedy Hash [38] 0.625 0.662 0.682 0.688
Ours 0.590 0.697 0.726 0.747

the training set. In NUS-WIDE, we randomly sample 100 images per class (2,100 images
in total) as the test query set and use all remaining 193,734 images as the training set.
Following the settings in [31], we sample 100 images per class for ImageNet to construct
training set, and all the images in the validation set are used as the test set.
Evaluation metrics. We evaluate retrieval performance using: mean Average Precision
(MAP), precision of the top N returned examples (P@N), Precision-Recall curves (PR)
and Recall curves (R@N). All compared methods use identical training and test sets for
fair comparison. For NUS-WIDE, we adopt MAP@5000 and MAP@50000 for the small-
data setting and large-data setting, respectively. We show the results of MAP@1000 for
ImageNet100.
Network and parameter settings. To have a fair comparison with previous methods [3,
32, 36], we fine-tune the VGG-F [3, 32] architecture for the experiments on CIFAR-10 and
NUS-WIDE while the AlexNet architecture [37] is fine-tuned for the experments on Im-
ageNet100. Both deep network architectures are pre-trained on ImageNet. The hyper-
parameters {ϕ,µ,η,ν, } are tuned by cross-validation on a validation set and the margin
m is chosen from {0.5,1,1.5,2}. Stochastic Gradient Descent (SGD) is used for optimiza-
tion.

2.5.1. EFFECT OF QUANTIZED CENTER LEARNING

To investigate the effect of LIntra (minimizing intra-class distances) and LInter (maximiz-
ing inter-class distances) in the Quantized Center Learning module, we conduct an ab-
lation study in the small-data setting which starts with the Pairwise Similarity Learning
module Lpair in Eq. (2.3) in the model and then augment the model incrementally with
Lintra in Eq. (2.4) and LInter in Eq. (2.7). In Table 2.1 we show the experimental results.
We observe that both LIntra and LInter contribute substantially to the performance of the
whole model.

2.5.2. FUNCTIONALITY OF DIFFERENT MODULES

We evaluate the effect of combining modules on both CIFAR-10 and ImageNet100 datasets
using precision and recall curves for top 5,000 returned images for different number of
bits. In Fig. 3.5 we compare on CIFAR-10 and ImageNet100. We observe that each mod-
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Figure 2.5: Evaluating different modules on two datasets. Herein P refers to the Pairwise Similarity Learning
module without margin while C refers to the Quantized Center Learning module. P+M denotes the Pairwise
Similarity Learning module with tuned margin.

Table 2.3: MAP for various methods for the small-data setting for CIFAR-10 and NUS-WIDE. The best perfor-
mance is boldfaced. For NUS-WIDE, the top 5,000 is used for the MAP.

Method
CIFAR-10

Method
NUS-WIDE

12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits

Ours 0.803 0.825 0.831 0.844 Ours 0.795 0.823 0.833 0.842
DSDH [32] 0.740 0.786 0.801 0.820 DSDH [32] 0.776 0.808 0.820 0.829
Greedy Hash [38] 0.774 0.795 0.810 0.822 Greedy Hash [38] – – – –
DPSH [3] 0.713 0.727 0.744 0.757 DPSH [3] 0.752 0.790 0.794 0.812
DQN [39] 0.554 0.558 0.564 0.580 DQN [39] 0.768 0.776 0.783 0.792
DTSH [36] 0.710 0.750 0.765 0.774 DTSH [36] 0.773 0.808 0.812 0.824
NINH [27] 0.552 0.566 0.558 0.581 NINH [27] 0.674 0.697 0.713 0.715
CNNH [29] 0.439 0.511 0.509 0.522 CNNH [29] 0.611 0.618 0.625 0.608

ule adds value. The only exception is Fisher-only, which outperforms the combined Pair-
wise+Fisher model for a code size of 48. Second, the combined models can get relatively
well for fewer bits, while the single models need more bits to achieve the same perfor-
mance.

The results on ImageNet100 shown in Fig. 3.5 indicate that the Quantized Center
Learning module improves the performance substantially. One potential explanation is
that the Pairwise Similarity Learning module (L̃pair) is sensitive to the balance between
the positive and negative training sample pairs, which is hard to achieve in the data with
large number of classes. In contrast, the Quantized Center Learning module does not
suffer from this limitation. The sensitivity of the margin m is in the supplemental.

2.5.3. COMPARISON WITH OTHERS

In Table 2.3 we show results on both CIFAR-10 and NUS-WIDE datasets in the small-data
setting. In particular for a few number of bits, our model compares well to others. It is
worth noting that the performance comparison among VGG-F and AlexNet networks is
considered to be fair [38], since both architectures have the same network composition.

The state-of-the-art DSDH [32] model also uses pairwise labels and classification la-
bels. The major difference between is in using the classification label: DSDH [32] learns
hash codes by maximizing the classification performance while our model learns cen-
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Table 2.4: MAP for various methods for the large-data setting for CIFAR-10 and NUS-WIDE. The best perfor-
mance is boldfaced. For NUS-WIDE, top 50,000 returned neighbors are considered for calculating MAP.

Method
CIFAR-10

Method
NUS-WIDE

16 bits 24 bits 32 bits 48 bits 16 bits 24 bits 32 bits 48 bits

Ours 0.948 0.949 0.949 0.951 Ours 0.831 0.831 0.835 0.839
DSDH [32] 0.935 0.940 0.939 0.939 DSDH [32] 0.815 0.814 0.820 0.821
Greedy Hash [38] 0.942 0.943 0.943 0.944 Greedy Hash [38] – – – –
DTSH [36] 0.915 0.923 0.925 0.926 DTSH [36] 0.756 0.776 0.785 0.799
DPSH [3] 0.763 0.781 0.795 0.807 DPSH [3] 0.715 0.722 0.736 0.741
VDSH [5] 0.845 0.848 0.844 0.845 VDSH [5] 0.545 0.564 0.557 0.570
DRSCH [40] 0.615 0.622 0.629 0.631 DRSCH [40] 0.618 0.622 0.623 0.628
DSCH [40] 0.609 0.613 0.617 0.620 DSCH [40] 0.592 0.597 0.611 0.609
DSRH [41] 0.608 0.611 0.617 0.618 DSRH [41] 0.609 0.618 0.621 0.631

ters to model between-class and between-sample distances. While DSDH performs ex-
cellent, our model outperforms DSDH in all experiments.

Another interesting observation is that SDH [25], which is based on sole classification
label information, performs competitively on NUS-WIDE but not as good on CIFAR-10.
In contrast, our model and DSDH [32] that leverage two types of information, perform
much more robust. It reveals the necessity of incorporating the pairwise label informa-
tion.

Table 2.4 shows results on CIFAR-10 and NUS-WIDE in the large-data setting. Our
model performs slightly better then others, the relative improvement is smaller com-
pared to the small-data setting.

We also conduct experiments to compare our method to other baseline models on
ImageNet100 and the results are presented in Table 2.2. It is observed that our model
achieves the best performance on all bits except for the 16 bits.

2.6. CONCLUSION

We present a supervised deep binary hashing method focusing on binary separability
through a pair-wise margin and inspired by Fisher’s linear discriminant which minimizes
within-class distances while maximizing between-class distances. For medium-sized
datasets with much training data –where larger hash codes can be used– our method
performs on par or only slightly better than other methods. Our method is most suitable
for extremely large datasets with few training data where only tiny bit codes can be used;
there our method compares most favorably to others.
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3
DEEP UNSUPERVISED IMAGE

HASHING BY MAXIMIZING BIT

ENTROPY

Unsupervised hashing is important for indexing huge image or video collections with-
out having expensive annotations available. Hashing aims to learn short binary codes
for compact storage and efficient semantic retrieval. We propose an unsupervised deep
hashing layer called Bi-half Net that maximizes entropy of the binary codes. Entropy is
maximal when both possible values of the bit are uniformly (half-half) distributed. To
maximize bit entropy, we do not add a term to the loss function as this is difficult to
optimize and tune. Instead, we design a new parameter-free network layer to explicitly
force continuous image features to approximate the optimal half-half bit distribution.
This layer is shown to minimize a penalized term of the Wasserstein distance between
the learned continuous image features and the optimal half-half bit distribution. Ex-
perimental results on the image datasets Flickr25k, Nus-wide, Cifar-10, Mscoco, Mnist
and the video datasets Ucf-101 and Hmdb-51 show that our approach leads to compact
codes and compares favorably to the current state-of-the-art.

25



3

26 3. DEEP UNSUPERVISED IMAGE HASHING BY MAXIMIZING BIT ENTROPY

Figure 3.1: Hashing compresses N images to K bits per image. K continuous features are learned, and thresh-
olded to K binary values. We see the continuous to binary transition as a lossy communication channel –a
hash channel– between a single continuous value u to a single discrete binary value b. The green histograms
(standard hashing) and blue histograms (our approach) show how a single feature is distributed over the N
images. Instead of adding an additional loss term, we design a Bi-half layer to explicitly maximizes the bit ca-
pacity in the hash channel, leading to more informative hash codes, as measured by the entropy H of the bits
over the images which leads to improved hashing accuracy.

3.1. INTRODUCTION

Semantically similar images or videos can be found by comparing their output features
in the last layer of a deep network. Such features are typically around 1,000 continu-
ous floating point values [1], which is already too slow and large for moderately sized
datasets of a few million samples. Speed and storage are greatly improved by replacing
the continuous features with just a small number of bits. Unsupervised hashing aims
to learn compact binary codes that preserves semantic similarity without making use of
any annotated label supervision and is thus of great practical importance for indexing
huge visual collections.

In this paper, as illustrated in Fig. 3.1, we see the transition from a continuous vari-
able to a discrete binary variable as a lossy communication channel. The capacity of a
hash bit as measured by the entropy is maximized when it is half-half distributed: Half of
the images are encoded with −1 and the other half of the images is encoded with +1. We
minimize the information loss in the hash channel by forcing the continuous variable to
be half-half distributed. Other methods have optimized entropy by adding an additional
term to the loss [2–6] which adds an additional hyper-parameter to tune and is difficult
to optimize. Instead, we propose Bi-half: A new parameter-free network layer which is
shown to minimize the optimal transport cost as measured by the Wasserstein distance.
We here explicitly design a new layer to maximize the bit capacity in the hash channel,
leading to compact and informative hash codes which yield excellent hashing similarity
accuracy.

