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Abstract—The introduction of silicon carbide(SiC) has reduced
the superiority of traditional silicon-based power module pack-
aging strategies. As packaging strategies become increasingly
complex, classical thermal modelling tools often prove inadequate
in balancing efficiency with accuracy. Integrating these tools
with machine learning (ML) can significantly enhance their
application potential. This discussion commences by address-
ing the pressing issues in thermal modelling of SiC modules,
specifically the challenges associated with multiple heat sources
and heat spreading. During the design stage, ML models can
swiftly simulate the thermal response of various packaging
strategies, aiding engineers in eliminating ineffective options. In
the monitoring phase, the employment of a digital twin enables
a deeper investigation into degradation phenomena. This article
reviews the current status and explores the potential applications
of ML in thermal modelling of SiC power modules.

Index Terms—ML, Thermal modelling, SiC, power module

I. INTRODUCTION

With the substantial growth of the electric vehicle (EV)
market [1], power devices for EVs have entered a phase of
rapid development, driven by significant increases in energy
density. This surge has facilitated the development and renewal
of related processes and technologies [2] [3]. The SiC (SiC)
metal-oxide-semiconductor field-effect transistor (MOSFET),
an alternative to the silicon insulated gate bipolar transistor
(IGBT), offers higher switching frequencies, accommodating
higher energy densities and operating temperatures [4] [5].
However, challenges with SiC MOSFET arise from the parallel
connection of multiple chips [6], where cost control and
the need for increased output power exacerbate issues such
as heightened parasitic inductance [7]. Fig.1 illustrates the
development of SiC power semiconductors from ROHM and
Wolfspeed’s commercially available devices, depicting their
evolution from the initial rapid increase in device power (first
two data sets) to the current phase of maintaining low losses
while preserving output power (last two data sets). Under
high-frequency operations, a multi-chip design may lead to

power and thermal imbalances across the chips, ultimately
compromising reliability [8] [9]. To address these challenges,

.

Fig. 1. Generation iteration of discrete SiC power components: The first two
generations represent a rapid increase in power during the early stages; the
last two generations reduce the dissipated power while maintaining the output
power [10] [11] [12] [13] [14] [15].

numerous complex packaging strategies have been developed
[16] [17] [18]. Nonetheless, existing thermal modelling meth-
ods struggle to accurately capture the thermal behaviour of
these packages while maintaining efficiency. Although finite
element methods (FEM) can reproduce the physical fields
inside these packages, they require significant computational
time and extensive post-processing of results. For instance,
after extracting the transient thermal response curve from FEM
analyses, it is necessary to integrate it into a Foster RC thermal
network and perform a series of mathematical transformations
and deconvolutions to ascertain the structure functions (Rth,
Cth distributions) [19]. Further challenges include complex
thermal coupling effects, anisotropic thermal conductivity of
materials (thermal spreading), and issues related to multiple
thermal paths (double-sided cooling).
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Concurrent with the rise of the EV industry is the ad-
vancement of AI technology [20], driven by the demand for
autonomous driving and the growth in GPU computational
power. As considerations expanded to industrial applications,
the concept of utilising AI to address power module challenges
naturally emerged.

The aim of this paper is to explore the potential of applying
AI in the thermal modelling of SiC power devices. Firstly, it
describes two challenges in the thermal modelling process: the
presence of multiple heat sources and the effects of thermal
spreading. Subsequently, it outlines two traditional thermal
modelling techniques alongside innovative ML applications for
device design. Finally, the article summarises the application
of AI in real-time monitoring.

II. CHALLENGES

A. Multi-heat sources

As SiC technology matures and finds broader application,
traditional silicon-based power modules are increasingly being
replaced. Unlike silicon, the material properties of SiC and its
immature fabrication processes contribute to lower yields [21]
[22]. To manage costs, manufacturers utilise smaller SiC chips,
which individually possess a lower current-carrying capacity
than their silicon counterparts [23]. With the escalating power
demands of EVs, these smaller chips are often connected in
parallel, forming Multi-chip Power Modules (MCPM) [24]
[25] [26] [27]. The layout of these chips is crucial, as it
influences the performance parameters and reliability of the
module. In [28], a circular symmetric layout is employed
to optimise current distribution among the chips and reduce
voltage spikes. Although this multi-chip layout allows for
more design flexibility and a smaller module footprint, it also
results in strong thermal coupling effects among multiple heat
sources, leading to thermal reliability issues due to uneven
temperature distribution [29]. Consequently, layout optimi-
sation becomes essential in managing multiple heat sources
within MCPM. In [30], a good design of the electro-thermal
model led to an 18.1% reduction in the module’s maximum
temperature. Furthermore, adhering to the design principle
of aligning the paralleling chip perpendicular to the current
direction, a module designed to avoid current imbalance under
transient input conditions was developed in [8].

