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Abstract

Smart “predict, then optimize” (SPO) (Elmachtoub in Manag Sci 68(1): 9-26, 2022) is an
end-to-end learning strategy for models that predict parameters in optimization problems.
Unlike minimizing mean squared error (MSE) which cares about prediction accuracies,
SPO aims to ensure that predictions lead to the best possible decisions. The associated loss
function, termed SPO loss, measures the decision’s regret from optimal outcomes with
parameter realizations. Existing literature has demonstrated the viability of SPO, however,
these studies often focus on classical optimization problems and employ a limited set of
models for benchmarking. In this study, we tackled a decision-making task inspired by
real-world challenges across a wide range of neural network models. Unlike classical
problems, our task requires a unique approach: collaboratively training two models to
predict different variables. On top of that, one of the decision variables also affects the
feasibility of the decisions, further increasing the complexity. While our implementation
validates the benefits of SPO, we were surprised to find that models trained exclusively
on SPO loss do not consistently attain the minimum regret. Our further investigation into
hyperparameters illustrates that the well-tuned models learned very similar patterns from
the feature set, irrespective of whether MSE or SPO loss was used. In other words, the
change from MSE to SPO loss in training primarily affected the layer biases. Therefore,
to improve the learning efficacy with SPO loss, we propose prioritizing learning feature
patterns as the fundamental step. Possible strategies include using specialized neural net-
work layers to capture deeper patterns more effectively or simply warming up by training
with MSE. Specifically, a warming-up process is particularly advantageous for model(s)
where the outputs are closely tied to constraints, as their prediction accuracy significantly
impacts the decision feasibility. The insights are investigated empirically through two real-
world trading scenarios. By leveraging datasets with diverse properties, we demonstrate
the novelty and generalizability of our investigation.
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1 Introduction

When machine learning models are employed to assist with downstream tasks, the impact of
prediction errors can be asymmetric. In cases where the downstream task involves solving
an optimization problem, this scenario is commonly referred to as a predict-then-optimize
problem (Elmachtoub and Grigas 2022). To enhance overall performance, it is essential to
shift the focus of the learning process from prediction-oriented methods to decision-centric
approaches. This paradigm shift is known as decision-focused learning (DFL) (Mandi et al.
2023).

Regret is the core metric for evaluating decision-making performance. It describes the
disparity between the optimal outcome and the outcome from the actual decision made
with decision parameter estimations. To optimize the DFL process, (Elmachtoub and Gri-
gas, 2022) proposed training models directly on regret rather than on accuracy-based losses
like mean squared error (MSE). They named this method Smart “Predict, then Optimize”
(SPO). As such, the regret is also referred to as the SPO loss.

The SPO method has been widely used to tackle classical optimization problems (Donti
et al. 2017; Wilder et al. 2019) and in a few abstractions of real-world cases (Wang et al.
2020; Verma et al. 2022). However, current research leaves two significant gaps when it
comes to addressing a broader range of real-world challenges. First, most studies over-
simplify decision-making by assuming only one type of unknown parameter, which can
therefore be estimated with a single model or optimizer. Second, existing research in DFL
is often investigated with using only one machine learning model — typically a small neural
network (NN) with fixed hyperparameters, or even simple linear models (Kotary et al. 2021;
Yan et al. 2020; Tian et al. 2023; Mandi et al. 2022). This facilitates the explainability of the
models within the DFL task; nevertheless, with the vast variety and more complex archi-
tectures of neural network models available, it is still an open question about how different
architectures could enhance DFL performance.

To advance DFL research in realistic scenarios, we evaluated the performance of SPO
in training diverse neural networks for a type of financial optimization task. We focused
on an integrated system for both futures and real-time market trading, where products can
be sold immediately or traded as futures, with transactions agreed upon in advance. Many
real-world trading activities follow a pattern similar to this system, such as day-ahead bid-
ding and last-minute trading in the renewable energy market (Sen et al. 2006; Kirschen
and Strbac 2018), the procurement of fresh agricultural products (Schieffer and Vassalos
2015; Dileep et al. 2002; Hueth et al. 1999), and in financial markets where stocks, options,
and futures are traded concurrently (Brealey 2000; Clark et al. 2016; Brooks and Garrett
2002). In these scenarios where future production cannot be perfectly controlled, a pre-set
contract may result in waste from overproduction or penalties for under-delivery. Further,
improper market price predictions may reduce potential profits. As a consequence, the chal-
lenge requires proper forecasts of both the price and the yield, which also acts as a constraint
to the decision-making.

In short, our study investigates how different architectures and training strategies affect
the models’ abilities to predict and promote the downstream optimization task. Our study
adopts and tailors the SPO method to train multiple prediction models that estimate decision
variables (some of which act as soft constraints) respectively and collaboratively, aiming
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at minimizing the overall regret incurred by the resulting contracting decisions. The main
contributions of this work consequently are:

e We introduced a novel and realistic optimization task for product trading, of which the
decision is incentivized by prices and the feasibility is bounded by yield.

o When tackling this task, we evaluated the impact of training with smart predict-then-
optimize (SPO), and illustrated that exclusive use of SPO loss did not improve regret
consistently.

e With two real-world scenarios, we analyzed how neural networks’ learning capacity
fits with SPO, discovering that simpler models show more significant discrepancies
of training and testing on regret, while too complex models tend to get stuck in local
optima.

e The results validate that layer weights of models trained with MSE and SPO loss are
similar, suggesting that training with MSE as a warm-up can enhance both effectiveness
and efficiency, especially when output impacts the feasible region.

