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Abstract
The most common serious heart rhythm disease is atrial fibrillation. It is not fatal on its own but does
increase the risk of heart failures and strokes. There is little understanding about the mechanisms
behind the disease, so more insight is desired. Using an array of electrodes, measurements are being
performed of the electrical atrial activity directly on the heart tissue. These signals are, however, not
clean and suffer from far-field interference coming from the ventricles.

During normal sinus rhythm these atrial and ventricular activities are separated in time and easy to
distinguish. In case of atrial fibrillation this is not always the case. Luckily, there is a major difference
between both signals: the ventricular signal comes from far away and arrives therefore approximately
simultaneously at all electrodes. A simple, but effective way to remove this ventricular activity is to use
a bipolar electrode. It produces the difference between two normal unipolar electrodes, thus removing
the common ventricular signal component.

The bipolar electrode, however, distorts the atrial signal component, which in some orientations can
even lead to removing it altogether. This bipolar electrode is known as a differential beamformer from
the field of array signal processing. There are more complex beamformers that can keep the atrial
component undistorted and therefore produce better results than the bipolar electrode.

This thesis proposes a Fourier-domain signal model for all available electrodes relying on an atrial
and ventricular transfer function. It is possible to estimate these transfer functions from the data blindly.
Three beamformers are derived utilizing the signal model and the transfer functions. The bipolar elec-
trode is extended to multiple electrodes like the other beamformers as well.

Experiments with simulated data show that the complex beamformers indeed keep the atrial activity
undistorted and are still able to remove the ventricular activity effectively when usingmultiple electrodes,
except for very complex data where the signal model is not valid. For low numbers of electrodes
the beamformers are not useful, they hardly remove the ventricular activity while keeping the atrial
component undistorted, where the bipolar electrode does the opposite.

The electrograms are also used to estimate local activation times of the cells underneath the elec-
trodes which says something about the health of the cardiac tissue. Besides the mentioned filtering,
this thesis proposes a method to estimate those moments in time by looking at the time-domain ver-
sion of the atrial transfer function, called the atrial impulse response. For simple data, it performs well
compared to state-of-the-art methods, but for more complicated data, it does not.
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List of abbreviations
AA atrial activity

AF atrial fibrillation

AIR atrial impulse response

ARMSE atrial RMSE

ATF atrial transfer function

BE bipolar electrode

CC cross-correlation

CS covariance subtraction

CV conduction velocity

CVD cardiovascular disease

CW covariance whitening

DAS delay-and-sum

EBE extended bipolar electrode

ECG electrocardiogram

EGM epicardial electrogram

ETV Electrotechnische Vereeniging

EVD eigenvalue decomposition
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GEVD generalized eigenvalue decomposition

IFFT inverse fast Fourier transform

LAT local activation time

LCMV Linear Constraint Minimum Variance

MVDR Minimum Variance Distortionless Response

RMSE root-mean-square error

SA sinoatrial node

SD steepest deflection

SNR signal-to-noise ratio
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SR sinus rhythm

VA ventricular activity
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Nomenclature

(⋅)H conjugate transpose operator

∗ temporal convolution operator

𝐹𝑠 sampling frequency

𝑀 amount of sensor channels

𝑁𝑚[𝑡] stochastic process of the noise component of an EGM

𝑆𝑎,𝑚[𝑡] stochastic process of the atrial component of an EGM

𝑆𝑣,𝑚[𝑡] stochastic process of the ventricular component of an EGM

𝑋𝑚[𝑡] stochastic process of an EGM

𝛿[𝑡] Dirac delta function

1 all-ones vector of appropriate size

I identity matrix of appropriate size

J all-ones matrix of appropriate size

RA atrial cross-correlation matrix

RN noise cross-correlation matrix

RV ventricular cross-correlation matrix

RX noisy cross-correlation matrix

RV+N interference cross-correlation matrix, consisting of the ventricular and noise components

W beamformer weights matrix

a atrial transfer function

e𝑖 unit vector of appropriate size, where the 𝑖th entry is 1 and all others are 0

n realization of noise components of 𝑀 EGMs in the frequency domain

v ventricular transfer function

x realization of 𝑀 EGMs in the frequency domain

ℱ {⋅} Fourier transform operator

ℱ−1 {⋅} inverse Fourier transform operator

𝜎2𝑎 variance of stochastic process 𝑆𝑎,𝑚[𝑡]

𝜎2𝑛 variance of stochastic process 𝑁𝑚[𝑡]

𝜎2𝑣 variance of stochastic process 𝑆𝑣,𝑚[𝑡]

E[⋅] expected value operator

𝑓 frequency bin
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x Nomenclature

𝑘 time frame index

𝑚 electrode index

𝑠𝑎 common atrial signal component in all EGMs

𝑠𝑣 common ventricular signal component in all EGMs

𝑡 discrete time index
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1
Introduction

Cardiovascular diseases (CVDs) are globally the biggest cause of death [1]. From the CVDs, the most
common serious cardiac arrhythmia is atrial fibrillation (AF). It is not fatal on its own, but does increase
the risk of heart failures and strokes and affects 1–2% of the population [2]. In the longer term almost
4% of middle aged men and women will have an incident hospitalization associated with AF and this
number is likely to go up in the future.

This chapter introduces the basic concepts of this thesis. Section 1.1 gives an overview of the
human heart and Section 1.2 explains AF. Section 1.3 gives insight in the way atrial activity (AA) is
measured. Finally, Section 1.4 states the thesis objective and gives an overview of the rest of the
thesis.

1.1. Anatomy
AF is an anomaly in the atria. To better understand the problem, we first describe the anatomy of the
heart and its conduction system.

1.1.1. Human heart
The human heart makes sure blood circulates through the body. The blood then supplies the organs
with oxygen and nutrients and removes carbon dioxide and other waste products. An image of the
human heart and its main components is shown in Fig. 1.1. The heart has four chambers: two ventricles
and two atria. The ventricles are the two biggest and lower situated chambers and the atria are the
two small chambers on top. There are two sets of chambers for the two blood circulation routes as the
lungs have a separate circulation.

When entering the heart from the hollow veins, the deoxygenated blood first flows into the right
atrium, which contracts with a regular pulse and pushes the blood into the right ventricle, where the
pulse continues, pumping the blood via the pulmonary artery into the lungs. There the gas exchange
occurs: its oxygen level rises and its carbon-dioxide level drops. The blood flows via the pulmonary
vein to the left side of the heart where it starts in the left atrium and continues in the left ventricle. The
latter pumps the newly oxygenated blood into the aorta towards all other organs.

1.1.2. Cardiac conduction system
The contraction of the atrial and ventricular muscles happens under normal circumstances in a regu-
lated fashion. A lump of pacemaking cells located in the wall of the right atrium and called the sinoatrial
node (SA), determines and generates a pulse in the form of an electrochemical signal. The signal
propagates in the form of cells being depolarized by their neighbors, conducting an excitation wave
with a certain conduction velocity (CV). The cells remain depolarized for a little while, such that they
can not be activated immediately again. This mechanism makes sure the wave does not propagate
backwards. The moment of depolarization is called the local activation time (LAT).

The wave, starting in the SA node, travels through the right atrial muscle cells and via Bachman’s
bundle through the left atrial muscle cells as well. It spreads throughout the atria and makes them
contract at once. After contraction of the atria, the signal gets delayed in the atrioventricular node

1



2 1. Introduction

Figure 1.1: A schematic overview of the human heart with a highlighted conduction system [3].

to allow the blood to enter the ventricles. It continues to propagate through the bundle of His to the
ventricles which contract at the same time as well.

1.2. Atrial fibrillation
In a healthy situation the rhythm at which the electrochemical signal propagates through the atria is
called sinus rhythm (SR). In case of fibrillation, this rhythm however is not as regular as during SR.
Atrial fibrillation is often described as a rapid, irregular and unsynchronized contraction of the atrial
muscles. In case of ventricular fibrillation, the ventricles are not able to pump the blood through the
body. The patient requires immediate medical treatment to prevent sudden cardiac death.

This thesis, however, concerns with the atria, in which case the effects of fibrillation are not as
critical, albeit still unhealthy. AF is a disruption of the normal SR, causing an arrhythmic contraction of
the atrial muscles. This reduces the power of the blood flow into the ventricles, resulting in higher risks
of other heart problems in the long run.

1.2.1. Mechanisms
There is no general consensus on the mechanisms behind AF. However, there are several theories.
One of the first was composed by Moe et al. who proposed that AF occurs due to the presence of
multiple wavelets propagating through the atria [4]. These random wavelets of activation coexist and
together generate an unorganized atrial rhythm. Another more recent theory states that AF is caused
by so-called focal sources [5]. Random impulses deeper down in the heart tissue break through to
the surface, generating a new activation wavefront. The last hypothesis proposes electrical rotors:
activation waves propagating in a circular manner reexciting tissue [6].

1.2.2. Treatment
Themost popular treatment of AF is catheter ablation. The process consists of a catheter being inserted
into the body and navigated via the veins to the atria, where it ablates interfering tissue by making it
either hot or cold, depending on the exact technique. The success rate is roughly 75% after multiple
procedures [7]. The rate is way lower after running just a single procedure.

For treating a disease successfully, it is of paramount importance to have an understanding of the
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mechanisms behind it. In the case of AF there is no general consensus regarding this necessary
prerequisite for the treatment, hindering the development of a more successful treatment.

1.3. Measurements
To gain a better understanding of the origin of AF, it is important to do measurements and investigate
the data. Historically, the heart rhythm is measured using electrodes on the skin, resulting in an elec-
trocardiogram (ECG). This, however, is not detailed enough to say anything about the AA. The activity
is therefore being measured during open-heart surgery using an array of electrodes placed directly
on the atrial heart tissue. The data resulting from these electrodes is called an epicardial electrogram
(EGM).

1.3.1. Interpretation
The EGMs were traditionally interpreted directly by cardiac physiologists as color-coded peak-to-peak
voltage maps. Lower values would indicate an unhealthy area. Another approach is to determine the
LAT of the cells underneath each electrode. These LATs would then be interpreted directly, or used to
make a map of the CVs, which could once again be interpreted by a physiologist [8].