However, despite the effectiveness of these optimisation
methods in reducing temperature and current imbalances, these
configurations still necessitate significant modelling resources
during the preliminary design phase to validate diverse ideas.
Integrating ML with thermal modelling techniques can signif-
icantly reduce the resources required.

B. Thermal Spreading

In addition to the heat sources, the heat path also requires
careful design. Shorter thermal paths undoubtedly result in
lower steady thermal resistance; however, such a design can
affect the switching performance of the device [31] and the
transient thermal performance. Accurate heat path modelling is
necessary to identify the optimal heat path design that achieves

a balance between electrical and thermal performance [32]
[33]. However, thermoelectric coupling is beyond the scope
of this review paper; therefore, this subsection focuses on
heat-spreading effects in the heat path of a power module as
illustrated in Fig.2.

Fig. 2. Comparison of Assumed Constant Spreading Angle vs. Real Heat
Spreading Path in Multilayer & Multichip Power Modules.

Initially, thermal engineers used a fixed angle to account
for the heat spreading effects; in [34], a fixed spreading
angle model was extended to the dynamic field, allowing
the model to predict the transient thermal response. The heat
spreading angle Φ is defined as the angle between the heat
path and the vertical axis (Fig.2) and is often assumed to
be 45 degrees. However, employing a fixed thermal diffusion
angle is clearly not accurate [35], and the origin of the 45-
degree assumption is not well-documented, making it more of
a widely accepted convention among thermal engineers rather
than a scientifically established fact.

In [36], the error of a fixed 45-degree diffusion angle is
evaluated. The results show that the mismatch of the 45-
degree assumption is within acceptable limits for single-layer
structures (20%); however, in multilayer structures and in
power modules with multiple chips (multiple heat sources), the
assumption fails to accurately predict the thermal behaviour
of the structure. Therefore, there is a need to apply more
accurate spreading angle models when modelling modern
MCPMs. Furthermore, in [37], a concept of an equivalent
heat spreading angle derived from local heat flux density is
presented. Based on this concept, the entire heat path can
be approximated by a truncated cone heat spreading model.
Simultaneously, this model can be extrapolated to a certain
extent to different structures, thus demonstrating potential for
practical application.

In addition to the direct use of spreading angles to model
heat paths, the thermal spreading effect can similarly be
approximated as a type of thermal resistance. In [38], an
analytical solution for this thermal resistance is provided in
the field of power electronics. Subsequently, in combination
with the classical thermal network approach, heat spreading
resistance was included in the RC network model of the
power module, corrected for the thermal diffusion angle ac-
cording to the properties of each material layer [39]. Heat
spreading resistance is also significant in LED applications.
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The resistance calculated for the LED substrate is one to
two orders of magnitude larger than that resulting from a
one-dimensional through-plane calculation [40]. Employing
materials with higher lateral thermal conductivity in LEDs
is one strategy to optimise this issue [41], and it is evident
that this approach also applies to the MCPM discussed in this
paper.

III. MODELLING & DESIGN TECHNIQUES

This section outlines several techniques commonly used in
the thermal design. These include thermal networks and FEM.
The subsequent paragraph explores current applications of ML
in thermal design of power modules.

A. Classic Technics

1) Thermal Network: RC thermal networks, including the
Foster and Cauer network models (Fig.3), are a widely used
modelling technique in industry. The Foster model essentially
fits the thermal impedance (Zth) profile directly using RC
parameters, which, in this model, lack physical significance.
Conversely, a Cauer model can convey the physical meaning
of the internal layers, achievable through a mathematical trans-
formation from an established Foster model. Currently, with
the increasing complexity of packaging strategies, traditional
one-dimensional thermal networks can no longer satisfy the
demands of technology, necessitating an update to the model.

(a)

(b)

Fig. 3. a).4 stage Foster network b).4 stage Cauer network.

In [42], a 3D lumped thermal impedance model is con-
structed and utilised to study the effect of the distance between
the IGBT chip and the diode. The findings indicate that
the model can accurately predict the thermal coupling effect
at various distances. As the layout becomes more compact,
the thermal coupling impedance between the chips increases,
suggesting a stronger thermal coupling effect. Subsequently,
this model was applied to the long-term wind power mission
profile [43] and results of the network model correlate well
with those obtained from FEM.

