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Abstract

Background: This research is part of the project ”Water Efficiency in Sustainable Cotton-based Pro-
duction Systems” between Solidaridad Asia and TU Delft. The project aims to increase the livelihood
of smallholder farmers in the Maharashtra, India through. A socio-hydrological (SH) model is used
extensively in this research as an evaluation tool. However, the baseline research indicates that the
lack of stress mechanics in the SH model used in the intervention might cause inaccuracies in yield
estimation. Furthermore, it has never been validated at a farmer level before. This research aims
to implement the stress mechanics in the SH model, evaluate the overall performance of the model
in terms of predicting crop yield, identify potential sources of errors, and give recommendations for
future studies.
Method: The research uses iterative top-down approach due to the large study area and the var-
ied nature of the 308 farmers surveyed. The research implements the water and temperature stress
mechanics based on Food and Agriculture Organization’s (FAO) AquaCrop framework. For the per-
formance evaluation process, this research uses four model scores namely Nash-Sutcliffe (NS), log of
NS, Mean Absolute Error (MAE), and the coefficient of determination (r2). Furthermore, the sources
of uncertainties are divided into two categories namely lack of knowledge (i.e. generated by param-
eter, input, observation, and structural errors) and variability (i.e. generated by climate variations).
The lack of knowledge uncertainty is investigated using Monte Carlo Sampling calibration and the
Generalized Likelihood Uncertainty Estimation (GLUE) concept is used to obtain the uncertainty
intervals of the model. Going further, the errors are divided into residual and structural error. The
latter is explained and quantified through a structural error model using a combination of qualitative
analysis, Principal Component Analysis, multiple linear regressions, and projection of the data into
kernel space. Then residuals between the model yield + structural error vs. the observed yield is
thought to be explained by the residual errors. Lastly, the effects of climate variations to the stability
of the model are evaluated.
Results and Discussions: After the initial calibration the model has NS value of -0.343 to -0.996,
NSlog of -0.655 to -1.91, MAE of 447.1 to 553.2 kg/ha, and r2 of 0.003 to 0.008. Because of the poor
performance of the model, the uncertainty intervals from GLUE is not enough to capture the total
errors of the model. However, after adjustment using the structural error model, the model scores
become NS = 0.83, NSlog = 0.56, MAE = 149 kg/ha, and r2 = 0.859. The adjusted yield calculation
has a residual error as Gaussian distribution with σ = 150 kg/ha. The qualitative analysis identified
several factors that contribute to the errors viz. farmers’ capital, irrigation behavior, and crop pro-
duction process such as canopy cover growth. Lastly, there is no major instability found through the
bootstrap analysis.
Conclusions: The physical model is not performing well, especially when it is calculating yield for
individual farmers over a large study area. However, the structural error model can adjust the yield
prediction so that it is close to the observed yields. This indicates the poor performance is likely to
be caused by the prevalence of structural errors in the model instead of the uncertainties regarding
parameters, input, or observation values. Therefore, it is recommended for future research to address
this first. This can be done by further study and incorporation of more crop production processes, soil
water simulation, and exploratory interviews to identify patterns and more factors that can influence
the errors.
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Chapter 1

Introduction

1.1 Agricultural crisis in Maharashtra

India is the largest cotton producer in the world, where the majority of their production comes from
Maharashtra (Lalitha et al., 2009). While the percentage of agriculture in India’s GDP has been
declining from 56% in 1951 to 25% in 2001, 58% of the total number of workers are still dependent
on the agricultural sector (Mishra, 2006). However, drought is a major challenge and about one-sixth
of India is deemed to be drought prone area (Udmale et al., 2014b). Between 1901 to 2010 about
17% were drought years, and they severely affect the agriculture and economy of the country despite
drought mitigation measures (Kumar et al., 2013). The majority of the farmers do not have the means
to mitigate the drought impact due to lack of water saving technologies and use of flood irrigation
during drought (Udmale et al., 2014b).

Small farmers are often forced to borrow money, not just for agriculture but for their daily consump-
tion (Sravanth and Sundaram, 2019). However, development banks are becoming less inclined to lend
money towards farmers. The percentage of total bank loans towards the agricultural sector is halved in
early 2000s from the previous figure of 12-20% in 1994 (Merriott, 2016). This decline does not reflect
the shrinking of agricultural sector in India’s GDP and there is an increase in the volume for non-bank
loans with higher interest rates (Merriott, 2016), i.e. the farmers are turning to other sources of loans.
The most common loan source is private money lenders (28.4%), followed by relatives (22.93%), and
lastly the development bank (3.94%) (Behere and Behere, 2008). The high interest rate that the small
farmers are forced to take often led to a perpetual debt traps that end in suicides. This is made worse
by the fact that there is a change in demographics in the agricultural sector that showed increase of
small farmers. Since 1960s, the number of farm holdings increased from 48.9 to 115.6 million, however,
composition wise only the smallholder farmers (0-2 ha of land) increased from 51% to 62%, while the
number of medium to large farmers is declining (Mishra, 2006). This means that more farmers are
vulnerable to water scarcity and extreme weather conditions.

Government have passed debt relief bills in the past to reduce the farmers burdens (RBI, 2009; Kerala
Legislative Assembly, 2012). However, multiple studies have shown that debt relief are not effective
in combating the crisis and come with detrimental effects. Following debt relief, there are observed
behavioral changes to the borrowers such as no increased investment or productivity, increasing default
rates, and longer repayment rate (Kanz, 2012; Giné and Kanz, 2014; De and Tantri, 2014). These
behavioral changes contribute to the further decline of credit access for the farmers as banks are be-
coming less likely to give out loans (De and Tantri, 2014). Moreover, debt reliefs are mostly reactionary
and are believed to not be the solution (Sravanth and Sundaram, 2019). Qualitative exploration has
shown that there are more factors other than debt that contributes to the crisis and high suicide
rates viz. addictions, environmental problems, stress, poor irrigation, poor crop price, increased seed
cost, diminishing investment, etc (Dongre and Deshmukh, 2012; Sud, 2009). To address the envi-

1



2 Chapter 1

ronmental stress and create employment opportunities, the government implemented The National
Rural Employment Guarantee Act. Through this, the government pay the people to build ponds,
dykes, and other drought mitigation infrastructures (Udmale et al., 2014a). However, the majority
of the farmers are not satisfied with the scheme due to insufficient labor wages (Udmale et al., 2014a).

1.2 Interventions by Solidaridad and TU Delft

”Water Efficiency in Sustainable Cotton-based Production Systems” project is a 5-year project of Sol-
idaridad Asia in collaboration with TU Delft, where they aim to improve the livelihood of smallholder
cotton farmers. They plan to achieve this goal through several means such as physical interventions
(e.g. reservoirs), financial (e.g. fixed crop prices), education, and promotions. Currently, the study is
performed in the state of Maharashtra in India. It focuses on four districts in the north-eastern region
(Vidarbha) of Maharashtra, namely Nagpur, Amravati, Wardha, and Yavatmal.

A baseline study (Hatch et al., 2019) was conducted in 2019 by a team from TU Delft to assess the
hydrological resources and socio-economic characteristics of 308 farmers in three of the four study
areas i.e. Amravati, Wardha, and Yavatmal. Fig. 1.1 shows the study area and the locations of the
interviewed farmers. They did an extensive survey regarding farming practices and financial charac-
teristics. Climate data, land use, and soil characteristics of the area are used alongside the survey
data to model the performance of the farmers in terms of crop yield and capital generation. The team
used a socio-hydrological (SH) model from (Pande and Savenije, 2016) as a basis for their assessment.
In the past, this SH model was also used by den Besten (2016) to estimate the crop yield in the state
level.

Figure 1.1: Map of the study area and farmers location. The project currently focuses at the three districts:
Yavatmal, Amravati, and Wardha. These districts are located in the Vidarbha region, north east of

Maharashtra in India. The points indicates the location of the 308 farmers interviewed. Made in QGIS (QGIS
Development Team, 2021).
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1.3 Knowledge gap

The chapter 1.1 noted the shortcomings of the past interventions and other approaches to increase the
farmers’ livelihood mentioned in chapter 1.2 are explored. Thus, the importance of the SH model as
an intervention tool increases, e.g., for evaluating the cost benefit of building new reservoirs. However,
currently there are some limitations to the SH model. The baseline noted that in the current model,
the water only starts to affect the crop yield calculation when it is depleted fully and does not take
into account the stress from a water deficit, thus overestimating the yield. Furthermore, while the
water balance calculation is daily, it only adjust the crop yield annually. This means that the model
cannot be used for a crop yield evaluation in the mid of planting season by the farmers or institutions
as an adaptation tool.

Furthermore, there were no prior validation for the SH model at the farmers’ level, only at the district
and state level. For this, the baseline provides new information regarding the observed yield for the
validation of the 308 farmers. Further, a QGIS Soil and Water Assessment Tool (QSWAT) model was
used to calculate the recharge of the irrigation ponds (Janssen, 2020) and the results are incorporated
into the SH model calculation. It is unknown how the model will perform with all these additional
information.

1.4 Research objectives

First, this research aims to address the lack of stress mechanics and improve the foundation of the
current model for future uses in the project. This is done by implementing daily stress mechanics
based on FAO’s AquaCrop model framework. AquaCrop model is able to simulate crop yield in
several simplified steps namely canopy cover growth −→ transpiration −→ above-ground biomass −→
crop yield (Vanuytrecht et al., 2014). The stress mechanics are able to adjust the crop yield based
on water and temperature conditions during growing season. More details of these will be explained
in chapter 2.4. The addition of the stress mechanics hopes to reduce the inaccuracies suggested by
the baseline study. Moreover, by changing the framework of the code to do daily water and yield
calculations it will create a more robust foundation for future additions to the model.

Second, once the stress mechanics are implemented, the new SH model will be calibrated and its
performance will be evaluated by comparing the calculated yield with the observed yield. The total
error will be quantified, and the potential factors that might contribute to the discrepancies are
identified.

The output of this research will be an adjusted model and a report that outlines the shortcomings of
the model alongside the recommendations to address them. It can be used by Solidaridad and the TU
Delft team for future studies and improve their intervention strategies.

1.5 Research questions

To achieve the mentioned research objectives the research aims to answer the question:

“What is the overall performance of the model in calculating the cotton yield in the Maharashtra
region with the addition of the stress mechanics?”

Alongside the main research question there are sub research questions:

• How do the uncertainties from the model and external variations affect the calculated crop yield?

• Which factors are most influential towards the error between the predicted crop yield and ob-
served yield?



Chapter 2

Methodology

This chapter will first describe the characteristics of the study area, followed by the general approach
and conceptual framework of the research. Next the overview of the SH model is discussed along-
side with the details of the implementation of stress mechanics. Lastly, the evaluation methods are
discussed.

2.1 Description of the study area

The baseline from Hatch et al. (2019) has produced a considerable information regarding the properties
of the area and can be used for more details. However, a short summary of the site is provided here.
As mentioned previously the study is located in the Vidarbha region of Maharashtra. The region is
covered with black soil due to volcanic activities (Hatch et al., 2019). This black soil consists of around
54% clay, 32.5% silt, and 13.5% sand (Katti, 1979). This type of soil is suitable for growing cotton
due to its high moisture retention and the relatively high temperature (Janssen, 2020). This region is
influenced by the summer monsoon. Vidarbha has between 50-60 rainy days with an average rainfall
of 150 - 200 mm (Ratna, 2012). Mean temperature of the area ranges from 29°C to 43°C during the
day and 13°C to 28°C at night (Meteoblue, 2021). The 308 farmers sample consists mostly of small to
medium farmers (0.5 to 10 ha), however, there are several large farmers (>10 ha). The cotton area
ranges from 0.5 to 35 ha with a mean of 4.7 ha and a standard deviation of 4.1 ha. On average, each
farmer produces about 1,500 kg of cotton per ha. 238 of these farmers (77% of total farmers) are
in debt and 107 (45% of farmers in debt) have loan interest higher than 10%. This indicates similar
situation discussed in chapter 1.1.

2.2 Research approach and conceptual framework

Fig. 2.1 shows the iterative research framework that is followed in order to answer the research
questions. To make reading this report easier, its structure also follows this iterative framework. The
introduction (chapter 1) can be seen as the context analysis from previous study. The methodology
(chapter 2) can be seen as the designing and implementation in the model. The results (chapter 3)
are the outcome of the evaluation. Lastly, the conclusion and recommendations (chapter 4) are the
result of context analysis that can be used for future studies.

First, the findings from the baseline report can be considered as the context analysis regarding the
limitation of the model i.e. absence of stress mechanics and lack of validation at farmer level. The
stress mechanics code is designed and implemented in the water balance and yield calculation. In
the latest iteration, these implementations include root zone growth, canopy growth, water stress,
temperature stress, and irrigation calculation. Section 2.3 and 2.4 discusses the basis of the SH model
and the implementation of the stress mechanics.

4
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Figure 2.1: The approach used in this research. It is an iterative top down method. The implementations of
the stress mechanics are adjusted multiple times according to the result of sub-research question 1 and 2 in the
evaluation. In the latest iteration, the evaluation results are presented as a context analysis for future studies.