The EGMs, however, suffer from interfering ventricular activity (VA), caused by the depolarization
of the ventricles. This big interfering signal distorts the pure AA and complicates further analysis and
interpretation. This means, a method has to be found to remove the VA. Although, AA and VA may
simply be separated in time in normal SR, this might not be the case in more complex situations like
AF.

1.3.2. Types of electrodes
One method to remove VA has been applied in a hardware manner already. Most of the EGMs are
measured using so-called unipolar electrodes. This means the voltages of all electrodes are measured
against one common ground elsewhere on the body. This will result in the most pure AA, because
the electrodes directly measure the polarizing and depolarizing cells underneath them. The unipolar
electrode will, however, also pick up the the far-field VA.

This far-field component reaches the electrodes all approximately at the same time. Subtracting
two closely located unipolar electrodes would therefore result in completely removing them. That is
precisely what the bipolar electrode does. Synthesizing bipolar data from unipolar data is possible by
considering the differences between two close unipolar electrodes, halving the amount of final electrode
channels.

The method, however, comes with a lot of disadvantages. The VA will thus be suppressed in bipolar
electrodes, but the AA will be affected as well. The literature shows that rotating a bipolar electrode
has a big influence on its output as well as the direction of the atrial wave [9][10]. Both show using in
vivo data that a wave front oblique to the electrode configuration is completely nullified.

Deno et al. have proposed a method to create a so-called omnidirectional electrode using two or
three differently oriented closely located bipolar electrodes to overcome the direction dependency [11]
[12]. Haldar et al. and Riccio et al. put the omnidirectional electrode to the test, comparing them to
horizontal and vertical bipolar electrodes. Haldar confirms its independence of direction and its ability
to determine the correct wave front direction [13]. Riccio comes to the same conclusion that the con-
figuration indeed produces better and more consistent results regarding the direction of the wave front
[14]. The omnidirectional electrode, however, feels like a naive solution from an array signal processing
perspective. The literature just has not been able to explain the underlying problem. Looking at the
set-up from a signal processing background will shed some light.

1.4. Thesis overview
The main goal of this thesis will be to apply the knowledge of signal processing to the problem of remov-
ing the VA in EGMs and with that making an estimate of the actual AA, such that further interpretation
should be easier and more effective.



4 1. Introduction

1.4.1. Objectives
The concept of beamforming in the Fourier domain will be applied to the EGMs, making use of the
spatial correlation between all electrodes and using the simple fact that the interfering VA will reach
all electrodes simultaneously. This will involve making estimates of so-called transfer function vectors
and cross-correlation matrices.

The cleaned EGMs could then be used to make an estimate of the LATs using existing time domain
methods. It is, however, also possible to make an estimate of those LATs directly from the aforemen-
tioned transfer function vectors. This will be the secondary goal of the thesis.

1.4.2. Overview
The thesis is divided into chapters. The signal model used throughout the thesis is described in Chap-
ter 2, as well as the techniques used to estimate the transfer function vectors and cross-correlation
matrices blindly from the EGM data. Chapter 3 uses the signal model to filter the EGMs in such a way
that the VA is removed and the AA remains, applying beamformers in the Fourier domain. It describes
the technique, implementation and results. Chapter 4 describes the estimation of the aforementioned
LATs using that same signal model. It also contains the method, implementation and results. The
results of both techniques are discussed in Chapter 5, as well as an overview of possible future work.



2
Signal model

In this chapter the signal model is described, that will be used throughout this thesis. It models the
signals measured by an array of electrodes, placed directly on the atrial tissue, also called an EGM.

The signal model itself is proposed in Section 2.1 and the mathematics behind the estimation of the
transfer functions are explained in Section 2.2.

2.1. Signal model
The EGMs are a filtered version of the action potentials inside the polarizing and depolarizing cells
below the electrodes. The action potentials arise due to ion processes inside those cells and are
therefore stochastic. The electrodes measure a weighted average of several underlying cell potentials.
We assume that these averages will resemble a lot across the electrodes.

Besides this AA, the electrode will also pick up the VA, coming from the further away located ventri-
cles. The remaining component in the EGM then is some self-noise of the sensor. These three signal
components additively form an EGM. The signals are sampled with some sampling frequency 𝐹𝑠. Let
𝑚 denote the electrode index and 𝑡 the time sample index. The stochastic EGM 𝑋𝑚[𝑡] is then modeled
as

𝑋𝑚[𝑡] = 𝑆𝑎,𝑚[𝑡] + 𝑆𝑣,𝑚[𝑡] + 𝑁𝑚[𝑡], (2.1)

where 𝑆𝑎,𝑚[𝑡] and 𝑆𝑣,𝑚[𝑡] are thus stochastic processes of the atrial and ventricular signal components
respectively and 𝑁𝑚[𝑡] is the remaining stochastic noise process. The processes 𝑆𝑎,𝑚[𝑡], 𝑆𝑣,𝑚[𝑡] and
𝑁𝑚[𝑡] are assumed to be mutually independent.

The noise is considered to be a zero-mean white Gaussian process, where white means it has equal
power across the frequency bands and Gaussian means it follows a normal distribution

𝑁𝑚[𝑡] ∼ 𝒩(0, 𝜎2𝑛). (2.2)

A realization of process 𝑋𝑚[𝑡] will look like

𝑥𝑚[𝑡] = 𝑠𝑎,𝑚[𝑡] + 𝑠𝑣,𝑚[𝑡] + 𝑛𝑚[𝑡], (2.3)

where 𝑥𝑚[𝑡] is the measured signal, 𝑠𝑎,𝑚[𝑡] and 𝑠𝑣,𝑚[𝑡] are the atrial and ventricular signals respectively
and 𝑛𝑚[𝑡] is the remaining noise. The model is described per time sample 𝑡 and per sensor channel
𝑚 of which there are 𝑀 in total.

We assume that the propagation of the electric cardiac wave front can be modeled as a convolutive
process between the stochastic atrial and ventricular sources 𝑠𝑎[𝑡] and 𝑠𝑣[𝑡] and the corresponding
atrial and ventricular impulse responses 𝑎𝑚[𝑡] and 𝑣𝑚[𝑡] respectively. That is,

𝑥𝑚[𝑡] = (𝑠𝑎 ∗ 𝑎𝑚)[𝑡]⏝⎵⎵⎵⏟⎵⎵⎵⏝
𝑠𝑎,𝑚[𝑡]

+(𝑠𝑣 ∗ 𝑣𝑚)[𝑡]⏝⎵⎵⎵⏟⎵⎵⎵⏝
𝑠𝑣,𝑚[𝑡]

+𝑛𝑚[𝑡], (2.4)

where the ∗ operator indicates a temporal convolution. An important notion to make here is that the
sources 𝑠𝑎[𝑡] and 𝑠𝑣[𝑡] do not depend on the channel 𝑚; they are the same for all 𝑀 channels. The
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6 2. Signal model

impulse responses 𝑎𝑚[𝑡] and 𝑣𝑚[𝑡] model the delay and damping of the sources due to propagation
and electrode-cell distance respectively; they therefore do depend on the channel𝑚 as the propagation
time and electrode-cell distance will be different per sensor.

Transforming the system to the frequency domain using the discrete Fourier transform per time
frame 𝑘 simplifies the model as the convolutions turn into simple multiplications. This results in

𝑥𝑚[𝑓, 𝑘] = ℱ {𝑥𝑚[𝑡, 𝑘]} = 𝑠𝑎[𝑓, 𝑘]𝑎𝑚[𝑓, 𝑘] + 𝑠𝑣[𝑓, 𝑘]𝑣𝑚[𝑓, 𝑘] + 𝑛𝑚[𝑓, 𝑘], (2.5)

with frequency bin 𝑓, Fourier transform operator ℱ {⋅} and transfer functions 𝑎𝑚 and 𝑣𝑚 for the atrial and
ventricular signal parts respectively. Signal sources 𝑠𝑎[𝑓, 𝑘] and 𝑠𝑣[𝑓, 𝑘] once again do not depend on
channel 𝑚. Combining all 𝑀 sensor channels together in vectors gives the following expression

x = 𝑠𝑎a+ 𝑠𝑣v+ n. (2.6)

The frequency index and time frame index have been omitted for notational simplicity, because the
frequency bins and time frames can be manipulated independently.

In reality, there may be several differently shaped action potentials in the cells below the electrodes,
resulting in multiple stochastic atrial sources instead of the one 𝑠𝑎, especially in the case of AF. This
would result in a sum of multiple atrial signal source and transfer function combinations. This signal
model, however, will only consider one atrial source and transfer function, which is a valid assumption
[15].

2.1.1. Transfer function
Atrial transfer function (ATF) a and ventricular transfer function (VTF) v relate to the aforementioned
impulse responses as their Fourier transforms. A transfer function is a vector containing information
on the path the signal traveled from the signal source location to the sensor locations.

It is also possible to work with relative transfer functions. Dividing the whole vector by one of its
entries, e.g. its first entry, will give a relative transfer function which models the transfer with respect to
the reference electrode. The relative transfer function thus gives the path differences per sensor with
respect to the one measured at that reference electrode. In fact, usually the absolute transfer function
regarding the signal origin is only available up to a scalar ambiguity. This scalar ambiguity means it
actually is a relative transfer function, whose reference is unknown. The information regarding the
differences between the channels is still there.

2.1.2. Correlation matrix
The relations between the channels can be explained using the so-called cross-correlation matrix. It is
an 𝑀 ×𝑀 matrix describing the correlation between the channels, defined as

RX = E [XXH] , (2.7)

with E[⋅] the expected value operator and (⋅)H the conjugate transpose operator. One thing to note
here is that the cross-correlation matrix is Hermitian, that is RX = RH

X.
X is the stochastic process of all 𝑀 channels of the EGMs in the frequency domain, that produces

realizations x. It is composed as
X = S𝑎 + S𝑣 + N. (2.8)

The noisy cross-correlation matrix RX can then be written as

RX = E [(S𝑎 + S𝑣 + N) (S𝑎 + S𝑣 + N)
H] , (2.9)

where many terms can be removed, because the three components of RX are considered mutually
uncorrelated, as mentioned before. This results in

RX = E [S𝑎SH𝑎 + S𝑣SH𝑣 + NNH] = RA +RV +RN, (2.10)

where RA and RV are the cross-correlation matrices of the atrial and ventricular signal components
and RN is the noise cross-correlation matrix. All three are Hermitian matrices, just like noisy cross-
correlation matrix RX.
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Cross-correlation matrices can also be interpreted as cross-power spectral density matrices. The
diagonal elements in fact indicate the energy in the corresponding channels. If the channels do not
correlate at all, the cross-correlation matrix will be a diagonal matrix, that is only entries on the main
diagonal are non-zero. The noise cross-correlation matrix for example is assumed to be

RN = 𝜎2𝑛I, (2.11)

with noise signal variance 𝜎2𝑛 and identity matrix I. The atrial and ventricular signal correlation matrices
will not be diagonal matrices, since the signals correlate a lot among the electrodes due to the similar
signal shapes 𝑠𝑎 and 𝑠𝑣 respectively.

