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Distribution of global sea turtle  
nesting explained from regional‑ 
scale coastal characteristics
Jakob C. Christiaanse 1*, José A. A. Antolínez 1, Arjen P. Luijendijk 1,2, 
Panagiotis Athanasiou 2, Carlos M. Duarte 3 & Stefan Aarninkhof 1

Climate change and human activity threaten sea turtle nesting beaches through increased flooding 
and erosion. Understanding the environmental characteristics that enable nesting can aid to preserve 
and expand these habitats. While numerous local studies exist, a comprehensive global analysis of 
environmental influences on the distribution of sea turtle nesting habitats remains largely unexplored. 
Here, we relate the distribution of global sea turtle nesting to 22 coastal indicators, spanning 
hydrodynamic, atmospheric, geophysical, habitat, and human processes. Using state‑of‑the‑art 
global datasets and a novel 50‑km‑resolution hexagonal coastline grid (Coastgons), we employ 
machine learning to identify spatially homogeneous patterns in the indicators and correlate these 
to the occurrence of nesting grounds. Our findings suggest sea surface temperature, tidal range, 
extreme surges, and proximity to coral and seagrass habitats significantly influence global nesting 
distribution. Low tidal ranges and low extreme surges appear to be particularly favorable for individual 
species, likely due to reduced nest flooding. Other indicators, previously reported as influential (e.g., 
precipitation and wind speed), were not as important in our global‑scale analysis. Finally, we identify 
new, potentially suitable nesting regions for each species. On average, 23% of global coastal regions 
between −39

◦ and 48◦ latitude could be suitable for nesting, while only 7% is currently used by turtles, 
showing that the realized niche is significantly smaller than the fundamental niche, and that there 
is potential for sea turtles to expand their nesting habitat. Our results help identify suitable nesting 
conditions, quantify potential hazards to global nesting habitats, and lay a foundation for nature‑
based solutions to preserve and potentially expand these habitats.

Climate change and human activity pose many different challenges to sea turtles, including the flooding and 
erosion of their nesting habitats—sandy  beaches1,2. Although sea turtles have successfully evolved and adapted 
to habitat changes over millions of years, their slow population growth rates mean they are unable to recover 
quickly from population declines (recovery rates of sea turtle populations can range from several decades to 
100  years3). This makes them particularly vulnerable to relatively fast-paced changes to their nesting  habitat4,5, 
such as current human and climate-induced effects on nesting beaches (e.g., rising temperatures and sea levels)6.

An imminent threat is the flooding and erosion of nesting beaches during events with high water levels and/or 
waves (e.g., storms and tropical cyclones). Incubating nests can get inundated or even washed away, significantly 
decreasing hatching  success4,7. Furthermore, storm erosion can significantly alter beach morphology, which may 
affect nesting over several  seasons8. On longer time-scales, structural erosion and coastal squeeze may gradually 
diminish the amount of nesting habitat available to sea turtles (e.g.,6,9,10). These threats are expected to inten-
sify in the future, because many nesting beaches lie in (1) the  tropics11, the most vulnerable zone to increased 
future coastal flooding due to sea level  rise12; (2) regions prone to tropical cyclone  activity4,13; and (3) develop-
ing countries, where coastal areas are expected to become increasingly developed in the  future14. Nature-based 
solutions—for example, through turtle-friendly design of sand nourishments or by adding coastal vegetation or 
reefs to provide coastal protection from flooding and erosion—may offer promising opportunities to preserve 
and even expand nesting habitats. However, we first need to understand the environmental characteristics that 
enable sea turtle nesting to design such solutions.

Many studies have attempted to identify preferential nesting conditions for sea turtles, but the results are often 
inconclusive or inconsistent among studies (e.g.,15,16). Generally, incubating nests require certain temperature 
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and humidity  windows17, and nesting females seemingly try to limit the exposure of their nests to conditions 
outside these windows. Hence,  temperature15,17–20,  humidity15,17–20, geomorphology (e.g., beach elevation and 
slope)15,21–26, hydrodynamics (e.g., waves and water levels)16,27,28, and human  activity25 have all been mentioned 
as potentially influential factors on nesting suitability. Yet, to date there are hardly any robust ranges for the 
multivariate characteristics believed to enable turtle nesting. They vary significantly between nesting beaches of 
different species, and even populations of the same  species18,23. The fact that all sea turtles exhibit some degree of 
nest site fidelity, returning to nest in the region where they  hatched29, further complicates causation. It therefore 
remains uncertain how turtles select their nesting  beaches30.

Most past studies have focused on individual (and usually popular) nesting beaches, rarely comparing them 
to ’non-nesting’ beaches, which may make it difficult to discern suitable  conditions30. Moreover, focusing on 
individual beaches limits the analysis to a small subset of the species’ realized niche and hinders the ability to 
distinguish patterns on a regional level. Only few studies have tried to identify suitable characteristics for nesting 
on a scale that exceeds individual beaches within the same  region15,18,27,31.  Pike18 was the only one of these who 
analyzed and predicted nesting suitability over large parts of the global coastline, but his analysis was limited 
to variables related to temperature and precipitation, and did not include any information on hydrodynamics, 
geomorphology, habitat, or human activity near nesting sites.

Here, we relate sea turtle nesting activity to a broad range of environmental characteristics of global coastal 
regions. All five globally distributed species are considered: the loggerhead turtle (Caretta caretta, CC), green 
turtle (Chelonia mydas, CM), hawksbill turtle (Eretmochelys imbricata, EI), leatherback turtle (Dermochelys 
coriacea, DC), and olive ridley turtle (Lepidochelys olivacea, LO). We assess the influence of 22 coastal indicators 
related to hydrodynamic, atmospheric, geophysical, habitat, and human processes on the global distribution of 
sea turtle nesting grounds, using state-of-the-art global datasets combined with tailored machine learning tech-
niques. We then identify spatially homogeneous patterns in the most influential indicators through a global-scale 
cluster analysis of coastal regions. Using the clusters, we further investigate the relationship between influential 
coastal indicators and nesting activity and identify new, potentially suitable nesting regions (fundamental niches) 
for all five species. The results (1) help identify and quantify suitable nesting conditions and main hazards in 
each (potential) nesting region; and (2) guide research on the design of nature-based solutions to restore and 
preserve nesting habitats from present and future coastal impacts, and to enable the colonization of potentially 
suitable nesting  regions32.

Methods
We characterized the World’s coastline using state-of-the-art global datasets on hydrodynamic, atmospheric, 
geophysical, habitat, and human variables (Table 1). These data were spatially aggregated onto a novel 50-km-
resolution hexagonal coastline grid, called Coastgons33, to perform our analysis on a single resolution (a Coastgon 
being a hexagonal coastal cell). We derived 22 indicators describing temporal and spatial variability of coastal 
characteristics for each Coastgon (Table 2). Next, we assessed the importance of these indicators on the global 
distribution of sea turtle nesting grounds through a machine learning regression technique (random forests), 
and selected a subset of six influential indicators for each sea turtle species. We identified patterns in the coastal 
characteristics of global sea turtle nesting habitats by clustering the six indicators of each species with self-
organizing maps, a machine learning clustering technique. Finally, we identified new, potentially suitable nesting 
regions for each species, based on the clusters, and illustrated these in nesting suitability maps. The methodology 
is explained in more detail in the following sections and illustrated in Figure 1.

