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Chapter 9
Multi-agent Planning Under Uncertainty
for Capacity Management

Frits de Nijs, Mathijs M. de Weerdt and Matthijs T. J. Spaan

Abstract Demand response refers to the concept that power consumption should
aim to match supply, instead of supply following demand. It is a key technology to
enable the successful transition to an electricity system that incorporates more and
more intermittent and uncontrollable renewable energy sources. For instance, loads
such as heat pumps or charging of electric vehicles are potentially flexible and could
be shifted in time to take advantage of renewable generation. Load shifting is most
effective, however, when it is performed in a coordinated fashion to avoid merely
shifting the peak instead of flattening it. In this chapter, we discuss multi-agent
planning algorithms for capacity management to address this issue. Our methods
focus in particular on addressing the challenges that result from the need to plan
ahead into the future given uncertainty in supply and demand. We demonstrate that
by decoupling the interactions of agents with the constraint, the resulting algorithms
are able to compute effective demand response policies for hundreds of agents.

9.1 Introduction

The electric power system is the largest man-made system in the world. Its network
is designed such that its connected users and devices all can receive the electrical
energy they need whenever they demand. However, the energy system is undergoing
a transition. Power is not only generated by controllable power plants, but gradually
a larger part comes from intermittent and uncontrollable renewable generation from
sun and wind. As the power produced needs to be equal to the power consumed at
all times and storage of electrical energy is in many places extremely inefficient,
this transition to more renewable generation can only be realized by consuming
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the power at the moment it is produced, called demand response. Especially new
electrical loads, such as heat pumps and electric vehicles, are relatively flexible: they
can be shifted in time to match (renewable) generation.

Shifting loads to moments of high renewable generation creates higher correla-
tions of such controllable loads, and thismay create new peak loads in the distribution
system. At some places therefore costly reinforcements of the network may seem
necessary given the goal of designing for peak use. However, in some areas, such an
overload of the network will only occur for a few hours, and only for a few times a
year. In such cases, it may not be economical to reinforce the network. The alternative
is to coordinate some of these loads to prevent the congestion and guarantee that net-
work use stays within the capacity limits of cables and/or converters. An important
difficulty here is that on the one hand this requires looking ahead some time into the
future to be able to decide which loads to shift to an earlier (or later) time, but on
the other hand we do not know exactly how much renewable power is produced, and
howmuch of the network capacity will be used by uncontrollable loads. This chapter
discusses scalable algorithmic methods for capacity management that can deal with
such uncertainty.

In the next section, we provide a formal model of the computational problem
of capacity management. We give sufficient detail such that it could be straight-
forwardly implemented to be solved by mixed-integer linear solvers. However, this
straightforward approach has two shortcomings. First, it scales poorly with the num-
ber of controllable loads, so solving this problem takes too long to be of practical
use. Second, it does not capture the uncertainty appropriately (e.g. of generation and
of the demand from controllable and uncontrollable loads). In the remaining part of
this chapter we introduce methods to get around these shortcomings: we use Markov
decision processes (MDPs) to include uncertainty explicitly, and describe how to
decouple the problem into agents that only interact through the capacity constraints.

9.2 Problem Description

As a running example in this chapter we use the scheduling of heat pumps. The power
draw of a heat pump device easily exceeds the entire remaining household demand.
Simultaneous use by a large number of heat pumps easily overloads the capacity of
the local grid. However, a heat pump has also a significant potential to contribute
to both the integration of renewable sources as well as for capacity management by
exploiting the available system inertia: for well-insulated buildings, running the heat
pump a few hours earlier can obtain the same level of comfort at negligible extra
energy loss. The problem we study then is to optimize the temperature trajectory in
the buildings by controlling such thermal devices over time, subject to the available
capacity of the electricity network.

In principle, given a discrete-time model of the devices in the aggregation, the
control problem can be solved using standard centralized optimization techniques.
We present amathematical formulation of such a general optimization framework for
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heat pumps here, which is representative of the control problem for any flexible load.
Controlling an aggregation of thermal devices subject to a network capacity con-
straint comes down to choosing an activation schedule per device which ensures the
capacities are never exceeded, while simultaneously guaranteeing that every device
maintains its desired temperature. This problem can be formulated as a constrained
optimization problem, where the temperature goal (the comfort level) is the objective
and the capacity is enforced as one of the constraints.