The atrial cross-correlation matrix can be calculated as

RA = E [AAH] = E [𝑠𝑎aaH𝑠H𝑎 ] , (2.12)

where the transfer function a can be moved outside the expected value operator as it is considered
deterministic. The remaining signal multiplication is stochastic and can be called atrial signal variance
𝜎2𝑎 , leading to

RA = E [𝑠H𝑎 𝑠𝑎]aaH = 𝜎2𝑎aaH. (2.13)

The atrial cross-correlation matrix now is a rank-1 matrix. This once again is the case because the
assumption was made that there only is one atrial signal source. The same derivations can be done
for the ventricular signal component, resulting in

RV = 𝜎2𝑣vvH. (2.14)

The whole noisy cross-correlation matrix then looks like

RX = 𝜎2𝑎aaH + 𝜎2𝑣vvH + 𝜎2𝑛I, (2.15)

where the last two terms together form the interference cross-correlation matrix RV+N, because the
eventual goal is to remove the ventricular signal and noise components.

2.2. Transfer function estimation
In the following two chapters, the transfer functions and cross-correlation matrices play a big role and
are assumed to be known. Determining the transfer functions, however, requires a very thorough
understanding of the atrial tissue and the locations of the source and sensors, which in general is
almost impossible. Furthermore, in the atrial problem, the tissue is precisely what is unknown.

An alternative for determining an expression for transfer functions is to make a blind estimate from
the data itself by looking at the eigenvalue decomposition (EVD) [16] and generalized eigenvalue de-
composition (GEVD) [17] of the noisy cross-correlation matrix RX.

2.2.1. Eigenvalue decomposition
The EVD is a way of factorizing a matrix into a standardized way where it is represented in terms of its
eigenvalues and eigenvectors. An eigenvector u𝑖 of a generic 𝑀 ×𝑀 matrix A is a normalized vector
that only changes by a scalar factor when that matrix A is applied to it. That scalar factor then is the
eigenvalue 𝜆𝑖. This means

Au𝑖 = 𝜆𝑖u𝑖 . (2.16)

Taking all 𝑀 eigenvectors and eigenvalues together results in the following expression

AU = UΛΛΛ, (2.17)

where U contain the eigenvectors u𝑖 as columns and where ΛΛΛ is a diagonal matrix containing the
eigenvalues 𝜆𝑖. These eigenvectors are called the right eigenvectors. We can also talk about left
eigenvectors, that is

QHA = ΛΛΛQH, (2.18)

where the left eigenvectors are the columns of Q. The eigenvalues are not direction-dependent, which
follows from rewriting Eq. (2.17) into

U−1A = ΛΛΛU−1, (2.19)
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which can be compared with Eq. (2.18). The left and right eigenvalues are thus the same. Also the
following relation between left and right eigenvectors follows from the comparison

Q = U−H. (2.20)

If A is a Hermitian matrix like the cross-correlation matrices are, the left and right eigenvectors are even
the same, which follows from taking the Hermitian of both sides of Eq. (2.17)

UHAH = ΛΛΛUH, (2.21)

and comparing this with Eq. (2.18).

2.2.2. Generalized eigenvalue decomposition
The GEVD is a generalization of the EVD with an extra 𝑀 ×𝑀 matrix B. The GEVD is thus applied to
a matrix pencil (A, B) such that

AU = BUΛΛΛ, (2.22)

and for the left GEVD
QHA = ΛΛΛQHB. (2.23)

The normal EVD is thus obtained by choosing the identity matrix for the secondary matrix B = I. If
both A and B are Hermitian, the left and right generalized eigenvectors are the same, that is U = Q.

The GEVD can be rewritten into a normal EVD by considering the inverse of B, that is

B−1AU = UΛΛΛ, (2.24)

for the right GEVD and
QHAB−1 = ΛΛΛQH, (2.25)

for the left case. These two equations show that the right generalized eigenvectors of (A, B) can also
be obtained as the right normal eigenvectors of B−1A and the left generalized eigenvectors as the left
normal eigenvectors of AB−1.

2.2.3. Ventricular transfer function
The EVD and GEVD can be used to estimate the ATF and VTF. An important observation to make
first from the problem is the difference between those transfer functions. The atrial signal component
propagates through the tissue below the sensors, so there will be a lot of phase differences in the
ATF, expressing the time delays between the moment the atrial wave activates the tissue under the
electrodes.

The ventricular component, however, originates from relatively far away, meaning the phase differ-
ences inside the VTF are negligible and the magnitude differences are small. The VTF will therefore
approximately be a normalized all-ones vector

v ≈ 1
√𝑀

1. (2.26)

We could also try to make a better estimate of v by looking at the eigenvectors of RX and selecting
the one closest to the all-ones vector. The EVD of RX is composed as

RXU = UΛΛΛ. (2.27)

Because RX is Hermitian, U is a unitary matrix, that is U−1 = UH. This results in

RX = UΛΛΛUH. (2.28)

From the comparison of this equation with Eq. (2.15), we make the assumption that one of the
columns ofU corresponds with the VTF and therefore resembles the all-ones vector. This resemblance
can be measured by looking at the dot-product of each eigenvector with the all-ones vector. The best
estimate of the VTF can then be selected by maximizing that dot product, which comes down to

v̂ = argmaxUH1. (2.29)
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Because the eigenvectors are normalized vectors and the estimate of the VTF is one of those eigen-
vectors, we can say that the VTF is normalized as well, resulting in vHv = 1. Furthermore, due to the
lack of phase differences among this VTF, it is actually possible to enhance the estimate by averaging
it across frequency bins 𝑓. This should remove any deviations and result in a better estimate than the
simple all-ones vector. The resulting estimate of the VTF then still is approximately normalized.

The interference cross-correlation matrix then is fully describable as

RV+N = 𝜎2𝑣vvH + 𝜎2𝑛I. (2.30)

The missing information in this expression is the mixing of these two matrices, which depends on the
signal powers. The ventricular signal power is generally larger than the noise signal power. For now
the mixing constant is assumed to be known, but generally, 𝜎2𝑣 ≫ 𝜎2𝑛 .

2.2.4. Atrial transfer function
With this general knowledge of the interference, it is possible to get an idea of the atrial cross-correlation
matrix RA. There are generally two ways of going about this. The first one is covariance subtraction
(CS), which simply subtracts the interference cross-correlation matrix from the noisy one to come to an
expression of the atrial one. This, however, has proven to give unstable results [18].

The other option is covariance whitening (CW), using the interference cross-correlation matrixRV+N
to “pre-whiten” the noisy cross-correlation matrix RX. Pre-whitening means turning the interference
present in the noisy cross-correlationmatrix into white noise. Then afterwards, the noise cross-correlation
matrix can be considered to be a simple identity matrix, which simplifies a lot of following computation
steps.

Pre-whitening can be done by comparing the GEVDs of matrix pencils (RX, RV+N) and (RA, RV+N),
whereRX can be determined from the data itself,RV+N has been composed using several assumptions
in the previous section and RA is to be determined. Starting with the decomposition of (RA, RV+N), a
non-singular matrix U and diagonal matrix ΛΛΛ can be found that conform to the following two equations

UHRAU = ΛΛΛ, (2.31)

and
UHRV+NU = I. (2.32)

This decomposition of RA and RV+N into U and ΛΛΛ is called the GEVD of matrix pencil (RA, RV+N),
where U contains the generalized eigenvectors and ΛΛΛ is a diagonal matrix containing the generalized
eigenvalues. Without loss of generality, we assume the generalized eigenvalues are sorted from big to
small. The two equations can be combined into the characteristic GEVD equation

RAU = RV+NUΛΛΛ. (2.33)

Rewriting Eqs. (2.31) and (2.32) using Q = U−H, gives

RA = QΛΛΛQH, (2.34)

and
RV+N = QQH. (2.35)

A sum of these equations gives

RX = RA +RV+N = Q (ΛΛΛ + I)QH, (2.36)

UHRXU = ΛΛΛ + I. (2.37)

Comparing this equation with Eq. (2.31) shows that the GEVD of (RX, RV+N) will produce the same
generalized eigenvectors as (RA, RV+N) and the same eigenvalues by subtracting unity.

Pre-whitening can thus be done using the GEVD, which results in an expression of the atrial cross-
correlation matrix RA. In reality, this matrix will not be calculated explicitly, because its decomposition
can be used directly to get an expression of ATF a. Comparing Eq. (2.34) with Eq. (2.13), shows that
ΛΛΛ contains one non-zero value, since RA = 𝜎2𝑎aaH is a rank-1 matrix. This will be the first generalized
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eigenvalue due to the sorting. The column of Q corresponding to this one non-zero value in ΛΛΛ then is
the ATF a with a scalar ambiguity, that is

â = Qe1, (2.38)

with e𝑖 being the 𝑖th unit vector, meaning its 𝑖th entry is 1 and all others are 0. Once again, the ATF is
a normalized vector, just like the VTF, because it is one of the eigenvectors. This means aHa = 1.

This Q can thus be calculated as the inverse Hermitian of matrix U which is obtained from the
GEVD of pencil (RX, RV+N). These generalized eigenvectors can then also be derived as the normal
eigenvectors of R−1V+NRX. The normal left eigenvectors of that R

−1
V+NRX will then actually be that matrix

Q, since those normal left eigenvectors will relate to the normal right eigenvectors as Q = U−H.