We have the following contributions. 1) A simple, parameter-free, bi-half layer to
maximize hash channel information capacity; 2) A Wasserstein distance is minimized
end-to-end to align continuous features with the optimal discrete distribution; 3) We
study 2 alternatives to maximizing bit entropy using an additional term in the loss; 4) We
show state-of-the-art results for unsupervised hashing on 5 image datasets, and 2 video
datasets.
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3.2. RELATED WORK

Amount of supervision. Hashing methods can be grouped into data-independent hash-
ing methods and data-dependent hashing methods. Data-independent hashing meth-
ods [7–12] design hash function independent of a dataset. In contrast, data-dependent
hashing methods can exploit the data distribution. As such, with the availability of la-
beled training data, supervised hashing methods [13–18] learn hash codes by optimizing
class labels. Particularly successful supervised image hashing methods use deep learn-
ing [14, 19–26] to learn feature representations and binary codes. Supervised methods
work well, yet rely on data annotations done by humans, which are expensive or diffi-
cult to obtain. Unsupervised hashing methods [3, 5, 27–31] skip this problem, as they
do not rely on annotation labels. Recent unsupervised hashing methods rely on deep
learning for representation learning [2, 4, 32–35]. We follow these works and focus on
the unsupervised setting.
Quantization from continuous to discrete values. The typical approach for deep learn-
ing hashing is to optimize a continuous output and in the last step quantize the contin-
uous values to discrete values. The current approach [36–38] is to apply a sign function,
where all negative values are set to −1 and all positive values are set to +1. We argue that
the sign function is not information efficient. For example, we set the continuous fea-
tures of one dimension for 4 images to be [0.2,0.8,1.5,3]. Passing them through the sign
function will binarize them all to same value +1 and thus the bit has no discriminative
information for these 4 images. In this paper we focus on this loss of information and
learn to discretize based on maximum bit capacity over images.
Obtaining gradients for binary codes. A major challenge of learning hash codes with
deep nets is that the desired discrete hash output codes have no continuous deriva-
tives and cannot be directly optimized by gradient descent. By the continuous relax-
ation [19, 23, 39, 40], a continuous space is optimized instead and the continuous values
are quantized to binary codes. Such methods are approximations as they do not opti-
mize the binary codes directly. The continuation based hashing methods [20, 41] gradu-
ally approximate the non-smooth sign function with sigmoid or tanh, but unfortunately
comes with the drawback that such relaxation inevitably becomes more non-smooth
during training which slows down convergence, making it difficult to optimize. To over-
come these problems, a recent simple and efficient method called greedy hash [38], uses
the sign function in the forward pass to directly optimize binary codes. The optimization
is done with the straight-through estimator [42] which after quantization computes gra-
dients by simply ignoring the quantization function during training. This optimization is
simple and works well in practice. Yet, it ignores bit information capacity and thus may
lead to redundant codes. In this work we use the same straight-through estimator to ob-
tain gradients for binary codes while focusing on maximizing bit information capacity
to obtain compact and discriminative hash codes.
Information theory in hashing. Many popular unsupervised feature learning meth-
ods [43–45] are based on information theory to find good features. In hash learning,
some methods [2–6] proposed to add an additional term in the loss function to encour-
age each bit to have a 50% chance of being one or zero, to maximize bit entropy. It is,
however, difficult to balance the added loss term with other terms in the loss, which
requires careful hyper-parameter tuning of how much to weight each term in the loss.
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Instead of adding an additional loss term and an additional hyper-parameter, we design
a new network layer without any additional parameters to explicitly force continuous
image features to approximate the optimal half-half bit distribution. Some non-deep
learning approaches [46, 47] directly threshold the learned feature vectors at their me-
dian point, which have shown excellent performance. Yet, it is a suboptimal solution
under deep learning scenario since the median point should be dynamically adapted to
random sample statistic computed over each minibatch. We are inspired by their works,
and aim to generalize such ideas to an end-to-end deep learnable setting. We cast it
into an optimal transport problem and directly quantize the continuous features into
half-half distributed binary codes by minimizing the Wasserstein distance between the
continuous distribution and a prior half-half distribution.

3.3. APPROACH

This paper we maximize the hash channel capacity to design a parameter-free bi-half
coding layer. We will first introduce some notations. Let X = {xi}N

i=1 denote N training

images. The images are encoded to K compact binary codes B ∈ {1,−1}N×K , which also
denotes the output of our hash coding layer. U ∈ RN×K would be expressed as the con-
tinuous feature representations in the last layer of a standard neural network, e.g., an
encoder, which serves as the input to our hash coding layer.

3.3.1. MAXIMIZING HASH CHANNEL CAPACITY

We see the transition from a continuous variable U to a binary code variable B as a
lossy communication channel. Per channel, the maximum transmitted information
from continuous variable U to binary variable B , known as channel capacity [48, 49],
is:

C = max
p(u)

I (U ;B), (3.1)

where the maximum is taken over all possible input distributions p(u) and I (U ;B) de-
notes mutual information between variable U and binary variable B . We aim to maxi-
mize the channel capacity. To maximize channel capacity C we first rewrite the mutual
information term I (U ;B) in Eq. (3.1) in terms of entropy:

I (U ;B) =H (B)−H (B |U ), (3.2)

where H (B) and H (B |U ) denote entropy and conditional entropy respectively. Thus,
maximizing channel capacity C in Eq. (3.1) is equivalent to maximizing the entropy H (B)
of B and minimizing the conditional entropy H (B |U ).

The entropy H (B) in Eq. (3.2) should be maximized. Since B is a discrete binary
variable, its entropy is maximized when it is half-half distributed:

p(B =+1) = p(B =−1) = 1

2
. (3.3)

The conditional entropy H (B |U ) in Eq. (3.2) should be minimized. Give a certain
continuous value u, the transmission probability pu(pos) is defined as how probable a
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+1 binary output value is and the transmission probability pu(neg) is defined as how
probable the binary value −1 is. These are probabilities and thus are non-negative and
sum to one as pu(pos)+pu(neg) = 1 and 0 ≤ pu(pos), pu(neg) ≤ 1. Then the conditional
entropy is computed as:

H (B |U ) =
∫

u∈U
p(u)H (B |U = u)du

=−
∫

u∈U
p(u)

(
pu(pos) log pu(pos)

+pu(neg)log pu(neg)
)
du,

(3.4)

which is between 0 and 1, and Eq. (3.4) is thus minimized for setting the H (B |U = u)
to 0, i.e.: −∫

u∈U p(u)0 du = 0. This minimum is obtained when either pu(pos) = 1 or
pu(neg) = 1, which means that there is no stochasticity for a certain continuous value u,
and its binary value is deterministically transmitted.

In the following, we maximize the entropy of binary variables by encouraging the
continuous feature distribution p(u) to align with the ideal half-half distributed distri-
bution p(b) in Eq. (3.3). To minimize Eq. (3.4), we first start with a non-deterministic
transmission probability during training, but since we train to align p(u) with the half-
half distribution of +1 and −1, this allows us at test time to simply use the sign function
as a deterministic function for quantization to guarantee minimizing Eq. (3.4).

3.3.2. BI-HALF LAYER FOR QUANTIZATION

To align the continuous feature distribution with the ideal prior half-half distributed dis-
tribution from Eq. (3.3) we use Optimal Transport (OT) [50]. Optimal Transport aims to
find a minimal cost plan for moving one unit of mass from one location x to one other
location y between two probability distributions Pr and Pg . When Pr and Pg are only
accessible through discrete samples, the corresponding optimal transport cost can be
defined as:

π0 = min
π∈Π(Pr ,Pg )

〈π,D〉F , (3.5)

where Π(Pr ,Pg ) is the space of joint probability measures with marginals Pr and Pg ,
and π is the general probabilistic coupling that indicates how much mass is transported
to push distribution Pr towards distribution Pg . The 〈., .〉F denotes the Frobenius dot
product, and D ≥ 0 is the cost function matrix whose element D(i , j ) = d(x,y) denotes
the non-negative cost to move a probability mass from location x to location y. When
the cost is defined as a distance, OT is referred to as a Wasserstein distance. Specifically,
if d(x,y) is the squared Euclidean distance, it is the Earth mover’s distance, which is also
known as the 1-Wasserstein distance. We optimize the 1-Wasserstein distance because
it is flexible and easy to bound.

With a randomly sampled mini-batch of M samples, the corresponding empirical
distributions of the continuous variable U and binary variable B , Pu and Pb , can be writ-
ten as:

Pu =
M∑

i=1
piδui , Pb =

2∑
j=1

q jδb j , (3.6)
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where δx is the Dirac function at location x. The pi and q j are the probability mass
associated to the corresponding location ui and b j , where the total mass is one, i.e.:∑M

i=1 pi = 1 and
∑2

j=1 q j = 1. Particularly, a binary variable only has two locations b1 and
b2, with the corresponding mass q1 and q2.

For the ideal prior half-half distribution in Eq. (3.3), the probability mass q1 at loca-
tion b1 is equal to the probability mass q2 at location b2 that is q1 = q2 = 1

2 . The hash cod-
ing strategy is to find the optimal transport couplingπ0 by minimizing the 1-Wasserstein
distance W1(Pu ,Pb):

π0 = min
π∈Π(Pu ,Pb )

∑
i

∑
j
πi j (ui −b j )2, (3.7)

where Π(Pu ,Pb) is the set of all joint probability distributions πi j , i.e. all probabilistic
couplings, with marginals Pu and Pb , respectively.

By optimizing Eq. (3.7), we find an optimal transport planπ0 ∈Π(Pu ,Pb) for one hash
bit to quantize the encoded features into half-half distributed binary codes. For a single
hash bit in M samples, with a continuous feature vector u ∈ RM , we first simply sort the
elements of u over all mini-batch images, and then assign the top half elements of sorted
u to +1 and assign the remaining elements to −1, that is:

b =π0 (u) =
{
+1, top half of sorted u

−1, otherwise
. (3.8)

We implement above equation as a new simple hash coding layer, dubbed bi-half layer
shown in Fig.3.2, to quantize the continuous feature into half-half distributed binary
code for each hash channel. The proposed bi-half layer can be easily embedded into
current deep architectures to automatically generate higher quality binary codes. During
training, the transmission stochasticity introduced by random small batches as shown
in Eq. (3.4) can also improve the model generalization capability as the same effect of
denoising.
Optimization. The discrete binary codes B have no continuous derivatives and can-
not be directly optimized by gradient descent. Fortunately, some recent works on bina-
rized neural networks (BNNs) have explored to use a proxy derivative approximated by
straight through estimator (STE) [42] to avoid the vanishing gradients. We use the same
straight-through estimator to obtain the gradients. Specifically, we expect U and B have
the same update states in backward pass to match the forward goal.

Given time-step t , the current states are denoted as Ut and Bt . In time-step t + 1,
we force their update states to be same that Ut+1 = Bt+1. Considering the simplest SGD
algorithm, we have Ut+1 = Ut − l r ∗ ∂L

∂Ut
and Bt+1 = Bt − l r ∗ ∂L

∂Bt
with learning rate l r and

loss function L where L can be any loss function you need to use, e.g. reconstruction
loss, cross entropy loss and so on, then the gradient of Ut is computed as ∂L

∂Ut
= ∂L

∂Bt
+

γ(Ut −Bt ) with γ= 1
l r . The forward pass and backward pass are concluded as:

Forward: B =π0 (U),

Backward:
∂L

∂U
= ∂L

∂B
+γ(U−B).

(3.9)
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Figure 3.2: The proposed bi-half layer. M is the mini-batch size and K is the feature dimensions. A bi-half
layer (middle part in white and blue) is used to quantize continuous features in U into binary codes in B via
minimizing W1(Pu ,Pb ) in Eq.(3.7). The assignment strategy is the optimal probabilistic coupling π0. For each
bit, i.e.per column of U, we first rank its elements and then the top half elements is assigned to +1 and the
remaining half elements to −1. In contrast, the commonly used sign function directly during training assigns
the continuous features to their nearest binary codes which minimizes the Euclidean distance. The blue boxes
indicate where our method differs from the sign function as the code in that position should flip.

In forward pass, the continuous feature is optimally quantized to half-half distributed
binary codes. In backward pass, the proposed proxy derivative can automatically en-
courage the continuous feature distribution to align with the ideal half-half distributed
distribution.

3.4. EXPERIMENTS
Datasets. • Flickr25k [51] contains 25k images categorized into 24 classes. Each image is
annotated with at least one label. Following [33], 2,000 random images are queries and
from the remaining images 5,000 random images are training set.

• Nus-wide [52] has around 270k images with 81 classes. To fairly compare with other
methods, we consider two versions. Nus-wide(I), following [4], uses the 21 most fre-
quent classes for evaluation. Per class, 100 random images form the query set and the
remaining images form the retrieval database and training set. Nus-wide(II), following
[33], uses the 10 most popular classes where 5,000 random images form the test set, and
the remaining images are the retrieval set. From the retrieval set, 10,500 images are ran-
domly selected as the training set.

• Cifar-10 [53] consists of 60k color images categorized into 10 classes. In the literature
there are also two experimental settings. In Cifar-10(I), following [38], 1k images per
class (10k images in total) form the test query set, and the remaining 50k images are used
for training. For Cifar-10(II), following [33], randomly selects 1,000 images per class as
queries and 500 as training images, and the retrieval set has all images except for the
query set.