2 Related work
2.1 Decision-focused learning

Apart from prediction-focused learning (PFL) that maximizes the accuracy of predictions,
decision-focused learning (DFL) optimizes the downstream impact of decisions based on
those predictions (Mandi et al. 2023). The smart predict-then-optimize (SPO), one of the lat-
est DFL frameworks, introduced the decision regret as the SPO loss to train DFL models. In
a linear problem that optimizes w to minimize ¢ T w, the SPO loss is written as (Elmachtoub
and Grigas 2022):

Lspo(c, &) := max(c'w) — ¢! argmax , (¢Tw) (1)
w

, where ¢ represents the decision parameter that describes a linear optimization problem in
a known feasible region and w is the decision variable optimized according to ¢ (or the pre-
dicted value ¢). Training models with SPO loss have proven to be highly effective across a
wide range of optimization problems (Wang et al. 2020; Mandi et al. 2020; van Staden et al.
2022; Chang et al. 2023). However, researchers have identified a trade-off between predic-
tion accuracy and SPO loss during training. Thus, some suggest that accuracy may serve as
a regularizer in DFL (Mandi et al. 2023; Tang and Khalil 2022).

Among DFL-related studies, most work has focused on a single model or a lone optimizer
to demonstrate the SPO method. However, this approach falls short of realistic scenario
modeling, where multiple decision variables often need to be predicted — each potentially
having varied impacts on the optimal solution. For instance, the standard setting of SPO
uses a known feasible region (Elmachtoub and Grigas 2022; H. Liu and Grigas 2022), but
the problem when the predictions may lead to decisions that violate constraints has not been
well-defined yet (Mandi et al. 2023). While methods like relaxing constraints or imposing
penalties improved the feasibility of solutions, they did not consistently ensure constraint
satisfaction (Sang et al. 2022; Chang et al. 2023; Hu et al. 2023; Sang et al. 2022; Kotary
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et al. 2021). In our study, we apply SPO to a bivariate optimization problem to address the
increased variable complexities that exceed those of existing setups. By training models
individually, we demonstrate the effectiveness of DFL and PFL in fine-tuning models to
meet specific targets.

Meanwhile, most existing works fit in learning programming formulations and simple
prediction models ( Verma et al. 2022). Some applied small (two to four layers) neural
networks and compared the benchmarks with classical regressors ( HU et al. 2023; Liu and
Grigas 2021). Nevertheless, the choice of model architecture was always predetermined
without explicitly reasoned or finetuning discussion. In fact, the family of deep learning
models is much broader, with techniques ranging from traditional grid search to advanced
metaheuristics for systematically exploring those hyperparameters (Wu and Tsai 2024).
For instance, recurrent and attention modules that are beneficial in-/extrinsic time-series
analysis tasks (Connor et al. 1994; Vaswani et al. 2017; Ren et al. 2023) align well with the
properties of many feature sets in DFL tasks. However, to the best of our knowledge, these
neural network architectures have yet to be explored within the context of DFL.

Furthermore, many training strategies that were originally designed for PFL can be
adapted for DFL tasks. For instance, (Mandi, Demirovi Stuckey, and Guns, 2020) “warmed
up” the SPO learning with a transferring learning-based idea, aiming at accelerating the
training process. This approach was initially applied to demonstrate its potential for speed-
ing up training. However, the setting of a limited number of pre-training epochs restrict
the methodology’s generalizability, and other benefits remain unexplored. Despite this, the
warm-up process used in PFL can easily be connected to other PFL and DFL solutions,
enabling deeper discussions on how these strategies fine-tune models.

2.2 Trading optimizations constrained by contracting decisions

At present, there exist many situations where the same product is traded in multiple markets,
with varying time lags between the trading and transaction dates. For example, in the renew-
able energy sector, prices fluctuate due to shifts in supply and demand (Kirschen and Strbac
2018; Block et al. 2008). To manage this volatility, traders commonly use supply contracts
to stabilize and secure transactions and turn to real-time markets for last-minute adjust-
ments (Yang et al. 2023; Rahimiyan and Baringo 2016). A comparable strategy is found in
the trade of perishable agricultural products, commonly referred to as contract farming in
many countries (Schieffer and Vassalos 2015; Dileep et al. 2002; Hueth et al. 1999). Price
stability encourages growers to sell most of the harvests through contracts, with surplus
typically directed to local markets. However, imbalances in negotiation power — particularly
between small suppliers and large buyers such as supermarkets—can lead to inefficiencies,
which often manifest as either over-supply or under-supply ( Fathallahi et al. 2020; Ncube
2020; Singh 2005).

Since contracts require advance commitments while the real-time market has higher
uncertainty but lower capacity, producers face the challenge of determining how much
future production to include in their contracts. Existing studies estimate the profitability
under such situations by statistical models such as mean-variance and probability density
distribution models (Sen et al. 2006; Krishnamurthy et al. 2018; Chen et al. 2021). To opti-
mize contracting decisions, popular methods include stochastic optimization and worst-case
analysis models (Rahimiyan and Baringo 2016; Liu et al. 2016; Sen et al. 2006; Safdar-
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ian et al. 2015). However, these statistical models generally prioritize accuracy in predict-
ing future production and real-time prices, often overlooking the specific consequences of
under- or over-supply, such as contract-breaching fines ( Block et al. 2008). Consequently,
such predictions should be (also) evaluated based on their ultimate impact, which under-
scores the importance of the DFL concept.

3 Research questions

Previous works have demonstrated the advancement of using SPO loss in training models
for decision-focused learning (DFL) purposes. However, there is no common understanding
of what machine learning models we need to use and which model is suited for which prob-
lems. To enhance the integration of the SPO method with a broader range of deep learning
tools, we explore a variety of neural network architectures with diverse learning capabilities
and assess the PFL and DFL performance. In essence, this research is designated to answer
the following questions:

RQ1 How does the learning capacity of models influence PFL and DFL?

