
1. INTRODUCTION  
A large number of oil and gas reservoirs across the 
world are naturally fractured, from which significant oil 
and gas are produced [1]. Reservoirs are recognized as 
“fractured” primarily if the fractures form an 
interconnected network. The behavior of a fractured 
reservoir is very different from that of conventional 
reservoirs [1-3]. The main reason for this difference is 
that fractures are far more permeable than matrix: most 
fluid resides in the matrix blocks, whereas the flow is 
dominated by the fracture networks. The heterogeneities 
of fracture networks strongly affect the flow behavior of 
fractured reservoirs. Field studies and laboratory 
experiments show flow channeling in individual 
fractures and highly preferential flow paths in fracture 
networks [4-6]. Fluid flow is concentrated in a small 
portion of the fracture network. Cacas et al [7, 8] 
proposed that a broad distribution of fracture 
conductivity is the main cause of the high degree of flow 
channeling. In order to understand these phenomena, 
many theoretical studies have been done. The separate 
influences of fracture network connectivity [9-22] and 
fracture conductivity distributions [23-26] on flow 
channeling have been considered, and also the interplay 
of these two key factors [27-29]. Particularly, 
percolation theory is employed in some studies, as it is a 
powerful mathematical tool to help understanding flow 
channeling and to capture the preferential flow paths 
[10-12, 15-17, 19, 23, 27-30]. In addition to the 
geometrical structure of the conducting network, the 

effective permeability of network is also a research 
emphasis [23, 27-30]. 
Katz and Thompson [31] concluded that if the 
distribution of pore radii is broad, the permeability of a 
porous medium is determined mainly by a critical sub-
network of widest pores just sufficient to form a 
percolating cluster. This applies even if the underlying 
pore network is well-connected, far above the 
percolation threshold. Similarly, Charlaix [23] modelled 
fracture networks with broad aperture distributions, and 
demonstrated that the flow in the sub-network 
containing fractures with aperture larger than a critical 
value gives a good approximation of the permeability of 
the entire network.  Berkowitz [32] further pointed out 
that even a well-connected fracture network can exhibit 
sparse preferential flow paths if the distribution of 
fracture conductivities is sufficiently broad.   
In this report, we analyze the effect of aperture 
distribution on the critical sub-network: in other words, 
how broad the aperture distribution must be that a well-
connected fracture network can exhibit a sparse critical 
sub-network with nearly the same permeability. We 
believe that in even a well-connected fracture network 
there can exist a critical sub-network that is a sparse 
portion of the actual fracture network. Specifically, most 
of fractures can be removed without significantly 
affecting the effective permeability of the network.  
Fracture network connectivity and fracture aperture 
distribution are the two key factors which dominate flow 
behavior in fracture networks. Here we look at well-
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connected fracture networks, and our main focus is on 
the influence of fracture aperture distribution on the 
critical sub-network carrying most of the flow.  As the 
information on fracture apertures, especially in the 
subsurface, is limited, we test power-law and log-normal 
distributions and a case in which aperture is perfectly 
correlated to fracture length.  We examine the effects of 
aperture distribution on the critical sub-network and its 
properties.  
In section 2 we introduce the numerical model and 
research process of this study. In section 3 we present 
the critical sub-network of the fracture network for 
fracture networks in which fracture aperture follows 
power-law and log-normal distributions and a case with 
aperture correlated to fracture length. We use percolation 
theory to analyze the connectivity of the initial fracture 
network.  In section 4, the possibility of identifying the 
critical sub-network without doing flow simulations is 
discussed. 
 
2. NUMERICAL MODEL & RESEARCH 

PROCESS 

2.1 Numerical model 
We use the commercial fractured-reservoir simulator 
FracManTM [33] to generate the fracture network. A 3D 
fracture network is generated in a 10 m × 10 m × 0.01 m 
region. The shape of each fracture is square. Each 
fracture is perpendicular to the X-Y plane and penetrates 
the top and bottom boundaries of the region of interest. 
In this study, the Enhanced Baecher Model is employed 
to allocate the location of fractures. Two fracture sets, 
nearly orthogonal to each other, are assumed, with 
almost equal numbers of fractures in the two sets.   
Because of the uncertainties in data and the influence of 
cut-offs in measurements, fracture trace lengths have 
been described by exponential, log-normal and power-
law distributions in previous studies [34-36]. Currently, 
a power-law distribution is assumed by many 
researchers to be the correct model for fracture length 
[28, 30, 37, 38], with exponents in the range of 1.5 to 3.5. 
In this study, fracture length follows a power-law 
distribution (f(x)):  
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where α is the power law exponent, x is fracture length 
and x୫୧୬ the lower bound on x, which we take to be 0.6 
m. We choose α = 2 and truncate the length distribution 
on the upper end at 6 m; thus there are no extremely 
short or long fractures (Fig. 1). In particular, opposite 
sides of our region of interest cannot be connected by a 
single fracture.  Since even the smallest fracture length 
(0.6 m) is much larger than the thickness of our region of 
interest (0.01 m), the 3D model can be seen as a 2D 
fracture network. 