Let θi,t be the temperature of a single device i at a specific point in time t , and
let mi,t represent the binary (on/off) control decision of the heat-pump. Then, the
given temperature transition model fi specifies how the temperature of the device
evolves up to the next decision step t + 1 to θi,t+1. In the following part, we assume
that all devices can be modeled by the same general transition model f , with device
specific parameters ai . In the following sections we use the thermal model given by
Mortensen and Haggerty [1], which is straightforward to optimize due to its linearity,
however our algorithms can be applied to more advanced building thermal models
such as those described in [2].

The n heat-pump devices should be constrained such that the sum of power draw
does not exceed the (remaining) network capacity and power production. To state
the multi-device model we use boldface characters to represent vectors of device
parameters over all devices, i.e., θ t = [

θ1,t θ2,t . . . θn,t
]
. Then, using the Hadamard

product b = a ◦ θ t =⇒ ∀i : bi = ai × θi,t , we can define a state transition function
to compute θ t+1 as

θ t+1 = f (θ t ,mt , θ
out
t ) = a ◦ θ t + (1 − a) ◦ (

θout
t + mt ◦ θpwr) . (9.1)

With this function, we can define a planning problem using a given horizon h,
the thermal properties of the n thermostatic loads with initial temperatures θ1, the
predicted outdoor temperature θout

t , and the predicted power constraint Lt . A solution
to such a problem is a device activation schedule that never switches on more devices
than is allowed while minimizing cost function c(θ t ). The entire planning problem
becomes:

minimize[m1,m2,...,mh ]

h∑

t=1

c(θ t )

subject to θ t+1 = f (θ t ,mt , θ
out
t )

n∑

i=1

mi,t ≤ Lt

mi,t ∈ [0, 1] ∀i, t

(9.2)

Due to the generality of the model, we can optimize the devices for different
objectives expressed through the cost function. Besides typical functions such as
the squared error on the deviation from the set-point c(θ t ) = ∑n

i=1

(
θi,t − θ set

i,t

)2
,

or the maximum deviation c(θ t ) = maxi
(
θi,t − θ set

i,t

)
, we might imagine more
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Fig. 9.1 Wall-clock time
needed to optimize the
mixed-integer linear
program (9.2) as a function
of the number of devices and
the planning horizon

2 4 6 15 30 45

0

100

200

300

400

R
un

tim
e

(s
)

Devices (n) Horizon (h)

application-specific functions. For example, a refrigerator may only incur high
penalties when the temperature gets above a (thawing) threshold.

Unfortunately, this approach suffers from two major drawbacks: limited scalabil-
ity, and difficulty representing uncertainty. Figure9.1 demonstrates that solving such
a straightforward, centralized model quickly becomes intractable. Furthermore, in
the problem description thus far, we ignored that the effect of actions of the heat
pump on the (modeled) state of the household is not known exactly, but may vary
significantly, because the model does not capture all aspects of reality. For example,
the physical building is much more complex, consisting of several different rooms
and corridors and windows and walls, radiation from the sun can increase temper-
atures but is not taken into account, and inhabitants may open and close doors and
windows.

In the next section, we demonstrate how to overcome both theseweaknesses. First,
we show how uncertainty can be incorporated in a principledmanner by transforming
the proposed model to a multi-agent Markov decision process. Then, we introduce
several algorithms to coordinate the agents’ demand in a scalable manner, while
optimizing their cost functions.

9.3 Multi-agent Planning Under Uncertainty

Here we first introduce an MDP model for the problem of planning the use of heat
pumps under uncertainty in the temperature development of the households over
time. We show that this can be neatly modeled as a so-called multi-agent MDP
(MMDP). In the type of MMDPs that we consider, we identify several agents that
take actions more or less independently. In this case, these agents represent the heat
pumps of the different houses.