RQ2 How do MSE and SPO loss functions influence the fine-tuning of models?

RQ3 How to optimize the DFL performance under a given model architecture?

RQ4 How can training strategies be tailored to align with the roles of the target (deci-
sion) parameters being predicted?

4 Methodology

In this study, we comprehensively investigated the influence of model design and training
setup in the implementation of the end-to-end training strategy smart predict-then-optimize
(SPO) (Elmachtoub and Grigas 2022). We addressed our research inquiries by benchmark-
ing against realistic variants of a portfolio decision-making scenario. The objective of the
use case is to decide how much future production should be committed to a given trading
contract while both the (other) market’s price and the future yield are unknown. Under this
scenario, the yield directly influences the scale of the decision and the price mainly incentiv-
izes the decision towards one of the trading channels. This section outlines our methodology
from four key perspectives: model selections, metric choices, loss function decisions, and
how we came up with the improvement strategy.

Models: To explore DFL with a border range of models, we exploited neural networks
with different multi-layer perception (MLP) depths, with a recurrent neural network (RNN)
layer, with pair-wise self-attention module after the input layer (ATT), and with just one
linear layer to represent a linear regressor, etc. RNN and ATT were chosen because the
features are extrinsic time-series data. In the use case specifically, two models were trained
to predict the market price and production. They were trained collaboratively from scratch
with specified optimizers. By employing diverse training settings and strategies, we empiri-
cally studied the effectiveness of PFL and DFL on models with different learning capacities.

Metrics: The primary metric for evaluating model performance is the average regret
on the testing set, which reflects the expected “unearned” monetary units from real-world
decisions. To assess real-world impact, we compared the profit distributions under variable
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predictions with optimal decision outcomes under parameter realizations. We also analyzed
the mean squared error (MSE) of predictions, as it indicates the generalizability of the model
and the training strategy. We used the mean error (ME) of predictions to demonstrate the
bias of models. Additionally, we discussed the performance related to timing. To compare
how PFL and DFL fine-tune the models, we measured the cosine similarity of correspond-
ing layers in the trained models, which reveals how each method influences the weight and
bias of the layers.

Training losses: Our study began with models trained exclusively on MSE or SPO loss.
We then refined the experiments by training the models using a weighted average of both
MSE and SPO loss, i.e. the loss L = wy - regret + wo - MSE, s.t. w1 +ws = 1. By vary-
ing the ratio w; : w9 from 0 to infinite, we evaluated how the models are progressively tai-
lored in terms of PFL and DFL goals. We applied two independent ratios for the price and
yield prediction models respectively, so as to explore specific preferences for each model’s
training and optimize the learning efficacy.

Improvements: By comparing the final weights of models and investigating the metrics
during the training process of PFL and DFL, we decided to “warm up” the DFL training
from models converged on PFL process. We compared the performance with the other mod-
els that were trained by DFL from scratch, and with models trained under diverse numbers
of PFL epochs, so as to generalize the methodology. On top of that, we conducted such ini-
tialization on only one of the models to further explore whether there is a core model to start
with or if the collaboration essentially affects the training. The in-depth exploration suggests
the optimal design of learning settings, referring to the outputs’ specific functionalities in the
downstream optimization task.

5 Problem and task formulation
5.1 Background

When the future production of a product cannot be perfectly controlled, such as with agri-
cultural products or renewable energy, maintaining steady relationships with downstream
partners can be challenging. To manage the risks associated with forecast errors, traders
often diversify their strategies across markets that differ in how far in advance decisions
must be made (Wang et al. 2022). For example, some contracts require early commitments,
while real-time markets are typically smaller and more volatile (Kirschen and Strbac 2018;
Hueth et al. 1999). Poor forecasts can lead to overproduction and waste, or shortfalls that
result in monetary penalties and damage relationships with downstream buyers. In addi-
tiona, inaccurate predictions about market conditions might also cause producers to miss
more profitable sales opportunities.

In related studies, the profitability is estimated by statistical models, e.g. by a mean-
variance model or probability density distributions (Sen et al. 2006; Krishnamurthy et al.
2018; Chen et al. 2021). However, these methods can lead to high penalties when the deci-
sions are diverged from the predictions. To avoid such, growers, for example, may opt for
conservative yield estimations (Ncube 2020; Singh 2005). Thus, it is more insightful to
evaluate predictions based on their impact on decisions rather than on accuracy alone. This
approach aligns well with the DFL strategy.
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We chose this type of use cases because it represents a common scenario across many
financial systems, featuring a straightforward and distinct goal that serves as a basis for
experimenting with various models. Even so, the problem can be more complex and pose
greater challenges than many existing DFL works, as it involves predicting multiple param-
eters (prices, production, etc.) and the available feature set may not always have a linear
relationship with the target outputs.

5.2 Problem characteristics

In this paper, we investigated a use case where the goal is to maximize the overall profit for
each batch of production by determining the best trading strategy within an integrated con-
tract and market system. For the decision, we specify how much of a future production batch
will be sold through contractual agreements at a predetermined price, and how much will
be reserved for sale in the market, where prices fluctuate in real time. Generally, the closer
the time to the transaction, the higher accuracy of prediction can be achieved. Nevertheless,
real-time demand and price have significantly higher variations than trading through futures
or options (Conejo et al. 2010; Vu et al. 2022; Schieffer and Vassalos 2015) — sometimes
there can be barely any demand and thus significantly low prices, but at other times their
profitability can surge in response to sudden demand or an unforeseen supply shortage.
In specific, this problem scenario has the following characteristics:

1. We act as a price-taker in all trading activities.

2. At the time of decision-making, the contract prices P! and transaction time t are
known, and both the final production volume (shortened as Y for yield) and the (real-
time) market price P, can be predicted based on current trends.

