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A Generic Approach to Parameterize the Turbulent
Energy of Single-Epoch Atmospheric Delays From

InSAR Time Series
Gert Mulder , Freek J. van Leijen , Member, IEEE, and Ramon F. Hanssen , Senior Member, IEEE

Abstract— The observed phase in time series of interferometric
synthetic aperture radar (InSAR) products is a superposition
of various components. Differential topography, line-of-sight
displacements, and differential atmospheric delays are the main
contributions and need to be disentangled to derive accurate
digital elevation model (DEM), deformation, or atmospherical
products from InSAR. However, isolating the atmospheric com-
ponent has been proven difficult as it is spatiotemporally highly
dynamic and a superposition of two atmospheric states. Here,
we propose an approach to parameterize the stochastic properties
of the single-epoch atmospheric delay field as a way to define the
atmospheric signal. We found that the atmospheric signal of a
time series of interferograms can be characterized by structure
functions, which can be used to isolate the single-epoch structure
functions. Due to the scaling properties of the atmospheric signal,
it is then possible to construct a parametric function per SAR
acquisition, using two isotropic and three anisotropic parameters.
In particular, the isotropic parameters for the short-distance
variation and long-distance variation in atmospheric delay can
be used to characterize the atmospheric signal. For a test set
of 151 Sentinel-1 acquisitions, this results in an atmospheric
energy range of about 10 for short-distance scales and about
50 for long-distance scales. Our parameterization demonstrates
that we can describe the spatiotemporal variability of InSAR
atmospheric delays, which provides a measure for atmospheric
noise for individual epochs in deformation time series based on
distance and azimuth.

Index Terms— Interferometric synthetic aperture radar
(InSAR), tropospheric delay, tropospheric scaling, turbulence.

I. INTRODUCTION

ATMOSPHERIC disturbances are dominant contributors
of noise in interferometric synthetic aperture radar

(InSAR) deformation time-series analysis [1], [2]. Over the
years, different algorithms have been developed to suppress
this noise, including low-pass filtering in time and different
types of spatial filters [3], [4], [5]. Beside the turbulent
effect of the atmosphere, there is also an elevation-dependent
effect due to stratification of the atmosphere [1]. To mitigate
the stratification effect, the relation between elevation and
atmospheric delays is used [6], [7].

Apart from estimating the disturbing signal from the InSAR
data by means of filters and correlations with elevation, also
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numerous studies exist that correct the InSAR signal by
means of weather models [8], [9], [10], [11], global navi-
gation satellite system (GNSS) measurements [12], moderate
resolution imaging spectroradiometer (MODIS), or medium
resolution imaging spectrometer (MERIS) data [13]. Although
these methods do show some improvement in the deformation
estimates, they are limited in the further improvement of
atmosphere correction. First, the resolution of the models
is much lower than that of the radar data [14]. In some
studies, this problem is partly solved by increasing the model
resolution [15], but if these models are not backed up by
accurate measurements, this does not yield reliable results.
Second, the timing of the model realizations is often not
correct, which leads to corrections of weather fronts and
other large systems to be shifted [16]. Third, weather models
themselves are not tuned on the exact location of convective
atmospheric disturbances, but mainly whether they can predict
that certain weather events will occur in a certain region. This
makes the correction of the InSAR data with these models
suboptimal.

In most contemporary persistent scatterer (PS)-InSAR tech-
niques, statistical techniques are used to reduce the influence
of the atmosphere. To quantify atmospheric noise in time,
variance component estimation (VCE) is used [5], while the
atmospheric delay per epoch is isolated using least-squares
collocation [17] or estimation of the reference (previously
denoted as “master”) atmosphere first [4], [18]. However, these
techniques do not offer a way to discern between spatially cor-
related tropospheric and deformation patterns, and removing
the reference atmosphere only works for long time series and is
hindered by slow steady-state deformation and decorrelation.
Also, the quality of deformation estimates is often determined
by a posteriori statistical analysis of residuals [5], which gives
only quality information in retrospect. These methods are
therefore difficult to use for early warning systems.

