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Abstract: Nuclear norm based subspace identification methods have recently gained importance
due to their ability to find low rank solutions while maintaining accuracy through convex
optimization. However, their heavy computational burden typically precludes the use in an
online, recursive manner, such as may be required for adaptive control. This paper deals with
the formulation of a recursive version of a nuclear norm based subspace identification method
with an emphasis on reducing the computational complexity. The developed methodology is
analyzed through simulations on Linear Time-Varying (LTV) systems particularly in terms
of convergence rate, tracking speed and the accuracy of identification and it is shown to be
computationally lighter and effective for such systems, with the considered rate of change of
dynamics.
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1. INTRODUCTION

System identification plays a crucial role in a specific class
of adaptive controllers, where the real-time identification
of the underlying system is required (Favoreel, W et al.
(1999)). A common approach to system identification in
real-time is the class of Prediction-Error Methods (PEM),
but these are not easily extendable to MIMO systems. Sub-
space IDentification (SID) methods mainly emerged as an
alternative (Gevers, M (2006)) approach. They typically
employ convex cost functions that are amenable to recur-
sive implementations. However, due to the computational
complexity associated with high-fidelity SID methods, an
online extension for the purpose of adaptive control may
not always be tractable in real time.

This issue was recognized in the area of subspace identifi-
cation soon after the pioneering SID methods (Van Over-
schee, P and Moor, B (1994), Verhaegen, M and Dewilde,
P (1992), Larimore, W. E. (1990)) were published and a
number of solutions were proposed (Verhaegen, M and
Verdult, V, 2007). For a recursive approach to subspace
identification, a subspace tracking algorithm PAST (Yang,
B (1995)) from the field of signal processing was intro-
duced in the system identification community for different
variants of MOESP (Lovera, M et al. (2000)). Since PAST
involves approximations, the estimation results were sub-
optimal and a recursive solution was proposed in Mercére,
G et al. (2004). Although the computational time was
reduced, the main drawback of these methods is that they
are limited to open-loop identification. This is because of
the assumption of zero correlation between noise and the
input, which leads to biased estimates when directly ap-
plied to closed-loop systems. This issue led to the develop-
ment of Predictor-Based Subspace IDentification (PBSID)

methods. A recursive closed-loop subspace identification
method based on an optimized version of PBSID (Chuiso,
A (2007)) was proposed in Houtzager, I et al. (2009), which
reduced the computational complexity while resulting in
unbiased estimates.

Traditional subspace identification methods can be broken
down into three distinct steps (Qin, J (2006)): (1) estima-
tion of high-order models, (2) reduction of estimated mod-
els to lower dimensional subspace and (3) realization of a
state-space system from the lower dimensional subspace.
In recent years, a class of SID methods which combine
the first two steps of the traditional SID methods have
emerged. They do so by embedding the rank minimization
criterion (step 2) directly in the identification problem.
However, the rank minimization problem, which is in terms
of the �0 norm, is NP-hard. Therefore, a heuristic alterna-
tive was developed in Fazel, M et al. (2001), in which it
was proved that the nuclear norm – sum of the singular
values of a matrix – can be used as a convex envelope of
the rank of the matrix. With this heuristic, the problem
of rank minimization is relaxed to �1 norm which has well-
established mathematical properties. Employing nuclear
norm for rank minimization is attractive primarily because
it forms a convex envelope on the rank function, hence
rendering the identification problem a convex optimization
problem.

Most of the nuclear norm based SID methods (e.g., Ver-
haegen, M and Hansson, A (2015) and Hansson, A et al.
(2012)) formulate the problem in two terms: one term
to reduce the model order and the other to obtain an
accurate description of the system. For a given number of
measurements, it was proved in Candés, E. J and Tao, T
(2009) that a low rank solution describing the underlying
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1. INTRODUCTION

System identification plays a crucial role in a specific class
of adaptive controllers, where the real-time identification
of the underlying system is required (Favoreel, W et al.
(1999)). A common approach to system identification in
real-time is the class of Prediction-Error Methods (PEM),
but these are not easily extendable to MIMO systems. Sub-
space IDentification (SID) methods mainly emerged as an
alternative (Gevers, M (2006)) approach. They typically
employ convex cost functions that are amenable to recur-
sive implementations. However, due to the computational
complexity associated with high-fidelity SID methods, an
online extension for the purpose of adaptive control may
not always be tractable in real time.