Global data
We used global data describing sea turtle nesting activity  (SWOT34,35 and  WIDECAST36), waves, wind, sea 
surface temperature, and precipitation  (ERA537), tide and surge levels  (GTSM38), ocean currents  (ORAS539), 
geomorphology and coastal land use (GCC 40), and the distribution of coral reefs (Allan Coral  Atlas41) and sea 
grass meadows (UNEP-WCMC42). Each dataset is briefly described below and summarized in Table 1.

• SWOT, the State of the World’s Sea Turtles project, provides a database of global sea turtle nesting sites since 
2004 (although including earlier data), compiled from data contributions of over 550 individuals and organi-
zations around the World and is hosted by the OBIS-SEAMAP  platform34,35. As such, the spatial resolution 
and accuracy vary significantly, ranging from different sites on the same beach, to groups of beaches (e.g., a 
small island with multiple beaches). Each site is labeled either as ’Quantified’, ’Unquantified’, or ’No-Nesting’. 
Since our Coastgon resolution is large enough to aggregate the different spatial resolutions of the nesting sites 
and we did not weight Coastgons based on the number of nesting sites, we used all quantified and unquanti-
fied nesting sites ( N = 5383 unique sites, many with multiple species, see Supplementary Fig. S3).

• WIDECAST, the Wider Caribbean Sea Turtle Conservation Network, provides a nesting atlas spanning 45 
Caribbean countries and territories, compiled from data provided by more than 200  contributors36. There is 
significant overlap between the SWOT and WIDECAST datasets, but WIDECAST provides additional data 
for several regions where SWOT is incomplete (e.g., Brazil). As we aggregate all nesting sites to the Coastgon 
grid, the overlap is not a problem for the analysis, hence we used all available nesting sites ( N = 1336 unique 
sites, many with multiple species, see Supplementary Fig. S3).

• ERA5, the ECMWF Reanalysis v5, is a gobal atmospheric reanalysis, providing hourly time series of atmos-
pheric, land, and oceanic climate variables from 1940 to  present37. The model is split into two coupled struc-
tured global grids, ERA5-wave at a resolution of 0.5◦ for wave variables (e.g., sea and swell wave heights and 
periods) and ERA5-atmos at a resolution of 0.25◦ for atmospheric, land, and oceanic climate variables (e.g., 
wind, land moisture, and sea surface temperature). We used time series of significant wave height (wind sea 
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Figure 1.  Flowchart showing the methodology of this study. First, data gathered from eight global datasets 
was aggregated onto the Coastgon grid. Next, we derived 22 coastal indicators for each Coastgon from these 
data using descriptive statistics. We then assessed the influence of each indicator on the distribution of global 
sea turtle nesting by fitting a random forest model. Based on the feature importance we selected a subset of six 
influential indicators per turtle species. Then we identified patterns in the six indicators among global sea turtle 
nesting regions, by clustering the Coastgons based on the six indicators selected for each species, through self-
organizing maps (SOM). Finally, we identified new, potentially suitable nesting regions for each species, based 
on the SOM clusters.

Table 1.  Summary of the global datasets used for this study.

Dataset Data Refs. Type of data Spatial dimensions Temporal dimensions

SWOT Nesting grounds 34,35 Observations Geolocations, variable n/a

WIDECAST Nesting grounds 36 Observations Geolocations, variable n/a

ERA5-wave Hydrodynamics 37 Reanalysis Structured grid, 0.5◦ 1980–2021, hourly

ERA5-atmos Meteorology 37 Reanalysis Structured grid, 0.25◦ 1980–2021, hourly

GTSM Tide and surge 38 Hindcast Unstructured grid, variable 1980–2018, 10 min

ORAS5 Ocean currents 39 Reanalysis Structured grid, 0.25◦ 1980–2021, monthly

GCC Geomorphology 40 Mixed Transects, 1 km variable, single times

Allan Coral Atlas Coral reef extent 41 Modelled Geopolygons, variable 2020, single time

UNEP-WCMC Seagrass locations 42 Observations Geopolygons, variable Since 2003
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and swell combined), peak wave period, 10 m wind speed, sea surface temperature, and total precipitation 
from 1980 to 2021 (42 years).

• GTSMv3.0, the Global Tide and Surge Model, solves tidal propagation and was forced with wind and sea 
level pressure fields from ERA5 to provide a 10-minute interval time series of global tide and storm surge 
 levels38. The spatial resolution of the output nodes varies around the globe, but is generally around 20− 50 
km near the coast, with higher resolution along European coastlines ( < 10 km). We used tide and surge data 
computed for 1985 to 2014 (30 years).

• ORAS5, the Global Ocean ReAnalysis System, is a global, eddy-permitting ocean and sea ice ensemble rea-
nalysis, based on five  members39. It provides global monthly mean values of ocean data from 1958 to present, 
on a structured grid with 0.25◦ horizontal resolution and at 75 depth levels up to 5500 m deep. We used time 
series of ocean current velocities at 0.5 m below the surface, from 1980 to 2021.

• GCC , Global Coastal Characteristics, is a dataset of hydrodynamic, geophysical, and socioeconomic indica-
tors along the global  coastline40. Data is provided at shore-normal transects which follow the coastline at 
1-km intervals. We used data on geomorphology (slopes and topography), shoreline orientation, and built 
environment in the coastal zone.

• The Allan Coral Atlas provides a global coral reef extent map, based on reef occurrence probabilities com-
puted through a convolutional neural  network41. We used geo-referenced polygons of coral reefs covering 
all ocean basins.

• UNEP-WCMC provides a global distribution of seagrass  meadows42, which is regularly updated since 2003, to 
reflect present conditions. We used geo-referenced polygons of seagrass meadows covering all ocean basins.

While SWOT and WIDECAST provide invaluable sources of nesting data, we are aware that these datasets are 
not complete and that some developing countries in particular are underrepresented in the database (see also 
Discussion). We therefore added some additional nesting sites to our analysis—specifically in regions where 
we know SWOT is incomplete—based on information provided by Shimada et al. (Red Sea)43, Shanker and 
Chowdhury (India and Pakistan)44, and Laloë and Hays (global)45. An overview of all nesting sites used for this 
study is presented in Supplementary Fig. S3.

Moreover, the variability in accuracy and completeness of the SWOT nesting data and the use of other global 
datasets were one of the reasons that we chose the Coastgon approach (see next section) with a resolution (50km) 
suited to regional analysis of coastal characteristics. A single nesting site in SWOT will lead to a corresponding 
‘nesting Coastgon’, regardless of how many turtles nest there, or how many other nesting sites there are close by. 
This mitigates the issue of underreported and missing nesting sites.