3
Estimating atrial activity

In this chapter the signal model is used to filter the EGMs in such a way that the VA is removed and
the AA remains with as little noise and interference as possible.

Some similar methods from the literature are discussed in Section 3.1. The method proposed in
this thesis is explained in Section 3.2. A first theoretical analysis of this method is done in Section 3.3,
the MATLAB implementation is explained in Section 3.4 and the results of the method can be seen in
Section 3.5.

3.1. Literature
The literature, of course, already shows many algorithms with the same goal. The simplest option is
separating the atrial and ventricular signals in time, but this is only possible when they do not overlap.
The other solution mentioned in the introduction is the bipolar electrode, which removes the VA effec-
tively, but also affects the AA. There are other more complex methods as well. Most were originally
meant for use against ECGs, but can be used with EGMs as well. Below are the two main examples.

3.1.1. Template matching
One of the early methods in literature is template matching and subtraction [19] [20]. It uses a database
of stereotypical ventricular signal components and matches those to new data to be able to cancel that
signal component, leaving only the AA. It usually involves a corresponding ECG to know where to look
for VA and is of low computation complexity. The problem, however, is that the subtraction leaves bad
artifacts [21].

3.1.2. Blind source separation
The second method is blind source separation, which bases its technique on the assumption that AA
and VA are decoupled, meaning they can be considered as originating from two different sources [22].
The method presented in this thesis actually relies on the same assumption. In blind source separation
the different sources, that is the AA and VA, are distinguished using principle component analysis or
independent component analysis methods [23] [24]. The method does, however, not result in a perfect
estimation of the AA, because, in reality, the AA and VA are not fully decoupled.

3.2. Method
The method proposed in this thesis thus uses the assumption that the AA and VA come in from a
different direction. Using the signal model presented in Chapter 2, it is possible to make a smart
combination of that spatial information to remove signals from particular directions while preserving
those coming in from other directions. This phenomenon is called beamforming [25].

3.2.1. State-of-the-art beamformers
Let us consider a simpler signal model to demonstrate several beamformers

x = 𝑠d+ n, (3.1)

11



12 3. Estimating atrial activity

where 𝑠 is the desired signal, d is its transfer function and n is noise that we want to remove as much
as possible. A beamformer can then be considered a spatial filter denoted by a vector w containing
the beamformer weights, used as

�̂� = wHx = 𝑠wHd+wHn. (3.2)
By properly choosing w, the beamformer will estimate the signal of interest at the reference electrode
of transfer function d.

One of the simplest examples is the delay-and-sum (DAS) beamformer [26]. In the time domain,
it compensates for the delays of each channel for a certain incoming angle and sums those delayed
signals. In the frequency domain this can be accomplished using the Hermitian of transfer function
d. The main benefit of using this technique over simply using one of the channels as estimate for the
original signal is the averaging and therefore diminishing effect on the noise, assuming the noise is
spatially uncorrelated. The signal itself will constructively interfere and will therefore not diminish. The
beamformer expression is given by

wDAS =
d
dHd

, (3.3)

and the resulting estimate is

�̂�DAS = 𝑠 +
dHn
dHd

. (3.4)

There is more to achieve in terms of noise cancellation by building more advanced beamformers.
The Minimum Variance Distortionless Response (MVDR) beamformer, for example, aims to reduce the
noise as much as possible, while still keeping the signal component 𝑠 undistorted [27]. In the DAS
beamformer the signal component was undistorted as well, but the MVDR is able to remove the noise
more effectively by making use of the noise cross-correlation matrix. It is composed as a minimization
problem, where the output power is being minimized under the constraint not to distort the target. This
is the same as minimizing the output noise power under the same constraint, because the signal noise
cannot be minimized due to that constraint. The noise output power can be calculated as

𝑃𝑛,out = E [(wHn) (wHn)H] = wHRNw. (3.5)

The beamformer can then be derived from

min
wH

wHRNw

s.t. wHd = 1.
(3.6)

This minimization problem is convex and can be solved using the lagrangian

𝐿(𝜆) = wHRNw+ 𝜆 (wHd− 1) . (3.7)

Finding the minimum with respect to wH of this lagrangian results in

wMVDR =
R−1N d
dHR−1N d

. (3.8)

The beamformer results in the following signal estimate

�̂�MVDR = 𝑠 +
dHR−1N n
dHR−1N d

. (3.9)

It is possible to introduce an extra constraint in the minimization problem to nullify a signal compo-
nent besides the noise, coming in from a different direction explicitly, for example. A beamformer with
multiple linear constraints is called a Linear Constraint Minimum Variance (LCMV), which is a general-
ization of the MVDR [27]. If we would like to remove a signal with transfer function r, the beamformer
can be composed as

min
wH

wHRNw

s.t. wHd = 1
s.t. wHr = 0,

(3.10)
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which is a convex minimization problem, just like the MVDR formulation. It can again be solved using
the lagrangian, that is

𝐿(𝜆, 𝜅) = wHRNw+ 𝜆 (wHd− 1) + 𝜅 (wHr) . (3.11)
Minimizing with respect to wH, results in the following beamformer

wLCMV =
R−1N (rHR−1N rd− rHR−1N dr)
dHR−1N (rHR−1N rd− rHR−1N dr) . (3.12)

3.2.2. Beamformer matrix
Beamformers focus on estimating the signal component 𝑠, which means all 𝑀 channels are combined
into one estimate �̂�. We are, however, interested in filtering all𝑀 channels. We can do so by multiplying
the estimated �̂� with transfer function d to get an estimate of the desired signal in each channel, that is,

ŝ = �̂�d = (wHx)d, (3.13)

which can also be done inside the beamformer by right-multiplying it with the Hermitian of the transfer
function, turning it into a beamformer matrixW, as follows from

ŝ = (wHx)d = d (wHx) = (wdH)H x =WHx. (3.14)

For the DAS beamformer, this beamformer matrix looks like

WDAS =
ddH

dHd
. (3.15)

Multiplying this matrix with the measured signals x will thus give a filtered version of that signal of each
channel instead of just at one channel.

3.2.3. Bipolar electrode as beamformer
The bipolar electrode (BE) mentioned in the introduction can also be placed in the context of beam-
formers. It actually is part of the class of differential beamformers [28]. In the time domain it consists
of a simple subtraction between two close electrodes. To compare it with other beamformers, we will
extend it from two to 𝑀 electrodes by considering its effect as removing the mean across all channels
from each channel, resulting in the extended bipolar electrode (EBE), that is,

�̂�𝑎,𝑚[𝑡] = 𝑥𝑚[𝑡] −
1
𝑀 ∑

𝑚
𝑥𝑚[𝑡], (3.16)

which in case of 𝑀 = 2 translates to

�̂�𝑎,2[𝑡] =
1
2 (𝑥2[𝑡] − 𝑥1[𝑡]) , (3.17)

which is the subtraction we recognize from the BE expression. To fully be able to compare it with other
beamformers, we need to move it to the frequency domain. It does not require any delays, so there
are no frequency-dependent factors, meaning the beamformer will be the same across all frequency
bins, given by

WEBE = I−
1
𝑀J, (3.18)

where J is the all-ones matrix J = 11H.
The subtraction of the mean of the signal is of course trying to remove the ventricular signal and

actually assumes the ventricular signal is the same across all channels, meaning it assumes an all-
ones VTF. We can make a slight adjustment to the beamformer so to turn the mean into a weighted
average to be able to use a better estimate of the VTF than the simple all-ones vector. This looks like

WEBE = I−
vvH

vHv
= I− vvH, (3.19)

where vHv = 1, because v is an orthonormal eigenvector.
The right-hand side of the expression can now be interpreted as a DAS beamformer trying to es-

timate the ventricular signal component. The EBE can then be read as a filter that estimates the
ventricular signal component using a DAS and subtracts that from signal x.
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3.2.4. Back to the signal model
Going back to the problem posed in this thesis, we can use beamformers to filter signal x such that the
ventricular signal component s𝑣 = 𝑠𝑣v is removed while atrial signal component s𝑎 = 𝑠𝑎a is preserved.
The placeholder transfer function d will therefore be the ATF a from now on. The transfer function r
used in the LCMV expression will be the VTF v. Furthermore, we need beamformer matrices, so the
original beamformer expressions are extended with the Hermitian of the ATF from the right.

The expression for the DAS beamformer in Eq. (3.3) then results in

WDAS = aaH, (3.20)

where the original denominator could be simplified using the fact that aHa = 1, as a was found as one
of the orthonormal eigenvectors.

The state-of-the-art MVDR and LCMV beamformers, need some more changes to be applicable
to the relevant signal model. The MVDR expression in Eq. (3.8) should not simply use the noise
cross-correlation matrix RN, but should consider the ventricular component to be noise as well. It will
therefore use the interference cross-correlation matrix RV+N. The MVDR actually uses the inverse of
that matrix, which can be calculated using the Sherman–Morrison formula due to its special form using
the ventricular rank-1 cross-correlation matrix [29]. The formula states that for generic matrix A and
vectors u and v the following inverse holds,

(A+ uvH)−1 = A−1 − A−1uvHA−1

1 + vHA−1u . (3.21)

This results in our case in,

R−1V+N = (𝜎2𝑛I+ 𝜎2𝑣vvH)
−1 = 1

𝜎2𝑛
I− 𝜎2𝑣

𝜎2𝑛 (𝜎2𝑣 + 𝜎2𝑛)
vvH. (3.22)

Using this inverse, the MVDR applicable to the signal model can be rewritten into

WMVDR =
(1 + 𝜎2𝑛

𝜎2𝑣
)aaH − (vHa)vaH

1 + 𝜎2𝑛
𝜎2𝑣
− (vHa) (aHv)

, (3.23)

where a few simplifications were made using aHa = 1 and vHv = 1.
The LCMV expression in Eq. (3.12) does not need to use theRV+N, because the ventricular compo-

nent is already explicitly set in the constraints. It will just use the noise cross-correlation matrix, which
can be filled out, resulting in

WLCMV =
aaH − (vHa)vaH
1 − (vHa) (aHv) . (3.24)