 
Figure 1 Fracture length follows power-law distribution with 
exponent α = 2 and minimum and maximum cut-offs of 0.6 

and 6 m 

For fracture aperture, two kinds of distribution which 
have been proposed in previous studies are adopted: 
power-law and log-normal. In each kind of distribution, 
different parameter values are examined. The aperture is 
randomly assigned to each fracture. In the cases of 
aperture perfectly related to fracture length, fracture 
aperture follows a power-law distribution scaled to 
fracture length. The details of aperture distribution will 
be introduced later.  

2.2 Flow simulation model 
We assume a fracture can be approximated as the slit 
between a pair of smooth, parallel plates; thus the 
aperture of each fracture is uniform. Fracture 
transmissivity is related to aperture by the “cubic law”:  
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where A is aperture. We consider steady-state flow 
through a 10 m × 10 m × 0.01 m fractured rock mass. 
The matrix is assumed to be impermeable, so that fluid 
flow can take place only in the fracture network.  For 
computing flow in discrete fracture networks, as in most 
numerical simulations of flow in fracture networks, 
Darcy’s Law for steady-state incompressible flow is 
employed, and at each intersection of fractures mass is 
conserved. In our models, we induce fluid flow from the 
left side to the right side by applying a constant 
difference in hydraulic head across the domain while all 
the other boundaries are impermeable. The equivalent 
permeability of the fracture network K is defined by  
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where ܳ is the volumetric flow rate, ∆݄ is the difference 
in hydraulic head between inflow and outflow 
boundaries, ܮ  is the length of system, and W is the 
thickness of the region.  
We use MaficTM, a companion program of FracManTM, 
to do the flow simulations.  

2.3 Methodology  
As mentioned above, our main interest lies in examining 
the change of equivalent network permeability when a 



portion of fractures is eliminated, and the influence of 
aperture distribution (exponent in a power-law 
distribution and standard deviation in a log-normal 
distribution). Countless criteria can be used to decide 
which portion of fractures to remove, such as fracture 
length, aperture, length × aperture, velocity, etc. Here we 
choose a criterion based on the flow simulation results. 
MaficTM subdivides the fractures into finite elements for 
the flow calculations. We obtain the flow velocity at the 
center of each finite element and the value of flow 
velocity × aperture (Qnodal). Based on this we compute 
the average value (Qaverage) of all the elements in each 
fracture.  Qaverage is then used as the criterion to eliminate 
fractures: fractures are eliminated in order, starting with 
the one with smallest value of Qaverage to the one with the 
largest Qaverage. In each step, we calculate the flux and the 
equivalent network permeability for the truncated 
network. The elimination of fractures is based on flow in 
the original fracture network, not the truncated network. 
We also describe the properties of the “backbone”, 
specifically its length and aperture distribution. Since the 
matrix is assumed to be impermeable, the fractures 
which do not belong to the conducting pathways, i.e. the 
dangling branches or dead ends, can be neglected as they 
make no contribution to flow. These dead ends are often 
finite elements within a fracture rather than the entire 
fracture. The fracture network without these elements is 
the “backbone”. A MATLAB program is used to find the 
backbone based on the trace map of the fracture network 
generated by FracManTM. At the start, and at each step 
after eliminating fractures based on the initial flow 
calculation, we further reduce the remaining fracture 
network to its backbone, by eliminating elements that do 
not contribute to flow in the cluster.   
Because the generation of the fracture network is a 
random process, an infinite number of fracture networks 
could be generated with the same parameter values for 
density, orientation, fracture length and aperture 
distribution. In this study, for each set of parameter 
values, we generate one hundred realizations.    