Table 2.  Overview of the 22 regional coastal indicators for each coastgon, derived from the global datasets in 
Table 1. They are divided into five categories: hydrodynamic, atmospheric, geophysical, habitat, and human.

Category Variable Indicator Symbol Unit Dataset

Hydrodynamic

Significant waveheight
Median Hs,med m

ERA5  Ocean37

95th percentile Hs,p95 m

Peak wave period

Median Tp,med s

95th percentile Tp,p95 s

Standard deviation Tp,std s

Surge level
Median hS,med m

GTSM38
95th percentile hS,p95 m

Tidal range Mean htide m

Ocean current velocity Median uc,med m/s
ORAS539

Ocean current proximity Distance to nearest current ≥ 0.3m/s Dc,03 km

Atmoshperic

10m wind speed
Median U10,med m/s

ERA5  Atmos3795th percentile U10,p95 m/s

Sea surface temperature Median SSTmed
◦C

Total precipitation Median Pmed mm/y

Geophysical

Shoreline angle Standard deviation φstd
◦

GCC 40

Nearshore slope Median βns,med –

Backshore slope Median βbs,med –

Max coastal elevation within 1km of 
shoreline

Median zmax,med m + msl

Standard deviation zmax,std m + msl

Habitat
Coral reef proximity Distance to nearest coral reef habitat Dcor km Allan Coral  Atlas41

Seagrass meadow proximity Distance to nearest seagrass habitat Dsgr km UNEP-WCMC42

Human Built env. in coastal zone Mean % built environment pbuilt % GCC 40
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Coastgons
We created a novel ≈ 50-km-resolution hexagonal coastline grid, called Coastgons, dividing the Earth’s coastline 
between − 39◦ and 48◦ latitude into distinct coastal  regions33. The latitude limits were chosen by adding a buffer 
to the latitudes of the most northern and southern known sea turtle nesting sites in the SWOT  database34. We 
opted for a hexagonal cell grid over a point-based transect system as it better represents the contiguous nature 
of coastal regions. Additionally, the geometric properties of hexagons, such as uniform distance between neigh-
boring cell centers and equitable partitioning of space, make them efficient and suitable for geospatial analyses 
and visualisation.

We used the H3 hexagonal hierarchical geospatial indexing  system46 as a basis for the Coastgons. H3 covers 
the Earth’s surface with a hexagonal cell grid at 16 hierarchically leveled resolutions. The H3 grid was created by 
covering the 20 planar faces of an icosahedron with hexagonal cells and then projecting each face onto Earth’s 
surface using a gnomonic  projection46. Each hexagon is then defined by the latitude/longitude coordinates 
(WGS84) of its vertices.

We created the Coastgons by overlaying the H3 grid (resolution 4) over the centroids of the coastline tran-
sects used in the GCC  dataset40. The geospatial overlay selected every H3 hexagon that covered at least one GCC 
transect centroid, leading to many Coastgons that represented very short sections of coastline (O(10km)). To 
mitigate this issue, we refined the grid by filtering Coastgons based on their number of transects and neighboring 
Coastgons, while ensuring that the resulting coastline grid would not be interrupted by gaps. The GCC tran-
sects that fell into eliminated Coastgons, were subsequently matched to the nearest remaining Coastgon, up to 
a maximum distance of 100 km. Hence, in the final grid ( N = 5848 Coastgons), every coastline transect within 
100 km of the grid is represented by one Coastgon. Finally, we assigned a representative coastline centroid (CLC) 
to each Coastgon, given by the centroid of all transects linked to it.

The challenges of projecting a global grid over the Earth’s surface mean that not all H3 hexagons are regular 
(equilateral and equiangular), and they can vary in size (although the size is not correlated with the latitude due 
to the gnomonic projection used in H3)46. For the Coastgon grid, this results in a mean cell area of 1775 km2 
(standard deviation 242 km2 ) and a mean diameter (distance between opposing vertices) of 52 km (standard 
deviation 3.7 km). We accepted this property, given our analysis did not involve any indicators that are directly 
linked to the the Coastgon size. The chosen resolution is similar to that of the coarsest global dataset used (ERA5-
wave at 0.5◦ ≈ 55 km at the equator). Hence, small-scale coastal features, like sheltered or embayed beaches, 
might not be resolved but regionally aggregated. We deemed this an acceptable trade-off, given our aim to identify 
regional patterns of spatio-temporal characteristics of coastal systems.

Regional coastal indicators
We assumed that each Coastgon represents a spatially homogeneous coastal region, with a binary state regarding 
nesting activity: if it covered any known nesting sites, it was considered as a nesting region for the corresponding 
species. Each Coastgon’s coastal characteristics were represented by a set of 22 indicators derived from the global 
data, divided into five categories: hydrodynamic, atmospheric, geophysical, habitat, and human (Table 2). The 
number of data points from which each Coastgon’s indicators were computed depends on the dataset. Each GCC 
transect was linked to one Coastgon during the creation of the grid, so we used all transects linked to a Coastgon 
to compute its geophysical and human indicators. For gridded datasets (ERA5, GTSM, and ORAS5), the k near-
est nodes to each CLC were used, up to a maximum of 100 km distance, where k depended on the resolution of 
the dataset ( k = 1 for ERA5-wave, k = 2 for ERA5-atmos and ORAS5, and k = 3 for GTSM). Distances were 
computed with the Haversine formula (shortest distance between two points on the surface of a sphere). If no 
node was within 100 km of a Coastgon’s CLC, a ’Not a Number’ (NaN) was assigned to that Coastgon.

The hydrodynamic and atmospheric indicators were computed from historical time series (42 years from 
1980–2021 for ERA5 and ORAS5; 30 years from 1985–2014 for GTSM), while the geophysical, habitat and human 
indicators represent current or recent conditions (Table 1). When time series from multiple nodes were used for 
one Coastgon, we first computed the indicators separately from each time series, before averaging over the nodes 
to yield one value per indicator and Coastgon. Most indicators were derived through descriptive statistics, like 
the median (50th percentile) as a measure of center and the 95th percentile as a measure of extremes. For the 
peak wave period ( Tp ) we also included the standard deviation, as Tp is often characterized by a bimodal distri-
bution of swell and wind waves (a larger standard deviation indicating a bimodal wave climate). We included 
the standard deviation of the shoreline angle as a measure of shoreline complexity—a large standard deviation 
indicating many different shoreline orientations, hence a more complex coastline, (e.g., islands and embayed 
beaches). For indicators representing distances ( Dc,03 , Dcor , and Dsgr ), calculations were based on the CLC of each 
Coastgon. A detailed explanation of how each indicator was derived from the global datasets is provided in the 
Supplementary Material, Section S1. The final dataset of 5848 Coastgons, characterized by 22 coastal indicators, 
is available through the 4TU.ResearchData  repository33.