The challenge here is that the size of a straightforward MMDP model increases
exponentially with the number of agents, because the set of actions in such a model
is the set of all possible combinations of actions by individual agents. The domain of
study, though, has some specific structure: the only interaction between the agents
is because of the limited network capacity. In the remainder of the section we then
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discuss a number of different methods to exploit this structure by decoupling the
reasoning for each of the agents.

First, we show how an arbitrage mechanism can be used in combination with
several iterations of optimal responses by the agents given their likelihood of getting
allocated to ensure that these individual policies never cross the resource limit.

Second, we investigate preallocation methods to avoid dependence on an on-line
component, allowing policies to be executed without communication. Although scal-
able methods to compute preallocations only satisfy the constraints in expectation,
we demonstrate that constraint violations can beminimized by reducing the available
constraint capacity. Further, we show that this can even be extended to settings where
these constraints themselves are uncertain. For example, it may be that there is an
uncertain amount of uncontrollable use of the network, making the exact amount of
remaining capacity uncertain as well.

Finally, we discuss a method for the case where the agents do not necessarily have
a good model of the building they are controlling.

9.3.1 Centralized MMDP Model

MDPs form a flexible mathematical framework for optimizing the course of action
of an agent that experiences an uncertain response from the environment to its
actions [3]. This allows it to cope with uncertain environmental factors such as out-
door temperature but also uncertainty resulting from imperfect models, for instance
a lack of information about whether windows are closed or not. As our problem con-
sists of multiple decision makers, we model the problem as a Multi-agent Markov
decision process (MMDP) [4]. A key assumption is that agents are fully cooperative,
i.e., that they optimize their decision making according to a joint objective function.

In our MMDP model for the optimization problem defined in Eq.9.2 we have
a set of n agents that all have the same actions A = {off, on} available to them,
and an agent-specific state S. The continuous temperature is discretized into k non-
overlapping states s j each defining a temperature interval [θs j ,min, θs j ,max). In addition
to this, there are two extrema states smin and smax ranging from (−∞, θs1,min) and
[θsk ,max,∞) respectively, resulting in the following state space of an agent: S =
{smin, s1, s2, . . . , sk, smax} .

The transition function T : Sn × An × Sn → [0, 1] describes for each joint state
and joint action pair (s, t) the probability of attaining joint state s′. It is derived
by applying the Markov heat-transfer function f (θ,m) = aθ + (1 − a)(θoutside +
mθheating) to the lower and upper values of the temperature range [θs,min, θs,max). This
produces a new range [θ ′

min, θ
′
max) that may overlap the ranges of multiple discrete

states s j , s j+1, . . .. The degree of overlap determines the (uniform) probability of
transitioning to each of these potential future states.

Agents are rewarded for their actions in a certain joint state, through the reward
function R : Sn × An → R. The rewards assigned to the agents in each time step
are the costs depending on how large the deviation from the setpoint θ set

i,t is:
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n∑

i=1

−max{0, ∣∣si − θ set
i,t

∣∣ − 0.5}2. (9.3)

The imposed power constraint Lt which limits the number of activated devices is
then encoded in the joint transition function. The joint transition function specifies
the cross product of all agents’ action spaces An . By removing those actions where
the number of agents ‘on’ is more than Lt we obtain the required constraint.

The resulting MMDP can be solved optimally [3], but suffers from scaling expo-
nentially in the number of agents.

9.3.2 Decoupling and Best Response with Arbitrage

A first approach to avoid the exponential blow-up of the centralized model is to
model the decision problem for each heat pump as a separate problem, and have
a very simple centralized arbitrage mechanism to guarantee that never too many
devices switch on. The details of this approach can be found in [5]. In this section,
we summarize the main conceptual idea behind this method, and discuss the effects
on the run time compared to the centralized approaches introduced above.

The problem for each agent representing a heat pump is the MMDP for one heat
pump from the previous section, discarding the restriction Lt in the joint transition
function. Such so-called single-agent MDPs can be solved for each agent separately.

