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A B S T R A C T   

A particulate matter micro-sensor for automotive exhaust systems based on a gateless wide-bandgap AlGaN/GaN 
high electron mobility transistor was developed and tested. Soot particles were generated by a laminar diesel 
flame and characterized with Raman spectroscopy, thermogravimetric analysis and scanning electron micro
scopy. Particle adsorption at the rate of 0.25 µg/min on the sensor surface resulted in 5.52% sensing response 
after 20 s and large signal variation of 4.44 mA, indicating fast response time. Saturated response of 34.72% 
(27.94 mA) was obtained after 10 min of deposition. The sensitivity towards soot is attributed to the modulation 
of the two-dimensional electron gas density by charged particles on the sensing surface. After soot deposition, the 
sensor was successfully regenerated by thermal oxidation of the carbonaceous particles at 600 ◦C. The sensing 
response remained unchanged post-regeneration indicating high temperature stability and harsh environment 
operation compatibility of the demonstrated GaN-based sensor. Nevertheless, interconnect metal optimization is 
still required to mitigate high-temperature interdiffusion.   

1. Introduction 

Incomplete combustion of hydrocarbon fuels produces solid carbo
naceous particulates referred to as soot [1], which significantly 
contribute to air pollution in densely populated areas. Exposure to 
particulate matter (PM) has been linked to cardio-respiratory diseases, 
cancer, and premature death [2]. Major sources of these particles are 
diesel powered internal combustion engines, that are widely used by 
various industries due to their high efficiency and reliability combined 
with lower fuel consumption [3]. Automotive manufacturers are 
required to fit diesel particulate filters (DPF) in exhaust systems to 
comply with government regulations [4]. An on-board diagnostics 
(OBD) system with a soot detector is also required to continuously 
monitor the efficiency of soot collection, detect possible failures, and 
regenerate the DPF [5]. 

Until recently, soot loading and regeneration frequency of the DPF 

were estimated by monitoring the exhaust gas pressure drop across the 
filter. This method is no longer sufficient to meet requirements of the 
most recent vehicle emissions standards (e.g. ARB/US EPA, China 6, 
Euro 6) [6,7]. Various other particulate sensing technologies for the 
exhaust system OBD have been reported. A radio frequency (RF) de
tector utilizes antenna probes inserted in the DPF housing to monitor RF 
signal attenuation and frequency shift caused by soot build-up in the 
filter [8,9]. The electrostatic sensor consists of a pair of isolated elec
trodes inserted into the PM stream [10,11]. A high electric field of 
approximately 500 V/mm is applied between them causing some of the 
charged particles to be deflected towards the electrodes resulting in a 
measurable leakage current on the order of few nA [12,13]. Optical soot 
detection methods, based on laser beam scattering or laser induced 
incandescence have also been previously demonstrated [14,15]. While 
these technologies can continuously monitor PM concentrations, they 
require a rather complex signal generation and readout circuitry, a 
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voltage bias on the order of 1–2 kV or costly optoelectronic components. 
The conductometric sensor was developed as low-cost solution for 
exhaust soot measurements. It consists of a pair of interdigitated Pt 
electrodes formed on an insulating ceramic substrate and a resistive 
heater on the backside [16,17]. A polarization voltage is applied be
tween the electrodes promoting soot accumulation on the surface by 
electrophoresis [18]. Resistance decreases with soot accumulation as 
conductive dendritic bridges gradually connect the electrodes. Once a 
certain current level is detected, the sensor is regenerated by heating to 
600 ◦C. This sensor cannot continuously monitor soot concentration as 
an accumulation period, known as dead-band, is required to form the 
first conductive paths, which depends on the applied voltage, electrode 
spacing and soot concentration [19,20]. Several modifications have 
been proposed to shorten this percolation time [7,21,22]. 