Influence of coastal indicators on sea turtle nesting distribution
To assess the influence of the 22 coastal indicators on the distribution of global sea turtle nesting, we employed 
random forests (RF)47. RF is a machine learning regression technique that constructs an ensemble of uncor-
related decision trees which predict a sample’s class, and returns the majority prediction of all trees. We selected 
RF because it is capable of capturing complex, non-linear relationships in the data. Furthermore, the RF model 
computes the contribution of each variable to the predictive accuracy of the decision trees and converts these 
to a relative feature importance. We also tested linear discriminant analysis and logistic regression models, but 
these could not achieve adequate model performance, hence we only used RF.
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We fitted one RF model for each species, distinguishing between nesting (1) and non-nesting (0) Coastgons. 
We assessed the model performance by letting the trained model predict the category of each Coastgon (nest-
ing vs. non-nesting) and computing three performance scores: (1) precision, which quantifies the proportion 
of correct ’nesting’ predictions out of all ‘nesting’ predictions; (2) recall, which quantifies the proportion of 
nesting Coastgons that is predicted correctly by the model; and (3) the F1 score, which is the harmonic mean of 
precision and recall, serving as a balanced measure of model performance. Based on the RF feature importance 
and our informed judgment, we then selected a subset of six influential indicators for each species for further 
examination in the cluster analysis.

Although RF is commonly used for predictive regression, here we used it as a dimensionality reduction tech-
nique. The aim was to identify patterns in the existing data, not to create the best generalized model to predict 
new, unlabeled data. Therefore, we decided to train and test the final RF models on the entire dataset. To test the 
robustness of our RF model we carried out a four-fold cross validation: we split the data into four equally sized 
partitions and trained four RF ‘sub-models’, each on a unique combination of three partitions (75% of the data). 
We then compared the RF feature importance of the four sub-models with the one trained on the full dataset. The 
feature importance remained consistent between the five models within each species (see Supplementary Fig. S2).

Global patterns and nesting suitability maps
To identify patterns in the coastal characteristics of global sea turtle nesting habitats, we performed a cluster 
analysis on the six indicators selected for each species. First, the data was normalized using a custom percentile 
scaler, which scales each indicator to the range [0, 1[, such that 0 represents the minimum and 1 represents the 
99.9th percentile (i.e., scaled values above the 99.9th percentile were larger than 1). We applied this custom scaler 
instead of more conventional methods, like MinMax or standard scaling, because it is more robust to outliers 
and doesn’t assume normally distributed data.

Next, we clustered the Coastgons based on the selected indicators, using self-organizing maps (SOM). SOM is a 
type of unsupervised neural network that groups high-dimensional data into k clusters and automatically projects 
these onto a two-dimensional lattice, preserving the topological properties of the data as much as  possible48. 
Each cluster of Coastgons is represented by one neuron, which is a point in the six-dimensional parameter space. 
The algorithm starts with k predefined initial neurons, and iteratively adjusts these during the learning process 
to yield k distinct clusters. An intuitive, metaphorical description of the method is that one throws a fishing net 
over the data, and then moves each node (neuron) of the net to cover the data as best as possible.

The number of clusters, k, is predefined by the user and is often determined iteratively by evaluating SOMs 
for different values of k. We used SOMs with k = 169 clusters, arranged on a 13 × 13 lattice. This number was 
determined iteratively through visual inspection of SOMs for different k, and using intra- and inter-cluster 
variance metrics (e.g., quantization error, silhouette score, and boxplots of each cluster). As initial neurons, we 
selected a subset of 169 Coastgons through a maximum dissimilarity algorithm. This algorithm ensures that 
the initial neurons are as dissimilar from each other as possible, meaning they span the parameter space more 
uniformly (i.e., the fishing net is stretched to the limits of the parameter space)49. We then computed the final 
169 neurons using the MiniS om python  library50.

To explain the distribution of global sea turtle nesting from the selected coastal indicators, we created a 
separate SOM for each species (i.e., for each subset of coastal indicators). Each cluster represents a group of 
coastgons with similar indicators. We then computed Spearman’s rank correlation coefficient, ρ , between the 
cluster medians of each indicator and the percentage of nesting Coastgons in each cluster. A positive (negative) 
correlation coefficient therefore implies that regions with larger (lower) values for a given indicator contain a 
higher percentage of nesting Coastgons.

We mapped representative sea turtle nesting regions around the globe for each of the five species, by clas-
sifying the Coastgons into three categories: ‘observed nesting’ (O), ‘potentially suitable’ (S), and ‘unsuitable’ 
(U). The latter two categories encompass all Coastgons without observed nesting. These Coastgons were labeled 
‘potentially suitable’ if they were part of a cluster containing at least 10% observed nesting Coastgons, and oth-
erwise ‘unsuitable’. To assess whether the distributions of the six indicators differed significantly across the three 
Coastgon categories, we applied the two-sample Kolmogorov-Smirnoff (KS) test, a non-parametric test suitable 
for non-normal data, to each pair-wise combination of categories. We adopted the common significance level 
of α = 0.05 and adjusted the three p-values for each indicator using the Benjamini-Hochberg method, to limit 
inflated Type I errors due to multiple comparisons on the same indicator.

Results
Indicators influencing the global distribution of sea turtle nesting
We ranked the 22 coastal indicators based on their RF feature importance (see numbers of the top 10 ranks in 
Fig. 2). Sea surface temperature was the only indicator with consistently high rankings across all species. Other 
important indicators varied more among the species but mainly consisted of hydrodynamics and distance to the 
nearest coral/seagrass habitats. Notably, the geophysical indicators had low importance across all species. For log-
gerheads (CC), green turtles (CM), hawksbills (EI), and leatherbacks (DC), extreme surge ( hS,p95 ) and tidal range 
( htide ) were important (top three ranks). For olive ridleys (LO), on the other hand, the wave climate (particularly 
the wave period) was more important than the water levels. Distance to the nearest seagrass habitat ranked in 
the top six for CC, CM, EI, and LO. Distance to the nearest coral reef was mainly important for CM and EI.

We selected a subset of six indicators for each species based on the RF feature importance and our informed 
judgment (circled indicators in Fig. 2). The subset does not strictly correspond to the top six ranks, as lower 
ranks sometimes had similar importance values (e.g., ranks 5–8 for DC). Additionally, a known characteristic 
of RF models is that feature importance may be spread over correlated variables, which doesn’t necessarily mean 
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that both variables together are important, but an underlying process is. For example, the median ( Tp,med ) and 
extreme wave period ( Tp,p95 ) have the highest feature importance for LO, but are strongly positively correlated 
(Spearman’s ρ = 0.92 , see Supplementary Fig. S1). We therefore only selected Tp,med to include the wave period, 
but leave room for other indicators in the clustering. This selection is not meant to imply that the indicators 
which were not selected are unimportant. However, we opted to limit the clustering to six indicators per species, 
to reduce the dimensionality of the analysis.

