
Auto-Erecting
Virtual Offi ce Walls
Constructing a Virtual Offi ce for Global Software Engineers

Ben van Gameren

Auto-Erecting Virtual Offi ce W
alls

Ben van Gameren

ISBN: 978-94-6186-317-1

9 789461 863171

Ben van Gameren has pursued his
PhD in Software Engineering for the last
four years. In his research he studies how
to support global software engineers with
technological support for aiding them to
relatively passively and unobtrusively

acquire a suffi cient level of awareness for their
work activities. To reach this goal he studies three
important aspects of the design, implementation and
evaluation of such technological support, namely:
constructing a virtual offi ce, communicating in a
virtual offi ce, and information needs in a virtual offi ce.
The results of these empirical studies, conducted in
close collaboration with industry, provide valuable
insights on how best to design and implement a
virtual offi ce, empirical evidence that overhearing
conversations of colleagues is valuable, empirical
evidence that a mood-based microblogging solution
increases team-connectedness, and empirical
evidence that virtual offi ce walls increase the speed
of coordination and the perception on overall
performance. Based on these studies he derives a
set of requirements a virtual offi ce should fulfi ll. This
set of requirements provides important guidelines on
how best to provide global software engineers with
the information they need.

Cover_V4.indd 1 19/5/14 10:11

Auto-Erecting Virtual Office Walls
Constructing a Virtual Office for Global Software Engineers

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op dinsdag 17 juni 2014 om 12:30 uur
door

Benjamin Jacobus Abraham van GAMEREN

Master of Science in Computer Science
geboren te Rotterdam.

Dit proefschrift is goedgekeurd door de promotoren:

Prof. dr. ir. D.M. van Solingen en Prof. dr. A. van Deursen

Samenstelling promotiecommissie:

Rector Magnificus voorzitter
Prof. dr. ir. D.M. van Solingen Delft University of Technology, promotor
Prof. dr. A. van Deursen Delft University of Technology, promotor
Prof. dr. D.F. Redmiles University of California
Prof. dr. D. Smite University of Latvia
Prof. dr. E.W. Berghout University of Groningen
Prof. dr. ir. H.J. Sips Delft University of Technology
Dr. P. Lago VU University Amsterdam
Prof. dr. ir. E. Visser Delft University of Technology, reserve

Copyright c⃝ 2014 by B.J.A. van Gameren

All rights reserved. No part of the material protected by this copyright notice
may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying, recording or by any information storage
and retrieval system, without the prior permission of the author.

ISBN: 978-94-6186-317-1

Author email: benvangameren@gmail.com

”In the long history of humankind those who learned to collaborate
and improvise most effectively have prevailed”

Charles Darwin

Acknowledgements

The last four years, in which I pursued my PhD, are an amazing source of in-
spiration, joy and knowledge. It all started back in the summer of 2009 during
a relaxing holiday in Mallorca. During this holiday I had to make the important
decision whether or not to accept the opportunity to continue my academic career
at the Delft University of Technology. At that time I just successfully completed
my Master of Science project, in which I took my first steps in research. During
this project I closely collaborated with Kevin Dullemond and under the super-
vision of Rini van Solingen I published my first paper. So, on a lovely beach in
Mallorca I decided to accept this exciting opportunity, although I never expected
to pursue an academic career. Now, four years later, I wish to thank all those
who have supported me on this journey.

First of all, I would like to express my gratitude to Rini for giving me the
opportunity to pursue my PhD under his excellent supervision. During the many
discussions we had, he always gave his honest and professional opinion to provide
guidance on how to conduct research properly. I am very thankful for his enthu-
siastic and human approach, which make him a great person to work with. Also,
I would like to thank my other promotor, Arie van Deursen, for always offering
a critical yet constructive opinion. His open and interested attitude make him
easily approachable.

Furthermore, I would like to thank all my colleagues at IHomer who have
participated and supported me during the course of this research. They provided
me with valuable feedback, enthusiastic ideas, and were always interested in the
research itself. Especially, I would like to thank Dick Stegeman for his positive and
encouraging attitude towards our research. I really enjoyed conducting research
at IHomer and I am proud to be part of this company.

Subsequently, I would like to thank Kevin Dullemond. During our PhD studies
Kevin and I closely collaborated and spent a lot of time together. We had many
interesting discussions in which we formulated theoretical concepts and refined

iii

iv ACKNOWLEDGEMENTS

new ideas. I really enjoyed this complementary collaboration and had a great time.
Furthermore, I also enjoyed the experience of both visiting multiple international
conferences together and exploring places I have never been before.

Next, I would like to thank the members of my defense committee: David
Redmiles, Darja Smite, Egon Berghout, Henk Sips and Patricia Lago for reviewing
my dissertation and providing valuable feedback.

Finally, I would like to thank my family and friends. I would like to thank
Kim Stehouwer for applying his creative skills to the design of the cover of this
dissertation. I would like to thank my parents and mother-in-law for their uncon-
ditional support and confidence in me. Whatever happens I can always rely on
you. I also would like to thank my sister, Linda, for her support and all the fun
and crazy times. Last but certainly not least, I would like to thank Sabrina. Dear
Sabrina, thank you for always being there for me. Your love allows me to give
the best of myself and I really enjoy the time we spend together. During the last
years we have gained a lot of good memories, including our campervan holiday to
New Zealand, and I cannot wait to see what the future holds for us. I love you!

Delft, Ben van Gameren
June 2014

Contents

Acknowledgements iii

I Prologue 1

1 Introduction 3

1.1 A Virtual Office . 5

1.2 Motivation . 5

1.3 Problem Statement . 6

1.3.1 Constructing a Virtual Office 6

1.3.2 Communicating in a Virtual Office 7

1.3.3 Information Needs in a Virtual Office 9

1.4 Research Approach . 11

1.5 Industrial Setting . 12

1.6 Origin of Chapters . 13

1.7 Research Division and Responsibilities 14

II Constructing a Virtual Office 17

2 Auto-Erecting Virtual Office Walls 19

2.1 Introduction . 20

2.2 Virtual Office Walls . 21

2.3 Selecting and Combining Information 22

2.4 Context of an Actor . 24

2.5 Industrial Evaluation . 27

v

vi CONTENTS

2.5.1 Site . 27
2.5.2 Data Gathering and Analysis 27
2.5.3 Findings . 29
2.5.4 Limitations . 29

2.6 Concluding Remarks . 31
2.6.1 Conclusions . 31
2.6.2 Future Work . 31
2.6.3 Virtual Office Implications 32

3 An Approach for Constructing a Virtual Office 35

3.1 Introduction . 36

3.2 Awareness in Distributed Software Engineering Teams 37

3.3 Awareness and Technological Support 38

3.4 Approach . 41
3.4.1 Objectives . 41
3.4.2 Setting . 42
3.4.3 Process . 42
3.4.4 Implementation . 45

3.5 Concluding Remarks . 46
3.5.1 Summary . 46
3.5.2 Future Work . 46
3.5.3 Virtual Office Implications 47

III Communicating in a Virtual Office 49

4 Open Conversation Spaces 51

4.1 Introduction . 52

4.2 Conversations . 53

4.3 Open Conversation Space . 54

4.4 Requirements of an Open Conversation Space 55
4.4.1 Uninitialized Conversation 56
4.4.2 Active Conversation . 56
4.4.3 Finished Conversation . 57

4.5 Concluding Remarks . 58
4.5.1 Summary . 58
4.5.2 Virtual Office Implications 58

5 Evaluating the Concept of Open Conversation Spaces 61

5.1 Introduction . 62

5.2 Background . 62

5.3 Research Site and Method . 63

CONTENTS vii

5.3.1 Site . 63
5.3.2 Data Collection and Analysis Methods 64

5.4 Findings . 68
5.4.1 Benefits and Challenges of Overhearing Conversations . . . 68
5.4.2 Information about a Conversation 70
5.4.3 Actions Possible on a Conversation 74
5.4.4 Benefits and Challenges of Finished Conversations 75

5.5 Discussion . 77

5.6 Concluding Remarks . 80
5.6.1 Conclusions . 80
5.6.2 Virtual Office Implications 81

6 An Industrial Evaluation of an Open Conversation Space 83

6.1 Introduction . 84

6.2 Background . 84

6.3 Related Work . 85

6.4 Communico . 86
6.4.1 Technical Implementation 87
6.4.2 A Virtual Open Conversation Space 88

6.5 Research Site and Method . 93
6.5.1 Site . 94
6.5.2 Data Collection and Analysis Methods 94

6.6 Findings . 96
6.6.1 Benefits and Challenges of Overhearing Conversations . . . 97
6.6.2 Information about a Conversation 100
6.6.3 Actions Possible on a Conversation 101
6.6.4 Benefits and Challenges of Finished Conversations 103
6.6.5 Behavior Analysis . 105

6.7 Discussion . 106

6.8 Threats to Validity . 108

6.9 Concluding Remarks . 109
6.9.1 Conclusions . 109
6.9.2 Virtual Office Implications 109

7 An Industrial Evaluation of Mood-Based Microblogging 111

7.1 Introduction . 112

7.2 Related Work . 113

7.3 Research Site and Method . 115
7.3.1 Research Site . 115
7.3.2 Method . 116

7.4 Descriptive Statistics . 117

viii CONTENTS

7.5 Findings . 120
7.5.1 Topics . 121
7.5.2 Impact on a Software Team 123
7.5.3 Impact on a Distributed Software Team 124
7.5.4 Impact of Team Composition on MBMI 126

7.6 Threats to Validity . 127

7.7 Concluding Remarks . 128
7.7.1 Conclusions . 128
7.7.2 Virtual Office Implications 129

IV Information Needs in a Virtual Office 131

8 When to Interrupt Global Software Engineers to Provide them with What
Information 133

8.1 Introduction . 134

8.2 Background and Related Work . 134

8.3 Method . 135
8.3.1 Members of the Group of Participants 137
8.3.2 Estimate-Talk-Estimate Approach 138

8.4 Findings Estimate-Talk-Estimate Study 140
8.4.1 Requirements Development 142
8.4.2 Technical Solution . 144
8.4.3 Verification . 146
8.4.4 Validation . 147
8.4.5 Product Integration . 149

8.5 Findings Post-Round . 150

8.6 Discussion . 151

8.7 Threats to validity . 154

8.8 Concluding Remarks . 155
8.8.1 Conclusions . 155
8.8.2 Virtual Office Implications 156

9 Evaluating the Impact of Virtual Office Walls 159

9.1 Introduction . 160

9.2 Related Work . 161

9.3 Research Questions and Hypotheses 162

9.4 Controlled Experiment . 163
9.4.1 Design . 164
9.4.2 Dependent, Independent and Control Variables 166
9.4.3 Tooling Environment . 167
9.4.4 Context, execution and assignments 171

CONTENTS ix

9.5 Findings . 175
9.5.1 Speed of the Work Performed 175
9.5.2 Accuracy of the work performed 177
9.5.3 Usefulness of Virtual Office Walls 178

9.6 Threats to Validity . 179

9.7 Concluding Remarks . 180

9.8 Conclusions . 180
9.8.1 Virtual Office Implications 182

V Epilogue 183

10 Requirements of a Virtual Office 185

10.1 Constructing a Virtual Office . 185

10.2 Communicating in a Virtual Office 187

10.3 Information Needs in a Virtual Office 189

11 Conclusion 191

11.1 Summary of Contributions . 192

11.2 Revisiting the Research Questions 194

11.3 Evaluation and Threats to Validity 197

12 Future Work 199

12.1 Recommendations for Future Research 199

12.2 Iris . 200

Bibliography 205

Appendix A Open Conversation Spaces - Discussion Guide 219

Appendix B Open Conversation Spaces - Survey 221

Appendix C Virtual Open Conversation Spaces - Discussion Guide 229

Appendix D Virtual Open Conversation Spaces - Survey 233

Appendix E Microblogging with Mood Indicators - Interview Structure 241

Appendix F Microblogging with Mood Indicators - Coding Set 245

Appendix G Information Needs - Questionnaire 251

Appendix H Information Needs - Post Questionnaire 265

Summary 277

x CONTENTS

Samenvatting 281

Curriculum Vitae 285

Part I

Prologue

1

Chapter1
Introduction

Software engineering is a highly collaborative activity in which knowledge about
the context in which one is working is essential to properly collaborate with oth-
ers [Sch02, Syr97]. With information about the context we mean information
about the other team members, their activities, information about the state of
the project and so on. This kind of information is necessary for coordinating
actions, managing transactions between individual and shared work, discussing
tasks, anticipating others’ actions, and finding help [Sch02, Syr97, Gut02]. In sci-
entific literature the term ’awareness’ is often used to denote this [Sch02, Dou92].
Dourish and Bellotti more formally define awareness as: ”An understanding of
the activities of others which provides a context for your own activity” [Dou92].

In the traditional co-located office setting this information is exchanged relat-
ively passively and unobtrusively [Sch02, Fog05]. This is because all information
is available in a single place, the office building, and is accessible by all employees
present at that location. In such an environment team members are frequently
able to both see and hear each other, as such it is relatively easy for software
engineers to acquire and sustain a shared understanding.

However, nowadays, software engineering is increasingly conducted outside of
the traditional co-located office building. Software is for instance developed in
multiple dislocated office buildings or even from home. This is the result of the
increasing globalization of business [Car99, Her01, Her07] and the rising popular-
ity of working from home [Die09]. Global software engineering introduces multiple
benefits and challenges. Benefits of the globalization of business include: market-
proximity [Gri99, Dam06], reducing time-to-market by working around the clock
[Car99, Ebe01], flexibility with respect to business opportunities [Car99, Her99],
reducing costs by delegating work to countries with low labor cost [Car01, Dam06]
and being able to fully utilize available resources [Her01, Dam06]. Working from
home also introduces benefits, including: increased autonomy [Har02], increased
flexibility [Har02], increased productivity [Hes91], increased motivation [Pra93]

3

4 INTRODUCTION 1.1

and improvement in the quality of the environment [Har02].

In contrast with these benefits, global software engineering also introduces
a number of challenges in relation to communication, coordination and control
of the software development process [Car01]. For example, lack of informal
communication [Car99, Her99, Her01, Åge05], reduced hours of collaboration
[Bat01, Kie03, Hol06, Åge08], communication delay [Åge05, Her05, Her07, Con06],
and loss of cohesion [Car99, Her03, Her07].

In a distributed environment team members are not sharing a physical work
environment and are outside of sensory range of each other. Therefore it becomes
infeasible to exchange information without some kind of technological support. In
the last decades the (global) software engineering community has developed many
technological solutions to support globally dispersed teams in performing their
tasks. These solutions are in general inferior to the way contextual information
is shared in a traditional co-located setting, in the sense that in comparison it
(i) takes more effort because the communication is more intentional [Gut04], (ii)
is more obtrusive [Fog05], (iii) happens less frequently [Her03, All77] and (iv)
contains less information [Gut04, Her99]. As such we can conclude that spreading
awareness is more difficult in a distributed setting.

The research presented in this dissertation continues upon the insight that
many aspects of awareness that are disseminated as a natural by-product of
co-located working are difficult to achieve in distributed working environments
[Omo10]. Therefore it is important that technological support is developed to
fully exploit the advantages of global software engineering. As such, the main
goal of our research is:

Research Goal
”To support global software engineers with technological support for aiding
them to relatively passively and unobtrusively acquire a sufficient level of
awareness for their work activities”

In this chapter we first provide a brief overview of our vision on how best to
support global software engineers to acquire a sufficient level of awareness for their
work activities, in section 1.1. Next, in section 1.2 we motivate why such research
is important and how it could impact today’s society. Subsequently, in section
1.3, we present the research goal of this dissertation and outline our main research
questions. In section 1.4, we briefly describe the empirical research strategy we
used to answer the research questions. Next, in section 1.5 we present the two
organizations which played an important role in our research. In section 1.6, we
describe the origin of the chapters of this dissertation. Finally, in section 1.7,
we discuss the research division and responsibilities, since part of the research
reported in this dissertation is the result of a joint effort.

1.2 A VIRTUAL OFFICE 5

1.1 A Virtual Office
In the traditional co-located setting information to achieve awareness is available
in a single place, the office building, and is accessible by all employees present
at that location. In such a co-located setting information is exchanged relat-
ively passively and unobtrusively [Sch02, Fog05]. But, how are software engineers
capable of abstracting useful information without experiencing an overload of in-
formation? Probably this has mostly to do with the design of the office building
[All07]. In general an office building consists of multiple rooms, for example a
foyer, a kitchen, meeting rooms and offices. All of these rooms have their own
characteristics and by moving around in the building and selecting a room which
characteristics match the software engineer’s needs, an engineer is able to change
the context of his activities. By organizing their work environment in such a way,
software engineers can easily spread awareness between all involved stakeholders.

In a distributed setting, developers no longer share a physical work environ-
ment and as a consequence cannot exchange information without technological
support. So, in order to collaborate with their colleagues engineers need to use
technological solutions to be able to retrieve information relevant to their current
task. The software engineering community has developed several solutions to ful-
fill this need. However most of these solutions only support a specific type of
information and this information cannot be processed by other solutions directly
[PR12]. Therefore, engineers need to manually analyze the available information
to be able to acquire the information they need.

To be able to acquire awareness in a relatively passive and unobtrusive fashion,
such as in the co-located setting, we need to automate this analytical process of
accessing, combining and filtering the available information. In essence we need to
automate the process of restricting the available information to that information
an actor needs to carry out his current activity. We propose to call this mechanism
a ’Virtual Office Wall’ [Gam12]. Filtering information in such a fashion resembles
the creation of ’moving’ office walls in a co-located setting which move around
based on the work an engineer is carrying out. When such a mechanism which
introduces logical boundaries is successfully applied to a virtual office it even has
the potential to outperform the co-located office setting.

1.2 Motivation
Research regarding how best to support global software engineering teams is be-
coming part of the body of knowledge of global software engineering. This is
because decreasing the impact of distance on software engineering work is a long
lasting quest within the global software engineering community. Currently, re-
search focuses on reducing the importance of having knowledge about the con-
text of the project, for example by modularizing the work and thus reducing the
amount of distributed collaboration. Such an approach however only attempts to

6 INTRODUCTION 1.3

cope with the problems and not to solve them. The research presented in this dis-
sertation will attempt to do so by targeting the lack of awareness in a distributed
setting itself.

From a societal point of view this research also has the potential to provide a
breakthrough, because it could solve an important issue in today’s society: daily
polluting traffic jams. If this research manages to alleviate the challenges faced
when working distributed, people no longer have to commute to their work on
daily basis. This could lead to less traffic congestion, a reduced carbon dioxide
footprint, and, in a business context, the opportunity to work on several tasks at
once, while still being experienced by colleagues as a full team member.

1.3 Problem Statement
From the previous sections we can conclude that a mechanism is needed which
automatically regulates the available information to that information a software
engineer needs to carry out his current activity. Such a mechanism introduces
logical instead of fixed boundaries and successfully applying it in a global soft-
ware engineering team enables acquiring awareness in a relatively passive and
unobtrusive fashion. As such, the main goal of this dissertation is: ”To support
global software engineers with technological support for aiding them to relatively
passively and unobtrusively acquire a sufficient level of awareness for their work
activities”.

In an attempt to reach this goal we study three important aspects of the design,
implementation and evaluation of such technological support: (i) constructing a
virtual office, (ii) communicating in a virtual office, and (iii) information needs in
a virtual office.

1.3.1 Constructing a Virtual Office
In this part we formulate both our vision on how to provide distributed software
engineers with a sufficient level of awareness and an approach to construct such
technological solutions.

Virtual Office Walls

Software engineers need information about the context in which they are working
to be able to carry out their work activities. In a distributed setting, software
engineers use several technological solutions to fulfill this need. However, the ma-
jority of these solutions only support a single aspect of the development process.
As a result, each engineer has to manually analyze, filter and combine the avail-
able information in order to acquire the context of their current work activity.
Manually analyzing, filtering and combining available information can however
be quite time-consuming. Therefore, we focus on how best to support distributed
software engineers with the context of their current work activity.

1.3 PROBLEM STATEMENT 7

Research Question 1
What are the requirements for technological support to provide distributed
software engineers with the context of their current work activity?

To answer this first research question, we first provide our vision on how
to provide distributed software engineers with a sufficient level of awareness for
their work activities. In chapter 2, we discuss our vision on how auto-erected
virtual office walls can help distributed software engineers to relatively passively
and unobtrusively acquire a context of their work activities. We elaborate on this
concept of virtual office walls and discuss the prerequisites which should be fulfilled
to construct such mechanisms. Next, we discuss how these prerequisites can be
fulfilled. Finally, we perform a focus group [Kon04] to evaluate the applicability
of the proposed theoretical concept in an industrial setting.

Next to formulating our vision, it is also important to formulate a feasible
approach to develop, implement and validate solutions which fulfill our vision. In
chapter 3, we present a research approach to (i) identify real-life global software en-
gineering problems, (ii) propose and implement solutions for these problems, and
(iii) evaluate these solutions in an industrial setting. Such an approach provides
us with the empirical data we need to validate the impact of the proposed solution,
and helps us in pinpointing important open research challenges.

Both our vision on how best to support global software engineers, and our
approach to develop, implement and validate such solutions are important aspects
in answering the first research question. We will use the concept of virtual office
walls in answering the other research questions and to elaborate on our findings.
This enables us to derive a set of requirements a virtual office should fulfill. These
requirements also contribute to answering the first research question, because they
provide important guidelines on how best to support global software engineers to
relatively passively and unobtrusively acquire a sufficient level of awareness for
their work activities. These requirements are presented in the last section of each
chapter of this dissertation, and an overview of all identified requirements is given
in chapter 10.

1.3.2 Communicating in a Virtual Office
In this part we look at the value of communication in global software engineering.
We both research the value of overhearing conversations in a distributed setting,
and the value of mood sharing in such a setting.

Overhearing Conversations

Conversations between software engineers are an important source of information.
Conversations help software engineers to integrate and coordinate their work,
share knowledge about the actual work, and create new knowledge. Besides having
conversations, also overhearing conversations of others is useful. In a distributed

8 INTRODUCTION 1.3

setting technological solutions to have conversations are commonly used, however
overhearing conversations of others is not explicitly supported. Therefore, we
identify the following research question:

Research Question 2
What is the value of overhearing conversations in global software engineer-
ing?

To answer the second research question, we first provide a theoretical motivation
why the overhearing of conversations of others is valuable to a distributed software
engineering team, in chapter 4. We provide a definition of a conversation which
is applicable in the context of global software engineering. Subsequently we both
discuss the various uses conversations have in collaborative work and the benefits
of being able to overhear conversations of others. Finally we provide a definition
of an ’Open Conversation Space’, a space in which both having conversations and
overhearing conversations of others is possible, and present a set of requirements
such a space should fulfill.

Next, in chapter 5, we empirically evaluate the value of the concept of over-
hearing conversations in the field of software engineering. In this empirical study
we investigate whether researching how to enable overhearing conversations in a
distributed setting is worth pursuing. To acquire the empirical data we perform
both a focus group [Kon04] and a questionnaire [Fin03]. In the focus group we
identify: (i) the benefits and challenges of having insight in active conversations,
(ii) the important types of information about a conversation, (iii) the actions pos-
sible on a conversation, and (iv) the benefits and challenges of having access to
the finished conversations. Following this we perform a questionnaire to determ-
ine the relative importance of these benefits, challenges, information items and
possible actions. In this study we critically analyze the benefits and challenges of
overhearing conversations of others. As such we are able to determine whether
research about support for overhearing conversations is worth pursuing.

Finally, in chapter 6, we present a technological implementation which enables
the overhearing of conversations in a distributed setting and explain how it fulfills
the requirements of an open conversation space. We design and implement this
technological solution to be able to perform an empirical case study to measure
the value of overhearing conversations in global software engineering from actual
industrial experience. In this study we use four methods to acquire the empirical
data we need: a focus group [Kon04], a semi-structured interview [Fon05], a
questionnaire [Fin03], and transactional log analysis [Jan08].

The theoretical motivation why the overhearing of conversations is valuable,
the evaluation of the value of overhearing conversation in the field of software
engineering, and the evaluation of the value of overhearing conversation in the
field of global software engineering all contribute to answering the second research
question.

1.3 PROBLEM STATEMENT 9

Mood Sharing

Distributed software engineers face the challenge of staying connected because
they no longer see each other on a daily basis. Therefore we believe both sharing a
small amount of information and sharing mood information is essential to alleviate
challenges of this nature. On the one hand sharing a small amount of information
is essential because being able to exchange such information makes people feel
more connected. On the other hand mood sharing is essential because being
aware of the emotional state of colleagues makes it possible to act accordingly.
Therefore, we formulate the following research question:

Research Question 3
What is the value of microblogging with mood-indicators in global software
engineering?

In an attempt to answer the third research question we conduct a study to under-
stand how microblogging with mood-indicators helps distributed organizations in
knowledge sharing. This study is presented in chapter 7. In this study we use a
microblogging solution extended with mood indicators to research (i) the topics
discussed in such a solution, (ii) the impact of the introduction of a such a solu-
tion on a software team, (iii) the impact of the distribution on the use of such a
solution, and (iv) how team composition impact collaboration with such a solu-
tion. We collect the empirical data we need for this study by mining over a year
of usage data of such a microblogging solution. First we code the content of all
posts and comments of this solution, and based on the results of this analysis we
perform semi-structured interviews [Fon05] with distinctive users of the system.
The findings of this empirical study directly contribute to answering the third
research question.

1.3.3 Information Needs in a Virtual Office
In the last part we look at the information needs of global software engineers. We
research what information global software engineers want to know immediately,
during which activities they prefer to be or prefer not to be interrupted, and the
impact of automating the process of restricting the available information to that
information a software engineer needs to carry out his current activity.

Information Needs

Distributed software engineers have to manually analyze, filter and combine avail-
able information in order to acquire a sufficient level of awareness without exper-
iencing an overload of information. Therefore it seems beneficial to construct a
mechanism which automatically determines what information is relevant when
performing a collaborative activity. This, however, does not imply software en-
gineers should be immediately informed of this information because they could be

10 INTRODUCTION 1.4

performing an activity during which they prefer not to be interrupted. Therefore,
we identify the following research question:

Research Question 4
How to regulate information available to software engineers based on both
the importance of that information and the current interruptibility of the
engineer?

To answer the fourth research question, we conduct an Estimate-Talk-Estimate
study [Gus73] with experienced software engineers. This study is presented in
chapter 8, and focuses on how to regulate information available to software engin-
eers based on both the importance of that information and the current interrupt-
ibility of the engineer. Therefore, we are interested in a list of information items
software engineers immediately want to be informed about, and in a list of activ-
ities during which software engineers prefer not to be interrupted. The outcomes
of this study could be contradicting because it is likely both of these lists contain
at least one item. Therefore, we are also interested in what information software
engineers want to know immediately, even though they are performing an activity
during which they prefer not to be interrupted. The findings of this study provide
valuable insights on how to regulate information available to software engineers
and answer the fourth research question.

Virtual Office Walls

A virtual office wall is a mechanism which automatically regulates information
to support distributed software engineers in performing collaborative activities.
These walls reduce the available information to only that information which is
relevant to the current activity of an engineer. As such, these walls have the
potential to increase the actual and perceived speed and accuracy of the activities
carried out. We formulate the following research question to study the value of
the presence of virtual office walls:

Research Question 5
What is the value of automating the process of restricting the available in-
formation to that information a software engineer needs to carry out his
current activity?

We conduct a controlled experiment [Woh00] with experienced software engin-
eers as study participants to answer the last research question, see chapter 9. In
this experiment we try to find out how valuable virtual office walls are for real-
life distributed software engineers during their day-to-day activities. We research
whether there is a relation between the presence of virtual office walls and the
actual and perceived speed and accuracy of the work carried out by the parti-
cipants. Additionally, we measure the extent in which the participants experience
the presence of virtual office walls as useful.

1.4 RESEARCH APPROACH 11

1.4 Research Approach
To answer our research questions, we have conducted multiple studies. In most
of these studies the identification of real-life problems, the development of the
proposed solutions and/or the evaluation of the proposed solutions were conduc-
ted in close cooperation with global software engineering companies. Colin Potts
proposed the industry as laboratory approach to refer to a setting in which the
industrial setting is used as a test environment [Pot93]. Collaborating with in-
dustrial organizations has benefits. Firstly, employees of these companies have
quite a good understanding of what is needed to improve the current situation.
Secondly, we can also perform high quality evaluations because these companies
match the target setting for which we are attempting to solve issues: distributed
organizations. Finally, employees of these companies benefit directly from the
proposed solutions, since they encounter the issues we are attempting to solve in
their daily work.

To fully exploit the opportunities of this collaboration, we have used the fol-
lowing research strategy in each of the studies we conducted:

1. Identify a real-life global software engineering problem

2. Propose and implement a solution for this problem

3. Evaluate the solution with experienced people from industry

The first step in our research strategy is to identify and select a real-life global
software engineering problem. This selection is made in collaboration with our
industrial partners and is based on the theoretical and practical value of solving
the problem at hand. Next, we conduct a thorough study to learn about the prob-
lem and propose a suitable solution for this problem. In this exploratory phase of
our research approach we used (empirical) data gathering techniques to acquire
the information needed. On the one hand we studied the existing literature to
map out the current research area. Therefore, we specified a number of search
strings using relevant terms based on the current research questions, and looked
for relevant publications which met these criteria. Next to these publications itself
we also looked for relevant references in these publications to ground the current
research area in literature. On the other hand we used empirical data gathering
techniques; focus groups [Kon04], semi-structured interviews [Fon05], question-
naires [Fin03], and an Estimate-Talk-Estimate study [Gus73] to acquire relevant
information from industry. Subsequently, we implement a solution for the prob-
lem in close collaboration with our industrial partner and conduct an empirical
evaluation to study the applicability of the proposed solution in industry. We
used multiple data gathering techniques to acquire the data needed to investigate
the applicability of the proposed solution. Next to the data gathering methods
used in the exploratory phase of our research; we mined and coded user data, con-
ducted transactional log analysis [Jan08] to analyze user behavior, and performed

12 INTRODUCTION 1.5

a controlled experiment [Woh00]. After completing this research strategy, this
approach is repeated and a new global software engineering problem is selected.

1.5 Industrial Setting
We have conducted different studies to answer the research questions of this dis-
sertation. In most of these studies the identification of real-life problems, the
development of the proposed solution and/or the evaluation of the proposed solu-
tion was conducted in close cooperation with two industrial partners: IHomer
and Exact Software. IHomer is a Dutch software engineering company founded
in August of 2008. The company currently employs 21 people and is distributed
in the true sense of the word. This is because the default work location of the
employees is their home. As a consequence, the people are quite experienced with
dealing with the difficulties of working distributed from each other. This makes
the company a particularly suitable setting for performing our research. During
his PhD study the author has been part of this company. As such, he experi-
enced real-life global software engineering problems, proposed and implemented
solutions for these problems, and evaluated these solutions in this or another in-
dustrial setting. His work for IHomer consisted of researching the global software
engineering problems, allowing him to fully devote himself to identify and solve
the problem at hand. So, to be clear his work did not consist of doing billable work
for the customers of IHomer. The main advantage of this collaboration is that the
author possesses insight knowledge of a setting which experiences the problems
of global software engineering and is able to assist such settings in handling these
problems.

Our other industrial partner is Exact Software. Exact Software is a software
development company operating in 40 countries. It offers Enterprise Resource
Planning software for medium-sized and small businesses. At the end of 2012 it
employed approximately 1700 employees worldwide. The specific group of em-
ployees involved in our study on the value of overhearing conversations in global
software engineering worked on a product called Exact Online. The majority of
the people in this group, approximately 70 people, worked out of the office loc-
ation in Delft (The Netherlands) and was co-located on a single floor. However,
also three people from the Wemmel (Belgium) office participated as well as two
from the Minneapolis (USA) office. Next to this, people worked from home fairly
often and frequently communicated using Instant Messaging software even when
working from the same office.

Finally, we also conducted an Estimate-Talk-Estimate study. In such a study
participants are asked to provide reasons for their decisions and to respond to
the decisions made by the other participants. It is essential that the members of
this study have different backgrounds so they can provide each other with new
information and revise their opinions based on this information. Therefore we
selected participants from nine distributed organizations, ranging from small to

1.6 ORIGIN OF CHAPTERS 13

large size enterprises.

1.6 Origin of Chapters
The main chapters of this dissertation, chapters two to nine, are strongly based
on previously published papers at workshops and conferences on software engin-
eering. Since these peer-reviewed publications were published independently, all
chapters are self-contained and have their own individual contributions. There is
however some redundancy in the background material, motivation, and examples.
In addition all chapters end with a ’Concluding Remarks’ section. In this section
we briefly summarize the research presented in this chapter, present our view on
how this chapter contributes to the research goal of this dissertation, and provide
requirements of a virtual office.

This dissertation consists of three parts: (i) constructing a virtual office, (ii)
communicating in a virtual office, and (iii) information needs in a virtual office.
In the first part, constructing a virtual office, we provide an approach which can
be used to research how best to support awareness in global software engineering.
In the second part we look at the value of communication in global software en-
gineering. In this part we research both the value of overhearing conversations,
and the value of microblogging with mood indicators in global software engin-
eering. Finally in the third part of this dissertation we research the information
needs of global software engineers. In this part we research both what inform-
ation software engineers want to know immediately, and when they prefer not
to be interrupted. We conclude this part by studying the value of automating
the process of restricting the available information to that information a software
engineer needs to carry out his current activity.

Part I: Constructing a Virtual Office

The chapters in this part are strongly based on the following two publications:

• Chapter 2 is based on our publication ”Auto-Erecting Virtual Office Walls”
in the Proceedings of the 8th International Conference on Collaborative
Computing: Networking, Applications and Worksharing [Gam12].

• Chapter 3 is based on our publication ”Supporting Distributed Software En-
gineering in a Fully Distributed Organization” in the Proceedings of the 5th

International Workshop on Cooperative and Human Aspects of Software
Engineering [Dul12b].

Part II: Communicating in a Virtual Office

This part consists of three chapters which are based on the research presented in
the following four publications:

14 INTRODUCTION 1.7

• Chapter 4 is based on both our publication ”Virtual Open Conversation
Spaces: Towards Improved Awareness in a GSE Setting” in the Proceedings
of the 5th International Conference on Global Software Engineering [Dul10]
and on our publication ”Overhearing Conversations in Global Software En-
gineering - Requirements and an Implementation” in the Proceedings of
the 7th International Conference on Collaborative Computing: Networking,
Applications and Worksharing [Dul11c].

• Chapter 5 is based on our publication ”An Exploratory Study on Open Con-
versation Spaces in Global Software Engineering” in the Proceedings of the
7th International Conference on Collaborative Computing: Networking, Ap-
plications and Worksharing [Dul11b].

• Chapter 6 is based on both our publication ”Overhearing Conversations in
Global Software Engineering - Requirements and an Implementation” in the
Proceedings of the 7th International Conference on Collaborative Comput-
ing: Networking, Applications and Worksharing [Dul11c] and on our pub-
lication ”An Industrial Evaluation of Technological Support for Overhearing
Conversations in Global Software Engineering” in the Proceedings of the
7th International Conference on Global Software Engineering [Dul12a].

• Chapter 7 is based on our publication ”Fixing the ’out of sight out of mind’
problem - One Year of Mood-Based Microblogging in a Distributed Software
Team” in the Proceedings of the 10th International Workshop on Mining
Software Repositories [Dul13b].

Part III: Information Needs in a Virtual Office

The chapters in this part are slight adaptations of the following two publications:

• Chapter 8 is based on our publication ”When to Interrupt Global Software
Engineers to Provide them with What Information” in the Proceedings of
the 9th International Conference on Collaborative Computing: Networking,
Applications and Worksharing [Gam13b].

• Chapter 9 is based on our publication ”Auto-Erecting Virtual Office Walls
a Controlled Experiment” in the Proceedings of the 8th International Con-
ference on Global Software Engineering [Gam13a].

1.7 Research Division and Responsibilities
During his PhD study the author of this dissertation closely collaborated with
Kevin Dullemond. Both researchers studied related research subjects in the field
of global software engineering, which resulted in multiple joint research public-
ations. The main advantage of this joint approach is that the research subjects
could be investigated more in-depth and complete.

1.7 RESEARCH DIVISION AND RESPONSIBILITIES 15

The author of this dissertation fulfills the role of main contributor for all
publications included in this dissertation. However, part of the research reported
in this dissertation is a joint effort of Kevin Dullemond and the author of this
dissertation. In this joint work both authors are fully responsible for defining the
scope of the research, implementing the approach used, conducting the empirical
evaluation, and writing the scientific publications. To make the division of the
research and responsibilities explicitly clear, we specify for each of the publications
included in this dissertation whether the author of this dissertation is the main
contributor, or whether Kevin Dullemond and the author of this dissertation are
equal contributors. In the latter case the two authors are listed in alphabetical
order, both in the published scientific papers, and in the following division of
research and responsibilities.

The author of this dissertation is the main contributor of the following pub-
lications:

• The publication ”Auto-Erecting Virtual Office Walls” which is co-authored
by Kevin Dullemond and Rini van Solingen [Gam12].

• The publication ”When to Interrupt Global Software Engineers to Provide
them with What Information” which is co-authored by Rini van Solingen
[Gam13b].

• The publication ”Auto-Erecting Virtual Office Walls a Controlled Exper-
iment” which is co-authored by Rini van Solingen and Kevin Dullemond
[Gam13a].

Kevin Dullemond and the author of this dissertation are equal contributors of
the following publications:

• The publication ”Supporting Distributed Software Engineering in a Fully
Distributed Organization” which is co-authored by Kevin Dullemond and
Rini van Solingen [Dul12b].

• The publication ”Virtual Open Conversation Spaces: Towards Improved
Awareness in a GSE Setting” which is co-authored by Kevin Dullemond
and Rini van Solingen [Dul10].

• The publication ”An Exploratory Study on Open Conversation Spaces in
Global Software Engineering” which is co-authored by Kevin Dullemond
and Rini van Solingen [Dul11b].

• The publication ”Overhearing Conversations in Global Software Engineer-
ing - Requirements and an Implementatoin” which is co-authored by Kevin
Dullemond and Rini van Solingen [Dul11c].

• The publication ”An Industrial Evaluation of Technological Support for
Overhearing Conversations in Global Software Engineering” which is co-
authored by Kevin Dullemond [Dul12a].

16 INTRODUCTION 1.7

• The publication ”Fixing the ’out of sight out of mind’ problem - One Year
of Mood-Based Microblogging in a Distributed Software Team” which is co-
authored by Kevin Dullemond, Margaret-Anne Storey and Arie van Deursen
[Dul13b].

Part II

Constructing a Virtual Office

17

Chapter2
Auto-Erecting Virtual Office Walls

Collaborative software engineering is increasingly carried out from multiple, phys-
ically separated, locations around the globe. Software engineers are no longer tied
to a fixed workplace and have the opportunity to work from the location of the cus-
tomer, their home and even from their holiday location. When working in such a
distributed setting, software engineers also need information about the context in
which they are working to be able to collaborate effectively with their colleagues.
In the last decades multiple technological solutions were developed by the software
engineering community to fulfill this need. However, the majority of these solu-
tions only support a single aspect of the development process, so each software
engineer has to manually analyze, filter and combine the available information
in order to acquire a sufficient level of awareness. Manually analyzing, filtering
and combining available information can however be quite time-consuming and
therefore we focus on how to automate this process. In this chapter we present
our vision on how auto-erected virtual office walls can help distributed software
engineers to relatively passively and unobtrusively accomplish this automation.

This chapter is strongly based on our publication ”Auto-Erecting Virtual Office Walls” in the
Proceedings of the 8th International Conference on Collaborative Computing: Networking, Ap-
plications and Worksharing (CollaborateCom 2012). This publication is co-authored by Kevin
Dullemond and Rini van Solingen

19

20 AUTO-ERECTING VIRTUAL OFFICE WALLS 2.2

2.1 Introduction

In collaborative work, awareness is essential to properly collaborate with your
colleagues [Sch02, Syr97]. With awareness we mean the information which is ne-
cessary to provide software engineers with the context in which they are working.
Examples of such information items are: information about the other members
in the project team, their activities, and information about the current state of
the project. Dourish and Bellotti more formally define awareness as [Dou92]:
”An understanding of the activities of others which provides a context for your
own activity”. For software engineers it is essential to have a sufficient level of
awareness, because software engineering is a collaborative activity which requires
engineers to coordinate their efforts to be able to produce a functional system.

However, both due to the globalization of business [Car99, Her01, Her07] and
due to the fact that people work from home more and more [Die09], people no
longer share a physical work environment and as a consequence cannot exchange
information without technological support. So, in order to collaborate with col-
leagues in a distributed setting, technological support is required to be able to
acquire and maintain awareness. In the last decades the (global) software engin-
eering community has developed many technological solutions to support glob-
ally dispersed teams in performing their tasks. Portillo-Rodŕıguez et al. [PR12]
provide a systematic mapping review of available tools in the field of global soft-
ware engineering and what functionality these tools offer. Several of the tools
discussed are widely adopted by distributed development teams and provide the
team members with information. Most of these solutions only support a single
aspect of the development process and as a consequence many diverse tools are
needed to provide the user with all the information he or she needs. Accordingly,
all this information needs to be analyzed, combined and filtered manually by each
software engineer to acquire the information necessary to create the context of
his current activity. However, this process can be quite time-consuming, therefore
we focus on how to automate this process. As such the main goal of this chapter
is: ”To find out how auto-erected virtual office walls can help distributed software
engineers to acquire the context of their current activity”

In section 2.2 we define virtual office walls and introduce two prerequisites of
the construction of these. Next, in section 2.3, we look at the first prerequisite
and discuss that both access to data from a wide variety of tools is needed and the
means to integrate it to create valuable information. Subsequently, in section 2.4,
we look at the second prerequisite and discuss a way to describe the context of a
software engineer. In section 2.5, we validate our representation of the context of
a software engineer in an industrial setting. Finally, we present conclusions and
discuss opportunities for future work in section 2.6.

2.2 VIRTUAL OFFICE WALLS 21

2.2 Virtual Office Walls
As discussed in the introduction, software engineering is a collaborative activity
which requires potentially many engineers to coordinate their actions to be able
to produce a system. In order to coordinate their actions engineers need to spread
awareness among each other. In the traditional co-located setting all information
is available in a single place, the office building, and is accessible by all employees
present at that location. In such a co-located setting awareness is spread relatively
passively and unobtrusively [Sch02, Fog05]. But, how are the engineers capable of
abstracting useful information without experiencing an overload of information?
Probably this has mostly to do with the design of the office building [All07]. In
general an office building consists of several rooms, for example a foyer, a kitchen,
meeting rooms and offices. All of these rooms have their own characteristics; the
meeting room, for example, has several attributes which facilitate group discus-
sions such as a white board, a beamer and the room’s size. By moving around in
the building and selecting a room which characteristics match the software engin-
eer’s needs, an engineer is able to change the context of his activities. Another
example is that people who work on related tasks are often seated in close prox-
imity to each other. By organizing their work environment in such a way, they
can easily spread awareness between all involved stakeholders. So, when working
in a co-located setting, software engineers are continuously aware of information
related to their current task.

However, in a distributed setting software engineers no longer share a physical
work environment and as a consequence cannot exchange information without
technological support. So, in order to collaborate with their colleagues engineers
need to use technological solutions to be able to retrieve information relevant to
their current task. The software engineering community has developed several
solutions to fulfill this need, but most of these solutions only support a specific
type of information and this information cannot be processed by other solutions
directly [PR12]. Therefore, software engineers need to manually analyze the avail-
able information to be able to construct the information they need. This increased
complexity of information analysis may result in misunderstandings, inconsisten-
cies, incompatibilities and duplicated information [PR12].

To be able to acquire awareness in a relatively passive and unobtrusive fashion,
such as in the co-located setting, we need to automate this analytical process of
accessing, combining and filtering the available information. In essence we need to
automate the process of restricting the available information to the information
that an actor needs to carry out his current activity. We propose to call this
mechanism a ’Virtual Office Wall’ and define it as: ”A mechanism which regulates
information based on the context it encloses”. In order to construct such an
mechanism two prerequisites should be fulfilled:

(i) Access to a data set which at least contains the required data at a certain
time

22 AUTO-ERECTING VIRTUAL OFFICE WALLS 2.3

(ii) A method to differentiate between required and not required information

When these prerequisites are met it is straightforward how the mechanism of a
virtual office wall can be constructed.

2.3 Selecting and Combining Information
The first prerequisite of a virtual office wall concerns having access to a data set
which at least contains the required data at a certain time. In this section we
discuss that to fulfill this prerequisite both access to data from a wide variety of
tools is needed and the means to integrate this data to create valuable information.

In a co-located setting all information is available in a single place and software
engineers are able to gather all required information in a relatively passive and
unobtrusive fashion. In a distributed setting, however, all required information is
scattered across multiple sites and technological solutions are needed to exchange
this information. It is even impossible to collaborate effectively without some
kind of technological support when people do not share a physical work environ-
ment. Therefore, in order to collaborate effectively with distributed colleagues,
the software engineering community has developed a wide variety of tools. Several
of these tools are widely adopted by global software engineering teams. Examples
are: configuration management systems, bug trackers and Instant Messaging solu-
tions. However, the majority of these technologies only support a single aspect
of the development process. So to be able to provide the engineers with suffi-
cient information during the entire development process many specialized tools
are needed [PR12]. Because the majority of these solutions focuses on managing
a specific type of information, this information cannot be processed by other solu-
tions directly. As a consequence engineers need to manually analyze, filter and
combine the available information to acquire the information they need to per-
form their current task. Therefore, access to a wide variety of tools is needed
to fulfill the prerequisite of having access to a data set which at least contains
the required data at a certain time. Because of the wide variety of systems a
wide variety of access mechanisms is needed as well. Additionally, data from the
different systems often needs to be combined to create valuable information. The
process of combining information from different sources is often referred to as in-
tegration and we will further illustrate its value, origins and future by discussing
the Coordination Pyramid defined by Sarma et al. [Sar10].

Sarma et al. [Sar10] have reviewed several software tools which assist software
engineers in coordinating their efforts and proposed a framework to categorize
these (see figure 2.1). This framework organizes types of existing and emer-
ging tools in a hierarchy of paradigms of coordination shifts (the vertical axis of
the framework) that have historically emerged. These paradigms are categorized
along three strands: communication, artifact management and task management.
These three strands represent the basic coordination activities in software develop-
ment. Software engineers need to (i) communicate with each other, (ii) coordinate

2.3 SELECTING AND COMBINING INFORMATION 23

Figure 2.1: The Coordination Pyramid [Sar10]

their individual access and changes to a common set of interdependent artifacts
and (iii) manage their tasks. Now we briefly discuss and summarize each of the
five paradigms.

The first layer in the Coordination Pyramid is the ’Basic Functionality’ layer
which focuses on enabling computerized coordination. Technology at this layer
allows a team to move from purely manual coordination strategies to strategies
that involve automated tools. These tools, however, only focus on a specific
aspect of coordination and only automate the minimal functionality needed to
support this. Examples of tools in this first layer are: email, scheduling tools
and shared file systems. When using such tools software engineers still make
(time-consuming) decisions such as when to coordinate and with whom.

The second layer, ’Structured Processes’, focuses on guiding the engineers in
their engagement with the product and their team members. The underlying goal
of tools from this layer is to enforce a specific procedure for editing, managing
and relating changes to the different project artifacts. Examples of technological
support that can be mapped to this layer include shared editors, issue trackers
and work flow systems. These tools all reduce the coordination effort per software
engineer because many coordination decisions, which take effort, are now captured
by these tools. However, it can be time-consuming to explicitly model and set up
the desired processes.

Subsequently, the ’Information Discovery’ layer aims to support informal
practices of coordination. Informal coordination relies on users gaining informa-
tion that establishes a context in which they perform their individual tasks. Tools
at this layer try to provide the users with the information necessary to build this

24 AUTO-ERECTING VIRTUAL OFFICE WALLS 2.4

context. Examples of these tools are project dashboards, visualization systems
and tool support for finding expertise. Tools from this layer combine and visualize
information that is already specified by engineers as part of other tasks (e.g. com-
mit logs, personal information, work item status) in order to automate tasks that
otherwise have to be performed manually. In this layer the benefits of integrating
the information from different information sources becomes clear. By combining,
for example, information about artifacts that usually are modified together and
information about who most frequently modified the related source code files, it
becomes possible for a software engineer to pro-actively determine who best to
contact in case of doubt.

Fourthly, the ’Contextualized Information’ layer, tools at this level focus on
automatically predicting and providing useful coordination information to create a
context in which only relevant information is exchanged in a relatively unobtrusive
manner. An example of such a technology is a workspace awareness tool, such
a tool provides its users with information about potential conflicting activities
undertaken by other users of the system. In this layer it is essential to focus on
the interplay of awareness cues presented by the tools and the responses of the
engineers to these cues to be able to provide a stronger context of one’s activities.
Because, the stronger a context for one’s activities the stronger the opportunity for
engineers to self-coordinate with their colleagues to swiftly resolve any emerging
coordination problems.

Finally, Sarma et al. [Sar10] leave the top of the pyramid open as they believe
new paradigms of coordination will emerge as technology and organization prac-
tices continue to evolve. However, they do define the ultimate goal (the top of
the pyramid) of coordination technologies: to achieve continuous coordination. In
other words, the goal is to achieve ”flexible work practices supported by tools that
continuously adapt their behavior and functionality so coordination problems are
minimized in number and impact” [Red07]. In this scenario software engineers no
longer need to use specific coordination tools since coordination and work activit-
ies are integrated in a single environment providing its users with all the necessary
information. We completely agree with this, since when all necessary information
is integrated into a single environment and such an environment provides the ne-
cessary information and functionality in a seamless and effective manner it can
be used to collaborate effectively with your distributed colleagues.

2.4 Context of an Actor
The second prerequisite of a virtual office wall concerns a method to differentiate
between required and not required information. In this section we argue that a
valid representation of the context of an actor is sufficient to achieve this. There-
fore we introduce Activity Theory as a means to represent the context of an actor
and argue it is an appropriate representation of software engineering activities as
well.

2.4 CONTEXT OF AN ACTOR 25

Tell and Babar [Tel12] propose the use of Activity Theory in order to both
structure and describe the context in which distributed software engineers per-
form their tasks. The origins of Activity Theory are threefold: (i) classical Ger-
man philosophy, (ii) the writings of Marx and Engels and (iii) the Soviet Rus-
sian cultural-historical psychology of Vygotzky, Leont’ev and Luria [Eng99]. The
theory was further improved by Leont’ev [Leo78] and became popular after En-
geström introduced it to the western world. One of Engeström’s main contribu-
tions is a systematic representation of the theory; the activity system (see figure
2.2).

Figure 2.2: Activity System [Eng87]

26 AUTO-ERECTING VIRTUAL OFFICE WALLS 2.4

This model consists of six elements:

Object The objective of the activity
Subject The actor engaged in the activity (either an indi-

vidual or a group)
Community The social context of the activity (all actors in-

volved in the activity system)
Instrument The artifacts or concepts used by the subject of the

activity
Division of Labor The hierarchical structure of the activity
Rules The laws, rules and regulations that govern the sub-

ject inside a community

All these elements together represent a single human activity resulting in a single
outcome.