Similarly, in [44], the improved thermally coupled 3D ther-
mal network is segmented into constant and time-varying, non-
constant parts by examining the effects of solder layer degrada-
tion. Furthermore, in [45], the structure function was employed
to verify the influence of thermal coupling effects and solder
layer degradation on the transient thermal response of the

structure. As solder layer degradation progresses, heat increas-
ingly concentrates in the central area, causing the temperature
distribution among multiple chips to become non-uniform,
and resulting in more extreme current distributions within the
module due to variations in temperature-dependent electrical
parameters. Utilising thermal modelling in conjunction with
real-time data to precisely determine device degradation and
adjust power distribution across multiple chips in a power
module presents a potential avenue for further research.

In [46], an equivalent 3D thermal network with reduced
scale is constructed, the model’s efficiency enhanced by di-
rectly fitting the equivalent thermal path from the simula-
tion results for multiple simultaneous heat sources. In [47],
the bidirectional thermal paths of two different LEDs are
characterised by a straightforward thermal network model,
considering the top thermal paths. The findings underscore the
necessity of accounting for the bidirectional thermal path for
accuracy. A 3D thermal network model of a modular multilevel
converter system is developed in [48], which incorporates
multiple thermal paths of the sub-module and the ambient
temperature difference caused by the device in this thermal
network.

The initial step in ML involves extracting feature parame-
ters; the RC network, validated by engineering applications as
a parametric thermal model, meets this requirement effectively.
Applying ML to RC thermal networks may significantly
enhance the capabilities of both methods.

2) FEM: FEM is currently one of the most prevalent
modelling methods, involving the following steps: 1) Create
a 3D model of the object; 2) Discretise the 3D model; 3)
Determine the boundary and initial conditions, along with
material properties, according to the desired physical field;
4) Compute. Given its numerous advantages and established
maturity, further details on this method will not be shown here.

Multi-physics FEM modelling is a key focus in the devel-
opment of SiC power modules. Prominent examples include
fluid-solid coupling modelling for two-phase flow heat sinks
and immersion heat sinks [49] [50], as well as coupled electro-
thermal simulations [51], among others.

B. ML Application

Research combining ML with power modules has primarily
focused on control and monitoring, with only a minor portion
dedicated to the thermal modelling and design of the modules
[52]. The aim of applying ML in thermal modelling is to
predict the performance, which can be determined through di-
rect fitting, temperature field prediction, and thermal network.
Thus, the literature reviewed in this subsection is broadly
categorised into three directions: 1) Directly learning from the
temperature field distribution. 2) Learning and fitting the non-
linearity between the design parameters of the module and
critical parameters. 3) Combining ML with thermal network
model, which are adept at predicting transient thermal conse-
quential effects due to the inherent properties of the thermal
networks.
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The training efficiency of a neural network depends on its
structure and the specific application. The size of the training
set can vary significantly according to the requirements(see
Fig. 4); however, generally, the efficiency of a well-designed
algorithm will consistently surpass that of a more classical
structure. For instance, ACO-BPNN [53] combines the Ant
colony optimisation method with neural networks to achieve
the desired accuracy with fewer than 200 training datasets.

Fig. 4. Amount of training datasets for different ML structures: Convolutional
neural network(CNN), Physics-informed neural network(PINN), Artificial
Neural Network(ANN), Ant Colony Optimization-Back Propagation Neural
Network(ACO-BPNN), Support vector machine(SVM) in different researches.
The size of the training set can vary significantly according to specific
applications.

As FEM is time-consuming, using ML to predict FEM
results has become more common. Some researchers have
attempted to adapt this type of ML from physical fields
to temperature field imaging by constructing a deep CNN
model that learns the thermal coupling effects of multi-chip
systems in two dimensions [54] [55], and accelerating the
model using a Bayesian approach. Overall, the accuracy of the
predictions was excellent, and the extrapolation performance
was satisfactory; however, such 2D application scenarios are
oversimplified, and this approach does not include the applica-
tions where the thermal channels are predominantly oriented
in the longitudinal direction.