3.3. Analysis
The beamformers can be analyzed theoretically against the proposed signal model, showing whether
they should have nice results for EGMs that exactly conform to the signal model. In reality, this will of
course not be the case. The tests with simulated and real-life data will eventually have to show whether
the assumptions are close enough to the truth. First, however, we test the proposed beamformers
theoretically against the signal model, that is

ŝ𝑎 =WHx = 𝑠𝑎WHa+ 𝑠𝑣WHv+WHn. (3.25)

It follows that a good result would arise if the beamformer matrixWwould adhere toWHa = a,WHv = 0
and WHn = 0. The first two objectives are easier to accomplish than the last one, because they only
consist of deterministic terms, while the last one wants to cancel noise n, which is stochastic. We only
have indirect information on that noise and that last objective can therefore only be aimed for indirectly,
like the MVDR does using the deterministic noise cross-correlation matrix RN. Luckily, the noise will
generally be the smallest signal component, wherefore that last objective is the least important.
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3.3.1. Theoretical results
Testing the EBE against the three objectives, shows that there is room for improvement. While the
ventricular signal component is removed, which follows from

WH
EBEv = (I− vvH)

H
v = v− (vHv)v = 0, (3.26)

the atrial signal component is distorted,

WH
EBEa = (I− vvH)

H
a = a− (vHa)v ≠ a. (3.27)

Let us test the more complex beamformers, that actually all keep the atrial part undistorted and
remove the ventricular in varying degrees. Starting with the DAS one from Eq. (3.20), whose ventricular
signal component results in

WH
DASv = (aaH)

H
v = (aHv)a ≠ 0. (3.28)

It does not remove the ventricular signal component as expected. It does not use any information on
that component after all. The MVDR expression from Eq. (3.23) is composed using the RV+N and will
therefore be able to suppress the ventricular signal component more effectively. This follows from,

WH
MVDRv =

𝜎2𝑛
𝜎2𝑣
(aHv)

1 + 𝜎2𝑛
𝜎2𝑣
− (vHa) (aHv)

a ≠ 0. (3.29)

It still is not nullified, but the fraction of signal powers should generally be very small, giving a good
result. The LCMV should completely remove the ventricular component as prescribed by the constraint
in the underlying minimization problem. Using Eq. (3.24) it shows that this is indeed true,

WH
LCMVv =

(aHv)a− (aHv)a
1 − (vHa) (aHv) = 0. (3.30)

3.3.2. Correlation between atrial and ventricular activity
The performance analysis of the aforementioned beamformers shows they very much depend on aHv.
The Cauchy–Schwarz inequality tells us the following

|aHv| ≤ |aHa| |vHv| = 1, (3.31)

resulting in
0 ≤ |aHv| ≤ 1. (3.32)

Up until now, we have assumed the AA and VA to be very different and uncorrelated. If the atrial
and ventricular signal components were fully uncorrelated, this would reflect in their transfer functions
as aHv = 0. That would actually result in all beamformers working perfectly, if the transfer functions
were estimated perfectly.

In reality, there will be a difference in the performance of the beamformers, even if the transfer
functions were estimated perfectly. This results from the ATF and VTF actually correlating a little.
The performance analysis shows that for all four considered beamformers, the performance degrades
with increasing correlation aHv. If the correlation would hypothetically saturate as |aHv| → 1, the
beamformers would not be able to distinguish the atrial and ventricular components at all, meaning
they would remove both (EBE) or keep both intact (DAS, MVDR, LCMV). In case of the LCMV, it could
actually result in a division by zero, making the beamformer unstable.

Realistically, it is almost impossible for the correlation to be maximized, because the AA cannot
reach all electrodes at the same time, like the VA does, unless 𝑀 = 2. This, precisely, is the problem
with the BE. Rotating the BE will find exactly two orientations in which the atrial propagation wave
approaches both unipolar electrodes at the same time. This will maximize the correlation between the
ATF and VTF. With increasing 𝑀, this should not be a problem anymore.
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3.3.3. Trade-off beamformer
Another thing to note, is that the MVDR is actually a trade-off between removing the noise and removing
the ventricular signal component depending on the fraction of their signal powers; let us call it 𝛼

𝛼 = 𝜎2𝑛
𝜎2𝑣
. (3.33)

The expression of MVDR in Eq. (3.23) can even be rewritten into the expressions of the DAS and LCMV
beamformers in Eqs. (3.20) and (3.24) respectively for certain values of that 𝛼. If the noise power is way
bigger than the ventricular signal power, 𝛼 goes to infinity and the MVDR tends to the DAS expression
in Eq. (3.20), removing mostly noise, that is

lim
𝛼→∞

WMVDR = lim
𝛼→∞

(𝛼−1 + 1)aaH − 𝛼−1 (vHa)vaH
𝛼−1 + 1 − 𝛼−1 (vHa) (aHv) =WDAS. (3.34)

If the ventricular signal power, however, is bigger than the noise power, 𝛼 goes to zero and the MVDR
tends to the LCMV, that is

lim
𝛼→0

WMVDR = lim
𝛼→0

(1 + 𝛼)aaH − (vHa)vaH
1 + 𝛼 − (vHa) (aHv) =WLCMV. (3.35)

In general, the noise power is way smaller than the ventricular signal power. This will result in the
MVDR resembling the LCMV a lot. They should be able to remove the ventricular component in a good
way. The DAS will probably not be very successful, because it focuses on the small noise component.

3.4. Implementation
Before being able to test the beamformer expressions against any data, they must be implemented.
The implementation is done in MATLAB and can be found in Appendix A.

The data we start with, consists of𝑀 electrode channels, each showing 𝐿 time samples per 𝐾 heart
beats. All algorithms are implemented per heart beat 𝑘, that is, the signal is manually cut into pieces
of 𝐿 samples that include one atrial and ventricular peak. This is done because the cross-correlation
matrices and transfer functions are assumed to be stationary per heart beat, but not across multiple
heart beats.

Each heart beat is then windowed into 𝐾𝑤 pieces of 𝐿𝑤 samples using a Hann window with an
overlap of 50%. Those windows are zero-padded to 𝐿 samples and transformed to the Fourier domain
using the fast Fourier transform (FFT), thus each consisting of 𝐿 frequency bins.

The noisy cross-correlation matrix RX is defined as

RX = E [XXH] , (3.36)

but will be estimated per beat 𝑘 and per frequency bin 𝑓 as an average over all 𝐾𝑤 windows using
realization x of stochast X as

R̂X[𝑘, 𝑓] =
1
𝐾𝑤

𝐾𝑤
∑
𝑘𝑤=1

x[𝑘, 𝑓, 𝑘𝑤]xH[𝑘, 𝑓, 𝑘𝑤]. (3.37)

Using the noisy cross-correlation matrix, we can make an estimate of the VTF v per beat 𝑘. We
will only estimate the magnitude part of the transfer function and ignore the phase part, because the
changes across the electrodes of the VA are only in magnitude and not in delay. This also means
the VTF is the same across all frequency bins 𝑓 and can be averaged among them to get a better
estimate. An eigenvalue decomposition of RX is composed per frequency bin 𝑓 and the eigenvector
most resembling an all-ones vector is found using a dot-product,

v̂[𝑘, 𝑓] = argmax
v

|UH[𝑘, 𝑓]1| , (3.38)

where U is the matrix containing all eigenvectors of RX, defined per heart beat 𝑘 and per frequency bin
𝑓. The ventricular signal component is not prominently present across all frequency bins, this will result
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in some frequency bins without a valid eigenvector. Therefore, a selection is made based on how well
the resemblance with the all-ones vector is before averaging across those frequency bins, that is,

v̂[𝑘] = 1
𝛽𝐿

𝛽𝐿

∑
𝑓=1

v̂[𝑘, 𝑓], (3.39)

where 𝛽 is the percentage of frequency bins selected, which is heuristically chosen to be 𝛽 = 10% in
this implementation. The top 10% across all 𝐿𝑤 is thus averaged to get an estimate of VTF v per heart
beat 𝑘.

The next step is composing the interference cross-correlation matrix RV+N using the VTF as

R̂V+N[𝑘] = 𝜇v[𝑘]vH[𝑘] + I, (3.40)

where 𝜇 is a fraction of the ventricular and noise signal powers and is heuristically set to

𝜇 = 𝜎2𝑣
𝜎2𝑛
= 105. (3.41)

Using the two estimates of cross-correlation matrices it is possible to make an estimate of ATF a
per heart beat 𝑘 and frequency bin 𝑓. With Q being a matrix containing the sorted left eigenvectors of
R−1V+N[𝑘]RX[𝑘, 𝑓] according to their corresponding eigenvalues, we can estimate the ATF as

â[𝑘, 𝑓] = Q[𝑘, 𝑓]e1. (3.42)

Now we have all ingredients to actually perform the filtering using the four beamformers per heart
beat 𝑘, time window 𝑘𝑤 and frequency bin 𝑓. Afterwards these signals y = WHx will be transformed
back to the time domain using the inverse fast Fourier transform (IFFT) and truncated to size 𝐿𝑤. Then
the windows will be combined into one time series using the overlap-and-add technique with once again
an overlap of 50%.

3.5. Results
For the results, the proposed atrial estimation method using beamformers DAS, MVDR and LCMV is
compared against the beamformer implementation of the bipolar electrode, the EBE. We will do tests
with two different estimates of the VTF, several noise levels and different amounts of electrodes. The
EGMs, that are filtered, are simulated and thus not true clinical data, as this enables us to compare
with the true AA.

3.5.1. Simulated data
The simulated EGMs are composed as described by Sun et al., simulating EGMs with a sampling
frequency of 𝐹𝑠 = 1kHz of length 𝑇 = 5 s with and without AF [30]. It simulates 5 × 5 electrodes, thus
𝑀 = 25. The model simulates AF by adding multiple focal sources and by inserting areas of badly
conducting tissue. With this simulated data, the AA and VA are separately available, which makes it
easy to test the results.

We will consider four different data sets with increasing difficulty in terms of the complexity of the
AF. S1 is the simplest case with normal SR, thus without any AF. S2 through S4 all contain AF. S2 and
S3 are still rather simple and only contain two focal sources. S4 consists of very complex signals with
up to five focal sources. Fig. 3.1 shows an example of one electrode of each data set. Fig. 3.2 shows
the complexity levels regarding the differences across the 𝑀 electrodes.