Fig. 2.2 provides more details on the research framework and breaks down the evaluation process.
First, the newly added mechanics in the model is analyzed and its parameters calibrated using Monte
Carlo Sampling (MCS). This achieves two things, first, as a sensitivity analysis to check which added
parameters are impactful to the performance of the model. When a parameter is deemed not influential
i.e. similar performance score across its value range, it can be removed so as to not add unnecessary
complexity to the model. This also limits the number of parameters that are used for the calibration
so as to reduce the number of iterations needed to find the pareto optimal solutions. Second, once a
set of high impact parameters is found, it is run in the simulation again to be calibrated. After that
the set of optimal parameters (θ) can be obtained from the best performing iterations. This is done
through the Generalized Likelihood Uncertainty Estimation (GLUE) concept and the parameter set
is used to find the uncertainty interval of the model predictions.

The external variations to the climate data such as precipitation, evaporation, and irrigation are also
considered to test the stability of the model performance. This is done by running the model through
bootstrap climate data.

Combined, the results from MCS, GLUE, and bootstrap analysis are used to answer the first sub-
research question regarding the uncertainties of the model.

Furthermore, the mean of the predicted yields (M(θ, I)) is then compared with the observed error
(O) to obtain the total error. The total error is separated into two. The first is residual error (εr)
which is a function of parameter errors (εθ), input errors (εI), and observation errors (εo). The second
is structural error (εs), which is a function of factors φ that are correlated to the structural error.
The factors φ are obtained by doing PCA and multi linear regressions with various variables. The
structural error model itself is obtained by doing PCA in the kernel space (i.e. highly nonlinear space)
and using linear regressions in the kernel space. The qualitative analysis is done alongside this to
explore the potential ways these factors affect the error generation.

The results from this are used to answer the second sub-research question regarding the most influential
factors towards the error.

The loop is repeated multiple times and the implementations are adjusted according to the each
evaluation. The implementation discussed in this chapter and the results presented in chapter 3
are of the latest iteration. Finally, using the findings from the previously mentioned analysis, the
performance of the model is evaluated to answer the main research question.
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More information regarding the uncertainties and errors can be found in section 2.5.

Figure 2.2: Conceptual framework. The research is driven by the lack of stress mechanics and model
validation. AquaCrop stress mechanics are implemented and the evaluation of the model performance is done.

2.3 Schematics of the base socio-hydrology model

The sociohydrological model framework used in the baseline study is based on the model by Pande and
Savenije (2016) as shown in fig. 2.3. These dynamics are driven mainly by climactic variability. The
model provide insight to the system dynamics of smallholder farmers through six assets, namely water
storage capacity, capital, livestock, soil fertility, grazing access, and labor. This research is focused
on the climate variability, soil moisture, and crop production and attempts to improve the feedback
response from an annual to a daily calculation. The soil fertility factor and labor availability factor
are sometimes adjusted as well due to their direct influence to the crop production. The other parts of
the code that calculates the livestock, capital, expenditure, income, soil fertility are left as the original.

2.4 Implementation of the stress mechanics

This section will go into the details on the changes in the soil moisture and crop production part
of the model. The stress mechanics use the framework of FAO’s AquaCrop and their parameters as
a basis for the hydrology, water stress, and yield calculation. More detailed information regarding
the processes and the parameters can be seen in the manual by FAO (2012); Raes et al. (2012). An
overview of all parameter values used in the model can also be seen in table A.1 in the appendix.
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Figure 2.3: Framework of the base SH model obtained from Pande and Savenije (2016). The model captures
the dynamics of the smallholder farmers through their assets (state variables). These include, water storage,

grazing area, livestock, capital, soil fertility, and labor. This research will focus on climate variability, soil
moisture, and crop production part of the model.

Figure 2.4 shows the overview of the stress mechanics from the input climate data to the yield output.
The climate forcings used are irrigation, precipitation, reference evapotranspiration, and temperature.
Information on these data is included in section 2.4.1. Two stresses are implemented namely water
and temperature stress. The water stress is affecting crop growth via the root zone and canopy cover
and the temperature stress is affecting the daily biomass production. There is a positive feedback
loop present in soil moisture −→ water stress −→ canopy growth −→ soil evaporation −→ soil moisture.
The increased canopy cover will reduce soil evaporation which will increase water available for plant
growth. Then, there is negative feedback loop in soil moisture −→ water stress −→ canopy growth −→
transpiration −→ soil moisture. The increased canopy cover will increase transpiration demand, thus
reducing soil moisture and inhibit canopy growth. The transpiration demand met is converted into
biomass production using normalized crop water productivity (CWP ). Then at the end of the season
the biomass is adjusted into the crop yield using the harvest index (HI), fertilizer, and labor factor.
Each step is discussed in more details in their own respective sections (2.4.1 - 2.4.9).

2.4.1 Data description

Gridded daily temperature and precipitation (P [mm/d]) data used are developed by India Meteoro-
logical Department (IMD) (Srivastava et al., 2009; Pai et al., 2014). The resolution for precipitation
data is 0.25 x 0.25 degrees. While the max, min, and mean temperature (Tmax, Tmin, T respectively [°C
]) data are in 1 x 1 degrees resolution. The daily data is available from 1975 to 2019. The reference
evaporation (ETc) is estimated using Hargreaves Equation from the temperature data (George H.
Hargreaves and Zohrab A. Samani, 1985) (See Eq. 2.1). For the water equivalent of extraterrestrial
radiation (Ra [mm/d]), average monthly value at 20° N latitude are used (Samani, 2000) - see appendix
A.2 for detailed values. On evaluation, the temperature data generally have RMSE value of < 0.5°C
over most parts of India (Srivastava et al., 2009). The IMD4 precipitation data used in this model
are compared to IMD1, IMD2, IMD3, APHRO, and IMD OP. The comparison between the data give
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Figure 2.4: Overview of the stress mechanics processes. Going from the left to the right of the diagram is the
process from the input climate data through the crop production to produce the calculated yield. The four

inputs are irrigation, precipitation, ETc, and temperature. The two stresses implemented are water and
temperature stress. The processes from soil moisture −→ canopy cover −→ ET −→ biomass −→ yield are largely

based on FAO’s AquaCrop model. The details are discussed in section 2.4.2 to 2.4.9.

RMSE of 0.11 to 0.43 mm/day and bias of -0.16 to 0.42 mm/day in annual comparison. It must also
be noted that the data resolution are low and they might not represent the farm condition very well.

ETc = 0.0023Ra(T + 17.8)
√
Tmax − Tmin (2.1)

The irrigation data comes from the QSWAT model. The thesis of Janssen (2020) provides details on
the implementation of the QSWAT model. In summary, the model uses digital elevation, land use,
soil type, and weather data to calculate the reservoir inflows at particular intake points. However, the
inflow data is only available from 1979 to 2014. In order to obtain the approximate irrigation data
for the year 2014-2019, the total precipitation in the region is compared across the dataset to find
the most similar years. It is determined by comparing every year’s data and finding the combination
with the lowest mean absolute error (MAE). Fig. 2.5 shows the most similar year for the 2014-2019.
Each year’s pair irrigation data is used as a substitute for the missing data. Overall, they are all very
similar with the exception of 2015 and 2008 pair, however, this is deemed to be acceptable. Because
of the computational limitations, the irrigation data provided by the QSWAT model is monthly. For
this, the available water is re-sampled into a daily data with an equal amount every day. Currently,
there are only 351 and 358 considered intake points in Ghatanji and Hinhanghat respectively. The
limitation for the QSWAT model output is that it does not take into account upstream water intake
therefore the inflow produced is likely overestimated. In the SH model, each farmer is assigned the
closest intake point. Furthermore, if multiple farmers are using the same intake point, the allocation
of available water is divided evenly for the farmers for every time step. This is because the model is
run for each individual farmer for the duration of the simulation period and currently it does not allow
interaction between the farmers water intake i.e. the model does not know if farmer A can take 100%
of the inflow if farmer B does not fill their pond at a particular timestep, thus it is always allocated
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between the two e.g. 50% for each farmer in a case of two farmers.

In addition to the climate data, various information from the baseline survey is used to supplement
the calculations viz. maximum soil depth, type of irrigation used.

2.4.2 Root zone expansion and soil moisture

The effective root zone calculation (Zeff [mm]) starts at the planting date. In between the plant date
and the 90% of crop emergence (tcco) the Zeff is equal to the minimum effective root zone (Zn [mm])
unless limited by the maximum effective depth Zmax. The Zmax is limited by the soil depth (dsoil
[mm]) or the maximum effective root zone of the plant Zmax,plant [mm] - See Eq. 2.3. When t ≥ tcco

2
the Zeff is calculated using Eq. 2.2. Where Zo [mm] is the initial value of the root zone, which is
usually half of Zn - see eq. 2.4. The root zone is growing over the duration period of tx [days] with a
shape factor of n [-]. The fig. 2.6 shows the overview of the root zone growth over the planting season.

Zeff =

min
(
max

(
Zo + (Zmax − Zo) n

√
t−

tcco
2

tx−
tcco
2

, Zn

)
, Zmax

)
, if t ≥ tcco

2

min(Zn, Zmax), if 0 ≤ t ≤ tcco
2

(2.2)

Zmax = min(Zmax,plant, dsoil) (2.3)

Zo = Zn
2 (2.4)

2.4.3 Soil water stress

The total water available (TAW [mm]) for the plant changes over time following the evolution of root
zone throughout the planting season as seen in Fig. 2.6. The TAW is calculated from the difference
between water content at the field capacity (SMfc [mm]) and the wilting point (SMwp [mm]). The
SMfc and SMwp are calculated by multiplying the Zeff with the soil field capacity (FC [-]) and
wilting point (WP [-]) respectively.

SMfc = ZeffFC (2.5)

SMwp = ZeffWP (2.6)

TAW = SMfc − SMwp (2.7)

There are two thresholds that affects the calculation of the water stress factor (Ks[−]). pup [-] signifies
the fraction of TAW where the growth of plant starts being inhibited and plow [-] is the fraction of
TAW where plant growth stops completely. Drup/low [mm] are these thresholds expressed as soil
moisture in the root zone - see Eq. 2.8. The depletion (De [mm]) of water in the soil is calculated by
subtracting the the soil moisture at a particular timestep (SM [mm]) from the maximum soil moisture
capacity at Zmax (SMfc,max[mm]) - See Eq. 2.9.

Drup/low = pup/lowTAW (2.8)

De = SMfc,max − SM (2.9)
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Figure 2.5: The comparison of total precipitation for year 2015 to 2019 across the whole dataset. The metric
used to determine the closest year is the mean absolute error. By selecting two years with the most similar

precipitation distribution, it is hoped that the irrigation data can be used to substitute for the missing years.
2014 is closest with 1982, 2015 with 2008, 2016 with 2005, 2017 with 2004, 2018 with 2000, and 2019 with 2012.
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The water stress factor (Ks [-]) is determined by the De value. The upper and bottom threshold of
water stress factor are 0.7 and 0.2 of total water available (TAW ) [mm] respectively. The Ks has a
value of 1 (no water stress) when the soil moisture is above the upper threshold Drup. Eq. 2.10 shows
the relative water stress depending on the amount of depletion in the soil. Once the soil moisture
drops below the Drup it decreases following a linear line until it reaches 0 (maximum stress) when the
soil moisture value is below the bottom threshold Drlow.

Ks =


1, if SMfc −De ≥ Drup
1− SMfc−De−Drlow

Drup−Drlow , if Drlow ≤ SMfc −De ≤ Drup
0, if SMfc −De ≤ Drlow

(2.10)

Similarly, the root zone growth is affected by the root zone water stress. Eq. 2.11 shows the calculation
of root zone water stress factor (Ksto [-]) on various soil moisture conditions. Ksto starts out at 1 when
the soil moisture is above the upper threshold (Drup,sto) [mm] for root zone stress. The upper threshold
is expressed as the fraction (psto) of total water available (TAW ) in the root zone - see Eq. 2.12. When
this falls below the threshold Drup,sto, the Ksto decreases linearly until it reaches 0 when no water is
available. Finally, the Ksto is used to calculate the adjusted daily root growth (dzeff,adj [mm/d]) - See
Eq. 2.13.

Figure 2.6: Visualization of root zone, stored soil moisture, stress thresholds, and soil evaporation reduction
thresholds over the planting season. It is assumed that the soil moisture fills from bottom to up. The soil

moisture field capacity at a certain timestep (SMfc), wilting point (SMwp), stress thresholds (Drup/low), and
available water (TAW ) are determined by the evolution of the root depth (Zeff ). The figure also visualizes

the change in the stresses (Ks and Ksto depending on the depletion (De)
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Kssto =


1, if SMfc −De ≥ Drup,sto
1− SMfc−De

Drup,sto
, if 0 ≤ SMfc −De ≤ Drup,sto

0, if SMfc −De = 0

(2.11)

Drup,sto = pstoTAW (2.12)

dzeff,adj = dzeff ×Kssto (2.13)

2.4.4 Canopy growth

During planting season the growth of the plant is measured by Canopy cover (CC) [-]. It is the fraction
of soil covered by the leaves of the crop by looking top down on an area. The prevalence of water
stress in the system can cause a reduction of canopy growth. Hence canopy growth coefficient (CGC
[-]) needs to be adjusted using the Ks value - See Eq. 2.14.