A more reasonable approach is to incorporate physical
constraints into the ML methods, specifically using the well-
known PINN. Embedding the governing physics equations into
the loss function not only reduces the amount of training
data required but also enhances the model’s extrapolation
performance to some extent. For example, in [56], researchers
utilised a PINN model to predict the 3D temperature field
during direct energy deposition of metals. The model required
only 20% of the datasets to achieve satisfactory accuracy
compared to a fully data-driven neural network. In [57], the
steady-state thermal conductivity of multilayer structures was
investigated. Each layer of material was represented by a
separate neural network model, which were assembled into
a large neural network that fed the results into a physics-
informed loss function for back propagation. This approach
effectively addresses the challenging thin-layer problem in

FEM, where tiny finite cells often cause non-convergence
issues. Moreover, this method exhibits excellent extrapolation,
particularly in simple multilayer structures such as power
modules.

In real cases, data often originate from several sensors and
are subject to ambiguous boundary conditions. Owing to these
unspecified boundary conditions, FEM frequently struggles to
effectively solve this type of inverse problem, whereas PINN is
more adept at addressing such ’guessing’ challenges. In [58],
the inverse temperature field reconstruction of a turbine blade
is performed using the PINN method, enabling the model to
reconstruct the thermal distribution of the entire blade based
on input temperature data from discrete points. However, it
has been observed in other studies that ML methods face
challenges in accurately predicting results in areas with large
temperature gradients. In [59], the researcher addresses regions
with significant gradients near the heat sink individually,
employing the UNet method.

On the other hand, real measurements often include un-
avoidable noise, necessitating a certain degree of robustness
in the PINN model when handling noisy data. The model
presented in [60] demonstrates good accuracy even with the
addition of noise and is applicable to the inverse construction
problem of transient thermal conductivity for two-dimensional
multiple heat sources. In a similar case, the output of the PINN
model in [61] is significantly affected by noise, prompting the
proposal of a method known as CMCN-PSO to mitigate the
noise impact, suggesting that the model’s structure influences
its noise tolerance.

To summarise, PINN can achieve the same level of accuracy
as traditional neural networks using less data if the physics
equations are correctly embedded into the loss function, and
the inclusion of physics also improves the extrapolation per-
formance of PINN. However, constructing PINN is frustrating
when the physics in the problems can not be clear defined. The
approach of directly mapping the relationship between input
and output reliability parameters will be discussed in the next
paragraph.

Utilising the powerful nonlinear fitting capabilities of neural
networks to directly learn the nonlinear relationship between
input design parameters and output performance parameters
appears to be a reasonable alternative.

In [62], an artificial neural network trained with a dataset
of cooling curves can predict the transient thermal response
of a multi-chip power module (thermally coupled), which
serves as a surrogate model to a thermal network. If the
time required to train the model is considered, the neural
network approach is more costly compared to the thermal
matrix method. However, the number of parameters in the
thermal matrix grows with the square of the number of heat
sources, and an additional experiment is required for each new
heat source which consume a lot of time. It is concluded
that neural networks may offer advantages in configurations
with a more chips. Similar research was conducted in [63],
where several artificial neural networks with varying structures
were employed to predict the transient thermal response of
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.

Fig. 5. ACO-BPNN configuration [53].

the power module. Likewise, in [64], [65], and [66], neural
networks are utilised to predict the thermal response of the
module; [64] extends the transient prediction based on [66],
and [65] constructs an optimisation model using two artificial
neural networks, where the first predicts the temperatures of
the transient junction with various design parameters, and the
second forecasts the corresponding life consumption.

In [67] and [53], an ACO-BPNN optimisation algorithm
(Fig.5) is used to optimise the design of the redistribution layer
and the optimal chip placement in a panel-level fan-out SiC
power module. A similar algorithm in [68] is used to optimise
the size of the DBCs and the chip spacing in the power mod-
ule. This algorithm for optimising the design can be seen as an
application of the prediction algorithm discussed previously.
As the model is extended, more parameters can be taken into
account, such as cost [69], performance requirements, and so
forth. However, solely considering the mapping relationship
between parameters does not fundamentally reflect the insight
into the physical relationship between parameters, which can
lead to a lack of extrapolation performance of such an ap-
proach.

Applying ML to classical thermal network methods has
received scant attention from researchers, despite thermal
networks being more amenable to learning by neural networks
as parametric physical models and having demonstrated con-
siderable accuracy in industrial applications. In the field of
monitoring, the thermal network evolves into a self-tuning
thermal model when combined with a ML approach [70],
which necessitates minimal computational resources to ac-
curately predict the junction temperature and thermal corre-
spondence of a power module. Similarly, ML is employed in
[71] to fit the nonlinear thermal resistance and heat capacity
at the heat convection interface in a power module, thereby
enhancing the accuracy of the thermal network. Although
current applications combining thermal networks and ML
methods are limited, this approach will gain more traction as
ML is used more in industry.