2.4 Percolation Theory 
Percolation theory is a powerful mathematical tool to 
analyze transport in complex systems [39]. Percolation 
theory has been widely used to describe the connectivity 
and conductivity of fracture networks. The simplest 
percolation models are site percolation and bond 
percolation, in which sites or bonds on an infinite lattice 
are occupied and open to flow with a probability p. To 
analyze a fracture network, continuum percolation is 
more applicable, in which fractures can be placed 
anywhere and can be of variable length. To analyze the 
connectivity of a fracture network using percolation 
theory, one must choose a parameter equivalent to the 
occupancy probability used in site or bond percolation. 
Different choices have been considered in previous 

studies. The first is the average number of intersections 
per fracture [11]. A second is the number of factures in 
the system [16, 19]. A third is the dimensionless density, 
defined as ݌ ൌ ݈ܰଶ/ܮଶ	, in which ܰ  is the number of 
fractures, ݈ is the (uniform) fracture length and ܮ is the 
system size [36]. A fourth choice is the probability that a 
point is within the effective area of a fracture [40, 41].  
As the fracture networks used in this study are generated 
using the Enhanced Baecher Model, in which the 
fracture centers are located using a Poisson process, we 
use the fourth option described above as the percolation 
parameter p:  
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where ܰ  is the number of fractures in the system and 
〈ܽ௘௫〉  is the average excluded area. Excluded area is 
defined as the area around a fracture in which the center 
of other fractures cannot lie in order to ensure the 
fractures do not intersect [42]. For fracture network 
comprising two orthogonal fracture sets of uniform 
fracture length ݈, the average excluded area is 〈ܽ௘௫〉 ൌ
	݈ଶ/2	 [43]. Masihi et al [41] proposed that if a fracture 
network has a distribution of fracture lengths, its 
connectivity is identical to that of a system with fixed 
fracture length equal to the so-called effective length 
݈௘௙௙, which is the root-mean-square fracture length: 

                                 ݈௘௙௙
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In this study, percolation theory is employed to analyze 
the connectivity of the initial fracture network, to 
illustrate how far above percolation threshold, and how 
well-connected, the initial fracture network is.  
The percolation threshold pc is the value at which a 
cluster of fractures connects the opposite sides of the 
region. The threshold value is affected by the position, 
orientation, and length distribution of fractures, system 
size, etc. Masihi et al [41] studied the percolation 
threshold of fracture networks with different fracture 
length distributions and different system sizes. For 
fracture networks generated in a 10 m × 10 m region 
with random orientation, when the length follows a 
power-law distribution with exponent α = 2, they 
proposed that the percolation threshold is around 0.66.  
In our case, the system size and power-law exponent are 
consistent with their work, but the fractures are not 
randomly orientated, but in two perpendicular sets. As 
proposed by Masihi et al [40, 41], the percolation 
threshold for fracture network with two perpendicular 
fracture sets is lower than that for a model with 
randomly oriented fractures. Also, the truncation of the 
distribution of fracture lengths impacts the threshold 
value. Since the percolation threshold value is not our 
focus, here we consider 0.5 to 0.7 as a reasonable value 
of percolation threshold. For the cases we study here, the 
value of the percolation parameter p of initial fracture 
network is around 0.9. For the definition of p in Eq. (4), 
a value p = 1 corresponds to infinite fracture density 



(zero probability of not intersecting another fracture). 
Thus our facture network is far above the percolation 
threshold and is well-connected, as one can see in the 
figures below.  
 
3. IDENTIFYING THE CRITICAL SUB-

NETWORK BASED ON FLOW 
SIMULATION RESULTS 

3.1 Models without correlation between fracture 
aperture and length 

3.1.1 Power-law aperture distribution 

Some field observations and experimental studies show 
that a power-law distribution describes the fracture 
aperture distribution, although the available data is 
limited, especially from subsurface populations [44-49]. 
The power-law aperture distribution is described by Eq. 
(1). Previous studies find that the value of the exponent 
of the power-law aperture distribution in nature α is 1, 
1.1, 1.8, 2.2, or 2.8. To include the entire range of 
feasible cases, here we study α in the range from 1 to 6. 
In each case, fracture aperture is limited to the interval 
between 0.01 mm and 10 mm. Because of this truncation, 
as the exponent α increases from 1 to 6, the fracture 
apertures concentrate in a narrow range near the lower 
limit (Fig.  2). For α = 1, apertures lie mostly in the 
range of 0.01 mm to 10 mm: the difference between 
smallest and largest value is nearly three orders of 
magnitude.  For α = 4 to 6, most apertures lie between 
0.01 mm and 0.03 mm. Absolute aperture is not 
important in the dimensionless results to follow, but a 
narrow range of apertures does affect the results. 