The VA is the same across all four data sets and approximately the same across the electrodes,
which was one of the assumptions the filtering method was based on. Fig. 3.3 shows one beat of the
ventricular signal component across all channels 𝑚.

The last component of the simulated EGMs is the noise. It will be indicated in terms of a signal-to-
noise ratio (SNR) with respect to the atrial signal component.
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Figure 3.1: A time domain plot of the atrial component in the EGMs. Each subplot shows the first two seconds of the first
electrode of each data set S1 through S4, showing the differences in complexity.

S
1
 A

A

S
2
 A

A

S
3
 A

A

S
4
 A

A

Figure 3.2: A time domain plot of the atrial component in the EGMs. Each subplot shows the same atrial pulse of all electrodes
of each data set S1 through S4, demonstrating the differences in complexity.
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Figure 3.3: A time domain plot of the ventricular component in the EGMs. The plot shows one beat of each electrode.
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Figure 3.4: A comparison of the eigenvector estimate of the VTF against the all-ones method. The plot shows the RMSE values
of V2 for all four data sets, compared against the V1 method for increasing numbers of electrodes 𝑀. The V1 method is the
same for all sets. The EGMs have been composed with an SNR of 15dB.

3.5.2. Root-mean-square error
For most results, we will use the root-mean-square error (RMSE). It is a frequently used measure for
the difference between an estimator and the true value it tries to estimate. For an estimator �̂�𝜃𝜃 of value
𝜃𝜃𝜃 of length 𝑁, it is calculated as its name states,

RMSE𝜃 = √
1
𝑁

𝑁

∑
𝑛=1

|�̂�𝑛 − 𝜃𝑛|
2 = √ 1𝑁 (�̂�𝜃𝜃 −𝜃𝜃𝜃)

H (�̂�𝜃𝜃 −𝜃𝜃𝜃). (3.43)

Because we actually have the true AA, it is possible to calculate the atrial and ventricular RMSE.
The time-domain atrial signal component should satisfy ŝ𝑎 = s𝑎, thus the atrial RMSE (ARMSE) can
be calculated as

ARMSE = √ 1𝑁 (ŝ𝑎 − s𝑎)
H (ŝ𝑎 − s𝑎). (3.44)

The time-domain ventricular signal component should be removed, that is ŝ𝑣 = 0. The ventricular
RMSE (VRMSE) can therefore be calculated as

VRMSE = √ 1𝑁 ŝ
H
𝑣 ŝ𝑣 , (3.45)

which essentially is the signal power of the remaining ventricular signal component after filtering.

3.5.3. Ventricular transfer function
One of the first steps in the algorithm is making an estimate of the VTF. We will look at two cases: using
the simple all-ones estimate (V1) and using the eigenvector estimate (V2) as proposed in Section 2.2.
To get a grasp of how well these estimates, they are compared to a better estimate of VTF from the
pure VA.

Fig. 3.4 shows the RMSEs for all four data sets, as well as the V1 estimate which is the same for all
data sets for increasing number of electrodes 𝑀. For the simpler two sets S1 and S2 the eigenvector
method is better than the all-ones method for any 𝑀, but it fails to give a good estimate for the more
complicated sets S3 and S4.

The true ATF is hard to calculate from the clean AA in a way that gives a better estimate than the
method used in this thesis with the noisy cross-correlation matrix. It is therefore not possible or fair to
calculate the RMSE of those values.

3.5.4. Bipolar electrode
First, we will look at the simple bipolar electrode to understand why better AA estimation is necessary.
The bipolar electrode is the difference between two closely located electrodes. This method, however,
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Figure 3.5: A comparison of two different orientations of bipolar electrodes against the noisy EGM of S1, where the bottom plot
is a zoomed version of the top one. The EGMs have been composed with an SNR of 20dB.

very much depends on the orientation of the two electrodes with respect to the atrial signal wave front.
Fig. 3.5 shows the difference between two bipolar orientations, horizontal and vertical. The AA is
deformed and very different for both orientations as well.

The bipolar electrode is thus able to remove the VA, but the AA is distorted. The more complex
beamformers will try to keep the AA intact, but they are not able to remove the VA with only two elec-
trodes, as shown by Fig. 3.6. This means, the amount of electrodes 𝑀 should be higher.

3.5.5. Sinus rhythm
Using𝑀 = 25 electrodes instead of just the two gives better results for S1. Fig. 3.7 shows that the EBE
has a better estimate of AA using all electrodes instead of just two, but the DAS, MVDR and LCMV
have an even better estimate. The DAS is the only one not able to remove the VA effectively.

The amount of electrodes 𝑀 clearly has an influence on the performance of the beamformers. We
can look at a plot where the ARMSE is plotted against the VRMSE for increasing numbers of electrodes
𝑀, shown in Fig. 3.8 on a logarithmic scale. Left on the chart means good AA estimation and thus little
atrial distortion. Low on the chart means good ventricular suppression. The chart also shows the
original ventricular signal power, that the beamformers should be able to diminish.

For this simple data set, the V2 gives the best results. Especially the MVDR and LCMV end up
in the lower left corner for high 𝑀, which is a good sign. The DAS is not able to remove the VA
as effectively, its line almost does not leave the dotted line, meaning it does not remove the VA at
all. The EBE has worse atrial estimation than the other beamformers. From the left subplot follows
that the beamformers do benefit from a good VTF estimate; V1 gives worse ARMSE and VRMSE.
The three complex beamformers stay close to the ventricular dotted line, they are not able to remove
that ventricular signal component. The LCMV is cut from the chart for low 𝑀, because it had bad
performance. Due to the similar AA and VA for low 𝑀, it is unstable.

3.5.6. Atrial fibrillation
The eventual goal of the AA estimation is to use it in those cases where the data is less regular than the
SR data in S1 and especially data where AA and VA overlap in time. First, we will look at the S2 data in
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Figure 3.6: A comparison of the three beamformers using all-ones VTF against the noisy EGM of S1 using only two electrodes,
where the bottom plot is a zoomed version of the top one. The EGMs have been composed with an SNR of 20dB.

Fig. 3.9. The MVDR is not visible on the plots, because it overlaps with the LCMV. The MVDR/LCMV
is performing better than the DAS and the EBE. From the ARMSE-VRMSE chart in Fig. 3.10 follows
that the MVDR and LCMV are best, DAS is worst in terms of ventricular suppression and EBE is worst
in terms of atrial distortion. The LCMV is once again unstable for low 𝑀.

S3 actually has some overlapping AA and VA. Fig. 3.11 shows two parts of filtered EGMs. The EBE
and DAS are again performing worst, but the MVDR and LCMV are also not fully able to remove the
VA. Fig. 3.12 shows the ARMSE-VRMSE chart of S3. The DAS clearly performs worst for both V1 and
V2. The EBE seems to be performing the best out of the four beamformers. The results of V1 seem to
be comparable to those of V2.

S4 is the most irregular data set and is hard to filter effectively, as follows from Fig. 3.13. Most of
the VA is removed by the beamformers, but the filtering leaves some artifacts. Furthermore, the AA is
affected as well. The artifacts also show up in the ARMSE-VRMSE chart in Fig. 3.14. The complex
beamformers give bad results compared to the EBE, which does benefit from the better V2 estimate.
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Figure 3.7: A comparison of the four beamformers using V2 against the noisy EGM of S1 using all 𝑀 = 25 electrodes, where
the bottom plot is a zoomed version of the top one. The EGMs have been composed with an SNR of 20dB.
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Figure 3.9: A comparison of the four beamformers using V2 against the noisy EGM of S2 using all 𝑀 = 25 electrodes, where
the bottom plot is a zoomed version of the top one. The EGMs have been composed with an SNR of 20dB.
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Figure 3.11: A comparison of the four beamformers using V2 against the noisy EGM of S3 using all 𝑀 = 25 electrodes. Both
plots show different parts of the full EGM. The EGMs have been composed with an SNR of 20dB.
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Figure 3.12: A logarithmic chart of the comparison of the ARMSEs and the VRMSEs for all four beamformers of S3 for both V1
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Figure 3.13: A comparison of the four beamformers using V2 against the noisy EGM of S4 using all 𝑀 = 25 electrodes. Both
plots show different parts of the full EGM. The EGMs have been composed with an SNR of 20dB.
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Figure 3.14: A logarithmic chart of the comparison of the ARMSEs and the VRMSEs for all four beamformers of S4 for both
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4
Estimating local activation times

In this chapter the signal model, and especially the ATF, is used to estimate the LATs per heart beat
𝑘. These LATs are the moments in time when the tissue underneath the sensors depolarizes, giving a
sharp deflection in the measured EGM. Finding these gives insight in the CVs, showing irregularities
in the tissue.

In Section 4.1 two example methods from the literature are explained. Section 4.2 explains the
proposed method and Section 4.3 the implementation. Section 4.4 then shows the results comparing
those to the methods from the literature.

4.1. Literature
Many different methods have been composed to make estimates of the LATs. A LAT is defined as the
moment of activation or depolarization of a cell. An electrode will, however, measure multiple cells at
once, thus blurring the exact moment as the propagating activation wave will not activate all underlying
cells at the same time. The LAT is therefore not trivial.

The LATs can be estimated by physiologists manually, but this is subjective to interpretation and
time-invasive. Therefore, multiple automated techniques have been composed [31]. Below are the
two main examples.

4.1.1. Steepest deflection
One way to determine LATs, is to look at the steepest deflection (SD) of EGMs [32]. In the sampled
EGM data, this comes down to finding the most negative difference between consecutive samples and
using the corresponding moment in time as LAT. The computation is very simple, but the method does
have a big drawback. It is very susceptible to spikes due to interfering VA or noise.

4.1.2. Cross-correlation
Another method uses a database of templates which will be matched to the EGMs. A more robust
approach is to use the surrounding EGMs as templates and correlate [33]. The cross-correlation (CC)
of the EGMs against those of neighboring electrodes assumes the EGMs will be similar except for a
time-shift. The correlation will thus be highest when performed with a time-shift of the difference of the
LATs of both electrodes.

