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ARTICLE INFO ABSTRACT

Keywords: For simulating an adsorption/elution step for separation and recovery of flavor-active esters in beer in the

Flavor-active esters presence of ethanol at various temperatures, and validating the predicted breakthrough behavior, equilibrium

Adsorption data on concentration of each ester is required. This work evaluates the application of frontal analysis method

Frontal analysis (FA) for prediction of breakthrough behavior for adsorption of ethyl acetate, and determination of equilibrium

Fractionation . oo f L. . . . . .

Simulati concentrations and binding capacity for competitive adsorption of four major flavor-active esters in beer (i.e.
1mulation

ethyl acetate, isopentyl acetate, ethyl 4-methylpentanoate, and ethyl hexanoate), together with improvement of
the obtained results, through fraction collection, and offline analysis, on columns packed with hydrophobic
resins, Amberlite XAD16N and Sepabeads SP20SS. Single-component adsorption of ethyl acetate reveals a
shorter breakthrough time, and higher slope of breakthrough curve for adsorption on SP20SS, due to smaller
particle size, (50-100 pm), and enhanced mass transfer characteristics of this resin. Competitive frontal analysis
tests, neatly demonstrate that increase in temperature is not favorable for adsorption but aids the elution step,
63-100% recovery of flavors at 333.15 K in comparison to 40-80% recovery at 298.15 K. Lower binding capacity
of esters and shorter adsorption/elution cycle time is achieved at higher ethanol concentration and cyclic op-
eration simulated under non-isothermal condition, exhibit higher accuracy between predicted and experimental
breakthrough curves for XAD16N. A cyclic operation is simulated, for a larger scale column, for two scenarios,
separation of ethyl acetate and complete separation of all flavor-active esters in the mixture. For more detailed
prediction of breakthrough behavior, the influence of other components present in process streams needs to be
investigated on competitive adsorption of esters.

1. Introduction

Liquid chromatography plays a key role in food industry nowadays
which permits selective removal of wide variety of flavor and non-
flavor-active food ingredients through adsorption [1-3]. In order to be
able to design a process for separation and recovery of these in-
gredients, detailed knowledge on process conditions and their influence
on adsorption is required. This implies that the adsorption equilibrium
concentrations of each component in liquid-solid phase needs to be
measured and well-understood. Among these components and in-
gredients, flavor-active esters play a major role in beverage and
brewing industry, and are important contributors to the aroma profile
of the beer product [4-9]. During processing, the level of these com-
pounds might alter due to chemical and physical changes of the aroma
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complex. Their separation and fractionation can be challenging, since
they are present in trace levels (ppm) with relatively large amounts of
ethanol, which is present in process streams at higher concentration in
comparison. To produce a final product with balanced flavor profile,
which is acceptable by the consumer, controlling and adjusting the
level of esters is crucial [4,10]. In order to design an adsorption process
for selective recovery and fractionation of esters, multi-component
thermodynamic adsorption equilibrium data and the influence of pro-
cess conditions such as ethanol concentration and temperature on ad-
sorption of flavor-active esters is required. For determination of com-
petitive equilibrium condition, several chromatographic methods can
be applied, among which dynamic methods proved to be the fastest and
most accurate methods [11-13]. The best-known and widely adopted
method is frontal analysis (FA), which allows measuring the mass of the
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Nomenclature

A cross-sectional area normal to flow direction (m?)

C concentration of analyte in bulk liquid (kmol/m?3)

c concentration of analyte in liquid at equilibrium with
stationary phase (kmol/m?)

Com heat capacity of mobile phase (J/kg/K)

Cp.s heat capacity stationary phase (J/kg/K)

Co effluent concentration (mg/ml)

Cout concentration in outlet stream (mg/ml)

Dapp apparent dispersion coefficient (m?/s)

D.x axial dispersion coefficient (m?/s)

Dags molecular diffusivity (m?/s)

Def effective diffusivity (m?/s)

d. column diameter (m)

dp average adsorbent particle diameter (m)

dss Sauter mean diameter (m)

F phase ratio (-)

AH heat of adsorption (kJ/mol)

hyy overall heat transfer coefficient at column wall (W/
(m**K))

HTC overall heat transfer coefficient between stationary and
mobile phase (W/(m?*K))

Kegs effective mass transfer coefficient (m?2/s)

P modified retention factor (-)

K retention factor (-)

Kads Langmuir constant (m>/kmol)

K permeability of medium (m?)

Koy overall mass transfer coefficient (1/s)

ke external mass transfer coefficient (m/s)

L column length (m)

Mg molecular weight of solvent (g/mol)

Myesin mass of resin (g)

N Avogadro’s constant (mol™1)

Qmax maximum load (kmol/Kg;esin)

Q¢ volumetric flow-rate (m3/s)

q concentration of analyte in stationary phase (kmol/kg
resin)

QeBC equilibrium binding capacity (mg)

I'm molecular radius (m)

S, surface-face-to-volume ratio of packing material (m2/m3)
SASA solvent accessible surface area (m?)

t time (s)

tri retention time of component i (s)

to dead time of the column (for total liquid holdup) (s)
Tm absolute temperature of mobile phase (K)

Ts absolute temperature stationary phase (K)

Tw absolute temperature column wall (K)

tp breakthrough time (s)

u linear velocity of mobile phase (m/s)

Uine interstitial velocity (m/s)

Ujne interstitial velocity (m/s)

V. column volume (ml)

Va molar volume (cm®/mol)

Vint interstitial volume (ml)

V. breakthrough volume for adsorption (ml)

Vi holdup volume (ml)

\ desorbed volume (ml)

Vinit initial volume (ml)

Greek symbols

er total porosity (-)

AL axial thermal conductivity (W/(m*K))

As thermal conductivity of stationary phase (W/(m*K))
Pp density of adsorbent (kg/m?)

oL density of mobile fluid (kg/m®)

v kinematic viscosity (m?/s)

€ column void fraction (-)

€ particle porosity (-)

€bed average bulk porosity of packed bed (-)

o sphericity of adsorbent (-)

B solvent viscosity (cP)

WB constant for solute-solvent interaction (-)

T Tortuosity factor (-)

¥p diffusional hindrance factor (-)

Am ratio between radius of molecule and pore radius (-)

adsorbed component at equilibrium from the retention time of the
breakthrough front. As one of the variants of this method, staircase
frontal analysis is well-suited for measurement of the concentrations in
intermediate sub-plateaus for a multi-component mixture [14-16].
However, for a mixture consisting of components with similar mole-
cular structure, physical properties, and similar retention times, this
method cannot merely be used for estimation of equilibrium con-
centration for each component in the mixture, as more than one com-
ponent might be detected in one sub-plateau. To improve and overcome
this problem, the competitive frontal analysis method can be combined
with fraction collection and offline analysis, to measure the con-
centration of each component present in the mixture and in each sub-
plateau of the breakthrough front. This work aims to investigate the
application of the competitive frontal analysis method for measurement
of the equilibrium adsorption for a multi-component mixture of major
esters present in a beer matrix, i.e. ethyl acetate, isopentyl acetate, ethyl
4-methylpentanoate, and ethyl hexanoate and study the possibility of
their separation in a fixed-bed column through simulation of break-
through behavior. In order to investigate the possibility for separation
of these flavor-active esters, and study the influence of temperature and
ethanol concentration on their competitive adsorption behavior, com-
petitive frontal analysis method is applied in combination with fraction
collection via the outlet stream and offline analysis to determine the
concentration associated with each ester present in each intermediate

