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Abstract—Co-simulation is an important tool to capture the
complexity of cyber-physical energy systems. The past decade
lead us from command-line simulation orchestration to higher
readiness-levels in terms of applicability. The configuration and
time-domain initialisation of generic co-simulation setups, how-
ever, entail a lot of manual activities, especially when simulation
components are tightly coupled. This paper provides a qualitative
overview on what initialisation challenges crop up and how
tools like MOSAIK can tackle these. This is illustrated with a
multi-domain co-simulation example, in which the same time
loop concept is applied to resolve cyclic dependencies between
simulators during initialisation. The paper provides conclusions
about the applicability of same time loops for initialisation
purposes and will provide directions for further research on this
topic.

I. INTRODUCTION

The transition to a carbon-neutral energy system is complex:
multiple stakeholders need for instance to draw up governance
structures, design operational circumstances, and agree on
technology often under uncertain systemic conditions. An
energy system, moreover, that will also become more versatile
due to the manifold interfaces to other energy carriers (i.e.,
multi-vector systems) and interfaces to external ICT systems
(i.e., digitisation). This calls for interdisciplinary planning and
design cycles, of which numerical modelling and simulation
are integral parts.

Co-simulations enable us to assess systemic performance
indicators by splitting the system under test into subsystems
that span one particular engineering domain. These specialised
modes are then coupled to each other and exchange informa-
tion through numerical interfaces during runtime. This con-
cept adheres to typical multidisciplinary requirements such as
transparency, model scalability, and design optimisation while
leakage of intellectual property is prevented. Applicability,
user experience, and numerical performance are considered
instrumental to fully utilising the advantages of co-simulations.
The current practice, using general purpose tools or employing
domain-specific simulations with highly simplified models of
parts of the system under test, boast excellent applicability
and UX but commonly lack scalability and performance. Key
to further rollout of co-simulations is hence the standard-
isation of typical co-simulation aspects such as numerical
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interfaces, scheduling algorithms, semantics (model causality,
model compatibility), and specification languages.

One particular challenge that needs further consideration
is the workflow for configuring, initialising, and running the
experimental setup. The goal of this paper is to discuss the
issues and to perform a gap analysis around such initialisation
aspects of co-simulations. Alongside this gap analysis we
will introduce how specialised co-simulation tools, notably
MOSAIK, are positioned. This is illustrated by a co-simulation
experiment on a recently developed multi-energy benchmark
system in the H2020 ERIGrid 2.0 project.

The remainder of this paper is organised as follows. We
will first introduce and qualify the configuration and initiali-
sation challenges, The paper continues with the current state
of art on generic specification of co-simulation setups and
scheduling algorithms while concentrating on MOSAIK 3.0.
The challenges are illustrated by an example multi-energy case
study using the same time loop (STL) approach. The paper
ends with conclusions and next steps towards co-simulations
as-a-service.

II. INITIALIZATION CHALLENGES

Initialisation in co-simulation aims to achieve a coherent
initial state across the sub-models. To structure the discussion,
we suggest two viewpoints of initialisation: A. the topological
conditions for the computation of a coherent initial state (due
to model of computation and sub-model interactions) and B.
the numerical conditions and processes for achieving coherent
starting values.

A. Topological setup and configuration of co-simulations

Co-simulation requires the definition of exchange signals,
i.e. the relevant state information shared across simulators.
This necessarily implies a directional signal exchange, and
thus a sequencing of computation between simulators. De-
pending on the model of computation (discrete event/continu-
ous time) this ordering can be problematic, and have various
different consequences, including issues such as: computa-
tional inaccuracy, decreasing convergence speed, and timing
inaccuracies.
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For dynamic feedback systems, where the causal loops are
explicitly modelled by signals with integrators, the signal
ordering is straightforward. However, physical continuous
domain simulation models often include acausal links/cou-
pling points (electrical lines are a prime example), which
are solved by domain-specific solvers (e.g. iterative load flow
calculation). If a physical system is distributed over separate
simulators in a co-simulation setup, the required bidirectional
exchange signals lead to one or more algebraic loops across
simulators, also referred to as cyclic dependency. Algebraic
loops need to be resolved by assigning directionality and a
computational ordering, which is typically done manually.

In continuous systems, the topological analysis identifies
sub-models (equations) of ordinary (ODE) and differential-
algebraic (DAE), explicit algebraic (A), or iterative/implicit
algebraic (IA) nature. In discrete event systems, the ordering
is determined by message directionality and time.