 
Figure 2 Fracture aperture follows a power-law distribution 

with different values of the exponent. 

After running flow simulations on the percolation cluster 
of the original fracture network, we determine the value 
of Qaverage for each fracture. The fractures with the 
smallest Qaverage are eliminated first, then the larger ones. 
Numerical simulations presented in Fig. 3 show that 
when power-law aperture distribution exponent α = 1, 
approximate 60% of fractures can be eliminated, while 
retaining 90% of the network equivalent permeability. 
We call this sub-network retaining 90% of the original 

equivalent permeability the critical sub-network. As 
exponent α increases from 1 to 6, fewer and fewer 
fractures can be removed without significantly reducing 
the network equivalent permeability. In the case of α = 6, 
only 30% fractures can be eliminated while retaining 90% 
of the original equivalent permeability.  

 
 Figure 3 Sub-network equivalent permeability (K) normalized 

by the equivalent permeability of original fracture network 
(K0), plotted against percent eliminated fractures, for a power-

law aperture distribution with exponent α = 1 to 6. Each 
plotted point is the average value of 100 realizations generated 

with the given parameter values. A dashed line means that 
after the given portion of fractures is eliminated there is no 
percolating cluster left in at least some of the realizations. 

In the network, some subset of fractures do not 
participate in fluid flow; these are known as dead-end or 
dangling fractures. To identify the flow structure in 
fracture networks, the backbone of original fracture 
network and sub-network are determined by removing 
fractures which do not belong to the spanning cluster, as 
well as dead-ends (Fig. 4). As shown in Fig. 4, the 
structure of the sub-network that retains 90% of original 
equivalent network permeability depends on . For α = 1 
(Fig. 4b), the backbone is much more sparse than that for 
others, because many more fractures can be removed 
without reducing permeability greatly.   
The importance of fractures to fluid flow is not simply 
related to fracture length or fracture aperture. Figure 5 
shows that when fractures are deleted according to flow-
simulation results, the backbone length of each sub-
network decreases almost linearly. This shows, for 
instance, that it is not exclusively short fractures that are 
eliminated first. The trend is nearly the same for 
different values of . The length L is the cumulative 
length of all fracture segments in the backbone, not the 
length of all fractures with some segment in the 
backbone. Thus for the original network the reduction in 
length by about 20% arises mostly from eliminating 
segments, not whole fractures. 
Figure 6 shows the standard deviation of apertures in the 
backbone after deletion of the fractures least-important 
to flow. The overall trend is for increasing standard 
deviation as more fractures are removed, until some sub-
networks are disconnected entirely (dashed lines in Fig. 
6). (These cases are counted as having zero standard 



deviation; hence the decrease in the average standard 
deviation for the group.) For α = 1, when the first 
fractures are removed, the standard deviation in aperture 
in the backbone decreases at first, and then follows the 
trend for  α = 2 to  6. Interpreting this plot in terms of 
aperture distribution is tricky. If narrower fractures were 

systematically eliminated, the standard deviation in 
aperture in the remaining fractures would increase 
modestly, but in a way that depends strongly on . In 
Fig. 6, there is no clear trend with . 

 

 Figure 4 Original fracture network and backbone of the sub-network which retain 90% original equivalent network permeability: 
(a) original fracture network. (b)-(g) sub-network which retain 90% of network permeability: (b) α = 1, (c) α = 2, (d) α = 3, (e) α = 

4, (f) α = 5, (g) α = 6. 

 
 Figure 5 Length of sub-network backbone (Lbackbone) 

normalized by the total length of original fracture network (L0) 
plotted against percentage of eliminated fractures, for a power-

law aperture distribution with exponent α = 1 to 6.  

Figure 7 plots the minimum aperture in the backbone 
against the percentage of fractures removed. This 
minimum aperture in the backbone remains quite close 
to the minimum aperture of original fracture network 
until 70% fractures are removed. For α = 1, the ratio 
increases between 60% and 80% of fractures removed, 
but only by 50%. This demonstrates that there exist at 
least some fractures whose aperture is relatively narrow, 
that play a more important role in overall flow than 
others with larger aperture.  

 
Figure 6 Standard deviation of apertures in sub-network 

backbone (STDbackbone) normalized by the standard deviation 
of apertures in original fracture network (STD0), plotted 
against percentage of eliminated fractures, for power-law 

aperture distribution with exponent α = 1 to 6.  