In addition to modeling a human activity, it is also necessary to describe the
hierarchical structure of that activity. Because, such a structured overview is
needed to be able to relate a single human activity to activities carried out by the
rest of the team. Leont’ev defined a hierarchical model of human activity which
consists of three levels [Leo78]:

Activity is driven by its motive (e.g. a man participates in a com-
munal hunt because he wants to feed his family)

Action is driven by its goal (e.g. a man scares away the prey from
himself and toward the other members of the hunt)

Operation is driven by its conditions (e.g. how the man carries out
the various tasks involved in his role will depend upon the
weather, the terrain etc.)

In [Tel12] Tell and Babar discuss how to use Activity Theory to describe dif-
ferent activities and processes of developing software in the context of GSE. They
do this by describing, detailing and decomposing software engineering activities
and map these to the activity system and the hierarchical model of human activ-
ity. In this discussion they use the software architecture design process as leading
example. They show how this activity can be mapped to the activity system and
explain each of the six elements and the outcome of this model. Subsequently, they
decompose the software architecture design activity into its composing actions;
architecture analysis, architecture synthesis and architecture evaluation. Next,
they change the subject to the evaluation manager and emphasize on his/her
motive to evaluate a candidate solution. For this activity, from the perspective of
the evaluation manager, the same two mappings are applied and discussed. This
decomposition can be further applied to a point at which the activity is performed
through actions facilitated by technology [Tel12].

Finally, Tell and Babar [Tel12] conclude that the introduction of Activity The-

2.5 INDUSTRIAL EVALUATION 27

ory into the field of global software engineering makes it possible to determine
what information is needed when performing a specific collaborative task. Be-
cause, on the one hand, applying the activity system to software engineering
activities results in a uniform and detailed description of the current activity.
This can be used to determine what information is directly related to the activity.
On the other hand applying the hierarchical model of human activity to software
engineering activities, results in an overview of the hierarchical structure of that
activity. This can be used to determine the degree of relatedness between activ-
ities. In our opinion using Activity Theory is an appropriate way to describe the
context of an actor and as such also to determine which information is required
while performing an activity.

2.5 Industrial Evaluation
In the previous section we concluded that contexts described by Activity Theory
are an appropriate way to represent activities of software engineers. To be able to
use such contexts to differentiate between required and not required information,
the contexts of actors performing the different activities which are common in
software engineering need to be sufficiently different. To determine whether this
is true in practice we have performed an industrial evaluation which is discussed
in this section. We conducted a focus group in which we attempted to answer the
following three questions:

1. Which activities are carried out most frequently?

2. Which instruments are used while carrying out an activity?

3. Which actors are involved while carrying out an activity?

2.5.1 Site
Participants in this study are a group of software engineers at IHomer, a Dutch
software engineering company founded in August of 2008. The company is fully
distributed (see figure 2.3), since the default location from which the employees
work is their home. As a consequence, all employees are experienced with dealing
with the difficulties of developing software when working physically separated
from each other. This makes this company a suitable setting to conduct this
evaluation.

2.5.2 Data Gathering and Analysis
To answer the three questions, we performed a focus group [Kon04, Bai78] to
gather the qualitative data we needed. We conducted a focus group to gather the
insights, ideas, viewpoints and opinions of the people participating because such

28 AUTO-ERECTING VIRTUAL OFFICE WALLS 2.5

Figure 2.3: Geographical distribution of the employees of IHomer

a setting enables the participants to build on the responses and ideas of others.
This process increases the richness of the information gained [Lan03]. We also
used this method because of its ability to discover new insights and because it is
a cost efficient way of obtaining practitioner experience.

The focus group we conducted lasted approximately 45 minutes and we selec-
ted six employees of IHomer based on their availability. The focus group itself
was carried out in a separate office to minimize the influences from outside. Dur-
ing the focus group the author of this dissertation took the role of moderator.
As a moderator he (i) explained what a focus group entails, (ii) explained what
was expected of them, (iii) explained the goal of the focus group, (iv) kept the
discussions on topic, (v) tried to ensure that all participants contributed to the
discussion, and (vi) made sure that the predefined structure of the focus group
was followed. The identification of the most frequently carried out activities was
performed as follows: Firstly, the moderator handed out sticky notes and asked
each of the participants to write down what they thought were the five most fre-
quently carried out activities. Following this the moderator gathered the sticky
notes from all individuals and discussed each of them with the entire group. In
the discussion of each sticky note the group determined what was meant by it
and grouped it together with other notes when appropriate, trying to create an
overall group consensus. This process eventually resulted in the most frequently
carried out activities. Finally, for each of these activities the moderator asked
both which instruments are used and which actors are involved while carrying
out that activity. We reached consensus in a similar fashion as with the activities.

2.5 INDUSTRIAL EVALUATION 29

2.5.3 Findings

The four most frequently carried out activities are shown in figure 2.4. We only
show the four most frequently carried out activities because the participants of
the focus group unanimously decided those are the most important ones. Next,
we discuss the differences between the contexts of the four most common activities
and reflect on these differences.

Firstly, we can see that in the four most common activities we already iden-
tified three different communities, namely: (i) team, (ii) team and organization,
and (iii) team, organization and customer. These differences in actors involved in
the activity make it possible to regulate information based on the social context.
So, for example, when testing a new or existing piece of software engineers do not
need to share this information with all their colleagues and the customer, only
direct team members need to be aware of their activities.

Secondly, we can also see that the artifacts and concepts used by the sub-
ject of the activity differ between the four activities. This makes it possible to
filter the information based on the current activity of an actor. When creating
new software, for example, an actor does not need information about the upcom-
ing appointments of his colleagues. Both results confirm that applying Activity
Theory to the field of GSE can help provide distributed software engineers with
relevant information.

2.5.4 Limitations

The first limitation is that we conducted one focus group with participants work-
ing for a single software engineering company. Therefore we cannot guarantee
the completeness of the instruments used and the actors involved for each of the
identified activities. So, to be able to draw more externally valid conclusion, the
study should be repeated with a sample which more accurately represents the
total population of software engineers.

There are also focus group specific limitations which have to do with group
dynamics, communication styles and the social acceptability of certain topics
and opinions which can all influence the discussion and therefore introduce bias
[Kon04, Bai78]. We dealt with these limitations by defining and following a
predefined structure to be able to control the overall content of the focus group and
to make sure that group dynamics did not steer the discussion in an undesirable
direction. In order to minimize the negative effects of social acceptability we
emphasized the importance that everyone should contribute to the discussion. We
also used sticky notes to force everyone to think about the question in advance
to reduce the temptation to agree with the loudest person or the first person to
give his opinion.

The final limitation is the possibility that participants have hidden agendas
[Kon04]. However, it is not likely this threat to validity applies to this case study
because the participants had no logical interest in influencing its outcome.

30 AUTO-ERECTING VIRTUAL OFFICE WALLS 2.6

Activity 1: Coordination of tasks within the development team
to be able to collaborate effectively

Community Instruments
Team Communication technologies
Organization Face-to-Face meetings

Documentation
Issue Management System
Software Repository
Agenda

Activity 2: Coordination of tasks between the development
team and the customer to be able to collaborate effectively

Community Instruments
Team Communication technologies
Organization Face-to-Face meetings
Customer Documentation

Issue Management System
Software Repository

Activity 3: Creation of new software to be able to add new
functionality to the system

Community Instruments
Team Communication technologies

Face-to-Face meetings
Issue Management System
Software Repository
Development Environment
Requirement Management System
Testing Framework

Activity 4: Testing of new or existing software to be able to
guarantee the quality

Community Instruments
Team Communication technologies

Face-to-Face meetings
Documentation
Development Environment

Figure 2.4: The four most frequently carried out activities1

1Because we conducted a single focus group we cannot guarantee the completeness of the
communities involved and the instruments used for each activity. Therefore, this focus group
should be repeated in other settings. It is, for example, likely that an issue management system
is added to the list of instruments used during testing of software (Activity 4).

2.6 CONCLUDING REMARKS 31

2.6 Concluding Remarks

2.6.1 Conclusions
In this chapter we first compared the co-located setting with the distributed set-
ting and concluded that in a co-located setting awareness is spread relatively
passively and unobtrusively while it takes more effort in a distributed setting. In
a distributed setting this information cannot be exchanged without technological
support and most of these solutions only support a specific type of information.
Therefore software engineers have to manually analyze the available information
to construct the information they need. This increased complexity of information
analysis needs to be automated to be able to acquire awareness in a relatively
passive and unobtrusive fashion, such as in the co-located setting. We proposed
to call such a mechanism which regulates information based on the current activ-
ity of an engineer a ’Virtual Office Wall’. Subsequently, we discussed the two
prerequisites which should be fulfilled to construct virtual office walls. The first
prerequisite concerns having access to a data set which at least contains the re-
quired data at a certain time. To fulfill this prerequisite both access to data from
a wide variety of tools is needed and the means to integrate this data to create
valuable information. The second prerequisite of a virtual office wall concerns a
method to differentiate between required and not required information. To fulfill
this prerequisite a valid representation of the context of an actor is sufficient. Fi-
nally, we validated our representation of the context of a software engineer in an
industrial setting and concluded that automatically erecting virtual office walls
have the potential to provide global software engineers with the context of their
current work activity. The main contributions of this chapter are the following:

• The definition of a virtual office wall as ”A mechanism which regulates in-
formation based on the context it encloses”

• The prerequisite of a virtual office wall that both access to data from a wide
variety of tools is needed and the means to integrate this to create valuable
information

• The prerequisite of a virtual office wall that a method is needed to differen-
tiate between required and not required information

• The applicability of Activity Theory as a way to represent the context of a
software engineer

• The validity of the applicability of Activity Theory in software engineering
in an industrial setting

2.6.2 Future Work
The next step in our research is to apply the concept of virtual office walls. We
are planning to apply this concept on Iris; a cross-platform, web-based, extens-

32 AUTO-ERECTING VIRTUAL OFFICE WALLS 2.6

ible communication framework we are working on. With this platform we aim to
both support awareness needs of software engineers in a single solution and enable
integration of information from different sources. Currently, we are designing a
way to incorporate the concept of virtual office walls in this platform to provide
distributed software engineers with relevant information related to their current
context. We propose to do this by providing the users with a mechanism to con-
textualize the available information. An example of such a mechanism is that a
user can define a project group, in which all information about a specific project
can be clustered, such as project members, project description, project message
board, outstanding project issues and related conversations. Subsequently, the
context of a user is confined to one of these projects based on his current activity.
One of the main challenges in implementing this functionality is visualizing the
contextualization of the information. Next to designing and implementing this
concept, it should also be evaluated in an industrial setting. In this setting phys-
ically distributed collaboration should be common and the people should have
experience with dealing with the difficulties this way of working entails.

2.6.3 Virtual Office Implications
In this chapter we have discussed how auto-erected virtual office walls can help
distributed software engineers to relatively passively and unobtrusively acquire a
sufficient level of awareness. This discussion partly answered the first research
question of this dissertation:

Research Question 1
What are the requirements for technological support to provide distributed
software engineers with the context of their current work activity?

The requirements of a virtual office, which we can derive from the research con-
ducted in this chapter, are:

Req 1. Facilitate acquiring awareness relatively passively and unob-
trusively
Software engineers should be able to acquire a sufficient level of aware-
ness for their work activities in a relatively passive and unobtrusive
fashion, similar to a co-located setting. Therefore the analytical process
of accessing, combining and filtering information should be supported to
avoid misunderstandings, inconsistencies, incompatibilities and duplic-
ated information.

Req 2. Facilitate having access to a data set which at least contains
the required data to carry out work activities
Software engineers need a wide variety of information to carry out their
work activities. For example information about the requirements and the
software repository.

2.6 CONCLUDING REMARKS 33

Req 3. Facilitate combining data from different sources
Software engineers need to combine and integrate information from dif-
ferent sources to create valuable information. For example combining
information about the artifacts that are usually modified together and
information who most frequently modified the related source code files,
makes it easier for a engineer to determine who best to contact in case
of doubt.

Req 4. Facilitate differentiating between required and not required
information
Software engineers should be able to differentiate between required and
not required information to regulate the available information to that
information they need to carry out their current work activity.

Req 5. Facilitate a valid representation of the context of a software
engineer
Software engineers need a way to represent their context to determine
which information is required while performing a work activity.

Our vision on how best to support global software engineers to relatively
passively and unobtrusively acquire a sufficient level of awareness only partially
answered the first research question. In the next section we discuss a feasible
approach to develop, implement and validate technological solutions which fulfill
our vision.

Chapter3
An Approach for Constructing a
Virtual Office

Software engineering is increasingly carried out in distributed settings. Software
engineers are becoming more nomadic in carrying out their work; working from
the customer location, the headquarters of their own company, their home, or
sometimes even from their holiday locations. Therefore technological support is
needed to overcome the negative impacts of distance that are introduced by this
trend. In this chapter we present the context in which we are bootstrapping a cus-
tom fit environment to support a team of fully dislocated software engineers and
the incremental process we use. By working in this fashion we are discovering the
requirements to support fully distributed teams while at the same time providing
our setting with working solutions to help them with their day to day challenges.
Finally, this continuous practical use also provides us with empirical data to val-
idate the increase in awareness levels of dislocated software engineers and helps
us in pinpointing important open research challenges.

This chapter is strongly based on our publication ”Supporting Distributed Software Engineering
in a Fully Distributed Organization” in the Proceedings of the 5th International Workshop on
Cooperative and Human Aspects of Software Engineering (CHASE 2012). This publication is
co-authored by Kevin Dullemond and Rini van Solingen.

35

36 AN APPROACH FOR CONSTRUCTING A VIRTUAL OFFICE 3.2

3.1 Introduction

In this chapter we present our approach to developing and validating technological
support for distributed software engineers. The main objective of this chapter is
not so much on presenting the solutions themselves, but mostly on explaining
the setting in which we are bootstrapping a solution that fits a fully distributed
setting, and the process we use for doing so. The angle we take in this pro-
cess focuses on aiding distributed software engineers to acquire a sufficient level
of awareness independent on whether they are co-located or dislocated. With
awareness we mean ’an understanding of the activities of others, which provides a
context for your own activities’ [Dou92]. Having sufficient awareness is essential
because software engineering is an inherently cooperative activity which requires
potentially many software engineers to coordinate their efforts to produce a sys-
tem. In order to do this there exists a need for a shared understanding both about
the project itself, like its state and its artifacts, and about the people who work
on the project, like their activities, availability and interactions. Acquiring and
sustaining this shared understanding is far harder in a distributed setting than
in a co-located setting where it is shared relatively passively and unobtrusively
[Fog05, Sch02]. This is why we focus on facilitating this relatively passively and
unobtrusively in a distributed setting as well.

We approach this problem by creating a cross-platform, web-based, extensible
communication framework which we co-develop with a Dutch software develop-
ment company and roll out in this setting as well. The company has the policy
for its software engineers to work from home as much as possible and therefore
is ideal for identifying the problems faced when working distributed from your
colleagues as well as verifying the viability of the solutions produced. We build
this platform in two week iterations at the start of which we decide what to build
based on what the users find most valuable and at the end of which we perform
an evaluation. From the first iteration onwards all the engineers use the system
in their daily work which enables us to acquire feedback quickly. Working in this
fashion provides for a potentially short turnaround time for research subjects as
identification, implementation and evaluation can be as quick as a single iteration.

The rest of this chapter is structured as follows. In section 3.2 we discuss the
growing popularity of distributed teams and how collaborating in such teams is
more difficult than collaborating co-located. Next, in section 3.3 we discuss which
awareness needs are reasonably well supported by existing solutions and which
are not. Following this, in section 3.4, we elaborate on the approach we take in
this research by discussing the objectives and the reasoning behind these in 3.4.1,
the setting in 3.4.2, the process we use in 3.4.3 and the implementation of the
system in 3.4.4. Finally we present a summary and discuss future work in section
3.5.

3.2 AWARENESS IN DISTRIBUTED SOFTWARE ENGINEERING TEAMS 37

3.2 Awareness in Distributed Software Engineering Teams
Collaborative software engineering is increasingly conducted outside of the tradi-
tional single office building for instance in multiple dislocated office buildings or
from home. This is the result of the increasing globalization of business [Car99,
Her01, Her07] and the rising popularity of working from home [Die09]. Advant-
ages of the globalization of business include: market-proximity [Gri99, Dam06],
reducing time-to-market by working around the clock [Car99, Ebe01], flexibility
with respect to business opportunities [Car99, Her99], reducing costs by delegat-
ing work to countries with low labor cost [Car01, Dam06] and being able to fully
utilize available resources [Her01, Dam06]. Advantages of working from home
include: increased autonomy [Har02], increased flexibility [Har02], increased pro-
ductivity [Hes91], increased motivation [Pra93] and improvement in the quality
of the environment [Har02].

In collaborative software engineering, having access to the knowledge about
the context in which one is working (commonly referred to as ’awareness’ [Sch02,
Dou92]) is essential to properly collaborate with others [Sch02, Syr97]. Ko et
al. [Ko07] reported the most frequently sought information by software engin-
eers includes awareness about tasks, artifacts and co-workers. For example, their
results show that software engineers frequently seek information about changes
in artifacts they depend on, the activities of their team members and informa-
tion relevant to their current task. In general there are three strategies to keep
people aware of important information during collaboration: polling, alerts and
peripheral awareness [Cad01]. Making the information available by polling in-
volves making the information accessible and allowing people to explicitly poll
this information on an as needed basis. Using alerts involves intentionally inter-
rupting people to provide information. The main benefit of using alerts is that
the recipient can be sure he is notified in time of important information while the
main disadvantage is that it can disrupt the recipient from his current task. The
final strategy to make information available is peripheral awareness. This involves
making information available in the recipient’s periphery such that he has access
to the information without it distracting him.

In co-located teams all three of these strategies are used. Important examples
of methods of sharing awareness in such a setting are meeting in the hallway
[Cur88], watching other software engineers carry out their task [Seg95] and ob-
serving changes being made to artifacts [Dix04]. Also, Perry et al. [Per94] repor-
ted that software engineers spent over half their time interacting with colleagues
and that most of the communication is intended to maintain awareness. In dis-
tributed teams using such methods to maintain awareness is far more difficult.
In their review Omoronyia et al. [Omo10] conclude that: “overall, the literat-
ure suggests that many aspects of awareness that are disseminated as a natural
by-product of co-located working are difficult to achieve in distributed working en-
vironments.” Therefore it is important that technological support is developed
that supports this process so that the advantages of distributed development can

38 AN APPROACH FOR CONSTRUCTING A VIRTUAL OFFICE 3.3

be fully exploited. Omoronyia et al. also claim that: “to leverage the advantages
of both co-located and distributed development, it is important that tool support
for distributed teams aims to emulate the attributes of co-location awareness.”

3.3 Awareness and Technological Support
In this section we will closely follow Omoronyia et al. [Omo10] because while
there exist other reviews (e.g. [Sto05, Sar05, Sch02]) this is the only review of
existing technological support for awareness in distributed software engineering
teams which links awareness types and their support requirements and in turn
cross references awareness systems with these support requirements. Omoronyia
et al. choose to focus on five types of awareness that are particularly relevant to
supporting group dynamics that exist during collaborative work [Gut96, Gro05]
and use these to structure the analysis of existing technological support. The
requirement categories are [Omo10]:

1. Workspace Awareness: The up-to-the-minute knowledge of other participants’
interactions with the shared workspace [Gut95]

2. Informal Awareness: The general sense of who is around, what they are
doing, and what they are going to do [Gut96]

3. Group-Structural Awareness: Knowledge about people’s roles and responsib-
ilities, their positions on an issue, their status, and group processes [Gut96]

4. Social Awareness: Information about the presence and activities of people
in a shared environment [Pri99]

5. Context Awareness: The evolving internal and external state information
that fully characterizes the situation of each entity in a shared environment
[Omo10]

Omoronyia et al. analyze how well current solutions support awareness by
comparing a set of these solutions with a list of awareness elements these can
support [Omo10]. This list of awareness elements is created by extending a list
of awareness elements defined by Gutwin et al. [Gut96] (see table 3.1) with addi-
tional elements based on the specific five awareness types they consider (see table
3.2 for this list). The selection of tools to consider was arrived at by going over
a range of techniques that have been used to enhance awareness during distrib-
uted software development within IDEs and related tools. The techniques they
considered were: social tagging, mining relationships, monitoring interactions, a
combination of mining relationships and monitoring interactions and, finally, in-
cluding the notion of time with that combination. The resulting summarizing
table depicting which awareness elements the different tools that are discussed
support is shown in table 3.3.

3.3 AWARENESS AND TECHNOLOGICAL SUPPORT 39

Table 3.1: Elements of workspace awareness [Gut96]

Table 3.2: Extension of Workspace Elements to Include Social, Informal, Group-
Structural and Context Awareness[Omo10]

40 AN APPROACH FOR CONSTRUCTING A VIRTUAL OFFICE 3.3

Table 3.3: Classification of systems-based elements of awareness.[Omo10]

3.4 APPROACH 41

The main benefit of this last table is that it helps to identify those elements
that are reasonably well supported by existing solutions and techniques and the
elements that are not. Looking at the table we see that most of the elements are
supported by more than one of the considered tools. The main exceptions to this
are the location of software engineers, the extent to which they are available and
all but one of the elements related to context awareness. Therefore these seem
like good areas to direct further research.

3.4 Approach
In this section we discuss our approach to researching supporting awareness with
technology. First we discuss the main objectives we want to achieve and the
reasoning behind these objectives. Following this we discuss how we aim to reach
these objectives by describing the setting in which the solution will be evaluated
and the process we employ in developing and evaluating the solution in that
setting. Finally we also briefly discuss how we are implementing the proposed
system.

3.4.1 Objectives
The goal of our research is to determine how best to support distributed soft-
ware engineering with technological support for aiding people to acquire sufficient
awareness. The two core objectives of our approach to achieve this are the fol-
lowing:

1. Support awareness needs of software engineers in a single platform

2. Enable integration of the information from different sources

We arrived at these objectives as follows. Having researched the extensive
literature of existing attempts at supporting awareness for distributed software
engineers we identified a pitfall many of these approaches suffer from. Most
tools are designed to help resolve a specific type of question and target a specific
software artifact. Sillito [Sil08] reports on an empirical study on how programmers
resolve change tasks and how tools support them in answering questions they have
in the process of carrying out these tasks. He reports that most of the tools that
he researched treat questions as if they are asked in isolation while they often
are, in fact, part of a larger process. Examples are asking questions on different
levels of abstraction and asking questions involving different information sources.
Because awareness questions are often part of a larger process, involving a series
of questions and activities that provide context, it is often difficult for distributed
software engineers to obtain sufficient contextual awareness [Omo10]. Therefore
we feel it is highly valuable for a tool supporting awareness for distributed software
engineers to facilitate combining the different types of information. Firstly, we

42 AN APPROACH FOR CONSTRUCTING A VIRTUAL OFFICE 3.4

propose to do this by providing a single platform to support awareness needs
of distributed software engineers. Secondly, Sillito [Sil08] also states that even
programs that do support asking different questions generally fail at combining
the information in a useful way and merely report the information in isolation
as largely undifferentiated and unconnected lists. Therefore we also think it is
important to enable the integration of information from different sources.

3.4.2 Setting
The development and evaluation of the solution we are creating is relatively unique
because it is done at a company called IHomer, a Dutch software engineering
company founded in August of 2008, which is distributed in the true sense of
the word. The company employs highly responsible, proactive people referred
to as participants (instead of employees). All participants are responsible for
all business decisions like the strategy, vision and core values, in contrast with
employees at ’regular’ companies who are mainly responsible for the specific role
they fulfill.

In the company, physically distributed collaboration is common since parti-
cipants aim to work from home as much as possible. This makes the company a
particularly suitable setting for performing this research because of two reasons.
Firstly, the people are quite experienced with dealing with the difficulties of work-
ing distributed from each other and therefore have quite a good understanding of
what is needed to improve this situation. Because of this we can closely collabor-
ate with the other participants to determine which types of awareness are most
beneficial to support first, and what good ways to achieve this are. Next to this,
the other participants also collaborate with us in realizing the actual technical
implementations which improves the quality of the solutions and reduces the time
it takes to realize these. Secondly, we can also perform high quality evaluations
because the company perfectly matches the target setting for which we are at-
tempting to solve issues: a fully distributed organization. These evaluations can
also be done in a lightweight manner and with low turnaround time because of the
high quality feedback the other participants can give us due to their experience
with distributed collaboration. Finally, because the participants encounter the
issues we are attempting to solve in their daily work the solutions will also benefit
them directly.

3.4.3 Process
Based on the specific characteristics of the project, the setting we are conduct-
ing research in and our own experiences in the past, the process we use should
fulfill three requirements. Firstly, it should be able to cope with uncertainty and
changing requirements since we are creating a genuinely novel product and pro-
jects creating genuinely novel products are often faced with uncertainty regarding
both requirements and implementation technologies. Secondly, it should involve

3.4 APPROACH 43

the intended users of the system as strongly as possible because they are quite
experienced with working in a distributed setting since this is something they
encounter on a daily basis. Finally, it should stimulate the usage of the platform
by all users by providing value as soon as possible. This is important because
we found that the value of awareness sharing technology (CSCW groupware) is
higher when a larger portion of the team uses it, see chapter 6, and that this is
often a problem when introducing such tools in practical settings.

We elect to use an agile process methodology to realize the platform we are cre-
ating because such a methodology fulfills all three of these requirements. Firstly,
such a methodology is better able to cope with uncertainty and changing re-
quirements in projects than plan-driven approaches [Dul09]. The main ways in
which this is accomplished is by acquiring rapid feedback from the actual users of
the system by using short iterations, rapid deployment and working closely with
the customers. Working closely with the customers is done to acquire feedback
but also to discover how value can be created as quickly as possible resulting in
increased customer satisfaction and commitment. The specific methodology we
elect to use is Scrum [Sch11, Sch95] an agile process which emphasizes a set of
project management values and practices [Lar04]. It does not define any specific
software development techniques for the implementation phase but concentrates
on how the team members should function in order to produce the system in a
flexible way in a constantly changing environment [Abr02].

In the specific way we have implemented the Scrum process, we work with
two-week iterations, referred to as sprints in Scrum. An overview of how our
sprint looks like is depicted in figure 3.1 Each sprint starts with a sprint planning
meeting in which we decide what to do in the sprint based on the product backlog,
which is a prioritized list of features for the product, and an estimate of the
amount of work of the different user stories on the product backlog: we decide
on the sprint backlog. At the end of each sprint we perform a sprint review
and a sprint retrospective. The goal of the sprint review is to discuss what has
been done in the sprint and compare this to what was agreed upon in the sprint
planning meeting at the start of the sprint. The sprint review revolves around
reviewing the product and also includes a demonstration of the product. The
sprint retrospective revolves around reviewing the process and is intended improve
this in the next sprint.

For practical reasons we hold the sprint review and sprint retrospective of one
sprint on the same day as the sprint planning meeting of the next sprint. We
do this because we require the same group of people to be present at all three
meetings, namely the product owner, the development team and a specific un-
changing subgroup of the stakeholders. The stakeholders are all the participants
at IHomer because these are all users of the system we are creating. The product
owner is one of them, and he is responsible for representing all stakeholders and
making decisions based on this responsibility. We have decided to include a sub-
group of other stakeholders, next to the product owner, in the sprint review and
sprint planning meeting to make it easier for the product owner to determine the

44 AN APPROACH FOR CONSTRUCTING A VIRTUAL OFFICE 3.4

Figure 3.1: Sprint Overview

point of view of the other stakeholders and make decisions based on this. Fur-
ther, we have included the subgroup of stakeholders in the sprint retrospective as
well because in the way we implemented the process, with continual deployment
and direct feedback from the stakeholders, the stakeholders are an important and
direct part of the process and aspects of the process which include them should
be analyzed and improved upon as well.

During a sprint we perform a daily Scrum and release a new build every day.
The daily Scrum is a 15-minute time-boxed event for the development team and
the product owner to synchronize activities and create a plan for the next 24 hours.
This is done by inspecting the work since the last daily scrum and forecasting the
work that could be done before the next one. We release a new built every day
to provide value and acquire feedback as soon as possible. Two times during a
sprint we perform backlog grooming, once on the half-way point and once at the
end, on the day before the sprint review, retrospective and planning meeting.
Backlog grooming is the act of adding detail, estimates, and order to items on the
product backlog. The final role in our process is that of the Scrum master, who
is responsible for ensuring the process is followed and impediments are removed.
This role is performed by the different members of the development team on a
rotation basis.

To provide all stakeholders of the project with real time insight in the project
and the progress, we work with a Scrum-board which we maintain and share using
Trello1. This is a collaboration tool which organizes projects into boards. On such
a board items move along various stages of progress. We use the following stages:

• Idea Box : All stakeholders can insert ideas here, but also problems they
encounter like actual bugs or other types of feedback. Items can be picked
up and put on the product backlog when appropriate

1www.trello.com

3.4 APPROACH 45

• Product Backlog : Prioritized list of features for the product

• Sprint backlog : list of work items that are (going to be) implemented in the
current sprint

• Under development : Work items that are currently being worked on

• Deployed in current sprint : Work items completed in the current sprint that
are already deployed in the live system

Items can be inserted on various stages on the board based on their actual
current status. We differentiate between six types of items on this board:

• Feedback : Reaction to how the system currently functions and explanation
of why this is insufficient/sub-optimal

• Idea: A rough idea of an addition or alteration to the product backlog

• User Story : One or more sentences in the everyday or business language of
the end user that captures something the user wants to achieve using the
system

• Defect : Report of behavior of the system that is in contrast with how the
system should function

• Task : A unit of work generally between four and sixteen hours which con-
tributes to a backlog item

• Research Task : Because we also perform research and write papers in this
project we place these on the backlog as well to increase transparency and
facilitate sprint planning.

3.4.4 Implementation
In section 3.4.1 we discussed the two core objectives of our approach: (i) sup-
port awareness needs of software engineers in a single platform and (ii) enable
integration of the information from different sources. These objectives place some
constraints on our choice of implementation technology. Firstly, the technology
should be cross platform because we want to support awareness needs in a single
platform and our stakeholders use a variety of systems such as Linux, Windows
and Mac OS, but also a number of Mobile Operating Systems running on tablets
and phones. The second constraint originating from the single platform objective
is that the technology should allow for scalability. We choose to support scalabil-
ity by using peer-to-peer communication between the users of the system as much
as possible. Our second objective leads to a third constraint on the technology
we choose, namely that this should be extensible to facilitate the integration of

46 AN APPROACH FOR CONSTRUCTING A VIRTUAL OFFICE 3.5

information from different sources. Using the Model-View-Controller design pat-
tern results in more extensible code because the model, view and controller are
split into separate, loosely coupled components which make it possible to adapt
the flow of the application without changing the model or the view. Using an ap-
proach with a central event bus also leads to a more extensible solution since this
makes it possible to extend an application without altering the existing solution.

3.5 Concluding Remarks

3.5.1 Summary

In this chapter we have presented the research we are currently performing to de-
termine how best to support distributed software engineering with technological
support by aiding people to acquire sufficient awareness. First we discussed this
is an important topic because of the increasing popularity of distributed devel-
opment and the challenges this causes. Following this we talked about existing
work in facilitating distributed development by supporting the sharing of aware-
ness with technological solutions and about what these solutions support well and
where there exist possibilities for improvement. Next, we discussed an iterative
approach to (i) identify real-life global software engineering problems, (ii) propose
and implement solutions for these problems, and (iii) evaluate these solutions in
an industrial setting. This approach provides us with empirical data to validate
the increase in awareness levels of dislocated software engineers and helps us in
pinpointing important open research challenges. Another advantage of using this
approach is that we are discovering the requirements to support fully distributed
teams, while at the same time we are providing our setting with working solutions
for issues they encounter in their daily work.

The most valuable contribution of this chapter is: The description of our
own unique approach to research how to support awareness in distributed software
engineering in which we collaborate with software engineers in a fully distributed
company to identify the encountered problems, produce solutions using an agile
process and to evaluate these solutions.

3.5.2 Future Work

During the first sprints we have generated some interesting ideas for future work.
It would for example be interesting to provide insight into the occurrence and
content of the communication of your colleagues. This is both true when work-
ing together on a project at the same time (e.g. overhearing a conversation of
colleagues) but also when catching up on what happened on the project during
your absence. Another example is to let the platform help the users to select
the most appropriate form to communicate with their colleagues. Users could for
example configure which means of communication they favor in certain situations

3.5 CONCLUDING REMARKS 47

(e.g. when in a car) and it can also be shown when certain means of commu-
nication are currently infeasible (e.g. audio call during a meeting). Similarly the
system could also aid in determining who to contact based on a specific question
or problem (e.g. who could help me with this specific class?). Finally, it is also
possible to show something such as the mood of people in the platform. When
working in the same room it is often clear what someone his mood is and when for
example someone is unhappy for a prolonged period of time, steps can be taken
to find the cause and solve this. When working distributed from each other, such
things can go unnoticed and lead to larger problems which can be harder to solve.

3.5.3 Virtual Office Implications
The approach discussed in this chapter, to develop, implement and validate solu-
tions which support global software engineers to relatively passively and unob-
trusively acquire a sufficient level of awareness, is an important part in answering
the first research question of this dissertation:

Research Question 1
What are the requirements for technological support to provide distributed
software engineers with the context of their current work activity?

In this research we did not identify new requirements of a virtual office itself. We
could, however, derive the following requirements on how to construct such an
office:

• Facilitate coping with uncertainty and changing requirements

• Facilitate involving the intended users of the system as strongly as possible

• Facilitate stimulating the usage of the platform by all users

Both our vision on how best to support global software engineers to relatively
passively and unobtrusively acquire a sufficient level of awareness, and our ap-
proach to develop, implement and validate such solutions contribute to answering
the first research question of this dissertation. In the remainder of this disserta-
tion we will use this vision to answer the other research questions and to elaborate
on the findings. This enables us to derive a set of requirements a virtual office
should fulfill.

Part III

Communicating in a Virtual Office

49

Chapter4
Open Conversation Spaces

Conversations between colleagues in collaborative software engineering are import-
ant for coordinating work, sharing knowledge and creating knowledge. Overhear-
ing conversations of others is useful as well since this: (i) provides access to the
information discussed in the conversations, (ii) offers the possibility of joining
the conversations and (iii) provides insight in the communication structure of the
project team. When working in a global software engineering setting, specialized
tooling is required to be able to have conversations and to know what conversations
others are having. In this chapter we define the concept of a conversation, dis-
cuss the reasons for having conversations and discuss the advantages of overhear-
ing conversations. These insights led us to the definition of Open Conversation
Space; a space in which conversations are possible between the actors in that space
and these conversations are visible to other actors in it. Finally, we present the
requirements such a space should implement.

This chapter is based on both our publication ”Virtual Open Conversation Spaces: Towards Im-
proved Awareness in a GSE Setting” in the Proceedings of the 5th International Conference on
Global Software Engineering (ICGSE 2010), and on our publication ”Overhearing Conversations
in Global Software Engineering - Requirements and an Implementation” in the Proceedings of
the 7th International Conference on Collaborative Computing: Networking, Applications and
Worksharing (CollaborateCom 2011). Both publications are co-authored by Kevin Dullemond
and Rini van Solingen.

51

52 OPEN CONVERSATION SPACES 4.1

4.1 Introduction
Global software engineering (GSE) is becoming increasingly interesting due to
the globalization of business [Car99, Her01, Dam06, Her07, Pri07, Åge08]. In
GSE the software development process is distributed between several geograph-
ically dispersed locations [Con06, Dam06, San06]. Advantages of GSE include:
market-proximity [Gri99, Her00, Dam06], reducing time-to-market by working
around the clock [Car99, Her99, Ebe01, Dam06], flexibility with respect to busi-
ness opportunities [Car99, Her99], reducing costs by delegating work to coun-
tries with low labor cost [Car01, Dam06] and being able to fully utilize available
resources [Her01, Gri99, Dam06]. Besides being beneficial, GSE introduces a
number of challenges in relation to communication, coordination and control of
the development process [Car01]. Examples are: lack of informal communica-
tion [Car99, Her99, Her01, Åge05], reduced hours of collaboration [Bat01, Kie03,
Hol06, Åge08], communication delay [Åge05, Her05, Her07, Con06], and loss of
cohesion [Car99, Her03, Her07].

In collaborative work it is essential to have knowledge about the context in
which you are working to properly collaborate with others [Sch02, Syr97]. With
information about the context we mean information about the other members in
the project team, their activities, information about the state of the project and so
on. This information is essential because this knowledge is necessary for coordin-
ating actions, managing coupling, discussing tasks, anticipating others’ actions,
and finding help [Sch02, Syr97, Gut02]. The complexity and interdependency of
software systems (e.g., [Kra95]) suggest that this is also the case for collaborative
software development. In scientific literature the term ’awareness’ is often used
to denote this [Sch02, Dou92]. Dourish and Bellotti use the following definition:
”An understanding of the activities of others which provides a context for your
own activity” [Dou92].

Awareness is spread among the members of the project team as follows: Actors
display information on a shared medium while other actors monitor the medium
and acquire information from it [Sch02, DS11]. In this process, both monitor-
ing and displaying are activities that are not necessarily conducted with the full
attention of the actor. Often when expressing this varying degree of attention di-
chotomies are used, such as: explicit versus implicit, deliberate versus automatic,
conscious versus subconscious, focused versus unfocused and active versus passive.
These notions are however false dichotomies as the distinction is not categorical
but merely one of degrees [Sch02].

When team members are not sharing a physical work environment they are
outside of sensory range of each other. Therefore information exchange between
them becomes infeasible without some kind of technological support. This can
be dealt with by providing other ways of acquiring the required information, like
using the telephone or email to ask a question. However, in general, such solu-
tions are inferior to the way contextual information is shared in a traditional
co-located setting, in the sense that in comparison it (i) takes more effort because

4.2 CONVERSATIONS 53

the communication is more intentional [Gut04], (ii) is more obtrusive [Fog05],
(iii) happens less frequently [Her03, All77, Gal90], and (iv) contains less informa-
tion [Gut04, Her99, Ols96]. As such we can conclude that spreading awareness is
more difficult in a distributed setting. Due to the nature of the challenges asso-
ciated with GSE, it is plausible to assume these challenges originate from having
insufficient access to information regarding the work context: a lack of awareness.

The research presented in this chapter continues upon this insight that a lack
of awareness is the origin of the challenges faced in GSE. It is part of the ASPIC1

research project. The goal of ASPIC is to develop solutions to the problems
caused by the difficulties with acquiring and maintaining awareness in GSE. In
this research the focus will lie on making the sharing of information a more passive
activity because (i) this will likely lower the effort to spread awareness, (ii) cause
this information to be more recent and (iii) improve the quality of the information
as well. In this chapter we will focus on how knowledge about the conversations
between the members of a development team can improve collaboration in GSE.
The main goal of this chapter is to find out how awareness about conversations
within a development team supports collaborative software engineering.

This chapter is structured as follows: In section 4.2 we give a formal definition
of a conversation within the context of GSE. In section 4.3 we discuss the advant-
ages of conversations, the advantages of overhearing conversations and introduce
the concept of an open conversation space. Subsequently, in section 4.4, we define
a set of requirements such a space should implement. Finally, we conclude upon
our research in section 4.5.

4.2 Conversations

There are many definitions of the word conversation. The Oxford English dic-
tionary for example defines it as: ”An informal spoken exchange of news and
ideas between two or more people” [Soa03]. The Merriam-Webster’s collegiate dic-
tionary uses the following definition: ”oral exchange of sentiments, observations,
opinions or ideas” [Mis03]. Finally the Cambridge advanced learner’s dictionary
defines conversation as: ”(a) talk between two or more people in which thoughts,
feelings and ideas are expressed, questions are asked and answered, or news and
information are exchanged” [Woo08]. These definitions seem to agree on the fact
that, conversations:

1. Use verbal communication

2. Are an exchange of information of various origins between two or more
people

1Awareness-based Support Project for Interpersonal Collaboration in Software Engineering,
http://aspic.ewi.tudelft.nl

54 OPEN CONVERSATION SPACES 4.3

We find the confinement to verbal communication too strict however. This con-
finement presumably originated from how people have held conversations for a
very long time, namely by being at the same place at the same time and talking
to each other. We feel, however, that the confinement to verbal communication
is meant to convey something else altogether. Firstly, an exchange of informa-
tion between people is only a conversation when the communication can be con-
sidered synchronous2. Because the communication should be synchronous for an
information exchange to be a conversation, a form of communication that is com-
prehensible by humans in real time should be used. To help distinguish it from
conversations, we propose to use the term correspondence for the exchange of
information between people using asynchronous communication. Secondly, when
people are part of a conversation they are directing their communication at one or
more specific people. So, broadcasting information, like for instance an announ-
cer working at a train station, at a football stadium or at the market place, is
not a conversation. It can however be a way to initiate a conversation. Another
way to initiate a conversation is by directly starting to communicate with one or
more specific people. Summarizing, we define a conversation in the context of
GSE as: ”An exchange of information between two or more people where those
participating use synchronous communication directed at the other participants”.

4.3 Open Conversation Space
In collaborative work conversations have various uses. For one, conversations help
people to integrate and coordinate their work, by discussing their past, current
and future activities [Esp03, Gut02, Ren11]. An example of this is when a de-
veloper (d1) tells a colleague (d2) he is currently working on a certain work item
and what work item he is planning to do next. Because developer d1 informs
developer d2 of his current and planned future activities, developer d2 can both
adapt his own current and planned activities as well as influence those of developer
d1. Secondly conversations are a powerful tool to share knowledge about the ac-
tual work [Web93, Eri99]. An example of this is when a project member asks a
colleague to explain some technical aspect of the work he is doing. Finally, con-
versations are ways of creating new knowledge [Wyn79, Web93, Eri99]. Examples
of this are having a discussion with someone to come up with a solution to some
issue in the project and having a brainstorm session to identify the requirements
of a system to be built.

Besides taking part in conversations, also conversations of others are useful.
For one, overhearing the conversations of others is a source of information since
this provides access to the information which is discussed and/or concluded in
the conversation [Gut02]. This refers to both technical project information and
information regarding the current, past and future activities of other project mem-

2Communication is regarded ’synchronous’ when the sending and receipt of messages between
actors communicating can be regarded as instantaneous [Dul09]

4.4 REQUIREMENTS OF AN OPEN CONVERSATION SPACE 55

bers. Secondly, having insight in the ongoing conversations provides the oppor-
tunity to join a conversation [Gre01]. Having joined a conversation, being part of
that conversation provides the same benefits as discussed earlier for conversations
in general, namely: integrating collaborative activities, knowledge sharing, and
the creation of new knowledge. Finally, by having access to the communication
frequencies between colleagues, the insight into the communication structure of
the project team is increased [Sos02, McC93, Kra90]. This information is import-
ant to be able to address communication issues [Ehr07, Cat06, Cro05]. These
communication structures and issues can be very dynamic and can evolve over
time. An example when this information can be useful is the following: Say you
need to ask someone a question but you cannot reach him. If you know who
that person frequently communicates with, you could attempt to reach this per-
son instead and see if he can assist you with contacting the right person or with
resolving the issue itself.

Having discussed the benefits of conversations in general and the benefits of
having access to the conversations of others, we can conclude both being able to
have and overhear conversations is important in collaborative software engineer-
ing. To refer to an environment in which this is possible, we define an ’Open
Conversation Space’ : A space in which (i) conversations are possible between the
actors in that space and (ii) these conversations are visible to other actors in it.
An example is a normal office setting. In such a setting members of the project
team converse by means of spoken natural language (among other means) and
such conversations are audible by other people in the setting. In fact, being able
to work in a space in which the members of the project team are frequently able to
both see and hear each other is one of the main reasons for working in a co-located
setting [Kra90]. Therefore we propose the creation of a ’Virtual Open Conver-
sation Space’ : An open conversation space which is applicable in a distributed
setting.

4.4 Requirements of an Open Conversation Space
Having introduced the concept of an open conversation space we will discuss
the five requirements such a space should implement in this section. These five
requirements are:

REQ1. Facilitate starting conversations

REQ2. Facilitate detecting active conversations

REQ3. Facilitate monitoring active conversations

REQ4. Facilitate participating in conversations

REQ5. Facilitate the finishing of conversations

56 OPEN CONVERSATION SPACES 4.4

We have derived these requirements by analyzing the life cycle of a conver-
sation in a structured fashion. First the conversation is started in some way,
subsequently the conversation is active for a certain amount of time and finally
the conversation ends and reaches the end state of being a finished conversation.
We will also use these three states to structure the discussion of the requirements
of an open conversation space. In this discussion we will illustrate the concepts
by showing how the requirements are implemented in co-located situations, in
particular the traditional office setting.

4.4.1 Uninitialized Conversation
In an open conversation space the actors should be able to have a conversation
and therefore it should be possible for conversations to be initiated (REQ1).
In general, there are two ways to initiate a conversation: direct and indirect.
Firstly, in an office setting the most common way to initiate a conversation is
by walking up to a colleague and starting to talk to him or her. Basically, you
choose a specific person, or a specific group of people to initially participate in
the conversation. This participant-based kind of conversation initiation is a direct
way to initiate a conversation. Namely, the initiation of the conversation is part
of the conversation because the communication is synchronous and directed at the
other participants. Examples outside of the co-located office are calling someone
on the phone or sending an IM-message to someone. It is also possible to initiate
a conversation indirectly. Examples are asking for help in general and making
an announcement. In a traditional office setting this can be done by talking
out loud or writing something on a white-board while outside of the traditional
office setting a chat room or a forum can be used. Note that when initiating a
conversation in this fashion, the initiation is not part of the conversation because
the communication is not directed at the other participants (there are none), but
rather at a certain group of potential participants.

4.4.2 Active Conversation
By definition, once a conversation is initiated, an open conversation space should
allow the overhearing of this conversation by the other actors in that space
(REQ2). Firstly, they should be able to find out about the conversation either
by deliberately (manually) looking for it or by automatic detection. In a tradi-
tional office setting an example of the former is looking around actively, checking
to see if people are having a conversation. An example of the latter is detecting
a conversation because you hear people talk to each other or see some people
group together. When looking at detecting a conversation in this fashion, it is
important to note it happens mostly subconsciously and unobtrusively. When you
are working on a task and people talk to each other, you can continue relatively
uninterrupted while your mind automatically detects whether the conversation
is interesting to you. After detection of the conversation the open conversation

4.5 REQUIREMENTS OF AN OPEN CONVERSATION SPACE 57

space should allow the actors to actively monitor the conversation (REQ3). In
a traditional office setting this would mean actively listening to the conversation
without actually joining. When actively listening to the conversation an actor
has access to nearly all information about the conversation, so the things that are
being said, who are participating in the conversation and who else is viewing the
conversation. When not actively following a conversation, more general informa-
tion about the conversation is picked up by the actor, like a phrase or a certain
word.

Besides monitoring an active conversation, actors in an open conversation
space should also be able to participate in such a conversation (REQ4). People
can become a participant in a conversation (i) because they were one of the ori-
ginal participants in a conversation, (ii) because they were invited into a running
conversation or (iii) because they actively joined a conversation they overheard.
In a traditional office setting people are usually invited into the conversation by
simply being asked to do so by someone already participating. Actively joining
a conversation yourself can happen in multiple ways. Someone listening to the
conversation can explicitly ask whether he can join, but often people will join
conversations by just starting to speak. When someone participates in a conver-
sation he can influence the conversation. He can, for example, contribute to the
conversation or invite other people. Next to this he can also suggest to move
the conversation to a separate office if the conversation is of a private nature,
effectively taking it out of the open conversation space.

4.4.3 Finished Conversation

Because we define a conversation to be a synchronous information exchange, by
definition, it has to finish as well since people cannot synchronously commu-
nicate indefinitely. Therefore a conversation finishes when all participants stop
communicating synchronously (REQ5). This is however not straightforward to
detect. For instance, there is no definition of a certain amount of time between
messages indicating the synchronous communication has ended. In a traditional
office setting participants not talking for a certain amount of time and parti-
cipants physically moving away from each other are usually indicators that a
certain conversation has ended. Later on, it is possible for the same people to
continue ”where they left off”. This is however not the same conversation, but a
second conversation about a related subject since conversations are synchronous
exchanges of information.

When a conversation is finished however it does not cease to exist. In a
traditional office setting people that participated or overheard the conversation
usually have a recollection of the conversation while other people present in the
office during the conversation can have some knowledge about it as well. Knowing
about finished conversations has all benefits of overhearing conversations except
being able to join the conversation since this is no longer possible.

58 OPEN CONVERSATION SPACES 4.5

4.5 Concluding Remarks

4.5.1 Summary
In this chapter we have answered the following research question: ”How can
awareness about conversations within a development team support collaborative
software engineering?” We answered this research question, by defining the concept
of a conversation, discussing the reasons for having conversations, and discussing
the advantages of overhearing the conversations of colleagues. These advantages
are the following: (i) it provides access to the information discussed in the con-
versations, (ii) it offers the possibility of joining the conversations, and (iii) it
provides insight in the communication structure of the project team. This led us
to conclude that a work environment should both provide the possibility of having
conversations with colleagues and make the conversations going on in the work
space visible. We called such an environment an open conversation space and
presented a set of requirements such a space should fulfill. Finally we proposed
the creation of a virtual open conversation space; an open conversation space
which is applicable in a distributed setting.

4.5.2 Virtual Office Implications
In this chapter we provided a theoretical motivation why the overhearing of con-
versations of others is valuable to a distributed software engineering team. This
motivation contributes to answering the second research question of this disser-
tation, namely:

Research Question 2
What is the value of overhearing conversations in global software engineer-
ing?

Based on this theoretical motivation why the overhearing of conversations of oth-
ers is valuable to a distributed software engineering team, we derived the following
set of requirements which should be implemented in a virtual office:

Req 6. Facilitate starting conversations
Software engineers should be able to have conversations, therefore it
should be possible to initiate a conversation. For example by choosing
a specific person, or a specific group of people to initially participate in
the conversation.

Req 7. Facilitate detecting active conversations
Software engineers should be able to overhear conversations of others,
therefore it should be possible to find out about active conversations.
Software engineers could, for example, detect a conversation because
they hear or see people talk to each other.

4.5 CONCLUDING REMARKS 59

Req 8. Facilitate monitoring active conversations
Software engineers should be able to access information about the con-
versation without actually joining it.

Req 9. Facilitate participating in conversations
Software engineers should be able to become a participant in a conver-
sation. They can, for example, become a participant in a conversation
because they are invited into an ongoing conversation or because they
actively joined a conversation they overheard.

Req 10. Facilitate finishing conversations
Software engineers should be able to finish a conversation.

Req 11. Facilitate having conversations which cannot be overheard by
others
Software engineers should be able to have conversations of a private
nature, which cannot be overheard by others.

Req 12. Facilitate changing the degree of involvement in a conversation
Software engineers should be able to change how aware they are of a
conversation by changing their degree of involvement. They should, for
example, be able to change their involvement from actively listening to
participating in a conversation.

Req 13. Facilitate having insight in the finished conversations
Software engineers should be able to find out about a finished conversa-
tion to access information about it.

Next, in chapter 5 we evaluate the value of the concept of overhearing con-
versations in the field of software engineering, and in chapter 6 we evaluate the
value of overhearing conversations in the field of global software engineering from
actual industrial experience. These three studies together answer the second re-
search question of this dissertation.