sub-plateau. The equilibrium binding capacity is estimated for each
ester present in the mixture from retention time and the breakthrough
front, also from the breakthrough curves constructed through fraction
collection. Possibility for separation of the aforementioned flavor-active
esters, is investigated on columns packed with Amberlite XAD16N and
Sepabeads SP20SS resins, which showed high selectivity towards esters
in our previous studies [8,17]; also similar resins with the styrene- di-
vinylbenzene structure showed potential for separation and recovery of
phenolic components as is demonstrated in many research works re-
ported in the literature, both for batch and fixed bed operations
[18-20]. Additionally, breakthrough behavior is simulated and pre-
dicted in Aspen Adsorption V8.8, considering the equilibrium dis-
persive chromatographic model, for separation of the esters under the
conditions tested at lab-scale and the results of the simulations are
compared with experimental validation tests. The influence of the
flowrate and column length is demonstrated on shape and break-
through retention time for adsorption on both resins for adsorption of
ethyl acetate and the observed breakthrough behavior is explained
based on properties for each tested adsorbent. The required parameters
for simulation, i.e. single and multi-compound adsorption parameters
for adsorption of esters based on the Langmuir isotherm model and heat
of adsorption of the individual components, obtained through single-
component isotherm studies at different temperatures and Van’t Hoff
relation, are acquired from previous work [8,17], and used as input for
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simulation. Based on the lab-scale tests, a similar condition is simulated
for a larger scale fixed-bed column for cyclic operation and separation
of flavor-active esters. Two different scenarios are simulated, for se-
paration of ethyl acetate as the major ester present in beer and se-
paration of all of the flavor-active esters from the feed stream. For the
simulated scenarios, the percentage of recovery for each tested ester
and the productivity, the amount of feed processed during each batch
cycle time, are calculated. This simulation can be applied and adapted
to study the possibility for separation of mixture of other components
on a column packed with the same hydrophobic resins, knowing the
required parameters for simulation, i.e. multicomponent isotherm
parameters and values for heat of adsorption for each individual com-
ponent present in the mixture.

2. Materials and methods
2.1. Materials

2.1.1. Chemicals

Ethyl acetate (purity > 99.5%), isopentyl acetate (98%), ethyl hex-
anoate, and ethyl 4-methylpentanoate are purchased from Sigma-
Aldrich. MilliQ water is used for dilutions and ethanol 96%, is pur-
chased from Merck. The tested flavor-active esters with their main
physical properties are presented in Appendix A, Table A2.

2.1.2. Adsorbents

Food grade resin XAD16N from Amberlite resin series and the aro-
matic type Sepabeads SP20SS from HP resin series are purchased from
Sigma-Aldrich and used for adsorption tests. Detailed specifications and
physical properties of the tested resins are reported in Appendix A,
Table A1 [21].

2.2. Methods

2.2.1. Chromatographic model

2.2.1.1. Equilibrium dispersive model (EDM). The equilibrium dispersive
model, proposed by Lapidus and Amundson [22], proved to be
successful in considering contributions leading to band broadening
effects, such as axial dispersion and rate of mass transfer. The first
equation of this model related to mass balance can be written as Eq. (1)
[11,12,22-27].

o
ot

ouC) «~ %
a7 P 5g2

P

at (€8]

F is the phase ratio (F = Vy/V,, = (1 — e1)/e7), and parameter 5app,i
expresses the apparent dispersion coefficient including also the volume
fractions and has relation with D,,,; and axial dispersion coefficient
(Day), as is explained in Appendix B, Egs. (B.1) and (B.3) [26]. The
second equation for equilibrium dispersive model, relates the two
concentrations in Eq. (1), based on a linear kinetic model, presented as
Eq. (2) [12,25].
aq;

= kov Ci_ci*
at ( )

(2)

By knowing the adsorption isotherms, elution profiles and break-
through curves can be predicted. The extension of the Langmuir model,
which describes the competition of component i with nc components in
the mixture, is used, explained as Eq. (3) [12,17,28-32].

g = Qo Kads,i Ci

1+ 202, Kaas G 3)

An adsorption column is simulated, considering two different con-
stant states [33]. As initial condition:

c(t=0,x)=¢"i=1,--,N @
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In addition, boundary condition:

ci(t,x = 0) = cfed

)

The contribution of axial dispersion, Dg. (m?/s), and rates of mass
transfer, k,, (m2/s), can be estimated theoretically based on relations
proposed in the literature, explained in the sections related to estima-
tion of model parameters.

2.2.1.2. Non-isothermal adsorption system. In order to consider the heat
of adsorption and deviation of the system from isothermal behavior,
two differential energy balance equations are considered to complete
the set of partial differential equations [12,34], for the mobile and
stationary phases. For the non-isothermal system, the differential
energy balance for mobile phase can be written as Eq. (6).

3T, aT, aT, 4h
—ALE—;" + Cpmpp— + € Cpmpy— + +Sy(1—e)HTC (Tn—Ts) + — 2 (Tu—Ty) = 0
az oz at dc

(6)

Moreover, energy balance for stationary phase can be presented as:
527} nc aq
AH,—=

az2 ; (A5,

o, ot
a A

A
P ot

p C
P ps

—-S,HTC(T,—T) =0

Z (Cp,mqi) + ,Op

i=1
@

Here the system is considered as adiabatic with fluid and solid phase
conduction.

2.2.2. Estimation of model parameters

2.2.2.1. Axial dispersion coefficient. Axial Dispersion (Dg,) is estimated
based on a dimensionless equation, proposed by Chung and Wen (1968)
and Wen and Fan (1975). This equation shows dependency of the
dispersion coefficient on the particle Reynolds number as presented in
Eq. (8) [26].

UinedpE

Dp=——P2°
“ 0.2 + 0.011(c Re)**8

(1073 < Re<10?)

®
where (Uin: dp/Dax) is known as the Peclet (Pe) number, and Re = (Ui,
dy/v).

2.2.2.2. Pressure drop. A linear relation is normally considered between
flow-rate and pressure drop explained based on Darcy’s law, for
(Re < 10) and steady state condition [4,35] as is explained in Eq. (9).

Qf = EAP

uL ©)

Assuming that the granular bed is analogues to a group of capil-
laries, parallel to the direction of flow, the permeability term (K) of the
medium can be written as presented in Eq. (10).

3
Eped

K=—_%2
2Tp25v2(1_5bed)2 (1 O)

The value of 7, tortuosity of the bed, is defined as the ratio of the
actual tortuous length traveled by the fluid in the bed to the geome-
trical length of the bed. If the packing material is formed by mono-sized
spheres, the term S, can be simplified to S, = 6/d, and 7, = 1.58; Eq.
(9) can then be reduced to the Kozeny-Carman relation as expressed in
Eq. (11) [13,35-39].

392
Eped’d

 180(1—chea)? a1

where d, is the diameter of the packing sphere and 180 is the Kozeny-
Carman pre-factor [36]. If the packing material is non-spherical and
shows a distribution in size, it should be taken into account and d, = @
ds». In case of having spherical packing material, the value of @ will be
equal to one.
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2.2.2.3. Overall mass transfer coefficient. The overall mass transfer
coefficient is estimated based on Eq. (12), which can be described as
dp

[34,371]:
-1
key=|—+
. [6kf ]
The external mass transfer coefficient ks is estimated based on

Wilson and Geankoplis correlation, as is described in Egs. (13) and (14)
[40,41].

dy
602, Dy

(12)

_ 109 13 g,
Sh = E Re'/> Sc'/3; 0.0015 < Re < 55 (13)
dyks Ujped
Sh= -2 f;Re=M;56=L
Dyp v Dyp 14

The free molecular diffusivity of moderate molecular weight com-
pound, (Dsp) (molecular weight between 100 and 500) can be esti-
mated as proposed by Wilke and Chang, described in Eq. (15)
[12,40,42]. This relation is the most popular relation for the molecular
diffusivities of low molecular weight compounds in conventional sol-
vents.