Field effect devices such as Schottky diodes and transistors fabricated 
using chemically stable wide bandgap semiconductors such as silicon 
carbide (SiC) and gallium nitride (GaN) have been demonstrated for a 
wide range for gas and chemical sensors operated at high-temperature 
and harsh environments [23–26]. Previous reports for automotive ap
plications mostly focused on the measurement of exhaust gases such as 
NH3, NOx, CO, and hydrocarbons [27–30], while only few studies 
considered PM detection. A SiC MOSFET soot detector with a floating 
gate in a low temperature co-fired ceramic package was reported by 
Sobocinski et al. [31]. A back-to-back Pt-GaN Schottky diode with 
interdigitated electrode design was also demonstrated for PM detection 
[32]. Both devices demonstrated near-instantaneous response. 

In this article, we fabricated and demonstrated the applicability of a 
highly miniaturized and low complexity gateless AlGaN/GaN high 
electron mobility transistor (HEMT) to detect diesel soot particulate 
matter. The response to increasing amount of charged soot loading was 
characterized and the detection mechanism was presented. The response 
time, magnitude, and signal saturation as well as the ability of the device 
to withstand thermal regeneration process at 600 ◦C was examined. 

2. Experimental 

2.1. Sensor fabrication process 

The devices were fabricated using well-established semiconductor 
fabrication processes on a commercially available epitaxial structure 
used for AlGaN/GaN HEMT fabrication. It was grown by metal organic 
chemical vapor deposition (MOCVD) on 2-in. sapphire substrate starting 
with a proprietary nucleation layer, followed by 1.5 µm Fe-doped GaN 
buffer, 300 nm undoped GaN channel, 1 nm AlN interlayer, an undoped 
21 nm Al0.26Ga0.74N barrier and undoped 1.5 nm GaN capping layer. 
Strong polarization effects at the AlGaN/GaN heterojunction form a 
triangular quantum well filled with high mobility electrons, the two- 
dimensional electron gas (2DEG), which is utilized as the high carrier 
density channel of typical HEMTs [33]. 

The sensor micro-fabrication started with 100 nm deep inductively 
coupled plasma (ICP) etching of the epi to define individual devices. 
Afterwards, substrate cleaning was done using 3:1/H2SO4:H2O2 solu
tion, acetone, isopropanol, and DI water. Metal contact patterns were 
then formed by optical photolithography followed by a 60 s dip in 1:4/ 
HCl:H2O solution to etch the native surface oxide. Immediately after, a 
multilayer metal contact stack consisting of Ti/Al/Ti/Au with thickness 
of 20/110/40/50 nm, was deposited by e-beam evaporation and 
patterned by lift-off. To form ohmic contacts to the 2DEG rapid thermal 
annealing was done at 850 ◦C for 45 s in N2 ambient. Then a second 
metallization layer of 20/300 nm Ti/Au was evaporated and lift-off 
patterned for probing and wire-bonding. Finally, 200 nm of PECVD 
SiNx were deposited to passivate the contacts. It was then etched by a 
combination of reactive ion etching (RIE) and buffered oxide etchant 
(BOE) to expose the sensing area and probing pads. The dimensions of 
the sensing area opening were 40 µm × 400 µm and source-drain spacing 
was 60 µm. The schematic cross-section of the fabricated device and top 

view image are shown in Fig. 1. 

2.2. Testing of sensors 

The processed wafers were cut by laser scribing into individual de
vices for testing. The schematic representation of the constructed PM 
testing setup is shown in Fig. 2. The soot particulates were generated by 
a laminar non-premixed flame, using a wick burner and commercial 
diesel as fuel. The cotton wick diameter and height above the nozzle 
were 5 and 7 mm, respectively. The burner was placed inside a 20 L 
glass container and synthetic air (O2/N2 = 21%/79%) was supplied 
through a hole at the bottom with the airflow adjusted to 7 L/min using 
a flowmeter to maintain a steadily sooting flame. An inverted glass 
funnel with spout inner diameter of 14 mm was fitted on the top to form 
a narrow soot exhaust, where the test samples were inserted. To deter
mine the particulate deposition rate of our setup, 0.6 × 0.6 cm2 Si chips 
were exposed to the particle stream with increasing duration and their 
weight was measured using a microbalance with 1 µg readability (XPR2, 
Mettler-Toledo). Raman spectra of the deposited diesel soot were ob
tained using LabRAM HR evolution (Horiba) spectrometer with 532 nm 
excitation wavelength. Thermogravimetric analysis (TGA) instrument 
(Discovery TGA, TA Instruments) was utilized to determine the soot 
oxidation temperature and to perform sensor regeneration experiments. 
The tested sensors were mounted on Si chips and then inserted into the 
funnel spout perpendicular to the particle flow direction. Electrical 
sensor response signals were measured using a 4200-SCS semiconductor 
parameter analyzer (Keithley Instruments). 