Here, we propose a statistical way to estimate and character-
ize the atmospheric signal in InSAR time series. By computing
an interconnected subset of interferometric combinations,
we find anisotropic turbulence information for single epochs,
which characterizes the atmospheric disturbance dependent
on distance and azimuth for every epoch in InSAR defor-
mation time series. These estimated atmospheric disturbances
can then be used to describe the expected noise and apply
weights to the individual epochs in a deformation time series.
Meanwhile, this offers a means to improve deformation time
series that is based on physics and does not remove any
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Fig. 1. Example of an estimated structure function of the interferometric delay between March 27 and April 2, 2018 over The Netherlands. (a) Unwrapped
interferogram. (b) Mean structure function with an anisotropic bandwidth. (c) Structure function for distance and azimuth. Note that the structure function can
be split up in a smaller scale domain up to 5 km, which is isotropic and a larger scale domain from 10 km upward, which does show anisotropic behavior.

nonatmospheric signals. We show how this approach can offer
a physics-based characterization of the atmospheric state for
individual images using only five parameters per single epoch.
The approach involves: 1) the creation of an interconnected
subset of interferometric combinations with short temporal
baselines; 2) calculation of anisotropic second-order structure
functions for all interferometric combinations; 3) estimation
of single-epoch structure functions based on the results of
the interferometric structure functions; and 4) parameteriza-
tion of the isotropic and anisotropic structure functions for
single-epoch SAR images.

The final parameterizations can then be used to describe
InSAR tropospheric noise in, for example, deformation time
series or change detection in early warning systems.

II. THEORY

A. Parameterization of Atmospheric Signal in InSAR

The relation between the SAR signal delay and atmospheric
parameters is defined by the integration of the atmospheric
refractivity N from the scatterer on the ground to the satellite
along the path s [1]

d =

∫ sat

scat
N (s)ds (1)

where d is the one-way atmospheric delay. The largest part
of the absolute atmospheric delay is therefore related to the
length of the integration path in (1), i.e., dependent on the
topographic elevation of the scatterers. The refractivity is [19]

N = k1
Pd

T
+ k2

e
T

+ k3
e

T 2 + k4
ne

f 2 + k5W (2)

where T is the temperature in kelvin, e is the partial pressure
of water vapor, Pd is the partial pressure of dry air, L is the
liquid water content, ne is the electron density per cubic meter,
f is the radar frequency, and W is the liquid water content.
The values of the constants are k1 = 77.6, k2 = 71.6, k3 =

3.75 × 105, k4 = −4.028 × 107, and k5 = 1.4 [20]. The
first term in this equation represents the hydrostatic part and
the second and third parts represent the wet part [21]. The
fourth term represents the ionospheric delay, while the fifth
term is the liquid water delay. From these, the ionospheric part

can be modeled accurately [22] and the liquid water delay is
negligible small [1].

The double-difference nature of the InSAR observations
yields a sensitivity to the spatial variability of N , rather than
its absolute value. Therefore, we need to focus on the spatial
variability of Pd , T , and e in (2). These three parameters
are not uncorrelated. Most importantly, the maximum value
of the water vapor pressure e is exponentially dependent on
temperature [23]

emax(TC) = m1 exp
(

m2TC

TC + m3

)
(3)

where TC is the temperature in ◦C and m1 = 6.1094, m2 =

17.625, and m3 = 243.04 are constants. This means that
although most delay variations in InSAR images are driven
by water vapor fluctuations, the maximum amount of water
vapor, and therefore the magnitude of the signal, is defined by
temperature.

The delay variations of the tropospheric delay for a single
SAR image can be described by a second-order structure
function [24]

Dd(l) = E{(d(l + p) − d(p))2
} (4)

where Dd(l) is the structure function for distance l for the
spatial variation of InSAR delay and p is the location of any
pixel in the SAR image.