However, to prevent that the agents’ plans violate the power limit in a certain time
step t , the agent that expects to lose the least utility from switching off is switched
off at t , and its plan is re-computed. This arbitrage mechanism is repeated until the
conflict is resolved. To determine which agent expects to lose the least utility by
going from on to off we look at the difference between the planned utility scores
in the value table. However, because this procedure risks getting caught in a local
minimum, we use the utility loss as a probability of being selected instead of always
selecting the agent that expects to lose the least utility. Moreover, we explicitly
model the probability of being forced to switch off by the arbitrage mechanism in
the planning model for the single-agent MDPs. This indirectly models the effect of
the plans of other agents. We call this approach the arbitrage best-response method
(arbitrage-BR).

We use the following artificial instances of the problem to compare the scalability
of this approach relative to the optimal solutions. In its simplest form, this instance
has 3 agents, a horizon of 20 and θ set

i,t = 20,∀i, t . In the first 5 time steps, 3 agents
are allowed to switch on, in the next 5 time steps only 2 are allowed, followed by
5 time steps where only 1 is allowed. The final 5 time steps are unconstrained. We
then evaluate the scalability by varying the number of agents between 1 and 6, and
the horizon between 5 and 45, and the number of agents fixed at 3 (10 instances per
setting). In addition, we set the MMDP approach to use only 6 temperature states,
and we imposed a run-time cut-off of 5 minutes. The arbitrage-BR method scales
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Fig. 9.2 The runtime of both optimal methods does not scale with the number of agents, while the
arbitrage-BR method scales reasonably well in both agents and horizon

well in terms of both number of agents and horizon, as shown in the experimental
results in Fig. 9.2.

Next, to better understand the potential of arbitrage-BR in practice, we consider
a more realistic evaluation in a neighborhood of 182 households equipped with
heat pumps. Given runtimes observed earlier, we cannot expect to be able to run
the optimal solvers for 182 households. We, therefore, consider a relaxation of the
optimal MIP that allows the devices to be switched on only partially. Because in
practice these devices cannot be switched on in arbitrary fractions, and because the
decision time step granularity of 1 minute is the minimum to prevent short-cycling,
it is not possible to implement the outcome of the relaxation. However, this provides
a lower bound on the penalty of the optimal solution with binary activations.

For this evaluation, we model a two-day period during which a gradual decrease
of the available power occurs starting from hour 6. At hour 20 the minimum capacity
is reached and only 10 out of 182 heat pumps are allowed to be switched on. At the
start of the second day, all devices can be switched on again. The households would
all like to maintain an internal temperature of 21◦ (θ set

i,t = 21,∀i, t).
The decision frequency is set to once every minute. While it is unlikely that in

a real-world scenario the power limit is known with such accuracy, this granularity
allows each unit to switch just in time, and it also serves as a worst-case problem
size to demonstrate scalability. Since the agents are now decoupled, we can solve the
MMDP with much finer temperature discretization. For arbitrage-BR we discretized
temperature from 16 to 24◦ over 80 states, resulting in bins of 0.1◦ width.

Figure9.3 presents the average indoor temperature, the normalized cumulative
error and the number of devices switched on for this instance.

First, we observe that all approaches using planning perform significantly better
than the non-anticipatory control, which has a rather high cumulative penalty. The
cumulative penalty of the arbitrage-BR stays close to theMIP relaxation lower bound,
which confirms that it is close to optimal even in this larger instance. Computing the
182 policies for the adaptive decomposition took only 7.5min, less time than it took
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Fig. 9.3 Simulation of the response of a realistic neighborhood of 182 households to a strong
curtailment request. Algorithm arbitrage-BR performs on par with the theoretical upper bound
given by the relaxed MIP solution

the optimalMMDPsolver to compute a solution for the four agent toy example above.
This demonstrates that the adaptive decomposition is indeed scalable to real-world
instances.

9.3.3 Off-Line Control Through Preallocations

The algorithms discussed in the previous section allow us to safely control an aggre-
gation of heat-pumps through communication with a centralized arbiter. However,
because the power grid should be robust to both system failures andmalicious attacks,
we additionally require that a decentralized fall-back exists. Therefore, in this section,
we study algorithms to compute decentralized control policies which satisfy the con-
straints by adhering to a resource preallocation.