This issue was recognized in the area of subspace identifi-
cation soon after the pioneering SID methods (Van Over-
schee, P and Moor, B (1994), Verhaegen, M and Dewilde,
P (1992), Larimore, W. E. (1990)) were published and a
number of solutions were proposed (Verhaegen, M and
Verdult, V, 2007). For a recursive approach to subspace
identification, a subspace tracking algorithm PAST (Yang,
B (1995)) from the field of signal processing was intro-
duced in the system identification community for different
variants of MOESP (Lovera, M et al. (2000)). Since PAST
involves approximations, the estimation results were sub-
optimal and a recursive solution was proposed in Mercére,
G et al. (2004). Although the computational time was
reduced, the main drawback of these methods is that they
are limited to open-loop identification. This is because of
the assumption of zero correlation between noise and the
input, which leads to biased estimates when directly ap-
plied to closed-loop systems. This issue led to the develop-
ment of Predictor-Based Subspace IDentification (PBSID)

methods. A recursive closed-loop subspace identification
method based on an optimized version of PBSID (Chuiso,
A (2007)) was proposed in Houtzager, I et al. (2009), which
reduced the computational complexity while resulting in
unbiased estimates.

Traditional subspace identification methods can be broken
down into three distinct steps (Qin, J (2006)): (1) estima-
tion of high-order models, (2) reduction of estimated mod-
els to lower dimensional subspace and (3) realization of a
state-space system from the lower dimensional subspace.
In recent years, a class of SID methods which combine
the first two steps of the traditional SID methods have
emerged. They do so by embedding the rank minimization
criterion (step 2) directly in the identification problem.
However, the rank minimization problem, which is in terms
of the �0 norm, is NP-hard. Therefore, a heuristic alterna-
tive was developed in Fazel, M et al. (2001), in which it
was proved that the nuclear norm – sum of the singular
values of a matrix – can be used as a convex envelope of
the rank of the matrix. With this heuristic, the problem
of rank minimization is relaxed to �1 norm which has well-
established mathematical properties. Employing nuclear
norm for rank minimization is attractive primarily because
it forms a convex envelope on the rank function, hence
rendering the identification problem a convex optimization
problem.

Most of the nuclear norm based SID methods (e.g., Ver-
haegen, M and Hansson, A (2015) and Hansson, A et al.
(2012)) formulate the problem in two terms: one term
to reduce the model order and the other to obtain an
accurate description of the system. For a given number of
measurements, it was proved in Candés, E. J and Tao, T
(2009) that a low rank solution describing the underlying
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system can be retrieved by solving such an optimization
problem.

Several methods have been proposed to solve an opti-
mization problem based on the nuclear norm: e.g, Liu, Z
and Vandenberghe, L (2009), Ayazoglu, M and Sznaier,
M (2012), Cai, J. F et al. (2008), Ji, S and Ye, J (2009),
Mohan, K and Fazel, M (2012). In this paper, the Alternat-
ing Direction Method of Multipliers (ADMM) algorithm
developed in Boyd, S et al. (2011) will be employed. Since
the nuclear norm operator is not differentiable with respect
to its arguments, ADMM is particularly favorable in our
case because it does not require the optimization function
to be differentiable; sub-differentials of the function can be
readily used. Moreover, the computational complexity of
ADMM is lighter than Semi-Definite Programming solvers
which were employed in for example, Verhaegen, M and
Hansson, A (2014).

Although much progress has been made in the direction of
recursive subspace identification methods, nuclear norm
based SID methods still remain computationally heavy,
rendering them to be less useful in the design of an
online adaptive controller. While a recursive algorithm
that formulates the problem based on the nuclear norm
variant of PBSID is developed in Navalkar, S.T and van
Wingerden, J.W (2016), the formulation developed here
is based on the nuclear norm variant of SID methods.
Accordingly, this paper aims to formulate a recursive
version of a nuclear norm based SID method, called
N2SID developed in Verhaegen, M and Hansson, A (2015),
thereby facilitating its use in adaptive control. The non-
recursive algorithm is briefly summarized in Section 2
along with the optimization algorithm ADMM that is
used to solve it. The contributions made in this paper are
three fold. In order to facilitate recursive identification, the
conditions for a warm-start are developed in Section 3.1.
Secondly, the characteristics of ADMM are exploited in
Section 3.2 to redefine the stopping criteria with an aim
to improve the speed. The two improvements are combined
together to result in a recursive identification method. The
effects of these are studied in Section 4 by performing
recursive identification on linear time-varying systems.
Finally, the paper is ended with some concluding remarks.