DA,B =74 %1078

(15)

The value of yg, which counts for solute-solvent interactions, is
equal to 1 for all non- associated solvents and recommended as 2.6 for
water [12,42]. The value for molar volume is estimated based on mo-
lecular radius (r;,) as described by Eq. (16) [43].

Vy = 4nrgN/3 (16)

Molar radius is calculated based on solvent accessible surface area
(SASA) [44], which considering a spherical surface area, it is then
possible to calculate the molar radius from Eq. (17) [43].

_ [SASA
47

r’" a7

The effective diffusivity considers corrections in free molecular
diffusivity Dsp, by taking into account the effect of diffusional hin-
drance factor 1), the intraparticle porosity (¢,) and the tortuosity factor
7, [45], which for randomly oriented cylindrical pores, may be con-
sidered equal to 3 [34]. The relation for effective diffusivity can be
presented as shown in Eq. (18) [46,47].

T (18)

In order to estimate the diffusional hindrance factor 3,, the ratio
between the radius of the molecule (r,,,) and radius of the adsorbent
pore (Tpore), which is explained by A, needs to be determined.

For 1,, < 2 the diffusional hindrance factor can be calculated using
Eq. (19) [45].

9
P=1+ gxlmln(/lm)—l.539/lm 19)
With the estimation of diffusivities and the overall mass transfer
coefficients, the required parameters will be obtained for simulating the
condition in Aspen Adsorption.

2.2.3. Simulation in Aspen adsorption

Aspen Adsorption V8.8 is used as a simulation environment to de-
sign a liquid adsorption step for flavor-active esters, knowing the
thermodynamic parameters and physical properties of the tested com-
ponents and the adsorbent materials. More explanation on simulation
environment of Aspen Adsorption and the assumptions considered for
the simulation are provided in Appendix C.

Separation and Purification Technology 210 (2019) 304-319

2.2.4. Competitive frontal analysis

Various chromatographic methods are available for determination
of adsorption isotherms, and equilibrium concentrations among which
Frontal Analysis (FA) is widely applied in liquid chromatography
[11,13,33,48,49]. This method has application in determination of
equilibrium concentrations and single-solute isotherms, through con-
centration dependency of the retention times in breakthrough fronts,
however for determination of equilibrium concentrations for a multi-
compound mixture, the composition of components in the intermediate
plateaus needs to be measured [33] and this method can be applied for
calculation of equilibrium binding capacity and determination of
equilibrium concentrations for a multicomponent mixture, only when
clear breakthrough fronts can be detected for each component in the
mixture. A sample breakthrough front for a multi-compound mixture,
consisting of three components is illustrated in Appendix D, Fig. D.1.
The adsorbed amount for each component and the amount of mass
desorbed from the column can be calculated based on Egs. (D.1)-(D.6),
presented in Appendix D for the first, second, and the third component
[48,50,51].

With the use of the discussed approach, the possibility for separa-
tion of four major hydrophobic flavor-active esters in beer is tested in a
packed column and the application of competitive frontal analysis is
evaluated for calculation of equilibrium concentrations and binding
capacity. Since the molecular structure and physical properties of the
two tested esters with the highest hydrophobicity is similar, separate
breakthrough curves could not be detected for these two components,
as they are detected in one sub-plateau and this method could not be
successfully applied for determination of equilibrium binding capacity
and for more accurate measurement of the composition corresponding
to each ester, fractions are collected and analyzed through offline
analysis. Through these measurements, breakthrough curves can be
constructed during the sampling time and at the tested column volume.
The concentration of the compound of interest in the stationary phase,
q, can then be determined through integration of the constructed
breakthrough curves, which is known as the Equilibrium Binding
Capacity (gepc) (mg), and can be obtained by integrating the area above
the breakthrough curves, considering the dead volume for the system
[17,49,52], according to Eq. (20).

Ve .
9epc,i = ‘/0‘ (Co,i—Cou,)dVei=1, ...N (20)
The equilibrium binding capacity per gram of the adsorbent can
then be calculated for each component from Eq. (21).

_ Ygsc,i
ei

(21

Myesin

The influence of ethanol and temperature is investigated on
breakthrough fronts, the constructed breakthrough curves through
fraction collection, and subsequently the estimated binding capacity
and for the prediction of breakthrough behavior, the adsorption para-
meters acquired from our previous studies [8] on batch uptake ex-
perimentation are used as input parameters for the simulation. The
obtained breakthrough fronts and the constructed breakthrough curves
derived from fraction collection, are used to validate the results of the
simulation.

2.2.5. Error estimation

The error between the predicted values of C/C, obtained from si-
mulation and the experimental breakthrough curves constructed
through fraction collection and offline analysis, are estimated with
Marquardt’s percent standard deviation (MPSD), as presented in Eq.
(22) [53].

i

\“ (C/Co)exp_(c/co)cal ¥

N
MPSD = 100, |1 D [
\N-P & (C/Colexp (22)
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where N is the number of data points and P is the degrees of freedom.
Also the percent deviation between the experimental and the break-
through times derived from the simulation are calculated according to
Eq. (23) [54].

I —I
E(t)% = 100[7“’* b'““l]

tb,exp (23)

3. Experimental
3.1. Chromatographic system

Frontal analysis is applied to obtain the breakthrough fronts and
curves for determination of equilibrium concentrations. Experiments
are carried out for single-solute mixture of 0.9 g/L of ethyl acetate
prepared in 0.1% (v/v) co-solvent mixture of ethanol/water. The same
background solution is used for elution steps. Tests are performed using
columns packed with hydrophobic resins, Sepabeads SP20SS and
Amberlite XAD16N, which showed high affinity towards esters in our
previous studies [8,17]. Resins are packed in an Omnifit glass chro-
matography column, ID 15 mm, column length 150 mm (Thermofischer
Scientific), suitable for experimental tests up to 40 bar. The experi-
mental breakthrough data are processed using the UNICORN 5.1.1 data
acquisition software. Multi-component breakthrough analysis is per-
formed for a multi-component mixture of four major esters in beer (i.e.
ethyl acetate, isopentyl acetate, ethyl 4-methylpentanoate and ethyl
hexanoate), approximately 0.45g/L of each component prepared in
different concentrations of ethanol/water co-solvent mixture (i.e. 1 and
30% v/v) and at three different temperatures (i.e. 293.15, 313.15, and
333.15K). Fractions are collected in Eppendorf conical tubes 15ml
(purchased from Eppendorf Netherlands B.V.), using fraction collector
FRAC 920, and column tests are performed on Akta Explorer system
100, both purchased from General Electric Life Sciences, Uppsala,
Sweden.

3.2. Setup

The Akta explorer 100, FPLC chromatography system, is used for
the breakthrough analysis tests. Samples are pumped through Akta
explorer pump P-900 (General electric Life Sciences, Uppsala, Sweden)
to the system through an eight-port column selection valve [35]. The
effluent from the analytical column, was monitored by a UV 900 de-
tector (General electric Life Sciences, Uppsala, Sweden). For the tests
performed at elevated temperatures, the column is heated using a he-
ated tubing around the column, pumping water through a Lauda
heating circulator circulating water bath MT/M3 (purchased from
Lauda-Brinkmann, USA).