• Mscoco [54] is a dataset for multiple tasks. We use the pruned set as [20] with 12,2218
images from 80 categories. We randomly select 5,000 images as queries with the rest
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Figure 3.3: Train an AutoEncoder from scratch on Mnist dataset. The top row (a, b, c) visualizes the continuous
feature distributions before binarization over different methods by training the network with 3 hash bits. (d)
shows the corresponding retrieval results. We compare bi-half layer with sign layer and sign+reg. In specific,
sign+reg uses an additional entropy regularization term to optimize entropy, while it is hard to balance the
added term. (e) shows the reconstruction loss curves for sign layer and bi-half layer. Generating informative
binary codes in latent space can help to do reconstruction.

used as database, from which 10,000 images are chosen for training.
• Mnist [55] contains 70k gray-scale 28× 28 images of hand written digits from “0" to
“9" across 10 classes. 1,000 images per class are randomly selected as queries and the
remaining images as training set and database.
• Ucf-101 [56] contains 13,320 action instances from 101 human action classes. All the
videos are downloaded from YouTube. The average duration per video is about 7 sec-
onds.
• Hmdb-51 [57] includes 6,766 videos from 51 human action categories. The average
duration of each video is about 3 seconds. For both Ucf-101 and Hmdb-51 datasets, we
use the provided split 1, where per class 30% of the videos are used for testing and the
rest 70% for training and retrieval.
Implementation details. • Image setup. For Mnist image dataset, we train an AutoEn-
coder from scratch. The details will be described in the corresponding subsection. For
other image datasets, an ImageNet pre-trained VGG-16 [58] is used as our backbone
where following [4, 33, 38] an additional fc layer is used for dimensionality reduction.
Our bi-half layer is appended to generate the binary codes. During training, we use
Stochastic Gradient Descent(SGD) as the optimizer with a momentum of 0.9 and a weight
decay of 5×10−4 and a batch size of 32. In all experiments, the initial learning rate is set
as 0.0001 and we divide the learning rate by 10 when the loss stop decreasing. The hyper-
parameters γ is tuned by cross-validation on training set and set as γ= 3× 1

N ·K .
• Video setup. Two 3D CNNs pre-trained on kinetics [59], ResNet-34 [60] and ResNet-
101 [61], are used as backbones where we append bi-half layer to replace the last fc layer.
Following the setting of [61], we use SGD as optimizer with a momentum of 0.9 and a
weight decay of 0.001. The learning rate starts from 0.1, and is divided by 10 after the
validation loss saturates.
Evaluation metrics. We adopt semantic similarity (by labels) as evaluation ground truth,
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Figure 3.4: Empirical analysis on Cifar-10 and Flickr25k datasets. (a) Our bi-half layer can generate informative
hash bits and outperforms other coding methods; (b) the alternative median based method performs worse
than bi-half layer.

which is widely used in the unsupervised hashing literature, for instance, AGH [31],
SADH [4] and DeepBit [35]. Specifically, for multi-label datasets Flickr25k, Nus-wide and
Mscoco, the true neighbors are defined based on whether two images share at least one
common label. We measure the performance of compared methods based on the stan-
dard evaluation metrics: Mean Average Precision (mAP), Precision-Recall curves (PR)
and TopN-precision curves with top N returned samples. In our experiments, N is set to
5,000.

3.4.1. TRAINING AN AUTOENCODER FROM SCRATCH

Our bi-half layer can embedded into current deep architectures to learn binary codes
from scratch. We train an AutoEncoder with a deep encoder and decoder on Mnist
datasets where encoder and decoder consist of two fc layers. We append our bi-half layer
after encoder to generate binary code. The reconstruction loss is used as cost function.
We compare to using the sign layer and to adding an additional entropy regulariza-
tion term in the loss. For this baseline, as in [2, 4], we use Bᵀ1 as regularization term
balanced with the BCE reconstruction loss through a hyper-parameter α.

In the top row of Fig. 3.3 we train the network with 3 bits and visualize the distri-
butions of the continuous feature U over 5,000 images. We observe that the features
learned by sign layer are seriously tangled with each other. With binarization, most im-
ages will be scattered to same binary vertex and thus some bits have no discriminative
information. By adding an entropy regularization term, the feature tanglement can be
mitigated, but it is suboptimal solution which requires careful hyper-parameter tuning.
The proposed bi-half layer can learn evenly distributed features.

Fig. 3.3 (d) shows the retrieval performance where the left two subfigures show the
effect of hyper-parameters γ in Eq. (3.9) and α of term Bᵀ1. with code length 32 and
the right one presents the mAP over different code lengths. Tuning the parameters can
effectively improve the performance. For Sign+Reg method, it is a suboptimal solution in
optimizing information entropy in comparison with bi-half layer, which can be further
demonstrated in the right subfigure of Fig. 3.3 (d). The reconstruction loss for sign layer
and bi-half layer is shown in Fig. 3.3 (e). We observe that generating informative binary
codes in latent space can effectively minimize the reconstruction loss.
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Table 3.1: mAP@1000 results on Cifar-10(I) and mAP@All results on Nus-wide(I). The ? denotes that we run
the experiments with the released code by the authors.

Method
Cifar-10(I) Nus-wide(I)

16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

DeepBit [35] 19.40 24.90 27.70 39.22 40.32 42.06
SAH [62] 41.80 45.60 47.40 – – –
SADH [4] – – – 60.14 57.99 56.33
HashGAN [34] 44.70 46.30 48.10 – – –
GreedyHash? [38] 44.80 47.20 50.10 55.49 57.47 60.93
Ours 56.10 57.60 59.50 65.12 66.31 67.26

3.4.2. EMPIRICAL ANALYSIS

For the pre-trained models, we follow the unsupervised setting in [38] and use ||cos(a1,a2)−
cos(b1,b2)||22 as cost function to minimize the difference on the cosine distance relation-
ships, where a means the continuous feature extracted from the last layer of a pre-trained
network of one sample while b means the corresponding binary code.
How are the continuous features distributed? In Fig. 3.5 we train the network on Cifar-
10(I) with 4 bits and visualize the histogram distributions of each dimension in the con-
tinuous encoded feature U over all images. The sign layer [20, 38] does not match an
ideal half-half distribution whereas our bi-half method does a better approximation.
How are individual hashing bits distributed? In the left subfigure of Fig. 3.4 (a) we show
the per-bit probability of code +1 over all images for 16 bits. Cifar-10(I) dataset is used
to generate hash codes. The sign layer gives a non-uniformly distribution, and even for
some bits the probability is completely zero or completely one: Those bits never change
their value in the entire dataset and can thus safely be discarded. In contrast, our bi-half
method approximates a uniform distribution, making good use of full bit capacity.
Other hash coding strategies. The right subfigure of Fig. 3.4 (a) shows the comparison
between our bi-half coding method and three other hash coding strategies: continuous
relaxation layer [19, 23] (B → U), smoothed continuation layer [20, 41] (B → tanh(βU))
and sign layer [38] (sign(U)), respectively. Both 32 and 64 bits are used to generate hash
codes on the Cifar-10(I) dataset. From the results, we see that the sign layer method
slightly outperforms the other two coding methods which is consistent with [38]. This
may be because the sign layer method can effectively keep the discrete constraint in
comparison with other two methods. Our bi-half method outperforms other methods
for both code sizes.
An alternative variant of bi-half layer. An alternative variant of the bi-half layer is to
learn a translation term t added to the sign function sign(u+ t ) for each hash bit to get
half-half distributed binary codes. We estimate the median statistic over mini-batches to
implement this idea. Specifically, we keep an exponential moving average (EMA) of me-
dian points over each mini-batch which is used during inference. We conduct the com-
parison on Flickr25k dataset in Fig. 3.4 (b). The left subfigure of Fig. 3.4 (b) shows how the
EMA estimation of median changes with the training epochs over different batch sizes.
We adopt the linear learning rate scaling rule [63, 64] to adapt to batch size. We note
that smaller batch size makes the estimation value unstable. The middle subfigure con-
ducts a comparison between bi-half layer method and median translation method over
different batch sizes on using 16 bits. Increasing batch size can significantly improve the
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Figure 3.6: Top N precision and precision-recall curves on Mscoco. The proposed bi-half layer performs best.

Table 3.2: mAP@All for various methods on three Flickr25k, Nus-wide(II) and Cifar-10(II) datasets. Our method
with 16 bits outperforms others that use 64 bits.

Method
Flickr25k Nus-wide(II) Cifar-10(II)

16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

LSH + VGG [7] 58.31 58.85 59.33 43.24 44.11 44.33 13.19 15.80 16.73
SH + VGG [5] 59.19 59.23 60.16 44.58 45.37 49.26 16.05 15.83 15.09
ITQ + VGG [27] 61.92 63.18 63.46 52.83 53.23 53.19 19.42 20.86 21.51
DeepBit [35] 59.34 59.33 61.99 45.42 46.25 47.62 22.04 24.10 25.21
SGH [32] 61.62 62.83 62.53 49.36 48.29 48.65 17.95 18.27 18.89
SSDH [65] 66.21 67.33 67.32 62.31 62.94 63.21 25.68 25.60 25.87
DistillHash [33] 69.64 70.56 70.75 66.67 67.52 67.69 28.44 28.53 28.67
GreedyHash? [38] 62.36 63.12 63.41 51.39 55.80 59.27 28.71 31.72 35.47
Ours 71.42 72.35 73.10 67.12 68.05 68.21 42.87 43.29 44.13

performance for median based method. Due to memory limitations, unfortunately, it is
difficult to use very large batch sizes. The left subfigure of Fig. 3.4 (b) shows the compar-
ison with greedy hash (sign layer) and the median-based method with code length 16, 32
and 64. As expected, adding median term increases the sign layer baseline and bi-half
layer significantly outperforms median-based approach.
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Table 3.3: mAP@100 results on two video datasets using kinetics pre-trained 3D ResNet-34 and 3D ResNet-101.
The ? denotes we run the experiments with the released code.

Backbone Method
Ucf-101 Hmdb-51

16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

ResNet-34
GreedyHash? 45.49 57.24 64.77 30.32 37.55 40.53
Ours 50.83 60.30 65.89 34.21 38.67 41.74

ResNet-101
GreedyHash? 39.29 58.35 67.23 27.60 39.96 42.07
Ours 59.30 66.13 68.47 36.68 41.48 43.03

3.4.3. COMPARISON WITH STATE-OF-THE ART

We compare our method with previous unsupervised hashing methods, including seven
shallow unsupervised hashing methods, i.e. LSH [7], SH [5], PCAH, ITQ [27], SGH [29],
and eight deep unsupervised hashing methods, i.e. DeepBit [35], SGH [32], SSDH [65],
DistillHash [33], SAH [62], HashGAN [34], SADH [4], and GreedyHash [38]. To have a
fair comparison, we adopt the deep features for all shallow architecture-based baseline
methods. For GreedyHash, we run the experiments with the released code by the au-
thors. For other methods, the results are taken from the related literatures.

Table 3.1 shows the mAP@1000 results on Cifar-10(I) and mAP@All results on Nus-
wide(I) over three different hash code sizes 16, 32 and 64. The compared greedy hash [38]
method which directly uses the sign function as hash coding layer outperforms every-
thing except our method for all code sizes. Greedy hash [38] is effective to solve the
vanishing gradient problem and maintain the discrete constraint in hash learning, but
it cannot maximize hash bit capacity. In contrast, our method does maximize hash bit
capacity and clearly outperforms all other methods on this two datasets.

In Table 3.2, we present the mAP results on three datasets Flickr25k, Nuswide(II), and
Cifar-10(II), with hash code length varying from 16 to 64. The experiments are conducted
with the same setting as in the compared methods. We do best for all hash bits sizes for
all three datasets.

In Fig. 3.6, we conduct experiments on more challenging Mscoco dataset. The left
two subfigures present the TopN-precision curves with code lengths 16 and 32. Con-
sistent with mAP results, we can observe that our method performs best. Both mAP
and TopN-precision curves are Hamming ranking based metrics where our method can
achieve superior performance. Moreover, we plot the precision-recall curves for all meth-
ods with hash bit lengths of 16 and 32 in the right two subfigures Fig. 3.6 to illustrate the
hash lookup results. From the results, we can again observe that our method consis-
tently achieves the best results among all approaches, which further demonstrates the
superiority of our proposed method.