To effectively split systems across simulators, acausal ex-
change variables therefore first need to be identified and, if
possible, avoided. If they cannot be avoided, the challenge is to
assign a directionality to unavoidable acausal coupling points
(e.g., read voltage, write current). Such assignment creates an
algebraic loop across simulators, which needs to be handled
by the co-simulation orchestrator, as it can affect simulation
accuracy or speed significantly. Among other, such cyclic
dependencies also lead to initialisation issues, as discussed
below.

So, where possible, coupling points are selected where inac-
curacies will have minimum impact on the simulation stability,
accuracy and performance. Selecting the timing and direction
of exchange signals is therefore a key step in designing the
co-simulation topology.

B. Domain-specific and Co-simulation Initialisation Ap-
proaches

Power system simulations, especially those focusing on
quasi-stationary behaviour (RMS, stability), have a research
and development stemming from eras in which sequential
computation was the standard. These simulations revolve
around solving DAEs, in which the differential equations com-
monly represent the dynamic behaviour of rotating machinery
and controls, whereas the algebraic equations encompass the
network model and discrete behaviour of connected assets.

Two main solution methods exist here: partitioned and
simultaneous methods. The partitioned approach solves differ-
ential, model, and network equations sequentially each time
step, thereby assuming that the effect of algebraic loops is
negligible and can be solved by predictor-corrector iterations.
The simultaneous approach aims at combining all network
and asset models into one set of equations that is solved
by Newton-Raphson iterations each time step. Partitioned
methods are applied in most classic powers system simulators
for limited memory demand and modularity. Simultaneous
methods are more accurate, especially when cyclic dependen-
cies between differential equations and algebraic equations
exist (e.g., excitation systems, voltage controllers of power

electronic devices), at the cost of a higher computational
burden (i.e., Jacobian determination, NR-iterations, storage).

Initialisation is commonly achieved by solving the network
equations for a particular scenario (generation, line loading,
load). Subsequently, the asset models need to be initialised,
which is where tools diverge. Three main approaches exist:
Manual initialisation of models: A common approach is to
make the modeller responsible for appropriate initialisation
of the asset models. This is common in tools like PSSE and
PowerFactory. Both tools use a model framework to define
the initialisation order of contained models. PSSE comes with
a fixed set of common frameworks that cover most domain-
specific setups (e.g., generators, relaying, multi-terminal con-
nections). In PowerFactory, this composite framework and
hence the initialisation order can be defined by the modeller
as well.

Quasi-automatic initialisation: Especially in equation-based
tools, the modeller is allowed to specify causal loops inside
dynamic models. At initialisation time, these loops iteratively
initialise the encapsulated states and algebraic variables. Tools
like PSS Netomac/Sincal fall in this category.

Time-based initialisation: Sometimes, the relation between
network quantities and model states is not one-to-one. This
is for instance the case when 1) different power electronic
switch configurations can lead to the same voltage modulation,
2) when discrete states are unknown, 3) for real-time setups.
A common approach is then to make an estimation, usually
manually, of the algebraic and state variables and let initial
phenomena damp out accordingly. Electro-magnetic transients
type simulators fall in this category.

The approach common to domain-specific (electrotechnical)
simulations is similar for co-simulations. As their charac-
ter is to construct a modular systemic model of domain-
specific models, it is hard to resolve all cyclic dependencies
with a simultaneous approach. Hence, sequential methods
are most common in scheduling algorithms. MOSAIK version
2, in this respect, is a discrete-time orchestrator that uses
time_shifted (i.e., delay of one time step) links to resolve
causal loops between co-simulation modules. These time shifts
need to be specified at configuration time; effectively, this
resolution method has the side-effect of numerical conver-
gence effects become visible in the time-domain simulation
traces. Further, similar to the partitioned approaches in power
system simulations, this can lead to numerical oscillations if
such modules are stiffly connected (similar time-constants,
algebraic coupling)—an assumption that must be constantly
checked by the co-simulation engineer.