3.3. Procedures

Single-component tests are performed for ethyl acetate solution and
breakthrough curves are obtained for various tested flow-rates, and
column lengths, mentioned in the previous section, both for a column
packed with Sepabeads SP20SS resin and Amberlite XAD16N. The
shape of the breakthrough curves and the retention times are compared
for adsorption of this ester on both resins and the breakthrough curves
are simulated under the same condition in Aspen Adsorption as ex-
plained in Section 2.2.3, and compared with the experimental break-
through curves. Next, the possibility of separation for the four major
mentioned flavor-active esters is investigated in a multi-compound
mixture at various ethanol concentrations and temperatures, explained
in Section 4.3. The column is preheated when tested at elevated tem-
peratures. Stepwise breakthrough fronts are obtained for both adsorp-
tion and elution. Elution is performed with the same background co-
solvent mixture of ethanol/water used for preparation of the initial
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sample solution. To measure the intermediate concentrations for each
component in the sub-plateaus, 5ml fractions are collected in 15ml
Eppendorf tubes from the outlet stream with the time interval of
2.5 min. Tubes are immediately closed after fraction collection and 5 ml
of each selected fraction is added to 10 ml headspace vials and trans-
ferred to the GC for measurement. The collected fractions added to vials
are subsequently analyzed using Static-Headspace-Gas-Chromato-
graphy (HS-GC) method with the GC (Trace 1300, Thermofischer Sci-
entific, Switzerland) coupled with Triplus RSH Autosampler (Thermo-
fischer Scientific, Switzerland) and FID in a RESTEK Rxi 624Sil MS
column (20 mm X 0.18 mm ID X 1 um df). Helium was selected as the
carrier gas in the system. The agitator temperature was set to 40 °C and
samples are measured with incubation time of 20 min. Syringe tem-
perature was set to 60 °C and detector temperature to 250 °C. Split ratio
of 30 was used for the measurements. Ramped oven temperature was
considered for the GC settings, 60 °C with holding time of 1 min, in-
crease to 75 °C with the speed of 10 °C/min, and the second increase to
175 °C with the speed of 30 °C/min with the holding time of 1 min. The
retention time of tested components is measured during 7 min. The
chromatograms obtained from the measurements show the retention
time (minutes) of 1.5, 2.4, 4.9, 5.5, and 5.7 for ethanol, ethyl acetate,
isopentyl acetate, ethyl 4-methylpentanoate, and ethyl hexanoate re-
spectively. The breakthrough curves are constructed with the measured
concentrations for each ester present in the mixture. The collected
fractions and breakthrough curves are compared at various tested
ethanol concentrations and temperatures.

4. Results and discussions
4.1. Estimated parameters

The required model parameters, explained in Sections 2.2.2 and
2.2.3, are estimated for each tested condition (i.e. tested resin, flowrate,
column length, and initial feed concentration). The main considered
physical properties and column conditions are assembled in Table 1.

In order to simulate the breakthrough behavior, in Aspen
Adsorption, the required Langmuir parameters for single and multi-
component adsorption, presented in Eq. (4), derived from batch uptake
experimentation at various ethanol concentrations and temperatures
and the values for heats of adsorption for each tested ester, are obtained
from our previous studies, to consider the deviation of the system from
isothermal behavior [8]. The values for heats of adsorption for each
tested ester, and for adsorption on each tested resin are assembled in
Appendix A, Table A3. The value of volumetric heat capacity for the
synthetic adsorbents with the structure of Styrene-divinylbenzene, C,
is considered as 1758.4J/kg/K [42]. Specific heat of the mixtures

Table 1
Resin physical properties and column condition for the experimental tests and
simulation.

Resin

Physical properties Amberlite XAD16N Sepabeads SP20SS

Resin particle diameter d,, (cm) 0.071 0.010

Resin density o4y yesip (8/ml) 1.01 1.08

Resin density 0, resin (8/ml) 1.30 1.02

Column length L (cm) 1,3,5 1,35

Column diameter d. (cm) 1.5 1.5

Feed flowrate Q¢ (ml/min) 2,5,8 2,5,8,10

Intraparticle porosity e, (-) 0.36 0.57

Total porosity er (-) 0.55 0.79

Void fraction ¢ (-) 0.31 0.51

Adsorption temperature (K) 298.15, 333.15 298.15, 313.15,
333.15

Ethanol concentration %(v/v) 0.1,1, 30 0.1, 1, 30

Initial feed concentration Co (g/L) 0.90, 0.45 0.90, 0.45
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tested, considering the small molar fractions of the solutes in compar-
ison to water is estimated as close to Cj, , of water, estimated at various
tested temperatures (e.g. Cp m at T = 298.15K is estimated as 4179.7 J/
Kg/K [55], and thermal conductivity of the mixture is estimated as
0.61 W/m/K [55]).

4.2. Single-component breakthrough simulation

Considering the assumptions, and required model parameters dis-
cussed in Section 4.1, the breakthrough behavior is simulated in Aspen
Adsorption for single-component adsorption of ethyl acetate at various
flowrates and column lengths, in order to study the accuracy and
agreement of the model predictions with the experimental data. For the
experimental tests adsorption of ethyl acetate is investigated on a 3 cm
column packed with resins, Sepabeads SP20SS, and Amberlite XAD16N
and at various flow-rates (i.e. 2, 5, and 8 ml/min), and for a flow-rate of
10 ml/min for various column lengths for Sepabeads SP20SS resin (i.e.
1, 3, and 5cm) column, and a flow-rate of 2ml/min for the same
column lengths of Amberlite XAD16N.

4.2.1. Influence of flow-rate

The results of the simulation are compared with the experimental
breakthrough curves, obtained from column breakthrough analysis
tests, depicted in Fig. 1 for adsorption on Sepabeads SP20SS and Am-
berlite XAD16N respectively. As can be observed from Fig. 1, one ad-
sorption/elution cycle for Sepabeads SP20SS resin takes approximately
half the time in comparison to Amberlite XAD16N (e.g. 150 min for
flow-rate of 2ml/min in comparison to approximately 300 min on
Amberlite XAD16N), and the breakthrough curves observed on Sepa-
beads SP20SS resin, show steeper slope. The reason for being able to
achieve earlier breakthrough time and steeper breakthrough curve for
adsorption on Sepabeads SP20SS resin, can be explained by the resin
structure. This resin has smaller particle size (50-100 um) in compar-
ison to Amberlite XAD16N (250-710 pm), therefore it is possible to
pack the Sepabeads SP20SS resin tighter in the column, which leads to
less extra particle space (space between the particles), and less flow-
through around the particles, since higher extra-particle space can
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cause the flow to follow the path with the least resistance [45], which
occurs here for Amberlite XAD16N with larger particle diameter.
Moreover, a smaller particle size of Sepabeads SP20SS resin and higher
intraparticle porosity (€p) for this resin in comparison to XAD 16 N can
lead to enhanced mass transfer and more effective diffusivity (Deg) due
to more intraparticle diffusion, explained by the inverse of the second
term in Eq. (12), which is higher in comparison to external mass
transfer coefficient (k¢) for SP20SS resin in comparison to XAD16N,
[56], and leads to shorter mass transfer zone and a steeper break-
through curve.