CGCadj = Ks(CGC) (2.14)

Equation 2.15 calculates the change in canopy cover
(
dCC
dt

)
[s−1]. The initial value for the canopy

cover CCo is the value of CC when 90% of the sprouts appear. The calculation for
(
dCC
dt

)
also starts

at this time (time t = 0 at tCCo [day]). The equation shows the two phases of the growing stage. The
first stage is when the CC has not reached the midway point of the maximum canopy cover (CCx
[-]). The canopy growth then slows down at the second stage as it reaches the CCx. It stays at the
CCx until maturity and starts to decline when senescence is triggered towards the end of the season.
During senescence the CC declines at the rate of canopy decline coefficient (CDC [-]) for every day
after the trigger date (tsen = 0 at the start of senescence). The change in CC during senescence can
be seen in fig. 2.16. The overview of the canopy growth can be seen in Fig. 2.7. The canopy cover is
assumed to go to zero after the harvesting season.

dCC
dt =

{
CC0(CGCadj)e

t(CGCadj), if CC ≤ 0.5(CCx)

0.25
(
CC2

x
CC0

)
e−(t(CGCadj))CGCadj , if CC > 0.5(CCx)

(2.15)

dCC
dt = −0.05 (CDC) e

CDC(tsen)
CC (2.16)

2.4.5 Soil evaporation and transpiration

The model uses the dual crop coefficient to calculate the soil evaporation and crop transpiration from
the reference evapotranspiration (ETc). First, the basal crop coefficient (Kcb [-]) is used to calculate
the crop transpiration and the soil evaporation coefficient (Ke [-]) for the soil evaporation. Adding
both coefficients yields the combined coefficient Kc,max. Fig. 2.8 shows the Kcb and Kc,max evolution
throughout the year. The Kcb is divided into several stages. The initial stage (Lini) lasts for 30 days,
starting from planting date until 10% of the ground is covered by the crop. Next it enters the develop-
ment phase Ldev as the crop grows, where the basal crop coefficient increases linearly from Kcb,ini to
Kcb,mid. Then it stays there during the mid stage Lmid. When the crop reaches maturity it enters the
late stage Llate where the basal crop coefficient drops to Kcb,end at harvest. The actual transpiration
is then calculated using Eq. 2.17 (Vanuytrecht et al., 2014). It is proportional to the CC value, the
Kcb value, and the water stress to account for water available in the soil.
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Figure 2.7: Visualization of canopy cover over the planting season. It is split into four stages. In the first
growing stage, the CC grows rapidly until it reaches the second growing stage at 0.5CCx where it slows down

as it reaches the CCx. In mid stage the CC stays relatively constant. During maturity the senescence is
triggered and CC falls until the harvesting date.

Figure 2.8: Kcb and Kc,max evolution during the year for cotton (Allen et al., 1998). The dual crop
coefficient is divided into four stages. This follows the plant growth. The basal crop coefficient (Kcb) increases

linearly from the initial stage (Lini) to the mid stage (Lmid) during development stage (Ldev). It drops to
linearly in the late stage (Llate). The soil evaporation coefficient (Ke) stays constant at 0.05.
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Currently, the value of the Kc,max is assumed to be constant at Kcb + 0.05 (a maximum value for a
completely wet surface (Allen et al., 1998)). This is due to the model not taking into account surface
roughness/aerodynamics, relative humidity, and the height of the plant.

In order to calculate the soil evaporation (Es [mm]), Eq. 2.18 is used (Allen et al., 1998). It is inversely
proportional to the amount of CC as it covers more ground during the season. Moreover, the soil
evaporation depends on the water depletion from the ground surface (Allen et al., 2005). When the
surface is wet or the depletion is below the readily evaporable water (REW [mm]) the soil evaporation
reduction coefficient (Kr [-]) is equal to 1. In this situation, energy is the limiting factor. As the deple-
tion increases and goes past the REW the Kr decreases linearly until it reaches the total evaporable
water (TEW [mm]) threshold, where it is equal to 0 and soil evaporation is inhibited completely - See
Fig. 2.6 and Eq. 2.19. Currently, the calculation does not take into account the amount of wetted
surface area from precipitation or irrigation.

Tp = Ks(CC)KcbETc (2.17)

Es = Kr(1− CC)KeETc (2.18)

Kr =


1, if De ≤ REW
TEW−De

TEW−REW , if REW ≤ De ≤ TEW
0, if De ≥ TEW

(2.19)

The total evapotranspiration (ETa [mm]) is calculated by adding Tp and Ea - Eq. 2.20.

ETa = Tp + Es (2.20)

2.4.6 Irrigation

The irrigation supplied (Irr [mm]) is calculated using Eq. 2.21. Irrigation is triggered when soil
moisture goes below 50% of the total water available (TAW ). The volume for irrigation depends on
the De over the irrigated area (Ares [m2]) and its irrigation system efficiency (cirr [-]). The irrigation
system is separated into drip, sprinkler, and furrow. Each of these has its own associated efficiency.
The information for the Ares and cirr for each farmer are obtained from the survey. This volume is
limited by the current water content in the reservoir Sres [mm m2]. The change of water volume in
the reservoir is calculated using Eq. 2.22. The inflow from the intake point (Ires [mm m2]) is obtained
from the QSWAT data. Another flux considered is the open water evaporation (Eo [mm m2]), which
is calculated in Eq. 2.23. For the maximum capacity of the reservoir (Sres,max [mm m2]) and the
water surface area of the reservoir (Ares [m2]), it is assumed that irrigating farmers have a well with
a diameter of 3m and depth of 10m.

Irr = min
(
Sres,max

(
(De)

(
Airr
cirr

)
, 0
))

(2.21)

Sres = max (0,min (Sres−1 + Ires − Eo − Irr, Sres,max)) (2.22)

Eo = ETc(Ares) (2.23)

2.4.7 Soil moisture

The soil moisture (SM) for every timestep is then calculated using Eq. 2.24 by adding all the fluxes
such as precipitation (P ), irrigation (Irr), and total evapotranspiration (ETa) up to the maximum
field capacity SMfc,max.

SMi+1 = max (SMi + P + Irr − ETa, SMfc,max) (2.24)
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2.4.8 Biomass and water adjusted yield calculation

The daily biomass increase (m
[

g
m2day

]
) is calculated using Eq. 2.25 and the total biomass (B

[
g

m2year

]
)

can be obtained by summing the m during the planting season. The ratio of the transpiration being
met (Ta) and the reference evaporation (ETc) is multiplied with normalized crop water productivity
(CWP

[ g
m2mm

]
) to obtain the amount of biomass produced per unit area per mm of water transpired.

m = KT (CWP ) Ta
ETc

(2.25)

B =
∑

(m) (2.26)

Another factor that affects the biomass value is the temperature stress. If the temperature is above
or equal to the upper threshold (Tup [°C]) the temperature stress coefficient (KT [-]) is equal to 1 and
does not affect the biomass production. However, when it goes below the Tup the KT is decreasing
along a logistic function until it reaches KT = 0 at the bottom temperature threshold (Tbot [°C]). Tup
and Tbot are 20 °C and 0 °C respectively. Eq. 2.27 shows the calculation for temperature stress and
Eq. 2.28 shows the shape parameter for the equation.

KT =


1, if T ≥ Tup

1
1+999ek(T−Tbot)

, if Tbot ≤ T ≤ Tup
0, if T ≤ Tbot

(2.27)

k = ln

(
0.001
999

Tup−Tbot

)
(2.28)

The water adjusted cotton yield (Yo)is then obtained from the total biomass (B) at harvest by multi-
plying the it with a harvest index (HI [-]) value of cotton.

Yo = HI(B) (2.29)

2.4.9 Fertilizer and Labour Factor

Currently, the soil fertility is not activated in the model. Therefore the crop yield is only adjusted
based on how much Nitrogen (N) from fertilizer is applied (Napp [kg N/y]) vs. the maximum applicable
fertilizer (Nmax [kg N/y]) for the crop area (Acrop [ha]). Additional Nitrogen from manure (Nmanure)
is also considered. The relative fertilizer used (Nrel [-]) can be seen in Eq. 2.30. The fertilizer factor
(FN [-]) is then calculated using Eq. 2.31. The minimum yield is (Ymin) is assumed to be 375 kg/ha.
The maximum yield Ymax is calculated assuming all evapotranspiration demand is met i.e. Ta = ETc
and KT = 1 throughout the planting season - see Eq. 2.32.

Nrel =
Napp×Nmanure

Nmax×Acrop
(2.30)

FN = Ymin
Ymax

+Nrel

(
1− Ymin

Ymax

)
(2.31)

Ymax = HI
∑

(CWP ) (2.32)

The labor on the farm can vary depending on the wage rate, and the number of the labor determine
the crop output of the farm. The ratio (Lrel [-]) of available labor (Lav [person]) and the maximum
labor (Lmax [person]) is used to calculate the labor factor (Flab [-]) - See Eq. 2.33 and 2.34. The shape
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of the labor factor (fshape,lab [-]) is negative as the first few missing laborers do not impact the yield
as much as the later.

Lrel = Lav
Lmax

(2.33)

Flab = e
Lrel×fshape,lab−1

e
fshape,lab−1

(2.34)

The FN and Flab are used in adjusting the crop yield in Eq. 2.35. Currently this adjustment is
calculated on an annual basis.

Y ′ = Yo(FN )(Flab) (2.35)

2.5 Model Evaluation

In order to compare the model performance, the Nash-Sutcliffe (NS) coefficient is used - see Eq. 2.36
(Nash and Sutcliffe, 1970). The numerator represents the difference between the model calculated
yield (Y ′) and the observed yield (Y ) and the denominator is the difference between the observed
yield and the mean of the observed yield (Ȳ ). The NS value 1 means the model is representing the
real yield perfectly. A value of 0 means that the model has the same performance compared to using
the mean yield as a prediction i.e. using no model at all. Anything below 0 is worse than using the
mean yield. The log of NS coefficient (NSlog) is also used in this research - see Eq. 2.37. Another
metric used for the performance evaluation is the Mean Absolute Error (MAE) - see Eq. 2.38. Lastly,
the coefficient of determination r2 value is also used. Equation 2.39 shows the calculation of r2, where
Ypred is the predicted value from the linear regression. These metrics were used on several studies to
evaluate model performances (Toumi et al., 2016; Paredes et al., 2015; Mkhabela and Bullock, 2012)
and they are used in the calibration process - see section 2.5.2.

NS = 1−
∑n

i=1 (Y ′−Y )2∑n
i=1 (Y−Ȳ )2

(2.36)

NSlog = 1−
∑n

i=1 (log(Y ′)−log(Y ))2∑n
i=1 (log(Y )−log(Ȳ ))2

(2.37)

MAE =
∑n

i=1 |Y ′−Y |
n (2.38)

r2 = 1−
∑n

i=1 (Ypred−Y )2∑n
i=1 (Y−Ȳ )2

(2.39)

2.5.1 Defining uncertainties topology

The error topology that is used in this research can be seen in fig. 2.9. It identifies the parts in
which the errors are influencing. The uncertainty is divided into two categories, first is due to lack of
knowledge and second is variability. Lack of knowledge uncertainties represents the imperfection of our
knowledge of the system and variability represents the inherent variation in the system (Rotmans et al.,
2003). The lack of knowledge category is split into four errors viz. input, parameter, structural, and
observation errors. The lack of knowledge includes measurement errors from the input and observed
data. It also takes into account the parameter and structural errors of the model. Parameter errors
deals with the uncertainties of the parameters values while structural errors looks into the deficiencies
in the model processes and extent (gray box in figure). Recall from section 2.2 that the total error
(yellow box in figure) is split into two: the structural error (εs), and the residual error (εr), which is
the combination of the input, parameter, and observation errors. The second source of uncertainty is
due to variability, which comes from the external variations such as climate forcings.
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Figure 2.9: Uncertainties topology used in this research, it identifies the parts of the process being influenced
by the errors. The errors (orange box) are used to evaluate the model performance. The uncertainties are

divided into two categories: lack of knowledge and variability.

Error descriptions

Input and observation errors are associated with the used data in this project. The data are described
in section 2.4.1. The resolution for the precipitation and temperature can contribute to the error as
they might not represent the true condition at a farmers’ field. Similarly, the assumption used for the
irrigation inflow at year 2014-2019 can contribute to this input error since they do not represent the
true flow.

The observed crop yield obtained in the survey in 2019 was the previous crop yield in 2018. The time
between the harvest and the survey might contribute to the inaccuracies due to forgetfulness. There is
also a distinct increments of the yield that can be observed from the survey answers as people round
their yield to the 0.5 quintals/acre (around 120 kg/ha). This increments amount to around 8% of
the observed mean yield, which is quite substantial. These input and observation errors are not to be
studied in depth in this research, however, they are acknowledged when discussing the results.

Parameter errors are the errors caused by the difference between the used and true parameter values.
The addition of the stress mechanics introduces a lot of parameters into the model. Discrepancies
for each of these parameter from their true value contribute to the parameter error of the model.
Appendix A.1 contains the input parameters used in the model.

The structural errors are errors due to incorrect representation of a process in the model or the lack
thereof. It is often caused by the definition of the model extent and assumptions. For example,
assumed linear shape of water stress function, lack of groundwater fluxes, inactive soil fertility code,
etc.