3. Once production is completed, we first fulfill our contract obligations by delivering the
agreed-upon amount, or as much as we can. The remaining product is then sold in the
market at the prevailing price.

4. The volume of contract-based trading is constrained by the capacity of the contract and
the actual yield of our production. Moreover, contracted buyers generally do not accept
purchases beyond the committed amount at decision-making time.

5.3 Objective function and specific SPO framework

The optimization objective is the overall profit of a batch of production, denoted as
Pit(De, T., T;,Y), wherein D, is the contracting decision, T means the contract transac-
tion, T, means the market transaction, and Y represents the final production.

By definition, the profit is the difference between the total revenue, i.e. P. - T. + P, - 1T,
and the costs. In line with established practices in the field (Lee et al. 2015; Fathallahi et al.
2020), we considered linear competitive market models to describe market capacities, i.e.
the maximum volumes for contract trading is T max := act- Po+bee, and in the real-time
market is T} max := a,¢- Pr+b,s. Consequently, to focus solely on the parameters derived
from the datasets, the objective function can be formulated as Pft(D,, P., P, Y).

'We use bold fonts when introducing new parameters. After that, we use roman font for decision parameters
such as P, Pr, Y, and calligraphic font for the decision variable, i.e. the contracting amount D and D..
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According to the trading mechanism, at the transaction date, the actual transaction
amount with the contract is the (original) decision bounded by the actual production and
the contract capacity: 7, = min{D,, Y, T, max }. The market transaction is bounded by the
remaining production and the market capacity: T, = min{Y —7¢, T, max }. Given the real-
time price and production are unknown at the time of contracting, the decision is actually
made based on their predicted values f’r and Y. Hence, the best decision that we can make
is D, = argmax p_Pft(D,, P, f’,.,Y). Consequently, later at the transaction execution
date, the actual contract transaction is 7, = rnin{ﬁc7 Y, T, max}. In this way, the yield ¥
serves as a soft constraint of the optimization problem.

The costs consist of (i) the internal production cost that depends on the production:
falls short of the contracted amount, i.e. D. > Y, we pay a penalty for every under-deliv-
ery unit agp - pos|D.—Y] and we trade to the contract with 7. = Y instead of T, = D,
because 7T, = min{ﬁc,Y,Tc,maX}; (iii) or if the overall production exceeds the con-
tracted amount and the market’s capacity, the waste is is accounted for in financial terms:
acg - pos|Y —T.—T,]. Note that in this specific context, the penalty for infeasible decisions
is smoothly incorporated by the under-delivery costs.

Hence, the objective function, i.e. the profit Pft, is written as:

t(De, Pe, Pr,Y')

2
=P, -T.+ P -T,—aa Y —ac - pos[D.—Y] — acz - pos[Y =T.—T,] 2)
= P.-min{D.,Y, (act* Pe+bet)} + P - min{Y —min{De, Y, (act- P.+bet) }, (art- Prt+brt) }
— ¢l * Y
—ac - pos[D.—Y] G

—acg - pos|Y —min{De, Y, (act- P.+bet)} — min{Y —min{De, Y, (act* P +bet) }, (art- Pr+byrt) }]

By capturing the core concept of the original SPO loss as in Eq. 1 and given that the contract
price P, is known at the moment of decision-making, we derived the specific SPO loss for
the market price and yield prediction P, and Y as:

spo(Pr, P Y,Y) = n%)afot(Dc, P., P.,Y) —Ptt(D,, P., P., Y)

s 5 )

= max Pft(De, P., P., Y) — Pft(argmax Pft(D,, P., P.,Y), P., P., Y)
c D,

5.4 Data

To illustrate the decision problem at hand and to assess the effectiveness of the proposed
methodology in realistic settings, the experiments of the paper are conducted as case stud-
ies. The experiment section mainly focuses on the decision-making performance of a wind
farm that participates in the day-ahead and real-time market, using the energy price and
consumption data sourced from (Jhana, 2019) (refer to as the “wind” case).

The decisions of trading in the day-ahead market, which we identify as the channel for
“contracting”, must be finalized before the bid clearing deadline at 12 pm (Yang et al. 2023;
Aguiar et al. 2020; Conejo et al. 2010). When there is a shortage of production, we may opt
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to purchase additional electricity to fulfill our committed amount; nevertheless, in instances
of unplanned overproduction, the cost of finding immediate consumers can be prohibitively
high (Conejo et al. 2010). Consequently, the expense incurred from overproduction signifi-
cantly outweighs that of underproduction, underscoring the importance of employing DFL
in predicting the unknowns. The dataset covers 34,613 timestamps, collected hourly from
2015 to 2018. Due to the large computational load of DFL, we used the data from every
tenth hour for exploitative studies. The feature set had 143 attributes in total, consisting of
local weather records from the past week, trading information from the past four realiza-
tions, and the contract price for the current decision round. The price was scaled by 100
from the original monetary unit (euro), and the generation was scaled by 10,000 to facilitate
neural network training. Detailed settings, exploration, and accessibility of the data utilized
in our study can be referred to the appendix.

In fact, in 90% of the instances in our primary dataset, the real-time market price exceeds
the daily market price, which serves as our contract price. To address this bias, we per-
formed an ablation study that ensures an equal likelihood of either price being higher than
the other, and we refer to this as the “wind-50" case.

In addition, we curated a dataset for another use case involving a similar trading opti-
mization problem, but with different characteristics from the wind trading scenario. In this
case, we consider the role of a tomato grower, where the task is to decide how much yield
to commit through farming contracts (Dileep et al. 2002; Ncube 2020). The available price
data, sourced from (Borsa, 2023), is reported daily, though not consistently for every single
day. Given that prices are provided in upper and lower limits but without specifying the
trading channel, we considered two scenarios: in the first, the upper limit is seen as the
contracting price and the lower limit as the market price (referred to as “fomato-c” as the
contract price is higher); in the second scenario, we reversed this arrangement, ensuring that
the contract is not more favored than the market (referred to as “fomato-m”).