In contrast to breakthrough curves obtained for adsorption on
Sepabeads SP20SS, the breakthrough curves for Amberlite XAD16N,
demonstrate a different behavior, the breakthrough time is earlier and
later exhaustion point is achieved on this resin, as the mass transfer
zone is longer and more dispersed on this resin. Similar shape of the
breakthrough curves obtained for adsorption on Sepabeads SP20SS
indicates that even at higher flow-rates the residence time of ethyl
acetate in the column was long enough for the mass transfer to occur.
Different observed shape for the breakthrough curves for adsorption on
XAD16N at higher flowrates in comparison to flowrate of 2 ml/min
implies that more residence time for enhanced mass transfer char-
acteristics is required for adsorption on this resin. The obtained results
are in agreement with the results reported in the literature on studying
the adsorption behavior of phenolic compounds on the resins with si-
milar structure, i.e. XAD16HP and SP700, as external mass transfer is
more dominant in the beginning of adsorption and early breakthrough
behavior is observed at higher flow rates [19].

4.2.2. Influence of column length

The experimental breakthrough curves obtained at various tested
column lengths are compared with Aspen simulations for adsorption on
the two tested resins, presented in Fig. 2. The breakthrough curves
obtained for adsorption of ethyl acetate on Sepabeads SP20SS resin
show a proportional increase in the breakthrough time and no change
in the shape of the breakthrough curve was observed when the column
length was increased. An increase in bed length increases the mass
transfer zone; therefore, there will be a longer distance from column

a)

= -Flowrate 2ml/min (Simulation)
—Flowrate 2ml/min(Experimental)
= -Flowrate 5ml/min(Simulation)
—Flowrate 5ml/min (Experimental)
= -Flowrate 8ml/min(Simulation)
— Flowrate 8ml/min(Experimental)

b)

140 150

Time(minute)

cic, ()
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= -Flowrate 5ml/min(Simulation)
—Flowrate 5ml/min (Experimental)
= -Flowrate 8ml/min(Simulation)
—Flowrate 8ml/min(Experimental)

225

250 275
Time(minute)

300 325 350 375 400 425 450 475 500

Fig. 1. Influence of flow-rate on single-component adsorption of ethyl acetate on a 3 cm column. (a) Sepabeads SP20SS, (b) Amberlite XAD16N.
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Fig. 2. Influence of bed length on single-component adsorption of ethyl acetate; (a) Sepabeads SP20SS (Flow-rate 10 ml/min) (b) Amberlite XAD16N (Flow-rate

2 ml/min).

entrance to the exit point, which results in an extended breakthrough
time. While the breakthrough time increases proportionally for ad-
sorption on Sepabeads SP20SS, for various tested column lengths, dif-
ferent behavior is observed for adsorption on Amberlite XAD16N,
Fig. 2, part b; where the shape of the breakthrough curve observed as
different when the tests are performed for a longer column (i.e. 5cm
here).

The observed phenomena can be explained by the shorter length of
the used column, which has influence on pore diffusion. Due to the
short column length used for Amberlite XAD16N (1 cm), pore diffusion
is not sufficient which leads to earlier increase of effluent concentration
and earlier breakthrough time. The estimated errors for the break-
through curves presented in Figs. 1 and 2 are estimated as explained in
Section 2.2.5, assembled in Table 2.

As can be concluded from the presented values in Table 2, predic-
tions at various flowrates show a more accurate estimation in com-
parison to different tested column lengths. For the tests performed on
the two tested resins, at different flowrates, higher accuracy and lower
standard error is calculated for adsorption on XAD16N in comparison to
SP20SS. In comparison to the tests performed at various flowrates, the
results of the tests at different column lengths show a higher percent
standard error, specifically for the tests performed on a 1 cm column
packed with SP20SS, in which a larger deviation between simulation
prediction and the experimental breakthrough front is observed in the
elution step. For adsorption/elution on XAD16N, a higher standard
deviation was obtained for adsorption on a 5 cm column in comparison
to the other two tested lengths.

4.3. Multi-component breakthrough simulation

4.3.1. Influence of temperature

In order to investigate the influence of temperature on multi-com-
ponent adsorption of flavor-active esters, competitive frontal break-
through analysis is performed to test the multi-component separation of
four major aforementioned flavor-active esters in beer. The influence of

310

temperature is investigated both on the obtained breakthrough fronts
and on the collected fractions. The comparison of the breakthrough
curves with the collected fractions is depicted in Fig. 3 for each tested
temperature.

The amount of equilibrium binding capacity is estimated for each
ester present in the mixture and for the three tested temperatures, ac-
cording to the procedure explained in Section 2.2.4 based on compe-
titive frontal analysis and compared with the results obtained from
integration of the breakthrough curves derived from fraction collection
and offline analysis. The two components with higher hydrophobicity
and similar molecular structure (i.e. ethyl 4-methylpentanoate and
ethyl hexanoate) have the same physical properties and similar break-
through time and show a similar breakthrough behavior and both are
detected in the third sub-plateau of the competitive frontal curve,
therefore for estimation of equilibrium binding capacity, based on the
competitive frontal analysis, both are considered in the third sub-

Table 2

Estimated errors for breakthrough times and percent standard deviation be-
tween simulated breakthrough curves and experimental frontal curves;
Adsorption at 298.15K and initial solution prepared in 1% v/v Ethanol.

Amberlite XAD16N
Flowrate (ml/min)

Sepabeads SP20SS
Flowrate (ml/min)

2 (ml/min) 5 (ml/min) 8 (ml/ 2 (ml/ 5 (ml/ 8 (ml/min)
min) min) min)

E(t,)% 3.85 0.080.24 0.11 0 0.035
MPSD  55.69 23.50 90.12 26.48 35.05 33.23

Column length (cm) Column length (cm)

1 (cm) 3 (cm) 5 (cm) 1 (cm) 3 (cm) 5 (cm)
E(tp)% 0.23 0.56 0.61 0.02 0.02 0.26
MPSD  1776.38 58.56 73.52 51.84 73.65 114.89
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Fig. 3. Comparison of competitive breakthrough fronts with collected fractions for adsorption/elution of multi-component mixture of esters on a 1 cm Sepabeads

SP20SS column prepared in 1% v/v ethanol; (a) T = 298.15K (b) T = 313.15K (c

plateau and the corresponding concentrations are measured in each
sub-plateau for each component and also from fraction collection and
offline analysis. The comparison of equilibrium binding capacity cal-
culated based on competitive frontal analysis and integration of the
breakthrough curves constructed through fraction collection and offline
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Fig. 4. Equilibrium binding capacity (adsorption) and mass eluted per gram of the p

) T = 333.15K.

analysis are illustrated in Fig. 4, part a for adsorption on a 1 cm column
packed with Sepabeads SP20SS resin and for the three tested tem-
peratures. The calculated values for binding capacity for each ester
present in the multi-component mixture reveal that, increase in tem-
perature is not favorable for adsorption of the flavor-active esters since
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for the four esters, 1 cm Sepabeads SP20SS column, initial solution prepared in 1%v/v Ethanol; (a) Adsorption (b) Elution.
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their adsorption is exothermic, which phenomena was also observed in
our previous studies on single and multi-component adsorption, using
batch uptake experimentation [8]. It can be clearly observed from
Fig. 4, part a, that the more hydrophobic the tested ester is, the higher
will be the value of q (equilibrium binding capacity), as the component
has more affinity for binding to the resin surface. The difference caused
in estimations based on competitive frontal analysis and the integration
is due to the constructed breakthrough curves, which are obtained from
offline analysis and experimental measurements, which has influence
on the shape of the breakthrough curves and integrated areas.

The same procedure is applied for estimation of the amount eluted
for each component from the column. The results are presented in
Fig. 4, part b, where the calculated values based on competitive frontal
analysis and integration are compared for each ester present in the
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mixture. Comparing the estimated values for the equilibrium binding
capacity and the amount of mass, which is eluted from the resin, at
various temperatures, we can conclude that, more components are re-
leased from the column and eluted at higher tested temperature, as
almost between 63 and 100% of the adsorbed esters are recovered at
333.15K. It is then followed by 313.15 K, in which 60-90% of the esters
are eluted from the column. In comparison, lower recovery (40-80%)
was achieved when elution was performed at lower temperature
(298.15K).