B. Scaling of Structure Functions

As with many other atmospheric measurements, InSAR
delay shows a clear scaling behavior [1], [25], related to
energy cascades of atmospheric turbulence and leading to the
often observed 2/3 and 5/3 scaling of atmospheric data [26],
[27]. Based on the turbulence theory, also predictions have
been made for the scaling of tropospheric delay of microwave
radiation [24], yet it is not undisputed whether the assumed
scaling that is observed from small-scale wind measurements
can be translated into similar scaling of InSAR delays that
are dependent on refractivity. This theoretical scaling has
also been compared with InSAR measurements [1], albeit
for distances up to ∼50 km. Moreover, due to significant
orbit errors in satellite missions such as ERS-1 and 2, InSAR
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Fig. 2. Average structure function of InSAR tropospheric delay values of
all interferograms derived from a time series of 151 Sentinel-1 images over
The Netherlands and parts of Belgium and Germany. Values for the structure
function Dd (l) can be interpreted as a measure for turbulent energy in the
troposphere over a distance l. To show the local and regional turbulence
regimes, two lines are fit with a slope of 0.67 and 1.34. The bandwidth shown
in blue shows the total range of all structure functions for the full time series.

images were always detrended, which led to the removal of
spectral energy at large distances and therefore unreliable
scaling values at these distances.

With new wide-swath SAR missions such as Sentinel-1 and
more precise orbits, scaling of tropospheric InSAR delay up to
100 km can reliably be observed and investigated. Fig. 1 gives
an example of a structure function derived from a Sentinel-1
interferogram. An average structure function is calculated
based on the structure functions of 1450 interferograms from
a time series of 151 Sentinel-1 SAR acquisitions over The
Netherlands (see Fig. 2).

The curve(s) can be approximated by two exponential func-
tions, one for local distances and one for regional distances.
The location of the transition between these two functions is
given by the transition point distance l ti ,t j

T , where ti and t j are
used to denote the interferometric combination at times ti and
t j , respectively. This gives

Dti ,t j
d (l) =

{
C ti ,t j

s lζs , for l < l ti ,t j
T

C ti ,t j
w lζw , for l > l ti ,t j

T
(5)

with the distance of the transition point l ti ,t j
T , energy factors

C ti ,t j
s and C ti ,t j

w , and scaling exponents ζs and ζw, for the
local and regional scales, respectively. Because the scaling
exponents are constant for local and regional scales, this results
in two connecting straight lines in log-to-log space, with the
energy factors C ti ,t j

s and C ti ,t j
w defining the location of the lines

at 1 km, and scaling exponents ζs and ζw defining the slopes
of the lines. Hence, Fig. 2 shows a different scaling for local
and local distances. Note that in other studies, the energy
factors are denoted as C2 [1], [24], but we use C for brevity.
Because the same local and regional scaling is consistently
observed in the InSAR images in this study, they will be
the core principle on which we base the parameterization of

structure functions. The observed scaling exponents in Fig. 2
are ζs = 0.67 ± 0.01 for small (i.e., local) distances of
up to a number of kilometers, and ζw = 1.34 ± 0.01 at
large (i.e., regional) distances, which are equivalent to a 2/3
and 4/3 scaling, suggesting a connection with Kolmogorov
turbulence theory. Note that the observed scaling exponents
contrast with findings in other studies [24], but are consistent
for many individual interferograms over different seasons.
We will parameterize single-epoch structure functions instead
of theoretical predictions because the resulting parameterized
functions will resemble the observed structure functions much
more closely. The observed scaling at local and regional scales
will therefore be the main base for the proposed parameteri-
zation in this study.