We used similar attributes to form the features for the two tomato cases. Nonetheless,
since the decision-making time and available data are much sparser, we used the daily tem-
perature record in the past 28 days of the decision date and the realized cases of the past four
available records within a month. Together with the current contracting price, the feature set
had 41 attributes. In total, we had 369 data points, collected from January 2014 to August
2023. For both cases, we scaled the features by constants to facilitate the training. These
two cases, together with the “wind-50" case, compared the impact of DFL on yield (Y) and
market price (F;) predictions under more diverse scenarios. The decision performances on
these three cases are discussed in Sect. 6.5.

6 Experimental results

In this section, we present experimental results on investigating and refining the decision-
focused learning (DFL) process with SPO loss by primarily the wind case, so as to gain
deeper insights and address the research questions outlined in Sect. 3.

Our exploration begins with the examination of multi-layer perception (MLP) models
with varied numbers of layers. This includes a one-layer model without activation, which
essentially functions as a linear regressor. Additionally, we analyzed the performance impli-
cations of incorporating a fully-connected recurrent (RNN) layer or a pair-wise self-atten-
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tion (ATT) layer alongside the MLP layers. All models started with 256 neurons and ended
with 512, except for the linear regressor, which had only one layer of 256 neurons. Dropout
layers were added after every two MLP layers. For model trained by DFL, the outputs of
the neural networks flowed into a CVXPY layer (Diamond and Boyd 2016) to compute and
back-propagate the SPO loss. We trained both the price- and yield-prediction models using
identical model architectures and input features. Unless specified otherwise, the models
were trained together from scratch. Hyperparameter fine-tuning is further discussed in the
appendix.

In this section, we present results from models trained by stochastic gradient descent
(SGD) optimizers with a 2e-3 learning rate, a 1e-5 weight decay regularization, and a maxi-
mum of 1,000 epochs with early stopping. The dataset is divided into 7:1:2 for training, vali-
dation, and testing. All experiments were run with five fixed random seeds unless otherwise
noted. The experiments were carried out on an NVIDIA A40 GPU.

6.1 Model architecture impacts performance and training-testing discrepancy on
regret

This subsection addresses the first research question regarding how the learning capabili-
ties of MLP models affect outcomes. Figure 1 depicted the final regrets, resulting from
decisions optimized using parameters predicted by models of different depths. The plot on
the left compares the total regret across three cases: when neither model, only one, or both
models were trained using the SPO loss. The four smaller plots on the right provide a closer
look at regret under various combinations of training losses. Regret results from models
trained with both MSE and SPO loss are included to link the findings between PFL and DFL
approaches.

As illustrated in the first subplot, models trained both by PFL exhibited the poorest
decision-making performance, underscoring the necessity of integrating SPO loss into the
training process. The subsequent four colored plots further reveal that decision performance
generally improves when the price model training includes more SPO loss. However, this
trend isn’t consistently seen when increasing SPO loss in the yield prediction model’s train-
ing. In other words, the lowest regret doesn’t always occur when all models are trained
exclusively with SPO loss. This inconsistency is especially clear in shallower models, while
deeper models tend to perform worse overall, likely because they get stuck in local optima.

Influence of MLP architecture on regret

Loss of yield model Loss of yield model Loss of yield model Loss of yield model

v MSE SPO MSE SPO MSE SPO MSE SPO

o b w w W 0.20
& 0.4 training loss ([price]-lyield]) En 0 w0 0

o MSE-MSE ~ —@— SPO-MSE o= = = =
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1i2 3 456 81012 9 1linearlayer 3-layer MLP 6-layer MLP 12-layer MLP

Number of MLP layer(s)

Fig. T Regret of models varies with MLP layer numbers and loss function combinations. The left plot
compares regret over depths for models trained on different loss functions. The right four plots compare
regrets under different loss functions and model architectures. For the right plots, the x-axis label means
the loss for yield prediction training and the y-axis label is that for price. The arrows on the x- and y-axis
indicate the increasing involvement of SPO in the loss function. All plots share the same color scale,
shown on the right. The results in the middle boxes used loss = 0.5 - M.SE + 0.5 - SPO. Results are
collected over five seeds
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Next, we compare the performance among four types of neural networks: MLP, RNN-
MLP, ATT-MLP, ATT-MLP and with MLP residuals. Figure 2 presents the average MSE
and regret from the models with varying numbers of MLP layers and different loss func-
tions. The prediction accuracies of the models are close to state-of-the-art —for example,
comparable to the method by (Nate Gruver and Wilson, 2023) — and can improve slightly
with more complex models. This suggests that all architectures are suitable for the learning
tasks in this scenario. However, these gains in accuracy only modestly reduce final regret to
a limited extent. In contrast, training models with DFL produces more substantial gains in
decision-making performance. As shown in the third plot of Fig. 2, this advantage is consis-
tent across all architectures, highlighting that optimizing directly for regret is more effective
than simply increasing model complexity while using the same loss function.

We also analyzed the correlations of Kullback—Leibler (KL) divergence between regret
and the MSEs of the price and yield predictions across five test sets. Our results show that
regret is moderately positively correlated with errors in yield prediction (0.61), suggesting
that yield prediction quality does influence the regret. In contrast, regret has almost no corre-
lation with price prediction errors (—0.01), indicating that perfect accuracy in price predic-
tion is not always necessary for DFL purposes. Interestingly, the PFL performances of the
two prediction models show a slight negative correlation (—0.37), which further supports
the idea that these models play different roles in the optimization task.