Chapter5
Evaluating the Concept of Open
Conversation Spaces

Software engineering is by nature a highly collaborative activity and being able to
collaborate effectively is a key factor for project success. However, collaborating ef-
fectively in global software engineering, in which team members are geographically,
temporally and socio-culturally separated from each other, is an important chal-
lenge. In a traditional co-located software engineering setting, one of the most
important communication patterns is a conversation. Technological support to
have conversations in a distributed setting is commonly used, however overhear-
ing conversations of your colleagues is mostly not feasible with these tools. To
explore the importance of overhearing conversations we conducted a focus group
and a questionnaire in a large international software development company. In
the focus group we identify: (i) the benefits and challenges of having insight in
active conversations, (ii) the important types of information about a conversation,
(iii) the actions possible on a conversation, and (iv) the benefits and challenges of
having access to the finished conversations. In the questionnaire among 47 soft-
ware engineers we determine the relative importance of these benefits, challenges,
information items and possible actions. Based on these findings we conclude that
research about support for conversations in global software engineering is worth
pursuing and provide valuable insights on important aspects to consider when do-
ing so.

This chapter is strongly based on our publication ”An Exploratory Study on Open Conversa-
tion Spaces in Global Software Engineering” in the Proceedings of the 7th International Confer-
ence on Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom
2011). This publication is co-authored by Kevin Dullemond and Rini van Solingen

61

62 EVALUATING THE CONCEPT OF OPEN CONVERSATION SPACES 5.2

5.1 Introduction
In this chapter we will report on the first part of an empirical study about over-
hearing conversations and how to support this. This first part of the study con-
cerns the evaluation of being able to overhear conversations of your colleagues
in the field of software engineering. The second part of the study will concern
the evaluation of overhearing conversations in a distributed setting and will be
discussed in the next chapter. We are interested in an evaluation of the value of
overhearing conversations because this is often infeasible in distributed settings
and could be one of the causes of the challenges faced when working in such a
setting. The objective of this chapter is:

”To provide evidence that research about support for overhearing conversations
is worth pursuing and to provide insights on important aspects to consider when
doing so”

Therefore, we:

• Determine the benefits and challenges of having insight in the active con-
versations and determine how important these are

• Determine what information about a conversation is important and determ-
ine how important this is

• Determine what actions can be carried out on a conversation and determine
how important they are

• Determine the benefits and challenges of having access to conversations after
they end and determine how important these are

The remainder of this chapter is structured as follows. In section 5.2 we present
background information about global software engineering, awareness issues in
such settings and the overhearing of conversations. Following this, in section
5.3, we discuss the research site and our methods of data collection and analysis.
Subsequently, we present our findings in section 5.4 and reflect upon the results
and discuss limitations in section 5.5. Finally we will conclude upon our work
and discuss future research opportunities in section 5.6.

5.2 Background
It is becoming increasingly common for collaborative software engineering teams
to no longer conduct their work from a single office building. This happens both
due to the globalization of business [Car99, Her01, Her07] and because people are
starting to work from home more and more [Die09]. Advantages of the global-
ization of business include: market-proximity [Gri99, Dam06], reducing time-to-

5.3 RESEARCH SITE AND METHOD 63

market by working around the clock [Car99, Ebe01], flexibility with respect to
business opportunities [Car99, Her99], reducing costs by delegating work to coun-
tries with low labor cost [Car01, Dam06] and being able to fully utilize available
resources [Her01, Dam06]. Advantages of working from home include: increased
autonomy [Har02], increased flexibility [Har02], increased productivity [Hes91],
increased motivation [Pra93] and improvement in the quality of the environment
[Har02]. Since team members do not share a physical work environment when
working distributed from each other, information exchange between them becomes
infeasible without technological support. This information exchange, however, is
necessary to acquire knowledge about the context in which you are working. This
knowledge is essential in collaborative work to properly collaborate with oth-
ers [Sch02, Syr97] and is commonly referred to as ’awareness’ [Sch02, Dou92].
In general, however, the technological support used to acquire awareness (such
as telephone or email) is inferior to the way contextual information is shared
in a traditional co-located setting, because in comparison it (i) takes more ef-
fort since the communication is more intentional [Gut04], (ii) is more obtrusive
[Fog05], (iii) happens less frequently [Her03, All77] and (iv) contains less inform-
ation [Gut04, Ols96].

One of the most important communication patterns that occur in a tradi-
tional office setting are conversations [Per94]. In the previous chapter we defined
a conversation in the context of global software engineering as: “An exchange of
information between two or more people where those participating use synchronous
communication directed at the other participants”. So, for example, broadcasting
information, like an announcer at a football stadium, at a train station or at the
market place, is not regarded as a conversation. Next, to this definition of a
conversation, we also discussed the importance of conversations and the import-
ance of being able to overhear conversations of others. Finally, we introduced the
concept of an open conversation space to denote a space in which actors can have
conversations and where these conversations can be overheard by the other actors
in that space. We will use this notion in this chapter as well.

5.3 Research Site and Method

5.3.1 Site

Participants in the study are a group of software engineers at Exact, a software
development company operating in 40 countries. Exact offers Enterprise Resource
Planning software for medium-sized and small businesses. At the end of 2010 it
employed 1867 employees worldwide and 359 in the Netherlands alone [Exa10].
The specific group of employees that are involved in the study worked on a product
called Exact Online which is offered as a service (SaaS). Currently, this product is
targeted at the lower end of the SME market and was introduced in the Nether-
lands in 2005. The majority of the people involved in this study (42), worked out

64 EVALUATING THE CONCEPT OF OPEN CONVERSATION SPACES 5.3

of the office location in Delft (The Netherlands) and was co-located on a single
floor. However, also three people from the Wemmel (Belgium) office participated
as well as two from the Minneapolis (USA) office. Next to this, people worked
from home fairly often and frequently communicated using Instant Messaging
software even when working from the same office.

The group of people that participated in the study is in our opinion appropriate
for reaching the research objectives described in the introduction. Firstly, the
group of people consisted of experienced software engineers with an average of
10 years of experience in the field. Secondly, the group of people we studied is
both experienced with collaborating in a co-located setting and in a distributed
setting. Finally, the group also used Communico (a tool which makes it possible
to overhear Instant Messaging conversations, see chapter 6) and therefore gained
familiarity with the concepts researched in the study.

5.3.2 Data Collection and Analysis Methods
To reach our research objectives we used two methods to acquire the empirical
data in this study. Firstly we performed an 8-person focus group to determine
the benefits, challenges, information items and possible actions asked for in the
research goals. Following this we performed a questionnaire among 47 participants
to determine the relative importance of these benefits, challenges, information
items and possible actions. Next, we will explain for both the focus group and
the questionnaire, why we chose to use that method of data collection, give details
about its execution and discuss how we analyzed the data we gathered.

Focus Group

Kontio et al. [Kon04] describe focus groups as ”carefully planned discussions,
designed to obtain the perceptions of the group members on a defined area of in-
terest”. A focus group usually consists of 3 to 12 participants and the discussion
is guided and facilitated by a moderator, who follows a predefined structure so
that the discussion stays focused. The participants of a focus group are selected
via purposive-sampling: they are chosen based on their individual characteristics.
The group setting enables the participants to build on the responses and ideas
of the others, which increases the richness of the information gained [Lan03].
Strengths of a focus group include the ability to discover new insights, offering
the opportunity to explore in-depth why participants think the way they do, and
being a cost efficient way of obtaining practitioner experience [Bai78, Kon04].
However, it also shares weaknesses with many other qualitative methods. Firstly,
it may be difficult to generalize the results due to the limited number of par-
ticipants [Jud91, Bai78]. Secondly, group dynamics, communication styles and
the social acceptability of certain topics and opinions can influence the discus-
sion and therefore introduce bias [Bai78, Kon04]. Thirdly, it is possible that
participants have hidden agendas, for example: trying to come across favorably

5.3 RESEARCH SITE AND METHOD 65

[Kon04]. Finally, some of the participants might not completely comprehend the
topics discussed [Kon04].

In this study the goal of the focus group was to elicit the benefits, challenges,
information items and possible actions. We chose to do a focus group because the
method is appropriate for discovering new insights, exploring in-depth why parti-
cipants think the way they do and because the method requires a limited amount
of time of the participants. We performed the focus group in approximately 2.5
hours with 8 people from the site we discussed in the previous subsection. We
chose to use participants that actively participated in the use of Communico. We
chose these people because they are more likely to have thought about the subject
we wished to discuss and because they are motivated to contribute, which is also
important in an interactive format such as a focus group. About 2 weeks before
the focus group we invited the participants to take part by e-mail invitation. In
this e-mail we explained what a focus group entails, what was expected of them
and the goal of the focus group. We also emphasized that our interest would lay
in their opinions and insights, we would merely be there to observe and moderate
and the importance of them all contributing to the discussion roughly equally.
Finally, we also sent them a short introduction on what topics we were going to
discuss.

During the focus group itself the first two authors were present. One of the
authors took the role of moderator, so he made sure the conversations stayed
on topic, the structure (see Appendix A) was followed and all participants in
the focus group contributed roughly equally to the discussion. The other author
mainly took notes and assisted the moderator when necessary. We chose to have
the main moderator not take notes because being a moderator requires focus and
taking notes can distract him from this activity [Lan03]. In carrying out the focus
group we followed a structured approach to ensure we would discuss the topics on
which we wanted to elicit opinions. After we introduced the focus group itself and
repeated the goals and ground rules, we started by identifying the benefits and
challenges of having insight in active conversations. Following this, we identified
what information and what actions are important when a conversation is taking
place. Finally, we also identified the benefits and challenges of having access to
the finished conversations.

The identification of the benefits, challenges, information items and actions
was carried out as follows: First we would shortly introduce each subject and
subsequently we would hand out sticky notes and ask a question we wanted to
know the groups opinion about. Following this, everyone would write answers
on sticky notes individually after which we would gather all the sticky notes and
discuss each one with the entire group. In the discussion of each sticky note we
determined what was meant by it and merged it with, or linked it to various other
sticky notes if appropriate, to try and create an overall group consensus.

To conclude the discussion about the focus group we will discuss how we dealt
with the challenges of using a focus group to gather data. Firstly, because we
defined and followed a predefined structure we were able to control the overall

66 EVALUATING THE CONCEPT OF OPEN CONVERSATION SPACES 5.3

content of the focus group sufficiently and make sure group dynamics did not
steer the discussion in an undesirable direction. When a certain discussion did
seem to drag on too long without progress the moderator would step in and
gently move the discussion onwards. We also dealt with the challenge of social
acceptability. For one, we repeatedly emphasized the importance that everyone
contributed to the conversation. This point seems to have come across well, as
everyone really contributed to the discussions. Another thing we did to deal with
this, was the use of sticky notes. Because this method forces everyone to think
about a question on their own first and write down their opinions, the temptation
to agree with the loudest person or the first person to voice his opinion is reduced.
Finally, we performed the focus group in a separate closed office to protect the
focus group from outside influences. A third challenge we dealt with concerns that
the comprehension of the topic by the participants can be too limited to have an in
depth discussion. We dealt with this by choosing motivated participants who had
experience with the topic as they used Communico frequently. Next to this, we
also sent an introduction into the focus group and the topics discussed in advance
and repeated this also in a short presentation right before the focus group started.
Finally, the challenge of hidden agendas is not likely to apply in this case study
because of the nature of the project. The participants had no logical interest in
influencing the outcome of our research as the goals of the research were purely
academic with no direct business related decisions depending on it. Overall the
focus group worked well and the findings will be discussed in the findings section.

Survey

Fink [Fin03] describes surveys as: ”a system for collecting information from or
about people to describe, compare or explain their knowledge, attitudes or beha-
vior”. When conducting a survey it is possible to collect information directly, by
interviewing people, or indirectly by reviewing written, oral and visual records of
people’s thoughts and actions. The most used method to do this is a question-
naire [Kel03], in which participants are asked a series of questions for example via
filling in a written form, responding to an email or answering the questions on
a specifically designed web page. Strengths of gathering data by use of a ques-
tionnaire include that the method is quick and requires little effort compared to
other methods, that the use of standardized answers simplifies the analysis of data
and that respondents can complete the questionnaire when it suits them [Gil00].
Weaknesses are mainly concerned with the quality of the data, both with respect
to the completeness and the accuracy. Questionnaires typically have low response
rates, have difficulties with motivating the respondents to provide accurate an-
swers, are bounded in the amount and complexity of questions they can ask, are
bounded to asking questions and assume people have readily available answers to
these questions [Gil00].

In this study we elected to use a questionnaire to determine the mutual im-
portance of the qualitative data we elicited in the focus group. We researched

5.3 RESEARCH SITE AND METHOD 67

questions such as: ”Which advantages of overhearing conversations are most im-
portant?” and ”Is knowing the subject of a conversation more important when
participating in a conversation than when you are merely listening to a conversa-
tion?”. We chose to use a questionnaire to do this because this made it possible
for us to include the opinions of a larger group of people than if we used another
method and because it is possible to research such questions by using a stand-
ardized set of questions. In the questionnaire we asked the respondents to rate
the various advantages, challenges, information items and actions on a 5-point
Likert scale [Lik32] with a no-opinion option. We included a no-opinion option
to prevent people with no opinion on a specific question to answer it anyway and
’pollute’ the data in this fashion [Bai78].

In this questionnaire the population is the Exact Online department. We chose
to send the questionnaire to the 47 people who installed Communico (out of the
61 that were approached). We chose to send the questionnaire to this sample of
the population because we felt these people would be most motivated to complete
the questionnaire since they were interested enough to install the tool. Sampling
in this fashion to try and achieve a high response rate is known as convenience
sampling [Kel03]. We do not think we significantly bias the results by sampling
like this because half of the people we sent the questionnaire to (23 out of 47) used
the tool for less than 20 hours in a 4-month period. Therefore, it is plausible to
assume sufficient people with a general negative view on the concepts are recruited
for the sample to accurately represent the population.

We sent the questionnaire (see Appendix B) via e-mail, handed out print outs
and also made a web-form available to try and make it as convenient as possible
for respondents to return the questionnaire. Other methods we used to maximize
the return rate were the personalization of the request, the sending of follow-up re-
quests, asking people in person to get their sympathy and convince them they can
make a difference, and the already mentioned convenience sampling. In the end,
44 out of the 47 people we approached returned the questionnaire, so the response
rate was 94%. To increase the accuracy of the data we tried to avoid common
pitfalls in performing questionnaires like: double-barreled questions, ambiguous
questions and leading questions [Bai78]. The results of the questionnaire can be
found in anonymized form at http://Aspic.nl/OCS/QuestionnaireData.xls.

We analyzed the data as follows: In the questionnaire we asked the respondents
to rate the various advantages, challenges, information items and actions. We
used this data to reflect on the mutual importance of these. So, for example, we
compared the importance of the benefits of overhearing conversations. In order to
do so, we applied the Fisher’s Least Significant Difference (LSD) method [Fis35] on
each of the following categories: benefits of overhearing conversations, challenges
of overhearing conversations, information about a conversation, actions possible
on a conversation, benefits of finished conversations and challenges of finished
conversations. This method first applies the non-parametric Friedman test1 in

1http://faculty.vassar.edu/lowry/ch15a.html

68 EVALUATING THE CONCEPT OF OPEN CONVERSATION SPACES 5.4

order to determine whether the items of the data set of a specific category are
significantly different. If the result of applying the Friedman test indicates this is
the case, we apply the non-parametric Wilcoxon matched-pairs signed-rank test2

to pairwise compare all items in that category. From the results of this test it
can be concluded whether or not it is likely one of the variables is rated as more
important. In the next section we will discuss the results of this analysis.

5.4 Findings
In this section we will present the findings of the empirical study. To do this
in a clear and concise fashion, we will structure this section in four parts, one
for each of the research objectives. For each of these research objectives we
will first qualitatively describe our findings. We will describe the benefits, chal-
lenges, actions and information items respectively. Following this we will dis-
cuss the relative importance of these, by presenting the quantitative data we
gathered and our analysis of this data. For each of the comparisons we make
we will report the result of the Friedman test and if this test passes we will
present a table summarizing all Wilcoxon tests we performed. In this table a
green ’larger than’ -sign means the Wilcoxon test passed and the item on the
left is rated as more important to a statistically significant level. When the
test fails we cannot conclude anything regarding the mutual importance and
we show a red ’X’. In these tables the items that are compared are ordered
based on an intermediary ranking of these, produced when applying the Friedman
method. The complete results of all tests can be found in non-summarized form at
http://Aspic.nl/OCS/QuestionnaireDataAnalysis.pdf. In this document
the Likert scale values from the questionnaire are represented as a value between
1 and 5, 1 meaning ’- -’, and 5 meaning ’++’.

5.4.1 Benefits and Challenges of Overhearing Conversations

Benefits

The benefits of having insight in the active conversations we found in the focus
group are the following:

• Having access to the technical knowledge of col-
leagues

Technical
Knowledge

• Acquiring involvement with colleagues Involvement

• Enjoying your work Enjoying

• Being able to join a conversation Joining

2http://faculty.vassar.edu/lowry/ch12a.html

5.4 FINDINGS 69

• Acquiring insight in the communication structure
of the team

Communication
Structure

An overview of how these benefits were rated in the questionnaire is shown in
table 5.1.

Table 5.1: Descriptive Statistics - Benefits of overhearing conversations

When applying the Friedman test on this data set it showed the variables are
likely to come from a different distribution (χ2(4) = 9.806, P = 0.044). So, we
applied the Wilcoxon test on all pairs of 2 variables in the data set to check if
we could conclude anything about their mutual importance. The results of these
tests are summarized in table 5.2. From this table we may conclude that Technical
knowledge (Z=-2.347, P=0.019), Involvement (Z=-2.515, P=0.012) and Joining
(Z=-2.135, P=0.033) are more important than Communication structure.

Table 5.2: Comparative Analysis - Benefits of overhearing conversations

Challenges

The challenges of having insights in the active conversations we found in the focus
group are the following:

70 EVALUATING THE CONCEPT OF OPEN CONVERSATION SPACES 5.4

• It can be distracting from the current work activ-
ities

Distracting

• The context of the conversation can be unclear Context

• The information is volatile Volatile

• A lack of control for the people whose conversa-
tions are overheard

Lack Of
Control

An overview of how these challenges were rated in the questionnaire is shown
in table 5.3.

Table 5.3: Descriptive Statistics - Challenges of overhearing conversations

When applying the Friedman test on this data set it showed the variables are
likely to come from a different distribution (χ2(4) = 13.511, P = 0.004). So, we
applied the Wilcoxon test on all pairs of 2 variables in the data set to check if we
could conclude anything about their mutual importance. The results of these tests
are summarized in table 5.4. From this table we may conclude that Distracting
and Context are more important than Volatile and Lack Of Control.

Table 5.4: Comparative Analysis - Challenges of overhearing conversations

5.4.2 Information about a Conversation
The important types of information about a conversation we found in the focus
group are the following:

5.4 FINDINGS 71

• Who are Participating in the conversation Participating

• Who are viewing the conversation Viewers

• The complete factual content Content

• The Commitment of a participant Commitment

• The Contribution of a participant Contribution

• The subject of the conversation Subject

• The tone of the conversation Tone

• The type of the conversation Type

• The phase the conversation is in Phase

• The location the conversation takes place Location

• The accessibility of the conversation Accessibility

In the questionnaire we asked to rate the importance of these information items
based on ones involvement in the conversation. Involvement in a conversation has
to do with how aware someone is of a conversation and whether he participates
in the conversation. Dullemond et. al [Dul10] define a model of conversation
involvement based on this, which is shown in figure 5.1.

Figure 5.1: Model of conversation involvement [Dul10]

In the questionnaire we have asked the participants to rate the importance of
the various information items in three of these levels:

72 EVALUATING THE CONCEPT OF OPEN CONVERSATION SPACES 5.4

• Overhearing a conversation Level 1a

• Actively listening in on a conversation Level 1b

• Participating in the conversation Level 2

An overview of this rating is shown in table 5.5.

Table 5.5: Descriptive Statistics - Information items

Because in this case we have two dimensions (the information items and
the levels of involvement) instead of one we have analyzed this data more ex-
tensively. Firstly, similarly to the analysis in the previous subsection, we have
compared the relative importance of the information items in each of the 3
levels of involvement. For all three of these, the Friedman test passed (respect-
ively χ2(10) = 117.712, P = 0.000, χ2(10) = 122.639, P = 0.000 and χ2(10) =
101.088, P = 0.000) and the results of the Wilcoxon comparisons are shown in
tables 5.6, 5.7 and 5.8 respectively. From these tables the relative importance
of the different information items can be seen for each of the levels of involve-
ment. So, for example, from table 5.6 it can be concluded that when overhearing
a conversation the Participants are more important than the Viewers, Location,
Commitment, Phase, Contribution and Accessibility. Another example is that
when participating Commitment is more important than Location, Viewers and
Phase.

Following this, we also compared the rating of each of these items in the dif-
ferent levels of involvement. The Friedman test failed for the information items
Subject, Type, Accessibility and Phase (P>0.05), so for this comparison we cannot
conclude anything for these items. For the other items we have applied the Wil-
coxon test and we found that we could never conclude that an information item is
more important in a lower level of involvement when compared to a higher level
of involvement. We could however conclude the opposite on multiple occasions.
So, a general trend seems to be that information about the conversation is more
important when more involved in the conversation. We have presented the results
of the Wilcoxon tests in table 5.9.

5.4 FINDINGS 73

Table 5.6: Comparative Analysis - Information Items of Overhearing a conversation

Table 5.7: Comparative Analysis - Information Items of Listening to a conversation

Table 5.8: Comparative Analysis - Information Items of Participating in a conversation

74 EVALUATING THE CONCEPT OF OPEN CONVERSATION SPACES 5.4

Table 5.9: Comparative Analysis - Information Items

An example of a conclusion we can draw from this table is Commitment is more
important when listening to a conversation (Level 1b) than when overhearing a
conversation (Level 1a) and more important when participating in a conversation
(Level 2) than both when listening to a conversation and when overhearing a
conversation. So, in general we can see that knowing about the Commitment is
increasingly more important as the level of Involvement increases.

5.4.3 Actions Possible on a Conversation
The actions that are possible with respect to a conversation identified in the focus
group are the following:

• Joining a conversation Joining

• Inviting someone to join a conversation Inviting

• Listening to a conversation Listening

• Dismissing other participants Dismissing
Participants

• Dismissing viewers Dismissing
Viewers

• Acquiring the attention of the participants Acquiring
Attention

• Notifying others of the conversation Notifying
Others

An overview of how these actions were rated in the questionnaire is shown in
table 5.10.

5.4 FINDINGS 75

Table 5.10: Descriptive Statistics - Actions

When applying the Friedman test on this data set it showed the variables are
likely to come from a different distribution (χ2(6) = 51.498, P = 0.000). So, we
applied the Wilcoxon test on all pairs of 2 variables in the data set to check if
we could conclude anything about their mutual importance. The results of these
tests are summarized in table 5.11.

Table 5.11: Comparative Analysis - Actions

From this table we may conclude that Inviting is the most important action.
We can also conclude that Joining is more important than all the other actions
except Acquiring Attention. Finally, it is noteworthy that Dismissing Viewers is
considered more important than Dismissing Participants.

5.4.4 Benefits and Challenges of Finished Conversations
Benefits

The benefits of having insight in the finished conversations we found in the focus
group are the following:

76 EVALUATING THE CONCEPT OF OPEN CONVERSATION SPACES 5.4

• Having access to knowledge you might otherwise
forget

Own Knowledge

• Access to technical knowledge of colleagues Technical
Knowledge

• Acquiring involvement with your colleagues Involvement

• Enjoying your work Enjoying

• Acquiring insight in the communication structure Communication
Structure

An overview of how these benefits were rated in the questionnaire is shown in
table 5.12.

Table 5.12: Descriptive Statistics - Benefits of finished conversations

When applying the Friedman test on this data set it showed the variables are
likely to come from a different distribution (χ2(4) = 57.331, P = 0.000). So, we
applied the Wilcoxon test on all pairs of 2 variables in the data set to check if
we could conclude anything about their mutual importance. The results of these
tests are summarized in table 5.13.

Table 5.13: Comparative Analysis - Benefits of finished conversations

From this table we may conclude that Own Knowledge and Technical Know-
ledge are more important than Communication Structure, Enjoying and Involve-
ment.

5.5 DISCUSSION 77

Challenges

The challenges of having insight in the finished conversations we found in the
focus group are the following:

• It can be distracting from the current work activ-
ities

Distracting

• The context of the conversation can be unclear Context

• A lack of control for the people whose conversa-
tions are overheard

Lack Of
Control

An overview of how these challenges were rated in the questionnaire is shown
in table 5.14.

Table 5.14: Descriptive Statistics - Challenges of finished conversations

When applying the Friedman test on this data set it showed the variables are
likely to come from a different distribution (χ2(2) = 31.533, P = 0.000). So, we
applied the Wilcoxon test on all pairs of 2 variables in the data set to check if
we could conclude anything about their mutual importance. The results of these
tests are summarized in table 5.15.

Table 5.15: Comparative Analysis - Challenges of finished conversations

From this table we may conclude that both Context and Lack Of Control are
rated as more important challenges than Distracting.

5.5 Discussion
In the previous section we have presented the findings of the study we performed.
In this section we will first reflect on the results and subsequently discuss limita-
tions of the methods of data collection we used.

78 EVALUATING THE CONCEPT OF OPEN CONVERSATION SPACES 5.5

Benefits and challenges of overhearing conversations

In the previous section we have reported on the benefits and challenges of over-
hearing conversations. In these findings we can see that in general both the
benefits and the challenges are rated as important (all but one have a median
of ’+’ in both cases). Therefore further research into the support of overhear-
ing conversations for GSE teams is warranted, however the challenges should be
carefully considered. In this consideration, the two challenges rated as most im-
portant, Distracting and Lack Of Context, should be addressed with particular
rigor.

Relevant information about conversations

We have also reported on the information items that are important with respect to
conversations. In the findings we see that the relative importance of information
items is different in the three different levels of involvement. We can also see
that the Subject of the conversation is the only information item to be among the
most important information items in each level of involvement. Similarly we can
see that Location is among the lowest rated items in each level of involvement.
Finally, it is also noteworthy that, in general, information items seem to gain
importance as the involvement of an actor in the conversation increases.

Possible actions with respect to conversations

We have shown the findings regarding the actions that are important to be able
to do with respect to conversations. In the analysis of these we see that Joining
conversations and Inviting others into a conversation are rated as most important.
So, with respect to the actions it seems that adding people to a conversation is
more important than dismissing them.

Benefits and Challenges of finished conversations

We have also reported on the benefits and challenges of having access to finished
conversations. The main benefits identified here are having access to one’s own
knowledge and having access to the technical knowledge discussed in the conver-
sations of others. Therefore, we feel it is important to find out how to extract
data from conversations to make these easily searchable and help exploit these
two benefits. With respect to the challenges it is noteworthy that the interquartile
range of the rating of Distracting is quite wide. Some of the participants in the
questionnaire seem to find being distracted by having access to finished conversa-
tions to be a relatively large problem while others find it relatively unimportant.
This difference could very well be related to the level of discipline these people
possess. In general, however, we can conclude that both Lack Of Control and
Context are rated as more important challenges than Distracting.

5.6 DISCUSSION 79

Limitations

We provided a quite thorough discussion regarding the limitations of the methods
of data collection we used in the description of the research site and method. In
this description we also discussed what we did to deal with these challenges.
However, there are still some issues that did not fit in that section or need to be
emphasized.

Firstly, even though most participants are used to working from home and
we had a few participants from Belgium and the USA, most people collaborate
mainly in a co-located fashion on a daily basis. Therefore it is possible that
the limited exposure to working distributed from their colleagues caused items
to be misrated in the questionnaire. For example, as a benefit of overhearing
conversations, having insight in the communication structure of the team is rated
relatively low. This could of course indicate this is actually the case, however it
could also be caused by the fact that participants already knew their colleagues
very well, causing having insight into the communication structure to be less
important.

A second limitation has to do with the actual size of the sample. For practical
reasons, we performed one focus group and sent the questionnaire to 47 people. In
this case, as in all cases, increasing the sample size would increase the reliability
of the data. For example if the sample size of the questionnaire is increased more
Friedman and Wilcoxon tests would provide significant results, allowing for more
conclusions to be drawn.

A third limitation has to do with the sample itself. For the focus group we
selected all participants from the Delft location, again for practical reasons. Next
to this, the people that participated in the focus group also participated in the
questionnaire. Both these decisions may have created a bias in the results.

A fourth limitation is that all participants worked for a single department
of a single company. When doing research in an attempt to draw conclusions
applicable for the general field of software engineering, the sample should resemble
that population as accurately as possible. In general we can state that with a
larger sample and a more accurate resemblance of the population more externally
valid conclusions can be drawn.

Finally, in our analysis of the questionnaire data we used Fishers’ Least Sig-
nificant Difference method to help reduce the number of false positives caused by
the pair-wise comparison of all items. In comparison with other methods which
aim to accomplish this Fishers’ LSD is fairly liberal. We chose to use a fairly lib-
eral method because of the explanatory character of this research. Examples of
more conservative methods are: Tukey’s Honestly Significant Difference, Scheffe’s
test and the Bonferroni adjustment.

80 EVALUATING THE CONCEPT OF OPEN CONVERSATION SPACES 5.6

5.6 Concluding Remarks

5.6.1 Conclusions
In this empirical study we investigated whether researching how to enable over-
hearing conversations in a distributed setting is worth pursuing. To acquire the
empirical data we performed both a focus group and a questionnaire. In the focus
group we identified: (i) the benefits and challenges of having insight in active con-
versations, (ii) the important types of information about a conversation, (iii) the
actions possible on a conversation, and (iv) the benefits and challenges of having
access to the finished conversations. Following this we conducted a questionnaire
among 47 software engineers to determine the relative importance of these bene-
fits, challenges, information items and possible actions. From the findings of this
study we can conclude that overhearing conversations of colleagues is valuable in
software engineering teams. Therefore, it is valuable to pursue research about
support for overhearing conversations in global software engineering. The main
findings of this study are the following:

• All identified benefits and challenges are important

• Distracting and Lack of Context are the most important challenges of over-
hearing conversations

• Knowing the subject of a conversation is very important

• Knowing the location of a conversation is generally unimportant

• Information about a conversation in general gains importance as the actor
is more involved in that conversation

• Adding participants to a conversation is more important than removing
them

• It is important to be able to search through past conversations

• Lack of Control and Lack of Context are the most important challenges of
having access to finished conversations

Following from these findings, the main contributions of this chapter are:

• The conclusion that research about support for conversations in GSE is
worth pursuing

• Insights on important aspects to consider when researching support for con-
versations in GSE

Directly following from these contributions future work will concern research-
ing how to support the overhearing of conversations in a distributed setting. To
do this we will measure how the overhearing of conversations is experienced in
such a setting by enabling this with technological support. We will use the data,
findings and insights reported in this chapter as a starting point for this.

5.6 CONCLUDING REMARKS 81

5.6.2 Virtual Office Implications
In this chapter we have reported on an industrial evaluation of being able to
overhear conversations of your colleagues in software engineering teams. This
study contributes to answering the second research question of this dissertation:

Research Question 2
What is the value of overhearing conversations in global software engineer-
ing?

In this empirical study we did not identify new requirements of a virtual office.
However, the results of this study can be used to determine how the requirements
related to communicating in a virtual office can be implemented. Take for ex-
ample the important types of information about a conversation we identified in
this study. The relative importance of these information items can be used to
determine what information to display when you are monitoring a conversation
(Req 8.).

In this chapter we concluded that overhearing conversations of colleagues is
valuable in the field of software engineering. In the next chapter we attempt
to answer the last part of research question two. We present a technological
implementation which enables the overhearing of conversations in a distributed
setting, and we measure the value of overhearing conversations in global software
engineering.

Chapter6
An Industrial Evaluation of an Open
Conversation Space

Software engineering is by nature a highly collaborative activity. However, col-
laborating effectively in global software engineering, in which team members are
geographically, temporally and/or socio-culturally separated from each other, is
more difficult. In a traditional co-located setting, one of the most important com-
munication patterns is a (face-to-face) conversation. Technological solutions to
have conversations in a distributed setting are commonly used, however overhear-
ing conversations of others is not explicitly supported. In this chapter we report on
the evaluation of supporting overhearing conversations with technology in a dis-
tributed industrial setting. To do this we first present a tool we developed which
fulfills the requirements of an Open Conversation Space: Communico. Next, we
deployed this tool in an international software development company. Based on
this evaluation we report lessons learned and conclude with the most important
findings of this study.

This chapter is based on both our publication ”Overhearing Conversations in Global Software
Engineering - Requirements and an Implementation” in the Proceedings of the 7th International
Conference on Collaborative Computing: Networking, Applications and Worksharing (Collab-
orateCom 2011), and on our publication ”An Industrial Evaluation of Technological Support
for Overhearing Conversations in Global Software Engineering” in the Proceedings of the 7th

International Conference on Global Software Engineering (ICGSE 2012). The first publication
is co-authored by both Kevin Dullemond and Rini van Solingen. The second publication is only
co-authored by Kevin Dullemond.

83

84 AN INDUSTRIAL EVALUATION OF AN OPEN CONVERSATION SPACE 6.2

6.1 Introduction
There are strong indications that the ability to overhear conversations is valuable
in carrying out your work as a software engineer, see chapter 5. In distributed set-
tings however, overhearing conversations is infeasible without technological sup-
port and thus far there is no empirical evidence that it can be supported by
technology in a satisfying way. In fact, there are no documented case studies
researching the overhearing of conversations in such a setting at all. Therefore,
to gather such empirical data, we performed a case study during a period of four
months at an international software development company in which Communico
was used. Communico is a tool we developed which fulfills the requirements of
an open conversation space. The goal of this study is:

”To measure the value of overhearing conversations in global software engin-
eering from actual industrial experience”

This chapter is structured as follows. In the next section we discuss the back-
ground of this research. In section 6.3 we discuss existing tools for communicating
in a distributed setting. Subsequently, in section 6.4, we discuss Communico, a
virtual open conversation space we developed. In section 6.5 we discuss the re-
search site and methods of data collection and analysis. Subsequently we present
our findings in section 6.6 and reflect upon these results in section 6.7. Next we
discuss threats to validity in section 6.8. Finally, we conclude upon our work and
discuss future research in section 6.9.

6.2 Background
More and more collaborative software engineering is no longer conducted in a
single office building but in multiple dislocated office buildings or even from home.
This is caused by the increasing globalization of business [Car99, Her01, Her07]
and the rising popularity of working from home [Die09]. In collaborative work
having access to the knowledge about the context in which you are working (com-
monly referred to as ’awareness’ [Sch02, Dou92]) is essential to properly collabor-
ate with others [Sch02, Syr97]. However, when collaborating physically separated
from each other team members can no longer exchange information without tech-
nological support because they do not share a common work environment. So,
technological support is required to be able to gather and maintain sufficient
awareness to be able to collaborate. However, the information exchange realized
with technological support (e.g. telephone or e-mail) is generally inferior to in-
formation exchange in a traditional co-located setting because in comparison it
(i) takes more effort since the communication is more intentional [Gut04], (ii) is
more obtrusive [Fog05], (iii) happens less frequently [Her03, All77] and (iv) con-
tains less information [Gut04, Ols96]. Therefore it is important to research and
develop technological support for sharing awareness in a fashion that is as unob-

6.3 RELATED WORK 85

trusive and effortless as possible while still providing rich and recent information.

Conversations are one of the most important communication patterns that oc-
cur in a traditional office setting [Per94]. In chapter 4 we defined a conversation
in the context of global software engineering as: ”An exchange of information
between two or more people where those participating use synchronous communic-
ation directed at the other participants”. Next to this definition we also discussed
the importance of conversations and the importance of being able to overhear
conversations of others. Finally, we introduced the concept of an open conversa-
tion space to refer to such a setting and defined a set of requirements such a space
should implement.

6.3 Related Work
Before we discuss Communico in the next section, we will first discuss existing
tools for communicating in a distributed setting and compare these with Commu-
nico based on whether and how they implement the set of requirements of an open
conversation space. Firstly, Communico is a virtual open conversation space, so it
is different from tools which are not suitable to have conversations and tools with
which it is not possible to overhear conversations of others. As explained in the
previous section, an information exchange can only be considered a conversation
when it is both synchronous and directed at two or more participants. There-
fore tooling not suitable for synchronous communication (e.g. e-mail and forums)
or directed communication (e.g. forums and Twitter [Jav07]) does not support
having conversations and therefore fulfills none of the five requirements. Other
tools which do support having conversations do not support the detection and
monitoring of these conversations by others (e.g. Instant Messaging, telephone
and Google Wave [Tra08]) and therefore are not virtual open conversation spaces
as well since they do not implement REQ2 and REQ3.

There are also existing solutions which fulfill all of the five requirements. We
have performed a comparison between a number of these by comparing how the
different tools implement the requirements. An overview of the comparison is
shown in table 6.1 (REQ4 and REQ5 are omitted in this table because we could
not define an orthogonal subdivision in which these requirements are divided).
In this table it can be seen that the existing solutions mainly differ in three
ways. Firstly, most of the tools on the list support indirect conversation initiation:
they support starting a conversation by creating a topic. In three of these tools
however, conversations can be initiated directly by starting to talk to a specific
person. Secondly, while all the virtual open conversation spaces we looked at
support manual detection of ongoing conversations, only Reachout also supports
the automatic detection of the conversations by subscribing to certain topics.
Finally, with the exception of Internet Relay Chat and VirtualOffice, all solutions
make the conversations explicit. In IRC and VirtualOffice however, all messages
are shown in sequential order irrespective of what conversation they belong to.

86 AN INDUSTRIAL EVALUATION OF AN OPEN CONVERSATION SPACE 6.4

REQ1: Initiating REQ2: Detecting REQ3: Monitoring
Direct Indirect Manual Automatic Explicit Implicit

Internet Relay Chat (IRC) 3 3 3 3
VirtualOffice [Sha11] 3 3 3 3
GroupBanter [Ink08] 3 3 3
Babble [Eri99] 3 3 3
Loops [Eri06] 3 3 3
ReachOut [Rib02] 3 3 3 3
Threaded Chat [Smi00] 3 3 3
OpenMessenger [Bir08] 3 3 3
Communico 3 3 3 3

Table 6.1: Comparison of Virtual Open Conversation Spaces

Based on this analysis we have implemented Communico making use of the
strengths of the solutions we looked at. In the design of Communico we have
attempted to mimic the traditional office setting as much as possible because it
is clear that co-located software engineering has awareness benefits and therefore
it seems like a good starting point to mimic this as much as possible [Omo09].
So in comparison with the solutions compared in table 6.1 we have made the
following design decisions: Firstly, we have chosen to use direct conversation
initiation by starting to talk with one or more specific people because in our
opinion this is the most common way to initiate a conversation in a traditional
office setting. Secondly, we have chosen to support both the manual and the
automatic detection of conversations because both occur in the traditional office
setting as well: people both overhear conversations by actively looking around
and by being triggered by a certain event while carrying out another task [Mar02].
Finally we have chosen to make conversations explicit. We did this because using
implicit conversations, like in IRC, limits the creation of a structured and logical
layout for group discussions [Tra08]. In a co-located setting, conversations are also
sequential in nature, but other indicators help to more easily identify conversations
as such (e.g. the placement of individuals in the room and the people at whom
people are looking). When only the sequential ordering of messages is known, all
that is left to identify conversations is semantics. Because of this it requires more
effort to be aware what conversations are going on.

We chose to develop and subsequently evaluate Communico because it is con-
ceptually different from the existing technological solutions. We will provide a
detailed description of Communico in the next section.

6.4 Communico

In this section we will discuss the improved version of Communico; a virtual open
conversation space we developed (See [Dul11a] for a video demonstration). To
do this, we will first briefly look at the technical implementation of Communico.
Following this we will discuss how Communico implements the requirements of
an open conversation space which we discussed in chapter 4.

6.4 COMMUNICO 87

6.4.1 Technical Implementation

Communico uses Microsoft Office Communications Server1 to support having con-
versations in a distributed setting. The Office Communications platform supports
text-based communication (Instant Messaging), audio conferencing, video confer-
encing and screen sharing. We chose to use this platform because it supports
all these features and because its popularity in industry makes it easier to find
a setting for performing a case study. Because we build upon an existing com-
munication solution rather than develop our own, Communico can gradually be
introduced into a business. This is because people using Communico and people
using Office Communicator can directly communicate with each other. This does
imply that only conversations in which at least one participant is using Commu-
nico are visible in the open conversation space and only people using Communico
have access to this space. Even so, allowing for gradual introduction of a commu-
nication tool into a business environment eases its introduction.

In Communico we chose to initially only incorporate the IM-conversations in
the open conversation space. We did this for three reasons. Firstly, an Instant
Messaging tool supports having conversations because it allows for synchronous
communication2 which is directed at the other participants in the conversation.
Secondly, textual information exchange is, in comparison with audio and video,
much easier to record, analyze and search through in an automated fashion. Fi-
nally, text based communication is commonly used to achieve awareness and is
very simple to use [Gut04]. So, focusing on the IM-conversations seems like a
good starting point in creating a virtual open conversation space.

The technical infrastructure of Communico is shown in figure 6.1. When
using Office Communications Server as a communication platform, a central server
routes all communication and every user of the system runs a client (in this
case Office Communicator 2007 R2) to use the functionality this server offers. A
Communico client runs alongside Office Communicator on the machine of everyone
using Communico and all these instances are connected to a central Communico
server. The Communico clients use the Office Communicator Automation API
to gather data about users and conversations and send this information to the
central Communico server. This server maintains a complete model of all data
and sends updates to all clients when this model changes. These updates can
cause the Communico clients to update its user interface or initiate a certain
action, via the Office Communicator Automation API, like inviting someone into
a conversation.

1http://www.microsoft.com/communicationsserver/en/in/
2We regard this as synchronous because the sending and receipt of messages can be regarded

as instantaneous.

88 AN INDUSTRIAL EVALUATION OF AN OPEN CONVERSATION SPACE 6.4

Figure 6.1: Technical Infrastructure

6.4.2 A Virtual Open Conversation Space

In this section, we will discuss Communico by going over the requirements of an
open conversation space.

Uninitialized Conversation

In Communico conversations are initiated by double clicking the name(s) of the
user(s) you wish to start a conversation with (REQ1). Because this is a direct
way to initiate a conversation it mimics walking over to someone and starting to
talk to him or her in a co-located setting. We chose this method of conversation
initiation for two reasons. Firstly, in our opinion this is the most common way to
initiate a conversation in a co-located situation. Secondly, starting a conversation
in this fashion is common practice in IM-tools including Office Communicator.
The choice for direct conversation initiation, however, does not rule out the intro-
duction of an indirect form of conversation initiation (for instance topic based) in
the future.

6.4 COMMUNICO 89

Active Conversation

Three requirements of an open conversation space are related to an active con-
versation. Users should be able to find out about conversations (REQ2), listen
to conversations of others (REQ3) and become part of a conversation (REQ4).
The two ways of finding out about a conversation are actively looking for it
(i.e. by looking around in a traditional office setting) and automatic detection
(i.e. subconsciously picking up on an interesting conversation while working). In
Communico the former is implemented in the active conversations tab depicted
in figure 6.2. On this tab a list is shown of all conversations that are currently
going on between the members of the project team. For each conversation basic
information is shown like the participants, the last thing said, and the number
of viewers. A viewer of a conversation is a user that is looking at the detailed
information about that conversation (discussed later). The list of active conver-
sations can also be sorted (e.g. the conversation with the latest message on top)
and filtered (e.g. only show conversations containing a certain word or phrase) to
help the user discover interesting conversations.

Figure 6.2: Active Conversations Tab

Communico implements the second way of finding out about conversations, the
automatic detection of conversations, with the use of desktop alerts (Figure 6.3).
Users can configure Communico to display a desktop alert if an active conversation
meets a certain criteria to prevent information overload. Supported criteria for

90 AN INDUSTRIAL EVALUATION OF AN OPEN CONVERSATION SPACE 6.4

showing desktop alerts are: that a conversation (i) contains a certain key word, (ii)
has a specific participant, (iii) has a certain number of viewers or (iv) is running
for a certain amount of time. A disadvantage of using desktop alerts is that active
notification by the system potentially disrupts the users [Iqb07, Cut01, Cze04].
However, we argue this is also the case in the traditional co-located setting, as
people are also disrupted by conversations that are in fact not that interesting
to them. The goal of the configurable criteria is to emulate the implicit thought
process in the traditional office setting. Besides this, the field study reported in
Iqbal and Horvitz [Iqb10] also indicates the awareness gained could be worth the
added disruptions caused by the desktop alerts.

Figure 6.3: Desktop Alert

After a user finds out about a conversation that is potentially interesting he
can, like in a traditional office setting, start to actively listen to the conversation.
In Communico this is done either by double clicking the conversation in the active
conversation tab or by clicking the desktop alert about the conversation. When
this is done a window showing more detailed information about that conversation,
like shown in figure 6.4, is opened.

When viewing the detailed information about the conversation a user can also
see everything that has been said in the conversation and information regarding
the involvement of others in it. We choose to show the involvement of others
here because (i) we regard it an integral part of a conversation, (ii) involvement
information is also available in the traditional office setting and (iii) a number
of sources (e.g. [Smi00, Tra05]) also report on its importance. In the traditional
office setting the involvement of someone in a conversation depends on how aware
he is of the conversation and whether or not he participates in it. Therefore, we
show all people that are currently participating and all people that are currently
monitoring the conversation (by accessing the detailed information). Next to
this, we also show who monitored and participated in the conversation in the
past because we think past involvement is also important when monitoring a
conversation. By implementing these levels of involvement, Communico conforms
to the model of conversation involvement, see figure 5.1 in the previous chapter.

6.4 COMMUNICO 91

Figure 6.4: Conversation Window - Viewing

People can join a conversation either by being invited by people already par-
ticipating or by viewing the conversation and requesting to join it by clicking the
join button. When such a join request is accepted by the owner of the conversa-
tion, the user changes from merely viewing the conversation to being a participant,
resulting in the conversation window depicted in figure 6.5. As a participant, the
user can actively contribute to the conversation. Next to this, all participants
also have the option to make a conversation private, effectively hiding the content
from all users that are not participating in the conversation. This functionality
was added to mimic going to a separate office to talk in private in the traditional
office setting.

92 AN INDUSTRIAL EVALUATION OF AN OPEN CONVERSATION SPACE 6.4

Figure 6.5: Conversation Window - Participating

Finished Conversation

A conversation is a synchronous exchange of information and therefore its explicit
end is when the synchronous communication ceases. This can however be difficult
to detect because it can be unclear whether the synchronous communication has
ended or all participants are simply thinking about their next reply. Because
a conversation requires two or more people to communicate, in Communico we
chose to define the end of a conversation as the moment the total number of
participants in the conversation becomes one or zero (REQ5). So when two
people participate in a conversation and one of them leaves it, either by clicking
leave conversation or closing the conversation window, the conversation finishes.
When a conversation finishes it becomes immutable: people can no longer join

6.5 RESEARCH SITE AND METHOD 93

and as a result no content can be added to the conversation as well. An example
of a finished conversation is shown in figure 6.6.

Figure 6.6: Finished Conversation Window

Finished conversations are not discarded, but instead made available in Com-
munico’s finished conversations tab because past conversations are a valuable
source of information [Nii08]. In a normal office setting team members each have
access to part of this information, namely the conversations which they particip-
ated in or overheard. With Communico however, team members have access to
all conversations that occurred in the open conversation space, can access them
in full detail and can automatically search through them as well.

6.5 Research Site and Method
In the introduction we defined the research goal of this study: To measure the
value of overhearing conversations in global software engineering from actual in-

94 AN INDUSTRIAL EVALUATION OF AN OPEN CONVERSATION SPACE 6.5

dustrial experience. To reach this goal we use Communico to enable the over-
hearing of conversations in an industrial case setting. In the previous chapter
we identified (i) benefits and challenges of having insight in active conversations,
(ii) important types of information about a conversation, (iii) actions that are
possible with respect to a conversation, and (iv) benefits and challenges of having
insight in finished conversations. In this chapter we use these identified benefits,
challenges, information items and actions to investigate the following four research
questions:

• How well are the benefits and challenges of having insight in active conver-
sations exploited and alleviated?

• How well are the conversations represented?

• How well are actions to be carried out on a conversation supported?

• How well are the benefits and challenges of having insight in finished con-
versations exploited and alleviated?

In the remainder of this section we describe the industrial case setting and the
methods with which we have investigated the research questions.

6.5.1 Site

Participants of this study are the same group of software engineers at Exact
as those in the study presented in the previous chapter. Exact is a software
development company operating in 40 countries and offers Enterprise Resource
Planning software for medium-sized and small businesses. The specific group of
employees that are involved in the study consists of people who work on a product
called Exact Online. The majority of the people involved in this study (42), work
from the Delft office in The Netherlands, but all work from home often. Next
to this, also three people participated from the Wemmel office in Belgium and
two from the Minneapolis office in the USA. The majority of the people that
participated in the study use Instant Messaging software on a daily basis, even
when working from the same office. During the case study, which lasted four
months, they also used Communico to be able to overhear conversations of the
rest of the group.

6.5.2 Data Collection and Analysis Methods

To reach our research objectives we used four methods to acquire the empirical
data in this study: a focus group, a semi-structured interview, a questionnaire
and transactional log analysis.

6.5 RESEARCH SITE AND METHOD 95

Focus Group

We performed a focus group [Kon04] to gather insights, ideas, viewpoints and
opinions of people who frequently used Communico in a practical case setting.
One of the main advantages of such a group setting is that it enables the parti-
cipants to build on the responses and ideas of others, which increases the richness
of the information gained [Lan03].

The focus group we performed lasted approximately 2.5 hours and we selected
eight frequent users of Communico from the Delft office to participate in it. Se-
lecting participants based on their individual characteristics like this is known as
purposive-sampling. We chose these people because they are more likely to have
thought about the subject we wished to discuss and because they are motivated
to contribute. In carrying out the focus group we followed a structured approach
(see Appendix C) to ensure we would discuss the topics on which we wanted to
elicit opinions. The focus group itself was conducted in a separate closed office to
protect the focus group from outside influences.

Semi-Structured Interview

We performed semi-structured interviews [Fon05] to gather insights, ideas, view-
points and opinions of the interviewees. We performed two semi-structured inter-
views, one for the people from the Belgium office and one for the people from the
US office because they could not attend the focus group. Their input is particu-
larly valuable because the main goal of this research is to investigate the value of
overhearing conversations in a distributed setting and these people worked most
distributed from their colleagues. In these interviews we used the same structured
approach as in the focus group.

Questionnaire

We chose to use a questionnaire [Fin03] because this method makes it feasible to
include the opinions of a relatively large group of people by using a standardized
set of questions. In the questionnaire (see Appendix D) we asked the respondents
to rate their experience in the case study on a 5-point Likert scale [Lik32]. We
included a ’no-opinion’ option to prevent people with no opinion on a specific
question to answer it anyway and ’pollute’ the data in this fashion [Bai78].

We applied the Fisher’s Least Significant Difference (LSD) method [Fis35] on
the ratings in each of the researched categories to reflect on their mutual import-
ance. This method first applies the non-parametric Friedman test3 in order to
determine whether the items of the data set of a specific category are signific-
antly different. If the result of applying the Friedman test indicates this is the
case, we apply the non-parametric Wilcoxon matched-pairs signed-rank test4 to

3http://faculty.vassar.edu/lowry/ch15a.html
4http://faculty.vassar.edu/lowry/ch12a.html

96 AN INDUSTRIAL EVALUATION OF AN OPEN CONVERSATION SPACE 6.6

pairwise compare all items in that category. From the results of this test it can
be concluded whether or not it is likely one of the variables is rated as more
significant.