2.5.2 Calibration and uncertainty interval

Given the nature of variations in the parameter values across the study region and the input uncer-
tainties mentioned in the previous section, Monte Carlo Sampling (MCS) is used for to calibrate the
model and find the uncertainty interval. MCS method takes into account both the natural variability
of the parameter values and the measurement errors (Gardner and O’neill, 1981). The MCS aims to
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find the approximate range of parameter values that are the most representative of the study area.
This is done by selecting a set of parameters and their range of values (see Appendix A.1 for detailed
values) and doing a simulation for large iterations with a random parameter values selected each time.
The Generalized Likelihood Uncertainty (GLUE) introduces the concept of many feasible combina-
tion of parameter values that have similar likelihood in describing the system (Beven and Binley,
1992). Furthermore, different objective functions can give different information about the system.
If a parameter set performs well on one objective function it does not mean that it will perform as
well on the rest i.e. pareto optimal solution. Therefore, the optimal parameter sets selected must be
above the performance thresholds for all four objective functions mentioned at the start of chapter
2.5.1. Unfortunately, determining the thresholds is subjective and can be seen as a shortcoming for
this method. To mitigate the subjectivity, they are selected in such a way that ensures that at least
50% of the observed yield lies in between the uncertainty interval of the calculated yield (however, it
must also be noted that the 50% threshold itself is subjectively selected). Based on this, the threshold
values used in this experiment are: NS ≥ −1.0, NSlog ≥ −2.0, MAE ≤ 600, and r2 ≥ 0.003.

Moreover, MCS is computationally expensive due to a large number of parameters present and the
complexity of the model. To minimize this limitation, only a small subset of parameters are calibrated
at any time. For example, in the current iteration of the model only HI, tcco, and labor factor shape
are calibrated. These parameters are chosen based on a combination expert judgment and prior MCS
analysis. For example, some parameters are found to not be influential to the crop calculation so they
are just assigned a particular value. Some parameters are also discarded from the model when it is
deemed not influential in order to maintain the complexity of the model down (e.g. the addition of
convex stress function introduces shape parameter and when it was deemed to be not influential in
improving the model score it is discarded and the model is reverted to use linear function).

The set of optimal parameters are then used to obtain the uncertainty interval of the predicted crop
yield. From this the mean yield will be used to evaluate the total error.

2.5.3 Structural Error Model

A structural error model (εs(φ)) is presented in an attempt to capture a portion of the total error
and adjust the predicted yield (Beven, 2005; Kennedy and Hagan, 2001). To do this, this research
utilized linear PCA and regression of survey variables, PCA in kernel space, and context analysis. In
this research, context analysis refers to the qualitative analysis of the context at the model extent or
boundaries to identify missing processes.

Linear Principal Component Analysis and Regression

First, linear PCA is used to reduce the dimensionality of the factors tested by doing basis transfor-
mation of the data (Wold et al., 1987). Reducing the dimension of the factors and identifying their
principal components (PCs) helps to identify patterns/trend and describe the data more easily. The
factors being tested include socio-economic variables from the baseline survey such as children help,
cotton area, cotton yield, crop price, seeds cost, pesticide cost, fertilizer cost, and fertilizer usage.
Other variables tested include soil depth, latitude, longitude, precipitation, evaporation, irrigation to-
talling 14 variables. The eigenvalue used as a cutoff for selecting the retained PC is 1. This is so that
the PC can at least explain the same amount of variance compared to the variables being measured.
Furthermore, after the basis transformation, a varimax (orthogonal) rotation is done to adjust the
loading factors (Brown, 2009). This process rotates the principal components so that one variable will
not be explained by multiple PCs and makes a clearer distinction between the PCs. This is useful for
the evaluation during the qualitative analysis.

The obtained principal components are used in a multiple linear regressions with the total error to
evaluate their first order effects. Both the PCA and the linear regression is done in SPSS Statistics
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software (IBM Corp, 2019). Once the influential factors are identified, they are discussed in a qualita-
tive analysis to find the potential ways these parameters contribute to the errors. They are also used
in the Kernel PCA to model the structural error.

PCA in Kernel Space

While the components obtained from linear PCA is useful to evaluate the first order effects of the
variables, it may be insufficient to capture of the underlying manifold of the data structure that can
be non-linear. Thus, to explore the non linearity, these variables are mapped to a higher dimensional
space using kernel functions where they are linearly separable (Schölkopf et al., 1998; Raschka and
Mirjalili, 2019). Then PCA can be done in this new kernel space by maximizing the variance for each
component and minimizing their covariance. To do this, the KPCA command in the scikit-sklearn
plugin on python is used (Pedregosa et al., 2011). There are various kernels that can be used with
this plugin, i.e., sigmoid, radial basis function (RBF), cosine, and polynomial (degree 2 to 5). Cross
validation is done in order to select the best kernel function. First, the available data is split into
75% training data and 25% test data. Then, the training data are used to find the eigenvectors or the
transformation “model” using the KPCA command. Following this, the test data are projected to the
kernel space using the KPCA “model”. The resulting PCs in the kernel space is then used in a multiple
linear regression model with the total error. The explained variance will be used to select which PCs
will be used in the regression. The PCs with highest variance are kept until there is one that brings
the cumulative variance above 90%. The proportion of explained variance (R2) is calculated using
equation 2.40, where

∑k
i=1 λi is the cumulative variance, and

∑n
i=1 λi is the total eigenvalue for the

total number of non-zero components (n). The resulting model from the regression (εs(ϕ)) is used to
predict the structural error.

R2 =
∑k

i=1 λi∑n
i=1 λi

(2.40)

Residual error

The residuals between the predicted total error and the observed total error is attributed to the residual
error. The distribution of the residual errors is deemed to be caused by uncertainties with regards to
the input, parameters, and observation values.

2.5.4 External variability and model stability

The MCS method is also used to randomly sample the climate data (with replacement for every it-
eration) over the recorded period as a bootstrap analysis. The MCS can create a bootstrap climate
data that mimics the structure of the climate data to test the stability of the model (Royston and
Sauerbrei, 2009). As an example of the sampling, a precipitation data for the first day of the year
(DOY) can be randomly sampled from every year of the current data where DOY=1. This repeats
for every DOY for the simulation time. This method assumes stationarity i.e. trends due to climate
change are not considered so there is no time dependence. In order to reduce unwanted variability a
high number of iteration is needed (Hesterberg, 2011). Considering the size of our climate data (daily
data over 308 locations over 45 years) an iteration size of 1,000 is used. The bootstrap method is used
on the precipitation and evaporation data.

On the other hand, the irrigation data is dependent on the precipitation and evaporation data. There-
fore, instead of using random sampling, the irrigation data is adjusted based on the bootstrap data
used. The sum of bootstrap precipitation (Pboot [mm]) and evaporation (Eboot [mm]) over the planting
season is compared with the sum of original data. Eq.2.41 shows the calculation of the irrigation factor
(Firr [-]) from the ratio of precipitation and evaporation. The evaporation is inversely proportional to
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the irrigation inflow. The resulting Firr is used to adjust the original irrigation inflow see Eq. 2.42.

Firr = 1
2

(
ΣP

ΣPboot
+ ΣEboot

ΣE

)
(2.41)

Irradj = Firr × (Irr) (2.42)
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Results and Discussions

This chapter presents the findings from the research alongside with the discussions regarding the
implications and the limitations. First, the model’s overall performance is described. It is then followed
by the uncertainties from the parameters and variability. Lastly, the results from the structural error
analysis will show the potential locations of the errors.

3.1 Performance of the Model

Figure 3.1 and 3.2 shows the overview of the evolution for various variables. The model was run from
the year 2010 to warm up the model. When looking at these figures it seems that the added stress
processes are responding very well to the forcings. Fig. 3.1 shows that the evolution of soil moisture
closely follows the rainfall events and the transpiration. In turn, the water stress function follows the
soil moisture closely. Because there is no water stress at the start of the planting season, the canopy
cover growth also seem to be unhindered at the start. As the soil moisture and water stress drops
the canopy cover also starts to experience senescence. It can also be observed that the transpiration
slowly drops to 0 as the soil moisture reaches the wilting point. Fig. 3.2 shows the evolution of the
transpiration and soil evaporation fluxes in a clearer scaling. Alongside it, the daily biomass growth
can be seen to follow the transpiration movement closely. These two graphs show that there is no
major fundamental issues to the additions of the stress processes.

3.1.1 Crop yield prediction of the SH model

This section will discuss the results of the crop yield calculation by the model. After calibration,
the average crop yield and their uncertainty intervals are calculated using the pareto optimal range
of parameter sets. How to determine the threshold of optimal parameters are discussed in chapter
2.5.2. The threshold values used in this experiment are: NS ≥ −1.0, NSlog ≥ −2.0, MAE ≤ 600,
and r2 ≥ 0.003. In total, 1,557 parameter sets out of the 10,000 simulations were used to obtain the
range of uncertainty intervals. 54.2% of the 308 farmers have the y=x line falls within the uncertainty
intervals.

Figure 3.3 shows the plot of calculated yield against the observed yield. It appears that there is a
cap to the model output around the 2,000 kg/ha limit. This can be explained by the inability of
the calibration to account for these high yields, suggesting that there are structural errors within the
model - see chapter 3.1.3. In other words, the calibration can only squeeze the data points into the
mean yield as it has the least errors mathematically. Because of this, the highest discrepancies come
from the high observed yields.

21
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Figure 3.1: Seasonal evolution of soil moisture, water stress factor (Ks), and canopy cover (CC) due to
rainfall, transpiration, soil evaporation, and irrigation. Soil moisture increases and decreases during the rainy
season and peak of planting season respectively. The Ks starts to decrease when there the water is depleting.
The observed CC evolution is also following the conditions very well. It grows rapidly during the time when
water is abundant and senescence is triggered when water is depleted. The irrigation is hardly visible due to

the small storage capacity of the new pond.

Figure 3.2: Seasonal evolution of transpiration, soil evaporation, and biomass. The actual
evaportranspiration (ETa) is seen to follow the reference (ETc). Then it drops around day 300, mainly due to

the lack of soil moisture. The daily biomass produced follows the transpiration closely.

The three parameters that are selected for the calibration are HI, tcco, and fshape/lab. From prior
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sensitivity analysis through MCS these three parameters are consistently influential to the objective
functions. HI is influential due to its direct influence towards the yield calculation in the end i.e. the
various parameters calculated during the crop production can be compensated by adjusting the value
of HI. Similarly the fshape/lab have a direct influence and can compensate for the uncertainties in the
labour availability calculation. The only other parameter from the yield calculation is the tcco, this is
likely due to its influence in determining whether the canopy cover will reach its maximum before the
rainfall ends. The table 3.1 shows the ranges of objective function scores obtained from the pareto
optimal parameter sets. All of the objective function scores are poor. The NS and NSlog values sug-
gest that the model performs worse than using the average observed yield as a prediction. The MAE
represents around 30% error from the observed yield. Lastly, from the r2 values the calculated yield
does not seem to be correlated to the observed yield. For more details on the variation of objective
functions with the parameter values see Appendix C.

Figure 3.3: Yield comparison between the model and observed data. The model calculation is unable to
simulate the high crop yield as it clusters around the 2,000 kg/ha. Further, the r2 value is very low at 0.0046

and indicate that the model results are not correlated to the observed data.

Table 3.1: Ranges of calibrated parameters and objective functions. The poor values for the objective
functions indicate poor performance of the model.

HI [-] tcco [days] fshape,lab [-] NS [-] NSlog [-] MAE [kg/ha] r2 [-]

Max 0.4 7 -6.457 -0.343 -0.655 553.2 0.008
Min 0.25 30 -9.995 -0.996 -1.91 447.1 0.003

Comparison to other studies

Prior research that used the SH model i.e. the baseline by Hatch et al. (2019) and the report by den
Besten (2016) showed reasonable inference between observed and model results at the district and state
level respectively. Additionally, table 3.2 shows the overview of the statistics of the performances of
various studies that uses AquaCrop model. For the most part, these studies give out adequate results



Table 3.2: Overview of statistics of FAO’s AquaCrop model performance from various studies.