Hashing is about compact storage and fast retrieval, thus we analyze using fewer bits
in Table 3.1, Table 3.2 and Fig. 3.6. Only for Nus-wide(II) we perform on par while in all
other datasets our method using 16 bits clearly outperforms other methods using 64 bits.
This shows a 3 times reduction in storage and speed while even improving accuracy.
Video Retrieval Results: In Table 3.3, we present the mAP@100 results for Ucf-101 and
Hmdb-51 datasets with code length 16, 32 and 64. For both datasets and both ResNet
models our bi-half method consistently outperforms the sign layer method [38] over all
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hash bit length, especially for short bits. In hashing, fewer bits is essential to save storage
and compute.

3.5. CONCLUSION

We propose a new parameter-free Bi-half Net for unsupervised hashing learning by op-
timizing bit entropy. Our Bi-half layer has no hyper-parameters and compares favor-
ably to minimizing bit entropy with an additional hyper-parameter in the loss. The de-
signed bi-half layer can be easily embedded into current deep architectures, such as Au-
toEncoders, to automatically generate higher quality binary codes. The proposed proxy
derivative in backward pass can effectively encourage the continuous feature distribu-
tion to align with the ideal half-half distributed distribution. One limitation is that the
independence between different bits is not considered, which will be investigated in fu-
ture work. Experiments on 7 datasets show state of the art results. We often outperform
other hashing methods that use 64 bits where we need only 16 bits.
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4
EQUAL BITS: ENFORCING EQUALLY

DISTRIBUTED BINARY NETWORK

WEIGHTS

Binary networks are extremely efficient as they use only two symbols to define the net-
work: {+1,−1}. One can make the prior distribution of these symbols a design choice.
The recent IR-Net of Qin et al. argues that imposing a Bernoulli distribution with equal
priors (equal bit ratios) over the binary weights leads to maximum entropy and thus min-
imizes information loss. However, prior work cannot precisely control the binary weight
distribution during training, and therefore cannot guarantee maximum entropy. Here,
we show that quantizing using optimal transport can guarantee any bit ratio, including
equal ratios. We investigate experimentally that equal bit ratios are indeed preferable
and show that our method leads to optimization benefits. We show that our quantiza-
tion method is effective when compared to state-of-the-art binarization methods, even
when using binary weight pruning.
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4.1. INTRODUCTION

Binary networks allow compact storage and swift computations by limiting the network
weights to only two bit symbols {−1,+1}. In this paper we investigate weights priors
before seeing any data: is there a reason to prefer predominantly positive bit weights?
Or more negative ones? Or is equality preferable? Successful recent work [1] argues that
a good prior choice is to have an equal bit-ratio: i.e. an equal number of +1 and −1
symbols in the network. This is done by imposing an equal prior under the standard
Bernoulli distribution [1–3]. Equal bit distributions minimize information loss and thus
maximizes entropy, showing benefits across architectures and datasets [1]. However,
current work cannot add a hard constraint of making symbol priors exactly equal, and
therefore cannot guarantee maximum entropy.

Here, we propose a method to add a hard constraint to binary weight distribution, of-
fering precise control for any desired bit ratio, including equal prior ratios. We add hard
constraints in the standard quantization setting [1, 4, 5] making use of real-valued latent
weights that approximate the binary weights. We quantize these real-valued weights by
aligning them to any desired prior Bernoulli distribution, which incorporates our pre-
ferred binary weight prior. Our quantization uses optimal transport [6] and can guaran-
tee any bit ratio. Our method makes it possible to experimentally test the hypothesis in
[1] that equal bit ratios are indeed preferable to other bit ratios. We baptize our approach
with equal bit ratios: bi-half . Furthermore, we show that enforcing equal priors using
our approach leads to optimization benefits by reducing the problem search-space and
avoiding local minima.

We make the following contributions: (i) a binary network optimization method based
on optimal transport; (ii) exact control over weight bit ratios; (iii) validation of the as-
sumption that equal bit ratios are preferable; (iv) optimization benefits such as search-
space reduction and good minima; (v) favorable results compared to the state-of-the-art,
and can ensure half-half weight distribution even when pruning is used.

4.2. RELATED WORK

For a comprehensive survey on binary networks, see [7]. In Table 4.1 we show the rela-
tion between our proposed method and pioneering methods, that are representatives of
their peers, in terms of the binarization choices made. The XNOR method (Table 4.1(a))
was the first to propose binarizing latent real-valued weights using the sign function [5].
Rather than making each binary weight depend only on its associated real-value weight
or gradient value, IR-Net [1] (Table 4.1(b)) is a prototype method that uses filter-weight
statistics to update each individual binary weight. Here, we also use filter-weight statis-
tics to update the binary weights, however similar to [8] Table 4.1(d)) we do not rely on
the sign function for binarization, but instead use binary weight flips. This is a natu-
ral choice, as flipping the sign of a binary weight is the only operation one can apply to
binary weights.

Sign versus bit flips. The front-runners of binary networks are BinaryConnect [9] and
XNOR [5] and rely on auxiliary real weights and the sign function to define binary weights.
These works are subsequently extended with focus on the scaling factors in XNOR++ [4]
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Initialization Binarization, b

a© Sign, no filter statistics Gradient g ;
b ← sign(w)

XNOR-Net [5] Latent weight w .

b© Sign, filter statistics Gradient g ;
b ← sign

(
w−avg(w)

std(w−avg(w))

)
IR-Net [1] Latent weight w .

c© Flip, filter statistics Gradient g , Latent weight w ;
b ← flip(b), if

{
rank(w) < D

2 , and rank(w −αg ) ≥ D
2

rank(w) ≥ D
2 , and rank(w −αg ) < D

2Ours Threshold dependent on w .

d© Flip, no filter statistics Gradient g ;
b ← flip(b), if

{
τ< |g |, and

sign(g ) = sign(b)Bop [8] Predefined threshold τ.

Table 4.1: Optimization perspectives. (a) Classical binarization methods tie each binary weight b to an asso-
ciated real-valued latent variable w , and quantize each weight by only considering its associated real-valued
by using the sign function. (b) Rather than updating the weights independent of each other, recent work uses
filter-weight statistics when updating the binary weights. (c) Our proposed optimization method does not fo-
cus on using the sign function, but rather flips the binary weights based on the distribution of the real weights,
thus the binary weight updates depend on the statistics of the other weights through the rank of w . (d) Recent
work moves away from using the sign of the latent variables, and instead trains the binary network with bit
sign flips, however they still consider independent weight updates.

and BNN+ [10], while HWGQ [11] uses the sign function recursively for binarization. Bi-
Real [12] also uses the sign function for binarization and analyzes better approximations
of the gradient of the sign function. From a different perspective, recent work tries to
sidestep having to approximate the gradient of the sign function, and uses bit flips to
train binary networks [8]. The sign of the binary weights can be flipped based on search-
able [13] or learnable thresholds [14]. Here, we also rely on bit flips based on a dynamic
thresholding of the real weights, entailed by our optimal transport optimization strategy.

Using filter statistics or not. Commonly, binarization methods define each binary weight
update by considering only its associated value in the real-valued latent weights [4, 5, 11,
12] or in the gradient vector [8]. However, binary weights can also be updated using
explicit statistics of the other weights in the filter [15] or implicitly learned through a
function [16]. The real-valued filter statistics are used in IR-Net [1] to enforce a Bernoulli
distribution with equal priors. Similarly, our optimal transport optimization leads to
ranking the real weights, and therefore making use of the statistics of the real-weights in
each filter.

Network pruning. Pruning has been shown to improve the efficiency of deep neural net-
works [17–21]. However, the reason why pruning can bring improvements remains un-
clear in real-valued networks. It is commonly believed [22–25] that finding the “impor-
tant" weight values is crucial for retraining a small pruned model. Specifically, the “im-
portant" weight values are inherited [26] or re-winded [23] from a large trained model. In
contrast, [27] claims that the selected important weights are typically not useful for the
small pruned model, while the pruned architecture itself is more relevant. The lottery-
ticket idea has recently been applied to binary networks [28]. Here, we show that having
equal +1 and −1 ratios is also optimal when the networks rely on pruning and that our
optimal transport optimization can easily be adapted to work with other methods using
network pruning.
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4.3. BINARIZING WITH OPTIMAL TRANSPORT

4.3.1. BINARY WEIGHTS

We define a binary network where the weights B take binary values {1,−1}D . The binary
weights B follow a Bernoulli distribution B ∼ Be(ppos ), describing the probabilities of
individual binary values b ∈ {−1,1} in terms of the hyperparameters ppos and pneg :

p(b) = Be(b | ppos ) =
{

ppos if b =+1
pneg = 1−ppos , if b =−1

(4.1)

To be consistent with previous work, we follow XNOR-Net [5] and apply the binary opti-
mization per individual filter.

Because the matrix B is discrete, we follow [5, 9] by using real-valued latent weights
W to aid the training of discrete values, where each binary weight in B has an associated
real-valued weight in W. In the forward pass we quantize the real-valued weights W to
estimate the matrix B. Then, we use the estimated matrix B to compute the loss, and in
the backward pass we update the associated real-valued weights W.

4.3.2. OPTIMAL TRANSPORT OPTIMIZATION

The optimization aligns the real-valued weight distribution W with the prior Bernoulli
distribution in Eq. (4.1) and quantizes the real-valued weights W to B.

The empirical distribution Pw of the real-valued variable W ∈ RD and the empirical
distribution Pb for the discrete variable B can be written as:

Pw =
D∑

i=1
piδwi , Pb =

2∑
j=1

q jδb j , (4.2)

where δx is the Dirac function at location x. The pi and q j are the probability mass
associated to the corresponding distribution locations wi and b j , where Pb has only 2
possible locations in the distribution space {−1,1}.

To align Pw with the Bernoulli prior Pb in Eq. (4.1) we use optimal transport (OT) [6]
which minimizes the cost of moving the starting distribution Pw to the target distribu-
tion Pb . Because Pw and Pb are only accessible through a finite set of values, the corre-
sponding optimal transport cost is:

π0 = min
π∈Π(Pw ,Pb )

〈π,C 〉F , (4.3)

where Π(Pw ,Pb) is the space of the joint probability with marginals Pw and Pb , and π is
the general probabilistic coupling that indicates how much mass is transported to push
distribution Pw towards the distribution Pb . The 〈., .〉F denotes the Frobenius dot prod-
uct, and C ≥ 0 is the cost function matrix whose element C (wi ,b j ) denotes the cost of
moving a probability mass from location wi to location b j in distribution space. When
the cost is defined as a distance, the OT becomes the Wasserstein distance. We mini-
mize the 1-Wasserstein distance between Pw and Pb . This minimization has an elegant
closed-form solution based on simply sorting. For a continuous-valued weights vector



4.4. EXPERIMENTS

4

47

W ∈ RD , we first sort the elements of W, and then assign the top ppos D elements to +1,
and the bottom (1−ppos )D portion of the elements to −1:

B =π0 (W) =
{
+1, top pposD of sorted W

−1, bottom (1−ppos)D of sorted W
(4.4)

Rather than using the sign function to define the binarization, we flip the binary weights
based on the distribution of W. Thus the flipping of a binary weight depends on the
distribution of the other binary weights through W, which is optimized to be as close as
possible to B.

When applying our method in combination with pruning as in [28], we first mask the
binary weights B′ = M¯B with a mask M ∈ {0,1}D . This leads to a certain percentage of
the weights being pruned. Subsequently, we apply the Eq. (4.4) to the remaining non-
pruned weights, where D in Eq. (4.4) become the L1 norm of the mask, |M|.

4.3.3. BI-HALF: EXPLICITLY CONTROLLING THE BIT RATIO

Our optimal transport optimization allows us to enforce a hard constraint on precise bit
ratios by varying the ppos value. Therefore, we can test a range of prior binary weight
distributions.

Following [1], a good prior over the binary weights is one maximizing the entropy.
Using optimal transport, we maximize the entropy of the binary weights by setting the
bit ratio to half in Eq. (4.4):

p∗
pos = argmaxppos

H(B ∼ Be(ppos )) = 1

2
, (4.5)

where H(·) denotes the entropy of the binary weights B. We dub this approach bi-half .
Unlike previous work [1], we can guarantee equal symbol distributions and therefore
maximum entropy throughout the complete training procedure.