We sent the questionnaire to 47 members of the Exact Online department
of which 44 returned the survey (94% response rate). In the survey we asked
people whether they frequently used Communico and only allowed users that
indicated they did fill out the remaining questions. In total this concerned 25
people. The results of the questionnaire can be found in anonymized form at
http://Aspic.nl/VOCS/QuestionnaireData.pdf.

Transactional Log Analysis

Transactional log analysis is a data collection method for analyzing system per-
formance and user behavior [Jan08]. The main benefits of using transaction log
analysis to analyze user behavior are that it is an unobtrusive method and gathers
much more data than any data set obtained via surveys, laboratory studies or by
user observation in naturalistic settings [Jan08]. We use the method in this study
to gather data on usage frequency of the conversation overhearing functionality
to be able to reflect on the adoption rate of our solution.

6.6 Findings

We present the findings of the empirical study in five parts. Firstly, we reflect on
the four research questions. We do this by reiterating both the benefits and chal-
lenges of overhearing both active and finished conversations, and the information
items and actions identified in the previous chapter. Subsequently, we check for
each of these characteristics whether we can draw statistically valid conclusions
regarding the relative ordering of how well they are implemented in Communico.
If this is the case we show their relative ordering by presenting a table summar-
izing all comparisons. In this table a (green) ’larger than’ -sign means the item
on the left is rated as more important to a statistically significant level. We show
a (red) ’X’ when we cannot draw statistically significant conclusions regarding
the relative ordering of two items. Finally, we analyze the user behavior: how
the users of Communico interacted with the system. For each of the five parts,
we discuss the findings, discuss possible improvements of Communico and present
lessons learned. For each of the characteristics, a detailed presentation can be
found at http://Aspic.nl/VOCS/QuestionnaireDataAnalysis.pdf which in-
cludes all of the data we gathered, a descriptive analysis of this data illustrating
its distribution and a complete analysis to determine the relative ordering.

6.6 FINDINGS 97

6.6.1 Benefits and Challenges of Overhearing Conversations
Benefits

The benefits of having insight in the active conversations we identified in chapter
5 are the following:

• Having access to the technical knowledge of col-
leagues

Technical
Knowledge

• Acquiring involvement with colleagues Involvement

• Enjoying your work Enjoying

• Being able to join a conversation Joining

• Acquiring insight in the communication structure
of the team

Communication
Structure

When applying the Friedman test on the gathered data it showed the variables
are likely to come from a different distribution (χ2(4) = 29.651, P = 0.000). So,
we applied the Wilcoxon test on all pairs of 2 variables in the data set to check if
we could conclude anything about their mutual importance. The results of these
tests are summarized in table 6.2.

Table 6.2: Comparative Analysis - How well Communico exploits the benefits of over-
hearing conversations

From table 6.2 we may conclude that Joining is exploited more than In-
volvement (Z=-2.725, P=0.006), Communication Structure (Z=-3.397, P=0.001)
and Enjoying (Z=-3.502, P=0.000). Next to this, we can conclude that Tech-
nical Knowledge is exploited more than Communication Structure (Z=-2.517,
P=0.012) and Enjoying (Z=-3.147, P=0.002). Finally, we can also conclude that
Involvement is exploited more than Enjoying (Z=-2.696, P=0.007).

In the focus group the benefits reported to be exploited best by Communico
were Joining and Technical Knowledge. In the interviews these two were also
seen as well exploited by Communico, however the interviewees also reported a
significant increase in Involvement with the rest of the team due to being able
to overhear their conversations with Communico. One of the interviewees from

98 AN INDUSTRIAL EVALUATION OF AN OPEN CONVERSATION SPACE 6.6

Belgium said: “I felt more like being there” while one of the interviewees from
the USA said: “In the morning I would scroll through all the conversations my
colleagues had during their working day that far. This made me feel more con-
nected to them”. It is likely the interviewees felt different than the focus group
participants because the people that were interviewed worked dislocated from
nearly all of their colleagues while the distribution was significantly less for the
participants of the focus group.

Lesson Learned 1
Overhearing conversations with technological support results in a
stronger increase of involvement with colleagues for people that work
more dislocated from their colleagues than for those that work more
co-located

Finally, participants of the focus group reported the Communication Structure
as not being exploited particularly well. They suggested making the relations
explicit in the form of a graph, since manually checking who are communicating
often takes too much effort. It is noteworthy that with respect to the benefits
only a possible improvement was mentioned in relation to the exploitation of
the Communication Structure while in chapter 5 this is rated as one of the least
important benefits.

Lesson Learned 2
Only showing the conversations is not sufficient to acquire insight in
the communication structure of the team

Challenges

The challenges of having insight in the active conversations we identified in chapter
5 are the following:

• It can be distracting from the current work activ-
ities

Distracting

• The context of the conversation can be unclear Context

• The information is volatile Volatile

• A lack of control for the people whose conversa-
tions are overheard

Lack Of
Control

In the focus group and interviews it was discussed that Volatile is not a large
problem since this is something inherently tackled by a tool such as Communico

6.6 FINDINGS 99

which saves conversations. The other three challenges of overhearing conversations
are however also encountered when using Communico. The focus group identified
several improvements of Communico to help alleviate the two challenges rated as
most important in the previous chapter; Distracting and Context. With respect
to Distracting the participants of the focus group suggested making it possible
to withdraw yourself from the open conversation space completely by putting
on ’virtual head phones’. Subsequently, when you take off these ’virtual head
phones’ it should be possible to get some sort of summary of the conversations
that occurred while you were occupied. Another method proposed was to limit the
amount of conversations you overhear by creating virtual office walls separating
yourself from certain groups of people while still overhearing the conversations of
others.

Lesson Learned 3
Having control over the amount of conversations you overhear is im-
portant to limit distractions

Further, the focus group discussed that the relations between conversations
are an important part of the context of a conversation and suggested to make
it possible to either automatically or manually link related conversations to each
other.

Lesson Learned 4
Making the relations between conversations clearer improves the clar-
ity of the context of a conversation

Finally, the participants argued there was insufficient control with respect to
making conversations private. Firstly, they argued they wanted to be able to
make conversations private before they start and secondly that they would like
to see private conversations removed from the active conversations list altogether.
Currently, private conversations are shown there but their content is hidden from
non-participants. Participants argue they see no value in knowing others are
having a private conversation and they do not want others to know of their own
private conversations as well.

100 AN INDUSTRIAL EVALUATION OF AN OPEN CONVERSATION SPACE 6.6

Lesson Learned 5
Only enabling making conversations private after initialization
provides insufficient control for the people whose conversations are
overheard

Lesson Learned 6
Making the fact that private conversation are occurring visible to non-
participants provides insufficient control for participants in private
conversations

6.6.2 Information about a Conversation
The important types of information about a conversation we identified in chapter
5 are the following:

• Who are Participating in the conversation Participating

• Who are viewing the conversation Viewers

• The complete factual content Content

• The Commitment of a participant Commitment

• The Contribution of a participant Contribution

• The subject of the conversation Subject

• The tone of the conversation Tone

• The type of the conversation Type

• The phase the conversation is in Phase

• The location the conversation takes place Location

• The accessibility of the conversation Accessibility

The results of these Wilcoxon tests are summarized in table 6.3.

6.6 FINDINGS 101

Table 6.3: Comparative Analysis - How well Communico shows the information items
about a conversation

The focus group and interviews elicited similar opinions about the importance
of the information items. Both considered it important to be able to tag conver-
sations with the Subject to be able to quickly and unobtrusively decide whether
it is interesting. In the previous chapter the Subject was also elicited as the most
important information item to accomplish this and in the current version of Com-
munico it was rated relatively low (see table 6.3). One of the participants said: “I
used the join feature less than would have been possible if the automatic detection
of conversations had been better”.

Lesson Learned 7
Deciding whether a conversation is interesting can be done quicker
and less obtrusive when its subject is known

Next to this, showing the last two sentences instead of the last one can also
improve conversation detection since the last sentence is often an acknowledgment
like: ’sure’, ’alright’ or ’I’ll get right on that’. As a final way to improve con-
versation detection, some participants proposed to include a text based sliding
text ticker to find out about a conversation in Communico. The advantage of
such a ticker is that it is less disruptive than a desktop alert while being easier to
continually scan than the active conversations list.

6.6.3 Actions Possible on a Conversation
The actions that are possible with respect to a conversation we identified in
chapter 5 are the following:

102 AN INDUSTRIAL EVALUATION OF AN OPEN CONVERSATION SPACE 6.6

• Joining a conversation Joining

• Inviting someone to join a conversation Inviting

• Listening to a conversation Listening

• Dismissing other participants Dismissing
Participants

• Dismissing viewers Dismissing
Viewers

• Acquiring the attention of the participants Acquiring
Attention

• Notifying others of the conversation Notifying
Others

In the focus group it was discussed that while Joining is supported adequately
(see table 6.4) it would be preferable for the join-process to be more like the co-
located setting. Currently, someone has to request to join the conversation and
explicit permission needs to be given for this to be allowed. The participants
of the focus group suggested changing this so that people automatically join a
conversation when they start to talk in a conversation they are watching. One of
the participants in the focus group said: ”Since most people accept a join request
anyway it is best to allow joining by default and make it possible to dismiss a
person that joined later if this is undesirable”.

Lesson Learned 8
An implicit join process is preferable to an explicit join process

Table 6.4: Comparative Analysis - How well Communico supports the actions to be
carried out on a conversation

6.6 FINDINGS 103

Additionally, by making it possible to explicitly dismiss participants the ori-
ginal participants of the conversation still have the option to ask the newly joined
participant to leave. In the previous chapter Joining and Inviting are rated as
most important so even though their realization is rated best here as well (see
table 6.4) it makes sense that focus group participants propose improvements to
the joining process. It is also worth mentioning that, in the previous chapter, we
concluded adding participants to a conversation is more important than removing
people. So, the fact that focus group participants specifically proposed to add an
explicit dismiss participant option indicates that removing participants is in fact
important, even if it is less important than adding participants to a conversation.
Finally, the focus group participants also suggested to support explicitly notify-
ing people outside the conversation of a conversation that might be interesting to
them and to include something like an attention buzzer to acquire the attention
of the other participants in the conversation.

6.6.4 Benefits and Challenges of Finished Conversations
Benefits

The benefits of having access to finished conversations we identified in chapter 5
are the following:

• Having access to knowledge you might otherwise
forget

Own Knowledge

• Access to technical knowledge of colleagues Technical
Knowledge

• Acquiring involvement with your colleagues Involvement

• Enjoying your work Enjoying

• Acquiring insight in the communication structure Communication
Structure

Having access to your own knowledge was rated as exploited best (see table
6.5). This viewpoint was shared by the participants of the focus group and in-
terviewees. However, like for the benefits of overhearing active conversations, the
(dislocated) interviewees voiced the opinion that Involvement is also exploited
particularly well.

Lesson Learned 9
Having access to finished conversations results in a stronger increase
of involvement with colleagues for people that work more dislocated
from their colleagues than for those that work more co-located

104 AN INDUSTRIAL EVALUATION OF AN OPEN CONVERSATION SPACE 6.6

Table 6.5: Comparative Analysis - How well Communico exploits the benefits of having
access to finished conversations

The improvements of Communico identified with respect to these benefits were
mostly similar to those identified for the benefits of overhearing active conversa-
tions. However, because the list of finished conversations is considerable longer
than the list of active conversations the focus group suggested the addition of
a date range filter to make this list more manageable. In the previous chapter
we also suggested it is particularly important to find ways to extract data from
the set of finished conversations because having access to your Own Knowledge
and to Technical Knowledge were the two benefits of having access to finished
conversations that were found to be most important.

Challenges

The challenges of having access to the finished conversations we identified in
chapter 5 are the following:

• It can be distracting from the current work activ-
ities

Distracting

• The context of the conversation can be unclear Context

• A lack of control for the people whose conversa-
tions are overheard

Lack Of
Control

In the focus group and interviews the same limitations and possible improve-
ments of Communico were discussed as for the challenges of overhearing active
conversations with the addition that participants suggested alleviating Lack Of
Control by making it possible to make conversations private after they finish
because people often forgot to do this.

6.6 FINDINGS 105

Lesson Learned 10
Only enabling making conversations private before they finish
provides insufficient control for the participants of the conversation

6.6.5 Behavior Analysis

To be able to analyze how the users of Communico interacted with the system we
used automatically generated transaction logs. From these logs we derived that
in the total four months of usage 53 unique users used Communico for 4185 hours
in total. The average length of a user session was about 4.4 hours. The users had
1921 conversations in total. The average number of participants of a conversation
was 2.2 and the highest number of participants in a conversation was 9. During
this period 605 view actions took place at 493 different conversations, the average
number of viewers of a conversation was 0.31 and the highest number of viewers
was 5.

(a) Number of users (b) Number of view actions per day

Figure 6.7: Behavior analysis

106 AN INDUSTRIAL EVALUATION OF AN OPEN CONVERSATION SPACE 6.7

We divided the total period of four months of usage of Communico in two parts
of two months. In the first two months we deployed Communico to a select number
of people to test the usage of Communico in the specific setting of Exact, resolve
problems and adapt Communico to best fit the needs of this specific setting. In
the subsequent two month period we made Communico available to the entire
department on a voluntary basis. In the period Communico was available to the
entire department we identified a trend in the use of the tool. After we made
the tool available, the usage increased, peaked and subsequently decreased when
we stopped actively promoting its use. This can be seen in figure 6.7 where we
show the increase and subsequent decrease in total number of participants and
total number of view actions per day for all users of Communico. Especially in
the second graph we see a strong decrease in the number of view actions while in
the other graph we also see a decrease of use near the end following a peak.

Lesson Learned 11
In settings where part of the team works co-located the use of tech-
nology, supporting the overhearing of conversations without offering
specific advantages over the co-located setting, will strongly decrease
over time.

It is also interesting to see the relatively large reduction in number of view
actions relative to the reduction in participants.

Lesson Learned 12
A decrease in the number of participants of a tool supporting the
overhearing of conversations will result in a stronger decrease in the
number of overhear actions

6.7 Discussion
In this section we will reflect on the findings and discuss the most important
results. Before this discussion it is important to re-emphasize the context in which
this discussion takes place: a practical case setting in which we supported the
overhearing of conversations. Outside of this scope several of the lessons learned
we have introduced in the previous section and discuss in this section, have already
been published. For example in relation to Lesson Learned 2, Sarma et al. [Sar09]
report on their tool Tesseract which shows the social network of software engineers
as determined by their communication records, which in their case concerned email

6.7 DISCUSSION 107

communication, comments about a bug and work performed and submitted in the
bug tracker. Another example, in relation with Lesson Learned 11, is the work of
Venolia et al. [Ven10] who are particularly interested in supporting distributed
teams that are mostly collocated except for one remote member. In the rest of the
discussion we focus on the value of overhearing conversations in global software
engineering.

To start, we found that, when deploying awareness sharing technology into set-
tings where part of the team works co-located, the use of this technology should
offer specific advantages over the co-located setting to stimulate the use by people
that work mostly co-located. This stimulation is required because of a combin-
ation of three factors. Firstly, we found in the use of Communico that on the
one hand, the people working mostly distributed value the overhearing of con-
versations with Communico most since it gives them access to information they
did not have access to before. On the other hand however, the people working
mostly co-located value the overhearing of conversations less because these people
already overhear a significant portion of the conversations outside of Communico
because they can communicate face-to-face (Lesson Learned 1). Therefore the
mostly co-located people have less incentive to use the tool. Secondly however, it
is necessary the mostly co-located people also use Communico to actually make
the technological support for overhearing conversations work. Since without their
cooperation, their conversations are still inaccessible to and cannot be overheard
by, the distributed people. Finally, we also identified a strong decrease in the use
of Communico at the end of the study, when we were no longer present daily,
indicating that our presence artificially stimulated the use.

Related to the previous finding we found that to stimulate acceptance, and
therefore use, of awareness sharing technology, it is important to provide the users
with more control over the information about them which is being shared (this in-
cludes their actions). This can also be seen in some of the lessons learned discussed
in the previous section. Firstly, people propose to enable making conversations
private before a conversation starts (Lesson learned 5) and after it finishes (Lesson
Learned 10). Next to this, people also propose to not show private conversations
in the active conversations list to non-participants (Lessons Learned 6).

Another important result we identified is that being able to properly detect
interesting conversations is essential. In a traditional office setting this happens
unobtrusively and it is important to approach this standard when constructing
technological support to enable the overhearing of conversations. This can also be
seen in the ideas for future improvements identified is this chapter. Examples of
this are being able to automatically identify the subject of and relations between
conversations (Lessons Learned 7 and 4). Related to this, also the prevention
of information overload is important. When we are better capable of detecting
when a conversation is interesting, we will also be better at preventing people
from getting too much information (Lesson Learned 3). An additional factor in
determining how much information and what granularity of information is needed
has to do with the current activity of the user. An example mentioned in the

108 AN INDUSTRIAL EVALUATION OF AN OPEN CONVERSATION SPACE 6.9

focus group is to put on ’virtual head phones’ to withdraw yourself from the open
conversation space and avoid disruption when performing a task that requires
significant attention.

6.8 Threats to Validity

A threat to external validity is that we only studied one department in a single
company. To be able to generalize the findings the study should be repeated in
more settings. Next to this, also the size of the sample is a threat to external
validity. For practical reasons, we performed one focus group and sent the ques-
tionnaire to 47 people of which 25 reported having used Communico actively.
Also the sample we selected for the focus group may not be representative as well
since we selected all participants from the Delft location for practical reasons. To
mitigate this risk we performed semi-structured interviews with the dislocated
people.

There are also threats to internal validity. Firstly, most people worked from
the Delft office on a daily basis. However, most participants were used to working
in a distributed setting, often worked from home and there were three participants
from Belgium and two from the USA as well. It is possible that the limited expos-
ure of a portion of the participants to working distributed from their colleagues
caused items to be misrated in the questionnaire. Next to this, the people that
participated in the focus group and semi-structured interviews also participated
in the subsequent questionnaire. This could have biased the results due to a
learning effect caused by repeated testing.

We attempted to mitigate threats to reliability by rigorously describing our
research site and methods and making all of our quantitative data available online.
We do this in an attempt to make, both our data gathering methods and the
analysis of our data, repeatable. Subsequently, a threat to construct validity is
mono-operation bias. Because we only researched supporting the overhearing of
conversations with technology with one specific tool one could argue the results
only apply to the use of that tool. We mitigated this threat by defining an explicit
set of requirements of open conversations spaces and discussing how Communico
fulfills these.

Finally, there is also a threat to statistical conclusion validity. In our analysis
of the survey data we used Fishers’ Least Significant Difference method to help
reduce the number of false positives caused by the pair-wise comparison of all
items. In comparison with other methods which aim to accomplish this, Fishers’
LSD is fairly liberal. We chose to use a fairly liberal method because of the
exploratory character of this research.

6.9 CONCLUDING REMARKS 109

6.9 Concluding Remarks

6.9.1 Conclusions
In this chapter we presented a technological implementation which enables the
overhearing of conversations in a distributed setting: Communico. Subsequently
we explained how this solution fulfills the requirements of an open conversation
space. Next, we performed an empirical case study to measure the value of over-
hearing conversations in global software engineering from actual industrial exper-
ience. This study resulted in the following contributions: (i) indications of how
well the benefits and challenges of having access to active conversations are ex-
ploited and alleviated, (ii) indications of how well conversations are represented
in the open conversation space, (iii) indications of how well actions on a conver-
sation are supported, and (iv) indications of how well the benefits and challenges
of having access to finished conversations are exploited and alleviated. Finally,
we concluded that overhearing conversations is valuable to global software engin-
eering teams. The most important results of this chapter are:

• The value of awareness sharing technology is higher for people that work
more distributed from their colleagues

• The value of awareness sharing technology is higher when a larger portion
of a team uses them

• In settings where part of the team works co-located the use of awareness
sharing technology should offer specific advantages over the co-located set-
ting to stimulate the use by people that work co-located

• The acceptance, and therefore the value, of awareness sharing technology
can be increased by providing the users with more control over the inform-
ation about them which is being shared

• The value of technological support for overhearing conversations in distrib-
uted settings is higher when such support can more accurately detect inter-
esting conversations while preventing an overload of information

Future work will concern the investigation of how to deal with settings in
which a portion of the team is distributed while another portion mainly works
co-located. We feel this is not only essential to the success of a tool supporting
the overhearing of conversations but for awareness sharing technology in general.

6.9.2 Virtual Office Implications
In this chapter we have reported on an industrial evaluation of being able to
overhear conversations in a distributed software engineering team. As such this
chapter directly contributes to answering the second research question of this
dissertation, namely:

110 AN INDUSTRIAL EVALUATION OF AN OPEN CONVERSATION SPACE 6.9

Research Question 2
What is the value of overhearing conversations in global software engineer-
ing?

From the contributions and the lessons learned identified in this chapter we could
not derive new requirements of a virtual office. However, we could make recom-
mendations on how to implement the requirements related to communicating in
a virtual office. We identified the following recommendations:

• Only showing the conversations is not sufficient to acquire insight in the
communication structure of the team

• It is important to have sufficient control over both the amount conversations
you overhear, and the conversations in which you participate

• An implicit join process is preferable to an explicit join process.

• Making the relations between conversations clearer improves the clarity of
the context

• Deciding whether a conversation is interesting can be done quicker and less
obtrusive when its subject is known

By presenting the value of overhearing conversations in global software engin-
eering teams we answered the third and final part of the second research question
of this dissertation. The first part of this question was answered in chapter 4,
in this chapter we provided a theoretical motivation why the overhearing of con-
versations is valuable. The second part of this research question was answered
in chapter 5, in which we evaluated the value of overhearing conversations in the
field of software engineering.

Chapter7
An Industrial Evaluation of
Mood-Based Microblogging

Distributed teams face the challenge of staying connected. How do team mem-
bers stay connected when they no longer see each other on a daily basis? What
should be done when there is no coffee corner to share your latest exploits? In
this chapter we evaluate a microblogging system which makes this possible in a
distributed setting. The system, WeHomer, enables the sharing of information
and corresponding emotions in a fully distributed organization. We analyzed the
content of over a year of usage data by 19 team members in a structured fashion,
performed 5 semi-structured interviews and report our findings in this chapter. We
draw conclusions about the topics shared, the impact on software teams and the
impact of distribution and team composition. Main findings include an increase in
team-connectedness and easier access to information that is traditionally harder
to consistently acquire.

This chapter is strongly based on our publication ”Fixing the ’out of sight out of mind’ problem
- One Year of Mood-Based Microblogging in a Distributed Software Team” in the Proceedings of
the 10th International Workshop on Mining Software Repositories (MSR 2013). This publication
is co-authored by Kevin Dullemond, Margaret-Anne Storey and Arie van Deursen.

111

112 AN INDUSTRIAL EVALUATION OF MOOD-BASED MICROBLOGGING 7.1

7.1 Introduction
The year is 2011 and in a young and small software company called IHomer
a significant problem is being discussed. Because the default work location in
the company is home the people work distributed from each other most of the
time, and have always physically met up once a week on Tuesdays in order stay
connected. However, one employee has been away on contract for a prolonged
period now, preventing him from attending the weekly meet-ups and he is starting
to feel more and more disconnected from the rest of the team. On the one hand
he is starting to lose touch with what occupies his colleagues and on the other
hand his colleagues weren’t even aware he was feeling unhappy with the overall
situation. Fast forward almost two years to the present day and the issue has
been dealt with by the introduction of WeHomer, a microblogging environment
in which people at IHomer share their activities and moods with each other, to
stay current on each other’s feelings, experiences and latest exploits and as a
result stay connected as a team.

The story above is not unique as software engineering is becoming more and
more distributed. This is caused by the increasing globalization of business [Car99,
Her01, Her07] and the rising popularity of working from home [Die09]. At the
same time, significant challenges are faced when collaborating in a distributed
setting as reported in the well-known work of Olson and Olson [Ols00]. More
recently Nguyen et al. [Ngu08] have investigated whether the effects of distance
on distributed communication delay and task completion reported in the literature
still exist. They report that advances have been made but also that more work is
needed and there are still many open research questions.

We believe both microblogging and mood sharing are essential to alleviate
challenges arising from this distributed nature. On the one hand microblogging is
essential, since being able to exchange small elements of content makes people feel
more connected with others, especially when people work distributed from their
colleagues [Zha09, Zha10, Ehr10]. On the other hand mood sharing is essential,
since being aware of the emotional state of your colleagues makes it possible to
act accordingly and achieve better results in joint work [Gar99]. Therefore, in
this research, we aim to determine whether an environment in which one can
both express himself and get a sense of how his team members feel is valuable to
distributed software engineers. In this chapter, we use a microblogging solution
extended with mood indicators (MBMI) called WeHomer to learn from the use of
such an environment. The main goal of the chapter is:

”To understand how microblogging with mood-indicators helps distributed or-
ganizations in knowledge sharing”

Furthermore we have identified four research questions:

• What sort of topics are discussed in MBMI?

• What is the impact of the introduction of a MBMI on a software team?

7.2 RELATED WORK 113

• What is the impact of distribution on the use of a MBMI?

• How does team composition impact collaboration with MBMIs?

We structure this chapter as follows: In section 7.2 we discuss related work
to this research. Next, in section 7.3 we discuss the research site and methods
of data collection and analysis. Subsequently, in section 7.4, we show descriptive
statistics and in section 7.5 we present the most important findings. Finally we
discuss threats to the validity of our study in section 7.6 and conclude upon our
work and discuss future work in section 7.7.

7.2 Related Work

Software engineering is by nature a highly collaborative activity, and having access
to knowledge about the context in which you are working is essential to properly
collaborate with others [Sch02, Syr97]. In literature this kind of knowledge is com-
monly referred to as ‘awareness‘ [Dou92, Sch02]. When working co-located this
information is exchanged relatively passively and unobtrusively [Sch02, Fog05],
so people are continuously aware of information related to their current context
[Dul10]. However, when people no longer share a physical work environment ex-
changing information without technological support becomes unfeasible [Dul10].
Therefore, the (global) software engineering community has developed and studied
a wide variety of tools, for example: Instant Messaging, email, issue management
systems and configuration management systems.

According to Bly et al. [Bly93] it is particularly important to recognize the
need for informal interactions, spontaneous conversations, and general awareness
of people and events when teams are geographically dispersed. These informal
non-work related conversations and events are powerful enough to facilitate the
emergence of trust [Wan13]. Storey et al. advocate further research on under-
standing how social media plays a role in (global) software engineering [Sto10].
One of the potential implications they identified in their research, concerns the
challenges which arise when teams are distributed across time zones and geo-
graphical locations, and lack informal mechanisms for communication. They em-
phasize social media is regarded as a mechanism that can support informal and
serendipitous interactions across the team, and as such can alleviate these chal-
lenges. Finally, they present ten research questions, of which the following three
are applicable to this study:

1. Can social media play an effective role in supporting coordination and task
articulation?

2. What kinds of social media would increase informal communication, the
flow of knowledge and awareness across team and project members?

114 AN INDUSTRIAL EVALUATION OF MOOD-BASED MICROBLOGGING 7.2

3. What are the drawbacks from increased transparency in team projects?
Does this lead to privacy concerns?

There are several social media tools available to software engineers which facil-
itate coordination, communication with and learning from other users, being in-
formed about new developments and creation of informal documentation [Sto10].
These tools can be characterized by an underlying ‘architecture of participation‘ ;
systems that are designed for user contribution [O’R04]. Such a design supports
the creation of collective value, often as an automatic byproduct of an individual
activity. Wikis, blogs and microblogs are some well-known examples of such social
media solutions.

In our research we aim to determine whether an environment in which one can
both express himself and get a sense of how his team members feel is valuable to
distributed software engineering teams. The specific environment we used, called
WeHomer, allows users to exchange small elements of content such as sentences,
images and hyperlinks, and their corresponding emotion. In fact, we use a mi-
croblogging solution extended with mood sharing functionality. Several research
projects have been conducted in the field of software engineering to increase the
understanding of how and why people use microblogging solutions. We will con-
sider three of these user studies, namely studies on Twitter [Zha09], Yammer
[Zha10] and BlueTwit [Ehr10], to identify similarities and differences between
these microblogging solutions and WeHomer.

Firstly, Twitter is a publicly available microblogging service with which users
can publicly share messages, limited to 140 characters. They can also indicate
whether their messages are public or private. When messages are indicated to be
public they are accessible to all users of Twitter. However, when messages are
indicated to be private they are only accessible to those users who have subscribed
and are explicitly authorized to the user his feed. Zhao and Rosson [Zha09]
identified several characteristics in the use of Twitter. Important examples are:
(i) frequent small updates of personal life events enable users to stay aware of
people they do not encounter on a daily basis and (ii) subscribing to people
you personally know and selected enables users to get trustworthy and useful
information.

Secondly, Yammer1 is very similar to Twitter, the main difference being that
Twitter is publicly available while Yammer is enclosed by organizational boundar-
ies. Other differences are the absence of a character limit, the possibility to create
private and public groups and the opportunity to add attachments to messages.
Zhang et al. [Zha10] also identified several characteristics of the use of Yammer.
They give an indication that users use Yammer more for publishing news about
their groups or business units than for news about themselves. Subsequently,
they indicated that Yammer was used to have long conversations and discussions.
Finally, they found that Yammer enables users to stay aware about what others
are working on and to make new connections.

1http://yammer.com

7.3 RESEARCH SITE AND METHOD 115

BlueTwit is also very similar to Twitter, however it differs on two points: (i)
BlueTwit is only available within organizational boundaries and (ii) BlueTwit
has a character limit of 250 instead of the 140 character limit of Twitter [Ehr10].
Ehrlich and Shami [Ehr10] discussed characteristics of the use of BluetTwit, It en-
ables: (i) having internal conversations about confidential information, (ii) staying
aware of what others are working on and (iii) enhancing your reputation.

All of the above user studies on the usage of different microblogging solutions
mentioned an important side effect of microblogging in general: people feel more
connected with each other. This is especially the case when people work dis-
tributed from their colleagues since microblogging kept them connected to other
colleagues and the company, and alleviated the feeling of isolation. WeHomer
differs from BlueTwit in the sense that it drops the character limit, enforces sub-
scription to all users automatically (manageable because of the small community),
and adds mood sharing functionality.

Garcia et al. [Gar99] introduced ‘Emotional Awareness‘ and argue that it
enables users to become aware of the emotional state of their collaborators and
act accordingly to achieve better results in their joint work. Other research mainly
focuses on electronic meeting systems in which each participant explicitly specifies
his mood and changes in the average mood are visualized to all participants
[Mor11, Fes12]. WeHomer integrates both microblogging functionality and the
opportunity to express your current mood into a single environment. This is the
main differentiator of WeHomer in comparison with other microblogging solutions.

7.3 Research Site and Method

7.3.1 Research Site

This research is carried out at IHomer, a Dutch software engineering company
founded in August of 2008 in which it is common practice to work from home.
At the time of this study IHomer employed 20 people, working on a variety of
products, projects and contracts. The largest team consists of 7 people working on
related projects, but the overall group is very close with personnel moving between
teams and teams exchanging projects as needed. Even though it is common
practice in the company to work from home, the employees try to get together
once a week on Tuesdays to meet face-to-face at an office to stay connected.
Sometimes this can be difficult however, for example when someone is away on
a contract and has other obligations on Tuesdays. The company has grown over
the past years and initially on Tuesdays everyone discussed what they were doing.
This worked well until the company size reached 16, and then sub teams were
formed to keep this face-to-face communication more tractable. Teams cluster
according to various factors: projects and related technologies being two of them.

People at IHomer aim to work together closely and stay a very connected
community. One of the core strategies to stay connected is the weekly face-to-

116 AN INDUSTRIAL EVALUATION OF MOOD-BASED MICROBLOGGING 7.3

face meeting. As mentioned above this is not always feasible which can become
a practical problem if people are unable to attend the majority of the Tuesday
meet-ups for a prolonged period. In order to cope with these issues the WeHomer
system was developed by an employee of the company (not an author of this
paper) and deployed in October 2011. It is a platform on which IHomers can
share information about their day with their colleagues in order to stay connected
and increase awareness. Users can share information about a new topic, called
an entry or respond to an existing topic, called a comment (commenting was
not supported in the first three months of our data analysis period). Comments
are shown in chronological order grouped together under the entry to which they
correspond. We use the term post to refer to something that is either an entry or
a comment. Posts cover such items as what you are doing right now, what you
have done, what you are going to do, how you feel about something and random
thoughts.

Associated with each post is a happiness score ranging from 0 (totally un-
happy) through 100 (utter bliss) depicting how the user feels about this post. In
the user interface of WeHomer (see figure 7.1) the happiness index can be selected
by use of a slider bar which shows one of 5 discrete emoticons corresponding to
the level that is selected by the user2. The exact integer value of the happiness
index is not derivable by end users.

7.3.2 Method

The primary method of data collection we use is mining the WeHomer data
between October 2011 and November 2012 by analyzing and subsequently cod-
ing the content. During this period there were a total of 1312 entries and 1189
comments. Because it is feasible to hand code each of these entries and com-
ments sampling was unnecessary and we analyzed the content of all entries and
comments. The coding was done by the first two authors and the coding set was
arrived at in an iterative fashion. Firstly, a random (but consecutive) sample of
50 entries (including the corresponding comments) was selected and coded inde-
pendently by both coders. Following this the two coders compared their codes and
discussed their reasoning behind those codes. Based on this discussion the coders
agreed on a joint coding set with which they independently coded another random
(consecutive) sample of 25 entries (again including the corresponding comments)
and discussed discrepancies in how they coded the sample. Based on this discus-
sion they refined the coding set and did another iteration. After a total of three
such iterations they decided the coding set was consistent between them and they
could go ahead with the actual coding. To do this they divided the total data set
in six ranges of approximately 200 entries and each coded three non-consecutive
ranges.

2Happiness index ranges: ’>:-(’ = [0,20), ’:-(’ = [20, 40), ’:-|’ = [40, 60], ’:-)’ = (60, 80], ’:-D’
= (80, 100]

7.4 DESCRIPTIVE STATISTICS 117

Figure 7.1: WeHomer user interface

Subsequently, based on what we found in the content analysis we conducted
semi-structured interviews (see Appendix E for the interview structure) with five
of the nineteen users in which we asked questions about what was unclear to us
in the analysis and follow-up questions we had based on the analysis. To select
which five people to interview we used purposive sampling in order to get an as
complete view as possible. In the selection process we explicitly excluded authors
of this paper. We did select the original developer of the WeHomer system, the
person with the highest number of posts, the one with the lowest number of posts
and the two people with respectively the highest and lowest number of entries to
number of posts ratios.

7.4 Descriptive Statistics

In this section we present information derived from the mined data to present the
reader with an image of how the MBMI environment is used.

In figure 7.2 the weekly average number of entries, comments and posts is
shown. In this figure it can there is significant and consistent use of the WeHomer
system for the entire year we are investigating. Additionally we can see that at

118 AN INDUSTRIAL EVALUATION OF MOOD-BASED MICROBLOGGING 7.4

the start of the period there were no comments and considerably more entries
than the remainder of the period. This is because at the start posting comments
was not possible and people used entries to comment on another entry by referring
to the entry they wished to comment on.

Figure 7.2: The number of entries, comments and total posts per week

Subsequently, in table 7.1 we present the median length and the interquartile
range of entries, comments and for entries and comments combined to give an
indication of their respective lengths. So, for instance, we see that 75% of the
entries are shorter than 143 characters.

Lower Quartile Median Upper Quartile
Entries 62 97 143
Comments 22 49 86

Posts 39 75 122

Table 7.1: Average length in characters

In figure 7.3 for the entire year the average happiness per week as well as the
maximum and minimum happiness score are shown. In this figure it can be seen
that the happiness fluctuates significantly and that in general the highest and
lowest score for a week lie relatively far apart.

7.4 DESCRIPTIVE STATISTICS 119

Figure 7.3: The average, lowest and highest happiness score per week

Further, in WeHomer a default happiness score is automatically selected for
each post a user makes, namely 70 on the range between 0 and 100. If a user
doesn’t manually select another happiness score this default score is used. There-
fore it is interesting to investigate how often the users deviated from this default
value. In table 7.2 we show separately for entries and comments how often this
occurred. In this table we can see that a significant portion of the happiness scores
were set at the default score. Therefore, we asked the five people we interviewed
whether these values were chosen consciously. They all told us that even though
they on occasion forgot to change the happiness score, in general they spent a
minute to think which score to select, even if this is the default happiness score.

Default Non-Default Total
Entries 791 60.3% 521 39.7% 1312 52.5%
Comments 931 78.3% 258 21.7% 1189 47.5%

Total 1722 68.9% 779 31.1% 2501 100%

Table 7.2: Percentage of posts with the default happiness index

Finally, in IHomer there exist 4 teams of people working on related projects.

120 AN INDUSTRIAL EVALUATION OF MOOD-BASED MICROBLOGGING 7.5

We compare the amount of directed communication between members of the
same team and members of different teams to give an indication of how much
collaboration was being done overarching the different teams. To do this we do
the following: Firstly, we define commenting on an entry posted by a specific
user as the utilization of a directed communication line between those two users.
We do this even though all other users can see this communication because the
communication is at least directed at that specific user. Subsequently we sum all
of these utilizations of communication lines. An interactive visualization of the
utilization of communication lines between both team members and non-team
members can be seen at http://aspic.nl/msr2013/vis/sna.

Following this we needed to compare the amount of communication within
teams with the amount of communication outside of teams. We did this by doing
the following for each team:

1. Count the total number of comments of the people in the current team on
other people within the current team

2. Count the total number of comments of the people in the current team with
the people outside the current team

3. Make the number found in step 1 relative to the team size (n) by dividing it
by n*(n-1) (n*(n-1) to represent the total number of communication lines)

4. Make the number found in step 2 relative to the number of people outside
of the team

A summary of these results is shown in table 7.3:

Team Step 1 Step 2 Step 3 Step 4
Team 1 (5 people) 49 162 2.45 0.89
Team 2 (7 people) 386 194 9.19 1.47
Team 3 (5 people) 47 161 2.35 0.88
Team 4 (2 people) 24 165 12.00 0.61

Table 7.3: Utilization of Communication lines within and between teams

In this table it can be seen that the utilization of communication lines within
teams is considerably higher than communication lines crossing team boundaries.

7.5 Findings
In this section we answer the research questions specified in section 7.1. We
structure the section based on the research questions, answering each research
question in a separate subsection.

7.5 FINDINGS 121

7.5.1 Topics
Research question 1 is: ”What sort of topics are discussed in MBMI?” We an-
swer this research question by first discussing the set of codings we used to code
the data to give insight in the variety of topics discussed in the MBMI system.
Subsequently we show the occurrence of each of the codings in both the entries
and comments to give insight in the frequency each topic occurred. Finally we
analyze these occurrences and make generalizations.

As described in section 7.3 we used an iterative bootstrapping process to con-
struct the coding set. This coding set is structured in four major categories:

1. Nature

2. Form

3. Intention

4. Content

Each of these coding categories is further divided into sub-categories and actual
codes. In appendix F we show this subdivision for each of the four major coding
categories depicted as trees. In these trees leaf nodes depict actual codes while
non-leaf nodes depict sub-categories. In the appendix we also explain each of the
codes and give examples.

Subsequently we applied all four coding categories3 to the entries and the
first two coding categories to the comments. We only apply codes of the first
two categories to the comments because comments are made in the context of an
entry which makes it difficult to differentiate in how far the intention and content
of a comment are dictated by the corresponding entry. We present the occurrence
of each of the codes in the set of entries and the set of comments in figure 7.4 and
figure 7.5 respectively.

In figure 7.4 it can be seen the most frequently occurring codes are ’Statement’
(85.5%), ’Coordination’ (73.9%), ’Positive’ (58.5%), ’Work Planning’ (54.9%)
and ’Personal Information’ (49.8%). In addition to this, four of the five people
we interviewed indicated they have the tendency to post more positive things
and to post more when they are in a positive mood. Further the consensus
in the interviews about what they post is that it is everything they consider
useful or interesting to their team members. One would suspect this to lead to a
diverse list of topics to be shared on the medium and both the diversity of codes
and the relatively distributed occurrence of these codes support this expectation.
Finally, when asked to specify what they shared most, popular subjects mentioned
are: personal information, project information with the intention to coordinate,
technical information and prospects. This also corresponds with the actual data
presented in figure 7.4.

3Note that the codes in the four categories are not mutually exclusive in their application to
posts (e.g. a post can contain a positive and negative part)

122 AN INDUSTRIAL EVALUATION OF MOOD-BASED MICROBLOGGING 7.5

Figure 7.4: The frequencies of the codings for the entries

Figure 7.5: The frequencies of the codings for the comments

7.5 FINDINGS 123

Subsequently we discuss a deviation from the expected. An evident applica-
tion for a MBMI system is asking questions. However, we found a relatively low
amount of these. The total number of entries that are questions is 9.1% and the
total number of comments that are questions is 7.5%. We compared these num-
bers to the results found in a study by Erhlich et al. [Ehr10] on the investigation
of the usage of Twitter and BlueTwit (an internal proprietary version of Twitter)
in an organization for people that use both tools. To compare our number of
questions to theirs we summarized the percentages for ”Ask Question” and ”Dir-
ected with Question” in their result set to yield a total number of questions of 6%
for Twitter and 13% for BlueTwit (versus our 7.5% and 9.1% respectively). So,
in the environment in our study relatively more questions were asked than in the
Ehrlich setting for Twitter use, but less than with BlueTwit.

When asked about the amount of questions in the five interviews the respond-
ents indicated that they asked a relatively low amount of questions on the MBMI
system for two reasons. Firstly, the medium is asynchronous which makes it
unpredictable when a question will be answered. Secondly, they indicated they
usually knew who to contact (or at least knew who knew who to contact) and
preferred contacting someone who would know the answer directly over asking it
to the entire group. It was also discussed in the interviews the low amount of
questions is likely to be specific to companies with a relatively small size, close
personal connections and transparency between the team members because in
such companies people will more easily know who knows what.

7.5.2 Impact on a Software Team
Research question 2 is: ”What is the impact of the introduction of a MBMI on
a software team?” The first main impact we found is that members of software
teams feel more connected to each other when they are able to share activities and
moods. We base this primarily on information from the interviews. Firstly, three
out of the five people we interviewed explicitly reported feeling more connected
to their colleagues since they were able to share their moods and activities within
the team using the MBMI system. Additionally these interviewees also reported
being better able to understand their colleagues since using the environment and
two of them reported they felt their colleagues understood them better as well.
This finding corresponds to the results of the studies of Zhao and Rosson [Zha09],
and Ehrlich and Shami [Ehr10] on microblogging in the work place. Zhao and
Rosson [Zha09] conclude:

”Our results suggest that microblogging may help colleagues to know each other
better as persons, that is in addition to professional relationships; this benefit is
achieved by staying aware of small details about others’ personal lives, interests,
and current moods, which in turn creates more opportunities for exchanging ac-
knowledgments and social support, generating new common ground, and creating
and sustaining a feeling of connectedness.”

124 AN INDUSTRIAL EVALUATION OF MOOD-BASED MICROBLOGGING 7.5

Lesson Learned 1
Distributed software engineers feel more connected to each other when
they are able to share activities and mood

As the second main finding, we found a MBMI makes information that is
traditionally harder to consistently acquire more approachable and less volatile.
This is based on both the content analysis and the interviews. In the content
analysis we found that in particular the coding-categories entrepreneurial tasks
(14.5% of all entries) and customer relations (9.3% of all entries) represent a
considerable portion of the data. One of the interviewees indicated information
about these types of activities is traditionally difficult to consistently gather. For
instance information about ”how to build a business” is often shared in face-to-
face communication which makes it difficult to acquire at a later time (you will
have to ask or try to recall) and the information is likely to be different from the
original.

In the interviews people comment they consider it a strength of the system
to be able to share non-time critical information: Information they would like to
know about ”eventually, but not necessarily within the next five minutes”. Before
WeHomer communicating this type of information was often postponed until a
weekly face-to-face meeting or discarded altogether. One of the interviewees even
said he found the system to offer benefits over meeting face-to-face on Tuesdays:
”With WeHomer it is easier to stay current than by meeting people face-to-face
on Tuesdays because then you don’t get to talk to everyone”.

Lesson Learned 2
A mood-activity environment makes information that is traditionally
harder to consistently acquire more approachable and less volatile

Finally, we also found a MBMI system facilitates an unobtrusive way to express
your personal feelings or thoughts to your colleagues. All of the interviewees
mentioned they considered the low threshold the environment offered for sharing
information with their colleagues an important strength. One of the interviewees
said he felt he could ”share knowledge and emotions like you are co-located”.
We can also see the environment offers a light-weight method to share personal
information since over half of the entries (52%) contain personal information.

7.5.3 Impact on a Distributed Software Team
Research question 3 is: ”What is the impact of distribution on the use of a
MBMI?” Firstly, we found that people who work co-located with the major-
ity of their team, share less activities and moods with those team members that

7.5 FINDINGS 125

are non-collocated. In our setting this behavior presented itself as follows: while
for the rest of the week the default work location is home, on Tuesdays people
at IHomer try to work co-located at a central office as much as possible. How-
ever, at times this is unfeasible for specific team members, for instance due to
being contracted at a customer location. In practice at least half of the team is
present on Tuesdays the vast majority of the time, but it is rare for the entire
team to be present. Therefore it is striking to see that on Tuesdays the number
of entries and comments is significantly lower than on other days of the week (see
figure 7.6). Finally, also in the interviews it was recognized that ”on Tuesdays
WeHomer is used very little”. This is similar to what we reported in chapter 6 on
the deployment of a conversation overhearing tool in an industrial setting with a
non-homogeneous geographical distribution.

Figure 7.6: The number of entries and comments for each day of the week

Lesson Learned 3
In distributed software engineering teams, people who work co-
located with the majority of their team, share less activities and
moods with those team members that are non-collocated.

Paradoxically to what is discussed above, the interviewees indicated they do
find it particularly valuable to share moods and activities with their distributed
colleagues. One of the interviewees stated: ”WeHomer is used very little when
people work co-located on Tuesdays which makes things less transparent for people
that cannot be there”. The interviewees indicated they recognize the value in

126 AN INDUSTRIAL EVALUATION OF MOOD-BASED MICROBLOGGING 7.5

making sure the entire team stays connected, even when part of the team works
co-located and part of the team works distributed. They recognize the value
because they know from experience how difficult being the dislocated colleague
can be. It is striking to see that even though they know it is important to help
their distributed team members, they still struggle to do so.

Lesson Learned 4
In distributed software engineering teams, people who work co-
located with the majority of their team, find it is particularly use-
ful to share activities and moods with those team members that are
non-collocated.

A useful insight on this is also shared by Fullerton of Stack Exchange in
his blog post [Ful13] about the lessons learned from three years of working in a
distributed team. He states: ”There’s no halfsies in a distributed team. If even
one person on the team is remote, every single person has to start communicating
online. The locus of control and decision making must be outside of the office:
no more dropping in to someone’s office to chat, no more rounding people up to
make a decision. All of that has to be done online even if the remote person isn’t
around. Otherwise you’ll slowly choke off the remote person from any real input
on decisions.”

7.5.4 Impact of Team Composition on MBMI
Research question 4 is: ”How does team composition impact collaboration with
MBMIs?” Our main finding with respect to this research question concerns the
regularity in which the members of a team use the MBMI: do all the members of
the team use the MBMI system an equal amount of the time and for the same sort
of topics? If this usage differs significantly between different team members the
distribution of relevant information in the team will be unbalanced as well. This
was the main challenge in the use of the MBMI system that came forward in the
interviews. Examples of things interviewees said are: ”The success of WeHomer
is dependent on participation”, ”There is only a challenge for those not using it”
and ”If you don’t participate you miss things”. The challenge is threefold. Firstly,
team members using the environment less than their colleagues run the risk of
missing things. Secondly, a team member sharing information cannot be certain
his team members know about this. Finally, since the MBMI system isn’t used for
everything, you cannot infer something did not happen because it is not available
there. Therefore, to have a complete view of all valuable information about the
mood and activities of team members software engineers need to consult other
sources as well.

7.6 THREATS TO VALIDITY 127

Lesson Learned 5
If the regularity with which team members utilize the mood-activity
environment differs, the distribution of relevant information in the
team will be unbalanced

Finally, in the interviews we talked about the type of teams for which they
thought a MBMI system would be beneficial. Firstly, to use the system in the same
(personal) fashion as it is being used at IHomer the teams need to be sufficiently
involved. One of the interviewees said: ”I need to know the people” while another
said that ”teams need to be homogeneous (shared interests, shared work)”. They
also mentioned that as a direct result of this, team size can become an issue but
only of it leads to the team members being less involved with each other.

On the other side of things the interviewees did consider a MBMI system
beneficial to all companies. One interviewee said: ”every organization needs a
WeHomer because even a closed door is a barrier”. They do believe however
that the type of information that is being shared will be connected to the type of
organization. For instance one of the interviewees explained that the he considered
the high amount of personal information and the diversity of the messages on
WeHomer to be tied to the open character of IHomer and that he would expect
a more traditional organization to share a larger portion of technical information
instead.

7.6 Threats to Validity

Threats to external validity can exist at each of the levels of generalization in a
study. In our study, a threat to external validity exists in the generalization of the
single software engineering team to the population of all distributed software en-
gineering teams. To be able to better generalize beyond the setting we performed
the study in, the study should be repeated in other teams as well. With respect
to the generalization of the sampled data to the population of IHomer our work
is much less threatened. For the interviews we sampled 5 out of the 20 people in
the company (25%) and for the content analysis we even coded 100% of the posts
in WeHomer for the year of data we investigated.

We attempted to mitigate threats to reliability by elaborately describing our
research site and methods and making our coding set and interview design avail-
able. Next to this we also make all of our data available in anonymized form and
make the tool available upon request. We do this to make both our data gathering
methods and the analysis of our data, repeatable.

Subsequently, a threat to construct validity is mono-operation bias. Because
we only researched the application of MBMI environments with one specific tool,
one could argue the results only apply to the use of that tool. The only mitigation

128 AN INDUSTRIAL EVALUATION OF MOOD-BASED MICROBLOGGING 7.7

we need to offer for this is the general nature of the tool itself. Basically any tool
with which it is possible to share activities and moods in distributed teams will
suffice and the WeHomer tool clearly fulfills these requirements. A final threat
to construct validity in this study is that both the creation of the coding set and
the coding of the posts were done by the first two authors who are also employees
in the company at which the study was being performed. The advantage of this
is that the researchers possess insight knowledge and can leverage this to code
the data more accurately. A disadvantage is that the researchers might not be
completely impartial due to their involvement in the setting. Overall, it is our
opinion the advantages outweigh the disadvantages.

7.7 Concluding Remarks

7.7.1 Conclusions

In this chapter we presented an empirical study on microblogging with mood in-
dicators (MBMI) in a distributed software engineering team. We collected the
empirical data by mining the WeHomer data between October 2011 and Novem-
ber 2012. WeHomer is a MBMI in which people can share their activities and
moods with each other. Subsequently, the content of all entries and comments
was analyzed and coded. Based on what we found in this content analysis we
interviewed five distinctive users of the system. In these interviews we asked
questions about what was unclear to us in the analysis and we asked follow-up
questions we had based on this analysis.

The main contributions of this chapter are the answers to the research ques-
tions. First, we answered what sort of topics are discussed in microblogging sys-
tems with mood indicators (MBMI) by presenting the nature, form, intention and
content of the posts in over one year of usage data and presenting the frequency
at which these occurred. Based on this data we found that distributed software
engineers primarily share positive posts with the intention to either coordinate or
provide personal information. Furthermore, when compared to other corporate
microblogging solutions we found a relatively low amount of questions.