Experimental setup
Location and timeframe Crop NS or NSlog MAE or RMSE r2

Paredes et al. (2015) Daxing, North China Plain
Irrigation Experiment Station
2008-2011
around 400 mm in June-Oct

Soybean -0.47 to 0.82 NS for SM <7.3% RMSE for CC
302 kg/ha RMSE for yield

0.22 to 0.86 for SM

Tan et al. (2018) Xinjiang, China
Irrigation Experimental Station
2012,2013,2015,2016
4-5 fields per year
around 950 mm rainfall in April-Oct

Cotton - 644 to 2,207 kg/ha RMSE for yield 0.86 to 0.98 for CC
0.00 to 0.96 for SM
0.01 to 0.96 for yield

Toumi et al. (2016) 40 km East of Marrakech, Morocco
2002-2004
Irrigated zone R3 (experimental site)
6 validated fields
190-250 mm rainfall annually

Wheat 0.73 to 0.99 for CC
-2.62 to 0.55 for SM

3.63 to 16.79% RMSE for CC
14-28% of SM
100 kg/ha RMSE for yield

0.83 to 0.99 for CC
0.65 to 0.90 for SM
0.98 for yield

Mkhabela and Bullock (2012) Saskatchewan, Canada
2003-2006
4-5 fields
514-542 mm rainfall annually

Wheat - 610.5 kg/ha MAE for yield (17%)
40.5 mm MAE for SM

0.90 for SM
0.66 for yield
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even though there are some poor performances such as the NS score for SM , r2 that is close to 0
in couple studies, and the high RMSE for cotton yield. Looking at the experimental setups, the
majority of these studies are performed in a more controlled environment and once calibrated, the
model is validated on select fields. Paredes et al. (2015) found that the model is not suitable for
irrigation scheduling when not using the dual crop coefficient approach and raises an important point
to properly partitioning the ETc to simulate soil waster properly. Tan et al. (2018) has a high variation
of r2 value. This is mainly due to a very poor model performance in the year 2015 and the calculation of
soil water, salinity, and HI. It is observed, that the studies performed in an area with high precipitation
are performing less well than the opposite counterparts. While it can mean that the model is not able
to simulate water conditions on high precipitation it can also be due to the crop selection. As the
validation for cotton is poorer compared to the rest. It must be noted however, that the sample size
of these studies is small.

So far, the SH model has only been used to and validated to district and state level. On the other
hand, various studies of AquaCrop model has been used on a small scale fields. However, it appears
that the SH model does not perform very well when it attempted to do calculations of a micro level
(farmers) at a macro scale (at 3 districts). It is also known that FAO’s AquaCrop have difficulties in
upscaling to a regional scale due to the spatial heterogeneity (Han et al., 2020). The adequate results
from the previous studies with the SH model can be attributed to the averaging the yield results to
the district and state level, because the NS score of the model is close to 0 which indicates that it can
perform similarly compared to the average yield. Recommendations to the calibration and mentioned
flaws is included in chapter 4.1.

3.1.2 External variability effects on model stability

Fig. 3.4, shows the comparison of the observed and model yield using bootstrap data. The parameter
values used for the bootstrap analysis is the mean of the calibrated parameter sets. The spread of the
data points follows the patterns seen in fig. 3.3 as it clusters around the 2,000 kg.

Furthermore, it appears that there is no major instability in the model under various external condi-
tions, as the uncertainty intervals are not too far from the data points. The data points with small
uncertainty intervals mostly come from the farmers with irrigation system, which is supported by the
idea that farmers with irrigation system are less affected by climate variation and vice versa. From
this results it seems that variability it is not an important factor to the poor performance.

3.1.3 Structural error model

Linear Principal Component Analysis

14 variables were selected to be tested against the total error. Using SPSS Statistics software’s Dimen-
sion Reduction function, these variables are reduced to 5 principal components (PC). The represented
eigenvalues and variance for each PC can be seen in table 3.3. Combined, these PCs account for
63.8% of the variance, it is deemed acceptable considering the number of parameters analyzed. Table
3.4 gives the list of variables tested. It also provides the reduced principal components (PC 1-5) and
their correlation against each variable. To select which variables a PC is representing, a correlation
of ≥ 0.5 or ≤ −0.5 is considered. The perceived variables for each component can be seen as a light
gray cell down of the PC column in table 3.4. PC1 and PC2 can be categorized as the location and
water components, PC3 is the cost related components, PC4 is the SEC components, and PC5 is
the fertilizer component. PC5 amounts to 7.3% of the variance but it contains only one variable so
fertilizer usage can be more influential than expected.
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Figure 3.4: Yield comparison between the model and observed data when bootstrap climate data is used.
The result is similar to the previous comparison in that it fails to simulate the high crop yield and clusters
around the 2,000 kg/ha. The data points with low uncertainty intervals mostly come from the irrigating

farmers, and vice versa. Overall, the climate variation does not seem to impact the stability of the model.

Table 3.3: The explained variance for each of the component. The 5 components account for 63.8% of the
variance. Both the initial and rotated values are presented, but the rotated components are used in this

research.

Initial Eigenvalues Rotation Sums of Squared Loadings
Component

Total % of Variance Cumulative % Total % of Variance Cumulative %

1 3.359 23.995 23.995 2.864 20.458 20.458
2 1.861 13.293 37.287 2.255 16.108 36.565
3 1.613 11.524 48.811 1.608 11.484 48.049
4 1.097 7.834 56.645 1.183 8.453 56.502
5 1.008 7.203 63.848 1.028 7.346 63.848

Linear regression of principal components with the total error

The first principal components PC1 represents the perceived variation of evaporation, irrigation, and
latitude against the yield difference. Fig. 3.5 shows that the total error is proportional to the PC1.
Table 3.4 shows negative correlation of evaporation and irrigation against the PC1, thus the farmers
with less evaporation and the need for irrigation tend to be underestimated by the model. Similarly
the higher latitude farmers are seen to be underestimated as well. In fig. 3.6 PC2 shows a stronger
correlation with the total error. The model tend to underestimate at a higher precipitation level,
which is consistent with the studies comparison - see section 3.1.1. It also suggest a strong correlation
by the longitude variable. Both of these, supports the correlation seen in PC1 with regards to the
evaporation, irrigation, and location. Another variable in PC2 is the soil depth, it is underestimating
at a lower soil depth, this might be due to the inaccurate representation of the soil surface simulation
as the model SM is operating on a one bucket system.

PC3 is relatively uncorrelated as seen in fig. 3.7. The perceived costs and prices do not impact the
yield difference. The SH model assumes that even in negative capital conditions, the farmers can pro-
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Table 3.4: Rotated component matrix, this table indicates which variables are assigned to which
components. The light gray cell helps to visualize this. The correlation thresholds for a variable to be assigned

are ≥ 0.5 or ≤ −0.5

Component
1 2 3 4 5

Children help -0.167 -0.099 -0.024 0.698 0.111
Cotton area 0.111 0.340 -0.038 0.623 -0.345
Cotton yield 0.440 0.194 0.002 -0.305 -0.247
Crop price -0.062 -0.020 0.589 -0.085 0.007
Seeds cost 0.060 -0.127 -0.095 -0.077 0.370
Pesticide cost 0.163 -0.100 0.729 0.026 -0.159
Fertilizer cost -0.053 0.056 0.826 0.049 0.107
Fertilizer amount 0.059 0.296 0.145 0.152 0.783
Soil depth 0.541 -0.620 -0.003 -0.149 0.127
Latitude 0.906 -0.233 -0.018 -0.172 0.116
Longitude 0.068 0.894 -0.033 -0.083 0.049
Precipitation -0.203 0.852 -0.046 0.040 -0.003
Evaporation -0.910 0.099 0.056 0.171 -0.129
Irrigation -0.776 0.021 -0.087 -0.294 0.007

Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser
Rotation converged in 7 iterations.

ceed to the following year and obtain the necessary resources for their farming activities - see Pande
and Savenije (2016) for details on the socioeconomic aspect of the model. The change in capital does
not change the seed and fertilizer available to the farmer and that means the yield do not change and
total error stays the same. PC4 contains cotton area and children help, and it has a weak correlation
- see fig. 3.8. This is consistent with the findings on the sensitivity analysis of the labor factor shape.
Lastly, the PC5 contains only the fertilizer amount used. Even though it amounts for the least vari-
ance of the 5, it only comes from one variable. Fig. 3.9 indicates that the current influence of fertility
amount is very strong. The low fertilizer amount can mean that the soil is fertile and does not need
additional Nitrogen. It is seen that the model heavily underestimates in this condition. This suggest
that the inactive soil fertility process of the model can play an important part in improving the model
prediction as it will bring up the fertilizer factor and thus the yield. Eq. 3.1 shows the linear model
using the significant components PC 1, 2, 4, and 5. Combined they account for 0.288 of the variance
of the total error.

εs,linear = 215.6PC2− 210.4PC5 + 112.0PC1− 71.6PC4 (3.1)
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Figure 3.5: Regression result between the PC1 with the total error.

Figure 3.6: Regression result between the PC2 with the total error.
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Figure 3.7: Regression result between the PC3 with the total error.

Figure 3.8: Regression result between the PC4 with the total error.
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Figure 3.9: Regression result between the PC5 with the total error.

3.1.4 PCA in Kernel Space and Regression with the Total Error

Cross validation result and the error structure model

Table 3.5 gives an overview to the performance of various kernel models on both train and test data.
The polynomial kernels perform poorly compared to the non-polynomial kernels. Only degree 2 poly-
nomials are seen to give an acceptable results. However, score drops between the train and test data
are observed, which can indicate overfitting making it not suitable to be used. On the other hand,
the cosine, RBF, and sigmoid kernels perform similarly well and there is no major jump between the
train and test data on all the scores. In this research, sigmoid kernel is used as it has the best values
in all scores. However, it must be noted that the other two kernels can be good substitutes especially
during future testing and when more data are acquired. More detailed information regarding the cross
validation such as the retained components, plots of test data, and summary of regression model in
kernel space for various kernels can be seen in Appendix E.

The comparison of the prediction of the total error using the regression model and the observed total
error is seen in figure 3.10. Overall, the predicted total error match the observed error well with
perhaps a slight deviation at higher error values. The difference between the predicted and observed
error is attributed to the residual error (εr) and its distribution can be seen in the histogram at figure
3.11. The figure also includes the assumed Gaussian distribution of the residual error based on the
histogram with σ = 150 kg/ha. This assumed distribution can be used as a priori distribution in future
research e.g. calibration. For now it is used to visualize the uncertainty interval of the yield prediction.
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Table 3.5: Performance comparison of various kernel functions on train and test data. The kernels are
evaluated using MAE, NS, and r2. The sigmoid kernel has the best performance (light grey colored row) in

all scores. Thus, sigmoid kernel is chosen to map the variables onto the kernel space.

MAE [kg/ha] NS [-] r2 [-]
Train Test Train Test Train Test

Poly, deg: 2 178 228 0.82 0.67 0.820 0.680
Poly, deg: 3 428 470 0.088 -0.084 0.084 -0.009
Poly, deg: 4 438 469 0.050 -0.055 0.046 -0.013
Poly, deg: 5 440 468 0.042 -0.047 0.037 -0.013
Cosine 185 184 0.80 0.79 0.792 0.792
RBF 166 183 0.85 0.79 0.837 0.789
Sigmoid 139 167 0.89 0.82 0.887 0.823

Figure 3.10: Prediction of total error using the structural error model. It is shown that the structural error
model is able to capture around 87% of the variance of the total error.



32 Chapter 3

Figure 3.11: Distribution of εr and its assumed gaussian distribution (with σ = 150 [kg/ha]). This is
assumed to be the uncertainty interval of the predictive model.

Adjusted prediction of cotton yield

The calculated yield from the physical model is adjusted with the structural error model for a new
prediction of the cotton yield. The new model prediction is substantially better than the physical
model. Table 3.6 shows the comparison between the physical and the combined model. The adjustment
using structural error model improves the prediction in all four scores. This improvement can also
be seen in figure 3.1.4. The predicted yield follows the observed yield very well even at high yield
values. The uncertainty interval from the εr can be seen as a yellow are around the fit line of the
predicted yield. Even though the model still tends to underestimate at higher yield, the y=x line is
still within the uncertainty interval. The large difference in performance between the prediction from
the SH model and the SH + structural error model indicates the prevalence of structural error in the
SH model.

Table 3.6: Comparison of model scores between physical vs. combined (physical + structural error) model.
It sees major improvement in all four scores.

MAE [kg/ha] NS [-] NSlog [-] r2 [-]

SH model 489 -0.624 -1.145 0.005
SH + structural error model 149 0.83 0.56 0.859
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Figure 3.12: Predicted vs. observed cotton yield by the physical and structural error model. The yellow area
surrounding the fit line is the uncertainty interval obtained from the assumed distribution of εr
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3.2 Qualitative analysis

Following the evaluation of the model performance and structural error analysis, a qualitative analysis
is performed to identify the potential ways the factors can contribute to the errors.

Capital of farmers

The results from the regression suggest that latitude and longitude of the farmers are correlated with
the total error. Fig. 3.13 shows the location of the farmers and their yield difference. Fig. 3.14 shows
the mean capital of farmers and standard deviation. There is a reasonable inference that can be drawn
when comparing the two figures. Amravati and Yavatmal are seen to have a lower capital compared
to Wardha. Similarly, the yield difference are more likely to overestimate in Amravati and Yavatmal
compared to Wardha. This is also supported by the regression in fig 3.5 and 3.6. One might argue
that richer farmers have better ways to mitigate climate impact, more capital to afford fertilizer, have
access to better tools, etc, that are not captured very well by the model.

Figure 3.13: Map of total error for the farmers. It is seen that Amravati and Yavatmal are more likely to
have overestimated yields compared to Wardha. It is also noted that the underestimations have larger

magnitude compared to the underestimation. Made in QGIS (QGIS Development Team, 2021).