Initialization and scaling factor. We initialize the real-valued weights using Kaiming
normal [29]. The binary weights are initialized to be equally distributed per filter ac-
cording to Eq. (4.5). To circumvent exploding gradients, we use one scaling factor α per
layer for the binary weights to keep the activation variance in the forward pass close to 1.
Based on the ReLU variance analysis in [29] it holds that 1

2 D ·V ar (αB) = 1, where D is
the number of connections and B are our binary weights. B is regularized to a bi-half
distribution, thus V ar (B) = 1, which gives α=p

2/D .
To better clarify, for an L-layer network with input data y1 standardized to V ar [y1] =

1, where the variance of each binary layer l is V ar [Bl ] = 1, and Dl is the number of con-
nections in that layer: i) Without the scaling, the output variance is V ar [yL] =V ar [y1]∏L

l=2
Dl
2 V ar [Bl ] = ∏L

l=2
Dl
2 . Typically Dl is large, leading to exploding gradients; ii) With

the scaling, we scale Bl by α=√
2/Dl , leading to V ar [yL] =V ar [y1]

∏L
l=2

Dl
2 V ar (αBl ) =

1 which stabilizes learning.

4.4. EXPERIMENTS

Datasets and implementation details. We evaluate on Cifar-10, Cifar-100 [30] and Im-
ageNet [31], for a number of network architectures. Following [23, 32] we evaluate 4
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(a) Sign has uneven flips by independently updating binary weight.

(b) IR-Net has uneven flips by balancing the latent weights.

(c) Bi-half has even flips by precisely controlling the flipping.

Figure 4.1: Hypothesis: bi-half maximizes the entropy. We compare the bit flips during training in our bi-half
with the sign [5] and IR-Net [1] on the Conv2 network on Cifar-10. The x-axis shows the training iterations.
Left: Bit flips during training to +1 (dark blue) or to -1 (cyan). Right: Accumulated bit flips over the training
iterations, as well as the difference between the bit flips from (+1 to −1) and the ones from (−1 to +1). In
contrast to sign and IR-Net, our bi-half method can guarantee an equal bit ratio.
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Figure 4.2: Hypothesis: bi-half maximizes the entropy. We compare our bi-half method to sign [5] and IR-
Net [1]. (a) Entropy of the binary weights during training for Conv2 on Cifar10. (b) Entropy of the network
activations for ResNet-18 on Cifar100. Our bi-half model can guarantee maximum entropy during training for
the binary weight distribution and it is able to better maximize the entropy of the activations.

shallow CNNs: Conv2, Conv4, Conv6, and Conv8 with 2/4/6/8 convolutional layers. We
train the shallow models on Cifar-10 for 100 epochs, with weight decay 1e−4, momentum
0.9, batch size 128, and initial learning rate 0.1 using a cosine learning rate decay [33].
Following [1] we also evaluate their ResNet-20 architecture and settings on Cifar-10. On
Cifar-100, we evaluate our method on 5 different models including VGG16 [34], ResNet18
[35], ResNet34 [35], InceptionV3 [36], ShuffleNet [37]. We train the Cifar-100 models for
350 epochs using SGD with weight decay 5e−4, momentum 0.9, batch size 128, and initial
learning rate 0.1 divided by 10 at epochs 150, 250 and 320. For ImageNet we use ResNet-
18 and ResNet-34 trained for 100 epochs using SGD with momentum 0.9, weight decay
1e−4, and batch size 256. Following [1, 12], the initial learning rate is set as 0.1 and we
divide it by 10 at epochs 30, 60, 90. All our models are trained from scratch without any
pre-training. For the shallow networks we apply our method on all layers, while for the
rest we follow [1, 12], and apply it on all convolutional and fully-connected layers except
the first, last and the downsampling layers.

4.4.1. HYPOTHESIS: BI-HALF MAXIMIZES THE ENTROPY

Here we test whether our proposed bi-half model can indeed guarantee maximum en-
tropy and therefore an exactly equal ratio of the −1 and +1 symbols. Fig. 4.1 shows the
bit flips performed in our proposed bi-half method during training when compared to
two baselines: sign [5] and IR-Net [1]. We train a Conv2 network on Cifar-10 and plot
the flips of binary weights in a single binary weight filter during training. The binary
weights are initialized to be equal distributed (half of the weights positive and the other
half negative). The classical sign method [5] in Fig. 4.1(c) binarizes each weight inde-
pendent of the other weights, therefore during training the flips for (+1 to −1) and (−1
to +1) are uneven. The recent IR-Net [1] in Fig. 4.1(b) balances the latent weights by us-
ing their statistics to obtain evenly distributed binary weight values. However, it can not
guarantee evenly distributed binary weights throughout training. Our bi-half model in
Fig. 4.1(c) updates the binary weight based on the statistics of the other weights. For our
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Figure 4.3: Empirical analysis (a): Effect of hyper-parameters. We show the effect of weight decay and learn-
ing rate decay on binary weights flips using the Conv2 network on Cifar-10. Carefully tuning these hyper-
parameters is important for adequately training the binary networks.
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Figure 4.4: Empirical analysis (c): Optimization benefits. We train our bi-half model 100 times on Cifar-10
and plot the distribution of the losses and accuracies over the 100 repetitions. We compare our results using
optimal transport to the results using the standard sign function. On average our bi-half model tends to arrive
at better losses and accuracies than the baseline.

method the binary weights are evenly flipped during training, offering exact control of
bit weight ratios.

Fig. 4.2(a) shows the binary weights entropy changes during training on Conv2 when
compared to sign [5] and IR-Net [1]. IR-Net aims to maximize entropy by subtracting
the mean value of the weights, yet, this is not exact. In contrast, we maximize the infor-
mation entropy by precisely controlling the binary weight distribution. In Fig. 4.2(b) we
show the entropy of the binary activations. Adjusting the distribution of binary weights
retains the information in the binary activation. For our bi-half method, the binary acti-
vation of each channel is close to the maximum information entropy under the Bernoulli
distribution.

4.4.2. EMPIRICAL ANALYSIS

(a) Effect of hyper-parameters. In Fig. 4.3 we study the effectiveness of the commonly
used training techniques of varying the weight decay and learning rate decay, when
training the Conv2 network on Cifar-10. Fig. 4.3(a) shows that using a higher weight
decay reduces the magnitude of latent weights during training and therefore the magni-
tude of the cut-off point (threshold) between the positive and negative values. Fig. 4.3(b)
compares the gradient magnitude of two different learning rate (lr) schedules: “constant
lr" and “cosine lr". The magnitude of the gradients reduces during training when using
the cosine learning rate. In Fig. 4.3(c) we find that increasing the weight decay for binary
network with a constant learning rate schedule, increases binary weights flips. Fig. 4.3(d)
shows that decaying the learning rate when using a cosine learning rate schedule gradu-
ally decreases the number of flipped weights. Fig. 4.3(e) shows that the choice of weight
decay and learning rate decay affect each other. Our bi-half method uses the rank of la-
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Figure 4.5: Empirical analysis (b): Which bit-ratios are preferred? We test on Cifar-10 and Cifar-100 using
Conv2 the choice of the priorppos under the Bernoulli distribution. The x-axis is the probability of the +1
connections denoted by ppos in the Bernoulli prior distribution, while the y-axis denotes the top-1 accuracy
values. Results are in agreement with the hypothesis of Qin et al. [1] that equal priors as imposed in our bi-half
model are preferable.

tent weights to flip the binary weights. A proper tuned hyper-parameter of weight decay
and learning rate decay will affect the flipping threshold. Therefore in the experiments,
we carefully tune the hyper-parameters of weight decay and learning rate decay to build
a competitive baseline.
(b) Which bit-ratio is preferred? In Fig. 4.5, we evaluate the choice of the prior ppos in
the Bernoulli distribution for Conv2 on Cifar-10 and Cifar-100. By varying the bit-ratio,
the best performance is consistently obtained when the negative and positive symbols
have equal priors as in the bi-half model. Indeed, as suggested in [1], when there is no
other a-priori reason to select a different ppos , having equal bit ratios is a good choice.
(c) Optimization benefits with bi-half. The uniform prior over the −1 and +1 under the
Bernoulli distribution regularizes the problem space, leading to only a subset of possi-
ble weight combinations available during optimization. We illustrate this intuitively on
a 2D example for a simple fully-connected neural network with one input layer, one hid-
den layer, and one output layer in a two-class classification setting. We consider a 2D
binary input vector x = [x1, x2]ᵀ, and define the network as: σ(w2

ᵀσ(w1
ᵀx+b1)), where

σ(·) is a sigmoid nonlinearity, w1 is a [2×3] binary weight matrix, b1 is [3×1] binary bias
vector, and w2 is a [3× 1] binary vector. We group all 12 parameters as a vector B. We
enumerate all possible binary weight combinations in B, i.e. 212 = 4096, and plot all de-
cision boundaries that separate the input space into two classes as shown in Fig. 4.7(a).
All possible 4096 binary weights combinations offer only 76 unique decision boundaries.
In Fig. 4.7.(b) the Bernoulli distribution over the weights with equal prior (bi-half ) reg-
ularizes the problem space: it reduces the weight combinations to 924, while retaining
66 unique solutions, therefore the ratio of the solutions to the complete search spaces is
increased nearly 4 times. Fig. 4.7.(c) shows in a half-log plot how the numbers of weight
combinations and unique network solutions change with varying bit-ratios. Equal bit
ratios is optimal.

In Fig. 4.4 we train the Conv2 networks 100 times on Cifar-10 and plot the distribution
of the training and test losses and accuracies. We plot these results when using the bi-
half model optimization with optimal transport and by training the network using the
standard sign function. The figure shows the bi-half method consistently finds better
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Figure 4.7: Empirical analysis (c): Optimization benefits. Bi-half regularization: 2D example for a 12-
parameter fully connected binary network σ(w2

ᵀσ(w1
ᵀx+b1)), where σ(·) is a sigmoid nonlinearity. Weights

are in {−1,1}. (a) Enumeration of all decision boundaries for 12 binary parameters (4096 = 212 combinations).
(b) Weight combinations and unique solutions when using our bi-half constraint. (c) The weight combina-
tions and unique decision boundaries for various bit-ratios. When the number of negative binary weights is 6
on the x-axis, we have equal bit-ratios, which is the optimal ratio. Using the bi-half works as a regularization,
reducing the search-space while retaining the majority of the solutions.

solutions with lower training and test losses and higher training and test accuracy. To
better visualize this trend we sort the values of the losses for our bi-half and the baseline
sign method over the 100 repetitions and plots them next to each other. On average the
bi-half finds better optima.

4.4.3. ARCHITECTURE VARIATIONS

In Table 4.2 we compare the Sign [5], IR-Net [1] and our bi-half on four shallow Conv2/4/6/8
networks on Cifar-10 (averaged over 5 trials). As the networks become deeper, the pro-
posed bi-half method consistently outperforms the other methods.

In Fig. 4.6, we further evaluate our method on Cifar-100 over 5 different architectures:
VGG16 [34], ResNet18 [35], ResNet34 [35], InceptionV3 [36], ShuffleNet [37]. Our method
is slightly more accurate than the other methods, especially on the VGG16 architecture,
it never performs worse.
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Figure 4.8: Comparison with state-of-the-art (b): Pruned networks. Test accuracy of Conv2/4/6/8 on CIFAR-
10, and ResNet-18 on CIFAR-100 when varying the % pruned weights. We compare with the MPT baseline
[28] using binary weight masking and the sign function. Having equal +1 and −1 ratios is also optimal when
the networks rely on pruning and that our optimal transport optimization can easily be adapted to work in
combination with pruning.

Table 4.2: Architecture variations. Accuracy comparison of sign [5], IR-Net [1] and our bi-half on Conv2/4/6/8
networks using Cifar-10, over 5 repetitions. As the depth of the network increases, the accuracy of our method
increases.