Subsequently, we have shown there are two major impacts of the introduction
of MBMI on a software team. Firstly, team members become more connected.
The loss of teamness is a major and unresolved issue in the field of GSE and
therefore advances in this area are significant. Secondly, the MBMI system made
information that is traditionally harder to consistently access more approachable
and less volatile

Further, on the impact of distribution of the software team on the use of
MBMI, we found that the way people act when working co-located with the
majority of their team is paradoxical to how they think they should act. On the
one hand, people share less activities and moods with their distributed colleagues
while on the other hand they do recognize the value in staying connected with the

7.7 CONCLUDING REMARKS 129

rest of the team. It is striking to see that even though they know it is important
to help their distributed team members, they still struggle to do so.

Next, on the impact of team composition on collaboration with MBMI, we
found that the distribution of relevant information in the team will be unbalanced
if team members use the environment unequally.

Concerning future work we are particularly interested in researching the actual
value of incorporating mood in microblogging systems. A way to accomplish this
is to perform two user studies in similar software teams in which one of the teams
receives access to a regular microblogging solution and the other team receives
access to a system that is similar in every way except the addition of the possibility
to share mood with team members.

7.7.2 Virtual Office Implications
In this chapter we presented an empirical study on microblogging with mood
indicators in a distributed team. This study contributes to answering the third
research question, namely:

Research Question 3
What is the value of microblogging with mood-indicators in global software
engineering?

From the empirical research presented in this chapter we could derive the following
requirements of a virtual office:

Req 14. Facilitate sharing information about a new topic
Software engineers should be able to share information about a new topic
to stay current on each other’s experiences and latest exploits.

Req 15. Facilitate responding to an existing topic
Software engineers should be able to respond to an existing topic to add
information or to answer a question.

Req 16. Facilitate sharing mood
Software engineers should be able to express their mood, for example
by specifying a happiness score ranging from totally unhappy to totally
happy.

Part IV

Information Needs in a Virtual Office

131

Chapter8
When to Interrupt Global Software
Engineers to Provide them with
What Information

Software engineering is a highly collaborative activity in which knowledge about
the work context is essential to collaborate effectively. Acquiring such knowledge is
difficult in a distributed setting, since software engineers have to manually analyze,
filter and combine available information in order to acquire a sufficient level of
awareness. Therefore, it seems beneficial to construct a mechanism which auto-
matically regulates information based on both the current activity of a software
engineer and the importance of the new information. In this chapter we present
an Estimate-Talk-Estimate study, with experienced software engineers, in which
we studied both (i) what information software engineers want to know immedi-
ately and (ii) when software engineers do not mind to be interrupted with such
information. The main findings include a list of information items which software
engineers want to be immediately informed about, and a list of activities during
which software engineers prefer not to be interrupted.

This chapter is strongly based on our publication ”When to Interrupt Global Software Engineers
to Provide them with What Information” in the Proceedings of the 9th International Confer-
ence on Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom
2013). This publication is co-authored by Rini van Solingen.

133

134 HOW TO REGULATE THE INFORMATION AVAILABLE TO ENGINEERS 8.2

8.1 Introduction
Software engineers need information about the context in which they are working
to be able to collaborate effectively with their colleagues [Sch02, Syr97]. In the
traditional co-located setting all information is available in a single place, the
office building, and is exchanged relatively passively and unobtrusively between
all employees present at that location [Sch02, Gam12, Fog05]. In a distributed
setting, however, this information can only be exchanged by using technological
support. The (global) software engineering community has developed many tech-
nological solutions to support globally dispersed teams in performing their tasks
[PR12, Sar10]. However, most of these solutions only support a specific type of
information and this information cannot be processed by other solutions directly
[PR12]. Therefore, global software engineers have to manually analyze, filter and
combine available information to acquire a sufficient level of awareness.

To spread awareness relatively passively and unobtrusively in a distributed
setting as well, this analytical process of accessing, combining and filtering avail-
able information needs to be automated, see chapter 2. In essence we need a
mechanism which regulates information based on the context it encloses: ’Virtual
Office Walls’. Such virtual office walls have the potential to filter the information,
noises and distractions software engineers face in a co-located setting. These auto-
erecting walls are unfeasible in real life, but can be created in tooling for (global)
software engineers, since such tooling has access to information on what everyone
is working on. In this chapter we focus on what information software engineers
want to know immediately and during which activities they prefer not to be in-
terrupted. As such the goal of this chapter is:

”To find out how to regulate information available to software engineers based
on both the importance of that information and the current interruptibility of the
engineer”.

This chapter is structured as follows. First in section 8.2 we discuss back-
ground information and related work of this research. Following this, in section
8.3 we discuss the method of data collection we used in this study. Subsequently,
we present the findings and results in section 8.4 and 8.5. In section 8.6, we re-
flect on these findings and discuss the most important results. Next, in section
8.7, we discuss the threats to the validity of this study. Finally, we present the
conclusions of this research and discuss future research in section 8.8.

8.2 Background and Related Work
Software engineering is a highly collaborative activity in which knowledge about
the context in which you are working is essential to properly collaborate with oth-
ers [Sch02, Syr97]. Having access to such knowledge, in literature referred to as
’awareness’ [Dou92], is essential since software engineers need to coordinate their
effort to produce a functional system. In the traditional co-located setting this

8.3 METHOD 135

information is exchanged relatively passively and unobtrusively [Sch02, Fog05], so
much of this information is naturally propagated to all the members of the team.
In a distributed setting, however, sharing such information becomes unfeasible
without technological support [Dul10]. Therefore, the (global) software engineer-
ing community has developed many solutions to provide globally dispersed teams
with all the information they might need. Both [PR12] and [Lan10] provide an
overview of some of the tools used for global software engineering. These devel-
opments have led to one of the main challenges in the context of GSE, the lack
of integration [PR12].

When all information is integrated into a single solution, software engineers
need to abstract useful information without experiencing an overload of informa-
tion [Sim96]. Tell and Babar [Tel12] propose to use the Activity Theory to both
structure and describe activities in software engineering processes. This makes
it possible to determine what information is relevant when performing a specific
collaborative task. However, this does not imply software engineers should be im-
mediately informed of this information. Because interrupting software engineers
during their work can significantly reduce a software engineer’s efficiency [Sol98].
It is also interesting to understand the factors contributing to self-interuption in
open office environments [Dab11, Mar08]. In his research Fischer derived a multi-
dimensional framework that serves to identify research challenges, guidelines and
design trade-offs for systems supporting awareness [Fis12]. In this chapter we fo-
cus on what information software engineers want to know immediately and when
they prefer not to be interrupted.

8.3 Method
The goal of this study is: ”To find out how to regulate information available
to software engineers based on both the importance of that information and the
current interruptibility of the engineer”. To be able to reach this goal we identified
the following research questions:

RQ 1. ”What information do software engineers want to know immediately?”

RQ 2. ”During which activities do software engineers prefer to be interrupted to
provide them with information?”

The outcomes of these two research questions could be contradicting. Since,
on the one hand, it is likely participants indicate that they are interested in direct
updates of information. On the other hand, it is also likely that they prefer not be
interrupted at that specific time. Therefore we are also interested in the following
research question:

RQ 3. ”What information do software engineers want to know immediately, even
though they are performing an activity during which they prefer not to be
interrupted?”

136 HOW TO REGULATE THE INFORMATION AVAILABLE TO ENGINEERS 8.3

Figure 8.1 provides a visual representation of these three research questions,
in which their mutual relationship is shown.

Figure 8.1: Mutual relationship of the research questions

These research questions span a wide range of domains, since we are interested
in (i) information items useful to software engineers, (ii) common activities of
software engineers, (iii) the distinction between information of which software
engineers do want or do not want to be immediately informed, and finally (iv)
the distinction between activities during which software engineers prefer to be or
prefer not to be interrupted. Because the focus of this research is on differentiating
between what information software engineers do want or do not want to know
immediately and differentiating between activities during which software engineers
prefer to be or prefer not to be interrupted, we decided to use the information
items and activities defined in a generic life cycle model. We have looked at several
of these models, including the CMMI for development, ISO 12207. IEEE 1074
and MIL 498, and could not identify significant differences considering the goal of
this study. We chose to use the CMMI for development model[Tea10], because its
practice oriented design and because we expect the used terminology best matches
with the industrial experts. In the CMMI for development five process areas are
defined: Requirements Development, Technical Solution, Verification, Validation

8.3 METHOD 137

and Product Integration. These process areas consist of multiple specific goals
which all describe a unique characteristic that must be present to satisfy this area.
These specific goals in turn, consist of multiple practices which are important
activities to achieve the associated goal.

Now we have a structured list of information items and activities, we have
to find out what information software engineers want to know immediately and
during which activities they do not mind to be interrupted. Therefore, we use a
structured communication technique which allows study participants to systemat-
ically deal with these issues. We use the Estimate-Talk-Estimate method [Gus73].
The main reason to use this method is that decisions made by a structured group
of individuals are more accurate than individual judgments [Gus73]. Another
reason to use this method is that a combination of nominal and interacting group
processes is desirable in judgmental problem solving [Vro69, Dun64, Gus73]. In
the remainder of this section we describe the criteria used to select study parti-
cipants and the process we used to gather the empirical data.

8.3.1 Members of the Group of Participants
Participants in a Estimate-Talk-Estimate study are asked to provide reasons for
their decisions and to respond to the decisions made by the other participants.
Based on this information participants can revise their opinions. Therefore, it
is essential the members of this expert study have different backgrounds so they
can provide each other with new information[Gre07]. This makes choosing the
appropriate subjects an important step in the entire process because it directly
relates to the quality of the results generated [Oko04].

We used the following criteria to select the members of the group of parti-
cipants:

1. At least five years of experience in global software engineering

2. Currently working as a software engineer (e.g. architect, tester, designer or
programmer)

3. Currently working at least half of the time on software engineering tasks

4. Masters the English language

5. Ability to conceptually argue about global software engineering

Selecting study participants based on one or more characteristics is called
purposive sampling [Bab12]. We initially sent out an invitation to 37 software
engineers who met these criteria. We also asked them to forward the invite to
other software engineers that meet this profile, however we only allowed up to
two participants of the same company. Finally, ten participants were willing to
participate in this study, see table 8.1. This number of participants corresponds
to the number of experts recommended for a Delphi panel [Oko04].

138 HOW TO REGULATE THE INFORMATION AVAILABLE TO ENGINEERS 8.3

Expert Role Professional background
1 Technical Lead Working in a large team of about 50 people

spanning locations in the Netherlands, India,
Scotland and Ukraine

2 Engineer Working in a small distributed team of 3
people

3 Engineer Working in a small distributed team of 6
people mainly working from home.

4 Technical Lead Working at a large department with over
200 people, spanning multiple locations: The
Netherlands, Belgium, USA, Ukraine and
Malaysia

5 Project Manager Working in a large team of about 60 people in
Amsterdam, working together with depart-
ments in New York, San Jose, and Kiev

6 Engineer Working in a small distributed spanning two
locations: Delft and Kiev

7 Architect Working in a large team of about 50 people
spanning four locations: Delft, Moscow,
Houston and Albuquerque

8 Engineer Working in a small distributed teams ranging
from 3 to 6 people

9 Engineer Working in a small distributed team of 7
people working from home 1 or 2 days a week

10 Architect Working in a small distributed team of 6
people mainly working from home

Table 8.1: Members of the group of participants

8.3.2 Estimate-Talk-Estimate Approach

An Estimate-Talk-Estimate study [Gus73] has much in common with a regular
Delphi study [Dal63]. Both studies rely on a panel of experts who answer multiple
questions in two or more rounds. After each round the forecasts of the experts
and the reasoning behind their judgments are discussed to encourage the experts
to revise their earlier answers based on the argumentation of others. The goal
of both studies is to reach consensus on a predefined list of items. The main
difference between these two studies is that in a Delphi study a facilitator provides
an anonymous summary of the expert’s judgments after which the experts can
revise their judgments anonymously, while in the Estimate-Talk-Estimate study
all judgments are visible to everyone and the experts discuss their judgments with
each other. We have chosen to use an Estimate-Talk-Estimate approach since it
is expected that interactive group processes contribute to a higher quality of the

8.3 METHOD 139

estimates. In their research Gustafson et al. [Gus73] emphasize written feedback
appears to lead to a reduction in the quality of estimates.

The Estimate-Talk-Estimate study we conducted consists of multiple rounds to
reach consensus, see figure 8.2. During ’Round 1’, the members of the expert group
remotely completed a questionnaire, see Appendix G. The questionnaire consists
of two parts. In the first half, participants were asked to order the practices from
most important to least important and distinguish between practices of which
they want to be or not want to be immediately informed. In the second half
the participants were asked to order the practices based on how disturbing an
interruption would be and distinguish between practices during which they prefer
to be or prefer not to be interrupted. After this round classifications of practices
were accepted if at least 80% of the experts agreed with each other. So, even if
a majority of participants, either six out of ten or seven out of ten, agreed with
each other we did not accept that classification as strong enough.

Figure 8.2: Rounds of the study

The resulting practices, on which no consensus was reached, were considered
in ’Round 2’. ’Round 2’,’Round 3’ and ’Round 4’ consist of two parts and were
conducted during a two-hour meeting at the Delft University of Technology in the
Netherlands. During this meeting both authors were present. One of the authors
took the role of moderator while the other took notes. The second round started
with a detailed description of the practice at hand, to clarify its meaning. Next,
the experts were asked to classify this practice. To reduce the risk of influencing
the other participants, we used the planning poker procedure [Gre02]. Each of the
experts lays a card face down, a zero (’no’) or an one (’yes’), representing their
estimate. Next, they all simultaneously call out their card by turning them over.
Again classifications are accepted if at least 80% of the experts agreed with each
other. ’Round 3’ and ’Round 4’ started with a time-boxed discussion in which
both arguments in favor of and arguments against being informed immediately or
being interrupted were discussed. During these discussions, the moderator had to
ensure that everyone participated and had a chance to speak [Gib97]. To stimulate
an evenly contribution of the participants, we first provided the minority of the
group the opportunity to explain their judgments, after which the majority of the
group had the chance to explain their judgments ’Round 3’. In ’Round 4’ first
the majority of the group was given the opportunity to convince the others, after
which the minority of the group had the chance to respond. Both rounds were
concluded by a re-estimation of the current practice. Table 8.2 outlines, the total
number of practices, the number of practices on which consensus was reached,

140 HOW TO REGULATE THE INFORMATION AVAILABLE TO ENGINEERS 8.4

and the number of practices on which no consensus was reached for each of the
four rounds.

Round 1 Round 2 Round 3 Round 4
Number of practices 80 53 22 13
Accepted practices 27 31 9 3
Undecided practices 53 22 13 10

Table 8.2: Results of the Estimate-Talk-Estimate study

Finally, in the ’Post-Round’ the study participants remotely completed a ques-
tionnaire, see Appendix H. In this questionnaire we asked some general questions,
process related questions and research related questions about the introduced con-
tradictions. We asked the participants to indicate both (i) what information they
want to know immediately, even though they are performing an activity during
which they prefer not to be interrupted, and (ii) whether or not they prefer to be
interrupted with information they want to know immediately, even though they
are performing an activity during which they prefer not to be interrupted. The
participants already reached consensus on six of the twelve practices after this
initial round (’Post-Round’).

8.4 Findings Estimate-Talk-Estimate Study
To structure the findings of the Estimate-Talk-Estimate study, we use the engin-
eering process areas defined in the CMMI, namely, Requirements Development,
Technical Solution, Verification, Validation and Product Integration [Tea10]. For
each of these process areas we briefly describe its purpose, goals and practices.
Subsequently, we discuss for each of the practices (i) whether or not software en-
gineers want to be informed of such information immediately and (ii) whether or
not software engineers prefer to be interrupted while performing activities corres-
ponding to the practice at hand. The results of these classifications are presented
in a uniform fashion to provide the reader with a clear overview of the results.
A complete overview of the classifications of all rounds can be found online at
http://aspic.nl/vow/classifications.pdf. An illustrative example of such
a representation is shown in figure 8.3. This figure shows some illustrative clas-
sifications we have made for some of the activities you perform in the morning
before carpooling to work with a colleague. This representation consists of two
parts. The first part is a table summarizing both the results of what information
about your colleague you want to know immediately, and the results of the clas-
sifications of activities during which you do not mind to be interrupted. In the
second column the results of what information about your colleague you want to
know immediately is shown. In this column a ’3-sign’ indicates that the parti-
cipants agreed they want to be informed immediately of information regarding

8.4 FINDINGS ESTIMATE-TALK-ESTIMATE STUDY 141

Practice Inf Int
P 1. Waking up ? 7
P 2. Taking a shower 7 7
P 3. Having breakfast 3 ?
P 4. Leaving your home to go to work 3 3

(a) Table containing both [Inf] Information you want to know immediately when car-
pooling to work, and [Int] Activities during which you do not mind to be Interrupted

(b) Visualization of the results

Figure 8.3: Illustrative classification of morning activities before carpooling to work
with a colleague

the associated practice. A ’7-sign’, however, indicates they do not want to be
informed immediately. When the participants did not agree with each other and
have not reached consensus a ’?-sign’ is used to indicate this. In the third column
the results of the activities during which software engineers do not mind to be
interrupted are summarized. A ’3-sign’ indicates that they agreed they do not
mind to be interrupted at that moment, a ’7-sign’ indicates they prefer not to
be interrupted and a ’?-sign’ again indicates they did not reach consensus. The
second part of this representation is a figure which visualizes the results of both
classifications. In this figure each circle represents a single practice. The radius
of the circle is used to depict whether or not the experts want to be immediately
informed of information regarding the practice. A small radius indicates that the
experts do not want to be immediately informed of that practice. A large radius,
however, indicates that the experts do want to be immediately informed of that
practice. When the circle has a small radius, is not filled and has a dashed bor-
der, the participants did not agree with each other. The location of the circle, in
turn, depicts whether or not you prefer to be interrupted. A circle in the upper

142 HOW TO REGULATE THE INFORMATION AVAILABLE TO ENGINEERS 8.4

area concerns a practice during which you do not mind to be interrupted. A
circle in the bottom area concerns a practice during which you prefer not to be
interrupted. When a circle is placed on the border between these two areas the
participants did not reach consensus about that practice.

8.4.1 Requirements Development

The first engineering process area we discuss is ’Requirements Development’. The
purpose of this area is to elicit, analyze and establish customer, product and
product component requirements [Tea10]. The practices of this area belong to
one of the following three goals:

SG 1 Develop Customer Requirements
Stakeholder needs are translated into a set of customer requirements

SG 2 Develop Product Requirements
Customer requirements are translated into a set of product requirements

SG 3 Analyze and Validate Requirements
Analyze and validate both the customer and product requirements with
respect to the end user his intended environment

Information updates

Firstly, we asked the participants to order the practices based on importance,
regardless of their current activity, and differentiate between the practices of which
they want to be informed immediately and the practices of which they do not.
The results of these classifications, after four rounds, are shown in figure 8.4a. In
this table it can been seen that participants of the study indicated that they only
want to be informed of new information regarding the establishment of product
and product component requirements (SP 2.1). Furthermore, it can be seen that
participants do not have to be informed immediately of new information regarding
practice SP 1.1, SP 1.2, SP 2.2, SP 3.1, SP 3.2, SP 3.3 and SP 3.5. Finally, the
participants did not reach consensus on SP 2.3 and SP 3.4.

During the face-to-face meeting a extensive discussion took place about prac-
tice SP 2.3 on which no consensus was reached. The arguments used in favor of
being immediately informed about identifying interface requirements focus on the
urgency of this kind of information. One of the participants said: ”I want to be in-
formed immediately when such information becomes available”. Arguments used
against this practice focus on the fact that this is not time crucial information,
which can be illustrated by the following statement: ”This kind of information
can wait”. Overall the participants indicated that whether or not they want to
be informed of such information strongly depends on the impact of the specific
interface.

8.4 FINDINGS ESTIMATE-TALK-ESTIMATE STUDY 143

Practice Inf Int
SG 1. Develop Customer Requirements
SP 1.1 Elicit Needs 7 7
SP 1.2 Transform Stakeholder Needs into Customer Requirements 7 3
SG 2. Develop Product Requirements
SP 2.1 Establish Product and Product Component Requirements 3 3
SP 2.2 Allocate Product Component Requirements 7 3
SP 2.3 Identify Interface Requirements ? 3
SG 3. Analyze and Validate Requirements
SP 3.1 Establish Operational Concepts and Scenarios 7 3
SP 3.2 Establish a Definition of Required Functionality and Quality Attributes 7 3
SP 3.3 Analyze Requirements 7 ?
SP 3.4 Analyze Requirements to Achieve Balance ? 3
SP 3.5 Validate Requirements 7 7

(a) Table containing both [Inf] information software engineers want to know immedi-
ately, and [Int] activities during which software engineers do not mind to be Interrupted

(b) Visualization of the results

Figure 8.4: Requirements Development

Interruptibility

Subsequently, we asked the participants to order the practices based on how dis-
turbing an interruption would be while performing activities corresponding to
that practice, regardless of the content of the interruption. Again we asked the
participants to differentiate between practices during which they do not want to
be interrupted and practices in which it is acceptable to be interrupted. Figure
8.4a provides an overview of the classifications of the practices of the require-
ments development area. This table shows that the participants indicated that
they do not want to be interrupted while performing activities corresponding to
elicit stakeholder needs and validating requirements (SP 1.1 and SP 3.5). Next,
the participants did not reach consensus on practice SP 3.3, analyzing require-

144 HOW TO REGULATE THE INFORMATION AVAILABLE TO ENGINEERS 8.4

ments, while they indicated that they do not mind to be interrupted during all
other practices.

During the discussion the participants unanimous indicated that they do not
want to be interrupted while they are eliciting the needs of the customer (SP 1.1).
They indicated that the activities corresponding to this practice are mainly of a
highly interactive nature.

8.4.2 Technical Solution
The second process area we discuss is the ’Technical Solution’ area. The purpose of
this area is to select, design and implement solutions to the identified requirements
[Tea10]. This area consists of the following three goals:

SG 1 Select product component solutions
Product or product component solutions are selected from alternative solu-
tions

SG 2 Develop the design
Product or product component designs are developed

SG 3 Implement the product design
Product components are implemented from their designs

Information updates

The classifications of the practices necessary to achieve the goals of the technical
solution area are shown in figure 8.5a. In this table it can been seen that the
participants are interested in new information of four of the eight practices, namely
information about selecting product component solutions (SP 1.2), designing the
product (SP 2.1), designing the interfaces (SP 2.3) and implementing the design
(SP 3.1).

During the meeting practices SP 1.1 and SP 2.4 were most discussed. Both
practices consist of activities in which multiple analyses are conducted. On the
one hand several possible solutions are examined (SP 1.1) while on the other hand
many make, buy and reuse analyses are performed (SP 2.4). Some of the parti-
cipants argued that they ”definitely want to know such information immediately,
so that they are able to influence the outcomes” while others argued that they
”do not necessarily want to be informed of this information immediately, but are
particularly interested in the choices being made”.

Interruptibility

Also for this area, we asked the participants to indicate during which activities
they do not mind to be interrupted. It is interesting to note that for none of the
activities needed to satisfy this area, the participants indicated that they prefer
not be interrupted.

8.4 FINDINGS ESTIMATE-TALK-ESTIMATE STUDY 145

Practice Inf Int
SG 1. Select Product Component Solutions
SP 1.1 Develop Alternative Solutions and Selection Criteria ? 3
SP 1.2 Select Product Component Solutions 3 3
SG 2. Develop the Design
SP 2.1 Design the Product or Product Component 3 3
SP 2.2 Establish a Technical Data Package 7 3
SP 2.3 Design Interfaces Using Criteria 3 ?
SP 2.4 Perform Make, Buy, or Reuse Analyses ? 3
SG 3. Implement the Product Design
SP 3.1 Implement the Design 3 ?
SP 3.2 Develop Product Support Documentation 7 3

(a) Table containing both [Inf] information software engineers want to know immedi-
ately, and [Int] activities during which software engineers do not mind to be Interrupted

(b) Visualization of the results

Figure 8.5: Technical Solution

Furthermore it is noteworthy to mention one of the arguments made during
the discussion regarding whether or not you prefer to be interrupted when you
are implementing the design (SP 3.1). During this discussion some participants
indicated that they were ”in the zone” when they are implementing specific func-
tionality. They emphasize that interruptions in such a mental state have a huge
impact, since it is extremely difficult to reach such a mental state again.

146 HOW TO REGULATE THE INFORMATION AVAILABLE TO ENGINEERS 8.4

8.4.3 Verification

The third engineering process area which we discuss is the ’Verification’ area.
The purpose of this area is to ensure that work products meet their specified
requirements [Tea10]. This area consists of three goals:

SG 1 Prepare for verification
Preparation for verification to ensure that verification provisions are em-
bedded in product requirements, designs, implementation and schedules

SG 2 Perform peer reviews
Peer reviews involve a methodical examination of work products to identify
defects and recommend changes

SG 3 Verify selected work products
Verification methods, procedures and criteria are used to actually verify
selected work products

Information updates

The participants of this study only indicated that they want to be immediately in-
formed of information regarding the verification results (SP 3.2), as can been seen
in figure 8.6a. There was, however, a discussion about the information regarding
the analysis of peer review data (SP 2.3). One of the participants stated that such
information is useful to him, especially when it concerns his own work, and that
he immediately wants to be informed of such information. Another participant
agreed, but said: ”I do not want to be informed of the results of the peer reviews
of everyone else”. So, overall they indicated that they are not interested in such
information since they are only interested in a specific part of the information.

Interruptibility

The classifications of whether or not they prefer to be interrupted while perform-
ing activities related to the verification area are also depicted in figure 8.6a. The
participants reached consensus on practice SP 3.1, performing the verification,
for which they agreed they do not want to be interrupted. The discussion of
practice SP 1.3, establish verification procedures and criteria, resulted in an in-
teresting finding, namely that the participants use different processes to establish
these procedures and criteria. Some of the participants establish these in close
collaboration with the customer and therefore they would not like to be interrup-
ted. Other participants establish these procedures and criteria on their own and
therefore do not mind to be interrupted.

8.4 FINDINGS ESTIMATE-TALK-ESTIMATE STUDY 147

Practice Inf Int
SG 1. Prepare for Verification
SP 1.1 Select Work Products for Verification 7 3
SP 1.2 Establish the Verification Environment 7 3
SP 1.3 Establish Verification Procedures and Criteria 7 ?
SG 2. Perform Peer Reviews
SP 2.1 Prepare for Peer Reviews 7 3
SP 2.2 Conduct Peer Reviews 7 3
SP 2.3 Analyze Peer Review Data 7 3
SG 3. Verify Selected Work Products
SP 3.1 Perform Verification 7 7
SP 3.2 Analyze Verification Results 3 3

(a) Table containing both [Inf] information software engineers want to know immedi-
ately, and [Int] activities during which software engineers do not mind to be Interrupted

(b) Visualization of the results

Figure 8.6: Verification

8.4.4 Validation

The fourth area we discuss is the ’Validation’ area. The purpose of this engineer-
ing area is to demonstrate that a product fulfills its intended use [Tea10]. This
area consists of two goals:

SG 1 Prepare for validation
Preparation for validation include selecting products for validation and es-
tablishing and maintaining the validation environment

SG 2 Validate product or product components
Validation methods, procedures and criteria are used to actually validate
selected work products

148 HOW TO REGULATE THE INFORMATION AVAILABLE TO ENGINEERS 8.4

Information updates

The classifications of the validation practices are very similar to the classification
of the verification practices, see figure 8.7a. Again, the participants indicated
that they do not want to be informed immediately of information regarding the
preparation of the validation process (SP 1.1, SP 1.2 and SP 1.3). While they do
want be notified of information about the analysis of the validation results (SP
2.2).

Practice Inf Int
SG 1. Prepare for Validation
SP 1.1 Select Products for Validation 7 3
SP 1.2 Establish the Validation Environment 7 3
SP 1.3 Establish Validation Procedures and Criteria 7 3
SG 2. Validate Product or Product Components
SP 2.1 Perform Validation 7 ?
SP 2.2 Analyze Validation Results 3 3

(a) Table containing both [Inf] information software engineers want to know immedi-
ately, and [Int] activities during which software engineers do not mind to be Interrupted

(b) Visualization of the results

Figure 8.7: Validation

Interruptibility

It is interesting to see that for none of the practices of the validation area the
participants indicated that they prefer not be interrupted. The only practice
on which they did not reach consensus is practice SP 2.1, performing the actual
validation. Some of the participants argued that they prefer not to be interrup-
ted by colleagues since this process is performed in close collaboration with the

8.5 FINDINGS ESTIMATE-TALK-ESTIMATE STUDY 149

customer. Other participants, however, argued that they do not mind to be inter-
rupted. Since, performing the validation can be a time-consuming activity, which
can take days, it is unfeasible not to be disrupted at all.

8.4.5 Product Integration

Finally, we discuss the ’Product Integration’ area. The purpose of this area is
to assemble the product from the product components, ensure that the product
fulfills all requirements, and deliver the product [Tea10]. This area consists of the
following three goals:

SG 1 Prepare for product integration
Preparation for product integration includes establishing an integration
strategy, the integration environment and the integration procedures and
criteria.

SG 2 Ensure product interface compatibility
Effective management of product component interfaces helps ensure that
implemented interfaces will be complete and compatible

SG 3 Assemble product components and deliver the product
Integration of product components proceeds according to the product in-
tegration strategy and procedures.

Information updates

In figure 8.8a the results of the discussions are shown. In this table it can been
seen that the experts are only interested in direct updates of information regarding
managing interfaces (SP 2.2) and evaluation of assembled product components
(SP 3.3). Again they are less interested in information about the preparation
phase.

Interruptibility

Finally, we discuss the classifications regarding interruptibility. The participants
reached consensus for all but one practice. The only practice on which they did
not reach consensus is practice SP 3.2. The two main arguments in the discussion
on this practice regarding assembling product components are: (i) ”assembling
product components is really important and requires a high level of concentration,
so I do not want to be interrupted” and (ii) ”I do not mind to be interrupted, since
assembling product components does not require specialist knowledge”. Overall the
participants concluded that whether or not you prefer to be interrupted during
the assembly of product components strongly depends on personal preference.

150 HOW TO REGULATE THE INFORMATION AVAILABLE TO ENGINEERS 8.5

Practice Inf Int
SG 1. Prepare for Product Integration
SP 1.1 Establish an Integration Strategy 7 3
SP 1.2 Establish the Product Integration Environment 7 3
SP 1.3 Establish Product Integration Procedures and Criteria 7 3
SG 2. Ensure Interface Compatibility
SP 2.1 Review Interface Descriptions for Completeness 7 3
SP 2.2 Manage Interfaces 3 3
SG 3. Assemble Product Components and Deliver the Product
SP 3.1 Confirm Readiness of Product Components for Integration 7 3
SP 3.2 Assemble Product Components 7 ?
SP 3.3 Evaluate Assembled Product Components 3 3
SP 3.4 Package and Deliver the Product or Product Component 7 3

(a) Table containing both [Inf] information software engineers want to know immedi-
ately, and [Int] activities during which software engineers do not mind to be Interrupted

(b) Visualization of the results

Figure 8.8: Product Integration

8.5 Findings Post-Round

In this section we present the findings of the post questionnaire (A complete
overview of the classifications can be found online at http://aspic.nl/vow/

post-questionnaire-classifications.pdf. The findings related to the first
two research questions are contradicting since, on the one hand, for some practices
the experts indicated that they prefer not to be interrupted when performing
activities corresponding to that practice, while on the other hand the experts
indicated that they want to be informed of information regarding several practices
immediately. In order to elaborate on the needs of software engineers, we asked
each of the participants to indicate both (i) what information they want to know
immediately, even though they are performing an activity during which they prefer

8.6 DISCUSSION 151

not to be interrupted, and (ii) whether or not they prefer to be interrupted with
information they want to know immediately, even though they are performing an
activity during which they prefer not to be interrupted.

The participants reached consensus on five of the nine practices regarding the
information they want to know immediately. For each of these practices, RD 2.1,
TS 3.1, VER 3.2, PI 2.2 and PI 3.3, they agreed they do not want to be informed
immediately when they are performing an activity during which they prefer not
to be interrupted. Furthermore, it is interesting to note the experts have not
yet reached consensus on a practice of which they do want to be immediately
informed.

We also asked the experts to indicate whether or not they prefer to be inter-
rupted with information they want to know immediately, even though they are
performing an activity during which they prefer not to be interrupted. The only
practice on which the experts reached consensus is practice SP 1.1 in the area
of requirements development. They agreed they prefer not be interrupted while
performing activities related to this practice even if it concerns information of
which they want to be informed immediately.

These results are combined in table 8.3. In this table a ’7-sign’ indicates
software engineers do not want to be immediately informed of information re-
garding the practice depicted in the column, while they are performing activities
corresponding to the practice depicted in the row. A ’?- sign’ indicates the par-
ticipants have not yet reached consensus. Currently, the participants have not
reached consensus on a practice of which they want to be immediately informed.

RD TS VER VAL PI
2.1 1.2 2.1 2.3 3.1 3.2 2.2 2.2 3.3

RD
1.1 7 7 7 7 7 7 7 7 7
3.5 7 ? ? ? 7 7 ? 7 7

VER 3.1 7 ? ? ? 7 7 ? 7 7

Table 8.3: Information software engineers want to know immediately even though they
prefer not to be interrupted

8.6 Discussion
In this section we reflect on the findings and discuss the most important results
of this study.

Firstly, we discuss what information software engineers want to know imme-
diately, see table 8.4. From the figures in the previous section it can be seen that
participants of our study only want to be informed immediately of roughly one
quarter of the practices. It is interesting to notice that the experts want to be
informed immediately of at least one practice of each of the five process areas. For
each of these areas, they are mainly interested in direct updates of information
regarding completed artifacts (e.g. requirements, design and verification results),

152 HOW TO REGULATE THE INFORMATION AVAILABLE TO ENGINEERS 8.6

Area Practice
Requirement Development SP 2.1 Establish Product and Product Compon-

ent Requirements
Technical Solution SP 1.2 Select Product Component Solutions
Technical Solution SP 2.1 Design the Product or Product Compon-

ent
Technical Solution SP 2.3 Design Interfaces Using Criteria
Technical Solution SP 3.1 Implement the Design
Verification SP 3.2 Analyze Verification Results
Validation SP 2.2 Analyze Validation Results
Product Integration SP 2.2 Manage Interfaces
Product Integration SP 3.3 Evaluate Assembled Product Components

Table 8.4: Information software engineers want to know immediately

and are less interested in direct updates of information concerning the procedures
used and environment needed to construct these artifacts. Another interesting
result is the distribution of the practices, of which the participants want to be in-
formed immediately, over the process areas. Nearly half of these practices belong
to the technical solution area. Participants are not only interested in the imple-
mentation itself but are also interested in the selected solutions, the design of the
component and the design of the interfaces. This is shown in figure 8.9, since
we have plotted the ratio of all process areas, defined as the number of practices
of which the participants want to be immediately informed, and the number of
practices on which the participants reached consensus.

Secondly, we elaborate on research question 2: ”During which activities do
software engineers prefer to be interrupted to provide them with information?”.
The study participants indicated in general they do not mind to be interrupted
while performing software engineering related activities. They only reached con-
sensus on three practices during which they prefer not to be interrupted, see table
8.5. These practices belong to either the requirements development area or the
verification area (see figure 8.9). The main arguments used to convince others
that they prefer not to be interrupted while performing a certain activity are (i)
the activity is of a high interactive nature involving customers and therefore you
do not want to be interrupted and (ii) performing the activity requires a high
level of concentration and therefore it is difficult to again reach this mental state

Area Practice
Requirement Development SP 1.1 Elicit Needs
Requirement Development SP 3.5 Validate Requirements
Verification SP 3.1 Perform Verification

Table 8.5: Activities during which software engineers prefer not to be interrupted

8.6 DISCUSSION 153

after an interruption. Overall the participants agreed that whether or not you
prefer to be interrupted during a specific activity strongly depends on the person
and therefore is hard to accurately predict.

Figure 8.9: Summary of the process areas

Thirdly, research question 3 elaborates on the needs of software engineers when
they are performing activities during which they prefer not to be interrupted in
general. We asked the participants to indicate both (i) what information they
want to know immediately, even though they are performing an activity during
which they prefer not to be interrupted, and (ii) whether or not they prefer to be
interrupted with information they want to know immediately, even though they
are performing an activity during which they prefer not to be interrupted. The
initial results of these questions indicate that software engineers do not want to
be informed immediately when they are performing an activity during which they
do not want to be interrupted.

Finally, we reflect on the Estimate-Talk-Estimate study we conducted, because
such a study is rarely conducted in the field of software engineering. In such a
study it is important that all participants have a thorough understanding of the
issues being discussed to make reliable decisions. In the first round we conducted
a questionnaire in which we asked the participants to classify the practices based
on a brief description. In the second round we asked the participants to classify
the practices on which no consensus was reached during the first round based
on a detailed description. In round three and four an interactive discussion took
place among the experts, after which the practices on which no consensus was
reached were classified. In the post round we asked for their understanding of
the practices of the five process areas. Participants indicated to have a good

154 HOW TO REGULATE THE INFORMATION AVAILABLE TO ENGINEERS 8.7

or very good understanding of the practices out of the following options: ’Very-
Good’, ’Good’, ’Acceptable’, ’Poor’ and ’Very-Poor’. As such, all participants were
able to make well informed decisions. Another important element of this study
is the interactive group discussion. In these discussions participants were asked
to provide reasons for their decisions and to respond to the decisions made by
others, after which participants could revise their opinion. To see if this process
actually took place we asked the participants if they revised their opinion based
on the arguments of others. They were given five options: ’Never’, ’Rarely’,
’Sometimes’, ’Very Often’ and ’Always’. Nine of the participants indicated this
was sometimes the case. Only one of the participants indicated he often changed
his opinion based on the arguments of others. Based on these experiences we
consider an Estimate-Talk-Estimate study is a suitable way to allow participants
to systematically classify multiple issues.

8.7 Threats to validity

In this section we discuss the threats to validity for this study on three aspects:
reliability, internal validity and external validity. We mitigated threats to re-
liability by providing a detailed description of the methods we used. We have
described in detail how the study participants were selected and of which rounds
this study consists. We also made the design of both questionnaires and the
detailed descriptions of the practices available. Next to this we also make all clas-
sifications of the practices available in a anonymized form. We do this to make
both our data gathering methods and the analysis of our data repeatable, and
as such increase the reliability of this research. We further mitigated threats to
reliability by pretesting both questionnaires with two software engineers, who did
not participate in this study.

Next, there exist threats to internal validity. During this study several prac-
tices were classified during a collaborative session. These practices are relatively
abstract because they could reference multiple information items and activities.
To determine to which extent this influenced the results we asked the participants
about their understanding of the practices. They all indicated they had a good
understanding of the practices of the five process areas, one participant even
stated to have a very good understanding. Since applied social research is a hu-
man activity, it is also possible social pressure influenced the outcomes of this
research. Since the estimates made by the participants were not anonymous, as
in a Delphi study, it is possible participants changed their behavior to fulfill the
expectations of others as a result of real or imagined group pressure. There-
fore, in the post questionnaire, we asked the participants if they changed their
opinion because of the peer pressure of the group of experts. They were given
five options: ’Never’, ’Rarely’, ’Sometimes’, ’Very Often’ and ’Always’. Seven of
the participants indicated they never changed their opinion while the other three
indicated this was rarely the case.

8.8 CONCLUDING REMARKS 155

Finally, we discuss threats to external validity. External validity is of interest
in studies that draw generalized conclusions. In this study we consulted ten
experienced Dutch software engineers from nine different companies. To improve
the external validity of the findings, further studies are needed to diversify the
group under study, including for example non-Dutch participants.

8.8 Concluding Remarks

8.8.1 Conclusions
In this chapter we have reported on the empirical study we conducted on how to
regulate information available to software engineers based on both the import-
ance of the information and the current activity of the engineer. To structure
this research we used the five engineering process areas defined in the CMMI
[Tea10]: Requirements Development, Technical Solution, Verification, Validation
and Product Integration. These areas consist of multiple goals and practices,
which we used to determine (i) of what information software engineers want to
be immediately informed, and (ii) during which activities software engineers do
not mind to be interrupted. The outcomes of the two research directions were
contradicting in some cases, since participants of this study indicated that they
would like to be informed of several practices immediately while for other prac-
tices they indicated that they prefer not to be interrupted. Therefore we also
researched (iii) of what information software engineers want to be immediately
informed, even though they are performing an activity during which they prefer
not to be interrupted.

The main contributions of this chapter are the answers to the research ques-
tions. First, we showed a list of information items of which software engineers
want to be informed immediately. Subsequently, we presented a list of software
engineering activities during which software engineers prefer not to be interrup-
ted. Finally, we discussed a look-up table which can be used to determine whether
or not software engineers want to be immediately informed, even though they are
performing an activity during which they prefer not to be interrupted.

Next, when abstracting the findings, we can conclude that:

• Software engineers want to be immediately informed of a wide variety of
information

• Software engineers are mainly interested in direct updates of information
about completed artifacts

• Software engineers are especially interested in information regarding the
technological solution itself

• In most cases software engineers do not mind to be interrupted to provide
them with information

156 HOW TO REGULATE THE INFORMATION AVAILABLE TO ENGINEERS 8.8

• Software engineers prefer not to be interrupted when they are performing
activities of a highly interactive nature

• Software engineers prefer not to be interrupted when they are performing
activities which require a high level of concentration

• Software engineers do not want to be immediately informed of any inform-
ation when they are performing an activity during which they prefer not to
be interrupted

Next steps of this research include (i) reaching consensus on information items
on which no consensus was reached, (ii) reaching consensus on information items
of which software engineers want to be immediately informed when performing
activities during which they prefer not to be interrupted, and (iii) research the
different practices in more detail, e.g. what artifacts and what specific informa-
tion is needed. These results can then be used to construct virtual office walls
which automatically regulate information available to a software engineer, based
on both the current activity of the engineer, and the information engineers want
to know immediately. Until we all work in a ’Virtual Office’ in which information
is regulated by ’auto-erecting virtual office walls’, we should carefully consider
whether to interrupt a colleague to provide him or her with information. So,
when in doubt, do not disturb!

8.8.2 Virtual Office Implications
In this empirical study we researched what information global software engineers
want to know immediately, and when they prefer not to be interrupted. This
study answers the fourth research question of this dissertation:

Research Question 4
How to regulate information available to software engineers based on both
the importance of that information and the current interruptibility of the
engineer?

From this empirical study we could derive the following requirements of a virtual
office:

Req 17. Facilitate informing software engineers immediately of inform-
ation about completed artifacts
Software engineers are especially interested in immediate updates of in-
formation about completed artifacts, e.g. requirements, design, and veri-
fication results.

Req 18. Facilitate informing software engineers immediately of inform-
ation about the technological solution

8.8 CONCLUDING REMARKS 157

Software engineers are especially interested in immediate updates of in-
formation about the technological solution itself, e.g. the selected solu-
tions, the design of the components, and the design of the interfaces.

Req 19. Facilitate interrupting software engineers to provide them with
new information
Software engineers should be interrupted to immediately provide them
with information they want to know immediately.

Req 20. Facilitate controlling the moments during which one prefers
not to be interrupted
Software engineers should be able to control whether they prefer to be or
prefer not to be interrupted, especially during activities of a high inter-
active nature and activities which require a high level of concentration.

Chapter9
Evaluating the Impact of Virtual
Office Walls

A Virtual office wall is a mechanism which automatically regulates information
to support distributed software engineers. These walls reduce the available in-
formation to only that information which is currently relevant. In this chapter
we present a controlled experiment with experienced software engineers as study
participants. In this experiment we study whether there is a relation between the
presence of virtual office walls and the actual and perceived speed and accuracy of
the work carried out by the participants. Additionally, we measured the extent in
which the participants experience the presence of virtual office walls as useful. In
the experiment we cannot use real software engineering work, because this would
make the experiment too long to be feasible. Therefore, we decided to use fictional
map tasks, like adding an arrow between two objects, which mimic important as-
pects of global software engineering tasks. These fictional map tasks also minimize
mistakes due to differences in software programming abilities of the participants.
The main findings include that virtual office walls appear to contribute to an im-
proved awareness of co-worker synchronicity, an easier insight in what to do and a
more concise overview of the work performed. These improvements mostly benefit
the speed of coordination and the perception regarding overall performance.

This chapter is based on our publication ”Auto-Erecting Virtual Office Walls a Controlled Ex-
periment” in the Proceedings of the 8th International Conference on Global Software Engineering
(ICGSE 2013). This publication is co-authored by Rini van Solingen and Kevin Dullemond.

159

160 EVALUATING THE IMPACT OF VIRTUAL OFFICE WALLS 9.2

9.1 Introduction

In a co-located setting, software engineers are confronted with all kinds of inform-
ation, noises, distractions, etc. that are not relevant to their work at hand. These
distractions can be so severe a complete workday becomes ineffective [Sol98]. Dis-
located software engineers have the advantage that tooling has the potential to
filter the information delivered to them. Such tooling has access to information
on what everyone is working on and can as such filter non-relevant information.
Filtering information in such a fashion resembles the creation of ’moving’ office
walls in a co-located fashion that move around all the time, depending on the
work an engineer is carrying out. Such ’auto-erecting virtual office walls’ are
unfeasible in real life but can be created in tooling for (globally) distributed soft-
ware engineers. As such, these walls provide dislocated software engineers with
the awareness level of a ’virtual office’, undisturbed by information not relevant
to their current activity.

The main contribution of this chapter is the indication that virtual office walls
are valuable to (dislocated) software engineers. In practice this comes down to
the actual speed and accuracy of their work, as well as perceptions of speed,
accuracy and usefulness. Furthermore, an important contribution of this work
is the construction of a controlled experimental design with tasks, resources and
materials that can be used for replicating and scaling of the experiment.

Research on virtual office walls is important because it enables dislocated soft-
ware engineers to better focus on the actual work and prevents distractions and
manually searching for required information, see chapter 2. Such research, how-
ever, also brings an additional dimension to the research on distributed software
engineering. Tooling for distributed software engineering is largely set up with
the motivation to compensate for the negative consequences of distance [Car01].
However, such tools also provide opportunities to further build upon. A real-life
physical wall is not able to be moved easily and has no understanding of the
work an office occupant is working on. Tools for dislocated software engineers do
possess such knowledge and can, as such, leverage it. Because of the promise of
advantages over the co-located setting, additional benefits and added value can
be delivered by removing the physical boundaries of work offices.

This chapter is structured as follows. First in section 9.2 we discuss related
work regarding virtual office walls. Following this, in section 9.3 we discuss the
research questions and hypotheses of the experiment. Subsequently, in section
9.4, we present the design of the experiment and discuss the variables and tooling
used in this experiment. In section 9.5 we present the findings and evaluate the
hypotheses based on these findings. Next, in section 9.6, we discuss the threats
to the validity of this study. Finally, we present the conclusions of this research
and discuss future research in section 9.7.

9.2 RELATED WORK 161

9.2 Related Work
Software engineering is a highly collaborative activity in which knowledge about
the context in which you are working is essential to properly collaborate with
others [Sch02, Syr97]. In literature this knowledge is commonly referred to as
’awareness’ [Dou92, Sch02]. Examples of such information items are: information
about the other members of the project team, their activities and information
about the progress of the project. It is essential to have a sufficient level of
awareness, since software engineers need to coordinate their efforts to be able to
produce a functional system.

In the traditional co-located setting this information is exchanged relatively
passively and unobtrusively [Sch02, Fog05], so engineers are continuously aware
of information related to their current activity. In chapter 2 we discussed this
is probably caused by the design of the office building [All07], since in general
an office building consists of several rooms each with its own characteristics. By
moving around in the building software engineers are able to select a room with
characteristics that match their needs, and as such are able to change the context
of their activities.

But nowadays, both due to the globalization of business [Car99, Her01, Her07]
and because people are starting to work from home more and more [Die09], people
no longer share a physical work environment. In such a distributed setting ex-
changing information without technological support becomes unfeasible [Dul10].
So, in order to retrieve information related to their current activity software engin-
eers need to use technological solutions. To fulfill this need, the (global) software
engineering community has developed and studied a wide variety of tools, for ex-
ample: Instant Messaging solutions, issue management systems and configuration
management systems [PR12, Sar10].

Most of these tools, however, only support a single aspect of the development
process and as a consequence many diverse tools are needed to provide software
engineers with the information they need [PR12]. When they have gathered
all relevant information, this information needs to be analyzed, combined and
filtered manually by each software engineer to acquire the information necessary
to create a context for his current activity. This process can be quite time-
consuming and may result in misunderstandings, inconsistencies, incompatibilities
and duplicated information [PR12]. The concept of filtering information available
to software engineers to help them focus on their current task has been studied
extensively. In the seventies Parnas discussed how to break up a single program
into multiple independent parts to be able to develop each of them in isolation of
the implementation of the other [Par76]. Other research [Epp04, Hil85] focuses
on what information is necessary to software engineers and how to provide them
with this information without causing an information overload.

In chapter 2 we discuss how best to provide distributed software engineers
with the awareness they need. In this chapter we conclude that the analytical
process of accessing, combining and filtering information needs to be automated

162 EVALUATING THE IMPACT OF VIRTUAL OFFICE WALLS 9.3

to be able to acquire awareness in a relatively passive and unobtrusive fashion.
So, in essence we need a mechanism which automatically regulates information
based on the current context of a software engineer: a ’virtual office wall’.

9.3 Research Questions and Hypotheses
The goal of this study is: ”to find out how valuable virtual office walls are for
real-life distributed software engineers during their day-to-day activities”. To de-
termine this value, we measure the extent in which this kind of technical support
impacts the speed and accuracy of the work, the extent in which it impacts the
perception of speed and accuracy of the work, and the extent in which experienced
distributed software engineers consider this kind of support useful.

To reach this goal we have formulated the following research questions for this
experiment:

RQ1 How do virtual office walls influence the speed of work?

RQ2 How do virtual office walls influence the perception of the speed of work?

RQ3 How do virtual office walls influence the accuracy of the work carried out?

RQ4 How do virtual office walls influence the perception of the accuracy of the
work carried out?

RQ5 How useful is the introduction of virtual office walls in a (distributed) soft-
ware engineering project?

RQ6 Do virtual office walls make it easier to understand what is going on in a
software engineering project?

In order to answer these research questions we have chosen to perform a con-
trolled experiment with experienced distributed software engineers as study par-
ticipants. The reasons we chose to conduct a controlled experiment are:

• We intended to find evidence that the introduction of virtual office walls
is valuable. Therefore we need to be able to measure the influence of this
introduction in isolation.

• We intended to find evidence that the actual and perceived performance
differs when the amount of information is limited (as already indicated by
Solingen and Valkema [Sol10] and based on the research of Prickladnicki
[Pri09])

Considering these two intentions a controlled experiment with real-life software
engineers with distributed experience is the best approach. Before undertaking
the experiment we formulated the following hypotheses regarding the above six
research questions:

9.4 CONTROLLED EXPERIMENT 163

H1 The introduction of virtual office walls has a positive impact on the speed of
work carried out

H2 The introduction of virtual office walls has a positive impact on the perception
of the speed of work

H3 The introduction of virtual office walls has no impact on the accuracy of the
work carried out

H4 The introduction of virtual office walls has a strong positive impact on the
perception of accuracy of the work

H5 Software engineers consider the introduction of virtual office walls a useful
feature

H6 The introduction of virtual office walls makes it easier to differentiate between
information that is relevant to the current activity of an engineer and in-
formation that is not.