The performance scores of the random forest (RF) model were similar across the five species, with a mean 
F1 score of 0.9 (standard deviation 0.01). Such high scores may point to a slightly over-fitted model. We deemed 
this acceptable, though, given the robustness of our models in the cross-validation (Supplementary Fig. S2) 
and our aim to understand the patterns present in the underlying data, not predict new, unlabeled Coastgons.

Patterns in coastal indicators of global sea turtle nesting habitats
To identify patterns in the coastal indicators of global sea turtle nesting habitats, we correlated the SOM cluster 
medians to the proportion of nesting Coastgons in each cluster using Spearman’s ρ (Fig. 3a). For example, the 
correlations illustrated in Fig. 3b–f imply that nesting Coastgons are typically found in regions with relatively 
low tidal ranges (CC), high sea surface temperatures (CM), near coral reef habitats (EI), low extreme surge levels 
(DC), and across a certain range of wave heights (LO) (see Supplementary Material Section S5 for the SOM 
lattices of all species/indicator pairs). Although correlation magnitudes were limited to 0.56, several significant 
relationships emerged. To summarize these, we categorized absolute values of ρ smaller than 0.1 as insignificant, 
between 0.1 and 0.3 as weak, and larger or equal to 0.3 as significant, revealing the following correlations:

• Loggerhead turtles (CC)—Nesting Coastgons significantly correlated negatively with tidal range ( htide , 
Fig. 3b) and extreme surge levels ( hS,p95 ). Weak negative correlations were observed with distance to the 
nearest seagrass habitat ( Dsgr ) and median surge levels ( hS,med ). No significant correlations were found with 
the median wave period ( Tp,med ) and sea surface temperature ( SSTmed).

• Green turtles (CM)—Nesting Coastgons significantly correlated negatively with extreme surge levels ( hS,p95 ) 
and distance to the nearest coral habitat ( Dcor ), while weak negative correlations were found with tidal range 
( htide ). Significant positive correlations were observed with sea surface temperature ( SSTmed , Fig. 3c). No 
significant correlation with the median wave height ( Hs,med ) and distance to nearest seagrass habitat ( Dsgr).

• Hawksbill turtles (EI)—Nesting Coastgons significantly correlated negatively with extreme surge levels 
( hS,p95 ) and distance to the nearest coral habitat ( Dcor , Fig. 3d), and weak negative correlations were found 
with distance to the nearest seagrass habitat ( Dsgr ) and tidal range ( htide ). Significant positive correlations 
were observed with sea surface temperature ( SSTmed ), and a weak positive correlation with the median surge 
level ( hS,med).

• Leatherback turtles (DC)—Nesting Coastgons significantly correlated negatively with extreme surge levels 
( hS,p95 , Fig. 3e) and a weak negative correlation was observed with the tidal range ( htide ). Significant positive 
correlation was found with sea surface temperature ( SSTmed ) and weak positive correlations with the median 
wave period ( Tp,med ) and median total precipitation ( Pmed ). No significant correlation found with median 
surge levels ( hS,med).

• Olive ridley turtles (LO)—Nesting Coastgons showed a weak negative correlation with distance to the near-
est coral habitat ( Dcor ). Significant positive correlation was observed with sea surface temperature ( SSTmed ) 
and weak positive correlations with the median wave period ( Tp,med ), distance to ocean currents above 0.3 
m/s ( Dc,03 ), and distance to the nearest seagrass habitat ( Dsgr ). No significant correlation found with the 
median wave height ( Hs,med , Fig. 3f).

Figure 2.  Matrix plot showing the RF feature importance of the 22 coastal indicators (Table 2), in separating 
nesting from non-nesting Coastgons. Each square represents one species/indicator pair and the blue scale 
indicates the magnitude of the feature importance. The numbers in the squares show the ranks of the ten most 
important indicators and the circles highlight the six selected indicators for each species, which are further 
examined in the cluster analysis. Figure created with Pytho n 3. 10.8.
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Figure 3.  Relationship between coastal indicators and nesting distribution. (a) Overview of Spearman rank 
correlation ( ρ ) between cluster medians (blue scale in panels b–f) and nesting percentages (pie charts) for each 
species/indicator pair. Panels (b–f) visualize the correlation for five species/indicator pairs (highlighted by the 
colored outlines in the correlation matrix). Each 13-by-13 hexagon lattice shows a separate SOM, created for one 
species. Each hexagon in the lattices represents a cluster of Coastgons with similar indicators. The clusters are 
arranged on the lattices based on similarity. Together, the 169 clusters (hexagons) in each lattice represent the 
global coastline between − 39◦ and 48◦ latitude. The blue color-scale indicates the cluster medians for the given 
indicator, while the pie charts show the proportion of nesting Coastgons per cluster. Due to the SOM algorithm, 
some computed clusters may not represent any actual Coastgons (horizontally striped hexagons). Finally, Pn is 
the percentage of clusters containing any nesting Coastgons per species. All panels created with Pytho n 3. 10.8.

https://www.python.org/downloads/release/python-3810/
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Representative sea turtle nesting regions
To map representative sea turtle nesting regions, Coastgons were categorized into three categories: observed 
nesting, potentially suitable (no observed nesting, but part of a cluster with at least 10% observed nesting Coast-
gons), and unsuitable. We zoomed into eight particular regions, inspired by the regional management units for 
sea turtles from Wallace et al.51 (Fig. 4a): Central East Pacific (CEP), North West Atlantic (NWA), South West 
Atlantic (SWA), Central East Atlantic (CEA), Mediterranean (MED), North West Indian (NWI), South West 
Indian (SWI), and North East Indian (NEI). For each region, as well as for the global coastline (all Coastgons), 
we created nesting suitability maps using the three categories (see examples in Fig. 4b–f), and computed two 
representative statistics: (1) the percentage of observed nesting Coastgons, PO ; and (2) the percentage of observed 
nesting and potentially suitable Coastgons, PS (Table 3). Nesting suitability maps and accompanying box-plots 
for all region/species pairs are provided in the Supplementary Material, Section S6.

On a global scale, the percentage of suitable Coastgons ranges from PS = 12.9% for olive ridleys to PS = 36.9% 
for green turtles (mean of all species PS = 23.2% ). As expected, PS is highest for green turtles, who have the 
most nesting sites of any  species34 and are known to nest across a variety of environmental conditions around 
the  world15. Suitability percentages are on average 3.3 times higher than observed nesting percentages (mean 
PO = 7% , ranging from PO = 4.7% for LO to PO = 10.1% for CM). This suggests that there are opportunities 
for turtles to expand their global nesting habitats.