III. METHODS

A. InSAR Data
We use a stack of 151 SAR acquisitions and create a set

of interferograms spanning a maximum lag of Bt,m = 60
days. All interferograms are coregistered and resampled using
the Sentinel-1 precise orbits, corrected for the topographic
phase based on the SRTM digital elevation model (DEM) [28],
and georeferenced. After projection using an oblique Mercator
projection, square grid cells of 500 m are defined, in which
the complex values are averaged (multilooking), to limit the
computational cost and improve phase signal quality. Then, the
geocoded and multilooked interferograms are unwrapped [29].
To prevent unwrapping errors, slow steady-state deformation,
and decorrelation of large areas in our study, we limit the
temporal baseline to Bt,m = 60 days. As our focus is on
tropospheric disturbances, acquisitions with large ionospheric
trends and interferograms with evident extreme deformation
patterns are removed from the analysis. Alternatively, iono-
spheric signals [22] could be corrected for. Fig. 1 gives an
example of InSAR atmospheric delay over the region of
interest. To derive zenith delays from the unwrapped phase
data, we use

d ti ,t j = −
4π

λ
φti ,t j sin θ (6)

where d ti ,t j is the one-way delay for interferogram (ti , t j ), φti ,t j

is the unwrapped phase, λ is the radar wavelength, and θ is
the elevation angle.

To create structure functions from these interferograms,
we mask out water areas and use a coherence threshold of
γ = 0.1. By differencing the unwrapped delay values over
different distances and azimuths, the structure function per
interferogram can then be obtained.

B. Calculation of Structure Functions
Based on the theory from Section II-A, we can now develop

methods to calculate structure functions based on a time series
of interferograms, obtained using methods from Section III-A.
Individual structure function values for different distance and
azimuth bins can be estimated by averaging found InSAR
phase values for shifts in the east and north directions

Dd(a, b) =

Nx∑
x=1

Ny∑
y=1

(
d(x, y)−d(x+a, y+b)

)2

Nx Ny
(7)
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α(a, b) = arctan 2
(a

b

)
(8)

l(a, b) = 1
√

a2 + b2 (9)

where Dd(a, b) is the structure function for a pixels in the east
direction x and b pixels in the north direction y. Nx and Ny are
the number of pixels in the x- and y-directions, respectively,
and 1 is the interferogram resolution, which is 500 m in our
case. The distance l and azimuth α of each structure function
value are based on the integer steps a and b. The variance of
the structure function value Dd(a, b) is given by

σ 2
Dd

(a, b)

=

∑Nx
x=1

∑Ny
y=1

((
d(x, y) − d(x+a, y + b)

)2
− Dd(a, b)

)2

N 2
x N 2

y
.

(10)

By calculating Dd(a, b) and σ 2
Dd

(a, b) for all a and b, we can
cover the full range of distances l and azimuths α. Because
the combination (−a, −b) will yield the same results as (a, b),
we use only a half-space with the range of a, [−Nx < a <

Nx ], and b, [0 < b < Ny]. All combinations of a and
b are then mapped to pairs of distance l and azimuth α,
creating a vector of distance and azimuth values, (li , αi ) with
i = [1, . . . , Np], where Np = 2Nx Ny is the total number of
combinations of a and b. These combinations are then used
to interpolate the structure function values for distance l and
azimuth α for every structure function, Dti ,t j

d (l, α), with l =

[l1, . . . , lz] and α = [α1, . . . , αk]. After the derivation of these
interferometric structure functions they are first converted to
single-epoch structure functions (see Section III-C), and then
parametrized (see Section III-D).

C. Estimation of Structure Functions for Single Epochs

To characterize the atmospheric signal for individual epochs
in an InSAR time series, we need to disentangle the combined
interferometric structure functions into single-epoch structure
functions. The structure function of a summation (or differ-
ence) of two independent atmospheric states is formed by the
addition of the contributing variances [30]. Under the assump-
tion that the InSAR signal only contains an atmospheric signal,
we can use