Method Conv2 Conv4 Conv6 Conv8

Sign 77.86± 0.69 86.49± 0.24 88.51± 0.35 89.17±0.26

IR-Net 78.32± 0.25 87.20± 0.26 89.61± 0.11 90.06±0.06

Bi-half (ours) 79.25± 0.28 87.68± 0.32 89.92± 0.19 90.40±0.17

4.4.4. COMPARISON WITH STATE-OF-THE-ART

(a) Comparison on ImageNet. For the large-scale ImageNet dataset we evaluate a ResNet-
18 and ResNet-34 backbone [35]. Table 5.3 shows a number of state-of-the-art quan-
tization methods over ResNet-18 and ResNet-34, including: ABC-Net [15], XNOR [5],
BNN+ [10], Bi-Real [12], RBNN [38], XNOR++ [4], IR-Net [1], and Real2binary [39]. Of
all the methods, RBNN is the closest in accuracy to our bi-half model. This is because
RBNN relies on the sign function but draws inspiration from hashing, and adds an activation-
aware loss to change the distribution of the activations before binarization. On the
other hand, our method uses the standard classification loss but outperforms most other
methods by a large margin on both ResNet-18 and ResNet-34 architectures.
(b) Comparison on pruned networks. In Fig. 4.8 we show the effect of our bi-half on
pruned models. Following the MPT method [28] we learn a mask for the binary weights
to prune them. However, in our bi-half approach for pruning we optimize using op-
timal transport for equal bit ratios in the remaining unpruned weights. We train shal-
low Conv2/4/6/8 networks on CIFAR-10, and ResNet-18 on CIFAR-100 while varying the
percentage of pruned weights. Each curve is the average over five trials. Pruning consis-
tently finds subnetworks that outperform the full binary network. Our bi-half method
with optimal transport retains the information entropy for the pruned subnetworks, and
consistently outperforms the MPT baseline using the sign function for binarization.

4.5. CONCLUSION

We focus on binary networks for their well-recognized efficiency and memory benefits.
To that end, we propose a novel method that optimizes the weight binarization by align-



4

54 4. EQUAL BITS: ENFORCING EQUALLY DISTRIBUTED BINARY NETWORK WEIGHTS

Table 4.3: Comparison with state-of-the-art (a): ImageNet results. We show Top-1 and Top-5 accuracy on
ImageNet for a number of state-of-the-art binary networks. Sign is our baseline by carefully tuning the hyper-
parameters. Our proposes bi-half model consistently outperforms the other binarization methods on this
large-scale classification task.

Backbone Method Bit-width Top-1(%) Top-5(%)

(W/A)

ResNet-18

FP 32/32 69.3 89.2

ABC-Net 1/1 42.7 67.6

XNOR 1/1 51.2 73.2

BNN+ 1/1 53.0 72.6

Least-squares 1/1 58.9 81.4

XNOR++ 1/1 57.1 79.9

IR-Net 1/1 58.1 80.0

RBNN 1/1 59.9 81.9

Sign (Baseline) 1/1 59.98 82.47

Bi-half (ours) 1/1 60.40 82.86

ResNet-34

FP 32/32 73.3 91.3

ABC-Net 1/1 52.4 76.5

Bi-Real 1/1 62.2 83.9

IR-Net 1/1 62.9 84.1

RBNN 1/1 63.1 84.4

bi-half (ours) 1/1 64.17 85.36

ing a real-valued proxy weight distributions with an idealized distribution using optimal
transport. This optimization allows us to test which prior bit ratio is preferred in a bi-
nary network, and we show that the equal bit ratios as advertised by [1] do indeed work
better. Additionally, we show that our optimal transport binarization has optimization
benefits such as: reducing the search space and leading to better local optima. Finally,
we demonstrate competitive performance when compared to state-of-the-art, and show
improved accuracy on 3 different datasets, using a variety of different architectures. We
also show accuracy gains when using network pruning.
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5
UNDERSTANDING WEIGHT

MAGNITUDE HYPERPARAMETERS IN

TRAINING BINARY NETWORKS

Binary Neural Networks (BNNs) are compact and efficient by using binary weights in-
stead of real-valued weights. Current BNNs use latent real-valued weights during train-
ing, where hyper-parameters are inherited from real-valued networks. The interpreta-
tion of several of these hyperparameters is based on the magnitude of the real-valued
weights. For BNNs, however, the magnitude of binary weights is not meaningful, and
thus it is unclear what these hyperparameters actually do. One example is weight-decay,
which aims to keep the magnitude of real-valued weights small. Other examples are la-
tent weight initialization, the learning rate, and learning rate decay, which influence the
magnitude of the real-valued weights. The magnitude is interpretable for real-valued
weights, but loses its meaning for binary weights. In this paper we offer a new interpre-
tation of these magnitude-based hyperparameters based on higher-order gradient fil-
tering during network optimization. Our analysis makes it possible to understand how
magnitude-based hyperparameters influence the training of binary networks which al-
lows for new optimization filters specifically designed for binary neural networks that are
independent of their real-valued interpretation. Moreover, our improved understanding
reduces the number of hyperparameters, which in turn eases the hyperparameter tuning
effort which may lead to better hyperparameter values for improved accuracy.
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5.1. INTRODUCTION
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Figure 5.1: Changes in real-valued weights
change their magnitude. For binary
weights, however, the magnitude will never
change and magnitude-based hyperparam-
eters need reinterpretation.

A Binary Neural Network (BNN) weight is a single
bit: −1 or +1, which is compact and efficient, en-
abling applications on, for example, edge devices.
Yet, training BNNs using gradient descent is diffi-
cult because of the discrete binary values. Thus,
BNNs are often [1–3] optimized with so called ‘la-
tent’, real-valued weights, which are discretised to
−1 or +1 by, e.g., taking the positive or negative
sign of the real value.

The latent weight optimization depends on
several essential hyperparameters, such as their
initialization, learning rate, learning rate decay,
and weight decay. These hyperparameters are im-
portant for BNNs, as shown for example in [3], and
also by [4], who both improve BNN accuracy by
better tuning these hyperparameters.

In this paper we investigate the latent weight hyperparameters used in a BNN, in-
cluding initialization, learning rate, learning rate decay, and weight decay. All these hy-
perparameters influence the magnitude of the latent weights. Yet, as illustrated in Fig 5.1,
in a BNN, the binary weights are −1 or +1, which always have a constant magnitude and
thus magnitude-based hyperparameters lose their meaning. We draw inspiration from
the seminal work of [5], who reinterpret latent weights from an inertia perspective and
state that latent weights do not exist. Thus, the magnitude of latent weights also does
not exist. Here, we investigate what latent weight-magnitude hyperparameters mean for
a BNN, how they relate to each other, and what justification they have. We provide a
gradient-filtering perspective on latent weight hyperparameters which main benefit is a
simplified setting: fewer hyperparameters to tune, achieving similar accuracy as current,
more complex methods.

5.2. RELATED WORK

Latent weights in BNNs. By tying each binary weight to a latent real-valued weight, con-
tinuous optimization approaches can be used to optimize binary weights. Some meth-
ods minimize the quantization error between a latent weight and its binary variant [6, 7].
Others focus on gradient approximation [8–10], or on reviving dead weights [11, 12],
or on entropy regularization [13] or a loss-aware binarization [14, 15]. These works di-
rectly apply traditional optimization techniques inspired by real-valued network such as
weight decay, learning rate and its decay, and optimizers. The summary of [16] gives a
good overview of these training techniques in BNNs. Recently, some papers [3, 4, 17, 18]
noticed that the interpretation of these optimization techniques does not align with the
binary weights of BNNs [19, 20]. Here, we aim to shed light on why, by explicitly analyz-
ing latent weight-magnitude hyperparameters in a BNN.

Latent weight magnitudes. Several techniques exploit the magnitude of the latent weights
during BNN optimization. Latent weights clipping is proposed in [21] and followed by
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its extensions [22, 23] to clip the latent weights within a [−1,1] interval to prevent the
magnitude of latent weights from growing too large. Gradient clipping [21, 24, 25] stops
gradient flow if the magnitude of latent weight is too large. Work on latent weight scal-
ing [25, 26] standardizes the latent weights to a pre-defined magnitude. Excellent results
are achieved by a two-step training strategy [2, 4] that in the first step trains the net-
work from scratch using only binarizing activations with weight decay, and then in the
second step they fine-tune by training without weight decay. Our method reinterprets
the meaning of the magnitude based weight decay hyperparameter in optimizing BNNs
from a gradient filtering perspective, offering similar accuracy as two step training with
a simpler setting, using just a single step.

Optimization by gradient filtering. Gradient filtering is a common approach used to
tackle the noisy gradient updates caused by minibatch sampling. Seminal algorithms
including Momentum [27] and Adam [28] which use a first order infinite impulse re-
sponse filter (IIR), i.e. exponential moving average (EMA) to smooth noisy gradients. [29]
takes this one step further and introduces the Filter Gradient descent Framework that
can use different types of filters on the noisy gradients to make a better estimation of the
true gradient. In binary network optimization, Bop [5] and its extension [30] introduce a
threshold to compare with the smoothed gradient by EMA to determine whether to flip
a binary weight. In our paper, we build on second order gradient filtering techniques to
reinterpret the hyperparameters that influence the latent weight updates.

Sound optimization approaches. Instead of using heuristics to approximate gradient
descent on discrete binary values, several works take a more principled approach. [31]
propose a probabilistic training method for BNN, and [32] present a theoretical under-
standing of straight through estimators (STE) [33]. [34] propose a Bayesian perspective
and [35] formulate a noisy quantizer. Even though these approaches provide more the-
oretical justification in optimizing BNNs, they are more complex by either relying on
stochastic settings or discrete relaxation training procedures. Moreover, these methods
do not (yet) empirically reach a similar accuracy as current mainstream heuristic meth-
ods [2, 8]. In our paper, we build on the mainstream approaches, to get good empirical
results, but add a better understanding of their properties, taking a step towards better
theoretical understanding of empirical approaches.

We start with a latent weights BNN and convert it to an equivalent latent-weight free
setting, as in [5]. To do this, we use a magnitude independent setting, which means that
no gradient-clipping or scaling based on the channel-wise mean of the latent-weights is
used.

BNN setup. We use Stochastic Gradient Descent (SGD) with weight decay and momen-
tum as a starting point, as this is a commonly used setting, see [6], [8], [25]. Our setup is
as follows:

w0 = init() (5.1) mi = (1−γ)mi−1 +γ∇θi , (5.2)

wi = wi−1 −ε(mi +λwi−1) (5.3) θi = sign(wi ) (5.4)
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sign(x) =


−1, if x < 0;

+1, if x > 0;

random{−1,+1} otherwise.

(5.5)

Here, wi is a latent weight at iteration i which is initialized at w0. θi is a binary
weight, ε is the learning rate, λ is the weight decay factor, mi is the momentum exponen-
tially weighted moving average with m−1 = 0 and discount factor γ, ∇θi is the gradient
over the binary weight and random{−1,+1} is a uniformly randomly sampled -1 or +1.

We then convert to the latent-weight free setting of [5] where latent weights are inter-
preted as accumulating negative gradients. We introduce gi =−wi , which allows work-
ing with gradients instead of with latent weights. We can then write (5.3) as follows

gi = gi−1 +ε(mi −λgi−1). (5.6)

Latent weight initialization. To investigate latent weight initialization we unroll the
the recursion in (5.6) by writing it out as a summation:

gi = (1−ελ)gi−1 +εmi = ε
i∑

r=0
(1−ελ)i−r mr . (5.7)

Latent-weights are typically initialized using real-valued weight initialization tech-
niques [36, 37]. However, since we now interpret latent weights as accumulated gra-
dients, we argue to also initialize them as gradient accumulation techniques such as
Momentum [27] and simply initialize w0 = g0 = 0, because at initialization there is no
preference for negative or positive gradients, and their expectation is 0. We do not use a
bias-correction as done in [28] because in practice we noticed that gradient magnitudes
are large in the first few iterations. Applying bias correction increases this effect, which
had a negative effect on training. To prevent all binary weights θ to start at the same
value, we use the stochastic sign function in (5.5) that randomly chooses a sign when the
input is exactly 0.