A preallocation specifies for each agent in advance at which times it has per-
mission to use resources. Policies computed for a preallocation are communication-
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free: because the allocation fully specifies the way the constraint should be shared,
an agent never needs to coordinate its consumption with others during execution.
Given the imposed power constraints per time step Lt , a preallocation Ui,t is com-
puted for each agent i , such that the allocations jointly satisfy

∀t :
n∑

i=1

Ui,t ≤ Lt . (9.4)

Then, each agent can individually optimize a policy πi satisfying its own allocation,
meaning that the consumption of the policy Cπi ,t never exceeds the preallocation,

∀i : max
πi

Vπi , subject to ∀t : Cπi ,t ≤ Ui,t . (9.5)

Existing algorithms to compute preallocations for MDPs can be categorized
according to the type of preallocation they compute: (i) A MILP [6] and LDD +
GAPS [7] compute preallocations which restrict the worst-case resource consump-
tion. (ii) TheConstrainedMDPLP (CMDP; [8]) andColumnGeneration [9] compute
preallocationswhich restrict the expected resource consumption. Unfortunately, both
categories have drawbacks which limit their use in practice. The algorithms which
restrict worst-case consumption have exponential worst-case complexity in the num-
ber of resources, which makes them intractable for our models. In addition, they may
lead to low efficiency: resources may sit unused when the uncertain state trajectory
leads agents to a state where resources are not needed (e.g. sufficiently warm in the
case of heat-pumps). Restricting the expected consumption is tractable, however, the
resulting policies are stochastic and may violate the constraints at execution time.

Because the tractability of restricting the expected consumption makes it more
promising, we investigate how to limit the risk of policies jointly violating the con-
straints in the next Sect. 9.3.3.1. Then, because renewable power sources may intro-
duce uncertainty about the constraint itself, an extension to compute preallocations
for stochastic constraints is proposed in the following Sect. 9.3.3.2.

9.3.3.1 Bounding Constraint Violation Risk

Stochastic preallocation algorithms like CMDPs and Column Generation compute
stochastic policies that only ensure that their expected resource consumption does not
violate the limits. As such, these methods do not provide any guarantees regarding
the probability that a resource limit is violated during execution. In this section we
introducemethodswhich improve these algorithms by ensuring that the probability of
violating any individual constraint is upper bounded by a given parameter α. In doing
so, we summarize our work on bounding the probability of constraint violations, for
details see [10].

Because of the uncertainty present in the transition function of the temperature,
the temperature state si,t of agent i in a future time step t is a random variable. Given
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a control policy πi which switches the heat-pump on below a certain temperature, the
future power consumption of an agent also becomes a random variable Ci,πi ,t . When
each agent executes their policy unconditionally, and without communication, these
random variables are independent. Therefore, by independence, we can compute
the total resource consumption at time t as the sum of the agents’ consumption,
Ct = ∑n

i=1 Ci,πi ,t . The stochastic allocation algorithms guarantee that

∀t : E[
Ct

] ≤ Lt . (9.6)

In practical applications, even when constraints are soft, exceeding them typically
incurs some cost to the system operator, such increased wear from overheating when
exceeding the capacity of a power grid element. Therefore, even when we are using
stochastic allocation algorithms, wewould additionally like to restrict the probability
that a realization of Ct exceeds the limit, or

∀t : P[
Ct > Lt

] ≤ α. (9.7)

To obtain policies which additionally satisfy the constraint on the tail probability,
we propose to impose reduced resource constraints 0 ≤ L∗

t ≤ Lt , resulting in more
conservative policies. Because the random variables Ci,πi ,t can be upper bounded
by the power consumption of the most-consuming action, we can apply Hoeffding’s
inequality [11] to determine L∗

t , resulting in

L∗
t = Lt −

√
ln (α) · (∑n

i=1(maxCi,t )2
)

−2
. (9.8)

In practice the boundobtainedby applyingHoeffding’s inequality can be relatively
loose (Fig. 9.4, top). Therefore, we also propose a dynamic constraint relaxation
technique which adjusts the reduced resource limit L∗

t on the basis of empirical
evidence of actual violations during simulation (Fig. 9.4, bottom).