Irrigation process in the model

The yield comparison from fig 3.3 and 3.4 shows that the farmers with high crop yield are not captured
very well by the model. Figure 3.15 and 3.16 show similar plots, with the exception that only rainfed
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Figure 3.14: Mean capital of farmers found during the baseline study. Obtained from Hatch et al. (2019).
Amravati and Yavatmal are seen to have poorer farmers compared to Wardha. An inference can be made

between the distribution of capital and the total error.

farmers data are used. Both plots show a stronger correlation compared to their previous counterparts.
The r2 value of the model yield using the optimal parameter sets improve from 0.0046 to 0.1703, whole
vs. rainfed data respectively. Similarly, the r2 for the model yield using the bootstrap data improve
from 0.0128 to 0.0797, whole vs. rainfed data respectively. This significant difference in performance
indicates that irrigation mechanics should be investigated.
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Figure 3.15: Yields using optimal parameter sets

Figure 3.16: Model yield comparison against the observed data when only considering rainfed farmers with
uncertainty interval that comes from the climate data variability.
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Validation against CC and SM

In this experiment, the model is only calibrated against the crop yield. Here, the canopy cover and
the soil moisture will be compared to the NDVI reading and GLEAM data to check whether they are
performing well.

First, the canopy cover data will be compared to the NDVI reading from the Sentinel 2 data. The
reading is obtain using Google Earth Engine (GEE) (Gorelick et al., 2017). Sample of the script used
can be seen in appendix F. In total, 7 readings were taken, i.e. the maximum value of NDVI each
month over the planting season from June to December. The NDVI value is then compared with
the calculated CC from the model. It was found that most of the coordinates associated with the
farmers are the location of their house instead of their farm. To work around this, the coordinates
of the farmers are mapped out using Google Earth Pro software. The average CC of farmers in a
given village is compared to the 5 NDVI readings in the surrounding area that resembles cotton fields.
Another factor that determines the selection is the temporal variation of the field during the 2018
planting season, the relatively green fields between June and December are selected. In the end, there
are 5 locations that are used for the comparison viz. Wardha, Ghatanji, Yavatmal, Amravati, and
Hinhanghat. Fig. 3.17 shows the comparison of CC and NDVI in Wardha. Tenreiro et al. (2021)
shows that the relationship between CC and NDVI for industrial crop is very close to 1:1. Thus, the
model is over predicting the CC by about 0.2 at the peak around September and October. Similarly,
the NDVI maps (fig. 3.19) shows that the canopy cover in the general region peaks in September.
Overall the timing of the growth is correct, however the maximum canopy cover needs to be lowered.
This is one aspect of the model that can be adjusted in future research to reduce the structural error.

Figure 3.17: Model canopy cover vs. NDVI in Wardha
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Figure 3.18: Model soil moisture vs. GLEAM in Wardha

Secondly, the soil moisture from the model is compared with the GLEAM v3 root zone soil moisture
data (Martens et al., 2017; Miralles et al., 2011). The GLEAM data used is daily with a resolution of
0.25 x 0.25 degrees. The soil moisture is compared at the day of year: 180, 210, 240, 270, 300, 330,
345 following the planting season. Figure 3.18 showcased these SM comparison. It seems that both
of them are giving similar SM calculation at the start of the season. Towards the end of the season
the SH model predicts less SM compared to GLEAM. Both the CC and SM performance can be
considered reasonable, though future validation using site data will provide a better comparison. The
complete comparison for all location can be seen in appendix G.

3.2.1 Summary of model evaluation and error analysis

From the model evaluation, it is found that the SH model by itself is performing poorly in terms of
crop yield prediction. However, when adjusted with the structural error model, the predicted yield is
close to the observed yield. This indicates a strong effect of structural error towards the total error.
From the linear regression of the PCA components and the qualitative analysis this structural error
can be explained by the capital, fertilizer, irrigation behavior, and crop production process (CC and
SM).

3.3 Limitation, Restrictions, and Assumptions

The implemented FAO’s AquaCrop framework is still a more simplified version of the original. Thus the
yield calculation might not be the most accurate. There are various processes that can be implemented
to potentially improve the yield prediction. For example, the soil fertility stress and its interaction with
water productivity, the soil salinity stress and movement of salt, evolving harvest index throughout the
season based on various conditions, the root water extraction rate, etc. The assumptions being made
in the process also contributes to the inaccuracies, for example, the rainfall interception is assumed to
be 0, the water inputs and outputs are assumed to move immediately (not limited by a certain rate),
etc.
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Using MCS for calibration is computationally expensive and there are more efficient method. Another
method considered at the start of this research is Bayesian approach. It is a more efficient approach
compared to MCS (Oakley and O’Hagan, 2004) given the size and the complexity of the model. It
updates the prior probability density functions (PDF) with its posterior PDF for every iteration until
it is close to the observed data (Muehleisen and Bergerson, 2016). Furthermore, it prevents overfitting
of the data because this method try to maximize the likelihood of the model output is statistically
consistent with the observed data instead of minimizing the error (Muehleisen and Bergerson, 2016).
This is especially important given the calibration results discussed in chapter 3.1. However, in the early
version of the model there were erratic changes in the model results when the inputs and parameters
are changed, so it was deemed not appropriate to do Bayesian approach (Oakley and O’Hagan, 2004).
Moreover, the variance of the model output is found to be heteroscedastic and would not fit for the
usage of Bayesian inference - See appendix B.1 for details. It is noted however, that when the model
performs relatively well in the future and more efficient calibration method is needed, this approach
can be considered.

In order to model the structural error, it is assumed that the total error (εtot) can be separated to the
residual error (εr) and structural error (εs). In reality it is difficult, if not impossible, to disaggregate
the various errors (Beven, 2005). However, the method presented here is deemed good enough for
the purpose of this research, i.e., a rough first order approximation of the magnitude of the structural
error to evaluate the its prevalence.

With regards to the survey data, the farmers coordinates are of their house instead of the field. It
poses a problem when trying to validate the CC with the NDVI since the exact location is unknown.
Further, there are multiple farmers with the same coordinate, most likely due to rounding of the
decimals. For future studies it is best to obtain the field coordinate and make sure that it is not
rounded since it makes distinguishing between farmers difficult.
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(a) NDVI in June (b) NDVI in July

(c) NDVI in August (d) NDVI in September

(e) NDVI in October (f) NDVI in November

(g) NDVI in December

Figure 3.19: Evolution of NDVI in the study region over the planting season from June to December 2018.
The raster data is taken from Sentinel 2 from GEE (Gorelick et al., 2017). The points represent the farmers’

locations.
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Conclusion and Recommendations

To answer the first sub research question “How do the uncertainties from the model and external
variations affect the calculated crop yield?”. From the calibration results of the SH model, the un-
certainties is shown to be very high. This is due to the model being unable to calibrate the higher
yield values and it must compensate this by adjusting the threshold of objective functions so that the
majority of the observed yield falls within the uncertainty interval. However, when adjusted by the
error model, the uncertainty interval is considerably smaller. Lastly, the external variations do not
affect the model significantly and the model is quite stable.

The aforementioned result indicates that structural errors are prevalent, which brings us to the second
research question “Which factors are the most influential towards the error between the predicted
crop yield and observed yield?”. The linear PCA and the multiple linear regressions indicate that
precipitation, irrigation, evaporation, soil depth, locations, labor, and fertilizer amount are correlated
with the total error. Among these, fertilizer amount has the strongest correlation. Upon qualitative
analysis, the capital distribution in the area is seen to have a reasonable inference to the errors. The
capital difference might be linked to the fertilizer and irrigation usage among the farmers. Moreover,
the irrigated vs. rainfed farmers comparison indicate a high influence of irrigation towards the error.
Lastly, the validation of CC and SM indicates some discrepancies and that there are improvements
that can be done to the simulation of water and crop production mechanics.

To conclude, “What is the overall performance of the model in calculating the cotton yield in the
Maharashtra region with the addition of the stress mechanics?”. The SH model by itself is not per-
forming very well. Especially at individual farmer level over a large region. The SH model has NS
value of -0.343 to -0.996, NSlog of -0.655 to -1.91, MAE of 447.1 to 553.2 kg/ha, and r2 of 0.003 to
0.008. The additions of the stress mechanics did little to improve this performance. However, when
used in combination with the structural error model, the crop yield prediction score improve to NS
value of 0.83, NSlog of 0.56, MAE of 149 kg/ha, and r2 value of 0.859. Recommendations to improve
the model performance is discussed in the section 4.1.

41
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4.1 Recommendations

Table 4.1: Lists of recommendations for the shortcomings discussed in previous chapters

Shortcomings Recommendations

Calibration Currently, the model was only calibrated to the crop yield. Step calibration
can be utilized to check the other parameters viz. canopy cover, soil mois-
ture, and soil fertility (when validation data are obtained from future survey).
Furthermore, the calibration using MCS takes too much time for a model this
complex. When most of the structural errors are addressed the model can
be calibrated using more efficient statistical inference. One example (but not
limited to) is a bayesian approach as it can reduce the number of iterations to
a far smaller number compared to using the MCS method.

Capital, irriga-
tion, behavior

Conduct exploratory interviews or workshops with the stakeholders to find
possible patterns between irrigated and rainfed farmers, or farmers with high
capital. These patterns then can be used in a survey to obtain quantifiable
variables for the model. This survey can include things such as irrigation
behavior, technique, weather forecast usage, etc. These variables can either
be used to improve the structural error model or to implemented directly in the
SH model to reduce the structural error. For example, certain model processes
that can be triggered given certain variables or conditions. The appendix H
shows some preliminary RANAS questions for irrigation and expenditure cuts
that can be used as a basis for the exploratory interviews and surveys.

Soil fertility Currently, the soil fertility is not activated in the model. Only the fertilizer
usage is implemented in the model. Further, the fertilizer factor calculation
is very basic with only a linear function to represent the usage. Soil fertility
should be activated in order to give a more representative condition in the soil.
Moreover, processes such as soil erosion and effects of soil moisture to fertility
can be added to improve the model mechanics. Lastly, the fertility adjustment
factor is currently calculated annually, this can be reworked to be a daily
calculation. This will create a better foundation for future implementations
and improve the model as an adaptation tool.

Water balance Two buckets process can be used to give a more accurate representation of the
vertical flow in the soil. Appendix I showcased the preliminary implementation
of a two bucket system. Moreover, a horizontal flow could help in capturing
the dynamics between crop fields and grazing area.

Crop produc-
tion

There are processes that can still be added to the crop production code to
potentially make it better. For example, the soil salinity stress and movement
of salts, evolving harvest index, root extraction rate, etc.

Miscellaneous - The coordinates obtained during the survey should be the coordinates of the
farm instead of the farmers’ house as it is more useful to the model i.e. to be
used in the validation of CC, SM, and other parameters.
- Restructuring the model framework so it runs all farmers at once to allow
feedback response between them (especially important for irrigation water
intake).
- Implementation of a changing Ke coefficient e.g. due to wetted surface.
- A look into the system dynamics of the area to investigate the relationships
between influential variables.
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Appendix A

Input Parameter

A.1 Input Parameters Used in the Model

Table A.1 shows the description, ranges, and the value used in the model calculation.

Parameter Description Ranges Used

Zmax,plant Maximum effective root depth of cotton [mm] 1000-1700(1) 1400

Zn Minimum effective root depth of cotton [mm] 300(2) 300

n Shape factor of root zone growth [-] 1.5(2) 1.5
tx Duration of root growth [days] estimated from the duration

from planting to reaching CCx (from the model)
- 100

psto Threshold until root zone stress (fraction of TAW) [-] 0.65(1) 0.65
FC Field capacity [-] 0.3-0.5 0.42
WP Wilting point [-] 0.1-0.3 0.17
CCo Initial canopy cover when 90% seedlings emerges [-]. 5-7

cm2/plant and there is around 60k-150k plants/ha gives the
range(2)

0.003-0.0105 0.0063

tcco Time to reach initial canopy cover [days] 7-30 7-30
CCx Maximum canopy cover [-]. For cotton, it is almost entirely

covered(2)
0.9-0.99 0.95

CDC Canopy decline coefficient [/day], it is a fraction of canopy
cover decline per day. Range taken from FAO annex(2), con-
verted from fraction per GDD to fraction per day based on
average GDD per day in Maharashtra

0.03-0.045 0.03

CGC Canopy growing coefficient [/day], it is a fraction of canopy
cover growth per day. Range taken from FAO annex(2),
converted from fraction per GDD to fraction per day based
on average GDD per day in Maharashtra

0.09-0.12 0.097(3)

pup Upper threshold for water stress [-] 0.7(2) 0.7

plow Lower threshold for water stress [-] 0.2(2) 0.2

REW Readily evaporable water [mm] 8-12(4) 10

TEW Total evaporable water [mm] 25-38(4) 35

Tup Upper threshold for temperature stress effect to biomass pro-
duction [°C]

0.1(2) 0.1

Tbot Bottom threshold for temperature stress effect to biomass
production [°C]

20(2) 20

CWP Crop water productivity value normalized to evapotranspi-
ration [g/m2/mm]

15(2) 15

II



A.2. Ra values III

HI Harvest index [-] 25-40(2) 0.25-0.40
fshape,lab Shape of labor factor function - -6.457 to - 9.995

Table A.1: Description of parameters in the model and their values (1)(Allen et al., 1998), (2)(FAO, 2012),
(3)(den Besten, 2016),(Allen et al., 2005)(4)

A.2 Ra values

Table A.2 shows the extraterrestrial radiation (Ra) values used in the Hargreaves equation to estimate
the potential evapotranspiration.