4.3.2. Influence of ethanol concentration

Influence of ethanol concentration on multi-component adsorption
behavior of the major flavor-active esters of interest is investigated at
temperature 333.15K on a lcm column packed with Sepabeads

1-6 I
1.4 |- I Breakthrough front
12 [Ethanol 1% (v/v)]
ol O Ethyl acetate
~.—¢, 0.8 : 55 O Isopentyl acetate
Q 0.6 P> Ethyl hexanoate
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Fig. 5. Adsorption/elution of multi-component mixture of esters on a 1 cm Sepabeads SP20SS column at 333.15 K, tested at ethanol concentrations 1 and 30% v/v;
(a) Competitive breakthrough fronts with collected fractions (b) Comparison of equilibrium binding capacity and the mass of the esters eluted from the column.
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SP20SS, for initial samples prepared in 1, and 30% v/v co-solvent
mixtures of ethanol/water. During the breakthrough analysis time,
fractions are collected and analyzed with HS-GC. The comparison of the
breakthrough fronts and the collected fractions is presented in Fig. 5,
part a, As the competitive breakthrough front illustrates, at higher
percentage of ethanol (i.e. 30% v/v), separate sub-plateaus cannot be
observed for each ester present in the mixture and the breakthrough
time is reduced to a great extent in comparison to the tested case with
1% (v/v) ethanol, therefore it makes it difficult to estimate the equili-
brium binding capacity associated with each ester present in the mix-
ture using the sub-plateaus as separate breakthrough curves are not
detected.

For this reason the amount of equilibrium binding capacity is esti-
mated based on the breakthrough curves, constructed from fraction
collection and off-line analysis and compared with previously estimated
equilibrium binding capacity calculated for adsorption/elution at 1% v/
v ethanol and T = 333.15K, presented also in Fig. 4. The comparison of
the estimated equilibrium binding capacities is depicted in Fig. 5, partb.
It can be concluded from Fig. 5 that increase in ethanol concentration
from 1 to 30% v/v has influence on equilibrium binding capacity of
esters, as lower equilibrium binding capacity is calculated for the
condition when the ethanol concentration is 30% v/v in comparison to
1% v/v from integration of the breakthrough curves. Increase in the
ethanol concentration in the mixture from 1 to 30% v/v lowers the
activity coefficient of esters in the liquid phase, and as esters have less
tendency to leave the aqueous phase, lower amount of esters is bound to
the resin at higher ethanol concentrations.

4.4. Cyclic operation for adsorption/elution in a fixed-bed column

4.4.1. Adsorption/elution cycle for each tested resin

Multi-component competitive adsorption/elution behavior of the
flavor-active esters, is simulated in Aspen Adsorption and breakthrough
curves are obtained for one batch cycle for adsorption on both resins,
(i.e. Sepabeads SP20SS and Amberlite XAD16N), for adsorption on a
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1cm column, at T = 333.15K and solutions prepared in 30% (v/v)
ethanol/water co-solvent mixture. In order to compare the influence of
resin structure and properties on shape of the breakthrough curves and
on breakthrough cycle time, the simulation results are compared for
both resins, also explained by constructed breakthrough curves derived
from fraction collection and offline analysis. One batch cycle is simu-
lated through cycle organizer in Aspen Adsorption and the break-
through time is considered the same as the time obtained from fraction
collection and complete breakthrough for all the tested esters in the
mixture. The comparison of the breakthrough curves together with the
collected fractions is presented in Fig. 6, for adsorption on Sepabeads
SP20SS and Amberlite XAD16N respectively.

It can be observed from Fig. 6, that the simulated breakthrough
curves are able to predict the experimental breakthrough curves with
higher accuracy for Amberlite XAD16N, and the stepwise breakthrough
for ethyl hexanoate and ethyl 4-methylpentanoate and the slight
overshoot observed for isopentyl acetate is not well-predicted by si-
mulation for adsorption on Sepabeads SP20SS resin. Longer break-
through time and mass transfer zone, is achieved for separation on
XAD16N in comparison to SP20SS resin, as was also observed pre-
viously for single component adsorption of the flavor-active esters, il-
lustrated in Figs. 1 and 2 due to larger particle size of XAD16N and
smaller pore volume of this resin as discussed before. The estimated
percent standard deviation between the simulated breakthrough curves
and the experimental collected fractions, and the deviation between the
experimental and simulated breakthrough times are reported in
Table 3.

From presented values in Table 3, it can be concluded that simu-
lated breakthrough curves are able to predict the multi-component se-
paration for XAD16N with higher accuracy in comparison to SP20SS, as
lower values for MPSD are estimated for XAD16N and due to the de-
viation of the model prediction from the experimental behavior ob-
served for the two components ethyl acetate and Isopentyl acetate and
the overshoot detected in experimental data due to displacement effects
and competition of the flavor-active esters in the mixture for
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Fig. 6. Comparison of simulated breakthrough cycle and collected fractions for adsorption of multi-component mixture of esters (prepared in 30% ethanol) ona 1 cm
column packed with (a) Sepabeads SP20SS b) Amberlite XAD16N resin; (Adsorption at T = 333.15K).
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Table 3

Estimated errors for breakthrough times and percent standard deviation be-
tween simulated breakthrough curves and experimental breakthrough curves
obtained from fraction collection; Adsorption at 333.15 K and 30% v/v Ethanol.

Sepabeads SP20SS Amberlite XAD16N

E(t,)% MPSD E(t,)% MPSD
Ethyl acetate -0.17 308.17 1.22 42.44
Isopentyl acetate 482.08 99.99
Ethyl 4-methylpentanoate 76.78 49.48
Ethyl hexanoate 87.36 48.64

adsorption, the simulated breakthrough curves predicted the adsorption
behavior for these two components with less accuracy in comparison to
the other tested components.

4.4.2. Influence of temperature and ethanol concentration on adsorption/
elution cycle on Sepabeads SP20SS

To investigate the influence of temperature and ethanol con-
centration on one adsorption/elution cycle of flavor-active esters, ad-
sorption/elution breakthrough behavior is simulated for a column
packed with Sepabeads SP20SS resin as is explained in Appendix E, and
simulated breakthrough cycles are compared, illustrated in Fig. E.1.