Hypotheses 1 and 2 express we expect the speed of work to go up, because
the reduced amount of information makes it easier to find out what to do. Hypo-
thesis 3 expresses that we expect the accuracy of the work will not be different as
this is largely determined by the specific task itself and the specific skills of each
individual engineer. Hypothesis 4, however, expresses that the perception of ac-
curacy will be influenced because the more difficult it is to see what is happening
the larger the probability one might feel things are not going well. Hypotheses
5 and 6 express that we expect providing distributed software engineers with the
information they need is considered useful and makes it easier to understand the
current status of the project.

9.4 Controlled Experiment

We conduct a controlled experiment to study whether there is a relation between
the presence of virtual office walls and the actual and perceived speed and accur-
acy of the work carried out by distributed software engineers. Additionally we
measured the extent in which the participants experience the presence of virtual
office walls as useful. In a controlled experiment the results obtained from two
samples are compared; the results obtained from a test group and the results
obtained from a control group. These two groups should be as similar as pos-
sible except for the one aspect of which the effect is being tested [Woh00]. In
this section we discuss the design of the experiment, the dependent, independent
and control variables, the tooling environment used, and the context in which the
experiment is conducted.

164 EVALUATING THE IMPACT OF VIRTUAL OFFICE WALLS 9.4

9.4.1 Design
In this controlled experiment we examine the impact virtual office walls have on
actual and perceived speed and accuracy. Additionally, we measured the extent
in which participants experience the presence of virtual office walls as useful.
Therefore we split the total group of study participants into two subgroups; a
test group which has access to an environment in which the concept of virtual
office walls is implemented and a control group which has access to an environment
in which this concept is disabled. Such an experiment is referred to as a ’One
factor with two treatments experiment’ [Woh00]. The distribution of participants
into these groups is random but balanced based on seniority of the participants.

During the experiment both groups have to successfully complete six projects.
Each of these projects consists of: (i) three randomly assigned project members
(participants), made anonymous by changing their names. Each participant is
only allowed to work on the projects he or she is assigned to, (ii) twelve project
specific tasks, each task has a status: open, in progress or resolved, a description
and a corresponding resource, and (iii) two project specific resources1, named
after a city or country. Each resource has a status; locked or unlocked, and the
location of the resource.

Participants of the experiment should use the following process to successfully
complete each of the six projects (see figure 9.1 for an overview):

1. Selecting a Task: A participant should select an open task of one of the
projects he or she is assigned to. Subsequently, the engineer should verify
that all tasks on which this task depends are resolved.

2. Selecting a Resource: When the participant has selected a task, he or she
has to verify the status of the corresponding resource. If the status of the
resource is unlocked the participant, can lock the resource. However, when
the status of the resource is locked, the participant should select another
task.

3. Locking a Resource: Before a participant is able to work on a task he or she
should first lock the corresponding resource. If the status of the resource is
locked, the participant should select another task.

4. Assigning to a Task: When a participant has locked the resource corres-
ponding to the selected task he or she should assign this task to himself or
herself.

5. Working on a Task: When a participant has both assigned himself or herself
to a task and locked the resource corresponding to this task, he or she is
able to start working on the task. The participant first needs to download
the resource from a central repository, subsequently, the participant can

1Despite what is common in practice, we consider the term resource to be limited to the
materials necessary to carry out the tasks

9.4 CONTROLLED EXPERIMENT 165

perform the task instruction, and finally the participant needs to save and
upload the file to the central repository.

6. Resolving a Task: When a participant completed the task on which her or
she was working, the participant should update the status of the task to
resolved.

7. Unlocking a Resource: When a participant resolved the task to which he
or she assigned himself or herself, the participant should also update the
status of the corresponding resource to unlocked, so other participants have
the ability to lock this resource.

Figure 9.1: Process to successfully complete each project

During this process participants encounter several collaboration challenges.
These challenges arise from both the need to select a task of which all tasks it
depends on are resolved, and the need to lock a task and corresponding resource.
During the experiment participants of the control group have access to all in-
formation all the time, while participants of the test group only have access to

166 EVALUATING THE IMPACT OF VIRTUAL OFFICE WALLS 9.4

contextualized information. As such participants of the test group have a more
specific view of the available information.

The process is repeated until all 72 tasks of the experiment are completed.
Then a questionnaire is distributed to all participants with additional questions
to gather quantitative and qualitative data on their perceptions of speed, accuracy
and usefulness of virtual office walls.

In the experiment we cannot use real software engineering work, because this
would make the experiment too long to be feasible. Instead, we decided to use
simple tasks. Additionally this also minimizes mistakes due to differences in
software programming abilities of the participants. However, to accurately rep-
resent software engineering work we need tasks which are comparable to those
encountered in a software engineering project. The tasks we ended up using are
the modified fictional map tasks used by Espinosa et al. [Esp07], like adding a
object to a map or adding an arrow between two objects. This type of task mim-
ics important aspects of global software engineering teams including [Esp07]: (i)
shared goals, (ii) interdependent activities and skills, (iii) the need for effective
communication, and (iv) the need to articulate and interpret requirements cor-
rectly. These tasks have been used in previous experimental studies in the field
of software engineering [Esp07, Sol10].

Furthermore, we decided to prevent communication between participants from
the controlled experiment. Part of what would normally be communicated is re-
placed by the automated features of the technological solution used in the exper-
iment, such as changing the current status of a resource. Other communication
is prevented because it is likely to have a too strong impact on the outcome of
the experiment. Allowing this communication would make it infeasible to inde-
pendently measure the effect of the introduction of virtual office walls. When
participants are unable to communicate directly with each other, all coordination
actions take place in the environment in which the concept of virtual office walls
is either implemented (test group) or not (control group). Therefore we modi-
fied the map tasks adopted by Espinosa et al. [Esp07] to remove the need for
communication and to decrease the ambiguity of the requirements.

9.4.2 Dependent, Independent and Control Variables
In this section we discuss the three types of variables used in this experiment. An
independent variable (factor) is a variable that is manipulated in the experiment.
The values or settings for an independent variable are the test conditions. The
impact of the different test conditions is measured by analyzing the dependent
variables. Finally, there are circumstances that might influence a dependent vari-
able but are not being investigated. These are called control variables and need
to be controlled to limit the variability of the measures.

In this experiment only one variable is changed, the support environment and
we defined two test conditions for this dependent variable: an environment in
which (i) the concept of virtual office walls is enabled and (ii) the concept of

9.4 CONTROLLED EXPERIMENT 167

virtual office walls is disabled.
Next to the independent variable we also defined 6 dependent variables:

• Actual speed: We measure the time (in seconds) it takes for participants to
successfully complete each of the 72 tasks

• Perceived speed We measure the perceived speed by asking participants how
they would grade the overall speed of work on a 5 point likert scale (very
low, low, normal, high, very high) with a no-opinion option

• Actual accuracy: We measure the accuracy of the performed work by divid-
ing the number of correct elements by the total number of elements

• Perceived accuracy: We measure the perceived accuracy by asking parti-
cipants how they would grade the overall quality of the work on a 5 point
likert scale (very low, low, normal, high, very high) with a no-opinion option

• Ease of use of the system: We measure the ease of use of the system by
asking participants how they would grade the use of the system on a 5
point likert scale (very difficult, difficult, normal, easy, very easy) with a
no-opinion option

• Usefulness of the system: We measure the usefulness of the system by asking
participants how they would grade the overall support on a 5 point likert
scale (very low, low, normal, high, very high) with a no-opinion option

There also exist six control variables which need to be kept constant between
the two groups of the experiment to avoid influencing the measurements: users,
projects, maps, tasks, resources and tools. Finally, one randomized variable exist:
the assignment of tasks to a participant, as such each user can complete an unequal
number of tasks.

9.4.3 Tooling Environment
In this section, we discuss the environment we have used during the experiment
to enable or disable the concept of virtual office walls.

To minimize the influence differences in design could have on the outcome of
the experiment, we use the same environment for both groups. We only change
whether or not the concept of virtual office walls is enabled. Figure 9.2 provides
an overview of the environment used and in the remainder of this section each of
the components will be shown and discussed in detail.

Firstly, we discuss differences in information shown about the team members
of a user (the left section of the view). In figure 9.3a the information provided
to the participants of the test group is shown and in figure 9.3b the information
provided to the control group is shown. Comparing these two figures, it can been
seen that participants in the control group have access to information about all

168 EVALUATING THE IMPACT OF VIRTUAL OFFICE WALLS 9.4

Figure 9.2: Tooling environment

other users, while participants in the test group only have access to information
about the users of the project they are currently working on (project Yellow).
This filter on active project makes it possible to enrich the visualization of the
test group by showing which of the team members are currently working on the
project. Because participants of the test group only have access to information
related to their active project, a mechanism is needed to change this context.
This can be done by selecting another project in the left section of the view (e.g.
Blue). In this view only projects are shown in which you participate, all other
projects are filtered out.

(a) Test group (b) Control group

Figure 9.3: Team members

9.4 CONTROLLED EXPERIMENT 169

(a) Test group (with virtual office walls)

(b) Control group (without virtual office walls)

Figure 9.4: An overview and detailed information

170 EVALUATING THE IMPACT OF VIRTUAL OFFICE WALLS 9.4

Secondly, we discuss the middle section of the view in which an overview and
detailed information about the users, tasks and resources is shown. Again, the
main difference is that participants in the control group have access to informa-
tion about all projects, while participants in the test group only have access to
information about the project they are currently working on. This can be seen
in figure 9.4. Figure 9.4a and 9.4b both show information about the status of
resources. Comparing these two figures, it can been seen that participants of the
test group only have access to information about the resources of the project they
are currently working on, while participants of the control group have access to
the resources of all projects.

Finally, we discuss the right section of the view in which information about the
actions participants performed is shown (time-line). Again, participants in the
control group have access to all actions, while participants in the test group only
have access to actions related to the project they are currently working on. During
the experiment participants perform actions to successfully complete the projects,
for example locking a file and resolving a task. The following actions are shown
on the time-line of both groups: locking a resource, unlocking a resource, start
working on a task, stop working on a task and resolving a task. As a consequence
participants in the control group get to see actions from a wide variety of projects
(see figure 9.5b), while participant in the test group only see actions related to the
project they are currently working on (see figure 9.5a). Next to the actions which
appear on both time-lines participants of the test group also get to see actions of
project members who either enter or leave the project space (by changing their
active project), providing additional information about their active project.

(a) Test group (b) Control group

Figure 9.5: Actions performed by team members

9.4 CONTROLLED EXPERIMENT 171

9.4.4 Context, execution and assignments

This study is conducted at IHomer, a Dutch software engineering company foun-
ded in August of 2008. The company currently is fully distributed, since the
default work location of the employees is their home. As a consequence, all
employees are experienced with dealing with the difficulties of developing soft-
ware when working physically separated from each other. This distributed nature
makes employees of this company particularly suitable as study participants for
this experiment. Employees participated voluntarily in the experiment. In total
12 employees participated in the experiment, divided into two groups of 6 parti-
cipants, one group which has access to an environment in which the concept of
virtual office walls is enabled (test group) and one group which has access to an
environment in which this concept is disabled (control group). The distribution
of participants into these groups is random but balanced based on the seniority
of the participants.

The experiment itself was conducted on a single day. During this day two runs
were executed, one by the test group and one by the control group. The first run
took place between 9:00 AM and 10:30 AM, in this run we used the environment
in which the concept of virtual office walls was enabled (Test group). The second
run took place in the afternoon, between 2:00 PM and 3:30 PM, in this run we
used the environment in which this concept was disabled (Control group). To
ensure participants of the control group were not influenced by participants of
the test group, we asked them not to talk about the experiment until both runs
were finished. As far as we know all participants did this. Because of the dis-
tributed nature of both the company and experiment we decided to execute both
runs with participants working from their home. Before each run was executed,
the participants were gathered in a Google Hangout2 in which the objective of
the experiment and the tasks were explained. Subsequently, a 15 minute demo
was given to the participants by one of the researchers, in which the process of
successfully completing a task was demonstrated. Finally, the participants were
allowed to enter the environment and they were asked to leave the hangout (so
they could not communicate with each other). When all projects were completed
we again gathered all participants in a Google Hangout to thank them for their
participation, and to distribute the questionnaire. During both runs, two of the
authors were available to provide help if needed.

We conclude this section by giving an impression what actions are necessary
to successfully complete each task. We show a scenario in which all actions of
the process are demonstrated. In this discussion we provide a detailed description
of all available information types, all necessary actions, and the tooling used to
complete each action to complement the more general discussion in section 9.4.1.

2http://www.google.com/+/learnmore/hangouts

172 EVALUATING THE IMPACT OF VIRTUAL OFFICE WALLS 9.4

Selecting a Task

Before a participant is able to work on a specific task, he3 first has to select an
open task of one of the projects he is assigned to. To find out to which projects
a participant is assigned, he should use the tooling environment discussed in the
previous section. In this environment he can access all information about a user,
see figure 9.6: (i) the name of the user, we changed the names of the participants
to Alex, Benjamin, Charlie, Daniel, Ethan and Freddie to enable anonymous
participation, (ii) the projects he is assigned to, a user is always assigned to three
of the following projects: Blue, Green, Orange, Purple, Red and Yellow, (iii) the
project he is currently working on, (iv) the task he is currently working on, and
(v) the resource he is currently locking.

Figure 9.6: User details

When a participant knows to which projects he is assigned, he can select an
open task of one of these projects. Again the participant should use the tooling
environment to determine the current state of the selected task. Each task is in
one of the following three states: open, in progress or resolved. When the state
of the task is resolved, the task is successfully completed and no further actions
are required. When the state of the task is in progress, the task is currently being
carried out by one of the participants. Finally, when the state of the task is open,
work has to be carried out to complete this task. Next to the current state of the
task also (i) the name, ranging from Task 1 through 12, (ii) the corresponding
project, (iii) the description, (iv) the participant who is currently working on
the task or the participant that has resolved the task, and (v) the corresponding
resource are shown, see figure 9.7.

Figure 9.7: Task details

Selecting a Resource

When a participant has selected an open task of which all tasks it depends on are
resolved, he has to verify the status of the corresponding resource. A resource

3All participants of the experiment were male, so when talking about participants of the
experiment we will use ’he’

9.4 CONTROLLED EXPERIMENT 173

can only have two states: unlocked and locked. When the state of the resource
is locked, another participant locked the resource and as a consequence the par-
ticipant has to select another task. When the status of the resource is unlocked,
the participant can lock the resource and start working on it. Next to the state of
the resource also, (i) either the name of the city or country, (ii) the corresponding
project, (iii) the participant who has currently locked the resource, and (iv) the
location of the resource are shown, see figure 9.8.

Figure 9.8: Resource details

Locking a Resource

Now a participant has selected both an appropriate task and resource, he should
use the environment to actually lock the resource indicating he is currently work-
ing on that resource.

Assigning to a Task

When a participant has locked the resource belonging to the selected task, he
should use the environment to actually assign the selected task to himself indic-
ating he is currently working on that task.

Working on a Task

When a participant has both assigned himself to a task and locked the resource
corresponding to this task, he is able to start working on the task. He first needs
to download the resource from a central repository to acquire the file on which he
needs to work. In this experiment we use Dropbox4 as repository, because of its
easy to use web interface and because it enables a history of all versions of a single
file. Secondly, the participant has to edit the file (resource) he just downloaded
either by using PowerPoint5 or Impress6. Each file consist of two parts, a map
and a set of objects (see figure 9.9). By adding objects and arrows to the map,
according to the description of the current task, a modified version of the file is
created. In contrast to the map requirements of Espinosa et al. [Esp07] we more
explicitly defined the tasks and tried to remove ambiguity from them since inter-
participant communication was not allowed to resolve such issues. Therefore we
decided on the following categories of task instructions:

4http://dropbox.com
5http://office.microsoft.com/powerpoint/
6http://libreoffice.org/impress/

174 EVALUATING THE IMPACT OF VIRTUAL OFFICE WALLS 9.4

1. Adding an object: Tasks in this category include descriptions to copy and
replace an object from the set of objects to the map. For example: ”Copy
the telephone object from the set of objects to the map and paste it directly
above the factory”

2. Drawing an arrow: Tasks in this category include descriptions to add an
arrow to the map. For each arrow multiple properties are specified like, the
starting point, ending point, color, weight, and style of the arrow, either
solid or dashed. An example of such a task description is: ”Draw a green
dashed arrow of width 5pt from the telephone object to the most right horse”.

3. Copying and moving an arrow: Tasks in this category include descriptions
to copy and move an arrow already drawn on the map e.g. ”Copy and paste
the green arrow and move it, starting at the most right horse to the left of
the bulldozer”.

(a) Map (b) Control group

Figure 9.9: Set of Objects

Each task only includes a single task instruction. Finally, when the participant
has completed the current task, see figure 9.10 for an example of a modified
resource, he needs to save and upload the file to the repository.

Figure 9.10: Example of a modified resource

9.5 FINDINGS 175

Resolving or re-open a Task

When a participant has completed the task to which he assigned himself, he
should update the status of the task to resolved. However, if the participant has
not completed the task and decides to work on another task, he should re-open
the task so someone else is able to resolve it.

Unlocking a Resource

When a participant has either resolved or re-opened the task to which he assigned
himself, he should also update the status of the resource to unlocked, so other
team members can lock this resource.

9.5 Findings
In this section the main findings of this study are presented. We discuss the
six research questions regarding the accuracy, speed and usefulness of virtual
office walls. For each of these domains we will present quantitative results from
the experiment and questionnaire, and qualitative results from the questionnaire.
The results of the data are visualized in different ways: we use (i) histograms to
illustrate the distribution of the data, and (ii) stacked bars without the neutral
data to illustrate the ratio between the positive and negative responses. Finally
we also evaluate the hypotheses based on the findings of the experiment and
questionnaire.

9.5.1 Speed of the Work Performed
We measured the influence of virtual office walls on the actual speed of work by
measuring the time it took the participants to successfully complete all projects of
the experiment. The control group needed 39 minutes to complete these projects,
while the test group only needed 35 minutes to complete their work. By comparing
these results, it can be seen that the introduction of virtual office walls increases
the speed of work by almost 10%. Since we also measured the time participants
needed to perform their tasks (so actually performing the instruction of the task),
we can also calculate the time they needed to coordinate their work. The control
group needed 19 minutes to coordinate their work while the test group only needed
15 minutes. This difference makes the impact of the introduction of virtual office
walls even more obvious, since the time needed to coordinate work was decreased
by approximately 20%.

The results of the questionnaire were used to analyze the perception of the
speed of work. We asked each participant to grade the speed of the work performed
by himself, the work performed by his team members, and the work performed
by the whole team, see figure 9.11. The results of the test group were slightly
more positive than the results of the control group. Since participants in the test

176 EVALUATING THE IMPACT OF VIRTUAL OFFICE WALLS 9.5

Figure 9.11: Perception of the speed of work

9.5 FINDINGS 177

group have not reported any negative values at all and some of them indicated the
perception of speed to be very high. Participants of the control group, however,
reported several negative values and none of them rated the perception of speed
very high. One of the participants of the control group gave as feedback: [Charlie]
”It seemed that I was searching a lot for a task that had an unlocked file associated
to it. My team members were locking files that I needed to edit”.

However, we cannot accept or reject our hypotheses regarding the speed of
work because of the small sample size of the experiment and the individual dif-
ferences in performing the specified tasks. We have, however, some indications
that the introduction of virtual office walls has decreased the time needed to co-
ordinate work and as such has a positive impact on the total speed of work (H1).
Additionally, we found some indicators corresponding to the hypothesis that vir-
tual office walls have a strong positive impact on the perception of the speed of
work (H2).

9.5.2 Accuracy of the work performed
Next to measuring the speed of work, we also measured the accuracy. The metric
used to verify the accuracy of the work performed, is dividing the number of
correct elements by the total number of elements. Both the test group and the
control group have performed their tasks without making a mistake. As such,
both groups have an accuracy of 100%. The removal of ambiguous requirements
from the original experiment appears to be the reason for this. Note that this
was done to control communication by excluding it from the experiment.

The perception of the work accuracy, however, cannot be derived by analyzing
the results of the performed tasks. Therefore, we asked each participant to grade
the accuracy of the work performed by himself, the work performed by his team
members, and the work performed by the whole team. From these results it can
be seen that in general the control group is more negative about the accuracy of
the work performed than the test group, see figure 9.12.

Figure 9.12: Perception of the work accuracy

These findings correspond with both hypotheses regarding accuracy: (H3)
the introduction of virtual office walls has no impact on the accuracy of the work
carried out, and (H4) the introduction of virtual office walls has a strong positive
impact on the perception of accuracy of the work carried out. Again, the sample
size of the experiment is too small to either reject or accept these hypotheses.

178 EVALUATING THE IMPACT OF VIRTUAL OFFICE WALLS 9.6

What is perhaps most striking about the data we gathered about the percep-
tion of work accuracy, is the difference in the number of No-Opinions between
these groups. Five participants of the control group have indicated they were not
able to grade the accuracy on a scale ranging from very low to very high, against
only one participant of the test group. Several of the participants of the control
group explain their choice, for example: [Ethan] ”I was unable to grade the work
that my team had done, since I did not know what their assignments were, or
what the goal was” and [Freddie] ”I have not checked the accuracy of my team
members, I opened the file to execute the task but I have not checked back at older
tasks to see if the file reflects the right state”. This is striking because it indicates
participants of the control group have a low level of awareness about the accuracy
of work carried out.

9.5.3 Usefulness of Virtual Office Walls

Finally, we measured both the usefulness and the ease of use of virtual office walls.
To analyze the usefulness of virtual office walls we asked the participants of the test
group to grade the usefulness of (i) the integration of the information, (ii) being
able to see the current context of your project members and the project they are
currently working on, and (iii) the differentiation between information that was
helpful to your current task and information that was not. We only considered the
test group in this analysis, because this group has actually experienced working
with virtual office walls and as such is able to give a well-argued opinion of the
usefulness of this concept. The results of these opinions (see figure 9.13), provide
strong indications that context based filtering of information is useful, since most
participant graded the usefulness in the range normal to very high.

Next to the usefulness of virtual office walls we also asked participants of both
groups to grade how easy or difficult it was to (i) see the active project of their
team members and (ii) differentiate between information that was helpful to their
current task and information that was not. The outcomes of these questions are
depicted in figure 9.14. It is obvious that participants in the test group find it much
easier to acquire the active context of their team members and to differentiate
between relevant and non-relevant information. One of the participants of the
control group, Daniel, indicated he had the feeling there was a ”Lock race” going
on as there was no way to determine who would carry out which task on what
resource.

These findings correspond with the hypotheses regarding the usefulness and
the ease of use of virtual office walls. Because, experienced software engineers
indicated they considered the introduction of virtual office walls to be useful (H5).
Participant also indicated that it was easy to differentiate between information
that is relevant and information that is not, and that the introduction of these
walls makes it easier to understand which other project members are working at
the same time on the same project (H6).

9.6 THREATS TO VALIDITY 179

Figure 9.13: Usefulness of virtual office walls

Figure 9.14: Ease of use of virtual office walls

9.6 Threats to Validity

In this section we discuss the threats to validity for this experiment on four as-
pects: construct validity, internal validity, external validity and conclusion valid-
ity.

Construct validity regards the extent in which the variables measured actu-
ally measure the constructs of interest. The main threat to construct validity of
this experiment is that we use the modification and manipulation of PowerPoint
maps instead of real programming work. One could argue that our study does not
investigate distributed software engineering, but distributed PowerPoint editing.
However, by doing this (i) internal validity is increased by eliminating differences
in individual programming skills, and (ii) throughput time is reduced. Further-
more, while on the one hand we were able to measure the speed by checking the
time stamps of the events in the repository and the accuracy by comparing the

180 EVALUATING THE IMPACT OF VIRTUAL OFFICE WALLS 9.8

outcomes to the predefined results directly. On the other hand we have to ask the
participants for their opinion to measure the perception of speed, accuracy and
usefulness. One could argue that in general it is difficult to measure opinions. As
such we used simple metrics on a 5-point likert scale and asked directly for the
perceived effects.

Internal validity is especially relevant in studies, such as this, that attempt to
identify a causal relationship. The question regarding internal validity is whether
the observed effect was actually caused by the researched factor. In this experi-
ment we managed to keep the experimental conditions relatively stable, consid-
ering we undertook the experiment in a real-life company. However, we need
to express that the tool was demonstrated to the engineers before. As such this
previous experience (without the virtual office wall functionality) might have influ-
enced their opinions. Furthermore, the control group and the test group consisted
of different people which can have influenced the results as well.

External validity is of interest in studies that want to draw generalized conclu-
sions. Although, experiments are in general highly externally valid [Woh00], for
this specific study it is too early to make generic claims. First of all, the sample
size is too small to draw statistically significant conclusions. Second of all, be-
cause the type of work the participants performed (placing and moving objects
on a map) and the average duration of the tasks only an approximation of the
actual work of software engineers is given.

Finally, conclusion validity expresses the extent in which the intervention
(providing the virtual office walls) actually led to the observed outcome, and
as such questions the reliability of the studies’ conclusions. We acknowledge that
the small number of samples and data points does not allow us to draw causal con-
clusions. This is however, a known problem, in experimental studies in software
engineering teams [Cal12].

9.7 Concluding Remarks

9.8 Conclusions
We conducted this research to discover how valuable virtual office walls are to
distributed software engineers. To reach this goal we performed a controlled
experiment. In this experiment we looked at the accuracy and speed of the work
performed and perception of these. Furthermore we investigated the extent in
which experienced distributed software engineers consider virtual office walls to
be useful.

The main findings of the study are the following:

1. Virtual office walls make work coordination easier, because they assist in
differentiating between information that is relevant to the current activity
of an engineer and information that is not

9.8 CONCLUSIONS 181

2. Virtual office walls contribute to an increased perception on overall perform-
ance.

Even though, the data we gathered is not statistically significant due to the
small sample size, it is interesting to see how these two main benefits are related
to each other. This is more clearly shown in figure 9.15.

Figure 9.15: Coordination - Performance system

In this figure each data point represents the results in the experiment of one of
the participants along two axes: the ’coordination efficiency index’ on the y-axis,
the ’performance perception index’ on the x-axis. The ’coordination efficiency
index’ is the normalized time the participant took to perform the coordination
portion of the experiment. This value is normalized to give the most efficient
participant the score ’100’ and the least efficient participant the score ’0’. The
’performance perception index’ is the normalized performance perception the par-
ticipant reported on the 5-point Likert scale. This value is normalized so the
maximum possible score is ’100’ (6 times very high) and the minimum score is
’0’ (6 times very low). Furthermore, for each of the two groups the outliers are
connected to create a tetragon to illustrate the space it encloses. Finally, the
average values, roughly at the center of the tetragons, are depicted as a fat data
point. In the figure it can be seen that the test group overall scores higher than
the control group on both metrics. It will be interesting to investigate this with
a much larger sample size to see if this conclusion will continue to hold.

Furthermore, the data collected in the questionnaire following the experiment
also indicated the overall usefulness of the virtual office wall concept. In general,

182 EVALUATING THE IMPACT OF VIRTUAL OFFICE WALLS 9.8

distributed software engineers are overloaded with an abundance of information,
such as information available on their systems, mailbox and tools, so every im-
provement in helping them cope will be welcomed with open arms. And doesn’t
that hold true for all of us? Imagine a world in which our e-mail would configure
itself to only include mails related to our current task. What if our computers
would notify us if our colleague is editing the same code as us or recommend us
who to ask for help when we are struggling with something? Wouldn’t our lives
be much less complicated if our working environment would adapt itself to us,
instead of the other way around?

This is the promise of mechanisms such as virtual office walls and with the
study presented in this chapter we have shown indications there is value in pur-
suing this further. The next step of this research should be a prioritization of the
information available to a software engineer, to be able to construct virtual office
walls which regulate information based on both the current activity of a software
engineer and the importance of the information.

9.8.1 Virtual Office Implications
In this chapter we have reported on a controlled experiment to study whether
there is a relation between the presence of virtual office walls and the actual and
perceived speed and accuracy of the work carried out by the participants. Further,
we also measured the extent in which the participants experience the presence of
virtual office walls as useful. As such this chapter contributes to answering the
fifth research question of this dissertation:

Research Question 5
What is the value of automating the process of restricting the available in-
formation to that information a software engineer needs to carry out his
current activity

This controlled experiment provided us with useful insights of the value of vir-
tual office walls for global software engineers during their day to day activities.
However, we could not derive new requirements of a virtual office.

Part V

Epilogue

183

Chapter10
Requirements of a Virtual Office

In this chapter we summarize the requirements of a virtual office we identified.
The main goal of this dissertation is ”To support global software engineers with
technological support for aiding them to relatively passively and unobtrusively ac-
quire a sufficient level of awareness for their work activities”. While we do not yet
have an all-encompassing approach to reach this goal, we did study three aspects
of the design and creation of a ’Virtual Office’. First, we studied what approach
should be used to research how best to support awareness in global software en-
gineering. Secondly, we looked at the value of communication in global software
engineering. Finally, we researched the information needs of global software en-
gineers.

10.1 Constructing a Virtual Office
Firstly, we discuss the requirements related to constructing a virtual office. These
requirements are based on our vision on how to provide distributed software en-
gineers with a sufficient level of awareness for their work activities.

We first compared the co-located setting with the distributed setting and
concluded that in a co-located setting awareness is spread relatively passively and
unobtrusively while it takes more effort in a distributed setting. In a distributed
setting a mechanism is needed which automatically regulates information based
on the current activity of an engineer, a ’Virtual Office Wall’. Such a mechanism
can help distributed software engineers to relatively passively and unobtrusively
acquire a sufficient level of awareness. Next, we discussed the two prerequisites
which should be fulfilled to construct virtual office walls. The first prerequisite
concerns having access to a data set which at least contains the required data at
a certain time. The second prerequisite of a virtual office wall concerns a method
to differentiate between required and not required information. The requirements

185

186 REQUIREMENTS OF A VIRTUAL OFFICE 10.2

of a virtual office we have derived based on this analysis are:

Req 1. Facilitate acquiring awareness relatively passively and unob-
trusively
Software engineers should be able to acquire a sufficient level of aware-
ness for their work activities in a relatively passive and unobtrusive
fashion, similar to a co-located setting. Therefore the analytical process
of accessing, combining and filtering information should be supported to
avoid misunderstandings, inconsistencies, incompatibilities and duplic-
ated information.

Req 2. Facilitate having access to a data set which at least contains
the required data to carry out work activities
Software engineers need a wide variety of information to carry out their
work activities. For example information about the requirements and the
software repository.

Req 3. Facilitate combining data from different sources
Software engineers need to combine and integrate information from dif-
ferent sources to create valuable information. For example combining
information about the artifacts that are usually modified together and
information who most frequently modified the related source code files,
makes it easier for a software engineer to determine who best to contact
in case of doubt.

Req 4. Facilitate differentiating between required and not required
information
Software engineers should be able to differentiate between required and
not required information to regulate the available information to that
information they need to carry out their current work activity.

Req 5. Facilitate a valid representation of the context of a software
engineer
Software engineers need a way to represent their context to determine
which information is required while performing a work activity.

After identifying the first five requirements on how to provide distributed
software engineers with a sufficient level of awareness we presented our approach
to develop and validate such solutions. This iterative approach consists of three
parts (i) identify real-life global software engineering problems, (ii) propose and
implement solutions for these problems, and (iii) evaluate these solutions in an
industrial setting.

10.2 COMMUNICATING IN A VIRTUAL OFFICE 187

10.2 Communicating in a Virtual Office

Secondly, we discuss the requirements of communicating in a virtual office. These
requirements are either related to the overhearing of conversations of others, or
to the sharing of information and corresponding emotions. First we provided a
theoretical motivation why the overhearing of conversations of others is valuable
to a distributed software engineering team. We provided a definition of a conver-
sation, discussed the various uses conversations have in collaborative work, and
provided a definition of an ’Open Conversation Space’. Next, we presented an
empirical study in which we evaluated the value of overhearing conversations in
the field of software engineering. In this empirical study we investigated whether
research on how to enable overhearing conversations in a distributed setting is
worth pursuing. We identified: (i) the benefits and challenges of having insight in
active conversations, (ii) the important types of information about a conversation,
(iii) the actions possible on a conversation, and (iv) the benefits and challenges of
having access to the finished conversations. For each of these benefits, challenges,
information items and possible actions we determined their relative importance.
Finally, we presented a technological implementation which enables the overhear-
ing of conversations in a distributed setting and performed an empirical case study
to measure the value of overhearing conversations in global software engineering.

Based on the contributions and the lessons learned of this line of research we
have derived the following requirements of a virtual office:

Req 6. Facilitate starting conversations
Software engineers should be able to have conversations, therefore it
should be possible to initiate a conversation. For example by choosing
a specific person, or a specific group of people to initially participate in
the conversation.

Req 7. Facilitate detecting active conversations
Software engineers should be able to overhear conversations of others,
therefore it should be possible to find out about active conversations.
Software engineers could, for example, detect a conversation because
they hear or see people talk to each other.

Req 8. Facilitate monitoring active conversations
Software engineers should be able to access information about the con-
versation without actually joining it.

Req 9. Facilitate participating in conversations
Software engineers should be able to become a participant in a conver-
sation. They can, for example, become a participant in a conversation
because they are invited into an ongoing conversation or because they
actively joined a conversation they overheard.

188 REQUIREMENTS OF A VIRTUAL OFFICE 10.3

Req 10. Facilitate finishing conversations
Software engineers should be able to finish a conversation.

Req 11. Facilitate having conversations which cannot be overheard by
others
Software engineers should be able to have conversations of a private
nature, which cannot be overheard by others.

Req 12. Facilitate changing the degree of involvement in a conversation
Software engineers should be able to change how aware they are of a
conversation by changing their degree of involvement. They should, for
example, be able to change their involvement from actively listening to
participating in a conversation.

Req 13. Facilitate having insight in the finished conversations
Software engineers should be able to find out about a finished conversa-
tion to access information about it.

After measuring the value of overhearing conversations, we also measured the
value of microblogging with mood-indicators (MBMI) in global software engin-
eering. We collected the empirical data needed, by mining over a year of usage
data of such a microblogging system. In this study we researched (i) the topics
discussed in a MBMI, (ii) the impact of the introduction of a MBMI on a software
team, (iii) the impact of the distribution on the use of a MBMI, and (iv) how
team composition impact collaboration with a MBMI. Based on the results of
this content analysis we interviewed five distinctive users of the system. In these
interviews we asked questions about what was unclear to us in the analysis and
we asked follow-up questions we had based on this analysis.

Based on this empirical study we have derived the following requirements of
a virtual office:

Req 14. Facilitate sharing information about a new topic
Software engineers should be able to share information about a new topic
to stay current on each other’s experiences and latest exploits.

Req 15. Facilitate responding to an existing topic
Software engineers should be able to respond to an existing topic to add
information or to answer a question.

Req 16. Facilitate sharing mood
Software engineers should be able to express their mood, for example
by specifying a happiness score ranging from totally unhappy to totally
happy.

10.3 INFORMATION NEEDS IN A VIRTUAL OFFICE 189

10.3 Information Needs in a Virtual Office
Finally, we discuss the requirements of information needs in a Virtual Office. We
conducted an Estimate-Talk-Estimate study with experienced software engineers
on how to regulate information available to software engineers based on both the
importance of that information and the current interruptibility of the engineer.
Based on this study we identified the following requirements:

Req 17. Facilitate informing software engineers immediately of inform-
ation about completed artifacts
Software engineers are especially interested in immediate updates of in-
formation about completed artifacts, e.g. requirements, design, and veri-
fication results.

Req 18. Facilitate informing software engineers immediately of inform-
ation about the technological solution
Software engineers are especially interested in immediate updates of in-
formation about the technological solution itself, e.g. the selected solu-
tions, the design of the components, and the design of the interfaces.

Req 19. Facilitate interrupting software engineers to provide them with
new information
Software engineers should be interrupted to immediately provide them
with information they want to know immediately.

Req 20. Facilitate controlling the moments during which one prefers
not to be interrupted
Software engineers should be able to control whether they prefer to be or
prefer not to be interrupted, especially during activities of a high inter-
active nature and activities which require a high level of concentration.

Lastly, we conducted a controlled experiment with experienced software engin-
eers as study participants. In this experiment we researched the value of virtual
office walls in global software engineering. This experiment provided us with
useful insights of the value of virtual office walls for global software engineers,
however we could not derive new requirements of a virtual office.

Chapter11
Conclusion

In the studies presented in this dissertation we researched aspects of the design,
implementation and evaluation of a virtual office. These studies all contribute to
the main goal of this dissertation:

Research Goal
”To support global software engineers with technological support for aiding
them to relatively passively and unobtrusively acquire a sufficient level of
awareness for their work activities”

While we do not yet have an all-encompassing approach to reach this goal, we did
study three important aspects of the design and creation of a ’Virtual Office’.

First, we studied what approach should be used to research how best to sup-
port awareness in global software engineering. We have focused on the differences
between the co-located setting and the distributed setting and concluded that
a mechanism is needed which automatically regulates information based on the
current activity of an engineer, a ’Virtual Office Wall’. Furthermore, we provided
an approach to develop and validate such a solution. Secondly, we looked at the
value of communication in global software engineering. We researched both the
value of overhearing conversations, and the value of microblogging with mood
indicators in such a setting. These studies provide empirical evidence that both
overhearing conversations of others, and microblogging with mood indicators are
valuable to distributed software engineering teams. Thirdly, we researched the
information needs of global software engineers. We presented two lists: a list of
information items of which software engineers want to be informed immediately,
and a list of activities during which software engineers prefer not to be interrup-
ted. In addition to these lists, we also provided a look-up table which can be used
to determine whether or not software engineers want to be immediately informed
of an information item, even though they are performing an activity during which

191

192 CONCLUSION 11.1

they prefer not to be interrupted. We concluded this part by studying the value
of automating the process of restricting the available information to that inform-
ation a software engineer needs to carry out his current activity and concluded
that such mechanisms contribute to an increased perception on overall perform-
ance and that they make work coordination easier. Finally, we derived a set of
requirements a virtual office should fulfill. These requirements contribute to the
main goal of this dissertation, because they provide important guidelines on how
best to provide global software engineers with the information they need.

In the remainder of this chapter we give a summary of the core contributions
of this dissertation, revisit the research questions of this dissertation, and evaluate
the research presented in this dissertation.

11.1 Summary of Contributions

All chapters in this dissertation have individual contributions. We summarize the
core contributions below:

General Contributions

• The analysis and identification of a set of requirements of a virtual office
Chapter 2, Chapter 4, Chapter 7 and Chapter 8

• Empirical evidence that the value of awareness sharing technology is higher
for people that work more distributed from their team and is higher when
a larger portion of the team uses it Chapter 6 and Chapter 7

• Empirical evidence that in settings where part of the team works co-located
the use of awareness sharing technology should be stimulated to encourage
its use by people that work mostly co-located Chapter 6 and Chapter 7

Constructing a Virtual Office

• The identification of the concept of virtual office walls Chapter 2

• Empirical evidence that automatically erecting virtual office walls have the
potential to provide distributed software engineers with the context of their
current activity Chapter 2

• The description of an iterative approach to research how to provide dis-
tributed software engineers with a sufficient level of awareness, in which
global software engineers and researchers collaborate to (i) identify real-life
problems, (ii) propose and implement solutions for these problems, and (iii)
evaluate the solutions for these problems Chapter 3

11.2 SUMMARY OF CONTRIBUTIONS 193

Communicating in a Virtual Office

• The identification of the concept of a conversation in the context of global
software engineering Chapter 4

• The identification of the concept of an open conversation space Chapter 4

• The analysis and identification of the challenges and benefits of an open
conversation space Chapter 5

• Empirical evidence that an open conversation space is a valuable concept
for software engineering teams Chapter 5

• The design and implementation of a virtual open conversation space:
Communico Chapter 6

• Empirical evidence that a virtual open conversation space is a valuable
concept for global software engineering teams Chapter 6

• Empirical evidence that the introduction of a microblogging solution with
mood indicators in a global software engineering environment increases
team-connectedness and eases access to information that is traditionally
harder to consistently acquire Chapter 7

Information Needs in a Virtual Office

• Empirical evidence that software engineers want to be immediately informed
of a wide variety of information, especially of information regarding (i)
completed artifacts, and (ii) the technological solution itself Chapter 8

• Empirical evidence that software engineers prefer not to be interrupted when
they are performing activities (i) of a highly interactive nature, and (ii)
which require a high level of concentration Chapter 8

• The indication that software engineers do not want to be immediately
informed of important information when they are performing an activity
during which they prefer not to be interrupted Chapter 8

• Empirical evidence that virtual office walls make work coordination easier
Chapter 9

• Empirical evidence that virtual office walls contribute to an increased
perception on overall performance Chapter 9

194 CONCLUSION 11.2

11.2 Revisiting the Research Questions
We have conducted several studies to determine (i) what approach should be used
to research how best to support awareness in global software engineering, (ii) the
value of communication in global software engineering, and (iii) the information
needs of global software engineers. In this section we attempt to answer the
research questions of each of these three aspects.

Constructing a Virtual Office

Research Question 1
What are the requirements for technological support to provide distributed
software engineers with the context of their current work activity?

To answer the first research question, we have formulated both our vision on
how to provide distributed software engineers with a sufficient level of awareness
and an approach to implement such a solution. We have formulated our vision in
chapter 2. We first compared the co-located setting with the distributed setting
and concluded that in a co-located setting awareness is spread relatively passively
and unobtrusively, while it takes more effort in a distributed setting. Therefore,
in a distributed setting, we proposed the use of a mechanism which has the poten-
tial to regulate the available information to that information an engineer needs
to carry out his current activity: a virtual office wall. Next, we discussed the
prerequisites of such a construct: (i) access to a data set which at least contains
the required data at a certain time, and (ii) a method to differentiate between
required and not required information. Finally, we discussed a specific method to
fulfill these prerequisites and validated this application in a practical case setting
as well.

After formulating our vision on how to provide distributed software engineers
with a sufficient level of awareness, we presented our approach to develop, im-
plement and validate such solutions in chapter 3. In this chapter we described
an iterative approach which consists of three parts: (i) identify real-life global
software engineering problems, (ii) propose and implement solutions for these
problems, and (iii) evaluate these solutions in an industrial setting. Next, we
discussed that it is highly desirable to collaborate with companies in which dis-
tributed collaboration is common. This is because the people working at such a
company experience the difficulties of working distributed from each other on a
daily bases and therefore have a good understanding of what is needed to improve
this situation. Another advantage of this collaboration is the ability to perform
high quality evaluations because such a company perfectly matches the target
setting for which we are attempting to solve issues. Finally, we discussed the
process we use to design and implement the solution itself and discussed the three
requirement such a process should fulfill: (i) being able to cope with uncertainty
and changing requirements,(ii) involving the intended users of the system as soon
as possible, and (iii) stimulating the usage of the proposed solution by all users.

11.2 REVISITING THE RESEARCH QUESTIONS 195

Both our vision on how best to support global software engineers, and our
approach to develop, implement and validate technological solutions which fulfill
this vision are important aspects in answering the first research question. We
used this vision in answering the other research questions and in discussing the
findings. Therefore, after conducting these empirical studies, we were able to de-
rive requirements a virtual office should fulfill. These requirements are presented
after each chapter of this dissertation, and each requirement is related to either
(i) constructing a virtual office, (ii) communicating in a virtual office, or (iii) in-
formation needs in a virtual office. An overview of all the requirements is given in
chapter 10. These requirements contribute to the first research question, because
they provide important guidelines on how best to design and implement a virtual
office.

Communicating in a Virtual Office

Research Question 2
What is the value of overhearing conversations in global software engineer-
ing?

The second research question is answered by (i) providing a theoretical motiv-
ation why the overhearing of conversations of others is valuable to a distributed
software engineering team (Chapter 4), (ii) evaluating the value of the concept
of overhearing conversations in the field of software engineering (Chapter 5), and
(iii) evaluating the value of overhearing conversations in global software engin-
eering from actual industrial experience (Chapter 6). In chapter 4 we provided
a definition of a conversation, discussed the reasons for having conversations,
provided a definition and requirements of an open conversation space, and dis-
cussed the advantages of overhearing the conversations of others. Next, in chapter
5, we presented an empirical study in which we evaluated the value of overhear-
ing conversations in the field of software engineering. The results of this study
include (i) the benefits and challenges of having insight in active conversations,
(ii) the important types of information about a conversation, (iii) the actions
possible on a conversation, (iv) the benefits and challenges of having access to
the finished conversations, and (v) the relative importance of these benefits, chal-
lenges, information items and possible actions. From this study we concluded
that an open conversation space is valuable to software engineering teams and
that research about support for overhearing conversations in global software en-
gineering is worth pursuing. Finally, in chapter 6, we presented Communico, a
technological implementation which enables the overhearing of conversations in
a distributed setting and explained how this solution fulfills the requirements of
an open conversation space. We used this solution to perform an empirical case
study to measure the value of overhearing conversations in global software engin-
eering from actual industrial experience. Based on the findings of this empirical
study we concluded that being able to overhear conversations of colleagues in a

196 CONCLUSION 11.2

global software engineering team is valuable.

Research Question 3
What is the value of microblogging with mood-indicators in global software
engineering?

To answer the third research question, we mined over a year of usage data of
a microblogging with mood-indicators system (MBMI). In this study, presented
in chapter 7, we researched (i) the topics discussed in a MBMI, (ii) the impact of
the introduction of a MBMI on a software team, (iii) the impact of the distribu-
tion on the use of a MBMI, and (iv) how team composition impact collaboration
with a MBMI. Based on the results of this content analysis we interviewed five
distinctive users of the system to clarify what was unclear to us in the analysis
and to ask them follow-up question we had based on this analysis. This empir-
ical study provided empirical evidence that the introduction of a microblogging
with mood-indicators solution in a distributed software engineering team increases
team-connectedness and eases access to information that is traditionally harder
to consistently acquire.

Information Needs in a Virtual Office

Research Question 4
How to regulate information available to software engineers based on both
the importance of that information and the current interruptibility of the
engineer?

To answer research question four we conducted an Estimate-Talk-Estimate
study with experienced software engineers on how to regulate information avail-
able to software engineers based on both the importance of that information and
the current interruptibility of the engineer. We structured this research, presen-
ted in chapter 8, using the five engineering process areas defined in the CMMI for
development: Requirements Development, Technical Solution, Verification, Val-
idation, and Product Integration. For each of these areas we determined (i) what
information software engineers want to know immediately, and (ii) during which
activities software engineers prefer not to be interrupted. These classifications
resulted into two lists: a list of information items of which software engineers
want to be informed immediately and a list of activities during which software
engineers prefer not to be interrupted. The outcomes of this study introduced a
contradiction, since participants on the one hand indicated that they like to be
informed immediately of several information items. On the other hand they also
indicated that they prefer not to be interrupted during some activities. There-
fore, we also provided a look-up table which can be used to determine whether or
not software engineers want to be immediately informed of an information item,
even though they are performing an activity during which they prefer not to be
interrupted.

11.3 EVALUATION AND THREATS TO VALIDITY 197

Research Question 5
What is the value of automating the process of restricting the available in-
formation to that information a software engineer needs to carry out his
current activity?

The answer of the final research question of this dissertation is discussed in
chapter 9. We performed a controlled experiment with experienced software en-
gineers as study participants to study whether there is a relation between the
presence of virtual office walls and the actual and perceived speed and accuracy
of the work carried out by the participants. Further, we also measured the ex-
tent in which the participants experience the presence of virtual office walls as
useful. The main findings of this study include that virtual office walls contrib-
ute to an increased perception on overall performance and that they make work
coordination easier.

11.3 Evaluation and Threats to Validity
The research conducted as part of this dissertation provides important guidelines
on the design and construction of a working environment which constantly ad-
apts itself to provide global software engineers with a sufficient level of awareness.
When such a mechanism, which introduces dynamic boundaries instead of static
boundaries, is successfully applied to a distributed environment it does not only
have the potential to match the co-located setting, it even has the opportunity
to outperform it. We studied three important aspects of the design and creation
of a virtual office: (i) constructing a virtual office, (ii) communicating in a vir-
tual office, and (iii) information needs in a virtual office. After conducting these
studies, we were able to derive a set of requirements a virtual office should fulfill.
This set of requirements covers important aspects of the design and creation of a
virtual office and should be implemented to support global software engineers in
acquiring information awareness related to their current activity.

For each of the empirical studies, we comprehensively described our research
sites and methods, made all data-gathering designs available, and discussed the
threats to validity. We also made all data available in anonymized form and made
the tools we used during the PhD study available upon request. We do this to
make both our data gathering process and data analysis process repeatable and
to mitigate threats to construct validity.

The research presented in this dissertation, however, also has some limitations.
Firstly, it does not provide an all-encompassing approach to support global soft-
ware engineers to relatively passively and unobtrusively acquire a sufficient level
of awareness. As such it does not fully reaches the goal of this dissertation, since
more work and research is needed to construct a virtual office in which global
software engineers can perform their daily activities.

Secondly, we cannot guarantee the completeness of the set of requirements
of a virtual office. This is because we only studied three aspects of the design,

198 CONCLUSION 11.3

implementation and evaluation of technological support for aiding global software
engineers to relatively passively and unobtrusively acquire a sufficient level of
awareness for their work activities. However, it is likely there exists other aspects
we did not study. It is also likely that the requirements related to communicating
in a virtual office and information needs in a virtual office are not complete. This
is because we focused on specific research topics, like overhearing conversations,
and did not study the complete research area. Next, the identified requirements
should be checked for a number of qualities including correctness, completeness,
measurability and consistency.

Thirdly, there exist a threat related to the distributed setting of IHomer.
Even though distributed collaboration is in the heart of the company, since the
default work location in the company is home, nearly all collaboration takes place
within the Netherlands. Therefore, one could argue this does not represents a
global software engineering environment since challenges caused by time zone and
cultural differences are not encountered.

Fourthly, there exists a minor threat related to the general pattern of studying
literature, gathering empirical data from industry, and identifying requirements.
This general pattern could have influenced the results, because the author might
be biased by literature before starting the data gathering process.

Finally, there exist threats to external validity. In most of the studies presented
in this dissertation we only studied a group of participants of a single company,
either Exact or IHomer. Therefore, to be able to generalize the findings of these
studies, these studies should be repeated in multiple distinct settings. Next to this
also the small sample size of most of the studies we conducted makes it difficult
to draw statistically significant conclusions.

Chapter12
Future Work

In this dissertation we presented our research on how best to support global
software engineers to relatively passively and unobtrusively acquire a sufficient
level of awareness for their work activities. In the chapters of this dissertation we
already provide opportunities for further research. In the remainder of this section
we will discuss important next steps of this research and Iris; an implementation
of a virtual office, which is used at IHomer.

12.1 Recommendations for Future Research
Firstly, it is worth replicating the studies reported in this dissertation in order
to draw statistically significant conclusions. Therefore, these studies need to be
conducted in other settings as well. Especially the controlled experiment presen-
ted in chapter 9 should be replicated. When this replicated experiment results in
similar results as the original experiment we can confirm that that virtual office
walls contribute to an increased perception on overall performance and that they
make work coordination easier. In fact, we can even conclude that our vision on
how to provide distributed software engineers with a sufficient level of awareness
is correct.