Learning rate and weight decay. The learning rate ε appears in two places in (5.7):
once outside the summation, and once inside the summation. The ε outside the sum-
mation can only scale the latent weight and will not influence outcome of the sign in
(5.4) as

sign

(
ε

i∑
r=0

(1−ελ)i−r mr

)
= sign

(
i∑

r=0
(1−ελ)i−r mr

)
. (5.8)

Thus, the leftmost ε can be removed, or set randomly without influencing the training
process.

For the ε inside the summation of (5.7), it appears together with the weight decay
term λ. Thus, there are two free hyperparameters that only control one factor, therefore
one of them is redundant and can use a single combined hyperparameterα= ελ. Instead
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of setting a value for the learning rate ε, and setting a value for the weight decay λ, we
now only have to set a single value for α. Since (5.8) shows us that we can freely scale the
sum with any constant factor, we scale it with α, as

gi =α
i∑

r=0
(1−α)i−r mr , (5.9)

which allows us to re-write the sum with a recursion, as an exponential moving average
(EMA) as

gi = (1−α)gi−1 +αmi , (5.10)

where g−1 = 0. This shows that for BNNs under magnitude independent conditions, SGD
with weight decay is just a exponential moving average. This gives a magnitude-free jus-
tification for using weight decay since its actual role is to act as the discount factor in an
EMA. Note that it is no longer possible to set α to 0 since then there are no updates any-
more, but setting to a small (10−20) number will essentially work the same. The meaning
of α is now clear, as in the EMA it controls how much to take the past into account.

Learning rate decay. There no longer is a learning rate to be decayed, however, since
learning rate decay scales the learning rate and α = ελ, now the learning rate decay di-
rectly scales α, so from now on we apply it to alpha and will refer to it as α-decay. This
also helps better explain its function: α-decay increases the window size during train-
ing, causing the filtered gradient to become more stable and allowing the training to
converge.

Momentum. Now adding back the momentum term of (5.2) in the original setup yields

mi = (1−γ)mi−1 +γ∇θi , (5.11)

gi = (1−α)gi−1 +αmi , (5.12)

θi =−sign(gi ). (5.13)

Thus, SGD with weight decay and momentum is smoothing the gradient twice with an
EMA filter.

Latent weight optimization as a second order linear infinite impulse response filter.
EMAs are a specific type of linear Infinite Impulse Response (IIR) Filter [38]. Linear filters
are filters that compute an output based on a linear combination of current and past
inputs and past outputs. The general definition is given as a difference equation:

yi = 1

a0
(b0xi +b1xi−1 + ...+bP xi−P −a1 yi−1 −a2 yi−2 − ...−aP yi−Q ), (5.14)

where i is the time step, yi are the outputs, xi are the inputs, a j and b j are the filter coef-
ficients and P and Q are the maximum of iterations the filter looks back at the inputs and
outputs to compute the current output. The maximum of P and Q defines the order of
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Learning rate Learning rate decay Init Momentum Weight decay Scaling Clipping

Latent: ε ε-decay w0 γ λ X X
Filtered: – α-decay – γ α – –

Table 5.1: Hyperparameters used in the latent weight view versus our filtered gradients perspective. Our fil-
tered perspective reduces the number of hyperparameters from 7 to 3.

the filter. An EMA only looks at the previous output and the current input, so is therefore
a first order IIR filter. Expressing an EMA as a filter looks as follows:

yi = (1−α)yi−1 +αxi = 1

a0
(b0xi −b1 · xi−1 −a1 yi−1), b =

[
α

0

]
, a =

[
1

α−1

]
. (5.15)

In our optimizer we have a cascade of two EMAs applied in series to the same signal
which can be represented by a filter with the order being the sum of the orders of the
original filters. To get the new a and b vectors the original ones are convolved with each
other. In our case this gives:

b =
[
γ

0

]
?

[
α

0

]
=

αγ0
0

 , a =
[

1
γ−1

]
?

[
1

α−1

]
=

 1
(α−1)+ (γ−1)
(α−1) · (γ−1)

 , (5.16)

when applied to our gradient filtering setting in (5.12) gives the difference equation:

gi =αγ∇θi − (α+γ−2)gi−1 − (α−1)(γ−1)gi−2 (5.17)

Thus, in a magnitude independent setting, SGD with weight decay and momentum
is equivalent to a 2nd order linear IIR filter. Note that α and γ have the same function:
Withoutα decay, the values forα and γ can be swapped. This filtering perspective opens
up new methods of analysis for optimizers.
Main takeaway. Our re-interpretations reduces the 7 hyper parameters in the latent
weight view with SGD, to only 3 hyperparameters in our filtering view, see Table 5.1.

5.3. EXPERIMENTS

We empirically validate our analysis on CIFAR-10, using the BiRealNet-20 architecture [8].
Unless mentioned otherwise the networks were optimized using SGD for both the real-
valued and binary parameters with as hyperparameters: learning rate=0.1, momentum
with γ= (1−0.9), weight decay=10−4, batch size=256 and cosine learning rate decay and
cosine alpha decay. We analyze the weight flip ratio at every update, which is also known
as the FF ratio ([4]).

IFF = |sign(wi+1)− sign(wi )|1
2

FFratio =
∑L

l=1

∑
w∈Wl

IFF

Ntotal
(5.18)

where wi is a latent weight at time i , L the number of layers, Wl the weights in layer l ,
and Ntotal the total number of weights.
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Figure 5.2: Gradients and filtered gradients for a first and second order filter in a single epoch on CIFAR-10.
For better visualisation, the filter outputs are scaled up to a similar range as the unfiltered gradients. It can be
seen that the unfiltered gradients are noisy and that the filtered outputs are smoother. The second order filter
reduces the noise even further compared to the first order filter.
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(a) Varying learning rates, constant init.
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(b) Vary init, constant learning rate (ε=1.0).

Figure 5.3: In the magnitude independent setting, scaling the learning rate has the exact same effect on the
flipping ratio as scaling the initial latent-weights by the inverse.
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Figure 5.4: Learning rate effect on accuracy for three settings. (a). standard SGD. (b) Magnitude independent
in (5.3), by removing clipping and scaling. (c) Magnitude independent with latent weight initializes of 0 in
(5.7). Setting (a) has just a single optimum. The accuracy in setting (b) is sensitive to small learning rates. For
setting (c), accuracy is independent of the learning rate.
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Figure 5.5: Bit flipping (FF) ratio and accuracy for varying alphas from eq 5.17. BNNs are sensitive to alpha,
similar to how they are sensitive to weight decay. Tuning alpha is essential.

1st order vs 2nd order We visually compare filter orders by sampling real gradients
from a single binary weight trained on CIFAR-10 in Figure 5.2. For the same α, a 1st
order filter is more noisy than a 2nd order filter. This may cause the binary weight to
oscillate, even though the larger trend is that it should just flip once. To reduce these
oscillations with a 1st order filter requires a smaller alpha. This, however, causes other
problems because α determines the window size of past gradients and with a smaller α
many more gradients are used. This means that it takes much longer for a trend in the
gradients to effect the binary weight. Instead, the 2nd order filter has both benefits: it
can filter out high frequency noise while still able to react quicker to changing trends.

Magnitude independent learning rate vs initialization In Figure 5.3 we show the bit
flipping ratio for the learning rate ε and the initialization g0. Multiplying ε with some
scaling factor s is the same as dividing g0 by s: sign

(
(1−ελ)i g0 + sε

∑i
r=1(1−ελ)i−r mr

)=
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sign
(
(1−ελ)i g0

s +ε∑i
r=1(1−ελ)i−r mr

)
, because the magnitude has no effect on the sign.

Larger ε in Figure 5.3(a) and smaller g0 in Figure 5.3(b) are independent to scaling and
have similar flipping ratios. A too small ε or too large g0 do not reach the same flipping
ratios, because their ratio is insufficient to update the binary weights. For sufficiently
large ratios it means that scaling both ε and g0 has no effect on training, but also that
scaling the ε or scaling g0 with the inverse is identical: as seen by comparing the two
plots in Figure 5.3.
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Figure 5.6: Flipping rate and accuracy for alpha decay. With
decay the FF ratio goes to zero. Without decay, the flipping
will continue, preventing convergence, reducing accuracy.

Sensitivity to hyperparameters for
weight magnitude (in)dependence
We evaluate SGD in the standard
magnitude dependent setting with
clipping and scaling vs a magnitude
independent setting with initializing
the latent-weights to zero. To keep
the effect of weight decay constant,
we scale the weight decay factor in-
versely with the learning rate. Re-
sults in Figure 5.4 show that for the
standard magnitude dependent set-
ting the learning rate ε has to be carefully balanced. A too small ε w.r.t. to the initial
weights inhibits learning; while a too large ε will push latent-weights to the clipping re-
gion and will stop updating. In the magnitude independent setting there is no clipping.
A too small ε, however is still problematic because the magnitudes of the gradients are
smaller when not using the scaling factor and the accuracy drops significantly. When
initializing to zero, as we propose, this problem disappears, because there is no initial
weight to hinder training and all learning rates perform equal.

Alpha In Fig 5.5 we vary α from eq 5.17. Alpha strongly influences training. A too
largeα causes too many binary weight flips per update, which hinders converging. A too
small αmakes the network converge too quickly, which hurts the end result. Tuning α is
essential.
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Figure 5.7: Equivalence of latent weights ((5.3)) and our gradi-
ent filtering ((5.17)). They are empirically equivalent.

Alpha decay For proper conver-
gence the flipping (FF) ratio should
go to zero. We transform learning
rate decay to alpha decay. When
α becomes smaller, the gradients
will change less, causing fewer flips,
forcing the network to converge.

See the plots in Figure 5.6 where
one network has been trained with
cosine alpha decay and one with-
out alpha decay. With and without
alpha decay both seem to perform
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Table 5.2: State-of-the-art on CIFAR-10. The ? de-
notes that we re-ran these experiments ourselves.

Method
Training
Strategy

Bit-width
(W/A)

Top-1
Acc(%)

FP 32/32 91.7

DoReFa-Net [39]

One step

1/1 79.3
DSQ [40] 1/1 84.1
IR-Net [25] 1/1 86.5
Bi-Real? [8] 1/1 85.0
Bi-Real + Our filtering optimizer 1/1 86.5

Bi-Real? [8] Two step 1/1 86.7

Table 5.3: Comparison with state-of-the-art on Imagenet.

Method
Training
Strategy

Top-1
Acc(%)

Top-5
Acc(%)

CI-BCNN [41]

One step

59.9 84.2
Binary MobileNet [42] 60.9 82.6
MoBiNet [43] 54.4 77.5
EL [17] 56.4 –
MeliusNet29 [44] 65.8 –
ReActNet-A + Our filtering optimizer 69.7 88.9

StrongBaseline [3]

Two step

60.9 83.0
Real-to-Binary [3] 65.4 86.2
ReActNet-A [2] 69.4 88.6
ReActNet-A-AdamBNN [4] 70.5 89.1

well at the start of training, however, the variant without alpha decay plateaus at the end
of training while the BNN with alpha decay converges better and continues improving,
leading to a better end result.

Equivalent interpretation Figure 5.7 shows empirical validation with matching hyper-
parameters that the SGD setting using latent weights in (5.3) is equivalent to our gradient
filtering interpretation in (5.17) that no longer uses latent weights,

5.3.1. VALIDATION OF EQUIVALENCE TO THE CURRENT STATE OF THE ART

We validate on for CIFAR-10 and Imagenet that our filtering-based optimizer is similar
to the current state of the art. Several current methods use an expensive two-step op-
timization step. We aim to show the value of our re-interpretation by showing similar
accuracy but only in a single step.
CIFAR-10: We train all networks for 400 epochs. As data augmentation we use padding
of 4 pixels, followed by a 32x32 crop and random horizontal flip. We use Bi-RealNet-20,
and for the real-valued parameters and latent-weights when used, we use SGD with a
learning rate of 0.1 with cosine decay, momentum of 0.9 and on the non-BN parameters
a weight decay of 10−4. For our filtering-based optimizer we used an alpha of 10−3 with
cosine decay and a gamma of 10−1. Results in Table 5.2 show that our re-interpretation
achieves similar accuracy.
Imagenet: We follow [4]: We train for 600K iterations with a batch size of 510. For the
real-valued parameters we use Adam with a learning rate of 0.0025 with linear learning
rate decay. For the binary parameters we use our 2nd order filtering optimizer with α=
10−5, which we decay linearly and γ = 10−1. We do not use two-step training to pre-
train the latent-weights. Results in Table 5.3, show that ReActNet-A with our optimizer
compares well to other one step training methods. It approaches the accuracy of two
step training approaches, albeit without an additional expensive second step of training.