Among individual regions, the North West Atlantic (which includes the wider Caribbean) emerged as the 
most suitable region, with an average observed nesting percentage of PO = 34% and potential suitability of 
PS = 82.7% , across all species except olive ridleys, who do not nest there (Table 3). The Central East Atlantic 
( PS = 58.4% ) and Central East Pacific ( PS = 44% ) also had high average suitability percentages. The Mediter-
ranean is quite unique in that it currently only supports loggerheads (CC, PO = 19.1% ), and to a lesser extent 
green turtles (CM, PO = 3.1% ). The Indian Ocean regions are generally suited to all species, although with 
lower suitability percentages than other regions ( 26.8% < PS < 34.1% ). Finally, the South West Atlantic also 
had relatively low observed nesting and suitability percentages ( PO = 7.1% and PS = 35.2% ), although a large 
stretch of the Brazilian coastline appears suitable for all five species (Fig. 4a).

There were also significant differences across species. For loggerheads (CC), the North West Atlantic 
( PS = 88.7% ) and Mediterranean ( PS = 77.8% ) clearly emerged as the most suitable (and most used) regions. 
For green turtles (CM), suitability percentages were high across regions, with PS > 35% for all regions except the 
Mediterranean. Hawksbills (EI) also had high PS values for most regions (they do not nest in the Mediterranean), 
with the North West Atlantic a clear favorite ( PS = 74.8% ). Leatherbacks (DC) appeared to be more suited to 
the Pacific and Atlantic regions, with consistently higher PS values than the Indian Ocean regions. Finally, olive 
ridley (LO) nesting suitability was highest for the Central East Pacific ( PS = 62.3% ) and Central East Atlantic 
( PS = 72.1% ). Consistent with the results from the RF model, olive ridleys appeared to have more unique nesting 
preferences compared to the other four species.

To give an example for a regional analysis, in the Mediterranean (nesting map in Fig. 4c), ‘observed nesting’ 
( N = 85 ) and ‘potentially suitable’ ( N = 261 ) Coastgons for loggerhead turtles (CC) generally exhibit higher sea 
surface temperatures ( 17 < SSTmed < 23.5◦C ) and median wave periods ( 3.5 < Tp,med < 6.3s ), and lower tidal 
ranges ( htide < 0.5m ) and extreme surge levels ( hs,p95 < 0.15m ) compared to ‘unsuitable’ ( N = 99 ) Coastgons 
(Fig. 5a). The p-values of the two-sample KS tests for comparisons between the ‘observed nesting’ and ‘potentially 
suitable’ categories ( pO|S ) were above the 0.05 threshold for htide , hS,med , hs,p95 and Dsgr , and just below 0.05 for 
SSTmed and Tp,med , indicating insignificant or marginal statistical differences for these indicators. In contrast, 
most p-values for KS-tests involving the ‘unsuitable’ category ( pO|U and pS|U ) were multiple orders of magnitude 
smaller ( p ≪ 0.001 ), indicating strong statistical differences with the suitable and observed Coastgons (except 
for Dsgr ). Based on these indicators, approximately 78% of Mediterranean Coastgons could potentially be suit-
able for nesting Loggerheads, while nesting has only been observed in 19% of Coastgons (Table 3). These results 

Table 3.  Overview of the two computed statistics for regional and global nesting suitability. Rows represent 
regions (see geographical overview in Fig. 4a) and columns show the percentage of observed nesting coastgons 
( PO ) and the percentage of observed nesting and potentially suitable coastgons ( PS ) for each species and 
averaged per region.

CC CM EI DC LO Mean

Region PO PS PO PS PO PS PO PS PO PS PO PS

Central East Pacific – – 14.1 39.1 9.2 34.5 12 40.1 29.2 62.3 16.1 44.0

North West Atlantic 28.8 88.7 35.5 86.3 41.2 74.8 30.4 80.9 – – 34 82.7

South West Atlantic 10.7 40.7 6 37.3 6.7 22.7 5.3 36.0 6.7 39.3 7.1 35.2

Central East Atlantic – – 9.6 56.8 7 33.2 17.5 71.6 16.6 72.1 12.7 58.4

Mediterranean 19.1 77.8 3.1 12.6 – – – – – – 11.1 45.2

North West Indian 0.6 12.1 11.7 54.6 12.5 49.0 – – 9.3 20.8 8.5 34.1

South West Indian 5.3 17.3 13.2 74.5 6.2 23.9 2.9 9.5 1.6 8.6 5.8 26.8

North East Indian 2.2 6.4 7.7 39.0 8.6 35.8 6.4 21.7 16.9 39.0 8.4 28.4

Global 6.4 21.9 10.1 36.9 8.2 23.9 5.7 20.3 4.7 12.9 7 23.2
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Figure 4.  Global overview of sea turtle nesting suitability, based on the selected coastal indicators for each 
species. (a) Global map showing the number of species for which each Coastgon is classified as either ‘Observed 
nesting’ or ‘Potentially suitable’. The grey-blue polygons show the eight considered regions, inspired by Wallace 
et al.51. Panels (b–f) show nesting suitability maps for five region/species pairs: (b) Olive ridley (LO, yellow) 
in the Central East Pacific (CEP), (c) Loggerheads (CC, orange) in the Mediterranean (MED), (d) Hawksbills 
(EI, red) in the North West Indian (NWI), (e) Green turtles (CM, green) in the Central East Atlantic (CEA), 
and (f) Leatherbacks (DC, purple) in the North West Atlantic (NWA). In each map, grey indicates unsuitable 
Coastgons, light blue denotes potential suitability, and other colors represent observed nesting by the 
corresponding species. Figure created with Pytho n 3. 10.8.
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agree with recent reports of a loggerhead nesting range expansion towards the western Mediterranean, with most 
newly reported nesting sites lying within Coastgons classified as potentially  suitable52.

Discussion
The analysis of 22 regional coastal indicators on the distribution of global sea turtle nesting shows that, in line 
with previous  studies18,19, sea surface temperature can be one of the most important indicators for the presence 
of all five species in a Coastgon. The majority of nesting grounds of all species except loggerheads are situated 
in regions at the upper end of the analyzed temperature range ( SSTmed > 25◦C ; Fig. 5b). Loggerheads (CC) 
also colonize cooler nesting regions ( SSTmed > 17◦C ), like the western Mediterranean and Japan, though their 
distribution is still influenced by temperature. In fact, had we not filtered out the World’s coldest regions by 
limiting the Coastgon grid to latitudes between −39◦ and 48◦ , SSTmed would have likely been more dominant 
in the RF model. Distance to the nearest coral reef habitat ( Dcor ) was another important indicator, although it 
is unclear how strongly this is biased by the negative correlation between SSTmed and Dcor ( ρ = − 0.65 , Supple-
mentary Fig. S1). It would make sense for hawksbills to nest near coral reefs, which are their foraging habitats, 
but other species have not necessarily been linked to coral reefs in literature. Distance to seagrass ( Dsgr ) was 
mainly important for CC, EI, and LO, and notably less so for green turtles, who forage in seagrass  habitats53 
(although it still ranked sixth).