Secondly, the research regarding the requirements of a virtual office should be
continued to provide a complete set of requirements. First steps, regarding the
requirements related to the information needs of a virtual office are already taken
by Kevin Dullemond. In his research he has identified the information types
that are important to software engineers, and he investigated how the mutual
importance of these items changes as the items are more related to the current
activity of a software engineer [Dul13a].

Finally, the work on the identification, implementation, and evaluation of the
requirements of a virtual office should be continued. Since, these insights provide

199

200 FUTURE WORK 12.2

valuable information on how best to support global software engineers to relatively
passively and unobtrusively acquire a sufficient level of awareness for their work
activities.

12.2 Iris
During our PhD study we have investigated the use of Iris; a support environment
in which we implement the requirements of a virtual office, at IHomer. During this
study we have developed different versions of Iris each with different focus points
and implementation technologies. The version of Iris we discuss in this section is
currently used by the majority of the employees at IHomer. In the remainder of
this section we briefly describe the process we use to develop this environment,
the current state of this environment, and we discuss how this environment fulfills
the set of requirements of a virtual office.

Development Process

In the development of Iris we use an iterative approach to cope with the uncer-
tainties and changing requirements of developing a genuinely novel product. We
also involved the intended users of the system as soon and as strongly as possible.
We do this because, on the one hand they are experienced with working in a
distributed setting and as such can give valuable feedback. On the other hand
we needed to stimulate usage as soon as possible because the value of awareness
sharing technology is higher when a larger portion of the team uses it.

Iris

In figure 12.1 an overview of Iris is shown. The main screen of Iris consists of three
sections. Firstly we discuss the left side of the screen. On this side of the screen
the user can make changes to his or her personal settings, e.g. the user profile.
The user can configure both in which projects and teams he or she participates,
and which teams, projects or people he or she follows. Next to configuring their
preferences, the users can also select the organization or one of the teams, projects
and people to filter the available information. By selecting a specific context the
user-interface will only show information that corresponds to that context.

Secondly, in the middle section of the screen the most important information
is shown: the posts, comments and events belonging to the selected context. In
figure 12.1 the organization context is selected and only the posts and comments
which belong to the organization context are visible. In this section users are able
to (i) create a new post the selected context and attach an emotion to this, see
figure 12.2, (ii) view all posts belonging to this context, (iii) view all comments
of all posts belonging to this context, (iv) view detailed information about a
post including all comments in chronological order, see figure 12.3, and (v) add a
comment to this post.

12.2 IRIS 201

Figure 12.1: Iris - Main Screen

Figure 12.2: Iris - New Post

Figure 12.3: Iris - Detailed information about a post

202 FUTURE WORK 12.2

Next to posts and comments, also events can be shown in the middle section
of the screen. This can be done by clicking on the summarized event list shown
in the bottom right of the screen. By clicking on this list all events belonging to
the active context are shown in the middle section of the view. Events in Iris are
notifications of actions colleagues are performing in specialized systems that are
relevant to software engineers. An example of such an event is reporting a bug
in the issue management system. Currently, Iris includes notifications of actions
performed in the following specialized systems: (i) Issue Management System, (ii)
Software Repository, (iii) Build Sever, (iv) Google Drive, and (v) Google Mail.
Changes to issues originating from the issue management system are shown in
Iris. Users get informed of the creation of a new issue, the assignment of an issue
to someone, and when an issue is resolved. Next, the pushes to the software
repository are also shown in Iris. Furthermore, also the results of the automated
builds and deployments are shown to the users. Users get also informed of changes
to files in the Google Drive folder of the company, notifying the users something
has been edited. Finally, also changes to files in the Google Drive folders of the
company are shown as events. Finally, it is also possible to forward mails to Iris
which will automatically be shared in the specified context.

Finally, in the right section of the screen not only a summarized list of events
is shown, but also a list of links to various Google Hangouts the user can use
to communicate. Each of this links has an indicator showing who are currently
present in the Hangout.

A Virtual Office

Finally, we discuss how Iris fulfills the set of requirements of a virtual office. The
results are combined in table 12.1. In this table a ’7-sign’ indicates that the
requirement depicted in the row is not implemented by the solution depicted in
the column. A ’3-sign’ indicates that progress in fulfilling this requirement is
made.

First, we discuss the requirements related to constructing a virtual office. Be-
cause we develop Iris based on our vision on how best to provide distributed
software engineers with a sufficient level of awareness for their work activities, it
attempts to fulfill the first five requirements. As described in the previous section
Iris already combines information of actions performed in multiple specialized
systems (Req 3.) and provides a mechanism, based on the current context of a
software engineer, to differentiate between required and not required information
(Req 4. and Req 5.). It also facilitates having access to a data set which contains
important information about the actions colleagues performed in specialized tool-
ing. This can however be improved by including other relevant systems (Req 2.).
Finally, it is to early to conclude that by using the Iris platform engineers are
able to acquire awareness relatively passively and unobtrusively (Req 1.). We do
however have initial results that our approach is valuable [Dul13c].

Secondly, we discuss the requirements related to communicating in a virtual

12.2 IRIS 203

office. Employees at IHomer use Google Hangouts to have conversations. As such
we did not implement this functionality in Iris. Hence, we discuss how Google
Hangouts fulfill the requirements related to having and overhearing conversations.
In a Google Hangout it is possible to both have conversations with anyone who
is present, and to overhear conversations others are having. As such Google
Hangouts fulfill requirement six to ten. In these Hangouts it is also possible
for users to change their degree of involvement in a conversation, they could for
example join a conversation which they overhear. However, it is not possible to
have private conversations (Req 11.), and to find out about finished conversations
(Req 13.). Next to having and overhearing conversations, users should also be able
to share interesting information and express their current mood. In the previous
section we discussed that it is possible to create new posts and add comments to
these posts. In Iris it is also possible for users to express their mood about what
they are posting, see figure 12.2. As such requirement 14 to 16 are fulfilled by
Iris.

Finally, we discuss the requirements related to information needs of a virtual
office. Currently, Iris partially fulfills requirement 17 and 18. Since most of the
coupled specialized systems contain information about the technological solution,
e.g. issue management system and the software repository. Other coupled systems
contain information about the completed artifacts, e.g. Google Drive and the
build server. These systems do not include all information needed by the software
engineers and as such other specialized systems should be coupled. The current
solution of Iris does not have a mechanism to interrupt software engineers to
provide them with new important information (Req 19. and Req 20.). Therefore
we should design such a mechanism and evaluate it in an industrial setting.

It is exiting to continue the design and construction of a virtual office, which
automatically regulates the available information based on both the current activ-
ity of an engineer, and the information engineers want to know immediately.

204 FUTURE WORK 12.2

Requirement Iris Hangouts

Req 1. Facilitate acquiring awareness relatively
passively and unobtrusively

3 7

Req 2. Facilitate having access to a data set
which at least contains the required data
to carry out work activities

3 7

Req 3. Facilitate combining data from different
sources

3 7

Req 4. Facilitate differentiating between required
and not required information

3 7

Req 5. Facilitate a valid representation of the
context of a software engineer

3 7

Req 6. Facilitate starting conversations 7 3

Req 7. Facilitate detecting active conversations 7 3

Req 8. Facilitate monitoring active conversations 7 3

Req 9. Facilitate participating in conversations 7 3

Req 10. Facilitate finishing conversations 7 3

Req 11. Facilitate having conversations which
cannot be overheard by others

7 7

Req 12. Facilitate changing the degree of involve-
ment in a conversation

7 3

Req 13. Facilitate having insight in the finished
conversations

7 7

Req 14. Facilitate sharing information about a
new topic

3 7

Req 15. Facilitate responding to an existing topic 3 7

Req 16. Facilitate sharing mood 3 7

Req 17. Facilitate informing software engineers
immediately of information about com-
pleted artifacts

3 7

Req 18. Facilitate informing software engineers
immediately of information about the
technological solution

3 7

Req 19. Facilitate interrupting software engineers
to provide them with new information

7 7

Req 20. Facilitate controlling the moments during
which one prefers not to be interrupted

7 7

Table 12.1: How Iris fulfills the requirements of a Virtual Office

Bibliography

[Abr02] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta. Agile software
development methods. Review and analysis. VTT Publications, 2002.

[Åge05] P. J. Ågerfalk, B. Fitzgerald, H. Holmström, B. Lings, B. Lundell, and
E. Ó. Conchúir. A framework for considering opportunities and threats
in distributed software development. In Proceedings of the International
Workshop on Distributed Software Development, pp. 47–61. Austrian
Computer Society, 2005.

[Åge08] P. J. Ågerfalk, B. Fitzgerald, H. H. Olsson, and E. Ó. Conchúir. Be-
nefits of global software development: The known and unknown. In
Making Globally Distributed Software Development a Success Story, pp.
1–9. Springer, 2008.

[All77] T. Allen. Managing the flow of technology. MIT press, 1977.

[All07] T. Allen and G. Henn. The organization and architecture of innovation:
Managing the flow of technology. Elsevier, 2007.

[Bab12] E. R. Babbie. The Practice of Social Research. Cengage Learning, 13
edn., 2012.

[Bai78] K. D. Bailey. Methods of Social Research. Free Press, 1978.

[Bat01] R. D. Battin, R. Crocker, J. Kreidler, and K. Subramanian. Leveraging
resources in global software development. Software, vol. 18(2):pp. 70–77,
2001.

[Bir08] J. Birnholtz, C. Gutwin, G. Ramos, and M. Watson. OpenMessenger:
gradual initiation of interaction for distributed workgroups. In Proceed-
ings of the Conference on Human Factors in Computing Systems, pp.
1661–1664. ACM, 2008.

205

206 BIBLIOGRAPHY

[Bly93] S. A. Bly, S. R. Harrison, and S. Irwin. Media spaces: bringing people to-
gether in a video, audio, and computing environment. Communications,
vol. 36(1):pp. 28–46, 1993.

[Cad01] J. Cadiz, G. Venolia, G. Jancke, and A. Gupta. Sideshow: Providing
peripheral awareness of important information. Tech. rep., Microsoft
Research, Collaboration, and Multimedia Group, 2001.

[Cal12] F. Calefato, F. Lanubile, T. Conte, and R. Prikladnicki. Assessing the
impact of real-time machine translation on requirements meetings: a
replicated experiment. In Proceedings of the international symposium on
Empirical software engineering and measurement, pp. 251–260. ACM,
2012.

[Car99] E. Carmel. Global software teams: collaborating across borders and time
zones. Prentice Hall PTR, 1999.

[Car01] E. Carmel and R. Agarwal. Tactical approaches for alleviating distance
in global software development. Software, vol. 18(2):pp. 22–29, 2001.

[Cat06] M. Cataldo, P. A. Wagstrom, J. D. Herbsleb, and K. M. Carley. Iden-
tification of coordination requirements: implications for the design of
collaboration and awareness tools. In Proceedings of the conference on
Computer Supported Cooperative Work, pp. 353–362. ACM, 2006.

[Con06] E. Ó. Conchúir, H. H. Olsson, P. J. Ågerfalk, and B. Fitzgerald. Explor-
ing the assumed benefits of global software development. In Proceedings
of the International Conference on Global Software Engineering, pp. 159–
168. IEEE, 2006.

[Cro05] K. Crowston and J. Howison. The social structure of free and open source
software development. First Monday, vol. 10(2), 2005.

[Cur88] B. Curtis, H. Krasner, and N. Iscoe. A field study of the software design
process for large systems. Communications of the ACM, vol. 31(11):pp.
1268–1287, 1988.

[Cut01] E. Cutrell, M. Czerwinski, and E. Horvitz. Notification, disruption, and
memory: Effects of messaging interruptions on memory and performance.
pp. 263–269. IOS, 2001.

[Cze04] M. Czerwinski, E. Horvitz, and S. Wilhite. A diary study of task switch-
ing and interruptions. In Proceedings of the conference on Human factors
in Computing Systems, pp. 175–182. ACM, 2004.

[Dab11] L. Dabbish, G. Mark, and V. M. González. Why do i keep interrupting
myself?: environment, habit and self-interruption. In Proceedings of the
Conference on Human Factors in Computing Systems, pp. 3127–3130.
ACM, 2011.

BIBLIOGRAPHY 207

[Dal63] N. Dalkey and O. Helmer. An experimental application of the delphi
method to the use of experts. Management science, vol. 9(3):pp. 458–
467, 1963.

[Dam06] D. Damian and D. Moitra. Global software development: How far have
we come? Software, vol. 23(5):pp. 17–19, 2006.

[Die09] Dieringer Research Group Inc. Telework Trendlines 2009: A Survey Brief
by WorldatWork, 2009.

[Dix04] A. Dix, J. Finlay, G. Abowd, and R. Beale. Human-computer interaction.
Prentice hall, 2004.

[Dou92] P. Dourish and V. Bellotti. Awareness and Coordination in Shared Work-
spaces. In Proceedings of the Conference on Computer Supported Cooper-
ative Work, pp. 107–114. ACM, 1992.

[DS11] C. R. De Souza and D. F. Redmiles. The awareness network, to whom
should i display my actions? and, whose actions should i monitor? Trans-
actions on Software Engineering, vol. 37(3):pp. 325–340, 2011.

[Dul09] K. Dullemond and B. van Gameren. Technological support for distributed
agile development. Master thesis, Delft University of Technology, 2009.

[Dul10] K. Dullemond, B. van Gameren, and R. van Solingen. Virtual open
conversation spaces: Towards improved awareness in a gse setting. In
Proceedings of the 5th International Conference on Global Software En-
gineering, pp. 247–256. IEEE, 2010.

[Dul11a] K. Dullemond and B. van Gameren. Communico: overhearing conver-
sations in a virtual office. In Proceedings of the conference on Computer
Supported Cooperative Work, pp. 577–578. ACM, 2011.

[Dul11b] K. Dullemond, B. van Gameren, and R. van Solingen. An exploratory
study on open conversation spaces in software engineering. In Proceed-
ings of the 7th International Conference on Collaborative Computing:
Networking, Applications and Worksharing, pp. 307–316. IEEE, 2011.

[Dul11c] K. Dullemond, B. van Gameren, and R. van Solingen. Overhearing
conversations in global software engineering-requirements and an imple-
mentation. In Proceedings of the 7th International Conference on Collab-
orative Computing: Networking, Applications and Worksharing, pp. 1–8.
IEEE, 2011.

[Dul12a] K. Dullemond and B. van Gameren. An industrial evaluation of tech-
nological support for overhearing conversations in global software en-
gineering. In Proceedings of the 7th International Conference on Global
Software Engineering, pp. 65–74. IEEE, 2012.

208 BIBLIOGRAPHY

[Dul12b] K. Dullemond, B. van Gameren, and R. van Solingen. Supporting dis-
tributed software engineering in a fully distributed organization. In Pro-
ceedings of the 5th International Workshop on Cooperative and Human
Aspects of Software Engineering, pp. 30–36. IEEE, 2012.

[Dul13a] K. Dullemond and B. van Gameren. What distributed software teams
need to know and when: an empirical study. In Proceedings of the 8th In-
ternational Conference on Global Software Engineering, pp. 61–70. IEEE,
2013.

[Dul13b] K. Dullemond, B. v. van Gameren, M.-A. Storey, and A. v. Deursen.
Fixing the’out of sight out of mind’problem: one year of mood-based
microblogging in a distributed software team. In Proceedings of the 10th
International Workshop on Mining Software Repositories, pp. 267–276.
IEEE, 2013.

[Dul13c] K. Dullemond and R. van Solingen. Increasing awareness in distributed
software teams: a first evaluation. In Proceedings of the 9th International
Conference on Collaborative Computing: Networking, Applications and
Worksharing, pp. 325–334. IEEE, 2013.

[Dun64] M. D. Dunnette. Are meetings any good for solving problems? Selb-
stverl., 1964.

[Ebe01] C. Ebert and P. De Neve. Surviving global software development. Soft-
ware, vol. 18(2):pp. 62–69, 2001.

[Ehr07] K. Ehrlich, G. Valetto, and M. Helander. Seeing inside: Using social net-
work analysis to understand patterns of collaboration and coordination
in global software teams. In Proceedings of the International Conference
on Global Software Engineering, pp. 297–298. IEEE, 2007.

[Ehr10] K. Ehrlich and N. S. Shami. Microblogging inside and outside the work-
place. In Proceedings of the international conference on Supporting group
work, pp. 42–49. AAAI, 2010.

[Eng87] Y. Engeström. Learning by expanding. An activity-theoretical approach
to developmental research. Orienta-Konsultit Oy, 1987.

[Eng99] Y. Engeström and R. Miettinen. Perspectives on activity theory. Cam-
bridge University, 1999.

[Epp04] M. J. Eppler and J. Mengis. The concept of information overload: A
review of literature from organization science, accounting, marketing,
mis, and related disciplines. The information society, vol. 20(5):pp. 325–
344, 2004.

BIBLIOGRAPHY 209

[Eri99] T. Erickson, D. N. Smith, W. A. Kellogg, M. Laff, J. T. Richards, and
E. Bradner. Socially translucent systems: social proxies, persistent con-
versation, and the design of babble. In Proceedings of the conference on
Human Factors in Computing Systems, pp. 72–79. ACM, 1999.

[Eri06] T. Erickson, W. Kellogg, M. Laff, J. Sussman, T. Wolf, C. Halverson,
and D. Edwards. A persistent chat space for work groups: the design,
evaluation and deployment of loops. In Proceedings of the Conference on
Designing Interactive systems, pp. 331–340. ACM, 2006.

[Esp03] J. A. Espinosa and E. Carmel. The impact of time separation on co-
ordination in global software teams: a conceptual foundation. Software
Process: Improvement and Practice, vol. 8(4):pp. 249–266, 2003.

[Esp07] J. A. Espinosa, N. Nan, and E. Carmel. Do gradations of time zone sep-
aration make a difference in performance? a first laboratory study. In
Proceedings of the International Conference on Global Software Engin-
eering, pp. 12–22. IEEE, 2007.

[Exa10] Exact Holding N.V. Annual Report 2010, 2010.

[Fes12] A. Fessl, V. Rivera-Pelayo, V. Pammer, and S. Braun. Mood tracking in
virtual meetings. In Proceedings of the European Conference of Techno-
logy Enhanced Learning, pp. 377–382. Springer, 2012.

[Fin03] A. Fink. How to manage, analyze, and interpret survey data. Sage,
London, 2nd edn., 2003.

[Fis35] R. Fisher. The design of experiments. Oliver & Boyd, 1935.

[Fis12] G. Fischer. Context-aware systems: the ’right’ information, at the ’right’
time, in the ’right’ place, in the ’right’ way, to the ’right’ person. In
Proceedings of the International Working Conference on Advanced Visual
Interfaces, pp. 287–294. ACM, 2012.

[Fog05] J. Fogarty, S. E. Hudson, C. G. Atkeson, D. Avrahami, J. Forlizzi,
S. Kiesler, J. C. Lee, and J. Yang. Predicting human interruptibility with
sensors. Transactions on Computer-Human Interaction, vol. 12(1):pp.
119–146, 2005.

[Fon05] A. Fontana and J. Frey. The interview: From neutral stance to political
involvement. The Sage handbook of qualitative research, vol. 3:pp. 695–
727, 2005.

[Ful13] D. Fullerton. Why we (still) believe in working remotely, 2013.

[Gal90] J. E. Galegher, R. E. Kraut, and C. E. Egido. Intellectual teamwork:
Social and technological foundations of cooperative work. Lawrence Erl-
baum Associates, 1990.

210 BIBLIOGRAPHY

[Gam12] B. van Gameren, K. Dullemond, and R. van Solingen. Auto-erecting
virtual office walls. In Proceedings of the 8th International Conference on
Collaborative Computing: Networking, Applications and Worksharing,
pp. 391–397. IEEE, 2012.

[Gam13a] B. van Gameren, R. van Solingen, and K. Dullemond. Auto-erecting
virtual office walls a controlled experiment. In Proceedings of the 8th
International Conference on Global Software Engineering, pp. 206–215.
IEEE, 2013.

[Gam13b] B. v. van Gameren and R. van Solingen. When to interrupt global
software engineers to provide them with what information? In Proceed-
ings of the 9th International Conference on Collaborative Computing:
Networking, Applications and Worksharing, pp. 495–504. IEEE, 2013.

[Gar99] O. Garćıa, J. Favela, and R. Machorro. Emotional awareness in collab-
orative systems. In String Processing and Information Retrieval Sym-
posium, 1999 and International Workshop on Groupware, pp. 296–303.
IEEE, 1999.

[Gib97] A. Gibbs. Focus groups. Social research update, vol. 19(8), 1997.

[Gil00] B. Gillham. Developing a questionnaire. Continuum, 2000.

[Gre01] S. Greenberg and M. Rounding. The notification collage: posting inform-
ation to public and personal displays. In Proceedings of the conference
on Human factors in Computing Systems, pp. 514–521. ACM, 2001.

[Gre02] J. Grenning. Planning poker or how to avoid analysis paralysis while
release planning. Hawthorn Woods: Renaissance Software Consulting,
vol. 3, 2002.

[Gre07] K. C. Green, J. S. Armstrong, and A. Graefe. Methods to elicit forecasts
from groups: Delphi and prediction markets compared. Foresight: The
International Journal of Applied Forecasting, vol. 8(8):pp. 17–21, 2007.

[Gri99] R. E. Grinter, J. D. Herbsleb, and D. E. Perry. The geography of co-
ordination: dealing with distance in r&d work. In Proceedings of the In-
ternational Conference on Supporting Group Work, pp. 306–315. ACM,
1999.

[Gro05] T. Gross, C. Stary, and A. Totter. User-centered awareness in computer-
supported cooperative work-systems: Structured embedding of findings
from social sciences. International Journal of Human-Computer Interac-
tion, vol. 18(3):pp. 323–360, 2005.

BIBLIOGRAPHY 211

[Gus73] D. H. Gustafson, R. K. Shukla, A. Delbecq, and G. W. Walster. A
comparative study of differences in subjective likelihood estimates made
by individuals, interacting groups, delphi groups, and nominal groups.
Organizational Behavior and Human Performance, vol. 9(2):pp. 280–291,
1973.

[Gut95] C. Gutwin, G. Stark, and S. Greenberg. Support for workspace awareness
in educational groupware. In The International Conference on Computer
Support for Collaborative Learning, pp. 147–156. L. Erlbaum Associates
Inc., 1995.

[Gut96] C. Gutwin, S. Greenberg, and M. Roseman. Workspace awareness in
real-time distributed groupware: Framework, widgets, and evaluation.
In People and Computers, pp. 281–298. Springer, 1996.

[Gut02] C. Gutwin and S. Greenberg. A descriptive framework of workspace
awareness for real-time groupware. Computer Supported Cooperative
Work, vol. 11(3-4):pp. 411–446, 2002.

[Gut04] C. Gutwin, R. Penner, and K. Schneider. Group awareness in distributed
software development. In Proceedings of the conference on Computer
Supported Cooperative Work, pp. 72–81. ACM, 2004.

[Har02] I. Harpaz. Advantages and disadvantages of telecommuting for the in-
dividual, organization and society. Work Study, vol. 51(2):pp. 74–80,
2002.

[Her99] J. D. Herbsleb and R. E. Grinter. Architectures, coordination, and dis-
tance: Conway’s law and beyond. Software, vol. 16(5):pp. 63–70, 1999.

[Her00] J. D. Herbsleb, A. Mockus, T. A. Finholt, and R. E. Grinter. Distance,
dependencies, and delay in a global collaboration. In Proceedings of
the conference on Computer Supported Cooperative Work, pp. 319–328.
ACM, 2000.

[Her01] J. D. Herbsleb and D. Moitra. Global software development. Software,
vol. 18(2):pp. 16–20, 2001.

[Her03] J. D. Herbsleb and A. Mockus. An empirical study of speed and commu-
nication in globally distributed software development. Transactions on
Software Engineering, vol. 29(6):pp. 481–494, 2003.

[Her05] J. D. Herbsleb, D. J. Paulish, and M. Bass. Global software develop-
ment at siemens: experience from nine projects. In Proceedings of the
International Conference on Software Engineering, pp. 524–533. IEEE,
2005.

212 BIBLIOGRAPHY

[Her07] J. D. Herbsleb. Global software engineering: The future of socio-technical
coordination. In Future of Software Engineering, pp. 188–198. IEEE,
2007.

[Hes91] B. W. Hesse and C. E. Grantham. Electronically distributed work
communities: implications for research on telework. Internet Research,
vol. 1(1):pp. 4–17, 1991.

[Hil85] S. R. Hiltz and M. Turoff. Structuring computer-mediated com-
munication systems to avoid information overload. Communications,
vol. 28(7):pp. 680–689, 1985.

[Hol06] H. Holmström, E. Ó. Conchúir, P. J. Ågerfalk, and B. Fitzgerald. Global
software development challenges: A case study on temporal, geographical
and socio-cultural distance. In Proceedings of the International Confer-
ence on Global Software Engineering, pp. 3–11. IEEE, 2006.

[Ink08] K. Inkpen, S. Whittaker, M. Czerwinski, R. Fernandez, and J. Wallace.
GroupBanter: Supporting Serendipitous Group Conversations with IM.
In Proceedings of the International Conference on Collaborative Comput-
ing: Networking, Applications and Worksharing, pp. 485–498. Springer,
2008.

[Iqb07] S. T. Iqbal and E. Horvitz. Disruption and recovery of computing tasks:
field study, analysis, and directions. In Proceedings of the conference on
Human factors in Computing Systems, pp. 677–686. ACM, 2007.

[Iqb10] S. T. Iqbal and E. Horvitz. Notifications and awareness: a field study of
alert usage and preferences. In Proceedings of the conference on Computer
Supported Cooperative Work, pp. 27–30. ACM, 2010.

[Jan08] B. Jansen, I. Taksa, and A. Spink. Research and methodological found-
ations of transaction log analysis. In Handbook of research on Web log
analysis, pp. 1–17. Hershey, 2008.

[Jav07] A. Java, X. Song, T. Finin, and B. Tseng. Why we twitter: understanding
microblogging usage and communities. In Proceedings of the Workshop
on Web Mining and Social Network Analysis, pp. 56–65. ACM, 2007.

[Jud91] C. M. Judd, E. R. Smith, and L. H. Kidder. Research Methods in Social
Relations. Harcourt Brace Jovanovich, 1991.

[Kel03] K. Kelley, B. Clark, V. Brown, and J. Sitzia. Good practice in the conduct
and reporting of survey research. International Journal for Quality in
Health Care, vol. 15(3):pp. 261–266, 2003.

[Kie03] L. Kiel. Experiences in distributed development: a case study. In Pro-
ceedings of the International Workshop on Global Software Development,
pp. 44–47. 2003.

BIBLIOGRAPHY 213

[Ko07] A. J. Ko, R. DeLine, and G. Venolia. Information needs in collocated
software development teams. In Proceedings of the International Confer-
ence on Software Engineering, pp. 344–353. IEEE, 2007.

[Kon04] J. Kontio, L. Lehtola, and J. Bragge. Using the focus group method
in software engineering: obtaining practitioner and user experiences. In
Proceedings of the International Symposium on Empirical Software En-
gineering, pp. 271–280. IEEE, 2004.

[Kra90] R. E. Kraut, R. S. Fish, R. W. Root, and B. L. Chalfonte. Informal
communication in organizations: Form, function, and technology. In
Human reactions to technology: Claremont symposium on applied social
psychology, pp. 145–199. Sage Publications, 1990.

[Kra95] R. E. Kraut and L. A. Streeter. Coordination in software development.
Communications, vol. 38(3):pp. 69–81, 1995.

[Lan03] J. D. Langford and D. McDonagh. Focus Groups: Supporting Effective
Product Development. Taylor and Francis, 2003.

[Lan10] F. Lanubile, C. Ebert, R. Prikladnicki, and A. Vizcáıno. Collaboration
tools for global software engineering. Software, vol. 27(2):pp. 52–55, 2010.

[Lar04] C. Larman. Agile and iterative development: a manager’s guide. Addison-
Wesley Professional, 2004.

[Leo78] A. Leont’ev. Activity, Consciousness, and Personality. Englewood Cliffs,
Prentice Hall, 1978.

[Lik32] R. Likert. A technique for the measurement of attitudes. Archives of
psychology, vol. 22(140):pp. 1–55, 1932.

[Mar02] G. Mark. Extreme collaboration. Communications of the ACM,
vol. 45(6):pp. 89–93, 2002.

[Mar08] G. Mark, D. Gudith, and U. Klocke. The cost of interrupted work: more
speed and stress. In Proceedings of the conference on Human Factors in
Computing Systems, pp. 107–110. ACM, 2008.

[McC93] K. R. McCord. Managing the integration problem in concurrent engin-
eering. Master thesis, Massachusetts Institute of Technology, 1993.

[Mis03] F. Mish, editor. Merriam-Webster’s collegiate dictionary. Merriam-
Webster Inc., Springfield, 2003.

[Mor11] S. Mora, V. Rivera-Pelayo, and L. Müller. Supporting mood awareness in
collaborative settings. In Proceedings of the International Conference on
Collaborative Computing: Networking, Applications and Worksharing,
pp. 268–277. IEEE, 2011.

214 BIBLIOGRAPHY

[Ngu08] T. Nguyen, T. Wolf, and D. Damian. Global software development and
delay: Does distance still matter? In Proceedings of the International
Conference on Global Software Engineering, pp. 45–54. IEEE, 2008.

[Nii08] T. Niinimaki and C. Lassenius. Experiences of instant messaging in global
software development projects: A multiple case study. In Proceedings of
the International Conference on Global Software Engineering, pp. 55–64.
IEEE, 2008.

[Oko04] C. Okoli and S. D. Pawlowski. The delphi method as a research tool: an
example, design considerations and applications. Information & Man-
agement, vol. 42(1):pp. 15–29, 2004.

[Ols96] J. S. Olson and S. Teasley. Groupware in the wild: lessons learned from a
year of virtual collocation. In Proceedings of the conference on Computer
Supported Cooperative Work, pp. 419–427. ACM, 1996.

[Ols00] G. M. Olson and J. S. Olson. Distance matters. Human-computer inter-
action, vol. 15(2):pp. 139–178, 2000.

[Omo09] I. Omoronyia, J. Ferguson, M. Roper, and M. Wood. Using developer
activity data to enhance awareness during collaborative software devel-
opment. Computer Supported Cooperative Work, vol. 18:pp. 509–558,
2009.

[Omo10] I. Omoronyia, J. Ferguson, M. Roper, and M. Wood. A review of aware-
ness in distributed collaborative software engineering. Software: Practice
and Experience, vol. 40(12):pp. 1107–1133, 2010.

[O’R04] T. O’Reilly. The architecture of participation, 2004.

[Par76] D. Parnas. On the design and development of program families. Trans-
actions on Software Engineering, vol. SE-2(1):pp. 1–9, 1976.

[Per94] D. E. Perry, N. A. Staudenmayer, and L. G. Votta. People, organizations,
and process improvement. Software, vol. 11(4):pp. 36–45, 1994.

[Pot93] C. Potts. Software-engineering research revisited. Software, IEEE,
vol. 10(5):pp. 19–28, 1993.

[PR12] J. Portillo-Rodŕıguez, A. Vizcáıno, M. Piattini, and S. Beecham. Tools
used in global software engineering: A systematic mapping review. In-
formation and Software Technology, vol. 54(7):pp. 663 – 685, 2012.

[Pra93] J. Pratt. Myths and Realities of Working at Home: Characteristics of
Homebased Business Owners and Telecommuters. Tech. rep., National
Technical Information Service, 1993.

BIBLIOGRAPHY 215

[Pri99] W. Prinz. Nessie: an awareness environment for cooperative settings. In
Proceedings of the European Conference on Computer Supported Cooper-
ative Work, pp. 391–410. Springer, 1999.

[Pri07] R. Prikladnicki, J. L. N. Audy, D. Damian, and T. C. de Oliveira. Distrib-
uted software development: Practices and challenges in different business
strategies of offshoring and onshoring. In Proceedings of the International
Conference on Global Software Engineering, pp. 262–274. IEEE, 2007.

[Pri09] R. Prikladnicki. Exploring propinquity in global software engineering. In
Proceedings of the International Conference on Global Software Engin-
eering, pp. 133–142. IEEE, 2009.

[Red07] D. Redmiles, A. Van Der Hoek, B. Al-Ani, T. Hildenbrand, S. Quirk,
A. Sarma, R. Filho, C. de Souza, and E. Trainer. Continuous
coordination-a new paradigm to support globally distributed software
development projects. Wirtschafts Informatik, vol. 49(1):p. 28, 2007.

[Ren11] Y. Ren and R. E. Kraut. A simulation for designing online community:
Member motivation, contribution, and discussion moderation, 2011.

[Rib02] A. Ribak, M. Jacovi, and V. Soroka. Ask before you search: peer sup-
port and community building with ReachOut. In Proceedings of the Con-
ference on Computer Supported Cooperative Work, pp. 126–135. ACM,
2002.

[San06] R. Sangwan, M. Bass, N. Mullick, D. J. Paulish, and J. Kazmeier. Global
software development handbook. Auerbach Publications, 2006.

[Sar05] A. Sarma. A survey of collaborative tools in software development. Tech.
rep., University of California, Irvine, 2005.

[Sar09] A. Sarma, J. Herbsleb, L. Maccherone, and P. Wagstrom. Tesseract:
Interactive visual exploration of socio-technical relationships in software
development. In Proceedings of the International Conference on Software
Engineering, pp. 23–33. IEEE, 2009.

[Sar10] A. Sarma, A. Van der Hoek, and D. Redmiles. The coordination pyr-
amid: A perspective on the state of the art in coordination technology.
Computer, vol. PP(99):p. 1, 2010.

[Sch95] K. Schwaber. Scrum development process. In Proceedings of the Confer-
ence on Object Oriented Programming Systems, Languages, and Applic-
ations, pp. 117–134. Springer, 1995.

[Sch02] K. Schmidt. The Problem with ‘Awareness‘: Introductory Remarks on
‘Awareness in CSCW‘. Computer Supported Cooperative Work, vol. 11(3-
4):pp. 285 – 298, 2002.

216 BIBLIOGRAPHY

[Sch11] K. Schwaber and J. Sutherland. Scrum guide. Scrum Alliance, 2011.

[Seg95] L. Segal. Designing team workstations: The choreography of teamwork.
Local applications of the ecological approach to human-machine systems,
vol. 2, 1995.

[Sha11] G. Sharma, G. Shroff, and P. Dewan. Workplace collaboration in a 3d
virtual office. In Proceedings of the International Symposium on VR
Innovation, pp. 3–10. IEEE, 2011.

[Sil08] J. Sillito, G. C. Murphy, and K. De Volder. Asking and answering ques-
tions during a programming change task. Transactions on Software En-
gineering, vol. 34(4):pp. 434–451, 2008.

[Sim96] H. A. Simon. The sciences of the artificial. MIT press, 1996.

[Smi00] M. Smith, J. Cadiz, and B. Burkhalter. Conversation trees and threaded
chats. In Proceedings of the Conference on Computer Supported Cooper-
ative Work, pp. 97–105. ACM, 2000.

[Soa03] C. Soanes, editor. The Oxford compact English dictionary. Oxford Uni-
versity Press, New York, 2003.

[Sol98] R. van Solingen, E. Berghout, and F. van Latum. Interrupts: just a
minute never is. Software, vol. 15(5):pp. 97–103, 1998.

[Sol10] R. van Solingen and M. Valkema. The impact of number of sites in a
follow the sun setting on the actual and perceived working speed and
accuracy: A controlled experiment. In Proceedings of the International
Conference on Global Software Engineering, pp. 165–174. IEEE, 2010.

[Sos02] M. E. Sosa, S. D. Eppinger, M. Pich, D. G. McKendrick, and S. K. Stout.
Factors that influence technical communication in distributed product
development: an empirical study in the telecommunications industry.
Transactions on Engineering Management, vol. 49(1):pp. 45–58, 2002.

[Sto05] M.-A. D. Storey, D. Čubranić, and D. M. German. On the use of visualiz-
ation to support awareness of human activities in software development:
a survey and a framework. In Proceedings of the Symposium on Software
visualization, pp. 193–202. ACM, 2005.

[Sto10] M.-A. Storey, C. Treude, A. van Deursen, and L.-T. Cheng. The impact
of social media on software engineering practices and tools. In Proceedings
of the Workshop on Future of software engineering research, pp. 359–364.
ACM, 2010.

[Syr97] A. Syri. Tailoring cooperation support through mediators. In Proceedings
of the European Conference on Computer Supported Cooperative Work,
pp. 157–172. Springer, 1997.

BIBLIOGRAPHY 217

[Tea10] C. P. Team. Cmmi for development, version 1.3, improving processes
for developing better products and services. no CMU/SEI-2010-TR-033
Software Engineering Institute, 2010.

[Tel12] P. Tell and M. A. Babar. Activity theory applied to global software en-
gineering: Theoretical foundations and implications for tool builders. In
Proceedings of the International Conference on Global Software Engin-
eering, pp. 21–30. IEEE, 2012.

[Tra05] M. Tran, Y. Yang, and G. Raikundalia. Supporting awareness in instant
messaging: an empirical study and mechanism design. In Proceedings
of the Australian Conference on Computer Human Interaction: Citizens
Online: Considerations for Today and the Future, pp. 1–10. Computer-
Human Interaction Special Interest Group of Australia, 2005.

[Tra08] G. Trapani and A. Pash. The complete guide to google wave, 2008.

[Ven10] G. Venolia, J. Tang, R. Cervantes, S. Bly, G. Robertson, B. Lee, and
K. Inkpen. Embodied social proxy: mediating interpersonal connection
in hub-and-satellite teams. In Proceedings of the Conference on Human
Factors in Computing Systems, pp. 1049–1058. ACM, 2010.

[Vro69] V. H. Vroom, L. D. Grant, and T. S. Cotton. The consequences of
social interaction in group problem solving. Organizational Behavior and
Human Performance, vol. 4(1):pp. 77–95, 1969.

[Wan13] Y. Wang and D. Redmiles. Understanding cheap talk and the emergence
of trust in global software engineering: An evolutionary game theory
perspective. In Proceedings of the International Workshop on Cooperative
and Human Aspects of Software Engineering, pp. 149–152. IEEE, 2013.

[Web93] A. M. Webber. What’s so new about the new economy? Harvard
Business Review, vol. 71:pp. 24–24, 1993.

[Woh00] C. Wohlin, P. Runeson, M. Host, C. Ohlsson, B. Regnell, and A. Wesslén.
Experimentation in software engineering: an introduction. Kluver Aca-
demic, 2000.

[Woo08] K. Woodford, editor. Cambridge advanced learner’s dictionary. Cam-
bridge University Press, Cambridge, 2008.

[Wyn79] E. H. Wynn. Office conversation as an information medium. Depart-
ment of Anthropology, University of California, 1979.

[Zha09] D. Zhao and M. B. Rosson. How and why people twitter: the role that
micro-blogging plays in informal communication at work. In Proceed-
ings of the International Conference on Weblogs and Social Media. ACM,
2009.

218 BIBLIOGRAPHY

[Zha10] J. Zhang, Y. Qu, J. Cody, and Y. Wu. A case study of micro-blogging
in the enterprise: use, value, and related issues. In Proceedings of the
international conference on Human factors in Computing Systems, pp.
123–132. ACM, 2010.

AppendixA
Open Conversation Spaces -
Discussion Guide

This appendix depicts the document used to structure the focus group to acquire
the empirical data to determine (i) benefits and challenges of having insight in
active conversations, (ii) important types of information about a conversation,
(iii) actions that are possible with respect to a conversation, and (iv) benefits
and challenges of having insight in finished conversations. This focus group is
discussed in chapter 5.

219

220 APPENDIX A

Focus Group Discussion Guide

Objectives and information needs

To evaluate the Virtual Open Conversation Space paradigm in general.

Themes

· Overhearing Conversations

· Conversations

· Finished Conversations

· General

Overhearing Conversations

What do you think are the benefits of overhearing conversations of others?

What do you think are the challenges of overhearing conversations of others?

What do you think are the benefits of being overheard by others?

What do you think are the challenges of being overheard by others?

Conversations

What do you think is particularly important about conversations themselves?

(Information Items/Actions)

Finished Conversations

What do you think are the benefits of seeing the past conversations of your colleagues?

What do you think are the challenges of seeing the past conversations of your colleagues?

What do you think are the benefits of seeing the past conversations of your own?

What do you think are the challenges of seeing the past conversations of your own?

General

Do you have other things you would like to mention?

(Benefits/Challenges/Ideas/ etc.)

AppendixB
Open Conversation Spaces - Survey

This appendix depicts the document used to determine the relative importance
of the (i) benefits and challenges of having insight in active conversations, (ii)
information items about a conversation, (iii) actions that are possible with respect
to a conversation, and (iv) benefits and challenges of having insight in finished
conversations. This survey is discussed in chapter 5.

221

222 APPENDIX B

Page 1 of 6

 Communico Survey

Communico at Exact

Thanks for using Communico. We hope you take the time to fill in this survey as it is very important to us
and our research (note: most open questions are optional). The goal of this survey is to evaluate the

Virtual Open Conversation space paradigm and the use of Communico within Exact in general. An Open

Conversation space is a space in which it is possible to both have and overhear conversations. A well-
known example is the traditional office setting and with Communico we have attempted to create one

that is applicable in a distributed setting as well.

The survey was created based on data gathered from a focus group held within Exact with 8 users of

Communico and interviews with 4 people working physically dislocated form the Exact office in Delft. In
the survey it is made clear which questions to answer when you have not used Communico and which to

answer when you have. Both these viewpoints are important to us. You are free to answer the questions
in this survey in Dutch or in English. Your answers will be kept confidential. Thank you for your

participation.

Personal Information

Providing the following information is optional.

First Name: Last Name:

Address:

City: ZIP Code:

Telephone: Gender: Age:

General Information

G1 What is your current function within Exact?

G2 How many years have you worked in your current field of expertise (i.e. Software

Engineering)?

G3 Do you work physically dislocated from some of your direct colleagues?

¡ ¡

Yes No

G4 If so, please explain the situation. For example how many of your direct colleagues

are dislocated from you and how often is this the case?

APPENDIX B 223

Page 2 of 6

 Communico Survey

G5 How often have you used Communico?

¡ ¡ ¡ ¡ ¡

Never Rarely About one week Several weeks Several months

G6 Why did you either use or not use Communico?

G7 When you used Communico, how many hours a day would you generally use it?

Conceptual Questions

Now we turn to the concept of an Open Conversation Space. In such a space (i.e. traditional office

setting) people are able to both have and overhear conversations of each other.

Overhearing Conversations

A1 Please rate how important you think the following advantages of overhearing
conversations are in collaborative work:

Advantages -- - -/+ + ++
No

opinion

Access to the technical knowledge

of colleagues

Acquiring involvement (Dutch:
betrokkenheid) with your colleagues

Enjoying your work

(e.g. overhearing a joke)

Acquiring insight in the

communication structure

(e.g. If someone you are looking for
is absent you can contact someone

he often speaks with)

Being able to join a conversation

A2 Comments

224 APPENDIX B

Page 3 of 6

 Communico Survey

A3 Please rate how important you think the following disadvantages of overhearing

conversations are in collaborative work:

Disadvantages -- - -/+ + ++
No

opinion

It can be distracting from the
current work activities

The context of the conversation can

be unclear

The information is volatile

(Dutch: vluchtig)
(e.g. when you are busy you can

miss important conversations)

A lack of control for the people
whose conversations are overheard

(e.g. people can unintentionally

spread sensitive information)

A4 Comments

Conversations

A conversation can be overheard, listened to and participated in. In these three levels of involvement

different information types are important. Here we ask you to rate the importance of a number of
information items for each of these levels.

B1 What information about a conversation is important when:

a) you overhear a conversation:

Information -- - -/+ + ++
No

opinion

Participants

Viewers

Location

The complete factual content

Commitment of a participant

(i.e. how much someone is paying
attention)

Contribution of a participant

Tone (e.g. angry, jovial, sarcastic)

Type

(i.e. work related/non-work related,

APPENDIX B 225

Page 4 of 6

 Communico Survey

company related/team related)

Subject

Phase (e.g. initiating, wrapping up)

Accessibility
(i.e. a private conversation)

b) you listen to a conversation:

Information -- - -/+ + ++
No

opinion

Participants

Viewers

Location

The complete factual content

Commitment of a participant

(i.e. how much someone is paying
attention)

Contribution of a participant

Tone (e.g. angry, jovial, sarcastic)

Type

(i.e. work related/non-work related,

company related/team related)

Subject

Phase (e.g. initiating, wrapping up)

Accessibility
(i.e. a private conversation)

c) you participate in a conversation:

Information -- - -/+ + ++
No

opinion

Participants

Viewers

Location

The complete factual content

Commitment of a participant

(i.e. how much someone is paying
attention)

Contribution of a participant

Tone (e.g. angry, jovial, sarcastic)

Type

(i.e. work related/non-work related,

company related/team related)

Subject

226 APPENDIX B

Page 5 of 6

 Communico Survey

Phase (e.g. initiating, wrapping up)

Accessibility

(i.e. a private conversation)

B2 Comments

B3 Please rate how important you think the following actions which can be performed in

relation to conversations are in collaborative work:

Action -- - -/+ + ++
No

opinion

Joining a conversation

Inviting someone to join a

conversation

Listening to a conversation

Dismissing other participants

Dismissing viewers

Acquiring the attention of the

participants
(i.e. increasing their commitment)

Notifying others (not involved in the

conversation) of the conversation

B4 Comments

Finished Conversations

In a traditional office setting, people only have access to finished conversation based on what they recall

and only when they either participated in those conversations or listened to them.

C1 Please rate how important you think the following advantages of having access to
finished conversations are in collaborative work:

Advantages -- - -/+ + ++
No

opinion

Having access to knowledge you

might otherwise forget

Access to the technical knowledge
of colleagues

Acquiring involvement (Dutch:

APPENDIX B 227

Page 6 of 6

 Communico Survey

betrokkenheid) with your colleagues

Enjoying your work

(e.g. overhearing a joke)

Acquiring insight in the
communication structure

(e.g. If someone you are looking for
is absent you can contact someone

he often speaks with)

C2 Comments

C3 Please rate how important you think the following disadvantages of having access to
finished conversations are:

Disadvantages -- - -/+ + ++
No

opinion

It can be distracting from the

current work activities

The context of the conversation can

be unclear

A lack of control for the people
whose conversations are overheard

(e.g. people can unintentionally

spread sensitive information)

C4 Comments

Group distribution

In Exact the distribution of the Exact Online group is not homogenous. The majority of the people work

in the Delft office while several people work in Belgium, the US and from home as well. Because of this
heterogeneous distribution the knowledge about others, their activities and the state of the project is not

evenly distributed as well.

D1 How big an issue are the problems caused by this non-homogenous distribution?

[This concludes the survey for people that have not actively used Communico]

AppendixC
Virtual Open Conversation Spaces -
Discussion Guide

This appendix depicts the document used to structure the focus group to gather
insights, ideas, viewpoints and opinions of people who frequently used Communico.
This focus group is discussed in chapter 6.

229

230 APPENDIX C

Focus Group Discussion Guide

Objectives and information needs

To evaluate the use of Communico within Exact in particular.

Themes

· Insight in active conversations

· Having conversations

· Insight in finished conversations

· General

Overhearing Conversations

Discussion about the benefits and challenges of overhearing conversations

How well do you feel Communico exploits the benefits of overhearing of conversations?

· With the active conversations list and filters

· With the configurable desktop alerts?

How well do you feel Communico alleviates the challenges of overhearing conversations?

Could you give an example when overhearing a conversation was useful?

Could you give an example when overhearing a conversation was unuseful?

Conversations

Discussion about the specific information items of a conversatioin

How well do you feel Communico shows these information items?

What could be improved?

Discuss the actions to be carried out on a conversation

How well do you feel Communico supports these actions?

What could be improved?

APPENDIX C 231

Finished Conversations

Discussion about the benefits and challenges of having access to finished conversations

How well do you feel Communico exploits the benefits of having access to finished onversations?

How well do you feel Communico alleviates the challenges of having access to finished

conversations?

Could you give an example when having access to a finished conversation was useful?

Could you give an example when having access to a finished conversation was unuseful?

General

Do you have other things you would like to mention?

· Ideas

· Insights

· Opinions

Final Questions: Who of you would like to keep using Communico? What if all your colleagues used

it as well? If not, what improvements are required to change this?

AppendixD
Virtual Open Conversation Spaces -
Survey

This appendix depicts the document used to include the experiences of a large group
of people who actively used Communico. This survey is discussed in chapter 6.

233

234 APPENDIX D

Page 1 of 7

 Communico Survey

Communico at Exact

Thanks for using Communico. We hope you take the time to fill in this survey as it is very important to us and our

research (note: most open questions are optional). The goal of this survey is to evaluate the Virtual Open

Conversation space paradigm and the use of Communico within Exact in general. An Open Conversation space is a

space in which it is possible to both have and overhear conversations. A well-known example is the traditional office

setting and with Communico we have attempted to create one that is applicable in a distributed setting as well.

The survey was created based on data gathered from a focus group held within Exact with 8 users of Communico

and interviews with 4 people working physically dislocated form the Exact office in Delft. In the survey it is made

clear which questions to answer when you have not used Communico and which to answer when you have. Both

these viewpoints are important to us. You are free to answer the questions in this survey in Dutch or in English.

Your answers will be kept confidential. Thank you for your participation.

Personal Information

Providing the following information is optional.

First Name: Last Name:

Address:

City: ZIP Code:

Telephone: Gender: Age:

General Information

G1 What is your current function within Exact?

G2 How many years have you worked in your current field of expertise (i.e. Software Engineering)?

G3 Do you work physically dislocated from some of your direct colleagues?

¡ ¡

Yes No

G4 If so, please explain the situation. For example how many of your direct colleagues

are dislocated from you and how often is this the case?

APPENDIX D 235

Page 2 of 7

 Communico Survey

G5 How often have you used Communico?

¡ ¡ ¡ ¡ ¡

Never Rarely About one week Several weeks Several months

G6 Why did you either use or not use Communico?

G7 When you used Communico, how many hours a day would you generally use it?

[This concludes the survey for people that have NOT actively used Communico]

236 APPENDIX D

Page 3 of 7

 Communico Survey

Communico

We’ll now ask how well you think Communico supports all the previously discussed advantages, disadvantages,

information items and actions. Please note these questions are only for people that actively used Communico.