5.3.2. EMPIRICAL ADVANTAGE OF HAVING FEWER HYPERPARAMETER TO TUNE

Our filtering perspective significantly reduces the number of hyperparameters (Table 5.1).
Here, we empirically verify the computational benefit of having fewer hyperparameters
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Figure 5.8: Bayesian hyperparameter optimization for our gradient filtering vs. latent weights. We optimize
the hyperparameters of Table 5.1, except learning rate decay and alpha decay, as they had no influence. The
scatter plot show the best achieved result so far at each trial for all runs. The lines show the average best result,
up to the current trial. Both methods perform equally for good hyperparameters. Our gradient filtering view
needs much less trials.

to tune when applied in a setting where the hyperparameters are unknown. To show gen-
eralization to other architectures and modality we use an audio classification task [45]
with a fully connected network. Specifically, we use 4 layers with batch normalization of
which the first layer is not binarized. For the latent weights we optimize 6 hyperparam-
eters, and for our filtering perspective we optimize two hyperparameters, see Table 5.1.
We did not tune learning rate decay as this had no effect on both methods. To fairly
compare hyperparameter search we used Bayesian optimization [46]. The results for 25
trials of tuning, averaged over 20 independent runs are in Figure 5.8. We confirm that
both perspectives achieve similar accuracy when their hyperparameters are well tuned.
Yet, for the latent weights, it takes on average around 10 more trials when compared to
the gradient filtering. This means that the latent weights would have to train many more
networks, which on medium-large datasets such as Imagenet would already take several
days to converge. In contrast, the gradient filtering requires much less time and energy
to find a good model.

5.4. DISCUSSION AND LIMITATIONS
One limitation of our work is that we do not achieve “superior performance” in terms
of accuracy. Our approach merely matches the state of the art results. Note, however,
that our goal is to provide insight into how SGD and its hyperparameters behave, not
to improve accuracy. Our analysis ended up with an optimizer with less hyperparame-
ters, that also have a better explanation in the context of BNN optimization leading to
simpler, more elegant methods. Our main empirical contribution is in the significant
computational reduction in hyperparameter tuning.

Another perceived limitation is that our new proposed optimizer can be projected
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back to a specific setting within the current SGD with latent-weights interpretation. Thus,
our analysis might not be needed. While it is true that latent-weights can also be used, we
argue that there is no disadvantage to switching to the filtering perspective, because the
options are the same, but the benefit is that our hyperparameters make more sense. The
option to project back to latent-weights also works the other way around and for those
who already have a well tuned SGD optimizer could use it to make it easier to switch to
our filtering perspective. The benefit of our interpretations is having fewer hyperparam-
eters to set.

Its also true that our method cannot use common techniques based on the mag-
nitude such as weight clipping or gradient clipping. Yet, we do not really think these
techniques are necessary. We see such methods as heuristics to reduce the bit flipping
ratio over time, which helps with convergence. However, in our setting, this can also be
done using a good α decay schedule without reverting to such heuristics, making the
optimization less complex.

We did not yet have the opportunity to test the filtering-based optimizer on more ar-
chitectures and datasets. However, since our optimizer is equivalent to a specific setting
of SGD, we would argue that architectures that have been trained with SGD will probably
also work well with our optimizer. This is also a reason why we chose to use ReActNet-A,
since it was trained using Adam in both in the original paper [2] and in [4]. The latter
specifically argues that Adam works better for optimizing BNNs, but we suspect that the
advantages of Adam are decreased because it might not work in the same way in the
magnitude invariant setting, as we see a smaller difference in accuracy. Introducing this
normalizing aspect into the filtering-based perspective is an interesting topic for future
research.

One last point to touch upon is soundness. Even though the filtering perspective
provides a better explanation to hyperparameters, it does not provide understanding
on why optimizing BNNs with second-order low pass filters works as well as it does.
Whereas stochastic gradient descent has extensive theoretical background, this does not
exist for current mainstream BNN methods. Fully understanding BNN optimization is
an interesting direction for future research and our hope is that this work takes a step in
that direction.
Ethics Statement We believe that this research does not bring up major new potential
ethical concerns. Our work makes training BNNs easier, which might increase their use
in practice.
Reproducibility Statement Two important things for better reproducing our results rely
on the GPUs and the dataloader. The reproduction of our ImageNet experiments is not
trivial. First, as the teacher-student model is used in our ImageNet experiments, it will
occupy a lot of GPU memory. We trained on 3 NVIDIA A40 GPUs, each A40 has 48 GB of
GPU memory, with a batch size of 170 per GPU for as much as ten days. Second, for faster
training on ImageNet, we used NVIDIA DALI dataloader to fetch the data into GPUs for
the image pre-processing. This dataloader could effect training as it uses a slightly differ-
ent image resizing algorithm than the standard PyTorch dataloader. To keep results con-
sistent with other methods, we do the inference with the standard PyTorch dataloader.
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6
CONCLUSION AND FUTURE WORK

6.1. CONCLUSION

The whole dissertation focuses on quantizing full-precision representation to a single bit
representation for improving efficiency in terms of speed and storage.

• Chapter 2 and chapter 3 proposed two different hashing methods to convert the com-
plex raw data such as images and videos into single bit binary code representation.
The results showed that the proposed supervised hashing method in chapter 2, which
used high quality human annotated labels as supervision, can achieve better accuracy
performance than the unsupervised hashing method as in chapter 3. The fine-grained
human annotations in supervised hashing is quite expensive. It remains future work
to investigate semi-supervised hashing or self-supervised hashing.

• Chapter 4 and chapter 5 proposed different approaches for quantizing full-precision
weights and activations of deep neural networks into single bit values to exploit fast
bit-wise operators and meanwhile save storage cost. Chapter 5 proposed a new opti-
mization method for BNNs which has fewer hyperparameters to tune comparing with
the general used optimization approach as in chapter 4. The proposed technique by
maximizing bit entropy in chapter 4 may lead to further performance improvement
when applied on the new optimization approach proposed in chapter 5.

• Both chapter 3 and chapter 4 are based on entropy theory. Chapter 3 proposed a
parameter-free bi-half layer to minimize the information loss when quantizing real-
valued features into binary code representations. Chapter 4 proposed to impose a
Bernoulli prior distribution on weights to learn binary weights. Both chapters shown
information entropy theory can help the learning of binary codes.

• Optimization plays an important role in training DNNs. The magnitude-based train-
ing hyperparameters such as weight-decay, learning rate, and learning rate decay are
well interpreted in real-valued weights based networks, which were adopted in chapter
2, chapter 3 and chapter 4. In chapter 5 we found the magnitude of binary weights is
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not meaningful thus we offered a new interpretation of these magnitude-based hyper-
parameters based on higher-order gradient filtering which allows for new optimiza-
tion filters specifically designed for binary neural networks.

Limitations: We have explored the extreme case of quantizing full-precision data, such
as images, to 1 bit to achieve memory savings and faster computation with little accuracy
degradation. However, the restricted binary format data compression leads to a large
loss of information, which may encounter problems such as in medical imaging analysis.
In future work we propose to explore adaptive quantization [1] that dynamically adjusts
the quantization levels to preserve more information.

6.2. FUTURE WORK
This thesis provides fruitful ground for future research, and some directions are explored
below.

Optimizing Binary Neural Network by Explicit Weight Flip Ratios: Flipping the binary
weight states is of core practical importance in training Binarized Neural Networks (BNNs).
However, current optimization methods can only implicitly control the flips with a thresh-
olding of the associated latent weights or gradient values, making it difficult to tune
and even preventing important flipping options. As a next step, it will be interesting
to develop a new optimizer to directly targeting at bit flipping for BNNs optimization.
A hyper-parameter, flipping ratio, would explicitly control the binary weight flips. The
hyper-parameter has an intuitive interpretations and typically require less tuning. opti-
mization options.
Parameter-free Optimizer for Binarized Network: The existing optimization algorithms
of binary neural networks (BNNs) highly rely on tuning the hyper-parameters such as
learning rate, weight decay [2, 3] to achieve good accuracy results. Tuning the hyper-
parameter is difficult and inefficient for training. Binary networks are a discrete opti-
mization problem where each binary weight only has two states, -1 or +1. This provides
us an opportunity to design a new parameter-free optimizer based on discrete program-
ming to search a good binary weight solution. Enumerating all possible combinations is
infeasible in practice. The calculated partial derivatives with respect to binary weights
could provide a good search direction. Going along this direction, we could constrain
the solution space from 2N to N +1, where N is the binary weights number. For the large
network, the N could be millions. Searching over the solution space is infeasible. One
possible approach is to use a line search [4] method with Wolf conditions to further re-
duce the search space. In particular, the Taylor’s formula could be explored to estimate
the loss values over the solution space and the estimated loss is used to measure when
we stop flipping the binary weight. Another potential solution is to use Bayesian opti-
mization to estimate the loss function with sampling limited points from the whole N+1
solutions.
Learnable Optimizer for Binarized Network: Traditional optimization methods of BNNs
such as STE [5] and Bop [6] are designed by hand. Both optimization methods rely on
a predefined or dynamic threshold to determine whether the binary weight flips or not,
but the threshold is given based on human experiences. For example, the Bop [6] method
needs to carefully tune the predefined threshold to improve the performance which is
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difficult to optimize. The more efficient approach is to propose a learnable optimizer
to learn how to flip binary weights. This can be implemented by training a RNN [7]
or a MLP [8] jointly with training binary network to learn how to flip. Specifically, the
hand-designed flipping rule used in STE [5] or Bop [6] is replaced by a learned flipping
rule, which we name learnable bit-flip optimizer parameterized via a small network. The
learnable optimizer based on RNN or MLP is not used for inference, thus it will not affect
the efficiency.
Accelerating Pruned Binarized Network: In chapter 4, we show that applying a pruning
method on binary network, as in [9], could further compress the model and speed up
inference. However, pruning binary weights may require storing a binary mask and the
unstructured pruned binary network has an irregular computation pattern and is hard to
parallelize [10, 11]. The work of Kwon S J et al.(2020) [12] attempted to study the weight
representation scheme to support unstructured pruning method. They can represent
the sparse weights of unstructured pruning by only 0.28 bits/weight for 1-bit quantiza-
tion and 91% pruning rate with a fixed decoding rate and full memory bandwidth usage.
Meanwhile, ESE [13] optimizes LSTM computation across algorithm, software and hard-
ware stack that efficiently deals with the irregularity caused by unstructured pruning. It
still remains an interesting investigation of co-designing software-hardware in terms of
data flow scheduler and hardware accelerator to accelerate the pruned binary network.
Learning Binary Hash Codes by Forcing Bit Independent: We proposed an unsuper-
vised hashing method in chapter 3 that could learn binary codes with maximum bit en-
tropy. One limitation is that the independence between different bits is not considered.
To reduce the information redundancy between different hash bits, we expect to benefit,
as in previous methods [14, 15], by forcing bits to be independent with each other. The
independence can be defined by the probability densities. We could formulate a term
loss to force bit independence.
A Framework to Integrate Model and Data Compression: The efficiency could be fur-
ther improved by exploiting the compressed DNN model to compress the high dimen-
sional data. For the image retrieval task, a query image is first input to the trained model
to learn binary codes, then the generated binary codes of query image are used to com-
pute Hamming distance with binary codes of database where the nearest image is re-
turned. Using a compressed model to generate binary codes could accelerate the re-
trieval process which is more efficient.

As a concluding remark, we have demonstrated that encoding full-precision complex
representations into binary code values can significantly enhance the efficiency in terms
of computation and storage. Throughout our thesis, we have effectively applied the pro-
posed methodologies to various medium-sized models and databases. Yet, additional
research is essential for large-scale models and databases.
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