IV. REAL TIME MODEL - DIGITAL TWIN

Recently, due to the rapid advancement in technology and
the increasing complexity of systems, monitoring variations
in a parameter of interest within these systems, such as the
junction temperature within a power module during testing or
real operational conditions, has become challenging. Addition-
ally, in many cases, it requires considerable time and financial

resources to conduct tests to understand the physics of failure
in complex devices. To surmount this limitation in the reli-
ability analysis of microelectronics, digital twin technology
proves invaluable. The concept of the digital twin originated
in the 1960s when NASA utilised a replica of Apollo 13
on Earth to explore different rescue scenarios. Since then, as
the application of this technology has broadened to various
fields, multiple definitions of digital twin have emerged in the
literature. Nonetheless, these definitions concur that a digital
twin is an integrated multiphysics, multiscale, and probabilistic
simulation that replicates the life of a physical system [72].
The definition of a digital twin model also hinges on the level
of detail and the accuracy of the simulation. At lower levels of
accuracy, a digital twin is characterised as a three-dimensional
model, comprising physical elements, simulations or virtual
twins, and the connections between them [73]. Conversely, at
a higher level of accuracy, a five-dimensional digital twin can
optimize the simulation’s accuracy [74].

This concept can also be found in research related to the
context of this paper. For instance, in [75], an accurate FEM
model of the MOSFET and the cooling system of a boost
converter has been employed to extract the 2D Cauer network
model. This model, considered a digital twin, is utilised to
measure the temperature and heat flux across different layers.
Similarly, in [76], an accurate 3D model, referred to as a
digital twin, is employed for design optimization, while in
[77], the parameters of the thermal model of the MOSFET are
estimated by using measured values. At the five-dimensional
level, to monitor a system over time, the uncertainty in the
estimated parameter of interest can be significantly influenced
by measurement uncertainty and the model uncertainty. In an
accurate digital twin model, these factors should be taken into
account. In this regard, in [73], a digital twin model is defined
as a 2D thermal network of MOSFET within a dual three-
phase inverter to estimate their thermal profile. For each pair
of MOSFET, a temperature sensor is installed on the copper
layer, and the thermal model of the entire system has been
established (see Fig.6). To mitigate model and measurement
uncertainty, an Extended Kalman Filter has been employed to
update the model parameters using noisy data from sensors.
The results indicate that the model updates quickly and its
predicted values rapidly converge to the true value.

Moreover, in complex systems for modeling the physical
element, ML techniques can be employed as the digital twin of
the real device. For instance, in [78], a deep neural network has
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(a)

(b)

Fig. 6. (a)Power module structure (b) A branch in the thermal model of the
inverter, including a DBC and two MOSFET blocks [73].

been trained using data generated from FEM to estimate the
junction temperature of a power switch. In [79], experimental
data has been used as a substitute for simulation data to train
an AI model to estimate junction temperature, thus overcoming
the problem of model uncertainty. Although the results of these
methods demonstrate a high level of accuracy in estimating the
junction temperature, the absence of any optimizer in these
models may lead to a loss of accuracy due to variations in the
behavior of the device (e.g., material aging and degradation).
This addressed in [80], in this research, initially, a numerical
model for power loss estimation of a half-bridge inverter has
been used, which calculates power loss using average thermal
junction, switching frequency, DC bus voltage, and current.
Then, the calculated power loss, alongside coolant temperature
and coolant flow rate, are used as inputs for a high-precision
FEM to estimate the internal negative temperature coefficient
(NTC) and junction temperature of each MOSFET. To mitigate
uncertainty in both the numerical and FEM models, a deep
neural network has been trained in parallel to each model (see
Fig.7). Then, the discrepancies between the calculated NTC
and measured NTC have used to update the estimated junction
temperatures. While the application of AI-driven digital twin

Fig. 7. Architecture of junction temperature estimation method via neural
network-based digital twin. [80]

technology is increasingly prevalent, there remains a need

for further research in this area. For instance, for modeling
the twin, real-time training of nonlinear system identification
models can be utilized to estimate the dynamic behavior of
the power modules. Additionally, more sophisticated methods
such as Reinforcement Learning can be employed to mini-
mize the number of iterations in the optimization procedure.
Moreover, the concept of a digital twin can extend beyond
model updating and parameter estimation. The application of
statistical methods, like the Hierarchical Bayesian approach,
can aid not only in estimating system parameters but also
in assessing the uncertainty of these parameters and their
hyperparameters, and in linking them to the uncertainty of
the measured values.