3. Results and discussion 

The PM mass concentration was first estimated to be approximately 
14 mg/m3 by gravimetric method using paper filters [34]. This value is 
in the range of those produced by diesel engines with 2–2.2 L 
displacement [22,35]. The PM deposition rate on Si chips was then 
tested with increasing exposure time from 5 to 30 min. The particle mass 
was determined by comparing the mass of the samples before and after 
deposition using the microbalance. As shown in Fig. 3, a linear increase 
in PM mass was observed, therefore a stable and reproducible deposition 
rate of 0.25 µg/min or 0.69 µg/(cm2 × min), when normalized to the 
surface area of the Si test chip, was obtained. The Raman spectrum scan 
of the produced diesel flame soot over the 1000–2000 cm-1 frequency 
range is shown in Fig. 4a. It consists of two broad overlapping peaks and 
was obtained by averaging the results of 5 measurements at random 
locations across the sample and normalizing with respect to the G peak. 
The D peak at 1348 cm-1 originates from defects at the edges of the 
graphitic crystallites and the G peak at 1594 cm-1 arises from ideal 
sp2-bonded crystalline graphite. The peak positions correspond well to 
previously reported results on Raman analysis of diesel soot [36,37]. A 
mass loss curve for 8 mg of soot obtained from TGA experiments is 
shown in Fig. 4b. The oxidation intensified at 550 ◦C, where a 10% 
weight reduction was observed and then proceeded rapidly with 85% of 
particulates oxidized at 700 ◦C. 

The PM sensing capability of the fabricated gateless AlGaN/GaN- 
HEMT sensors was studied by measuring the changes of the output 
characteristics i.e. drain current versus drain-source voltage (IDS–VDS) 
with increasing particle deposition time, as shown in Fig. 5a. The I-V 
characteristics of the gateless device still demonstrate the linear and 
saturation regions, similarly to gated HEMTs. Under the assumption that 
the electron sheet density (ns) across the 2DEG channel is constant the 
drain current in the linear regime can be estimated according to: 

IDS,lin = ensμWchVDS/Lch = ensμWchEch (1)  

where e is the electron charge, µ is the low field electron mobility, Wch is 
the width of the channel, Lch is the source-drain spacing, and Ech is the 
channel electric field. With increasing VDS, the critical value of the 
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electric field (Ecr) is reached Ech ≥ Ecr = νsat/µ at which point the channel 
electron velocity (νsat) and drain current (IDS,sat) saturate [38]: 

IDS,sat = ensμWchEcr = ensWchνsat (2) 

The output current (IDS,sat) decreased by 4.4 mA at VDS = 13 V after 
just 20 s of PM exposure. The corresponding scanning electron micro
scope (SEM) images of the sensing area are shown in Fig. 5b and c. After 
20 s of deposition only sparsely distributed dendritic soot agglomerates 
were observed on the sensing area (Fig. 5c). The estimated average 
particle diameter was 31 ± 5 nm, as shown in Fig. 5d. The IDS,sat 
continued to gradually reduce up to 8 min of total deposition time, after 
which signal saturation was observed. The sensing surface was 
completely covered by a continuous layer of soot after 10 min as shown 
in Fig. 5e and f. The performance of our device was further characterized 
by determining the absolute sensing response (S), defined as: 

S(%) =

⃒
⃒
⃒
⃒
IDS,PM − IDS,CL

IDS,CL

⃒
⃒
⃒
⃒× 100% =

⃒
⃒
⃒
⃒

ΔIDS

IDS,CL

⃒
⃒
⃒
⃒× 100% (3) 

Fig. 1. Schematic cross-section (a) and top-view micrograph (b) of the fabricated PM sensor.  