6.2 Models learned alike feature patterns from PFL and DFL

To better understand the mechanisms behind PFL and DFL training, we analyzed the cosine
similarity between layer parameters of models trained with different loss functions. Figure 3
shows the results for models with six MLP layers, which was the best-performing architec-
ture among models in Fig. 1 and 2. We observe notable similarities in the weights of MLP
layers, while the differences appear mainly in the layer biases .> These results suggest that
the divergence between PFL and DFL primarily affects the bias terms, with limited impact
on feature representations. This observation motivates our strategy of pre-training on PFL

Influence of regressors on PFL and DFL

(IJQquence on mse price Influence on mse yield 0.30 Influence on regret
1 q .

Model (&/Task)
MLP /PFL
MLP /DFL
=== RNN+MLP
Attention+MLP
--- Atti.+residual+MLP
= = GPT4 (zero-shot)

104

10~

rp e

2 3 4 6 8 12 2 3 4 6 8 12 2 3 4 6 8 12
number of MLP layers number of MLP layers number of MLP layers

Fig. 2 MSE of the price (left), yield (middle) prediction models, and their resulting regret (right). The
x-axis represents the number of MLP layers. Lines are color-coded by neural network architecture, as
indicated in the legend. Dot markers show performance for models trained under PFL, while *x’ markers
indicate DFL-trained models. Except for the zero-shot performance of GPT-4, results are averaged over
five seeds

2Similar trends were found in the self-attention and RNN layers, detailed in the appendix.
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Parameter change of models compared to the same archiecture trained by PFL

6-layer MLP w/  6-layer MLP w/  1-layer RNN w/ 6-layer MLP
6-layer MLP self-attention self-att & residual 6-layer MLP w/ warm-up by PFLi1
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Fig. 3 Cosine similarity of layer parameters between models with six MLP layers (“fc”) trained using
SPO loss and MSE. The final plot compares a PFL model with a DFL model that was initialized with the
PFL model’s weights (referred to as a “warm-up"), while the other plots compare PFL-only models to
DFL models trained from scratch. Layer indices are shown on the y-axis. All plots share the color bar on
the right, ranging from 0 to 1

Influence of model architecture on regret
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Fig. 4 Regret from decision-making, using parameters from models with different architectures and
trained on different loss functions. The models are aligned with those used in the layer parameter com-
parisons (Fig. 3). The x- and y-axis follow the same configuration as in Fig. 1. All plots share the same
color scale as on the right. The upper-left corner of the final plot is left empty, as it represents again a
purely PFL-trained model

before fine-tuning with DFL, as shown in the final plot of Fig. 4. The impact is further dis-
cussed in Sect. 6.3.

Interestingly, as shown in Fig. 4, with increasing involvement of SPO loss during train-
ing, the regret performance of ATT models changes similarly to a much deeper MLP model,
such as that with 12 layers as depicted in Fig. 1. Both architectures show weaker DFL per-
formance compared to others, suggesting that models with very high learning capacity may
be more prone to getting stuck in local optima. As illustrated in Fig. 3, the price prediction
component in these models appears to be overly influenced by DFL, which may contribute
to the performance decline. One potential solution is to use MLP outputs as residuals along-
side the self-attention layers. As demonstrated in Fig. 3 and Fig. 4, this adjustment helps
produce more balanced prediction biases and improves performance in both tasks. Further-
more, as indicated in Fig. 2, these models also achieve lower MSEs, indicating improved
generalizability.

6.3 Pre-training mitigates the discrepancy by improving regret

Motivated by the strikingly similar feature patterns learned by PFL and DFL, we investigated
using PFL as a form of pre-training — or “warm-up” — for the DFL process. As illustrated in
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Fig. 4, incorporating SPO loss after such a warm-up significantly reduced the performance
discrepancy between training and testing on regret, leading to improved overall perfor-
mance. Notably, when comparing models trained with identical loss functions from scratch,
the improvement is most pronounced when the model is trained exclusively with SPO loss.
Further analysis in Fig. 3 reveals that this warm-up strategy results in stronger alignment of
layer-wise biases with the original PFL model, compared to models where DFL is trained
entirely from scratch. This suggests that warm-starting DFL encourages smoother and more
consistent bias adaptation, which likely improves the models’ generalizability.

It is important to note that in our problem, yield naturally serves as a soft constraint of the
objective function, whereas price primarily incentivizes the decision direction, rather than
its magnitude. This difference affects how DFL introduces bias into the two prediction mod-
els. Since decision feasibility is highly sensitive to changes in the yield model, preserving
its pre-trained structure is critical. With warm-started DFL, the yield model changes very
little, helping to avoid harmful bias and supporting stable decision-making. Conversely, the
price model can tolerate — or can even benefit from — certain bias introduced during DFL,
as this bias helps align predictions with task-specific goals. Still, compared to training from
scratch, the bias introduced by performing DFL as a fine-tuning process remains more mod-
erate, reflecting a better balance between task adaptation and generalization.

Considering that price and yield predictions function differently, we conducted compara-
tive experiments to assess the effectiveness of selectively warming up the training of each
model. As is shown in Fig. 5, initializing the yield prediction model with pre-trained weights
proves essential for solving the optimization problem effectively, as it ensures that decisions
are made under more realistic constraints, which contributes to the lower regret observed.
These findings reinforce that, for the yield model, preserving accuracy is more important
than inducing bias aligned with the task. In other words, an accurate estimation of feasible
regions provides a more reliable starting point for the following DFL phase.