4.4.3. Cyclic operation in a larger scale column

Studying the influence of temperature and ethanol concentration on
adsorption/elution behavior of flavor-active esters in a lab-scale
column, gives us an insight about the possibility of their separation and
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important parameters which are required to be considered, when tests
are going to be performed in a larger scale column. With the conclu-
sions obtained from experimental tests, a similar condition is con-
sidered for simulation of the breakthrough behavior and cyclic opera-
tion for a larger scale column. The column length of 2m and internal
column diameter of 0.08 m, are selected as typical column dimensions
[34], in order to test the model based approach for prediction of
breakthrough behavior for separation of flavor-active esters. Higher
flow-rate, 300 L/hr is considered for each batch cycle. The simulation is
performed again for the case with initial solution of esters prepared in
1% v/v ethanol/water co-solvent mixture and adsorption at
T = 298.15K. Two batch cycle operations are programed using cycle
organizer in Aspen Adsorption. Two different scenarios are considered
for the simulation. The first scenario is simulated based on recovery and
separation of ethyl acetate, the main flavor-active ester present in the
beer matrix, and this ester is considered as the limiting ester in the
mixture (column loading until breakthrough for ethyl acetate is
achieved). The second scenario is simulated based on removal and
complete adsorption of all of the flavor-active esters present in the
mixture. In the initial step in each simulated cycle, the adsorption of
flavor-active esters takes place at T = 298.15K, it is then followed by
elution step, which is performed with 1% v/v ethanol solution and
direct temperature increase from 298.15K to 380.15K, as a tempera-
ture increase will aid the elution step and release of the high hydro-
phobic components of the column. Temperature of 380.15K is selected
as maximum allowable temperature, due to the thermo-stability of the
resin and flavor-active esters at higher temperatures. After the elution
step, the column is washed with water at high temperature (380 K) to
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Fig. 7. Cyclic operation for two batch cycles, column packed with Sepabeads SP20SS resin (L = 2m, D = 0.08 m); (a) Adsorption and recovery of ethyl acetate (b)

Adsorption and recovery of four esters.
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elute the traces of ethanol for 30 min and cooled down during 20 min to
the initial temperature of 298.15 K. The second cycle will start within
50 min with the same condition defined for the initial cycle. The result
of the simulation for two batch cycles is shown in Fig. 7, part a, for the
first scenario, removal of ethyl acetate, and in Fig. 7, part b, for com-
plete removal of all of the flavor-active esters from the initial feed
stream. The considered conditions for each step are presented for one
batch cyclic operation in Fig. 7.

The selected operating conditions for the simulation together with
explanation of the calculations for percentages of recovery are ex-
plained in Appendix E, Table E1. For the first scenario, higher recovery
of ethyl acetate can be achieved in comparison to the other tested es-
ters, since after the breakthrough time for this ester as the limiting
component, the elution step starts and specifically the two esters with
the highest hydrophobicity, do not have sufficient time for adsorption.
In the second scenario, the percentage of ethyl acetate which is re-
covered (% c/a) is less in comparison to the other esters, since some
amount of this ester component is lost during the loading time until the
breakthrough point for the last hydrophobic ester is achieved and
higher percentage of the last hydrophobic esters, i.e. ethyl 4-methyl-
pentanoate, and ethyl hexanoate is recovered. For the first scenario,
1.2m?> of the feed stream can be processed during approximately 4 h
considered for adsorption, elution, and washing steps, while in the
second scenario, 2.1 m> of the feed stream is processed within 7 h for
the same steps as scenario 1. Change in temperature of the adsorbent
during each step and for the two simulated scenarios is not significant
and maximum temperature difference for the adsorbent between
column inlet and column outlet, is observed as 0.002°K, for scenario 1,
and 0.03°K for scenario 2, during the temperature increase for the
mobile phase from 298.15 to 380.15 K in the elution step. The condition
considered for simulation here, is based on the tested condition for the
lab-scale column. Similar condition is considered for adsorption and
elution steps in a larger scale column to predict the breakthrough be-
havior, percentage of recovery, and batch operation time required for
each cycle. In real process condition, the presence of other flavor and
non-flavor-active components, besides CO, which is present in the
process streams, will influence the adsorption behavior of esters, and
for consideration of the adsorption step for removal of flavor-active
esters or their fractionation, the influence of other components, should
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be considered on their competitive adsorption behaviour and per-
forming an economic optimization step is necessary to determine the
minimized column volume in order to maximize the production rate.

5. Conclusions

Competitive frontal analysis method combined with fraction col-
lection was able to predict the binding capacity for flavor-active esters
and to measure the equilibrium concentrations in intermediate sub-
plateaus of the breakthrough front. Increase in temperature was not
favourable for adsorption of esters on SP20SS resin; however, tem-
perature increase enhanced their elution from the column. Increase in
ethanol concentration reduced the breakthrough time for adsorption to
a great extent. The simulated breakthrough behavior for the tested es-
ters, revealed a shorter cycle time and breakthrough curves with a
higher slope for SP20SS in comparison to XAD16N, which can be ex-
plained by smaller particle size and enhanced mass transfer char-
acteristics of this resin. Cycle time for simulated adsorption/elution step
for a column packed with this resin, showed a decrease (approximately
five times) with increase in temperature and ethanol concentration.
Simulated breakthrough curves for multi-component separation of es-
ters showed higher accuracy and agreement with the experimental
breakthrough curves constructed through fraction collection for
XAD16N in comparison to SP20SS. Breakthrough behavior and cyclic
operation simulated for a larger scale column, showed recovery for
ethyl acetate and its separation from other flavor-active esters (scenario
1), and complete separation of esters (scenario 2). In order to be able to
perform a more detailed simulation for prediction of breakthrough
behavior, the influence of other components in the mixture on com-
petitive adsorption of esters and the influence of process conditions and
parameters needs to be further investigated.
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Appendix A. Physical properties of adsorbents and tested ester components

(See Tables A1-A3).

Table Al
Physical properties of tested adsorbents.

Pore volume (ml/g)

Mean pore size (10\) Surface area (m2/g) Dry density (vs. wet) (g/ml)

Resin Matrix Particle size (um)
Sepabeads SP20SS Styrene-divinylbenzene 50-100 1.01
Amberlite XAD16N Styrene-divinylbenzene 560-710 0.55

260 500
200 800

1.3)
1.08 (1.02)

Table A2
Physical properties of the tested flavor-active esters.

Component Molecular structure Molar mass (g.mol 1) Log P Solubility (mol.L~1) Solvent accessible surface area (A)? Flavor description
Ethyl acetate M\ «CW 88.106 0.28 0.03 287.33 Solvent-like, nail polish
o
o
Isopentyl acetate S CHy 130.187 1.53 -1.41 375.79 Banana, Pear drop
Ethyl 4-methylpentanoate I 144.214 2.16 -1.92 412.57 apple
Mw T
Ethyl hexanoate “’C\/\/\’( e 144.214 2.31 -1.99 438.56 apple
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Table A3
Heat of adsorption for flavor-active esters.

Heat of adsorption (AH) (KJ.mol 1)

Sepabeads SP20SS Amberlite XAD16N
Ethyl acetate —13.64 —-12.57
Isopentyl acetate —25.05 —20.26
Ethyl 4-methylpentanoate -28.12 -21.07
Ethyl hexanoate —30.66 -31.13

Appendix B. Expression of apparent dispersion coefficient (D)

For equilibrium dispersive model, Egs. (B.1) and (B.2) represent the relation between DNapp,l- and apparent dispersion coefficient (D,p,), axial
dispersion coefficient (D,,) and effective mass transfer coefficient (k.g) [26].

~ u
Doppi = —D,
appii = Dappi (B.1)
~7 2
D =D+ k € Tp U
app — Hax — ~r 5 5
1+k ) 1=e3 ke (B.2)

Parameter D,,, expresses the axial dispersion which sums the contribution of axial molecular diffusion and eddy diffusion [33,46]. k' has relation
with the retention factor of the component of interest between the mobile and stationary phase (k’) according to Eq. (B.3) [26]. k' can be calculated
from the difference between retention time of component i (tz ;) and the dead time of the column for total liquid holdup (t,), divided by ¢, [26]. ke is
the effective mass transfer coefficient, which can be estimated from film mass transfer coefficient and pore diffusion [26].