Fig. 2. Schematic illustration of the experimental setup used for 
soot deposition. 

Fig. 3. Measured soot particle mass with increasing deposition time.  

Fig. 4. Raman spectrum (a) and TGA profile (b) of diesel soot produced by 
laminar flame using a wick burner. 
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where IDS,CL and IDS,PM is the drain current magnitude of the clean and 
PM-exposed sensor, respectively. Fig. 6 shows the sensing response 
variation with increasing soot deposition time. Evidently, the response 
increased from 5.52% after 20 s to 34.72% after 10 min of deposition 
time. Table 1 presents the PM mass deposited on the sensing surface, 
estimated from earlier microbalance experiments (see Fig. 3), during the 
tested exposure times as well as the corresponding S and signal variation 
(ΔIDS). The high values of S and ΔIDS are attributed to the signal 
amplification property of the gateless-HEMT as the 2DEG density is 
exceptionally sensitive to variations in surface potential caused by 
adsorption of charged particulates [26,30]. 

In order to better explain the PM sensing mechanism, the formation 
of the 2DEG in the AlGaN/GaN heterostructure is summarized first. GaN 
has a wurtzite crystal structure with non-ideal hexagonal close-packed 

arrangements lacking inversion symmetry. Additionally, the difference 
in electronegativities of III–N bonds is high, resulting in the largest 
spontaneous polarization (PSP) among III–V semiconductors [39]. When 
a thin layer of wider bandgap AlGaN is pseudomorphically grown on 
GaN it is under tensile strain giving rise to additional piezoelectric po
larization (PPZ) in the same direction as PSP. The difference in total 
polarization between AlGaN and GaN induces a positive sheet charge at 
the interface on the AlGaN side and a negative charge at the surface. 
Free electrons are then attracted to the interface and confined in the 
triangular quantum well, the 2DEG, at the interface on the GaN side 
[40]. As the AlGaN/GaN heterojunction is not doped, previous studies 
had indicated that the 2DEG electrons are supplied from donor-like 
surface states present at the surface of the AlGaN barrier and the thin 
GaN cap layer. The released electrons are swept to the heterojunction 
interface by the strong polarization induced electric field, while the 
positively charged donors on the surface ensure overall charge 
neutrality across the barrier [41–43]. The thin AlN layer, grown be
tween AlGaN and GaN channel, is known to enhance the 2DEG density 
and mobility, while the top GaN cap increases the effective Schottky 
barrier of standard HEMTs with a gate electrode [44,45]. Additionally, 
having the epitaxial structure terminated with GaN improves the sta
bility of the sensing surface by mitigating the thermal oxidation of 
AlGaN [46]. Adsorption of charged species can alter the potential dis
tribution on the GaN/AlGaN surface. The observed reduction in drain 

Fig. 5. Output characteristics (IDS–VDS) of the gateless AlGaN/GaN HEMT soot sensor with increasing particle deposition time (a). SEM images of the sensor surface 
after 20 s of deposition (b), (c). High magnification image of agglomerated soot particles (d). SEM images of the sensor surface after 10 min of deposition (e), (f). 

Fig. 6. Particulate matter sensing response with increasing deposition time at 
VDS = 13 V. 

Table 1 
Estimated PM mass on the sensing surface with increasing deposition time, the 
corresponding sensing response (S), and signal variation (ΔIDS).  