V. CONCLUSION

The integration of ML with thermal modeling of SiC power
modules marks a significant advancement in power electronics.
This review examines how ML can enhance the efficiency and
accuracy of thermal models for novel power modules, focusing
on the challenges posed by multi-heat sources and complex
thermal paths in modern SiC modules.

Traditional thermal modeling methods, like FEM, face
limitations due to high computational demands and extensive
post-processing. This review advocates for ML techniques
to overcome these limitations, providing faster and more
efficient thermal behavior modeling under various operational
conditions.

The concept of a digital twin is introduced as a future
vision that employs ML to address complex problems by cre-
ating a virtual replica of physical systems, enabling real-time
diagnostics and prognostics. This approach improves system
behavior prediction under different scenarios and aids in the
development and testing of new designs without traditional
testing constraints.

In summary, the article highlights the necessity of ML tech-
niques in modern thermal modeling for SiC power modules.
The increasing complexity and reliability demands of these
modules necessitate rapid thermal modeling methods, which
ML can facilitate.
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[70] K. Rönnberg, P. Kakosimos, Z. Kolondjovski, and E. Nordlund, “Ma-
chine learning-based adjustments of thermal networks,” in 11th PEMD,
vol. 2022, 2022, pp. 424–428.

[71] M. Schumann, S. Ebersberger, and K. Graichen, “Improved nonlinear
estimation in thermal networks using machine learning,” in 2023 IEEE
ICM, 2023, pp. 1–6.

[72] E. Glaessgen and D. Stargel, “The digital twin paradigm for future
nasa and us air force vehicles,” in 53rd AIAA/ASME/ASCE/AHS/ASC
structures, structural dynamics and materials conference 20th
AIAA/ASME/AHS adaptive structures conference 14th AIAA, 2012, p.
1818.

[73] M. Grieves, “Digital twin: manufacturing excellence through virtual
factory replication,” White paper, vol. 1, no. 2014, pp. 1–7, 2014.

[74] F. Tao, H. Zhang, A. Liu, and A. Y. Nee, “Digital twin in industry:
State-of-the-art,” IEEE Transactions on industrial informatics, vol. 15,
no. 4, pp. 2405–2415, 2018.

[75] L. Van Cappellen, M. Deckers, O. Alavi, M. Daenen, and J. Driesen,
“A real-time physics based digital twin for online mosfet condition
monitoring in pv converter applications,” in 2022 28th THERMINIC.
IEEE, 2022, pp. 1–4.

[76] M. Takahashi, T. S. Aunsborg, C. Uhrenfeldt, S. Munk-Nielsen, and
A. B. Jørgensen, “Digital design demonstration of 10kv sic-mosfet
power module to improve wire-bonding layout for power cycle capa-
bilities,” in 2022 IEEE IWIPP. IEEE, 2022, pp. 1–6.

[77] K. Sado, J. Peskar, S. Ionita, J. Hannum, A. Downey, and K. Booth,
“Real-time electro-thermal simulations for power electronic converters,”
in 2024 IEEE APEC. IEEE, 2024, pp. 2616–2623.

[78] S. K. Bhoi, M. A. Frikha, G. E. Martin, F. Hosseinabadi, S. Chakraborty,
M. El Baghdadi, and O. Hegazy, “A data-driven thermal digital twin of
a 3-phase inverter using hi-fidelity multi-physics modelling,” in 2023
25th EPE’23 ECCE Europe. IEEE, 2023, pp. 1–8.

[79] M.-K. Kim, Y.-D. Yoon, and S. W. Yoon, “Actual maximum junction
temperature estimation process of multichip sic mosfet power modules
with new calibration method and deep learning,” IEEE Journal of
Emerging and Selected Topics in Power Electronics, 2022.

[80] Z. Shuai, S. He, Y. Xue, Y. Zheng, J. Gai, Y. Li, G. Li, and J. Li,
“Junction temperature estimation of a sic mosfet module for 800v high-
voltage application in electric vehicles,” eTransportation, vol. 16, p.
100241, 2023.

Authorized licensed use limited to: TU Delft Library. Downloaded on November 11,2024 at 13:19:46 UTC from IEEE Xplore.  Restrictions apply. 