2. BACKGROUND

In this section, the N2SID method, presented in Verhae-
gen, M and Hansson, A (2015) is recapitulated, so that
a recursive implementation can be formulated in the next
section. Consider that the system to be identified can be
realised (instantaneously) as an LTI state space model in
the innovation form:

x(k + 1) = Ax(k) +Bu(k) +Ke(k)
y(k) = Cx(k) +Du(k) + e(k)

(1)

where u(k) ∈ Rmu , x(k) ∈ Rn, y(k) ∈ Rpy and e(k) ∈ Rpy

is the zero mean innovation sequence. Let (1) be compactly
expressed in the observer form as:

x(k + 1) = Āx(k) + B̄u(k) +Ky(k)
y(k) = Cx(k) +Du(k) + e(k)

(2)

with Ā = (A−KC) and B̄ = (B −KD).

The system identification problem is to approximate the
system matrices for the system described in (1). This
is solved using the N2SID method (Verhaegen, M and
Hansson, A (2015)) which formulates the problem as:

min
Ŷs,Tu,s,Ty,s

||Ŷs−Tu,sUs−Ty,sYs||�+
λ

N

N∑
k=1

||y(k)− ŷ(k)||22

(3)

with || ||� being the nuclear norm operator and λ being the
regularization parameter. Through the tuning of λ, the
trade-off between model order reduction and estimation
accuracy is quantified. Here, y(k) is the measured output
of the system and ŷ(k) is the estimated output. s is
the number of block rows and N is the number of mea-
surements or samples used in the identification dataset.
Us ∈ Rm×q, where m = smu and q = (N − s + 1), is the
Hankel matrix formulation of the input u(k) (Verhaegen,
M and Verdult, V (2007)):

Us =




u(1) u(2) . . . u(N − s+ 1)

u(2) u(3)
...

...
. . .

u(s) u(s+ 1) . . . u(N)


 (4)

Similarly, the Hankel matrices for the measured output
y(k) and the estimated output ŷ(k) are formulated as

Ys ∈ Rp×q and Ŷs ∈ Rp×q respectively, where p = spy. The
variables Tu,s and Ty,s are Toeplitz matrices containing the
system matrices (Verhaegen, M and Hansson, A (2015))
from model (2).

The optimization problem formulated in (3), which is a
convex relaxed problem, can be solved using the ADMM
algorithm demonstrated in Hansson, A et al. (2012). We
concisely review ADMM in order to understand the theory
developed in Section 3. For a detailed explanation of
ADMM, readers are referred to Boyd, S et al. (2011). The
optimization variables from (3) are split into two (primal)
variables: x ∈ Rnx (with nx = py(N + m + (s − 1)py))
and X ∈ Rp×q. They contain the optimization variables
Tu,s, Ty,s and Ŷs of problem defined in (3). Accordingly,
the problem is reformulated as:

min
x,X

f(x) + g(X)

subject to A(x)−X = B
(5)

Since ADMM is a primal-dual algorithm (Komodakis, N
and Pesquet, J (2015)), it employs a dual variable Z along
with the primal variables x and X to solve the problem
defined in equation (5). ADMM maximizes a dual function
with respect to the dual variable; the dual function is
defined as:

gtp(Z) = inf
x,X

Ltp(x,X, Z) (6)

The function Ltp(x,X, Z) here is the Augmented La-
grangian defined as:
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Ltp = f(x) + g(X) + trace(ZT (A(x)−X− B))
+
tp
2
||A(x)−X− B||2F

where tp is the penalty parameter. Each iteration proceeds
by maximizing the dual function, which is concave, and
finds the minimum of the primal variables for each dual
update Z. The stopping criteria, which is defined in terms
of primal and dual residual norms (rp and rd respectively)
and primal and dual tolerances (εp and εd respectively) is
defined as:

rp ≤ εp, rd ≤ εd (7)

Once the stopping criteria has been reached, the ADMM
iterates satisfy residual, objective and dual variable con-
vergence. Note that primal variables need not converge to
optimal values (Boyd, S et al. (2011)). Using the variables
resulting from the convergence of ADMM, the matrices
that describe the system in (1) can be extracted from Tu,s

and Ty,s (Verhaegen, M and Hansson, A (2015)), hence
solving the system identification problem.