Overhearing Conversations

A1 Please rate how well (in your opinion) Communico enables the following advantages of overhearing

conversations

Advantages -- - -/+ + ++
No

opinion

Access to the technical knowledge of

colleagues

Acquiring involvement (Dutch:

betrokkenheid) with your colleagues

Enjoying your work

(e.g. overhearing a joke)

Acquiring insight in the communication

structure

(e.g. If someone you are looking for is

absent you can contact someone he

often speaks with)

Being able to join a conversation

A2 Please elaborate on your ratings

A3 Please rate how well Communico copes with following disadvantages of overhearing conversations are in

collaborative work:

Disadvantages
strongly

disagree
disagree neutral agree

strongly

agree

No

opinion

It can be distracting from the current

work activities

The context of the conversation can be

unclear

The information is volatile

(Dutch: vluchtig)

(e.g. when you are busy you can miss

important conversations)

A lack of control for the people whose

conversations are overheard

(e.g. people can unintentionally spread

sensitive information)

APPENDIX D 237

Page 4 of 7

 Communico Survey

A4 Please elaborate on your ratings

Conversations

B1 How well does Communico provide access to the following information about a conversation:

Information -- - -/+ + ++
No

opinion

Participants

Viewers

Location

The complete factual content
Commitment of a participant

(i.e. how much someone is paying

attention)

Contribution of a participant

Tone (e.g. angry, jovial, sarcastic)
Type

(i.e. work related/non-work related,

company related/team related)

Subject

Phase (e.g. initiating, wrapping up)
Accessibility

(i.e. a private conversation)

B2 Please elaborate on your ratings

238 APPENDIX D

Page 5 of 7

 Communico Survey

B3 Please rate how well Comuncio enables the following actions which can be performed in relation to

conversations:

Action -- - -/+ + ++
No

opinion

Joining a conversation

Inviting someone to join a conversation

Listening to a conversation

Dismissing other participants

Dismissing viewers
Acquiring the attention of the

participants

(i.e. increasing their commitment)

Notifying others (not involved in the

conversation) of the conversation

B4 Please elaborate on your ratings

Finished Conversations

C1 Please rate how well Communico supports the following advantages of having access to finished

conversations:

Advantages -- - -/+ + ++
No

opinion

Having access to knowledge you might

otherwise forget
Access to the technical knowledge of

colleagues

Acquiring involvement (Dutch:

betrokkenheid) with your colleagues

Enjoying your work

(e.g. overhearing a joke)

Acquiring insight in the communication

structure

(e.g. If someone you are looking for is

absent you can contact someone he

often speaks with)

APPENDIX D 239

Page 6 of 7

 Communico Survey

C2 Please elaborate on your ratings

C3 Please rate how well Communico enables the following disadvantages of having access to finished

conversations:

Disadvantages -- - -/+ + ++
No

opinion

It can be distracting from the current

work activities

The context of the conversation can be

unclear

A lack of control for the people whose

conversations are overheard

(e.g. people can unintentionally spread

sensitive information)

C4 Please elaborate on your ratings

240 APPENDIX D

Page 7 of 7

 Communico Survey

Additional feedback

To conclude this survey we’d like to ask a few general questions.

D1 Name the 3 qualities of Communico you found most positive

D2 Name the 3 qualities of Communico you found most negative

D3 Please share any additional comments.

Thank you for taking the time to fill out our survey. Your input is greatly appreciated.

AppendixE
Microblogging with Mood Indicators
- Interview Structure

This appendix depicts the document used to guide the semi-structured interviews
with the users of a mood based microblogging system. In these interviews we
asked questions about what was unclear to us in the analysis of the microblogging
usage data and we asked follow-up questions we had based on this analysis. These
interviews are discussed in chapter 7.

241

242 APPENDIX E

Usage patterns:

What

· What type of things do you share using WeHomer? (and what types didn’t you post)

o How did you share these things before WeHomer existed? (if so, is this better, if not,

do you consider it advantageous to share these things now?) [e.g. Twitter, Skype, e-

mail]

o We noticed a relatively low amount of questions asked on WeHomer in comparison

to other MicroBlogging systems. What mediums for did you use primarily for asking

questions?

o Are there other types of information you prefer to share using other communication

media than WeHomer? Which ones and why?

· What type of posts do you reply to (comment)

· What type of messages on WeHomer do you find particularly helpful/insightful?

· What did you try to convey when you indicated your mood for an entry? What about a

comment?

o An example: If you comment on a sad entry, such as someone saying he is feeling ill

and you comment saying get well soon, what mood did you indicate for this

message?

§ Copy of the mood of whoever posted the entry

§ According to the entry (sad)

§ According to the intention of your comment (happy, cheerful)

§ According to your current actual mood, how unrelated this might be

· What did you mean to indicate with your mood when you didn’t touch the slider (nothing,

neutral, happy or various)

· Did you ever post something on WeHomer and regretted it later on? May I ask what? How

did you handle this? Will you share this in the future using other media?

Why

· When you check out the posts on WeHomer, what is your primary goal with this?

· When you post an entry on WeHomer, what is your primary goal with this (multiple types of

entries so multiple types of answers possible)

· When you comment on an entry on WeHomer, what is your primary goal with this (multiple

types of comments/entries so multiple types of answers possible)

Who

· Are there certain people or groups of people you direct your communication to more often?

· Do you read everyone’s posts equally?

When

· Can you tell me anything about when (at what time/ at what dates/caused by what

events/emotional state) you look at WeHomer?

· Same question w.r.t. placing an entry.

· When did you choose to indicate a mood and when not?

APPENDIX E 243

Where

· Where do you access WeHome rmost often? For instance the mobile version at night on the

couch or in public transportation

Benefits / challenges

Abstract

· What are in your opinion the largest advantages of using WeHomer?

· What are the largest disadvantages?

More concrete (only ask when ‘necessary’)

· What are the largest advantages of being able to see the posts/comment and associated

moods of your colleagues?

· What are the largest advantages of being able to share what you are doing and your

associated mood on WeHomer?

· What are the largest disadvantage of being able to see the posts/comment and associated

moods of your colleagues?

· What are the largest disadvantages of being able to share what you are doing and your

associated mood on WeHomer?

So concrete it could be called leading (only ask when ‘necessary’)

· Did WeHomer make you feel more connected?

· Did WeHomer make you more aware of what your colleagues were doing?

· Did you feel WeHomer caused your colleagues to be more aware of you?

· Did you worry about privacy at all?

o Did you ever feel watched or spied on?

o Did you feel monitored?

· Do you feel WeHomer sometimes distracted you?

· Do you feel certain people were ostracized? (buitensluiten) [For example people that

participated less than others on WeHomer]

Miscellaneous

· Do you feel a certain type of team is needed for WeHomer to be used? If so what and why?

· Has the tool been used for other purposes then its ‘intended purpose’?

· Should the tool be integrated into a comprehensive collaborative environment and if so how

and why?

· How could the tool be improved?

Overall/closing questions:

· Overall do you feel there is value in the introduction of WeHomer in IHomer?

· Why/why not?

· What, in your opinion, is that value exactly (if any).

AppendixF
Microblogging with Mood Indicators
- Coding Set

This appendix depicts the coding set we constructed by using an iterative boot-
strapping process. We used this set of codings to analyze the content of over a
year of usage data of a mood based microblogging system. This gave insight in
the variety of topics discussed in such a system. This coding set is discussed in
chapter 7.

245

246 APPENDIX F

The used coding set is the following. Firstly we defined four major types of
codes.

1. Nature

2. Form

3. Intention

4. Content

Each of these coding categories is further divided into sub-categories and actual
codes. Below we will show this subdivision for each of the four major coding
categories. In these trees leaf nodes depict actual codes while non-leaf nodes depict
sub-categories. Below each figure we will explain the codes and give examples.
Firstly for all entries and comments we coded the nature of the message (see figure
F.1). This depicts whether the content of the post can be considered positive,
negative or neutral. So, for example a post stating a new assignment has landed
is positive while a post about a failed build or a sick family member is negative.

Figure F.1: The nature of an entry or comment

Secondly we also coded the form of the entries and comments (see figure F.2).
With the codings we mean the following:

• Statement
An assertion

– Answer
Attempt to answer a question asked in a previous post

– Joke
Something said or done to provoke laughter or cause amusement

– Compliment
Expression of praise, commendation, or admiration

– Best Wishes
Wishing something nice to someone (such as: ”good luck” or ”happy
birthday”)

APPENDIX F 247

– Standard
A statement, but not an answer, joke, compliment or best wishes

• Question
Attempt to illicit an answer to some question

Figure F.2: The form of an entry or comment

We choose to only apply the final two coding categories (intention and content)
to the entries and not the comments. We elect to do so because comments exists
only in the context of the entry to which they belong. Because of this, comments
are often quite brief and leave out much of this contextual information making
it is infeasible for coders to consistently decide what intention and content is
specifically applicable to that comment. The types of intention we distinguish are
depicted in figure F.3. With these codings we mean the following:

• Sharing personal information
Intention to share information that is about the poster and his/her personal
life

• Sharing work related information
Intention to share information that is about the work of the poster

– Coordination information
When the intention is to coordinate with colleagues

– Knowledge
When the intention is to share factual knowledge

• Social interaction
Intention to follow social protocol for making and maintaining relationships
with others

248 APPENDIX F

Figure F.3: The intention of an entry

Finally the content coding is shown in figure F.4. With these codings we mean
the following:

• Information about a person

– Health
The poster’s health

– Sentiment
How the poster feels

– Personal Experience
Information about an experience which is not primarily work-related
(Travel, Family, Scenario)

• Information about technology

– Technical Knowledge
Specialist information

• Information about task articulation work
Information about work which is done to support the core activities of IHomer
(including infrastructure and planning)

– Work Planning
When work will be done or is done

– Work Assignment
Who will do certain work (Assignment, Expertise Finding)

– Supplies
Information about supplies (Including for instance food)

– Non-Technical Infrastructure
For instance the office or office equipment

APPENDIX F 249

– Technical Infrastructure Intern
For instance IHomer’s timesheet application

– Technical Infrastructure Extern
For instance DNS, Skype, IDE and phoneline

• Information about customer relations
Information about relations with customers and the process around this

– Relation
Directly relating to the making and maintaining of the professional re-
lationships with business relations

– Project Commissioning
About transferring finished (or partially finished work) to the customer
(including things such as training)

• Information about entrepreneurial tasks
Tasks directly related to the organization, operation and management of risk
with respect to a business venture

– Prospects
Opportunities for new work or projects

– Company Meeting

– Applicants
Hiring new people to work for IHomer

– Invoicing
About actions needed to get paid by the customers (such as sending the
actual bill)

250 APPENDIX F

Figure F.4: The content of an entry

AppendixG
Information Needs - Questionnaire

This appendix depicts the document used both (i) to order practices from most
important to least important and distinguish between practices of which they want
to be or not want to be immediately informed, and (ii) to order practices based on
how disturbing an interruption would be and distinguish between practices during
which they prefer to be or prefer not to be interrupted. This questionnaire is
discussed in chapter 8.

251

252 APPENDIX G

Expert Panel

To research which information items are useful to distributed software engineers we adopt a systematic

and interactive method which relies on a panel of experts. In this method, the experts first answer a

questionnaire in which they indicate, (i) what kinds of conversations are interesting during software

engineering activities, and (ii) when they may be interrupted by colleagues. Subsequently an interactive

session is conducted in which an anonymous summary of the questionnaire is presented as an input to a

discussion about unclear issues.

To structure this research we used the engineering process areas defined in the CMMI for

development
1
. These engineering process areas cover the development and maintenance activities that

are shared across engineering disciplines. In figure 1 the following five process areas are shown.

1. Requirements Development (RD)

The purpose of Requirements Development is to elicit, analyze, and establish customer, product, and

product component requirements.

2. Technical Solution (TS)

The purpose of the Technical Solution process area is to select, design, and implement solutions to

requirements. Solutions, designs, and implementations encompass products, product components,

and product related lifecycle processes either in isolation or in combination as appropriate.

3. Verification (VER)

The purpose of Verification is to ensure that selected work products meet their specified

requirements.

4. Validation (VAL)

The purpose of Validation is to demonstrate that a product or product component fulfills its intended

use when placed in its intended environment.

5. Product Integration (PI)

The purpose of Product Integration is to (i) assemble the product from the product components, (ii)

ensure that the product, as integrated, behaves properly (e.g. possesses the required functionality

and quality attributes), and (iii) deliver the product.

1
 http://www.sei.cmu.edu/reports/10tr033.pdf

APPENDIX G 253

Figure 1 Engineering Process Areas

Each of these process areas has multiple sub-goals and practices and targets a specific area in the

development process. We will use these process areas to structure both the questionnaire and the

interactive session.

Questionnaire

We would like you to order the practices of each of the five process areas on importance and

interruptability.

Firstly, I would like you to order the practices (only the sub-practices [SP] not the sub-goals [SG]) on

importance regardless of your current activity. Please start with the practice which you find most useful and

conclude with the practice which you find least useful. Subsequently I would like you to split the list of

practices into two parts. The first part consists of all practices of which you want to be informed regardless of

your current activity while the second part consists of all practices of which you don’t want to be informed of.

An example of such a classification is shown on the next page in the Information Column.

Secondly, I would like you to order the practices based on how disturbing an interruption would be while

performing activities corresponding to that practice, regardless of the content of the interruption. Please

start with the practice in which an interrupt is most disturbing and conclude with the practice in which an

interrupt is least disturbing. Subsequently, I would like you to split the list of practices into two parts. The first

part of the list consists of all practices in which you don’t want to be interrupted while the second part

consists of all practices in which it is alright to be interrupted. An example of such a classification is shown in

the Interruptions column in the example on the next page.

254 APPENDIX G

Example

In this example we illustrate the classification of the practices of the following illustrative process area.

SG 1. Sub-Goal 1

SP 1.1. Practice 1

SP 1.2. Practice 2

SG 2. Sub-Goal 2

SP 2.1. Practice 3

SP 2.2. Practice 4

Information Interruptions

Please order the practices from

most important to least important

and indicate of which practices you

want to be informed regardless of

your current activity.

Please order the practices based on

how disturbing an interruption

would be regardless of the content

of the interruption and indicate

whether or not you may be

interrupted while performing

activities corresponding to that

practice.

SP Practice 3 SP Practice 2

SP Practice 2 SP Practice 1

SP Practice 4 SP Practice 3

SP Practice 1 SP Practice 4

In this example practice 3 is

considered to be the most

important practice while practice 1

is considered to be the least

important practice. Furthermore, it

can be seen that the participant only

wants to be kept up to date of

conversations concerning practices

3, 2 and 4.

In this example the participant

indicated that an interruption on

practice 2 is most disturbing while an

interruption on practice 4 is least

disturbing. Furthermore, it can be

seen that the participant does not

want to be disrupted while

performing activities corresponding

to practice 2.

APPENDIX G 255

Process Area - Requirements Development

The Requirements Development process area identifies customer needs and translates these needs into

product requirements. The set of product requirements is analyzed to produce a high-level conceptual

solution. This set of requirements is then allocated to establish an initial set of product component

requirements.

Other requirements that help define the product are derived and allocated to product components. This

set of product and product component requirements clearly describes the product’s performance,

quality attributes, design features, verification requirements, etc., in terms the developer understands

and uses.

SG 1. Develop Customer Requirements

SP 1.1. Elicit Needs

SP 1.2. Transform Stakeholder Needs into Customer Requirements

SG 2. Develop Product Requirements

SP 2.1. Establish Product and Product Component Requirements

SP 2.2. Allocate Product Component Requirements

SP 2.3. Identify Interface Requirements

SG 3. Analyze and Validate Requirements

SP 3.1. Establish Operational Concepts and Scenarios

De behoeften, verwachtingen, voorwaarden en interfaces van belanghebbenden worden

verzameld en vertaald in klanteisen.

Eliciteer de behoeften, verwachtingen, voorwaarden en interfaces van

belanghebbenden voor alle fasen in de productlevenscyclus.

Transformeer behoeften, verwachtingen, voorwaarden en interfaces van

belanghebbenden in geprioriteerde klanteisen.

Klanteisen worden verfijnd en in detail uitgewerkt om de eisen voor het product en de

productcomponenten te ontwikkelen.

Breng product- en productcomponenteisen tot stand die zijn gebaseerd op de

klanteisen en onderhoud deze.

Wijs de eisen toe voor iedere productcomponent.

Identificeer de aan de interfaces gestelde eisen.

De eisen worden geanalyseerd en gevalideerd.

Breng operationele concepten en bijbehorende scenario’s tot stand en

onderhoud deze.

256 APPENDIX G

SP 3.2. Establish a Definition of Required Functionality and Quality Attributes

SP 3.3. Analyze Requirements

SP 3.4. Analyze Requirements to Achieve Balance

SP 3.5. Validate Requirements

Information Interruptions

Breng een definitie van vereiste functionaliteit en kwaliteitskenmerken tot stand

en onderhoud deze.

Analyseer de eisen om ervoor te zorgen dat ze noodzakelijk en afdoende zijn.

Analyseer de eisen om behoeften en beperkingen van de belanghebbenden in

balans te brengen.

Valideer de eisen om te zorgen dat het resulterende product zal functioneren

zoals beoogd in de eindgebruikersomgeving.

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

APPENDIX G 257

Process Area - Technical Solution

The Requirements Development process area supplies requirements to the Technical Solution process

area, where the requirements are converted into the product architecture, product component designs,

and product components (e.g. by coding, fabrication).

SG 1. Select Product Component Solutions

SP 1.1. Develop Alternative Solutions and Selection Criteria

SP 1.2. Select Product Component Solutions

SG 2. Develop the Design

SP 2.1. Design the Product or Product Component

SP 2.2. Establish a Technical Data Package

SP 2.3. Design Interfaces Using Criteria

SP 2.4. Perform Make, Buy, or Reuse Analyses

SG 3. Implement the Product Design

SP 3.1. Implement the Design

SP 3.2. Develop Product Support Documentation

Product- of productcomponentoplossingen worden geselecteerd uit alternatieve

oplossingen.

Ontwikkel alternatieve oplossingen en selectiecriteria.

Selecteer de oplossingen voor productcomponenten op basis van selectiecriteria.

Er worden ontwerpen van het product of productcomponent ontwikkeld.

Ontwikkel een ontwerp voor het product of de productcomponent.

Breng een pakket technische gegevens tot stand en onderhoud deze.

Ontwerp productcomponentinterfaces met behulp van vastgestelde criteria.

Evalueer aan de hand van vastgestelde criteria of de productcomponenten

ontwikkeld, aangeschaft, of opnieuw gebruikt zouden moeten worden.

Productcomponenten en bijbehorende ondersteunende documentatie worden

gerealiseerd vanuit hun ontwerpen.

Realiseer de productcomponenten vanuit de ontwerpen.

Ontwikkel en onderhoud documentatie voor de eindgebruikers.

258 APPENDIX G

Information Interruptions

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

APPENDIX G 259

Process Area - Verification

The Technical Solution process area relies on the specific practices in the Verification process area to

perform design verification and peer reviews during design and prior to final build.

The Verification process area ensures that selected work products meet the specified requirements. The

Verification process area selects work products and verification methods that will be used to verify work

products against specified requirements. Verification is generally an incremental process, starting with

product component verification and usually concluding with verification of fully assembled products.

SG 1. Prepare for Verification

SP 1.1. Select Work Products for Verification

SP 1.2. Establish the Verification Environment

SP 1.3. Establish Verification Procedures and Criteria

SG 2. Perform Peer Reviews

SP 2.1. Prepare for Peer Reviews

SP 2.2. Conduct Peer Reviews

SP 2.3. Analyze Peer Review Data

SG 3. Verify Selected Work Products

SP 3.1. Perform Verification

SP 3.2. Analyze Verification Results

De voorbereiding voor verificatie wordt uitgevoerd.

Selecteer de te verifiëren werkproducten en de te gebruiken

verificatiemethoden.

Breng de omgeving die nodig is om verificatie te ondersteunen tot stand en

onderhoud deze.

Breng verificatieprocedures en -criteria voor de geselecteerde werkproducten

tot stand en onderhoud deze.

Er worden peer reviews uitgevoerd op geselecteerde werkproducten.

Bereid voor de geselecteerde werkproducten de peer reviews voor.

Voer peer reviews uit op geselecteerde werkproducten en identificeer

probleempunten die voortkomen uit de reviews.

Analyseer de gegevens over de voorbereiding, uitvoering en resultaten van de

peer reviews.

Geselecteerde werkproducten worden geverifieerd tegen hun gespecificeerde eisen.

Voer verificaties uit op de geselecteerde werkproducten.

Analyseer de resultaten van alle verificatie-activiteiten.

260 APPENDIX G

Information Interruptions

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

APPENDIX G 261

Process Area - Validation

The Validation process area incrementally validates products against the customer’s needs. Validation

can be performed in the operational environment or in a simulated operational environment.

Coordination with the customer on validation requirements is an important element of this process

area.

The scope of the Validation process area includes validation of products, product components, selected

intermediate work products, and processes. These validated elements can often require reverification

and revalidation. Issues discovered during validation are usually resolved in the Requirements

Development or Technical Solution process area.

SG 1. Prepare for Validation

SP 1.1. Select Products for Validation

SP 1.2. Establish the Validation Environment

SP 1.3. Establish Validation Procedures and Criteria

SG 2. Validate Product or Product Components

SP 2.1. Perform Validation

SP 2.2. Analyze Validation Results

De voorbereiding voor validatie wordt uitgevoerd.

Selecteer de te valideren producten en productcomponenten en de te gebruiken

validatiemethoden.

Breng de omgeving die nodig is om validatie te ondersteunen tot stand en

onderhoud deze.

Breng procedures en criteria voor validatie tot stand en onderhoud deze.

De producten of de productcomponenten worden gevalideerd om hun geschiktheid te

garanderen voor gebruik in hun beoogde operationele omgeving.

Voer de validatie uit op de geselecteerde producten en productcomponenten.

Analyseer de resultaten van de validatieactiviteiten.

262 APPENDIX G

Information Interruptions

SP SP

SP SP

SP SP

SP SP

SP SP

APPENDIX G 263

Process Area - Product Integration

The Product Integration process area contains the specific practices associated with generating an

integration strategy, integrating product components, and delivering the product to the customer.

Product Integration uses the specific practices of both Verification and Validation in implementing the

product integration process. Verification practices verify the interfaces and interface requirements of

product components prior to product integration. Interface verification is an essential event in the

integration process. During product integration in the operational environment, the specific practices of

the Validation process area are used.

SG 1. Prepare for Product Integration

SP 1.1. Establish an Integration Strategy

SP 1.2. Establish the Product Integration Environment

SP 1.3. Establish Product Integration Procedures and Criteria

SG 2. Ensure Interface Compatibility

SP 2.1. Review Interface Descriptions for Completeness

SP 2.2. Manage Interfaces

SG 3. Assemble Product Components and Deliver the Product

SP 3.1. Confirm Readiness of Product Components for Integration

De voorbereiding voor productintegratie wordt uitgevoerd.

Breng een productintegratiestrategie tot stand en onderhoud deze.

Breng de omgeving die nodig is om de integratie van de product-componenten

te ondersteunen tot stand en onderhoud deze.

Breng procedures en criteria voor integratie van de productcomponenten tot

stand en onderhoud deze.

Zowel de interne als externe productcomponentinterfaces zijn compatibel.

Review interfacebeschrijvingen op dekking en volledigheid.

Manage interne en externe interfacedefinities, ontwerpen en wijzigingen voor

producten en productcomponenten.

De geverifieerde productcomponenten worden samengevoegd en het geïntegreerde,

geverifieerde en gevalideerde product wordt opgeleverd.

Bevestig, voordat het product wordt samengesteld, dat elke productcomponent

die nodig is voor de samenstelling van het product op de juiste wijze is

geïdentificeerd, zich gedraagt volgens zijn beschrijving en dat de

productcomponentinterfaces voldoen aan de interfacebeschrijvingen.

264 APPENDIX G

SP 3.2. Assemble Product Components

SP 3.3. Evaluate Assembled Product Components

SP 3.4. Package and Deliver the Product or Product Component

Information Interruptions

Integreer de productcomponenten volgens de strategie en procedures voor

productintegratie.

Evalueer de geïntegreerde productcomponenten op interfacecompatibiliteit.

Verpak het samengestelde product of de productcomponent en lever het aan de

klant.

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

AppendixH
Information Needs - Post
Questionnaire

This appendix depicts the document used to ask general, process related and re-
search related questions regarding the information needs of engineers. It is used
to determine both (i) what information engineers want to know immediately, even
though they are performing an activity during which they prefer not to be inter-
rupted, and (ii) whether or not they prefer to be interrupted with information
they want to know immediately, even though they are performing an activity dur-
ing which they prefer not to be interrupted. This questionnaire is discussed in
chapter 8.

265

266 APPENDIX H

General Questions

1. How many years of experience do you have, in general, with distributed software engineering?

__

2. How many years of experience do you have, as a software engineer, with distributed software

engineering?

__

3. What is your current role (e.g. architect, tester, designer or programmer)?

__

4. If you currently fulfill the role of manager, how long do you fulfill this role?

__

5. Could you briefly describe the company, department and team you are currently working for

(including size, location, sites etc.)?

__

__

__

6. What kind of software development process do you use (e.g. agile, waterfall etc.)?

__

7. Are you currently developing a project or a product?

__

Process Related Questions

1. How was your understanding of the practices of the five process areas after the expert panel?

Very Good Good Barely Acceptable Poor Very Poor

2. Do the practices of the five process areas cover the complete development process? If not,

please explain which aspects you are missing.

__

__

3. Have you reconsidered your opinion because of the arguments of other participants of the

expert panel?

Never Rarely Sometimes Very Often Always

4. Have you changed your opinion because of the peer pressure of the group of experts?

Never Rarely Sometimes Very Often Always

APPENDIX H 267

Research Related Questions

During the questionnaire and the expert panel we discussed all practices of each of the five engineering

process areas. For each of these practices we discussed both, (i) whether or not you want to be directly

kept up to date of information regarding that practice, and (ii) whether or not you may be interrupted

while performing activities corresponding to that practice. This discussion resulted in 9 practices of

which we want to be kept up to date directly and 3 practices in which we may not be interrupted (see

section practices for an overview).

These outcomes introduce a contradiction since for some practices we indicated that we may not be

interrupted while performing activities related to that practice. However, we also indicated that we

want to be kept up to date directly of several other practices. Therefore we would like you to complete

the following 12 statements in order to draw more detailed conclusions.

Information Updates

For the following 9 practices we indicated that we want to be kept up to date directly regardless of our

current activity. However, we also indicated that in some situations we may not be interrupted. We

would like you to indicate whether or not you want to be kept up to date directly, while you are

performing an activity corresponding to a practice in which you do not want to be interrupted.

Example A colleague is leaving his house to go to work

Een collega rijdt weg bij zijn huis om naar zijn werk te gaan.

Currently you are performing an activity corresponding to a practice for which you indicated that you

may not be interrupted (e.g. taking a shower or having breakfast), and now there is new information

available concerning your colleague leaving his house to go to work of which we want to be kept up to

date of directly. Do you, in this scenario, still want to be kept directly up to date of this information?

Yes No

X

268 APPENDIX H

RD SP 2.1 Establish Product and Product Component Requirements

Breng product- en productcomponenteisen tot stand die zijn gebaseerd op de klanteisen en onderhoud

deze.

De klanteisen met betrekking tot functionaliteit en kwaliteitskenmerken kunnen uitgedrukt worden in

de termen van de klant en kunnen niet-technische beschrijvingen zijn. De producteisen zijn de

uitdrukking van deze eisen in technische termen die kunnen worden gebruikt voor ontwerpbeslissingen.

Currently you are performing an activity corresponding to a practice for which you indicated that you

may not be interrupted, and now there is new information available concerning practice 2.1 of which we

want to be kept up to date of directly. Do you, in this scenario, still want to be kept directly up to date of

information regarding this practice?

Yes No

TS SP 1.2 Select Product Component Solutions

Selecteer de oplossingen voor productcomponenten op basis van selectiecriteria

De toewijzingen van eisen aan productcomponenten wordt tot stand gebracht door

productcomponenten te selecteren die het beste aan de criteria voldoen.

Currently you are performing an activity corresponding to a practice for which you indicated that you

may not be interrupted, and now there is new information available concerning practice 1.2 of which we

want to be kept up to date of directly. Do you, in this scenario, still want to be kept directly up to date of

information regarding this practice?

Yes No

APPENDIX H 269

TS SP 2.1 Design the Product or Product Component

Ontwikkel een ontwerp voor het product of een productcomponent

Het productontwerp bestaat uit twee omvangrijke fasen die elkaar in de uitvoering kunnen overlappen:

globaal en gedetailleerd ontwerp. Het globale ontwerp brengt de productmogelijkheden tot stand en de

productarchitectuur. Het detailontwerp definieert de structuur en mogelijkheden van de

productcomponenten volledig.

Currently you are performing an activity corresponding to a practice for which you indicated that you

may not be interrupted, and now there is new information available concerning practice 2.1 of which we

want to be kept up to date of directly. Do you, in this scenario, still want to be kept directly up to date of

information regarding this practice?

Yes No

TS SP 2.3 Design Interfaces Using Criteria

Ontwerp productcomponentinterfaces met behulp van vastgestelde criteria.

De criteria voor interfaces geven vaak cruciale parameters weer die gedefinieerd of ten minste

onderzocht moeten worden, om zeker te zijn van hun toepasbaarheid. Deze parameters zijn vaak

specifiek voor een gegeven producttype en zijn meestal verbonden met veiligheid, beveiliging, en

duurzaamheid.

Currently you are performing an activity corresponding to a practice for which you indicated that you

may not be interrupted, and now there is new information available concerning practice 2.3 of which we

want to be kept up to date of directly. Do you, in this scenario, still want to be kept directly up to date of

information regarding this practice?

Yes No

270 APPENDIX H

TS SP 3.1 Implement the Design

Realiseer de productcomponenten vanuit de ontwerpen

Als het ontwerp eenmaal is voltooid, dan wordt het gerealiseerd als een productcomponent. De

kenmerken van die realisatie hangen af van het type productcomponent.

Currently you are performing an activity corresponding to a practice for which you indicated that you

may not be interrupted, and now there is new information available concerning practice 3.1 of which we

want to be kept up to date of directly. Do you, in this scenario, still want to be kept directly up to date of

information regarding this practice?

Yes No

VER SP 3.2 Analyze Verification Results
Analyseer de resultaten van alle verificatie-activiteiten

Werkelijke resultaten moeten worden vergeleken met de vastgestelde verificatiecriteria om te bepalen

of de resultaten acceptabel zijn.

Currently you are performing an activity corresponding to a practice for which you indicated that you

may not be interrupted, and now there is new information available concerning practice 3.2 of which we

want to be kept up to date of directly. Do you, in this scenario, still want to be kept directly up to date of

information regarding this practice?

Yes No

APPENDIX H 271

VAL SP 2.2 Analyze Validation Results

Analyseer de resultaten van de validatieactiviteiten

De gegevens die voortvloeien uit validatietests, inspecties, demonstraties, of evaluaties worden

geanalyseerd ten opzichte van de gedefinieerde validatiecriteria. In het geval van tekortkomingen,

documenteren deze rapportages de mate van succes of falen en categoriseren zij de vermoedelijke

oorzaak van het falen.

Currently you are performing an activity corresponding to a practice for which you indicated that you

may not be interrupted, and now there is new information available concerning practice 2.2 of which we

want to be kept up to date of directly. Do you, in this scenario, still want to be kept directly up to date of

information regarding this practice?

Yes No

PI SP 2.2 Manage Interfaces

Manage interne en externe interfacedefinities, ontwerpen en wijzigingen voor producten en

productcomponenten

Interface-eisen sturen de ontwikkeling van de interfaces, die nodig zijn om productcomponenten te

integreren, aan. Het managen van product- en productcomponentinterfaces start vroeg in de

ontwikkeling van het product.

Currently you are performing an activity corresponding to a practice for which you indicated that you

may not be interrupted, and now there is new information available concerning practice 2.2 of which we

want to be kept up to date of directly. Do you, in this scenario, still want to be kept directly up to date of

information regarding this practice?

Yes No

272 APPENDIX H

PI SP 3.3 Evaluate Assembled Product Components

Evalueer de geïntegreerde productcomponenten op interfacecompatibiliteit

Deze evaluatie omvat het onderzoeken en testen van geïntegreerde productcomponenten op prestaties,

geschiktheid of gereedheid, gebruikmakend van de procedures, criteria en omgeving voor

productintegratie.

Currently you are performing an activity corresponding to a practice for which you indicated that you

may not be interrupted, and now there is new information available concerning practice 3.3 of which we

want to be kept up to date of directly. Do you, in this scenario, still want to be kept directly up to date of

information regarding this practice?

Yes No

APPENDIX H 273

Interruptions

For the following 3 practices we indicated that we may not be interrupted while performing activities

corresponding to that practice. However, we also indicated that we want to be kept directly up to date

of information about some practices. Now we would like you to indicate, for each of these 3 practices,

whether or not you may be interrupted for information you want to be kept up to date of directly.

Example Taking a shower

Op dit moment ben je een douche aan het nemen

Currently you are taking a shower for which you indicated that you may not be interrupted, and now

there is new information available of which you want to be kept up to date of directly (e.g. a colleague

leaving his house). May you be interrupted in this scenario?

Yes No

 X

RD SP 1.1 Elicit Needs

Eliciteer de behoeften, verwachtingen, voorwaarden en interfaces van belanghebbenden voor alle fasen

in de productlevenscyclus

Elicitatie gaat verder dan het verzamelen van eisen, door het proactief identificeren van aanvullende

eisen die niet expliciet door klanten zijn verstrekt.

Currently you are performing an activity corresponding to practice 1.1 for which you indicated that you

may not be interrupted, and now there is new information available of which you want to be kept up to

date of directly. May you be interrupted in this scenario?

Yes No

274 APPENDIX H

RD SP 3.5 Validate Requirements

Valideer de eisen om te zorgen dat het resulterende product zal functioneren zoals beoogd in de

eindgebruikersomgeving.

Eisenvalidatie wordt vroeg in het ontwikkeltraject uitgevoerd met eindgebruikers om het vertrouwen te

verkrijgen dat de eisen leiden tot een ontwikkeling die resulteert in succesvolle eindvalidatie.

Currently you are performing an activity corresponding to practice 3.5 for which you indicated that you

may not be interrupted, and now there is new information available of which you want to be kept up to

date of directly. May you be interrupted in this scenario?

Yes No

VER SP 3.1 Perform Verification

Voer verificaties uit op de geselecteerde werkproducten

Het incrementeel verifiëren van producten en werkproducten bevordert vroegtijdige ontdekking van

problemen en kan resulteren in de vroegtijdige verwijdering van fouten.

Currently you are performing an activity corresponding to practice 3.1 for which you indicated that you

may not be interrupted, and now there is new information available of which you want to be kept up to

date of directly. May you be interrupted in this scenario?

Yes No

APPENDIX H 275

Remarks

1. Do you have any remarks?

Summary

Auto-Erecting Virtual Office Walls
Constructing a Virtual Office for Global Software Engineers

- Ben van Gameren -

Software engineering is a highly collaborative activity in which knowledge, about
the context in which one is working, is essential to collaborate. In the traditional
co-located office setting this information is exchanged relatively passively and
unobtrusively. In such an environment team members are frequently able to both
see and hear each other, therefore it is relatively easy to acquire and sustain a
shared understanding.

However, global software engineering is becoming increasingly common for
software engineering teams, both due to the globalization of business and the
rising popularity of working from home. In such a distributed environment, team
members no longer share a physical work environment and are outside of sens-
ory range of each other. Therefore it becomes infeasible to exchange information
without some kind of technological support. These technological solutions, de-
veloped by the (global) software engineering community, are in general inferior
to the way contextual information is shared in the co-located setting, because
in comparison it (i) takes more effort, (ii) is more obtrusive, (iii) happens less
frequently, and (iv) contains less information.

The goal of this dissertation is to support global software engineers with tech-
nological support for aiding them to relatively passively and unobtrusively acquire
a sufficient level of awareness for their work activities. To reach this goal we use
the ’industry as laboratory’ approach in which an industrial setting is used as a
test environment. During our research we have closely collaborated with both
IHomer and Exact Software to identify real-life global software engineering prob-

277

278 SUMMARY

lems, develop and implement solutions for these problems, and to evaluate these
solutions with experienced people from industry. To reach this goal we study
three aspects of the design, implementation and evaluation of such technological
support: constructing a virtual office, communicating in a virtual office, and in-
formation needs in a virtual office.

Constructing a Virtual Office
First, we formulate both our vision on how to provide distributed software en-
gineers with a sufficient level of awareness and an approach to construct such
technological solutions. After comparing the co-located office setting with the
distributed setting we conclude that in a co-located setting awareness is spread
relatively passively and unobtrusively, while it takes more effort in a distributed
setting. Therefore, we propose the use of a mechanism which has the potential to
regulate the available information based on the current activity of an engineer: a
’Virtual Office Wall’. Next to formulating our vision we also present an iterative
approach to develop, implement and validate such solutions. We discuss the high
desirability to collaborate with companies in which distributed collaboration is
common as well as the requirements such a process should fulfill. The results of
these studies provide important guidelines on how best to design and implement
a virtual office.

Communicating in a Virtual Office
Secondly, we study the value of communication in global software engineering. We
start with a theoretical motivation why the overhearing of conversations of others
is valuable to a distributed software engineering team. We provide a definition for
a conversation, discuss the various uses conversations have in collaborative work,
and define an ’Open Conversation Space’. Subsequently, we conduct a focus group
and a questionnaire in a large international software development company to ex-
plore the importance of overhearing conversations. In the 8-person focus group we
ask the participants to determine the benefits of overhearing conversations, chal-
lenges of overhearing conversations, information about a conversation, actions
possible on a conversation, benefits and challenges of recorded conversations. Fol-
lowing this, in the questionnaire among 44 participants, we determine the relative
importance of these benefits, challenges, information items and possible actions.
Hereafter, we perform an empirical case study to measure the value of overhearing
conversations in global software engineering from actual industrial experience. To
do this we present a tool which explicitly supports overhearing conversations of
others: Communico and deploy it in a large international software development
company. The results of this empirical study provide indications of (i) how well
the benefits and challenges of having access to active conversations are exploited
and alleviated, (ii) how well conversations are represented in the open conversa-
tion space, (iii) indications of how well actions on a conversation are supported,
and (iv) indications of how well the benefits and challenges of having access to
recorded conversations are exploited and alleviated. Based on the findings of

SUMMARY 279

these empirical studies we conclude that being able to overhear conversations of
colleagues in a global software engineering team is valuable.

After measuring the value of overhearing conversations, we also measure the
value of microblogging with mood-indicators in global software engineering. We
collect the empirical data we need by mining over a year of usage data of such
a microblogging solution. In this study we code the content of all posts and
comments and perform semi-structured interviews with distinctive users of this
system. Based on this data we draw conclusions about what sort of topics are
discussed, the impact of the introduction of such a system on distributed software
teams, and the impact of distribution of the software team and team composition
on the use of such a system. This study provides empirical evidence that the in-
troduction of a mood-based microblogging solution increases team-connectedness
and eases access to information that is traditionally harder to acquire.

Information Needs in a Virtual Office
Thirdly, we study the information needs of global software engineers. We re-
search what information global software engineers want to know immediately and
when software engineers do not mind to be interrupted with such information. To
gather the empirical data needed we conduct an Estimate-Talk-Estimate study
with experienced software engineers from 9 different companies. The outcomes of
this study introduce a contradiction, since participants on the one hand indicate
that they like to be informed immediately of several information items. On the
other hand they also indicate that they prefer not to be interrupted during some
activities. Therefore, we provide a look-up table which can be used to determ-
ine whether or not software engineers want to be immediately informed of an
information item.

After researching what information software engineers want to know imme-
diately and when they do not mind to be interrupted, we study the impact of
automating the process of restricting the available information to that informa-
tion a software engineer needs, to carry out his current activity. Therefore, we
conduct a controlled experiment to study whether there is a relation between the
presence of virtual office walls and the actual and perceived speed and accuracy
of the work carried out by the participants. Additionally, we measure the extent
in which the participants experience the presence of virtual office walls as useful.
The results of this study show that virtual office walls appear to contribute to
an improved awareness of co-worker synchronicity, an easier insight in the actual
workload, and a more concise overview of the work performed. In turn, these im-
provements mostly benefit the speed of coordination and the perception regarding
overall performance.

Finally, based on these (empirical) studies, we derive a set of requirements
a virtual office should fulfill. This set of requirements contributes to the main
goal of this dissertation, because it provides important guidelines on how best to
provide global software engineers with the information they need.

Samenvatting

Virtuele Kantoormuren
Het Construeren van een Virtueel Kantoor voor Software Engineers

- Ben van Gameren -

Het ontwikkelen van software is een collaboratieve activiteit waarin kennis over
de context waarin je werkt essentieel is om samen te werken. In de traditionele
kantoor omgeving wordt deze informatie passief en onopvallend uitgewisseld. In
een dergelijke omgeving zijn teamleden vaak in de gelegenheid om elkaar zowel te
zien als horen, daarom is het relatief eenvoudig om een gemeenschappelijk beeld
te krijgen en te behouden.

Tegenwoordig komt het echter steeds vaker voor dat software gedistribueerd
ontwikkeld wordt. Dit komt zowel door de globalisering van het bedrijfsleven als
door de toenemende populariteit van het thuiswerken. In een dergelijke gedis-
tribueerde omgeving delen teamleden niet langer dezelfde fysieke werk locatie en
kunnen elkaar niet langer zintuiglijk waarnemen. Daardoor wordt het onmoge-
lijk om informatie uit te wisselen zonder gebruik te maken van technologische
ondersteuning. Vergeleken met een traditionele kantooromgeving heeft deze tech-
nologische ondersteuning de volgende beperkingen: het delen van informatie kost
meer moeite, het delen van informatie is meer opdringerig, het delen van infor-
matie gebeurt minder vaak, en het bevat minder informatie.

Het doel van dit proefschrift is het technologisch ondersteunen van software
ontwikkelaars die gedistribueerd samenwerken door hen te helpen met het passief
en onopvallend verkrijgen van contextuele informatie. Hierbij hebben we de ’in-
dustry as laboratory’ aanpak gehanteerd, waarbij een industriële omgeving wordt
gebruikt als test omgeving. Tijdens ons onderzoek hebben we nauw samenge-
werkt met zowel IHomer als Exact Software om relevante software engineering

281

282 SAMENVATTING

problemen te identificeren, om oplossingen voor deze problemen te ontwikkelen
en te implementeren, en om deze oplossingen te evalueren met ervaren mensen uit
het bedrijfsleven. Om het doel te bereiken bestuderen we drie aspecten van derge-
lijke technologische ondersteuning: het construeren van een virtueel kantoor, het
communiceren in een virtueel kantoor en de informatiebehoeften in een virtueel
kantoor.

Construeren van een Virtueel Kantoor
Ten eerste formuleren we zowel onze visie, over hoe software ontwikkelaars te
helpen met het passief en onopvallend verkrijgen van contextuele informatie, als
onze aanpak om dergelijke technologische oplossingen te ontwikkelen. Na het
vergelijken van de traditionele kantoor omgeving met de gedistribueerde omge-
ving kunnen we concluderen dat in een traditionele kantoor omgeving informatie
passief en onopvallend wordt uitgewisseld terwijl dit meer moeite kost in een ge-
distribueerde omgeving. Daarom stellen we voor een mechanisme te gebruiken
dat het potentieel heeft om de beschikbare informatie te reguleren op basis van
de huidige activiteit van een engineer: een ’Virtual Office Wall’. Naast het formu-
leren van onze visie presenteren we ook een iteratieve aanpak om deze oplossingen
te ontwikkelen, te implementeren en te valideren. We bespreken zowel het belang
om samen te werken met bedrijven waarin gedistribueerd software ontwikkelen de
norm is, als de eisen waaraan deze aanpak moet voldoen. De resultaten van deze
studies bevatten belangrijke richtlijnen waaraan het ontwerp en de uitvoering van
een virtueel kantoor moet voldoen.

Communiceren in een Virtueel Kantoor
Ten tweede, bestuderen we het belang van communicatie in een gedistribueerd
software ontwikkelteam. Daarbij geven we een theoretische motivatie waarom het
meeluisteren met gesprekken van anderen waardevol is, definiëren we een gesprek,
bespreken we de verschillende toepassingen die deze gesprekken kunnen hebben in
gezamenlijk werk en definiëren een ’Open Conversation Space’. Vervolgens stellen
we een focusgroep samen met deelnemers van een grote internationale onderne-
ming, waarin we met behulp van een questionnaire het belang van het meeluisteren
met gesprekken van anderen onderzoeken. De deelnemers van de focusgroep vra-
gen we naar de voordelen en nadelen van het meeluisteren met gesprekken van
anderen, nuttige informatie over een gesprek, mogelijke acties na het meeluisteren
van een gesprek en de voor en nadelen van het registreren van deze gesprekken.
Vervolgens bepalen we het relatieve belang hiervan in een enquête onder 44 deel-
nemers. Tot slot doen we een case study om het belang van het meeluisteren
met gesprekken van anderen meetbaar te maken in de praktijk. Om dit mogelijk
te maken presenteren we een tool die het meeluisteren met gesprekken van an-
deren expliciet ondersteunt: Communico. Deze oplossing is vervolgens gebruikt
in een groot internationaal software bedrijf. De resultaten van dit empirisch on-
derzoek geven een indicatie hoe goed: (i) de voordelen van het meeluisteren met
gesprekken worden benut en de nadelen worden verminderd, (ii) gesprekken wor-

SAMENVATTING 283

den gerepresenteerd , (iii) de mogelijke acties op een gesprek worden ondersteund
en (iv) de voordelen van beëindigde en geregistreerde gesprekken worden benut en
de nadelen worden verminderd. De resultaten van deze empirische studies tonen
aan dat de mogelijkheid om mee te luisteren met gesprekken van collega’s in een
gedistribueerd ontwikkelteam waardevol is.

Naast het bestuderen van het belang van meeluisteren met gesprekken van
anderen in een gedistribueerd software ontwikkelteam, bestuderen we ook het be-
lang van microblogging met stemmingsindicatoren. In deze studie hebben we, met
behulp van het toegepaste microblogging systeem, de gebruiksgegevens verzameld
over een periode van meer dan een jaar. Hierbij hebben we de inhoud van alle
berichten en reacties gecodeerd en interviews gehouden met verschillende gebrui-
kers van het systeem. Op basis van deze gegevens hebben we conclusies getrokken
over de onderwerpen die besproken worden, de impact van de invoering van een
dergelijk systeem op gedistribueerde software ontwikkel teams en de impact van
de distributie en samenstelling van het software ontwikkel team op het gebruik
van een dergelijk systeem. Deze studie levert empirisch bewijs dat de invoering
van een stemming-gebaseerde microblogdienst de verbondenheid binnen een team
verhoogt en de toegang tot vluchtige informatie makkelijker maakt.

Informatiebehoeften in een Virtueel Kantoor
Ten derde onderzoeken we de informatiebehoeften van gedistribueerde software
ontwikkelteams. We onderzoeken welke informatie software ontwikkelaars onmid-
dellijk nodig hebben en wat het beste moment is om deze informatie tot zich
te nemen. Om de benodigde empirische gegevens te verkrijgen voeren we een
Estimate-Talk-Estimate studie uit met ervaren software ontwikkelaars van 9 ver-
schillende bedrijven. De uitkomsten van deze studie introduceren een contradic-
tie, aangezien de deelnemers aan de ene kant onmiddellijk willen worden ingelicht
over bepaalde informatie, aan de ander kant geven zij ook aan dat ze liever niet
gestoord worden bij bepaalde activiteiten. Daarom hebben we een opzoektabel
gedefinieerd die gebruikt wordt om te bepalen of software ontwikkelaars onmid-
dellijk willen worden ingelicht over bepaalde informatie.

Hierna bestuderen we de impact van het proces, dat de beschikbare informatie
beperkt tot die informatie die een ontwikkelaar nodig heeft voor het uitvoeren
van zijn huidige activiteit. Hierbij voeren we een gecontroleerd experiment uit
om te onderzoeken of er verband bestaat tussen de aanwezigheid van virtual
office walls en de feitelijke en gepercipieerde snelheid en nauwkeurigheid van het
verrichte werk. Daarnaast hebben we ook gemeten in hoeverre de deelnemers de
aanwezigheid van virtual office walls als nuttig ervaren. De resultaten van deze
studie tonen aan dat virtual office walls: bijdragen aan een beter inzicht in wat
je collega’s op dit moment aan het doen zijn, een duidelijker inzicht geven in wat
er nog te doen is, een duidelijker overzicht bieden van verrichte werkzaamheden.
Deze verbeteringen komen vooral ten goede aan de snelheid van coördinatie en de
perceptie ten aanzien van de algemene prestaties.

Tot slot stellen we, op basis van deze (empirische) studies, een lijst van eisen

284 SAMENVATTING

samen, waaraan een virtueel kantoor moet voldoen. Deze set van eisen draagt bij
aan het doel van dit proefschrift aangezien het belangrijke richtlijnen bevat over
het informeren van ontwikkelaars die gedistribueerd samenwerken.

Curriculum Vitae

Ben van Gameren was born in Rotterdam, The Netherlands, on November 13th

1985. After he finished secondary school in 2004, he started with the Bachelor
Technical Informatics at the Delft University of Technology. After successfully
completing his Bachelor in 2007, he continued his academic career and started
with the Master Computer Science, also at the Delft University of Technology.
In this program he studied the advantages and challenges of combining the agile
and distributed development approaches and how technological support is best
applied to deal with these. This research resulted both in his Master thesis,
and a publication in the proceedings of the International Conference on Global
Software Engineering. In 2009 he received his Master of Science degree, after
which he joined the Software Engineering Research Group of the faculty Electrical
Engineering, Mathematics and Computer Science.

As a PhD candidate he continued the interesting and promising line of research
regarding how to support global software engineers with technological support
for aiding them to acquire a sufficient level of awareness. He focused on what
approach should be used to research this, the value of communication in global
software engineering, and the information needs of global software engineers. Dur-
ing this period he was both employed by the Delft University of Technology and
IHomer. Due to this setting he had the opportunity to experience real life global
software engineering problems, to propose and implement solutions for these prob-
lems, and to evaluate these solutions. Eventually, this research resulted in this
dissertation which is based on multiple peer-reviewed publications at international
workshops and conferences on global software engineering.

285

286 CURRICULUM VITAE

Education
PhD in Computer Science October 2009 - October 2013
Delft University of Technology, Delft, The Netherlands.
Dissertation title: ”Auto-Erecting Virtual Office Walls - Constructing a Virtual
Office for Global Software Engineers”

MSc in Computer Science September 2007 - July 2009
Delft University of Technology, Delft, The Netherlands.
Thesis title: ”Technical Support for Distributed Agile Development”

BSc in Computer Science September 2004 - July 2007
Delft University of Technology, Delft, The Netherlands.

VWO Diploma September 1998 - July 2004
O.S.G. De Ring van Putten, Spijkenisse, The Netherlands.

Work Experience
IHomer January 2014 - present
Software Engineer

IHomer October 2009 - October 2013
Researcher

Cope IPS April 2007 - December 2008
Software Engineer

Auto-Erecting
Virtual Offi ce Walls
Constructing a Virtual Offi ce for Global Software Engineers

Ben van Gameren

Auto-Erecting Virtual Offi ce W
alls

Ben van Gameren

ISBN: 978-94-6186-317-1

9 789461 863171

Ben van Gameren has pursued his
PhD in Software Engineering for the last
four years. In his research he studies how
to support global software engineers with
technological support for aiding them to
relatively passively and unobtrusively

acquire a suffi cient level of awareness for their
work activities. To reach this goal he studies three
important aspects of the design, implementation and
evaluation of such technological support, namely:
constructing a virtual offi ce, communicating in a
virtual offi ce, and information needs in a virtual offi ce.
The results of these empirical studies, conducted in
close collaboration with industry, provide valuable
insights on how best to design and implement a
virtual offi ce, empirical evidence that overhearing
conversations of colleagues is valuable, empirical
evidence that a mood-based microblogging solution
increases team-connectedness, and empirical
evidence that virtual offi ce walls increase the speed
of coordination and the perception on overall
performance. Based on these studies he derives a
set of requirements a virtual offi ce should fulfi ll. This
set of requirements provides important guidelines on
how best to provide global software engineers with
the information they need.

Cover_V4.indd 1 19/5/14 10:11