Figure 8 presents the average fracture aperture in the 
backbone after removing fractures which conduct the 
least flow. For all the cases, the average aperture 
increases as more fractures are removed, until there are 
no spanning cluster in some sub-networks (dashed lines 
in Fig. 8). The greatest change is in the cases where α = 
1: the ratio increases by 250% when 80% of fractures are 
eliminated. Considering the difference between the 
smallest aperture and the largest aperture is three orders 
of magnitude, the average aperture in the sub-network 
backbone does not increase greatly. For α = 2 to 6, the 
average value changes only slightly. This indicates that 



the fractures with small aperture are not systematically 
removed.   

 
 Figure 7 Minimum aperture of sub-network backbone 

(MINbackbone) normalized by the minimum aperture of original 
fracture network (MIN0), plotted against percentage of 

eliminated fracture, for power-law aperture distributions with 
exponent α = 1 to 6. 

 

 
Figure 8 Average aperture of sub-network backbone 

(AVEbackbone) normalized by the average aperture of original 
fracture network (AVE0), plotted against percentage of 

eliminated fractures, for power-law aperture distributions with 
exponent α = 1 to 6. 

 
3.1.2 Log‐normal aperture distribution 

Some researchers propose a log-normal distribution of 
apertures based on field studies and hydraulic tests [7, 8, 
51-54]. Fracture-network models with log-normal 
distributions of apertures have been widely used to 
simulate experiments and derive theoretical relationships 
[7, 8, 23, 27, 28, 50-53]. The log-normal distribution is 
specified by the following probability density function: 
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where ߤ  and ߪ  are the mean and standard deviation in 
log-10 space. The truncated log-normal distribution has 
two additional parameters: a minimum and a maximum 
value, which are 0.01 mm and 10 mm, respectively. For 
the standard deviation, field studies and hydraulic tests 
found values of   from 0.1 to 0.3, 0.23, and 0.47 [52-
54]. To test the widest range of feasible values, we test 
values of  from 0.1 to 0.6, as illustrated in Fig. 9.  

 
 Figure 9 Fracture aperture follows log-normal distribution 

with the same mean value but different standard deviation in 
log-10 space. 

Similar to our approach with the power-law aperture 
distributions, first we run flow simulations for each 
realization, and then eliminate fractures based on the 
flow simulation results, starting with fractures with the 
smallest Qaverage. For each sub-network, the equivalent 
permeability is calculated. The average values are 
calculated over the 100 realizations for each set of 
parameter values (Fig. 10).  The broader the aperture 
distribution is, the more fractures can be removed from 
the system while retaining a given fraction of the 
original network permeability. For example, to retain  
90% of original network equivalent permeability, around 
32% of fractures can be removed for the case of  0.1 = ߪ 
and more than 75% for 0.6 = ߪ. 
Clearly, the critical sub-network which retains 90% of 
the original equivalent permeability is strongly affected 
by the aperture distribution. 
 

 
 Figure 10 Sub-network equivalent permeability (K) 

normalized by the equivalent permeability of original fracture 
network (K0), plotted against percentage of eliminated 

fractures, for log-normal aperture distributions with same log-
mean value but log-standard deviations (ߪ) from 0.1 to 0.6.  



 
 Figure 11 Length of sub-network backbone (Lbackbone) 

normalized by the total length of original fracture network (L0) 
plotted against percentage of eliminated fractures, for  log-
normal aperture distributions with same log-mean value but 

log-standard deviations (ߪ) from 0.1 to 0.6. 