To evaluate the proposed approaches to bound the risk of constraint violations,
we compare them to the heat-pump planning problem. Each agent has its possible
temperature states discretized over 24 states, and we plan for a time horizon of
24 steps. Figure9.5 presents the performance of the algorithms as the number of
agents grows. We observe that the preallocation algorithms constraining worst-case
performance (MILP and LDD + GAPS) indeed exhibit poor scalability, as they
exceed 60 minutes of computation time at 4 agents. At the same time, we observe
that while the CMDP algorithm is highly scalable, it computes solutions which
exceed the available capacity nearly half the time on tight constraints. The results
show that this high risk is averted when we virtually reduce the resource capacity
available to the planner through application of Hoeffding’s inequality. However, the
resulting policies are on the conservative side of the risk threshold, staying an order of
magnitude below the target tolerance of α = 0.05. Our dynamic constraint relaxation
algorithm is able to target the lower, observed tolerance of α = 0.005 exactly. While
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Fig. 9.4 Histograms
showing realized resource
demands obtained through
simulation. Policies to satisfy
the constraint (solid lines)
are computed for reduced
limits (dashed lines).
Top: reduced resource limits
on the basis of Hoeffding’s
inequality.
Bottom: initial and final
iterations of our dynamic
bound relaxation
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the dynamic algorithm takes slightly longer to compute, it nevertheless remains
tractable, especially when compared to the deterministic allocation algorithms. In
addition, the solutions it finds are of higher quality than the Hoeffding-bounded
policies for larger numbers of agents, even though the risk level it attains is the same.
In conclusion, when comparing stochastic preallocations we observe that for large
numbers of agents, the values of the bounded approaches tend towards the CMDP
value. When more agents are available to spread the load of the reduced resource
limit, their individual rewards are compromised less.

9.3.3.2 Computing Preallocations for Stochastic Constraints

Thus far we have assumed that the planner knows exactly how much power is avail-
able in each time step. One major challenge of the integration of renewable energy
sources such as wind and solar power generators is that it makes the available power
production capacity dependent on the weather, and therefore volatile. Unfortunately,
it is not yet possible to predict weather perfectly even on short (day-ahead) time-
scales. Therefore controllers of such buffers should take into account multiple sta-
tistical forecast scenarios [12, 13]. In order to address this requirement, this section
investigates how this assumption can be relaxed to deal with stochastic resource con-
straints when communication is unreliable; for more details, see our work in [14].

A collection of potential power production scenarios can be represented by a
Markov chain defined over outcomes. This Markov chain is defined by a state
space SL of power production outcomes, and the transition probabilities
TL : SL × SL → [0, 1]. Since all agents must adhere to the same constraint, the tran-
sition function of the stochastic constraint threatens to couple the agents together.
Fortunately, Becker et al. [15] show that independence is retained when shared fea-
tures only exist in a part of the state space that agents cannot affect themselves. As
such, the stochastic constraint problem can also be decomposed into n single-agent
sub-problems, which we propose to do by augmenting the state space of each agent
with the current limit (captured in factored state space SL × S). Nevertheless, the
preallocation algorithms must be modified to handle the fact that agents expected
consumption is now correlated with the probability of visiting a power production
state sL .