The aim of this paper is to develop a recursive version
of the identification method reviewed in this section.
Accordingly we will consider, in the next section, some
conditions that facilitate such identification.

3. RECURSIVE IDENTIFICATION

Recursive identification can be considered to be a repet-
itive application of the batchwise identification process
described in the previous section. Such an implementation
would be of specific interest for adaptive control.

At a particular time instant, a system is identified using its
past N measurement values as described in Section 2. Let
us call it the ith identification cycle and accordingly denote
the ith identification problem, which is equation (3), asQi:

Qi : min
Ŷ i
s ,T

i
u,s,T

i
y,s

λ

N

i∑
k=i−N+1

||yi(k)− ŷi(k)||22

+||Ŷ i
s − T i

u,sU
i
s − T i

y,sY
i
s ||�

(8)

The corresponding optimization problem that is solved
using ADMM is P i which is defined as:

P i : min
x,X

f i(x) + gi(X)

subject to Ai(x)−X = B (9)

The variables in (9) are x, X and Z, and the resulting
values after the algorithm converges are denoted with
superscript i. Accordingly, the solution of P i yields the
optimal dual variable, denoted Zi, and the primal variables
xi and Xi such that the objective has converged to its
optimal.

We now consider the problem of solving the (i + 1)th

identification with a lesser computational burden and an
improved speed, for an online implementation. As shown
in the next section, such a speed-up can be provided with

a warm start by using as the initial condition the results
of the ith cycle instead of the default zero initial matrices
for primal and dual variables of the ADMM. To further
improve the speed, we next revisit and modify the stopping
criteria.

3.1 Choice of initial condition

Knowledge of the previous optimum can be exploited in
speeding up the optimization process at each time instant
that a system identification estimate is required. Apart
from λ and the optimization variables in (8), the definition
of the problem Qi reveals that it is entirely made up
of the past N measurement values – from time instant
(i−N+1) to i. Since the (i+1)th identification is performed
immediately after the ith identification, the problem Qi+1

comprises of the measurements from (i − N + 2) to (i +
1). Thus, the problems Qi and Qi+1 differ by just one
measurement value. This is reflected in two ways: (1) there
is a shift structure in Us and Ys and (2) by the proximity of
the dual functions of P i and P i+1. In this paper, we focus
on the latter (exploitation of the shift structure in the
Hankel matrices is a part of future work). The (concave)
dual functions of P i and P i+1 are such that they are less
than ε > 0 apart:

|gi+1
tp (Z) − gitp(Z)| < ε (10)

From the solution of Qi, the optimal dual variable (Zi) is
available. Since the aim is to solve the (i + 1)th identifi-
cation, we now try to gain insight about Zi+1 using the
knowledge of Zi and using (10). First, however, a useful
result is stated in the following lemma.

Lemma 1. Consider two convex functions h1 : Rp×q → R
and h2 : Rp×q → R such that

|h1(x)− h2(x)| < ε ∀x ∈ Rp×q (11)

Let
x∗
1 = argmin

x∈Rp×q

h1(x)

x∗
2 = argmin

x∈Rp×q

h2(x)

M := {x ∈ Rp×q : h1(x)−ε < h1(x
∗
1)+ε}, M ⊂ Rp×q

Then we have the following:

(1) x∗
1 ∈ M

(2) x∗
2 ∈ M

Proof. The first part of the lemma follows trivially from

(h1(x
∗
1)− ε) < (h1(x

∗
1) + ε)

We now proceed to prove x∗
2 ∈ M. From equation (11),

h2(x) < (h1(x) + ε)

So,

h2(x
∗
1) < (h1(x

∗
1) + ε) (12)