Similar to the case of a power-law aperture distribution, 
the length of the backbone for sub-networks decreases 
nearly linearly with increasing portion of fractures 
eliminated based on the flow simulation results. As 
presented in Fig. 11, the length of the backbone for the 
original fracture network is around 80% of total fracture 
length, regardless of the value of  ߪ. As in Fig. 4, the 
ratio shown in Fig. 11 starts at about 0.8 for zero 
fractures removed because not all fracture segments in 
the original network are on the backbone.   
Similar to the case of a power-law aperture distribution, 
the standard deviation of apertures in the sub-network 
(Fig. 12) does not change greatly as fractures are 
eliminated. For the cases ߪ  = 0.1 and ߪ  = 0.2, the 
aperture distribution becomes slightly narrower, and, for 
the rest of the cases, the aperture distribution of the sub-
network becomes somewhat broader (Fig. 12).  
The minimum aperture of the sub-network (Fig. 13) 
behaves differently from that for the cases of a power-
law aperture distribution (cf. Fig. 5). The narrowest 
aperture in the network increases greatly as more 
fractures are eliminated. This suggests that the fractures 
with smaller aperture are eliminated preferentially. 
Another possible reason for the difference with cases 
with the power-law distribution is that there are 
relatively few very small apertures in log-normal 
distribution (Fig. 8), while by far most apertures have 
similar, small values for the power-law distributions (Fig. 
1).  
The average fracture aperture of the sub-network (Fig. 
14) shows similar behavior to the cases of a power-law 
aperture distribution. The overall trend is that the 
average aperture increases as fractures are eliminated. 
When a certain percentage of fractures are removed (e.g. 
60%), the average aperture of the sub-network becomes 
larger as ߪ increases from 0.1 to 0.6. The reason could 
be that the apertures distribute more broadly, and the 
difference between apertures is larger, with a larger ߪ.  

 
 Figure 12 Standard deviation of apertures in sub-network 

backbone (STDbackbone) normalized by the standard deviation 
of apertures in original fracture network (STD0), plotted 

against percentage of eliminated fractures, for log-normal 
aperture distributions with same log-mean value but log-

standard deviations (ߪ) from 0.1 to 0.6.  

 
 Figure 13 Minimum aperture of sub-network backbone 

(MINbackbone) normalized by the minimum aperture of original 
fracture network (MIN0), plotted against percentage of 

eliminated fractures, for log-normal aperture distributions with 
same log-mean value but log-standard deviations (ߪ) from 0.1 

to 0.6. 

 
Figure 14 Average aperture of fracture in sub-network 

backbone (AVEbackbone) normalized by the average aperture of 
original fracture network (AVE0), plotted against percentage 
of eliminated fractures, for log-normal aperture distributions 
with same log-mean value but log-standard deviations (ߪ) 

from 0.1 to 0.6. 

3.2 Aperture linearly related to fracture length 
Field measurements and theoretical studies raise the 
possibility of a relationship between fracture aperture 
and fracture length [55-59]. Both nonlinear and linear 



relationships have been proposed in previous studies 
based on elastic theory and field data. Here we assume 
that the aperture of each fracture is uniform and linearly 
correlated with fracture length: 
                                         A ൌ C(7)                                 ܮ 
where A is aperture, C is an empirical coefficient, and L 
is fracture length. Vermilye and Scholz [57] suggest the 
empirical coefficient lies between 1 ൈ 10ିଷ	  and  
8 ൈ 10ିଷ	 . Here for the MaficTM calculations we use 
2 ൈ 10ିଷ	, but, since we normalize by the properties of 
the original fracture network, the value of C is 
unimportant to what follows. As mentioned above, all 
the cases we tested in this study have a power-law length 
distribution with exponent α = 2, truncated between 0.6 
m and 6 m. Since aperture is proportional to fracture 
length, the apertures also follow a power-law 
distribution with exponent α = 2, in the range of 1.2 mm 
to 12 mm. As presented in Fig. 15, for the case described 
above with  = 2 and aperture independent of fracture 
length, the apertures lie mostly in the range of 0.01 mm 
to 0.1 mm: the difference between smallest and largest 
value is nearly one order of magnitude. When aperture is 
linearly related to fracture length, the apertures lie 
between 1.2 mm and 10 mm. Although the absolute 
values are different, the difference between smallest and 
largest value in both cases is similar: nearly one order of 
magnitude. The difference in magnitude of apertures 
between the two models is not important to what follows, 
but the truncation of the distribution at the largest values 
could have some effect. 
Similar to the cases where apertures are independent of 
fracture length, first we run flow simulations for each 
realization, and determine the value of Qaverage for each 
fracture. Then we eliminate fractures, starting with those 
with the smallest Qaverage. Figure 16 shows the sub-
network equivalent permeability plotted against percent 
eliminated fractures for both cases, where aperture is 
independent of, and linearly related to, fracture length.  
The sub-network equivalent permeability behaves 
similarly for the two cases. Approximately 50% of 
fractures can be eliminated while retaining 90% of the 
network equivalent permeability.  

 
 Figure 15 Fracture aperture follows power-law distribution 

with and without correlation to length (α = 2). 