It has often been hypothesized that sea turtles try to place their nests on the beach by finding a balance 
between a high nest elevation against flooding, and the distance to the shoreline against  predation19. While the 
spatial resolution of our study precludes conclusions regarding nest placement or predation patterns, our results 
suggest that individual species tend to favor nesting regions with relatively low extreme surges ( hS,p95 < 0.25 m 
for all species) and low tidal ranges ( htide < 2.5 m for CC, EI, and DC), possibly as a strategy to minimize the 
risk of nest flooding (Fig. 5b). While areas with higher extreme surges can also support nesting—as evidenced 
by nesting beaches in cyclone-prone  regions13—our results indicate a significant bias towards low extreme surge 
environments. This bias might be enhanced by the fact that GTSMv3.0, our source for surge levels, slightly 
underestimates tropical cyclones,  though54.

Figure 5.  Box-plots showing the distribution of several indicators over sea turtle nesting regions. (a) Box-plots 
for the six indicators selected for loggerhead turtles (from left to right: Tp,med , hS,med , hs,p95 , SSTmed , htide , Dsgr ) 
for the three suitability categories along the Mediterranean coastline (Fig. 4): unsuitable (‘U’, grey), potentially 
suitable (‘S’, blue), and observed nesting (‘O’, orange). Below each box-plot are the p-values from two-sample KS 
tests between the three category pairs, denoted by their subscript (e.g., pO|S is the p-value between the observed 
nesting and potentially suitable categories). (b) Box-plots for SSTmed (left), hS,p95 (middle), and htide (right) for 
all Coastgons (grey) and for the observed nesting Coastgons of each individual species (colors). Boxes represent 
the interquartile range and whiskers extend to a maximum of 1.5 times the interquartile range. Coastgons 
beyond the whiskers are shown as markers. Figure created with Pytho n 3. 10.8.
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Our global-scale analysis also presented different findings from several relationships previously reported in 
literature. For instance, Santana Garcon et al.27 found that nesting grounds around Australia are generally more 
exposed to wind and waves than non-nesting beaches. We only found a weak (though not negligible) influence 
of the median 10m-wind speed, for three species (CM, DC, and EI; Fig. 2). Moreover, despite Putman et al.28 
reporting a strong relationship between loggerhead nesting activity and distance to the Gulf Stream along the 
US east coast, we only observed a weak influence from the distance of strong ocean currents. Total precipitation 
also had comparatively low feature importance in the RF model, contrary to findings of  others18,20. Perhaps most 
notably, no geophysical indicators were identified as important in our results. This suggests that patterns result-
ing from local- or regional-scale analyses do not necessarily reflect large-scale patterns and may, for instance, 
be confounded by factors correlated with the tested predictors.

Indicators that were not identified as important in our global-scale analysis may still influence turtle nest-
ing for individual regions and sub-populations, or on smaller spatial scales. Our study required the use of 
global datasets with limited resolution and accuracy. Particularly, local topographic and bathymetric indicators 
remain difficult to measure, hence available datasets often lack  accuracy55,56. For example, although Luijendijk 
et al.57 quantified the occurrence of sandy beaches along the global coastline from satellite images, we did not 
include this data, as their method struggled to detect narrow beaches, particularly in tropical regions with large 
amounts of vegetation—where many sea turtles  nest11. Furthermore, aggregating the data onto the Coastgon 
grid effectively smoothed out local geomorphological features (e.g., embayed beaches), likely contributing to 
the low importance of the geophysical indicators in the RF results. Hydrodynamic indicators such as waves and 
water levels, on the other hand, are easier to quantify and likely more consistent over larger spatial scales, and 
may thus be better suited to large-scale analyses. Hence, we expect geophysical indicators to be more influential 
at the scale of individual beaches, in line with previous studies (e.g.,15,21–23). However, more regional analyses 
combined with high-resolution, accurate datasets are needed to prove this.

To assess the variability of the GCC transect-based data within each Coastgon, we computed the median 
absolute deviation from the median, normalized by the median itself (MADm)—a measure of variability that is 
more robust than the commonly used coefficient of variation (standard deviation normalized by the mean)58. 
For example, MADm = 1 implies that 50% of the samples differ from the median by more than the median itself. 
We did this for three geophysical indicators ( βns,med , βbs,med , and zmax,med ) and one hydrodynamic indicator 
(mean higher high water from GCC, extracted from the nearest GTSMv3.0 node for every transect). It should be 
noted that this variability is a result of both the variability in the indicators, as well as the variable length of the 
coastline in each Coastgon (i.e., the number of transects linked to each Coastgon). Variability within Coastgons 
was significantly higher (up to MADm = 1 ) for βns,med , βbs,med , and zmax,med , than for mean higher high water 
( MADm < 0.1 for 97% of Coastgons). We still included the geophysical indicators in the RF model though, 
because their variability was also lower for a significant number of Coastgons ( MADm < 0.4 for 30% of Coast-
gons). One way to improve our analysis could be to only use sandy coastline transects to derive the geophysical 
indicators, for example through an updated version of Luijendijk et al.57.

Some of the influential indicators selected from the RF model did not show significant correlations in the 
cluster analysis (Fig. 3). This does not mean that these indicators are not influential but may be explained from 
the fact that Spearman’s correlation coefficient is designed to detect monotonic relationships (e.g., the lower the 
extreme surge levels the higher the chance for nesting leatherback turtles). If nesting grounds fall within a specific 
range of a given indicator, however, this relationship is not readily identified through correlation. The SOM lat-
tices and box-plots allow a quick visual inspection of the distribution of nesting grounds for each indicator, but 
it remains difficult to quantify such non-monotonic relationships. For example, global loggerhead (CC) nesting 
Coastgons are limited to a median sea surface temperature range of 17− 29 ◦ C (Fig. 5b). This range is still in the 
upper part of the total observed SSTmed range, but the median SSTmed for loggerhead nesting Coastgons ( 24.5 ◦ C) 
is lower than for all Coastgons ( 27.5 ◦C). Hence no significant rank correlation is observed ( ρ = − 0.02 ; Fig. 3a), 
even though sea surface temperature clearly constraints the suitability for loggerhead nesting. Nonetheless, such 
relationships are still captured in the suitability maps, as the SOMs (from which the maps are derived) do identify 
complex, non-monotonic patterns.

Another way to show the complexity of nesting suitability and the effectiveness of our selected indicators is 
by examining the percentage of nesting clusters ( Pn ) and their distribution on the SOM lattices (Fig. 3). Ideally, a 
complete set of indicators would lead to a clear division of nesting Coastgons over suitable clusters, with decreas-
ing nesting percentages around them signaling the limits of suitability. For example, Loggerhead (CC) nesting 
occurs in 35% of clusters, and the lattice shows one main agglomeration of high nesting percentage clusters, with 
decreasing percentages around it (Fig. 3b). In contrast, green turtles (CM) nest in 54% of clusters, with many low 
nesting percentages spread across the lattice (Fig. 3c). A similar pattern can be seen for hawksbills (EI), although 
the nesting cluster percentage is lower ( Pn = 40% ; Fig. 3d). While green turtles are particularly known to nest 
across a very broad range of environmental  conditions15, these findings underscore the hypothesis that nesting 
preferences involve a complex interplay of biotic and abiotic factors.