Time (min) PM mass (ng) S (%) ΔIDS (mA) 

1/3  0.04 5.52 4.44 
2  0.22 14.02 11.28 
4  0.44 21.72 17.47 
6  0.66 30.57 24.60 
8  0.88 33.59 27.03 
10  1.10 34.72 27.94  
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current indicates that some of the surface states get neutralized by the 
PM as schematically demonstrated in Fig. 7a. Conduction band diagrams 
illustrating the partial depletion of the 2DEG due to PM adsorption on 
the sensing area are shown in Fig. 7b. This suggests that either more 
negatively than positively charged particles are produced from diesel 
flame under our testing conditions or that negative particles are pref
erentially attracted by the charged surface states. Furthermore, previ
ously reported experiments of ungated AlGaN/GaN HEMT exposure to 
ionized air demonstrated that negative ion adsorption resulted in sig
nificant reduction in drain current, while positive ions caused the cur
rent to increase [47]. The proposed mechanism of our sensor differs 
from the reported in [32] for a back-to-back Pt-GaN Schottky device, 
where particle adsorption on the lateral extension of the depletion re
gion at the Pt-GaN interface resulted in increased reverse bias current 
due to Schottky barrier lowering. The estimated lateral depletion width 
was on the order of 50–100 nm, therefore interdigitated design, and 
increased dimensions (1 × 1 cm2) were required in order to enhance the 

sensor response [32]. 
To investigate the regeneration ability of the developed sensor, soot 

was deposited for 10 min and the chip was heated from room temper
ature to 600 ◦C at 50 ◦C/min and held for 10 min using the TGA system. 
Optical micrographs of the clean, PM-coated, and regenerated sensing 
area are shown in Fig. 8a–c. It is evident that the particles were suc
cessfully oxidized and removed from the sensing surface (Fig. 8c). 
Comparing a fresh and thermally regenerated device it was observed 
that the surface roughness of the interconnect (IC) metal increased due 
to the interdiffusion of Ti and Au as evident from Fig. 8d and e. Some 
cracks in the SiNx have also appeared on top of the metallization. The I-V 
characteristics of the sensor response to 10 min soot exposure before and 
after the recovery cycle are shown in Fig. 9a. The electrical properties 
remained almost unchanged after regeneration and the sensing response 
of approximately 31% at VDS = 13 V was maintained. It was observed 
that the on-resistance (RON), extracted from the slope of the linear region 
of the I-V curve (red and orange dashed lines in Fig. 9a), increased from 
71 to 103 Ω after regeneration. The total RON of our gateless HEMT 
sensor is expressed as: 

RON = R2DEG + 2RC + 2RM (4)  

where R2DEG is the resistance of the 2DEG channel, RC is the contact 
resistance of the source/drain electrodes and RM is the metal IC resis
tance. In order to determine the reason for the RON increase after the 
regeneration cycle, each of the variables of Eq. (4) was extracted sepa
rately. The sheet resistance (Rsh,2DEG) of the 2DEG channel and RC were 
measured using circular transmission line model (CTLM) test structures 
[48], while the sheet resistance of the interconnect metallization (Rsh,M) 
was measured using Greek cross test structures [49], which were 
included in the photo-lithography masks of the PM sensors. After 
measuring the sheet resistances, the R2DEG and RM can be calculated as: 

R2DEG =
Lch

Wch
Rsh,2DEG (5)  

RM =
LM

WM
Rsh,M (6)  

where WM and LM are the width and length of the IC metal lines, 
respectively. The parameters measured from the test structures before 
and after the regeneration cycle are summarized in Table 2. It is evident 
that the heterojunction characteristics (the 2DEG) did not deteriorate 
due to the wide-bandgap and high temperature tolerance of GaN and 
AlGaN. An earlier study on the effects of annealing AlGaN/GaN at 
600 ◦C for 5 h in air demonstrated that unpassivated surface with GaN 
cap layer (equivalent to the sensing surface of our PM sensor) had less 
degraded electrical properties when compared to the same structure 
passivated with Al2O3 [50]. The metal-semiconductor ohmic contact 
resistance also did not change significantly. Previous reports have 
shown that high-temperature annealed contacts to GaN and AlGaN/GaN 
with a multilayer metal structure remained stable after several hours of 
thermal aging at 600 ◦C [51–53]. On the other hand, the sheet resistance 
of the interconnect metallization increased almost 15 times. Interdiffu
sion of Ti and Au is known to occur at temperatures above 200 ◦C 
leading to the formation of intermetallic compounds and increased 
resistance of the bilayer film [54,55]. The calculated RON before and 
after regeneration using the parameters in Table 2 and considering 
sensor dimensions were 68 and 107 Ω. These results correlate well with 
the values extracted from I-V measurements (Fig. 9a). Additional 
regeneration test cycles were then conducted. The sensing response to
wards 10 min soot deposition (VDS = 13 V) and on-resistance measure
ment results are shown in Fig. 9b. It was observed that RON did not 
increase further after the added thermal cycles and the PM response was 
maintained in the 26–30% range. However, after the 5th cycle some of 
the IC pads delaminated as shown in the inset of Fig. 9b. The adhesion 
degradation is also due to the diffusion Ti into Au as well as stress caused 