~/ ET ’
k=20 +k)-1
. aQ+k" (B.3)

Appendix C. Assumptions and conditions for simulation in Aspen adsorption

The information related to configuration of the adsorbent bed and the equations for each layer of adsorbent are adjusted in the configuration
form, [50,57] Mixed Differencing Scheme (MDS) with 29 nodes is used as the discretization method, with the advantage of having precision and
more stability [50,57]. As the assumption for material balance, convection with estimated dispersion is considered for the simulation and the
dispersion coefficient is estimated as explained in Section 2.2.2.1. Varying velocity is assumed inside the column and pressure drop is estimated
based on Kozeny-Carman relation. For the kinetic model assumption, linear lumped resistance is considered for the simulation. As the isotherm
model, multi-component Langmuir model, presented in Eq. (3), is considered and the Langmuir parameters are obtained from batch uptake ex-
perimentation, based on previous work [8]. Energy balance is assumed as non-isothermal with conduction in fluid and solid phase. Heat of ad-
sorption for each tested ester, acquired from our previous study [8] is used for the simulation of non-isothermal condition. Heat transfer to the
environment is considered as adiabatic and the last term in Eq. (6) is neglected. Cyclic operation is simulated with step control, using cycle organizer.
Time driven steps are simulated for adsorption, elution, washing, and cooling steps and required cyclic operation time for each batch cycle is
obtained for the two different simulated scenarios.

Appendix D. Estimation of equilibrium binding capacity based on competitive frontal analysis

A sample of a breakthrough front is shown in Fig. D.1 for a three-component mixture.

In the left figure, breakthrough front for adsorption is depicted. In the first breakthrough curve, the least binding compound will be detected with
the breakthrough (BT) volume of V,; (ml). The second component with stronger hydrophobicity will be detected in the second sub-plateau, followed
by the third compound with the highest hydrophobicity, which will be present in the third breakthrough front, until the concentration in the outlet
reaches the feed concentration. The amount of analyte adsorbed on the column can be calculated for each component, according to Egs. (D.1)-(D.3).

a. For adsorption of the first component

g _ (Vas—Vi) CF (Vo= Vi2) CF s (Var— Vi) Caas
Lads Myesin (Dl)

b. For adsorption of the second component

o= (Vas=Vi) C3 "~ (Vas=Vi2) C s
2.ads Myesin (D2)

c. For adsorption of the third component

g = VWG
Sads Myesin (DB)

where V3, V5, and V,3 (ml) are breakthrough volumes for adsorption of the first, second, and the third components respectively. Cl,adf and Cz,ad53
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Fig. D1. Stepwise breakthrough fronts for adsorption and desorption of a ternary mixture; (a) Adsorption breakthrough front (b) Desorption breakthrough front.

(mg/ml) are the concentrations corresponding to the first and second components in the second plateau and C; .4 is the concentration of the first
component in the first breakthrough front. m ey, is the mass of the packed column (g), and q1 ads, 2,ads» and Q3 ags are equilibrium binding capacities
for the first, second, and the third component (mg/g resin)- The mass of each component desorbed from the resin can be estimated according to Egs.
(D.4)—(D.6), assuming symmetrical frontal sub-plateaus as is depicted in Fig. D.1, part b, from desorption breakthrough frontal curve.

d. For desorption of the first component
4 = GV G

1.des Myesin (D4)
e. For desorption of the second component

oo = Var=Viui) C3™ + (Viaa=Var) Ches
2.des Myesin (D-5)

f. For desorption of the third component

q _ (le_vini[)cgni[ + (de_le)Cf,des + (Vd3_Vd2)C33,des
3.des Myesin (D6)

where Vg, Vaa, and V43 (ml) are breakthrough volumes for desorption of the first, second, and the third components respectively. C3,des2 and Cz,desz
(mg/ml) are the concentrations corresponding to the third and second components in the second plateau and C3,des3 is the concentration of the third
component in the last sub-plateau of the breakthrough front. q; ges, Q2,dess and Q3 g4es are masses for the first, second, and the third component (mg/g
resin) €luted from the column.

Appendix E. Batch adsorption/elution cycle for Sepabeads SP20SS column

For adsorption on 1 cm Sepabeads SP20SS column and for two tested cases (a) Solution of esters prepared in 1% v/v ethanol solution and
adsorption at T = 298.15K, and (b) Solution of esters prepared in 30% v/v ethanol solution and adsorption at T = 333.15K, the simulated
breakthrough cycles for the two cases are compared in Fig. E.1.

It can be detected from Fig. E.1 that the cycle time reduces almost to one fifth, when adsorption takes place at higher temperature and ad-
sorption/elution is performed with 30% v/v of ethanol solution. The observed decrease in cycle time can be explained by influence of temperature on
adsorption and elution step, which is discussed in detail in Section 4.3. Also influence of increase in ethanol percentage from 1 to 30% v/v observed
as considerable on binding capacity of esters as discussed in Section 4.3.2, and performing the experiment at both high concentration of ethanol and
at high temperature, leads to less binding of ester components and enhanced elution characteristics.

For the performed simulation for a larger scale column packed with the same resin, the column operating condition together with the percentage
of recovery for each tested ester during each programed cycle and for each scenario is presented in Table E1.

In order to calculate the percentage of recovery for each ester component, the number of moles eluted after the adsorption step are calculated
through integrating the area under the breakthrough curve for the similar time defined for adsorption step in the simulation. The percentage of each
ester component recovered after the elution step is then calculated as the ratio of the number of moles eluted to the initial number of moles of the
ester in the feed stream. The number of moles adsorbed for each tested flavor-active ester are calculated based on Eq. (E.1).

BT, ity

Number of moles adsorbed = ./O‘ (F X Cyoue X dt)

(E.1)

where tgr ; represents the breakthrough time for each ester component (hr). The productivity for each simulated scenario is reported as the volume of
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a)
(Ethanol 1%v/v ), Temperture= 298.15 K b) (Ethanol 30%v/v), Temperature=333.15 K
1.2 T T T T 1.2 T T T T
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Fig. E1. Comparison of adsorption/elution cycle for adsorption on a 1 cm column packed with Sepabeads SP20SS resin and two cases; (a) Solution of esters prepared
in 1% v/v Ethanol and adsorption at T = 298.15K, (b) Solution prepared in 30% v/v Ethanol and adsorption at T = 333.15K.

Table E1
Column operating condition and percentage of recovery for each ester in the product stream during each programed cycle and for each simulated scenario.

Column operating condition

Column length (m) 2

Column diameter (m) 0.08

F (m®/hr) 0.3

T (adsorption) (K) 298.15

T (elution) (K) 298.15, direct increase to 380.15

Scenario 1. Separation of ethyl acetate

Component Ethyl acetate Isopentyl acetate Ethyl 4-methylpentanoate Ethyl hexanoate
Gi, Feea (mol/m®) 5.11 3.46 3.12 3.12

Number of moles loaded (a) (mol) 0.10 0.07 0.62 0.62

Number of moles adsorbed (b) (mol) 0.037 0.025 0.009 0.004

Number of moles eluted (c) (mol) 0.037 0.024 0.009 0.004

% c/b 100.33 94.29 100.75 100.38

% c/a 37.06 34.58 15.83 4.30
Productivity (m®) 1.20

Scenario 2. Separation of all esters

Number of moles loaded (a) (mol) 4.60 3.11 2.81 2.81
Number of moles adsorbed (b) (mol) 0.090 1.080 2.489 2.459
Number of moles eluted (c) (mol) 0.091 1.080 1.979 2.009
% c/b 100.67 100 79.52 81.71
% c/a 1.97 34.68 70.51 71.58
Productivity (m®) 2.09

feed stream (m®) that can be processed during the considered cycle time (time for loading, elution, and washing step), shown Table E1 for each
scenario.

Appendix F. Supplementary material
Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.seppur.2018.05.008.
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