In the above experiments, the warm-up phase lasts until the model converges over 20
epochs based on MSE. As illustrated in Fig. 6, the impact of warm-up on final performance
also depends on how well the model is pre-trained. To further explore this, we compared our
convergence-based, dynamic approach against using a fixed warm-up of 6 epochs, as used
by (Mandi, Demirovi Stuckey, and Guns, 2020). While a short fixed warm-up can still offer
some benefit, our results suggest that a convergence-based schedule with sufficient patience
contributes to more robust and consistently better performance.

Average regret on test data with different warm-up strategies

Training loss ([P/]-[Y]): Training loss ([P/]-[Y]): Training loss ([P/]-[Y]): Training loss ([P/]-[Y]):

[SPO]-[SPO] [MSE]-[SPO] [SPO]-[MSE] [MSE+SPO]-[MSE+SPO1
warmed-up model
0.2 —e— neither
—e— both
0.1 aw wﬁg N yield
) T L T ] e e
1li2 3456 81012 1li2 34 5 6 81012 1li2 3456 81012 1li2 345 6 81012
num. MLP layers num. MLP layers num. MLP layers num. MLP layers

Fig.5 Comparison of the effect of the pre-training strategy by the regret, of models with different training
losses. The color codes show which model(s) was/were pre-training on the MSE. The x-axis shows the
model depth, with “11i” referring to linear regression
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Average regret on test data with different pre-training policies

Pre-trained on both Pre-trained on yield Pre-trained on price
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Fig. 6 Resulting regret of models warmed up differently. The titles indicate which model(s) was/were
pre-trained. The color shows the periods of pre-training

Influence of DFL item on regret
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Fig. 7 Regret of MLP models when one parameter is considered as known in the DFL task, compared to
previous PFL and (both-)DFL models’ performances. The subtitles indicate the specific loss function of
the yield ([y]) and price ([p]) prediction model. The x-axis shows the depth of the MLP model

Meanwhile, implementing a warm-up process for both models reduces the average train-
ing time from 1.23 h to 0.79 h’. This time-saving effect is particularly notable when only
the yield prediction model undergoes the warm-up process. In contrast, warming up only
the price prediction model does not result in a significant reduction in computational time.

6.4 The sub-problems unveiled as classical DFL tasks

By using the ground truth of one parameter and implementing DFL with SPO loss on the
other, we simplify the real-world problem to a more ideal and classical DFL task. From the
middle plot in Fig. 7, it is clear that SPO is a powerful solution when the yield is known.
In this case, where all constraints are fixed, the problem setting closely resembles the one
proposed by(Elmachtoub and Grigas, 2022), underscoring the strength of SPO under such
conditions. Thus, applying DFL to the task of price prediction represents a meaningful and
novel advancement over prior approaches.

However, the scenario changes when prices across all trading channels are known and
the prediction target shifts to yield. In this setting, yield directly influences key operational
outcomes such as overproduction costs and supply shortage penalties. As a result, achieving
high prediction accuracy becomes even more crucial. This shift is illustrated by the third
subplot in Fig. 7: the varying gaps between the three solid lines further emphasize how the
benefits of DFL depend significantly on the decision parameters involved and their specific
roles within the optimization.

3 Averaged across all models in Fig. 5 and all seeds. More comparisons can be referred to in the appendix.
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Furthermore, when reviewing the training progress in detail, we observed that gradient
vanished several times when training the price prediction model solely on the SPO loss.
This issue, which is known as the zero-gradient problem in several DFL studies (Mandi
et al. 2023), occurred because price, in this context, functions purely as a decision-driven
parameter. Consequently, without incorporating a regularization strategy or a warm-up
phase using MSE during training, the model can become significantly biased, as demon-
strated in Fig. 3.

6.5 Real-world impact

In previous sections, we focused on model performance across various training losses and
strategies, using the “wind-ori” dataset as an illustrative example due to its realistic and
sufficient data. Here, we evaluate the regret from 3-layer MLP models across the four sce-
narios introduced in Sect. 5.4: the original wind farm case (“wind-ori”’), a modified version
with more balanced price signals (“wind-50), and two tomato-grower scenarios (“fomato-
¢” and “tomato-m”), where underproduction incurs heavier penalties than overproduction,
contrasting with the wind farm cases. We also consider the real-world impact of DFL by
evaluating mean error (ME) across the four cases and the profitability in the “wind-ori”
scenario. A summary of the resulting regrets under different learning settings are depicted in
Fig. 8. To better understand the real-world implications of applying DFL, we also evaluate
the mean error (ME) across these four cases, as described in Table 1.

Table 1 shows that DFL intentionally introduces bias in both yield and price predictions
to account for asymmetric penalties — yield predictions are skewed to avoid costly underpro-
duction, while price predictions exaggerate contract-market price differences to favor more
profitable decisions. These biases reduce overall regret compared to models trained with
MSE alone, which suffer from symmetric error distributions that hurt downstream tasks.

Nonetheless, as Fig. 8 illustrates, regret is a challenging loss for models to optimize
directly. This difficulty is especially evident when training jointly on regret for both tasks,
resulting in a noticeable gap between training and testing performance. Interestingly, we
find that lower bias in yield prediction often aligns with reduced regret in these cases. This
suggests that carefully controlled bias in DFL can improve prediction models and lead to
better downstream outcomes.