Our nesting suitability maps represent our best estimate of each species’ fundamental niche (the environmental 
range theoretically suitable for  nesting59,60), based on a set of abiotic environmental characteristics. The observed 
nesting distribution can be interpreted as an approximation of the realized niche, where the species actually nests. 
The realized niche is typically more constrained than the fundamental niche, due to complex biotic interac-
tions (e.g., predation and recruitment limitation), which are challenging to incorporate into habitat  mapping59. 
Moreover, our indicator set, while comprehensive, may still miss some potentially influential abiotic factors 
(e.g., sandy beach occurrence and grain size  characteristics15), thereby approximating the fundamental niche.

Given our main goal was to identify characteristics that enable nesting at any scale, we chose not to weight 
nesting regions based on their population sizes. However, certain rookeries around the globe are hotspots of 
turtle nesting. For example, Raine Island, Australia for green  turtles61, Masirah Island, Oman for  loggerheads62, 
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or the mass nesting sites in Mesoamerica and India, where thousands of olive ridleys nest simultaneously during 
so-called arribadas63,64. Future work could benefit from incorporating such high-density nesting grounds into the 
analysis, which would offer a more nuanced understanding of global patterns. Additionally, we did not consider 
the seasonality of turtle nesting in the computation of our indicators. Sea turtles are known to venture far away 
from their nesting grounds outside of the nesting season, hence our analysis might benefit from filtering the time 
series of hydrodynamic and atmospheric data to reflect conditions during the nesting season.

A challenge for studies like this one is the availability of global sea turtle nesting data. The SWOT database is 
an invaluable resource for any research related to sea turtle nesting distribution, but also has limitations. Even 
though it contains data from over 130 countries and territories all over the globe, in some regions data availability 
and accuracy are limited and dependent on local programs with varying monitoring  standards34. A significant 
number of false non-nesting Coastgons can bias the feature importance, as characteristics supportive of nesting 
are erroneously associated with non-nesting. However, our chosen Coastgon resolution (50 km) helps overcome 
this challenge by aggregating to regional scales. The RF feature importance remained consistent through the 
cross-validation, showing the model is robust to relatively small changes in the input data (Supplementary Fig. 
S2). Therefore, the results of this study can help identify currently undocumented nesting regions, to facilitate 
more reliable and accurate nesting data in the future. In Somalia, for example, there is currently no (public) 
 data65, but all nearby countries support nesting and our suitability maps indicate that parts of its coastline could 
be suitable for up to four species (Fig. 4a).

Contrary to most previous research on sea turtle nesting characteristics, one of our main motivations behind 
this study is the eventual design and implementation of nature-based solutions that can help preserve and expand 
nesting habitats for sea turtles. Consequently, our selection of indicators was driven by a focus on abiotic indica-
tors potentially modifiable by nature-based engineering designs, such as hydrodynamics and geomorphology. 
Similarly, we adopted a spatial scale that helps identify coastal regions where nature-based solutions may be 
suitable. Moving forward, we aim to leverage the findings of this study to identify and map coastal hazards 
threatening global sea turtle nesting habitats (e.g., flooding and erosion of nesting beaches) and to assess the 
suitability of specific nature-based solutions to mitigate these hazards.

Conclusion
We examined the relationship between regional coastal characteristics and the global nesting distribution of 
five sea turtle species (loggerhead, CC; green, CM; hawksbill, EI; leatherback, DC; and olive ridley, LO) to 
identify suitable nesting conditions and lay a foundation for the design of nature-based solutions to protect and 
expand global nesting habitats. An initial set of 22 coastal indicators was considered—spanning hydrodynamic, 
atmospheric, geophysical, habitat, and human processes—on a hexagonal coastline grid (Coastgons) of ≈ 50 
km-resolution. We assessed the influence of these indicators on the global distribution of sea turtle nesting by 
fitting a random forest model to the data, which returns each indicator’s relative importance in splitting the 
data into nesting and non-nesting categories. Based on this importance, a subset of six important indicators per 
species was examined through a SOM-based cluster analysis to reveal patterns in the coastal characteristics of 
global nesting habitats, and identify new, potentially suitable nesting regions.

While there were differences between species, at the coarse, global scale considered here, important indica-
tors consisted mainly of sea surface temperature ( SSTmed ), extreme surge levels ( hs,p95 ), tidal range ( htide ), and 
the distance to the nearest coral reef ( Dcor ) and seagrass habitats ( Dsgr ). For example, individual species’ nesting 
grounds tend to occur in regions with relatively low tidal ranges (CC, EI, and DC), low extreme surge levels 
(CC, CM, EI, and DC), warm temperatures (CM, EI, DC, and LO), and near coral habitats (CM and EI). The 
first two observations might suggest that sea turtles select their nesting grounds in an effort to reduce the risk of 
(periodic) nest flooding, as has similarly been hypothesized on smaller spatial scales (e.g.,15). Other indicators 
reported as influential in literature appeared less important according to our results (e.g.,  precipitation18 and 
 wind27). Notably we didn’t identify any important geophysical indicators at this scale, but expect these to be more 
influential for smaller spatial scales and more accurate data.

We identified new, potentially suitable nesting regions, mapping each species’ fundamental nesting niche on 
global and regional nesting suitability maps. Global nesting suitability ranged from 12.9% (LO) to 36.9% (CM) of 
Coastgons (mean 23.2%). However, observed nesting currently only occurs in 4.7% to 10.1% of Coastgons (mean 
7%), suggesting that the realized niche is still significantly smaller, and that there is potential for sea turtles to 
expand their nesting habitats. This is a particularly important finding in the face of nature-based solutions and 
assisted colonization of new coastal  regions32, as recent studies suggest that phenological shifts (earlier onset of 
nesting season) are unlikely to be sufficient for most sea turtle populations to stay within appropriate nesting 
 conditions45,66.

This study has revealed distinct patterns in the coastal characteristics of global sea turtle nesting habitats and 
has identified new, potentially suitable, nesting regions for the five globally distributed sea turtle species. Even 
though sea turtle nesting behavior remains difficult to  predict30, the results of this study can help identify suitable 
nesting conditions, quantify potential hazards to global sea turtle nesting habitats, and function as a basis for the 
design of nature-based solutions to preserve and potentially expand these habitats.

Data availability
The Coastgon dataset used in this study, including the 22 indicators, is publicly available through the 4TU.
ResearchData repository via this https:// data. 4tu. nl/ datas ets/ 68377 ee4- 892d- 40f0- a490- 29f26 01e68 25. All global 
datasets used in this study are also available online, for access please refer to the corresponding references men-
tioned in this article. Additional data on the results (e.g., SOM clusters) can be requested from the corresponding 
author at j.c.christiaanse@tudelft.nl.
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