Alternatively, we could collapse the constraint Markov chain to its expectation in
each time step, to obtain a planning problem with a fixed constraint, which the pre-
allocation algorithms can solve directly. However, doing so would result in policies
which make two-sided errors: if the realized constraint is less than the expectation,
the policy is likely to cause a violation, while if the realized constraint is more than
the expectation, the policy will leave resources unused. In addition, knowledge of the
current constraint-state may inform which future scenarios are more likely, allowing
the planner to anticipate on future constraint realizations. Therefore, we expect that
taking into account the model of stochasticity in the preallocation will result in poli-
cies which are both significantly safer and which obtain significantly better expected
value.
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Fig. 9.6 Comparison of two
approaches to handle
probabilistic forecasts of
power production: using the
expected value (squares)
versus using all scenarios in
the planning problem
(triangles). Results for
increasing planning horizon
on three performance metrics
(lower values are better).
Top: deviation from the
optimal expected value,
normalized to horizon length
(log-log).
Middle: simulated number
of constraint violations,
normalized to horizon length
(log x).
Bottom: mean wall-clock
time required to compute a
policy, in minutes (log x)
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To test our expectations, we perform an experiment comparing the modified pre-
allocation algorithms on an instance of the heat-pump planning problem with 10
artificially generated power production scenarios. For these experiments, we dis-
cretized the temperature state range into 25 states, and we restrict the number of
agents to 3 in order to be able to compute the optimal (on-line) joint policy. This
allows us to compare the solution quality of the preallocation algorithms objec-
tively. Figure9.6 presents the results of an experiment evaluating plan quality as the
length of the planning horizon increases. We observe that planning for the stochastic
constraint scenarios is more computationally intensive, resulting in increased plan
runtime. However, in return, we observe that both our expectations on plan quality
hold in practice: planning for a stochastic constraint results in a smaller error and
fewer constraint violations for both types of preallocation algorithms.

Another conclusion we can draw from this experiment is that the quality of con-
trol degrades when agents must operate without communication for long periods of
time. While off-line control may be required to satisfy grid robustness requirements,
under normal operation we expect agents to be able to operate with regular commu-
nication intervals. To determine if there are also benefits to incorporating stochastic
constraints in such a rolling horizon re-planning setting, we perform an additional
experiment where we let the agents communicate their current state at set intervals.
Figure9.7 presents the results, showing the relationship between the average number
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Fig. 9.7 Effect of intermittent communication on the quality of control when: using the expected
value of the constraint (squares) versus using all constraint scenarios in the planning problem
(triangles). Plot shows the total number of violations relative to the no-communication upper bound
(horizontal lines), as the time between successive re-planning increases (log x)

of violations over the horizon (of h = 216) and the re-planning frequency, with a
gap of three indicating that agents communicate and re-plan every fourth time-step.
We observe that re-planning more frequently leads to fewer constraint violations,
although this comes at the cost of needing sufficient computational capacity to com-
pute a plan before the next decision point. Further, we see that in this re-planning
setting it also makes sense to use the scenario information in the planning problem,
as this also significantly reduces the total number of violations. Note that, although
we did not do so here for comparison, we can combine stochastic constraints with the
bounding technique presented in Sect. 9.3.3.1 to further reduce the risk of constraint
violations.

9.3.4 Learning Agent Types

Up to now,wehave assumed that allmodel parameters are fully known to the planning
algorithm, in which case a solution can be computed offline (i.e., before execution
of the policies). In practice, however, that might not be the case, which requires
the planning algorithm to take into account information it can gather online (i.e.,
while executing the policies). In particular, we consider a setting in which model
parameters such as grid constraints are known, but certain characteristics of the
individual agents are not. By observing their behavior, however, we can estimate
their model parameters. The key challenge is how to optimize the heating of houses
given uncertain estimates of their parameters while capacity limits are not to be
exceeded.

We identify different types of agents, where each type identifies certain key param-
eters of the system the agent is controlling. Those can be physical characteristics,
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such as the insulation level of a house, but can also be related to user preferences,
such as the desired temperature setpoint. While types in principle can be dynamic,
our focus has been on static types [16]. For instance, the physical properties of a
building are unlikely to change quickly, although we likely do not know the thermal
response of every building initially; to address this challenge requires the use of a
learning agent [17]. However, in this setting, we only need to perform the learning
once, as part of the initialization of the device.

To dealwith the initially unknown type of each agent, we proposed two novel algo-
rithms [16]: the first algorithm is an extension of Posterior Sampling Reinforcement
Learning [18] to the multi-agent, constrained setting. The second algorithm exploits
the structural properties of the problem to approximately solve the constrained par-
tially observable problem itself, by bounding the belief space expansion to states
where the regret of switching to the best type’s MDP policy is low. In particular, we
showed how both algorithms can be used as subroutine in the Column Generation
stochastic preallocation algorithm described above.