Fig. 8 Average regret of price and yield Influence of MLP architecture on regret
prediction models in different experiment . . .
N . case:wind-ori case:wing-50
cases. The loss function is indicated in 0.20
the x and y labels respect'ively. The wind 3 w u
cases share the color bar in the first row 5 g = = 0.15
and the tomato cases share that in the § °
second row on the right 429, Q.
awn 0 -0.10
MSE SPO MSE  SPO
case:tomato-c case:tomato-m
0.30
- w w
Y- 0
&
380 o
s & & 0.20

MSE SPO MSE  SPO
Loss of yield model Loss of yield model
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Table 1 ME of price and yield Case Price Yield
predictions in different experi- Training Loss Testing ME Training Loss Testing ME
ment cases
Tomato-c MSE 0.26 MSE —0.07
MSE 0.23 SPO 0.34
SPO -1.31 MSE -0.07
SPO -1.32 SPO 0.26
Tomato-m MSE 1.10 MSE —0.02
MSE 1.01 SPO 0.02
SPO -1.18 MSE —0.04
SPO -1.32 SPO -0.04
Wind-ori MSE —0.08 MSE -0.02
MSE —0.01 SPO 0.50
SPO 1.74 MSE —-0.05
SPO 0.76 SPO 0.05
Wind-50 MSE —0.08 MSE -0.03
MSE -0.22 SPO 0.47
The loss function is indicated by SPO zn MSE — 005
the 2nd and 4th columns SPO -0.23 SPO 0.40

Profit distribution on testing datasets from different training strategies

1.0
0.5
0.0
-0.5
-1.0

Absolute Profit
warmed-up MLP:comb

Opt. Pft.
Last-round decision
MLP:MSE

-
MLP:weighted-MSE
MLP:SPO
MLP:[MSE]-[SPO]
MLP:[SPO]-[MSE]
MLP:comb.
RNN:MSE
RNN:SPO
warmed-up MLP:SPO

¢

$

Model Architecture : Training loss (noted as a shared loss function or detailed as loss[ P,]-loss[Y])

-15

Fig. 9 Profit distribution in the “wind-ori” case, with a 6-layer MLP model. The [architecture:training
loss] configuration is indicated next to each box plot. The distribution plots are color-coded to distinguish
the loss functions and training strategies. Profits from optimal decisions based on parameter realiza-
tions are shown in the yellow box, with the lighter yellow band serving as a value reference for other
distributions

Figure 9 shows the profiting performance of selected models and two more case-specific
baselines: one used the optimal decision from the latest parameter realization (“last-round
decision”), and another trained models using MSE weighted by under- and over-supply
costs, i.e. a2 and a.3 in Eq. 3 (“MLP: weighted-MSE”). These baselines, along with the
two blue boxplots, represent traditional two-stage approaches: first the forecasting mod-
els are trained independently, and then decisions are optimized based on their predictions.
Moreover, while weighting MSE helps reduce extreme losses, it falls short of matching
the profit levels achieved by DFL-trained models. This suggests that simply improving the
forecasting model has limited impact unless the prediction is aligned more directly with the
downstream objective.

Across all boxplots, the models with DFL applied on top of PFL-pretrained models (cyan
boxes) stand out by both raising the upper bound of achievable profits and reducing losses
in the lower tail. This indicates that their improved performance comes not just from higher
average returns, but from a more favorable overall distribution — achieving stronger gains
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while limiting downside risk. The stability introduced by PFL helps maintain reliable yield
predictions, which in turn supports the SPO algorithm in enforcing constraints more effec-
tively. This enables DFL to better guide the prediction of decision parameters and ultimately
leads to more robust decision-making outcomes.

7 Discussion

In this study, we investigated the comparative effectiveness of prediction-focused learning
(PFL) and decision-focused learning (DFL) within the “smart predict-then-optimize” (SPO)
framework. We empirically assess mode performance through a real-world task: maing sell-
ing decisions in an integrated contract and (real-time) market trading system. Our research
extends existing DFL studies by (i) incorporating diverse neural network architectures and
exploring the impact of their learning capabilities, and (ii) addressing a more intricate deci-
sion-making problem, where models collaboratively predict two types of variables: market
price as a decision parameter and yield as both a decision parameter and a soft constraint.

Our benchmarks underlined a notable performance discrepancy: Models trained solely
on the regret, which is also known as the SPO loss, do not consistently lead decisions on
the test set to achieve the lowest regret. This inconsistency appears across various model
architectures and is especially pronounced in simpler models. Although we have explored
a variety of network architectures, our study covers only a small slice of the landscape of
deep learning. Future work aiming to discover the optimal network depth and architecture
in more problem settings may benefit from metaheuristic methods such as those proposed in
(Kumar and Bhasker, 2023) and (Akay et al., 2022).

In terms of the efficacy of DFL and PFL, our investigation into model hyperparameters
demonstrates that although models trained with Mean Squared Error (MSE) and SPO loss
exhibit different biases, they tend to converge on similar layer weights and self-attention
patterns. Considering that PFL is more computationally efficient, it gives a clear motivation
for enhancing DFL by starting from models pre-trained with MSE. This warm-up approach
offers three main benefits: (a) narrowing the training—testing performance gap by boosting
DFL effectiveness; (b) reducing computational cost; and (c) improving generalization by
regularizing the bias introduced during DFL training.

In our specific use cases involving decision making as a wind farm operator or a tomato
grower, our findings highlight two key insights: DFL can change price predictions compared
to PFL, while accurate yield prediction is especially important when the yield serves as a
constraint in the decision-making process. This difference comes from the distinct roles that
price and yield play in the objective functions. In this way, our findings offer clearer insights
into the SPO method’s applicability and highlights the importance of modeling constraint-
related variables with care. Similar advantages were also evidenced in other constrained
decision-making scenarios, such as safe reinforcement learning (Yang et al. 2023).

In all case studies, the same input features were used for both prediction tasks, naturally
motivating the use of multitask learning (MTL) to improve learning and data efficiency.
Prior work ( Tang and Khalil 2023) has shown that MTL with DFL can be especially effec-
tive for smaller datasets. While we do not evaluate MTL in the wind farm setting due to its
larger dataset size, it presents a promising direction for sparser cases like the tomato price
dataset discussed in Sect. 6.5.
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