Using this method, only relative LATs will be produced, but considering the application, this is not a
problem. The method proposed in this thesis is similar to this cross-correlation method, but does so in
the Fourier domain. This sounds more complex, but can be performed easily during the filtering step
proposed earlier in this thesis. The time domain version would need this filtering step as well.

4.2. Method
Using ATFs a per time frame 𝑘 it is possible to find relative LATs by transforming those back to the time
domain, resulting in the atrial impulse response (AIR). A relative ATF with respect to channel 𝑚 a(𝑚)
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can be composed as

a(𝑚)[𝑓, 𝑘] = a[𝑓, 𝑘]
𝑎𝑚[𝑓, 𝑘]

. (4.1)

Without loss of generality, the channel is chosen to be the first one, resulting in relative ATF a(1),
whose first value then is equal to 1 for each 𝑓 and 𝑘.

Combining all frequency bins 𝑓 per channel 𝑚 and transforming those frequency series back to the
time domain using the inverse Fourier transform, gives 𝑀 AIRs ℎ𝑚[𝑡, 𝑘] per time frame 𝑘 with respect
to the first channel:

ℎ𝑚[𝑡, 𝑘] = ℱ−1 {𝑎(1)𝑚 [𝑓, 𝑘]} , (4.2)

where ℱ−1 {⋅} is the inverse Fourier transform operator. Now ℎ1[𝑡, 𝑘] is a Dirac delta function 𝛿[𝑡],
due to the fact that 𝑎(1)1 [𝑓, 𝑘] = 1 is all ones. If all channels would just be time-delayed and amplified
versions of the first channel, they would all be Dirac delta functions, albeit delayed and amplified. The
LATs can then be found by looking for the moment in time that maximizes the AIRs

LAT𝑚[𝑘] = argmax
𝑡

ℎ𝑚[𝑡, 𝑘]. (4.3)

In reality, there will be other differences between the channels as well, but if they are not too big,
the algorithm should give accurate results.

4.3. Implementation
The bulk of the MATLAB implementation has been explained in Section 3.4 already. After composing
the ATFs per heart beat 𝑘 and frequency bin 𝑓, they have to be normalized with respect to the first
electrode to get relative ATFs. Those relative ATFs are transformed back to the time domain using the
IFFT to get AIRs. The LAT estimates are made by grabbing the time index 𝑡 that maximizes the AIRs
per heart beat 𝑘 and per electrode 𝑚. For the first electrode this will be time sample 𝑡 = 1, because it
is a delta Dirac pulse.

One difficulty has to be overcome: if an electrode 𝑚 were to be activated before the first electrode,
its LAT would have to be negative. The indices, however, can not be negative and the delta peak will
wrap around to the end of the AIR time series, resulting in a very large LAT. This problem is solved by
adding half the length of the AIR 𝐿 and applying the modulo operator with that length 𝐿 and deducting
half of 𝐿 again, that is,

LAT𝑚[𝑘] = ( ̂LAT𝑚[𝑘] +
𝐿
2 mod 𝐿) − 𝐿2 . (4.4)

Once again, the estimated LATs are only valid relative to each other. The absolute values are not
derived using this algorithm.

4.4. Results
For the tests, we will use data sets S1 and S3 mentioned in Section 3.5.1. Those are the only sets
we have the true LATs of. The true values will be compared to the estimated values using the RMSE
mentioned in Section 3.5.2, as well as compared to the SD and the CC where the last one uses the
EGMs filtered using the EBE beamformer to correlate.

The first beats of S1 and S3 are shown in terms of LATs in Figs. 4.1 and 4.2 respectively. The
figures show the true LATs and three estimation methods, where the last one is the proposed AIR one.
The estimates only differ from the true values by a little.

Figs. 4.3 and 4.4 show the RMSE of the LATs for the three estimationmethods for increasing number
of electrodes 𝑀. For the simple S1 data set, the proposed AIR method is performing better than the
state-of-the-art methods for most values of 𝑀. For the more difficult S3 this, however, is not the case.
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Figure 4.1: True LATs expressed in milliseconds of the first beat of S1 against three estimates of those LATs using the SD, CC
and the AIR method proposed in this thesis. The CC and AIR methods use V2. The EGMs have been composed with an SNR
of 10dB.
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Figure 4.2: True LATs expressed in milliseconds of the first beat of S3 against three estimates of those LATs using the SD, CC
and the AIR method proposed in this thesis. The CC and AIR methods use V2. The EGMs have been composed with an SNR
of 10dB.
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Figure 4.3: The RMSEs of the three estimation methods, SD, CC and AIR, calculated for multiple number of electrodes 𝑀 in
data set S1. The CC and AIR methods use V2. The EGMs have been composed with an SNR of 10dB.

5 10 15 20 25

Number of electrodes

0

1

2

3

4

5

S
3

 L
A

T
 R

M
S

E
 [

m
s
]

SD

CC

AIR

Figure 4.4: The RMSEs of the three estimation methods, SD, CC and AIR, calculated for multiple number of electrodes 𝑀 in
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5
Conclusion and future work

This thesis proposes a new method of estimating the atrial activity (AA) in epicardial electrograms
(EGMs) by removing the interfering ventricular activity (VA). This is in particular important when studying
atrial fibrillation (AF), where the atrial and ventricular component often overlap. The algorithm for AA
estimation uses the spatial information in the multiple electrodes in the Fourier domain. This filtering
method is called beamforming, which exploits the underlying spatial transfer functions. These atrial
transfer functions (ATFs) can then also be used directly to make an estimate of the local activation
times (LATs).

In Chapter 2 a signal model of the EGMs is composed, consisting of AA, VA and noise. The model
considers the AA to be the same across the electrodes except for some delays and differingmagnitudes;
the same holds for the VA. Those differences can be combined into an ATF and a ventricular transfer
function (VTF) in the Fourier domain. The chapter also describes a way to estimate those transfer
functions using eigenvalue decompositions of the cross-correlation matrices of the EGMs.

In Chapter 3 the signal model and transfer functions are used to build three beamformers that are
meant to remove the VA and not distort the AA. The beamformers are also compared to an extended
version of the bipolar electrode (BE), which is a simple time-domain average subtraction filter. The
three beamformers are compared against the extended bipolar electrode (EBE) in a theoretical sense
and in practice by applying them on synthetic data for a range of number of electrodes and scenarios
with different degrees of AF.

Chapter 4 uses the ATF to make an estimate of LATs. A LAT is the moment in time when the cells
underneath the electrodes are activated and they are used as a visualization technique for physiologists
to understand the conduction pattern of the atria. The ATF can be transformed back to the time domain
as an atrial impulse response (AIR) from which the peaks should indicate the LATs. The AIR method is
compared against two state-of-the-art methods, steepest deflection (SD) and cross-correlation (CC).

5.1. Beamforming
The goal of beamforming in this application is to remove the VA and keep the AA undistorted. Three
beamformers are composed with the constraint that the AA remains undistorted if the ATF were esti-
mated perfectly. They are with increasing complexity the delay-and-sum (DAS), the Minimum Variance
Distortionless Response (MVDR) and the Linear Constraint Minimum Variance (LCMV) beamformers.

The DAS is not very effective against the VA, while the LCMV mostly focuses on removing the VA,
which can make the beamformer unstable for small number of electrodes. The MVDR is a balance
between the two and turns out to produce the best results out of the three. The EBE is also placed in
the context of beamforming, which from a theoretic perspective shows it does not explicitly keep the
AA undistorted.

The beamformers make use of an estimate of the ATF, which is built using two different estimates of
the VTF. One is a simple all-ones vector, disregarding any differences in the VA among the electrodes
and the other one uses the eigenvalue decomposition of the noisy cross-correlation matrix to make
a better estimate of the small magnitudal differences. Both estimates are tested in the beamformers
against four data sets with increasing complexity.
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The tests on the data sets show that for low numbers of electrodes, the complex beamformers
hardly remove any VA, because they cannot do so without distorting the AA, where the EBE does
the opposite. When using more electrodes, the results of the four beamformers grow closer in both
aspects. For the two simplest data sets, the MVDR and LCMV turn out to be the best choice among
the four when using the eigenvector estimate of the VTF. The two have very similar results for large
numbers of electrodes. We can say that the MVDR is generally better than the LCMV, because the
LCMV is unstable for a low number of electrodes. The DAS is comparable to the MVDR in terms of
atrial preservation, but fails to remove the VA effectively. The EBE on the other hand is comparable in
terms of ventricular cancellation, but is inferior in terms of the atrial preservation.

When using the simpler all-ones estimate of the VTF, however, the performance of the complex
beamformers degrades so much, that the EBE is sometimes better in both atrial preservation and ven-
tricular cancellation. The complex beamformers rely more heavily on a good estimate of that transfer
function than the EBE. This does show that the eigenvector estimate is a good addition to the algo-
rithm. The complex beamformers also have difficulties with the two more complicated data sets, which
probably is a result of the signal model not being accurate enough for the data. The EBE outperforms
the other algorithms for all number of electrodes. The EBE does benefit from the better VTF estimate.

To conclude, it is definitely beneficial to look at more than two electrodes at once when trying to
estimate the AA in EGMs. The EBE clearly improves in terms of atrial preservation for increasing
numbers of electrodes, albeit sometimes deteriorating a little in terms of ventricular cancellation. The
eigenvector estimate for the VTF also has a clear benefit over the simple all-ones estimate. Moreover,
the MVDR is able to bring more to the table than the EBE in terms of the atrial preservation, if the signal
model is accurate enough for the data set. The MVDR assumes the atrial signal component resembles
a lot across the electrodes, meaning there is only one ATF, but this assumption is probably invalid for
the more complex data. Furthermore, the LCMV was designed to be better applicable than the MVDR
in this atrial problem, but turned out to be somewhat unstable.

5.2. Local activation times
The ATF can also be used to estimate the LATs by normalizing the transfer functions to one electrode
and moving it back to the time domain, giving the AIR, whose peaks indicate the LATs. For the simplest
data set this works well, outperforming two state-of-the-art methods by a little. The AIR algorithm is,
however, not able to give such good results for the harder data set. Once again, this is probably due to
the signal model not being accurate enough. The method is therefore not of interest in its current form,
because it is a lot more time-consuming as well than the other methods due to the Fourier transforms.