9.4 Conclusions

This chapter discusses how to keep our energy system affordable by making demand
responsive to grid limitations, shifting some of the demand to less congested times.
In order to perform effective demand response, the controller is required to optimize
over future control decisions: in order to decide if we can shift charging an electric
vehicle to a later time, we need to knowwhen the car must be charged, and howmany
more charging opportunities will come. Unfortunately, optimizing a control policy
over the future necessarily involves dealing with uncertainty, both in the needs of the
device under control (e.g. when the owner of the car returns), as well as in the evolu-
tion of the system (e.g. the demand of uncontrolled loads, and the production from
renewable sources). We show in Sect. 9.3.1 that optimizing control under uncertainty
can be naturally modeled as a Markov decision process. Unfortunately, the resulting
constrained, multi-agent Markov decision process model of demand response suf-
fers from intractable scalability in the number of devices. In this chapter we present
several novel algorithms to overcome this intractability, as well as innovations that
make existing algorithms more effective.

In the first place, we show that the scalability challenge can be overcome if we are
able to decouple the control problem of the individual devices from the constraint
allocation problem. Section9.3.2 investigates the use of a centralized resource arbiter
to distribute available capacity on-line, on the basis of the utility each device expects
to receive from its requested allocation. This decouples the agents, as each agent can
determine an individual best-response to the probability that the arbiter will award its
request. The resulting algorithm is shown to efficiently find solutions with a minimal
loss in solution quality. In addition, the arbiter guarantees that the solution satisfies
the current system constraints at all times.
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Unfortunately, the use of an on-line arbiter requires devices to maintain a
connection to the centralized mechanism at all times. In order to compute solutions
which are robust to both connection failures and malicious attacks, we investigate
resource preallocation algorithms in Sect. 9.3.3. Existing tractable algorithms com-
pute preallocations which satisfy the constraint in expectation, which results in a high
risk of constraint violations. While constraint violations can sometimes be absorbed
by the inertia of the system, their occurrence should nevertheless be avoided. In
Sect. 9.3.3.1 we present an effective approach to bound the probability of constraint
violations while retaining the tractability of the preallocation algorithms. Stochastic
constraints (as resulting from wind prediction scenarios) are an additional challenge
for preallocation algorithmsbecause the agents cannot coordinate on the realized con-
straint on-line. Nevertheless, we show in Sect. 9.3.3.2 that preallocation algorithms
can be modified to incorporate stochastic constraints, resulting in solutions which
are both of higher quality and resulting in fewer constraint violations. This result can
be combined with occasional re-planning to further improve the coordination.

Finally,we show inSect. 9.3.4 that our results can be extended to a learning setting,
where the devices operate according to one of a set of potential models describing
behavior types (for example, insulation levels and preferred set-points). By making
use of an optimal learning framework, we are able to identify the correct device
model in a minimal number of learning steps.

These results show that our proposed algorithms and extensions are effective
at computing high-quality demand-response policies. Nevertheless, there are chal-
lenges left to address in future work. Importantly, shifting demand may come at
costs for the users. In the current model we assume these costs are known and the
algorithms aim to minimize the total costs. However, in many situations, besides
total costs, also fairness is an important criterion to take into account. For exam-
ple, we may not want to have always the same (well-insulated) house be pre-heated
throughout the night in order to minimize losses, because the owners will in the end
have higher energy costs than without coordination. Related is the issue that the true
rewards may not be known to the system, but that the system is informed, e.g. about
the desired temperature. In the current proposal, there is no remedy against users who
feel that they are left out in the cold and just increase their desired set-point signifi-
cantly above the real goal in order to increase home temperature. This will probably
increase their allocation of the scarce capacity, but at the cost of other users.

Nevertheless, the positive results in simulationmake it worthwhile to run a pilot in
practice to assess the algorithms performance in resolving bottlenecks in real-world
infrastructure. In addition, the methods introduced in this chapter are not just made
for heat pumps. They can easily include any other demand that can be modeled as a
Markov decision process. In fact, the proposed methods are even more general: we
have also applied them to a budget allocation problem in on-line advertising, and in
computing capacity-aware recommendations for guiding tourists through crowded
cities [16].
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