Dti ,t j
d (l) = Dti

d (l) + Dt j
d (l) (11)

where ti and t j are the two epochs of the interferogram. Due
to this relationship, we can find the single-epoch values for
a specific distance l using a set of interferometric combi-
nations at that specific distance l. Therefore, the conversion
to single-epoch structure function is done for all epochs at
once, but separately per individual distance, l. After this
conversion, the parameters of the single-epoch functions are
estimated for all distances, but separately per time step t
(see Section III-D). To estimate the structure functions per
epoch, we create an interconnected subset of interferometric
combinations with a maximum temporal lag of Bt,m = 60
days. A system of observation equations is then formulated
per individual distance l as

E{yl} = Asl; D{yl} = Q yl . (12)

Here, the N × 1 observation vector y, where N is the
total number of interferometric combinations with maximum
temporal baseline Bt,m , contains the structure functions values
Dti ,t j

d (l) of the unwrapped delays d ti ,t j for distance l

y
l
=


Dt1,t2

d (l)

Dt1,t3
d (l)
...

Dtn−1,tn
d (l)

. (13)

Matrix A defines all these interferometric combinations, i.e.,

A =


1 1 0 · · · 0 0
1 0 1 · · · 0 0
...

...
...

. . .
...

0 0 0 · · · 1 1

 (14)

and vector s contains the single-epoch structure function
values at a distance l

sl =


Dt1

d (l)

Dt2
d (l)
...

Dtn
d (l)

. (15)

The used covariance matrix Q yl contains the variances σ
ti ,t j
D (l)

for the interferometric combinations at distance l on the
diagonal, see (7), and zeros at the off-diagonal elements.

After least-squares inversion, we obtain both the estimated
single-epoch vector ŝl and its variance–covariance matrix Q ŝl

,
which will be used as input for the parameter estimation
procedure in Section III-D. Fig. 3 shows the results for two
single-epoch structure functions compared with the original
structure function for an interferogram. To evaluate the validity
of the used model [see (12)], we perform an overall model test
using the residuals êl = yl − ŷl [31]

σ̂
2

=
êl

T Q−1
yl

êl

N − 1
. (16)

A value of σ̂
2

> 1 can be interpreted as an underestimation of
the a priori variances, while σ̂

2
< 1 can be interpreted as an

overestimation the a priori variances. Using the test statistic
σ̂

2, we then adjust Q yl to [5]

Qcal
yl

= σ̂
2
Q yl . (17)

Using least-squares inversion, we can subsequently obtain
the calibrated variance–covariance matrix of the estimated
single-epoch values Qcal

ŝl
.

Accommodating for the potential anisotropy of the signal,
the single-epoch structure function may need to become direc-
tional as

Dd(l, α) = E{
(

N (l + p, α) − N (p, α)
)2

} (18)

where α is the azimuth direction of the structure function.
We can now estimate the directional single-epoch structure
functions in the same way as derived in (12)–(15), resulting
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Fig. 3. Decomposition of the interferogram from Fig. 1 in two single-epoch
structure functions. The original structure function of the interferogram is
given in blue, and the estimated single-epoch function is shown as the dotted
lines. The best performance is generally at distances around 10 km, as they
are not affected by decorrelation and deformation noise at smaller distances
(<5 km) and anisotropy at large distances (>50 km).

in a new parameter for sl,α for one particular distance l and
azimuth α

sl,α =


Dt1

d (l, α)

Dt2
d (l, α)

...

Dtn
d (l, α)

. (19)

Fig. 1(c) gives the result of this directional structure func-
tion. Its orientation varies from north–south to east–west
and back to north–south. Often these values can be related
to image-wide trends in tropospheric delays. Fig. 1 shows
anisotropy for distances larger than 5 km in contrast with
a more isotropic behavior for smaller scales, which cor-
responds to the local and regional turbulence regimes.
After least-squares inversion, we obtain the estimates of
the anisotropic single-epoch structure functions ŝl,α and its
variance–covariance matrix Q ŝl,α

. Combining all estimates
over all distances l and azimuths α into one matrix

Ŝ =


D̂t1

d (l1, α1) D̂t1
d (l1, α2) . . . D̂t1

d (lz, αk)

D̂t2
d (l1, α1) D̂t2

d (l1, α2) . . . D̂t2
d (lz, αk)

...
...