Fig. 7. (a) Schematic diagram of the AlGaN/GaN heterostructure indicating the 
direction of PSP, PPZ and the position of the resulting charges. (b) Conduction 
band diagrams of the sensor with clean surface (line A—A’) and with adsorbed 
soot (line B—B’). 
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by mismatch of thermal expansion coefficient between the metal and the 
substrate. Therefore, the gateless HEMT diesel soot sensor can withstand 
the thermal regeneration cycle, however the IC metallization requires 
further optimization to prevent the increase of RM and delamination. 
Inserting a diffusion barrier such as TiN or Pt between Ti and Au would 
limit thermal interdiffusion or a different metallization may be utilized 

[55,56]. 
To perform in-situ regeneration inside the exhaust system the pro

posed sensor can be micro-fabricated to include a resistive micro-heater 
and temperature sensor, similarly to a previously demonstrated NO2 
sensor [57]. Additionally, monitoring of emitted pollutant gases can be 
achieved by integrating other HEMT-based sensors on the same chip 
[24,30]. 

4. Conclusions 

In this work, a gateless AlGaN/GaN HEMT micro-sensor was fabri
cated and tested for the detection of diesel particulate matter emissions. 
An in-house testing setup was assembled to produce soot particles from 
laminar diesel flame with an estimated mass concentration of 14 mg/m3 

and surface deposition rate of 0.25 µg/min. The adsorption of PM on the 
exposed semiconductor surface between source/drain electrodes resul
ted in measurable reduction of 2DEG channel current, due to the 
neutralization of positive surface states by negatively charged particu
lates. Exposure of only 20 s resulted in signal response of 5.5% or 
4.4 mA, which indicates that there was essentially no dead-band period. 
The highest response when signal saturation occurred was 34.72% 
(27.94 mA) obtained after 10 min of deposition due to the sensing sur
face being fully covered by PM. Afterwards, the sensor was successfully 
regenerated at 600 ◦C in air and was still operational without degra
dation of 2DEG current, contact resistance and PM sensing response. The 
observed increase of on-resistance was studied and attributed to the Ti- 
Au interdiffusion of interconnect metallization, which also led to 
delamination after several regeneration cycles. Based on these findings, 
the AlGaN/GaN HEMT soot sensor is an interesting alternative tech
nology for on-board diagnostics of automotive exhaust systems, that is 
also compatible with on-chip integration of micro-heaters and temper
ature sensors for rapid regeneration as well as field-effect based de
tectors of other pollutant gases. In addition, processing optimizations 
are still required to resolve the observed interconnect reliability prob
lems after thermal regeneration. 

Fig. 8. Optical micrographs of the sensing area before (a), after (b) PM deposition and after thermal regeneration at 600 ◦C (c). Surface of the interconnect 
metallization before (d) and after (e) thermal regeneration at 600 ◦C. 

Fig. 9. (a) Output characteristics (IDS–VDS) of the gateless AlGaN/GaN HEMT 
soot sensor before and after thermal regeneration at 600 ◦C. (b) Sensing 
response at VDS = 13 V and on-resistance variation after additional regenera
tion cycles. The inset depicts IC delamination observed after the 5th regener
ation cycle. 

Table 2 
Resistance parameters measured on dedicated test structures before and after 
thermal regeneration at 600 ◦C.  

Parameter Fresh device Post-regeneration 

RC (Ω mm) 0.97 1.08 
Rsh,2DEG (Ω/sq) 397 370 
Rsh,M (Ω/sq) 0.074 1.08  
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