III. HOW CAN CURRENT CO-SIMULATION TOOLS HELP
ADDRESSING INITIALISATION CHALLENGES

This sections aims to present how current tools help to
address the challenges identified regarding the configuration
(Section II-A) and scheduling (Section II-B), thereby focusing
on the most relevant tools for co-simulation MOSAIK [1],
Ptolemy [2], FMI [3], HLA [4], and HELICS [5]. A compar-

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 10:29:07 UTC from IEEE Xplore. Restrictions apply.



features \ tools MOSAIK 2 MOSAIK 3  Ptolemy 2 FMI2 FMI3 HLA HELICS
scenario data model X X X - - X X
scriptable scenario X X - - - X
discrete event - X X X X X
discrete time X X (x) X X X
continuous time - (x) X X X

superdense time - X X - (x) - X

roll-back - -

x)

TABLE I: Features available in different tools as relevant to co-simulations. X: available, (x): limited/indirectly available, - not

available)

ison of a larger number of co-simulation tools can be found
in [6].

Relevant features in these tools are compared in Table
I. Regarding the configuration of co-simulation the scenario
data model and scriptable scenario are relevant, which de-
scribe capabilities for the specification and automation of
a co-simulation scenario. For the execution scheduling, the
available time paradigms are important: Namely, discrete
event, discrete time, and continuous time. Here, discrete time
is the simplest orchestration type for scheduling. Discrete
event systems (DEVS) are the most general, as all kinds of
simulators generalise to DEVS; continuous time is the most
narrow (ODE or DAE) type, but one where specialisation of
the interface bears speedup potential (i.e. due to predictive
scheduling). Especially for addressing initialisation issues,
the more advanced scheduling concept superdense time and
simulation roll-back are of interest.

A. Scenario Configuration Mechanisms

One important aspect to handle the previously introduced
initialisation challenges is the scenario management, which
provides mechanisms for the configuration of simulation sce-
narios. The scenario management relies on a data model for
the configuration, containing the simulation components, their
parametrisation, the definition of data flows between them, and
their temporal behaviour. It is the basis for execution of co-
simulation and should assist the user in tackling applicability
challenges. To find a suitable way of splitting up the system
into sub-systems (Section II-A), additional information about
the simulation components and scenarios is needed.

For the description of experiments the Holistic Testing De-
scription (HTD) has been developed, which allows a template-
based structured process for the planning of experiments in
hardware or software [7]. In this process, e.g., test cases,
system under test, and initial system states have to be defined
to make this information transparent available in a structured
way and to use it for the development of a co-simulation
experiment.

Also the integration of static Smart Grid Architecture Model
(SGAM) and dynamic co-simulation can be an option for
improving scenario configuration [8]. An approach for the
translation from a Smart Grid system architectures into an
executable MOSAIK simulation shows how a detailed descrip-
tion of the system can be utilized for automated simulation

configuration [9]. Another approach for the integration of HTD
and SGAM into co-simulation with MOSAIK is described in
[10]. One part of this approach is also an assisted simula-
tion planning process based on an information model and
a catalogue of available co-simulation components, which
makes metadata of the components available for choosing and
coupling the most suitable ones [11].

For the development of a executable co-simulation scenario
different ways exists, like using a GUI, specification files, or
scripts. A scriptable configuration allows a flexible definition,
which can be helpful especially when the scenario is based
on generic topologies and the scenario definition is supposed
to be done automatically. In this regards, MOSAIK provides a
scenario API for the scenario definition in Python. HELICS
boasts similar functionality and allows federate configuration
via a web interface.

For MOSAIK, approaches towards automatic simulation con-
figuration are under research. More specifically, the develop-
ment focuses on a first prototype implementations that allows
MOSAIK to assist the user in finding the best co-simulation
topology to avoid initialisation issues and tackle also more
complicated initialisation issues—notably causal loops crossing
multiple subsystems.

B. Co-simulation Scheduling tools

A key task of a co-simulation framework (also: orchestra-
tor, master algorithm) is to execute the different simulation
components at the right time, i.e. schedule the simulation.
The scheduling can be based on different time paradigms,
like discrete time, discrete event, or continuous time [12].
The co-simulation master algorithm and interface specification
can offer features to accelerate co-simulation performance or
improve simulation accuracy, such as roll-back, lookahead, or
superdense time. For this scheduling, cyclic dependencies can
be problematic as described in Section II-B. MOSAIK does not
allow direct cyclic dependencies, because it would not be clear
for the scheduler which connection would be the first to take
as an input for a specific simulator (i.e., component of the co-
simulation). As a solution, MOSAIK 2 provides asynchronous
requests and the time_shifted parameter for connections
allowing to define which connections of the cycle are executed
first. To break the cycle, the output data of the first simulation
component will not be available to the dependent component
until the next simulation time step. This sequential option
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0

Fig. 1: Visualization of superdense time (i.e., same time loops)
in MOSAIK [13].

is commonly used in power system simulations and works
adequately for small perturbations but is known to cause issues
when severe system events occur [14]. This solution also
implies that for the time-shifted connections no value would
be available for the first simulation time step. As a result, the
usage of the t ime_shifted parameter explicitly requires an
initialisation value for the shifted attributes. The time shifting
of values can be problematic especially in the beginning of a
simulation, because oscillation of values may arise until (time-
domain based) initialisation of all simulation components is
finished, which comes with a huge computational penalty.