Consider x̃ ∈ Rp×q such that
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h2(x̃) ≥ (h1(x
∗
1) + ε)

From equation (12),

h2(x̃) > h2(x
∗
1)

=⇒ x̃ is not x∗
2

=⇒ x∗
2 must satisfy the condition

h2(x
∗
2) < (h1(x

∗
1) + ε) (13)

From equation (11) we have,

(h1(x)− ε) < h2(x), ∀x ∈ Rp×q (14)

Therefore, from equation (13) and equation (14), we have:

x∗
2 ∈ M

Application of Lemma 1 to the concave functions gitp :

Rp×q → R and gi+1
tp : Rp×q → R, reveals that Zi – the

optimal dual variable solution of the problem P i – and
Zi+1 belong to the same set. Thus, it immediately follows
that Zi is a suitable choice of initial condition for the
maximization of the function gi+1

tp .

Furthermore, we know that ADMM proceeds by maximiz-
ing the dual function, and along with it, finding the mini-
mizers of the primal variables in each iteration. Therefore,
from application of Lemma 1, since P i+1 is convex, xi and
Xi can be used as the initial condition for solving P i+1.
Thus, with xi, Xi and Zi as the initial condition for solving
the problem P i+1, we start in the same set which contains
Zi+1.

With the choice of initializing the optimization variables in
ADMM using a so-called ‘warm-start’, it is thus possible
to improve the rate of convergence of a recursive online
identification strategy. However, since there is no theory to
comment on the convergence of ADMM using zero initial
condition, it should be noted that the convergence with the
developed choice of initial condition cannot be guaranteed
to be better than the default zero initial condition. In the
next section, we consider the modification of the stopping
criteria in ADMM to further improve the convergence
characteristics.

3.2 Modification of the stopping criteria

It was reviewed in Section 2 that convergence of ADMM
is considered to be achieved when the stopping criteria,
which depends on primal and dual residual norms and
tolerances, given in (7) are reached. It is known that
the ADMM algorithm is characterized by a very slow
convergence rate for very high accuracy (Boyd, S et al.
(2011)). This can be seen in Fig. 1 which shows the
behavior of primal and dual residual norms and tolerances
as the iterations of ADMM progress for an identification.
The values in this demonstrative example correspond
to identification (using N2SID as in Verhaegen, M and
Hansson, A (2015)) of a CD player arm system, whose
identification dataset is available at Moor, B (2012).

If the application does not require extremely high accuracy
then the ADMM algorithm can be terminated early i.e.,
before the stopping criteria as in equation (7) has been
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Figure 1. Convergence analysis of ADMM through behav-
ior of residual norms and tolerances with progressing
iterations

reached. Exploiting the fact that most of the convergence
in ADMM occurs in the first few iterations, the stopping
criteria is restated in terms of the derivatives of residual
norms. Accordingly, ADMM iterations are terminated
when the derivatives of the primal and dual residual norms
are lesser than a specified tolerance. The modified stopping
criteria is thus given by:

drp
dka

≤ tolp,
drd
dka

≤ tolq (15)

where ka is the iteration number in ADMM. The idea
behind this modification is to improve the speed while
maintaining the accuracy of identification.

In the next section, we will study the identification be-
havior using two examples to evaluate the effectiveness of
the formulated stopping criteria and present the results of
providing a warm start for identification.

4. RESULTS

In this section, the recursive identification performed using
the theory that is outlined in Sections 2 and 3 is tested in
simulations on Linear Time-Varying (LTV) systems. In the
first example, the emphasis lies on analyzing the practical
implications of the theory presented in Section 3. This
is carried out by comparing the results of identification
for warm-start and for the modified stopping criteria with
those obtained from N2SID as reviewed in Section 2. The
two modifications are then combined and the resulting
method (which we call Recursive N2SID) is compared
with the other cases. In the second example, RN2SID is
compared with a Recursive PBSID method developed in
Houtzager, I et al. (2009).