Month Ra [mm/d]

1 11.2
2 12.7
3 14.4
4 15.6
5 16.3
6 16.4
7 16.3
8 15.9
9 14.8
10 13.3
11 11.6
12 10.7

Table A.2: Monthly average extraterrestrial radiation (Ra) values at 20°N latitude, used in the Hargreaves
equation. (Samani, 2000)



Appendix B

Additional Graphs

Figure B.1: Scatter plot of calculated yield from the MCS and bootstrap iterations, it show the
heteroscedasticity of the variance.

IV



V

Figure B.2: Evolution of soil moisture over various years

Figure B.3: Evolution of water stress over various years, it highlights the absence of water stress at the start
of the season (value of 1 indicates no water stress, vice versa). Water stress occurs towards the end of the

season. Value outside of the planting season is not calculated.
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MCS Results

C.1 Objective Function Variation with Parameter Values

Figure C.1: Nash-Sutcliffe variation with parameter values

VI



C.1. Objective Function Variation with Parameter Values VII

Figure C.2: Log of Nash-Sutcliffe variation with parameter values

Figure C.3: MAE variation with parameter values
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Figure C.4: r2 variation with parameter values



Appendix D

PCA Additional Materials

This appendix contains additional information regarding the PCA. Table D.1 shows the sample testing,
the KMO value of 0.628 indicates that the sample used is suitable for the dimension reduction analysis.
The scree plot fig. D.1 and the table D.2 showcases the variance for each component. Lastly, fig. D.2
shows the component plot.

Table D.1: KMO and Bartlett’s Test

KMO and Bartlett’s Test

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. 0.628
Approx. Chi-Square 1741.143
df 91Bartlett’s Test of Sphericity
Sig. 0.000

Figure D.1: Scree plot

IX
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Table D.2: Total variance explained for all 14 components

Initial Eigenvalues
Component

Total % of Variance Cumulative %

1 3.359 23.995 23.995
2 1.861 13.293 37.287
3 1.613 11.524 48.811
4 1.097 7.834 56.645
5 1.008 7.203 63.848
6 0.992 7.087 70.935
7 0.924 6.602 77.537
8 0.840 6.001 83.538
9 0.740 5.285 88.823
10 0.523 3.739 92.562
11 0.459 3.282 95.843
12 0.348 2.487 98.330
13 0.205 1.467 99.797
14 0.028 0.203 100.000

Figure D.2: Component plot



Appendix E

Kernel Functions Performances

This appendix shows the overview of the cross validation result for various kernels used in the Kernel
PCA. This include a table of overall performance score with a number of retained components, plots
of predicted vs. observed total error, plots of explained variance, and the summary for each regression
model.

E.1 Summary of Kernel Performance

Table E.1: Performance comparison of various kernel functions including the number of components

MAE [kg/ha] NS [-] r2 [-] Components
Train Test Train Test Train Test n total n retained

Poly, deg: 2 178 228 0.82 0.67 0.820 0.680 147 7
Poly, deg: 3 428 470 0.088 -0.084 0.084 -0.009 229 1
Poly, deg: 4 438 469 0.050 -0.055 0.046 -0.013 230 1
Poly, deg: 5 440 468 0.042 -0.047 0.037 -0.013 229 1
Cosine 185 184 0.80 0.79 0.792 0.792 84 6
RBF 166 183 0.85 0.79 0.837 0.789 230 26
Sigmoid 139 167 0.89 0.82 0.887 0.823 144 7

XI
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E.2 Predicted vs Observed Total Error of Test Data

Figure E.1: Predicted vs. observed total error for sigmoid kernel using test data

Figure E.2: Predicted vs. observed total error for cosine kernel using test data



E.2. Predicted vs Observed Total Error of Test Data XIII

Figure E.3: Predicted vs. observed total error for RBF kernel using test data

Figure E.4: Predicted vs. observed total error for polynomial degree 2 kernel using test data
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Figure E.5: Predicted vs. observed total error for polynomial degree 3 kernel using test data

Figure E.6: Predicted vs. observed total error for polynomial degree 4 kernel using test data



E.2. Predicted vs Observed Total Error of Test Data XV

Figure E.7: Predicted vs. observed total error for polynomial degree 5 kernel using test data
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E.3 Variance Explained of Components in Kernel Space

Figure E.8: Variance explained by components in kernel space and the retained components (> 90%
variance) for sigmoid kernel

Figure E.9: Variance explained by components in kernel space and the retained components (> 90%
variance) for cosine kernel
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Figure E.10: Variance explained by components in kernel space and the retained components (> 90%
variance) for RBF kernel

Figure E.11: Variance explained by components in kernel space and the retained components (> 90%
variance) for polynomial degree 2 kernel



XVIII Chapter E

Figure E.12: Variance explained by components in kernel space and the retained components (> 90%
variance) for polynomial degree 3 kernel

Figure E.13: Variance explained by components in kernel space and the retained components (> 90%
variance) for polynomial degree 4 kernel
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Figure E.14: Variance explained by components in kernel space and the retained components (> 90%
variance) for polynomial degree 5 kernel
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E.4 Summary of Regression Model Using Kernel Space Compo-

nents

Figure E.15: Summary of regression model for sigmoid kernel.

Figure E.16: Summary of regression model for cosine kernel.
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Figure E.17: Summary of regression model for RBF kernel.
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Figure E.18: Summary of regression model for polynomial degree 2 kernel.

Figure E.19: Summary of regression model for polynomial degree 3 kernel.
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Figure E.20: Summary of regression model for polynomial degree 4 kernel.

Figure E.21: Summary of regression model for polynomial degree 5 kernel.
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E.5 Python Code Used in Kernel Testing

1 import pandas as pd

2 import numpy as np

3 import matplotlib.pyplot as plt

4 plt.rcParams.update ({’font.size’: 12})

5 from sklearn.decomposition import PCA , KernelPCA , FactorAnalysis

6 from sklearn.model_selection import train_test_split

7 from sklearn.preprocessing import StandardScaler

8 import statsmodels.api as sm

9 import scipy.stats as stats

10
11 #%%get dat

12 dat=pd.read_excel("KPCA_dat_adj.xlsx", header =0)

13
14 X = StandardScaler ().fit_transform(dat.iloc [:,0:-3])

15 y = dat.iloc[:,-3]

16
17 #split training and test data

18 X_train , X_test , y_train , y_test = train_test_split(X,y,test_size =0.25, random_state =1)

19
20 # Running KPCA

21 kernelType="sigmoid"

22 deg=5

23 kpca = KernelPCA(kernel=kernelType , fit_inverse_transform=True ,n_components=None , degree=deg)

24 X_train=kpca.fit_transform(X_train)

25 X_test=kpca.transform(X_test)

26
27 #%%

28 V=kpca.alphas_

29 D=kpca.lambdas_

30 D_cumsum=np.cumsum(D)

31 var_explained=D_cumsum/np.sum(D)

32 nCount=sum(var_explained <= 0.90)+1

33
34 Xplot=np.arange(1,len(var_explained)+1)

35 Yplot=var_explained

36 print(len(D))

37
38 plt.figure(figsize =(10 ,7))

39 plt.plot(Xplot , Yplot , c="blue")

40 plt.axhline(y=0.90 , color=’r’, linestyle=’--’)

41 plt.axvline(x=nCount , color=’k’, linestyle=’--’)

42 plt.xlim (0 ,50)

43 plt.ylim (0,1)

44 plt.grid(color=’k’, linestyle=’-’, linewidth =0.1)

45 plt.text(nCount+1, 0.5,’Number of PCs to explain >90% variance: {}’.format(nCount), ha=’left’, va=’center ’,fontsize =18)

46 plt.text(-5, 0.9,’var =0.9’, ha=’left’, va=’center ’)

47 plt.title("Variance Explained , Kernel: {}" .format(kernelType),fontsize =18)

48 # plt.title(" Variance Explained , Kernel: {}, Degree: {}" .format(kernelType ,deg),fontsize =18)

49 plt.xlabel("Principal Components in Feature Space",fontsize =18)

50 plt.ylabel("Variance Explained [-]",fontsize =18)

51 # plt.savefig(’Plots/varExplained_ {}_deg {}.png ’.format(kernelType ,deg),dpi=300, bbox_inches = "tight")

52 plt.savefig(’Plots/varExplained_ {}. png’.format(kernelType),dpi=300, bbox_inches = "tight")

53
54 #%% fitting model with significant pval

55 X_model=X_train [:,1: nCount +1]

56 X2 = sm.add_constant(X_model)

57 est = sm.OLS(y_train , X2)

58 est2 = est.fit()

59 print(est2.summary ())

60
61 #%% Get rid of the model with low significance

62 X_model=X_train [:,(1,2,3,4,5)]

63 X2 = sm.add_constant(X_model)

64 est = sm.OLS(y_train , X2)

65 est2 = est.fit()

66 print(est2.summary ())

67
68 r2=round(est2.rsquared ,3)

69 adj_r2=round(est2.rsquared_adj ,3)

70 f=est2.fvalue

71 beta=est2.params

72 pval=est2.pvalues

73 y_pred_train=est2.predict(X2)

74
75 plt.rc(’figure ’, figsize =(8, 5))

76 plt.text (0.01 , 0.05, str(est2.summary ()), {’fontsize ’: 10}, fontproperties = ’monospace ’) # approach improved by OP ->

monospace!

77 plt.axis(’off’)

78 plt.tight_layout ()

79 # plt.savefig(’Plots/KPCA_Summary_ {}_deg {}.png ’.format(kernelType ,deg),dpi=300, bbox_inches = "tight")

80 plt.savefig(’Plots/KPCA_Summary_ {}. png’.format(kernelType),dpi=300, bbox_inches = "tight")

81
82 MAE=np.sum(abs(y_pred_train -y_train))/len(y_pred_train)

83 NS=1-(np.sum(( y_pred_train -y_train)**2)/np.sum(( y_train.mean()-y_train)**2))

84 NS_log =1-(np.sum((np.log10(y_pred_train)-np.log10(y_train))**2)/np.sum((np.log10(y_train.mean())-np.log10(y_train))**2))

85
86 print(’MAE of {} Kernel PCA Train: {} [kg/ha]’ .format(kernelType ,MAE))

87 print(’NS of {} Kernel PCA Train: {} [kg/ha]’ .format(kernelType ,NS))

88 print(’NS log of {} Kernel PCA Train: {} [kg/ha]’ .format(kernelType ,NS_log))

89
90 #predict

91 X2_test=sm.add_constant(X_test [:,(1,2,3,4,5)])

92 y_pred=est2.predict(X2_test)

93
94 MAE=np.sum(abs(y_pred -y_test))/len(y_pred)

95 NS=1-(np.sum((y_pred -y_test)**2)/np.sum(( y_test.mean()-y_test)**2))
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96 NS_log =1-(np.sum((np.log10(y_pred)-np.log10(y_test))**2)/np.sum((np.log10(y_test.mean())-np.log10(y_test))**2))

97
98 print(’MAE of {} Kernel PCA Test: {} [kg/ha]’ .format(kernelType ,MAE))

99 print(’NS of {} Kernel PCA Test: {} [kg/ha]’ .format(kernelType ,NS))

100 print(’NS log of {} Kernel PCA Test: {} [kg/ha]’ .format(kernelType ,NS_log))

101
102 #%% plots test data KPCA

103 plt.figure(figsize =(10 ,8))

104 Xplot=y_pred

105 Yplot=y_test

106
107 plt.scatter(Xplot , Yplot , c="red",s=20, edgecolor=’k’)

108 Xplot2 = sm.add_constant(Xplot)

109 estPlot = sm.OLS(Yplot , Xplot2)

110 estPlot2=estPlot.fit()

111 adj_r2Plot=round(estPlot2.rsquared_adj ,3)

112 plt.text(-1800, 3600,’$r^2$ = {}’.format(adj_r2Plot), ha=’left’, va=’center ’,fontsize =18)

113 plt.plot(np.arange ( -2000 ,4000),np.arange ( -2000 ,4000),color="black")

114 plt.xlim ( -2000 ,4000)

115 plt.ylim ( -2000 ,4000)

116 # plt.title(" Predicted vs. Observed Total Error , Kernel: {}, Degree: {}". format(kernelType ,deg),fontsize =18)

117 plt.title("Predicted vs. Observed Total Error , Kernel: {} (test data)" .format(kernelType),fontsize =18)

118 plt.xlabel("Predicted Total Error [kg/ha]",fontsize =18)

119 plt.ylabel("Observed Total Error [kg/ha]",fontsize =18)

120 # plt.savefig(’Plots/KPCA_{}_deg {}.png ’.format(kernelType ,deg),dpi=300, bbox_inches = "tight")

121 plt.savefig(’Plots/KPCA_ {}. png’.format(kernelType),dpi=300, bbox_inches = "tight")

122
123 #%% ################################## KPCA ALL DATA ##############################################

124 #transform all data and estimate them

125 X_all=kpca.transform(X)

126 X2_all=sm.add_constant(X_all [:,(1,2,3,4,5)]) #components cumulative to >90% variance and significant in regression model

127 y_pred=est2.predict(X2_all)

128
129 # plots

130 plt.figure(figsize =(10 ,8))

131 Xplot=y_pred

132 Yplot=y

133
134 plt.scatter(Xplot , Yplot , c="red",s=20, edgecolor=’k’)