A more profound approach for solving the problem of cyclic
dependencies is the concept of superdense time, which is
a common concept in simulation tools [12], [15] and was
introduced in MOSAIK 3.0 together with a new event-based
scheduling [16]. Superdense time allows a simulation to do
multiple simulation steps without incrementing the simulation
time as visualised in Figure 1.

With superdense time, it is possible to implement a initial-
isation phase between the different co-simulation components
for the start of simulation to find an accurate initial state. This
is related to the challenge of starting values (Section II-B) as
it can help to find a stable state of the models. As the most
inputs of the models have to be set somehow at the beginning
of the simulation, unstable behaviour can occur. Thus, the first
steps of a simulation are often used only to find a stable state
of the system and the results are thrown away.

IV. ILLUSTRATION OF CO-SIMULATION INITIALISATION
BY A CASE STUDY

As explained in the previous section, superdense time is a
promising concept for the identified initialisation challenges
and was applied in a case study to show how new MOSAIK
3.0 features can be used to address these. This case study is
based on a benchmark scenario developed in the ERIGrid 2.0
project [17].

A. General description of benchmark scenario

The “Benchmark 2 — Multi-Energy Networks” scenario
describes a typical multi-energy setup with an low-voltage
(LV) electricity grid and a district heating network [17].
As shown in Figure 2, the system additionally contains a
heat pump with a tank and a controller, and two aggregated

heat pump + tank consumer 1+ PV 1

consumer 2 + PV 2

| |

‘ flex heat control ‘ ‘ voltage control ‘
| 1 I I
heat
grid
ext.
power
grid

Fig. 2: Overview of the system configuration in “Benchmark
2 — Multi-Energy Networks” scenario [17].

consumer households with PV systems. The optional voltage
controller observes the voltage and can adjust the heat pumps
power limit in times of voltage violations. In this way, the
scenario provides an example of sector coupling of electricity
and heat. The benchmark simulator components are all written
as discrete-time simulators, but represent various model types:
explicit algebraic (A, e.g. heat pump) and implicit algebraic
(IA, e.g. power flow) models, continuous dynamic (ODE, e.g.
hot water tank), and discrete event type (DE, e.g. voltage
controller).

The interdependence of these two sectors, which each con-
sist of multiple components, leads to initialisation issues when
studied using co-simulation. As there are many parameters and
system states, which have to be defined for the start of the
simulation run, it can not be guaranteed that the system can
start in a steady state. Thus, in the original version of the
benchmark scenario the first day of simulation is just done for
the initialisation purposes (time-based initialisation) and the
results are thrown away. This case study investigates possible
applications of superdense time for initialisation, to avoid or
reduce this time consuming “warm-up” period that needs to
be chopped off from the results anyway.

B. Implementation of superdense time for initialisation

The benchmark scenario is available as a MOSAIK scenario
and in Figure 3 the data flows in this co-simulation are shown.
The boxes represent the simulation components in MOSAIK,
and the two figures represent two variations of the simulation
scenario to evaluate the effects of assigning different subsets.
Blue arrows represent direct and the orange arrows time shifted
data flows in the original scenario. The simulation components
coupled in a same time loop (STL) using superdense time are
highlighted in blue and the execution order is indicated by
the number in their top right corner. In the upper-left corner,
the respective model type and simulator mode are indicated. It
can be seen that multiple cyclic dependencies exists, as there
are many time shifted data flows (highlighted in orange). For
all of these time-shifted connections, initial values need to be
provided in the scenario as there is no simulation data available
for the first step.