 
Figure 16 Sub-network equivalent permeability (K) 

normalized by the equivalent permeability of original fracture 
network (K0), plotted against percent eliminated fractures, for 
the cases where aperture is independent of or proportional to 

fracture length, respectively.  

Figure 17 shows the cumulative length of the sub-
network backbone for the two cases. The cumulative 
length of the sub-network backbone decrease almost 
linearly until around 70% of fractures are removed, 
when there is no spanning cluster in at least some cases.  
Similar to the case where aperture is independent of 
fracture length, for the case where aperture is linearly 
related to length, the standard deviation of apertures in 
the sub-network (Fig.18) does not change greatly as 
fractures are eliminated.  
 

 
Figure 17 Length of sub-network backbone (Lbackbone) 

normalized by the total length of original fracture network (L0), 
plotted against percentage of eliminated fractures, for the 
cases where aperture is independent of or proportional to 

fracture length, respectively. 

The minimum aperture of the sub-network (Fig. 19) 
behaves differently from that for the cases with no 
correlation between aperture and fracture length cases. 
When 70% of fractures are removed, the narrowest 
aperture in the sub-network is three times the value of 
the initial fracture network. Considering that the 
difference between the smallest and largest aperture is 
only one order of magnitude when α = 2 (Fig. 15), the 
minimum aperture of the sub-network increases greatly.  
This suggests that the fractures with smaller aperture are 
eliminated first.  
Fig. 20 shows the average aperture in the sub-network. 
For both of the cases, the ratio between average aperture 



of the sub-network and that of initial fracture network 
increases as more fractures are eliminated.   
 

 
Figure 18 Standard deviation of apertures in sub-network 

backbone (STDbackbone) normalized by the standard deviation 
of apertures in original fracture network (STD0), plotted 

against percentage of eliminated fractures, for the cases where 
aperture is independent of or proportional to fracture length, 

respectively. 

 
Figure 19 Minimum aperture in sub-network backbone 

(MINbackbone) normalized by the minimum aperture in original 
fracture network (STD0), plotted against percentage of 

eliminated fractures, for the cases where aperture is 
independent of or proportional to fracture length, respectively. 

 
Figure 20 Average aperture in sub-network backbone 

(AVEbackbone) normalized by the average aperture in original 
fracture network (AVE0), plotted against percentage of 

eliminated fractures, for the cases where aperture is 
independent of or proportional to fracture length, respectively. 

 

4. POSSIBILITY OF IDENTIFYING CRITICAL 
SUB-NETWORK WITHOUT DOING FLOW 
SIMULATIONS 

In section 3 we show that when the aperture distribution 
is broad enough, most fractures can be eliminated 
without significantly affecting the effective permeability. 
The fractures are eliminated based on the value of 
Qaverage, which is obtained from flow simulations. We 
would like to explore a criterion for obtaining a sparse 
critical sub-network without doing flow simulations. The 
results in section 3 clearly show that aperture 
distribution has a strong influence on the critical sub-
network. Also, the fracture length has an important 
impact on the flow behavior of fracture networks. 
Besides aperture and length, the other factor we consider 
here is the number of intersections each fracture has with 
other fractures. It is believed that this term reflects the 
importance of a fracture to the connectivity of the 
fracture network (hence the proposed percolation 
parameter for fracture networks based on intersections 
per fracture, mentioned above). We define criteria that 
are a combination of these three factors.  
 

Table.1 Fracture-Elimination Criteria  

Criterion Description 
1 Aperture (A) 
2 Length (L) 
3 Aperture × Length (A × L ) 
4 Aperture × Length × Number of 

intersections (A × L × N) 
5 Flow simulation results (Q) 

 
We compare the effective permeability of the sub-
network with a portion of fractures eliminated using 
these criteria. Not all the cases examined above are 
studied here. For cases with a power-law aperture 
distribution, we study α = 1, 2, and 6. For cases of log-
normal aperture distribution, we examine σ = 0.1, 0.2, 
and 0.6. We also test the case where aperture is linearly 
related to fracture length.  
As presented in Figs. 20 to 26, if we consider the sub-
network which can retain 90% of the effective 
permeability as a good approximation of the total 
fracture network, we can eliminate the most fractures 
using the flow simulation results. Next to that, in general, 
[Aperture × Length] is a better choice than the others (more 
fractures can be eliminated). For the case in which aperture is 
proportional to fracture length, the results obtained according 
to criteria 1 to 3 are the same. Thus, only three plots are shown 
in Fig. 26. Remarkably, when fractures are eliminated 
according to fracture length, the effective permeability of sub-
network changes nearly linearly in all the cases.  
 