135 Xplot2 = sm.add_constant(Xplot)

136 estPlot = sm.OLS(Yplot , Xplot2)

137 estPlot2=estPlot.fit()

138 betaPlot=estPlot2.params

139 adj_r2Plot=round(estPlot2.rsquared_adj ,3)

140 plt.text(-1800, 3600,’$r^2$ = {}’.format(adj_r2Plot), ha=’left’, va=’center ’,fontsize =18)

141 plt.plot(np.arange ( -2000 ,4000),np.arange ( -2000 ,4000),color="black")

142 plt.plot(np.unique(Xplot), np.unique(estPlot2.predict(sm.add_constant(Xplot))), color="black",linestyle=’--’)

143 plt.xlim ( -2000 ,4000)

144 plt.ylim ( -2000 ,4000)

145 plt.title("Predicted vs. Observed Total Error , Kernel: {}" .format(kernelType),fontsize =18)

146 plt.xlabel("Predicted Total Error [kg/ha]",fontsize =18)

147 plt.ylabel("Observed Total Error [kg/ha]",fontsize =18)

148 plt.savefig(’Plots/KPCA_{} _ALLDATA.png’.format(kernelType),dpi=300, bbox_inches = "tight")

149
150 MAE=np.sum(abs(y_pred -y))/len(y_pred)

151 NS=1-(np.sum((y_pred -y)**2)/np.sum((y.mean()-y)**2))

152 NS_log =1-(np.sum((np.log10(y_pred)-np.log10(y))**2)/np.sum((np.log10(y.mean())-np.log10(y))**2))

153
154 print(’MAE of {} Kernel PCA Test: {} [kg/ha]’ .format(kernelType ,MAE))

155 print(’NS of {} Kernel PCA Test: {} [-]’ .format(kernelType ,NS))

156 print(’NS log of {} Kernel PCA Test: {} [-]’ .format(kernelType ,NS_log))

157
158 #%% plot adjusted yield

159
160 Xplot=dat.iloc[:,-2]+ y_pred

161 Yplot=dat.iloc[:,-1]

162
163 plt.figure(figsize =(10 ,8))

164 plt.fill_between(np.unique(Xplot),np.unique(estPlot2.predict(sm.add_constant(Xplot)))+450, np.unique(estPlot2.predict(sm.

add_constant(Xplot))) -450, color=’yellow ’, alpha=’0.5’)

165 plt.scatter(Xplot , Yplot , c="red",s=20, edgecolor=’k’)

166 Xplot2 = sm.add_constant(Xplot)

167 estPlot = sm.OLS(Yplot , Xplot2)

168 estPlot2=estPlot.fit()

169 betaPlot=estPlot2.params

170 adj_r2Plot=round(estPlot2.rsquared_adj ,3)

171 plt.text (300, 4500,’$r^2$ = {}’.format(adj_r2Plot), ha=’left’, va=’center ’,fontsize =18)

172 # plt.errorbar(Xplot , Yplot , 0, 450, fmt=’r^’,label=’Annual yield per farmer ’, elinewidth =0.5,

173 # marker=’x’, markersize=’5’,markeredgecolor=’blue ’, ecolor=[’red ’],barsabove=False)

174 plt.plot(np.arange (0 ,5000),np.arange (0 ,5000),color="black")

175 plt.plot(np.unique(Xplot), np.unique(estPlot2.predict(sm.add_constant(Xplot))), color="black",linestyle=’--’)

176 plt.xlim (0 ,5000)

177 plt.ylim (0 ,5000)

178 plt.title("Predicted Yield vs. Observed Yield",fontsize =18)

179 plt.xlabel("Predicted Yield [kg/ha]",fontsize =18)

180 plt.ylabel("Observed Yield [kg/ha]",fontsize =18)

181 plt.savefig(’Plots/AdjustedYieldUncer.png’,dpi=300, bbox_inches = "tight")

182
183 MAE=np.sum(abs(Xplot -Yplot))/len(Xplot)

184 NS=1-(np.sum((Xplot -Yplot)**2)/np.sum((Yplot.mean()-Yplot)**2))

185 NS_log =1-(np.sum((np.log10(Xplot)-np.log10(Yplot))**2)/np.sum((np.log10(Yplot.mean())-np.log10(Yplot))**2))

186
187 print(’MAE of {} Predicted Yield: {} [kg/ha]’ .format(kernelType ,MAE))

188 print(’NS of {} Predicted Yield: {} [-]’ .format(kernelType ,NS))

189 print(’NS log of {} Predicted Yield: {} [-]’ .format(kernelType ,NS_log))

190
191 #%% histogram of er

192 a=dat.iloc[:,-1]-(dat.iloc [:,-2]+ y_pred)

193
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194 mean = 0

195 std = 150

196 # mean ,std=norm.fit(a)

197 x = np.linspace(mean - 3*std , mean + 3*std , 100)

198
199 bins = np.linspace (-1000, 1000, 100)

200 labels =[’$\epsilon_r$ ’]
201
202 plt.figure(figsize =(12 ,7))

203 plt.hist(a, bins ,rwidth =0.8, label=labels ,normed=True)

204 plt.plot(x, stats.norm.pdf(x, mean , std), label=’Assumed distribution of $\epsilon_r$ ’)
205 plt.title(’Histogram of residual error ($\epsilon_r$)’,fontsize =18)
206 plt.xlabel(’Residual error ($\epsilon_r$) [kg/ha]’,fontsize =18)

207 plt.ylabel(’Probability ’,fontsize =18)

208 plt.legend ()

209 plt.savefig(’Plots/HistEr.png’,dpi=300, bbox_inches = "tight")

Listing E.1: Python script used to perform the evaluation
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GEE Script

1 var geometry =

2 ee.Geometry.Polygon(

3 [[[77.5 , 19.5] ,

4 [79, 19.5],

5 [79, 21],

6 [77.5, 21]]]);

7
8 /////////////////////////////////////////////////////////////////////////

9 // Sentinel 2

10 /////////////////////////////////////////////////////////////////////////

11
12 var s2 = ee.ImageCollection("COPERNICUS/S2")

13 .filterDate(’2018 -01 -01’,’2019 -01 -01’)

14 .filterBounds(geometry);

15 var images = s2.select ([’B2’,’B3’,’B4’,’B8’], [’B’,’G’,’R’,’NIR’]);

16 var rgb_viz = {min:0, max :2000 , bands :[’R’,’G’,’B’]};

17
18 function addNDVI(img) {

19 var ndvi = img.normalizedDifference ([’NIR’, ’R’]).rename(’NDVI’);

20 return img.addBands(ndvi);

21 }

22
23 var ndvi_viz4 = {bands:"NDVI", min:0.2, max:1, palette:"000000 ,00 FF00"};

24 var withNDVI = images.map(addNDVI);

25 var NDVI_S2 = withNDVI.select ([’NDVI’]).max();

26
27 Map.addLayer(NDVI_S2 , ndvi_viz4 , ’NDVI_Sentinel2 ’);

28
29 Export.image.toDrive ({image: ee.Image(NDVI_S2),description: "NDVI",scale: 30,region: geometry , maxPixels: 1e10});

Listing F.1: GEE script to obtain NDVI data from Sentinel 2
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Validation With Gleam and NDVI
Data

G.1 Comparison of Model CC and NDVI Data

Figure G.1: CC vs NDVI in Wardha
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Figure G.2: CC vs NDVI in Ghatanji

Figure G.3: CC vs NDVI in Hinhanghat
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Figure G.4: CC vs NDVI in Amravati

Figure G.5: CC vs NDVI in Yavatmal
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G.2 Comparison of Model SM and GLEAM Data

Figure G.6: Model SM vs Gleam data in Wardha

Figure G.7: Model SM vs Gleam data in Ghatanji
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Figure G.8: Model SM vs Gleam data in Hinhanghat

Figure G.9: Model SM vs Gleam data in Amravati
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Figure G.10: Model SM vs Gleam data in Yavatmal



Appendix H

RANAS Questions

This appendix lists ideas for the preliminary questions that can be asked when doing the survey. The
list include the questions that can be used to improve the mechanics and triggers for the irrigation
and the expenditure cut. These questions are by no means complete, it should be treated as a
supplementary material when designing the actual questionnaires, and it should be adjusted when
exploratory interviews are done. These questions are designed largely based on Andrade et al. (2019)
and Contzen, N., Mosler (2015), please refer to those papers for more information about RANAS.

Target group: Smallholder farmers and their dependents

Main points

• How will/did they deal with financial hardship?

– What triggers them to take action?

– Expenditure cuts, extra income

• Irrigation usage and behavior

– Knowledge of proper irrigation usage

– Information on irrigation techniques depending on what they use

Additional notes:

• Potential Factors – More accurate list should be investigated using exploratory interviews

• Splitting between the do and no doers might provide the difference in responses that will provide
insight to the behavior factor

• When doing likert scale, make sure that each score is clearly defined

RANAS Questionnaire

Risk – Knowledge (about risk), vulnerability, severity

Irrigation

• Are you aware of the symptoms of water stress in cotton? (knowledge, list/multiple choice)

• Provide a list of symptoms and ask which one they are familiar with (scoring can give weight to
the more important symptoms)

• How many rainless day would cause you to start irrigating your crop? (vulnerability/knowledge,
list/multiple choice)

• What would be the impact of X number of rainless days? (severity, Likert scale)
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Expenditure cuts

• How much savings are available to you during crisis? (vulnerability)

• How many dependents are in your house? (vulnerability, severity)

Attitude – Belief, feelings

Irrigation

• How much extra effort/time do you think it is to irrigate your crop? (belief, Likert scale)

• How certain are you that irrigation would help improve your crop yield? (belief, Likert scale)

• Do you believe that irrigation would improve the yield of your farm? (belief, Likert scale)

• How do you feel about using the irrigation system? (feelings, Likert scale)

Expenditure cuts

• How much do you prefer off farm work? (belief, Likert scale)

• How much extra effort/time do you need for off farm work? (belief, Likert scale)

• How much extra money do you get from off farm work? (belief, Likert scale)

• How easy is it to sell livestock? (belief, Likert scale)

• How do you feel about selling your livestock? (feelings, Likert scale)

Norm – Others behavior, (dis)approval, personal importance

Irrigation

• How many people you know irrigate their farm? (others behavior, Likert scale)

• How do your families and friends (and helper) think about using irrigation? ((dis)approval,
Likert scale)

• How important do you think irrigating your crop is? (personal importance, Likert scale)

Expenditure cuts

• How many people you know do off-farm work? (others behavior, Likert scale)

• How do your families and friends think about off-farm work? ((dis)approval, Likert scale)

• How do your families and friends think about selling livestock? ((dis)approval, Likert scale)

• How strongly do you feel about continuing farm work within a season given that price of crop
go below an X amount of INR? (personal importance, Likert scale)

• How strongly do you feel about continuing farm work within a season given that a certain
symptom(s) of drought occurs? (personal importance, Likert scale)

Ability – Knowledge, confidence

Irrigation

• Asks them to describe how they irrigate their farm (knowledge, come up with criteria for
points/quantification based on the ’correct’ method to do it)

• Asks how confident they are about their method (confidence, Likert scale)

• Asks how confident they are about whether they will keep irrigating (confidence, Likert scale)

• Asks how confident they are about fixing the pond if it is broken (confidence, Likert scale)

Expenditure cuts

• Asks them how they determine whether they will do off farm work (knowledge, come up with
criteria for quantification)

• Asks them how they decide how many livestock to sell (knowledge, come up with criteria for
quantification)
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• Asks how confident they are about their method (confidence, Likert scale)

• Asks how confident they are about finding off farm work (confidence, Likert scale)

• Asks how confident they are about continuing to farm next season if they are forced to do
expenditure cut (confidence, Likert scale)

Self-regulation – Planning, control, barrier, remembering, commitment

Irrigation

• Do you have a specific plan on how and when to use the irrigation system? (planning, Likert
scale)

• Do you pay attention to how much water you use for the irrigation? (control, Likert scale)

• How often do you forget to irrigate your crops? (remembering, Likert scale)

Expenditure cuts

• Do you have a specific plan on how to reduce expenditure? (planning, Likert scale)

• Do you pay close attention to how much savings, loan, costs, and revenue you have? (control,
Likert scale)

Other Questions

• Have you attended an agricultural promotion/education from the government?

• Have you experienced drought previously?

– Provide pictures of drought to streamline the definition across different farmers

– Elicit experiential vs conjectural responses (have and have not experienced)

∗ Did/will you seek help from government, did they provide help? Financial or otherwise

∗ Did/will you sell livestock to cover for losses

• What symptoms would cause you to provide extra irrigation? Create a list of symptoms and
score the answers based on the severity of the symptoms mentioned.



Appendix I

Implementation of Two Buckets
System in the Soil Column

Fig. I.1 gives an overview of the preliminary two buckets system tested. This method have only been
tested manually for their responses from various inputs but have not been validated. The two bucket
system is thought to be more accurate in representing the vertical movement of water and thus a more
accurate dynamics of the overall fluxes in the system. Further discretization of the soil column into
smaller grid cells should be done with a precaution since the time step of the model (daily) can be too
large for the fluxes and boundary conditions.

Figure I.1: Implementation of the two bucket system in the soil column
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