To improve this initialisation process of this scenario, the
simulation components were extended to support an initiali-
sation phase based on superdense time. As indicated by the
green arrow circles, the scenario contains many options for im-
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Fig. 3: Visualisation of MOSAIK simulation scenario with two variants of the same time loops (STL). The orange numbers
identify the ordering within the STL; the light blue boxes indicate model type (IA,A,ODE,DE) and MOSAIK simulator type

(DT Hy).

plementing STL with subsets of components. As starting point
we implemented STL with combinations of two components,
but due to the interdependence the system state was still not
stable. Thus, all components of the heat domain were added
to the STL. The heat domain was chosen as it contains many
systems affecting each other with direct mass hence energy
flows.

For the implementation, the simulators had to be slightly
adapted to be compatible with the MOSAIK 3 API and super-
dense time. To activate (and also stay in) a STL, the simulator
has to provide its ‘cyclic’ attribute(s) via the get_data
function indicating as output time the current step time as long
as the STL should stay active. Thus, an additional attribute was
added to all simulators indicating if the initialisation is still in
progress or the simulation can proceed. The control of this
was added in the domestic heating network and the flex heat
controller. For this control function, the values of all relevant
attributes in the STL are cached and checked for convergence.
As the STL poses a cyclic dependency, which can not be
resolved by MOSAIK automatically, one connection has to be
set as weak, to indicate that it will be the last one to be
executed. Additionally, the type of the simulation components
was changed to the new hybrid type [16]. This was chosen
because some connections can still use the time-based
paradigm, and by adding the relevant attributes as trigger,
the new MOSAIK event-based features were available.

C. Simulation results

The results of a simulation of one day are described in
the following. In Figure 4 the power consumption of the
heat pump is depicted. Comparing the both version with and
without the STL, it can be seen that with the enabled voltage
controller there was just a slight effect erasing the swing in
the beginning and fining earlier a stable state. The results with
the disabled voltage controller show that the normal cycle of
on’ and ’off” times of the heat pump is reached earlier.

Figure 5 shows the temperature in the tank with disabled
voltage control. It can be seen, that without the STL the

initial temperature is quite high and equivalent in all layers
of the tank. Due to the STL, the layers have directly different
temperatures and the starting value is already lower, which
leads to an earlier stable state with the normal heat pump
cycle as shown in Figure 4.

The execution time of the case study with STL was
compared to the execution time without. Though absolute
execution times are relatively high (1 to 10 seconds), which is
owing to the scripting nature of Python, it is more significant
to see what the relative computational burden of the STL
is. For the one-day simulation this was 19.85 - 28.68% for
voltage control disabled and enabled respectively. For the week
simulation time, this relative difference was only 3.68 - 5.13
% for the voltage control enabled/disabled respectively.

—— heatpump_0 ctrl disabled
—— heatpump_0 ctrl enabled

M

02-0100 ©02-0103 020106 02-0109 02-0112 ©02-0115 020118 02-0121 02-02 00
date

(a) Without STL.

heat generation in kw

100 4

TN T

—— heatpump_0 ctrl enabled
60+

1]

02-0100 ©02-0103 020106 02-0109 020112 ©02-0115 020118 02-0121 02-0200
date

(b) With STL.

—— heatpump_0 ctrl disabled

heat generation in kw

Fig. 4: Heat pump power consumption (one day simulation)
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tank temperatures
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Fig. 5: Tank temperatures (one day simulation).

V. CONCLUSION

This paper highlighted a couple of challenges related to the
configuration and initialisation procedure of co-simulations. It
was discussed how cyclic dependencies between co-simulation
components complicate the execution of domain-specific sim-
ulations (e.g., algebraic loops) and co-simulations (causality
of signals available to the orchestrator). Subsequently, the
features of MOSAIK to resolve some of these challenges
have been discussed and illustrated with a multi-domain co-
simulation scenario (power & heat).

Based on the qualitative analysis of tool features, it can be
concluded that the applicability of co-simulations can profit
hugely from automated scenario generation (at configuration
time) and automatic detection of cyclic dependencies. In
case of MOSAIK, same time loops enable the initialisation of
complex co-simulation setup in a systemic way. Next steps
in this respect include a decision-making algorithm in the
co-simulation configuration phase that intelligently designates
the same time loop simulators to make optimally use of this
functionality.

The simulation results show a more optimal initial state
of the simulated system when same time loops were applied
in MOSAIK. The computational penalty introduced by the
application of superdense time is assumed acceptable for the
accuracy gains expected in more complex scenarios. That
is, the additional computational burden of superdense time
is comparable to the gains in terms of time-domain based
initialisation overhead. The scalability of this approach (sys-
tem complexity and size) and further optimisation in terms of
computation burden are topics for further research.
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