Outline of RN2SID: Identification is recursively performed
at every discrete timestep, i.e., with every new measure-
ment sample, over T timesteps. Each identification is
initialized with the results of the previous identification
(as presented in Section 3.1) and terminated using the
revised stopping criteria given in Section 3.2. Further,
each identification is performed using pastN measurement

Proceedings of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

9901



9494	 B. Telsang  et al. / IFAC PapersOnLine 50-1 (2017) 9490–9495

500 600 700 800 900 1000 1100 1200 1300 1400 1500

Samples

30

40

50

60

70

80

90

100

110

120

130

It
e

ra
ti
o

n
s
 o

f 
A

D
M

M

N2SID

N2SID with subspace tracking

Figure 2. Number of iterations required for convergence

values. In order to maintain constant size of the problem,
for every latest measurement value that is appended the
oldest value is discarded. Hence the identification dataset
with fixed size N is sliding over T samples.

4.1 Example 1

To evaluate the theory presented so far, we perform
system identification using benchmark dataset provided
by Lataire, J et al. (2015). The system described therein
is varying, whose dynamics are influenced by an external
input referred to as the scheduling signal “p”. The system
has another input u and an output y. The scheduling signal
is considered to be unknown and is not included in the
identification dataset.

The LTV system is recursively identified over T =
1000 discrete timesteps, with N = 500, for the dataset
MS_Ramp_N15640_RMS140_P2P700 which is obtained by a
ramp variation of the scheduling signal p. Since p is con-
stantly changing over time, the system dynamics vary with
time. The number of iterations required for convergence
of ADMM in each identification cycle is shown for both
N2SID and for N2SID with warm-start in Fig. 2. Since
with the presented choice of initial condition we start in
the same set as the optima, early convergence is expected.
Accordingly, the number of iterations required for conver-
gence is less than that required with the traditional N2SID
algorithm with cold-start.

The results of each modification are summarized in Table 1
along with the results for RN2SID that is outlined early
in this Section. The values tabulated correspond to one
identification and they are obtained by averaging the
results over T samples. It is worth noting that the time
taken for one cycle has reduced by almost 70% from N2SID
to RN2SID, while maintaining roughly the same accuracy.

Table 1. Summary of recursive identification

VAF(%) Computation Iterations
time (s)

N2SID 90.45 1.59 81
With warm-start 90.39 0.89 45

Modified convergence 90.24 0.82 40
RN2SID 90.23 0.48 24
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Figure 3. Trajectories of true and estimated poles in slowly
changing environment for λ = 100

4.2 Example 2

The tracking speed of RN2SID is analyzed by performing
recursive identification on the state-space system from
Mercére, G et al. (2008). The loop is closed with a
state-feedback control law and the resulting closed-loop
measurement values is used for identification. The system
is the same as considered in Houtzager, I et al. (2009),
the method of which RN2SID will be compared with. Two
cases are considered to evaluate the tracking performance:
a slowly changing environment, and an abrupt-change
case. The analysis is carried out for different values of the
tuning parameters N and λ.

In the case of slowly changing environment RN2SID is an-
alyzed by fixing λ to 100 and varyingN , as shown in Fig. 3.
The forgetting factor employed in RPBSID is 0.98 which
roughly corresponds to the length of identification dataset
being 50. For increase in the length of identification dataset
(N), the variance of the estimates decreases but the bias
increases. Comparison with RPBSID shows that the bias
of the estimates obtained using RN2SID is lesser than that
of RPBSID. Moreover, the convergence of RPBSID takes
more samples than that required by RN2SID. However,
the computational time taken by RPBSID is considerably
lesser than RN2SID. On the other hand, we see that in
RN2SID there is a faster detection of system dynamics,
even with the reduced N = 30, but at the price of higher
variance. However, the behavior of RPBSID corresponding
toN = 30 (not plotted) is almost the same as withN = 50.

Analysis of RN2SID is extended to the system in an
abruptly-varying environment by varying the regulariza-
tion parameter λ for N = 50 shown in Fig. 4. Since nuclear
norm minimization is a form of regularization, it induces
a bias in the estimates. With decrease in weighting on the
nuclear norm term (corresponding to increase in λ), there
is a distinct reduction in the bias of the estimates. The
observed behavior intuitively reflects the term λ/N in (3).

5. CONCLUSION

A novel, recursive form of N2SID was developed in order
to facilitate the extension of this algorithm to online
adaptive control. The convergence speed of the algorithm
was enhanced by enforcing a warm-start in ADMM and
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values. In order to maintain constant size of the problem,
for every latest measurement value that is appended the
oldest value is discarded. Hence the identification dataset
with fixed size N is sliding over T samples.