5.3. Future work
The main problem with some of the proposed methods in this thesis is that the underlying signal model
is not accurate enough for the more complicated AF data it was meant to process, except for the EBE,
which was not derived from the signal model. The model now assumes the atrial signal component
is roughly the same across all electrodes, besides some time delay and magnitude differences. From
this assumption follows only one ATF and thus a rank-1 atrial cross-correlation matrix. In case of the
more complex AF data sets this assumption appears to be invalid.

More research could be done into extending the signal model. One option is to consider a sum of
multiple atrial signal and ATF combinations instead of the one s𝑎 = 𝑠𝑎a, that is,

x =∑
𝑖
𝑠𝑎, 𝑖a𝑖 + 𝑠𝑣v+ n. (5.1)

This would mean that themultiple ATFs have to be estimated and the beamformers have to be extended
to using the multiple transfer functions. An alternative is not to use the ATFs, but only to remove the
ventricular signal component explicitly, which actually tends towards the EBE again.

Another option is to keep the signal model the same, but to apply it to smaller groups of electrodes.
They could be grouped in terms of resemblance by performing some wave front isolation algorithm,
under the assumption that the atrial signal component is the same within such a wave front. The signal
model would then be valid per group, meaning the algorithm can be applied to those groups.

Furthermore, the algorithm has only been tested with synthetic data. Applying it to clinical data
might show other flaws or perks of the algorithm that can be explored.
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A
Matlab code

The MATLAB code below filters the EGMs composed from the atrial and ventricular data inside a mat-file
using the four beamformers and shows one of the beats. It furthermore estimates the LATs.

1 %% Compose data
2 % Receive s imulated data from .mat f i l e s and add noise
3 % Data cons i s t s o f K beats o f leng th L i n M channels
4

5 load sinusrhythm . mat ;
6

7 X = awgn(S_a , 10 , ’measured ’ ) + S_v ;
8 [M, L , K ] = s ize (X) ;
9

10 %% Window data
11 % Window data per beat k i n t o smal le r pa r t s kw of s ize Lw using a Hann
12 % window wi th leng th L due to zero−padding
13

14 Lw = 50;
15 Sw = f l o o r (Lw / 2) ;
16 Kw = f l o o r ( ( L − Sw) / Sw) ;
17

18 Xfw = zeros (M, Kw, L , K) ;
19 f o r k = 1 : K
20 x = X ( : , : , k ) ’ ;
21 xw = reshape ( x ( ( 1 : Lw * Kw) − (Lw − Sw) * . . .
22 kron ( ( 1 : Kw) − 1 , ones (1 , Lw) ) , : ) , Lw, Kw, M) ;
23 Xfw ( : , : , : , k ) = permute ( f f t ( xw .* hanning (Lw) , L ) , [3 2 1 ] ) ;
24 end
25

26 %% Correlate data
27 % Bui ld the noisy cross − co r r e l a t i o n mat r i x by averaging over a l l windows
28 % kw per beat k
29

30 Rxx = zeros (M, M, L , K) ;
31 f o r k = 1 : K
32 f o r l = 1 : L
33 Xf = Xfw ( : , : , l , k ) ;
34

35 Rxx ( : , : , l , k ) = Xf * Xf ’ / Kw;
36 end
37 end
38

39 %% Estimate ventr icu lar t ransfer function
40 % Estimate the VTF per beat k by look ing f o r the e igenvector c l oses t to
41 % the a l l −ones vec to r and averaging over a l l f requency bins l
42

43 vhat = ones (M, 1) / sq r t (M) ;
44

45 VTF = zeros (M, K) ;
46 f o r k = 1 : K

37



38 A. Matlab code

47 vs = zeros (M, L ) ;
48 vm = zeros (1 , L ) ;
49

50 f o r l = 1 : L
51 [V , ~] = e ig (Rxx ( : , : , l , k ) ) ;
52

53 [vm( l ) , ind ] = max(V ’ * vhat ) ;
54 vs ( : , l ) = abs (V ( : , ind ) ) ;
55 end
56

57 [ vm, ind ] = so r t (vm, ’ descend ’ ) ;
58 vs = vs ( : , ind ) ;
59

60 VTF ( : , k ) = mean( vs ( : , 1 : c e i l ( 0 .1 * Lw) ) , 2) ;
61 end
62

63 %% Compose interference cross−corre lat ion matrix
64 % Bui ld the i n t e r f e r ence cross − co r r e l a t i o n mat r i x using the composed VTF
65

66 Rvv = zeros (M, M, K) ;
67 Rnn = eye (M) ;
68 R i i = zeros (M, M, K) ;
69 f o r k = 1 : K
70 v = VTF ( : , k ) ;
71

72 Rvv ( : , : , k ) = v * v ’ ;
73

74 R i i = Rvv * 1e2 + Rnn ;
75 end
76

77 %% Estimate a t r i a l t ransfer function
78 % Estimate the ATF per beat k and per frequency b in l using the GEVD of
79 % the noisy and i n t e r f e r ence cross − co r r e l a t i o n matr ices
80

81 ATF = zeros (M, L , K) ;
82 f o r k = 1 : K
83 r i i = R i i ( : , : , k ) ;
84

85 f o r l = 1 : L
86 rxx = Rxx ( : , : , l , k ) ;
87

88 [ ~ , d , Q] = e ig ( r i i \ rxx , ’ vec to r ’ ) ;
89 [ d , ind ] = so r t ( d , ’ descend ’ ) ;
90 Q = Q( : , ind ) ;
91

92 ATF ( : , l , k ) = Q( : , 1) ;
93 end
94 end
95

96 %% F i l t e r
97 % Use beamformers to f i l t e r the noisy s igna l s using severa l d i f f e r e n t
98 % beamformer expressions t ha t use the ATF, VTF and i n t e r f e r ence
99 % cross − co r r e l a t i o n mat r i x
100

101 ps = { ’BE ’ , ’DAS ’ , ’MVDR ’ , ’LCMV ’ } ;
102 P = leng th ( ps ) ;
103

104 Yfw = zeros (M, Kw, L , P, K) ;
105 f o r k = 1 : K
106 v = VTF ( : , k ) ;
107 r i i = R i i ( : , : , k ) ;
108

109 f o r l = 1 : L
110 a = ATF ( : , l , k ) ;
111

112 f o r kw = 1 : Kw
113 x f = Xfw ( : , kw , l , k ) ;
114

115 Yfw ( : , kw , l , 1 , k ) = ( eye (M) − v * v ’ ) ’ * x f ;
116 Yfw ( : , kw , l , 2 , k ) = ( a * a ’ ) ’ * x f ;
117 Yfw ( : , kw , l , 3 , k ) = ( r i i \ a * a ’ / ( a ’ / r i i * a ) ) ’ * x f ;
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118 Yfw ( : , kw , l , 4 , k ) = ( ( a * a ’ − v ’ * a * v * a ’ ) / . . .
119 (1 − v ’ * ( a * a ’ ) * v ) ) ’ * x f ;
120 end
121 end
122 end
123

124 %% Dewindow data
125 % Move back to the t ime domain and over lap −and−add the windows i n t o t ime
126 % ser ies per beat k a f t e r c u t t i n g the windows back to s ize Lw
127

128 Y = zeros (M, L , K, P) ;
129 f o r k = 1 : K
130 f o r p = 1 : P
131 yfw = i f f t ( permute ( Yfw ( : , : , : , p , k ) , [3 2 1 ] ) ) ;
132

133 y = zeros (Lw + (Kw − 1) * Sw, M) ;
134 f o r kw = 1 : Kw
135 ind = (1 : Lw) + (kw − 1) * Sw;
136

137 y ( ind , : ) = y ( ind , : ) + squeeze ( yfw (1 : Lw, kw , : ) ) ;
138 end
139

140 Y( : , : , k , p ) = y ’ ;
141 end
142 end
143

144 %% Combine a l l beats
145 % Combine the s igna l s separated per beat k toge ther
146

147 x = reshape (X, [M, L * K ] ) ;
148 s_a = reshape (S_a , [M, L * K ] ) ;
149 t = (1 : (K * L ) ) / Fs ;
150

151 y = reshape (Y, [M, L * K, P ] ) ;
152

153 %% Calculate a t r i a l RMSEs
154 % Calcu la te the RMSE of the f i l t e r e d s igna l s compared to the pure a t r i a l
155 % s igna l
156

157 MSE_atr ia l = sq r t ( squeeze (mean(mean ( ( y − s_a ) . ^ 2 , 1) , 2) ) )
158

159 %% Calculate a t r i a l impulse response
160 % Calcu la te the a t r i a l impulse response by d i v i d i n g the ATF by the en t ry
161 % corresponding to i t s f i r s t e lec t rode
162

163 H = i f f t (ATF . / ATF(1 , : , : ) , [ ] , 2) ;
164

165 %% Determine local act ivat ion times
166 % The LATs can be determined by look ing f o r the l a r ges t values o f the
167 % a t r i a l impulse response and se l ec t i ng t ha t t ime sample
168

169 [ ~ , Lat_hat ] = max( permute (H, [1 3 2 ] ) , [ ] , 3) ;
170 Lat_hat = mod( Lat_hat + L / 2 , L ) − L / 2 ;
171

172 %% Calculate LAT RMSEs
173 % Calcu la te the RMSE of the LAT ca l c u l a t i o n
174

175 MSE_lats = sq r t (mean ( ( ( Lat_hat − min ( Lat_hat ) + min ( Lat ) ) − Lat ) . . .
176 . ^ 2 , ’ a l l ’ ) ) / Fs
177

178 %% Plot data for one electrode
179

180 p l o t ( t , s_a (1 , : ) , ’ DisplayName ’ , ’ A t r i a l ’ ) ;
181 hold on ;
182 p l o t ( t , x (1 , : ) , ’ DisplayName ’ , ’ Noisy ’ ) ;
183 f o r p = [1 2 3 4]
184 p l o t ( t , y (m, : , p ) , ’ DisplayName ’ , ps { p } ) ;
185 end
186 legend ;
187 x l abe l ( ’ Time [ s ] ’ ) ;
188 y l abe l ( ’ Electrogram [V ] ’ ) ;
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