 
 Figure 21 Sub-network equivalent permeability (K) 

normalized by the equivalent permeability of original fracture 
network (K0), plotted against percent eliminated fractures, for 

a power-law aperture distribution with exponent α = 1. 
Fractures are eliminated according to different criteria. 

 

 
 Figure 22 Sub-network equivalent permeability (K) 

normalized by the equivalent permeability of original fracture 
network (K0), plotted against percent eliminated fractures, for 

a power-law aperture distribution with exponent α = 2. 
Fractures are eliminated according to different criteria. 

 

 
 Figure 23 Sub-network equivalent permeability (K) 

normalized by the equivalent permeability of original fracture 
network (K0), plotted against percent eliminated fractures, for 

a power-law aperture distribution with exponent α = 6. 
Fractures are eliminated according to different criteria. 

 

 
 Figure 24 Sub-network equivalent permeability (K) 

normalized by the equivalent permeability of original fracture 
network (K0), plotted against percentage of eliminated 

fractures, for log-normal aperture distributions with log-
standard deviation 0.1 = ߪ.  Fractures are eliminated according 

to different criteria. 

 

 
 Figure 25 Sub-network equivalent permeability (K) 

normalized by the equivalent permeability of original fracture 
network (K0), plotted against percentage of eliminated 

fractures, for log-normal aperture distributions with log-
standard deviation 0.2 = ߪ.  Fractures are eliminated according 

to different criteria. 

 

 
 Figure 26 Sub-network equivalent permeability (K) 

normalized by the equivalent permeability of original fracture 
network (K0), plotted against percentage of eliminated 

fractures, for log-normal aperture distributions with log-
standard deviation 0.6 = ߪ.  Fractures are eliminated according 

to different criteria. 

 



 
Figure 27 Sub-network equivalent permeability (K) 

normalized by the equivalent permeability of original fracture 
network (K0), plotted against percentage of eliminated 

fractures, for case where aperture is linearly related to fracture 
length.  Fractures are eliminated according to different criteria. 

 
5. CONCLUSIONS 
This work focuses on the effect of aperture distribution 
on the critical sub-network and its properties. A number 
of cases are tested: narrow and broad log-normal and 
power-law distributions, and one where aperture 
correlates with fracture length. Several following 
conclusions reflect the strong influence of aperture 
distribution on flow behavior.  
 For the fracture networks with power-law or log-

normal aperture distributions, or aperture 
proportional to fracture length, if the aperture 
distribution is broad enough, most of fractures can 
be eliminated without significantly affecting the 
effective permeability. This is true even though the 
original fracture network is well-connected.  

 As the exponent α of a power-law aperture 
distribution increases or the standard deviation σ of 
a log-normal aperture distribution decreases, fewer 
and fewer fractures can be removed without 
significantly reducing the network equivalent 
permeability. The critical sub-network for flow is 
strongly affected by the aperture distribution. 

 For all the cases, when the fractures are removed 
according to the flow-simulation results, the 
cumulative length of sub-network backbone 
decreases nearly linearly as more fractures are 
eliminated.  

 For the cases of power-law aperture distribution, 
there exist at least some fractures whose aperture is 
relatively narrow that play a more important role in 
overall flow than some others with larger aperture.  

 For the cases of log-normal aperture distribution, the 
standard deviation of apertures in the backbone  and 
the average aperture in the sub-network backbone 
behaves similarly to the cases with a power-law 
aperture distribution. But the narrowest aperture in 
the network increases greatly as more fractures are 
eliminated, in contrast to behavior with a power-law 
aperture distribution. 

 For the cases where aperture is independent of 
fracture length and aperture is correlated to fracture 
length with the same power-law aperture-
distribution exponent α = 2, the behavior of the 
effective sub-network permeability, the cumulative 
length of sub-network backbone, the standard 
deviation of apertures and the average aperture in the 
sub-network backbone are similar to each other. But 
the narrowest aperture in the sub-network increase 
significantly for the case where aperture is correlated 
to fracture length, which is different from the cases 
where aperture is independent of fracture length.  

 If we consider the sub-network which can retain 90% 
of the effective permeability as a good 
approximation of the total fracture network, we can 
eliminate the most fractures using the flow 
simulation results. Besides that, in general, 
[Aperture × Length] is a better choice for obtaining a 
sparse critical sub-network than the others 
considered here.  
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