4.1 Example 1

To evaluate the theory presented so far, we perform
system identification using benchmark dataset provided
by Lataire, J et al. (2015). The system described therein
is varying, whose dynamics are influenced by an external
input referred to as the scheduling signal “p”. The system
has another input u and an output y. The scheduling signal
is considered to be unknown and is not included in the
identification dataset.

The LTV system is recursively identified over T =
1000 discrete timesteps, with N = 500, for the dataset
MS_Ramp_N15640_RMS140_P2P700 which is obtained by a
ramp variation of the scheduling signal p. Since p is con-
stantly changing over time, the system dynamics vary with
time. The number of iterations required for convergence
of ADMM in each identification cycle is shown for both
N2SID and for N2SID with warm-start in Fig. 2. Since
with the presented choice of initial condition we start in
the same set as the optima, early convergence is expected.
Accordingly, the number of iterations required for conver-
gence is less than that required with the traditional N2SID
algorithm with cold-start.

The results of each modification are summarized in Table 1
along with the results for RN2SID that is outlined early
in this Section. The values tabulated correspond to one
identification and they are obtained by averaging the
results over T samples. It is worth noting that the time
taken for one cycle has reduced by almost 70% from N2SID
to RN2SID, while maintaining roughly the same accuracy.

Table 1. Summary of recursive identification

VAF(%) Computation Iterations
time (s)

N2SID 90.45 1.59 81
With warm-start 90.39 0.89 45

Modified convergence 90.24 0.82 40
RN2SID 90.23 0.48 24
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Figure 3. Trajectories of true and estimated poles in slowly
changing environment for λ = 100

4.2 Example 2

The tracking speed of RN2SID is analyzed by performing
recursive identification on the state-space system from
Mercére, G et al. (2008). The loop is closed with a
state-feedback control law and the resulting closed-loop
measurement values is used for identification. The system
is the same as considered in Houtzager, I et al. (2009),
the method of which RN2SID will be compared with. Two
cases are considered to evaluate the tracking performance:
a slowly changing environment, and an abrupt-change
case. The analysis is carried out for different values of the
tuning parameters N and λ.

In the case of slowly changing environment RN2SID is an-
alyzed by fixing λ to 100 and varyingN , as shown in Fig. 3.
The forgetting factor employed in RPBSID is 0.98 which
roughly corresponds to the length of identification dataset
being 50. For increase in the length of identification dataset
(N), the variance of the estimates decreases but the bias
increases. Comparison with RPBSID shows that the bias
of the estimates obtained using RN2SID is lesser than that
of RPBSID. Moreover, the convergence of RPBSID takes
more samples than that required by RN2SID. However,
the computational time taken by RPBSID is considerably
lesser than RN2SID. On the other hand, we see that in
RN2SID there is a faster detection of system dynamics,
even with the reduced N = 30, but at the price of higher
variance. However, the behavior of RPBSID corresponding
toN = 30 (not plotted) is almost the same as withN = 50.

Analysis of RN2SID is extended to the system in an
abruptly-varying environment by varying the regulariza-
tion parameter λ for N = 50 shown in Fig. 4. Since nuclear
norm minimization is a form of regularization, it induces
a bias in the estimates. With decrease in weighting on the
nuclear norm term (corresponding to increase in λ), there
is a distinct reduction in the bias of the estimates. The
observed behavior intuitively reflects the term λ/N in (3).

5. CONCLUSION

A novel, recursive form of N2SID was developed in order
to facilitate the extension of this algorithm to online
adaptive control. The convergence speed of the algorithm
was enhanced by enforcing a warm-start in ADMM and
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Figure 4. Trajectories of true and estimated poles in an
abrupt time-varying environment for N = 50

modifying the convergence conditions. From the examples
presented, the computational time decreased by up to 70%
with negligible loss in accuracy. The tracking speed of
the developed methodology was comparable to that of
the state-of-the-art RPBSID in simulation. Future work
will focus on exploiting the shift structure in the Hankel
matrices Us and Ys to further reduce the computational
complexity.
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