. . .
...

︸ ︷︷ ︸
sl1,α1

D̂tn
d (l1, α1) ︸ ︷︷ ︸

sl1,α2

D̂tn
d (l1, α2) . . . ︸ ︷︷ ︸

slz ,αk

D̂tn
d (lz, αk)


} s tT

1

} s tT
2

} s tT
n

(20)

where the columns sl,α represent all n single-epoch solutions
per (l, α)-combination and the rows s t each single-epoch
solution for all (l, α)-combinations. The rows of Ŝ will be
used to estimate the descriptive parameters per single-epoch
function in the next section. To find the variance–covariance
matrix Qs t for every individual s t vector, we use the variance

for time step t , of all variance–covariance matrices Qcal
ŝl

of
the (l, α)-combinations. These variances are then used as the
diagonal elements of matrix Qs t and all off-diagonal values
are set to zero.

D. Parameterization of Single-Epoch Estimates

As described in Section II-A, we can divide the atmospheric
refractivity signal into three components, one related to the
local turbulence regime, one to the regional atmospheric
patterns, and one to DEM differences. As the DEM component
can be corrected for, we focus here on the two other regimes
by choosing a study area over The Netherlands, with minimal
topography. The remaining local and regional regimes can
both be characterized by one variable, C t

w and C t
s . To find

those values for every isotropic solution, we use the structure
function values s t for the single-epoch solutions obtained
by methods described in Section III-C. The used isotropic
parameterization of the structure function is

f t
D(l) =

((
C t

sl
ζs
)2

+
(
C t

wlζw
)2)1/2 (21)

where C t
s is the parameter representing the strength of the local

component, C t
w is the parameter representing the regional com-

ponent, and ζs = 0.67 and ζw = 1.34, their respective scaling
parameters. Both components are combined by squaring the
components and taking the square root the combined values,
to get a transition between local and regional component that
is close to the observed structure functions. In logarithmic
space, this results in a line with a 0.67 slope for the local
scaling and a 1.34 slope for the regional scaling (see Fig. 4).
This line can then be fit using the estimated structure functions
for single epochs s t as observation values. However, when
the single-epoch values and variances are used directly in the
cost function, the final estimation becomes very sensitive to
outliers at larger distances due to the logarithmic scaling of
the structure function. Therefore, the function will be fit by
minimizing the residuals in log space

min
∣∣∣∣ log(s t ) − log

(
f t

D(pt )
)∣∣∣∣

Qlog
st

(22)

where s t are the estimated single-epoch structure functions val-
ues, f t

D(pt ) is the parameterized structure function from (21),
and Qlog

s t is the variance–covariance matrix of s t in log space.
Every individual element Qlog

s t
m,n

is defined as

Qlog
s t

m,n
= log

(
1 +

Qs t
m,n

s t
ms t

n

)
. (23)

By minimizing the residuals in (22), we obtain the vec-
tor of function parameters p̂t

= [C t
s, C t

w]
T and its

variance–covariance matrix Qlog
p̂t

Although the data fit for the isotropic solution can pro-
vide an estimate of the strength of the local and regional
atmospheric signal, it does not provide any information on
a potential direction-dependent, i.e., anisotropic part of the
signal. To model the anisotropic component, we need to find
the direction at which the structure function is strongest and
whether and how the anisotropy develops over distance. The
local turbulence signal appears to be almost isotropic, which
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Fig. 4. Decomposition of the isotropic structure function. The blue line gives
the single-epoch structure function for the first date of the interferogram in
Fig. 1 on March 27, 2018 and the black dotted line represents the model fit.
The dotted blue, green, and red represent the local turbulence factor C t

s and
the regional turbulence factor C t

w . Adding these two lines together results in
the black line as described in (21). The transition point T t from the local to
regional regime is given by the location where the red and blue dotted lines
cross, which is at a distance l t

T of about 8 km in this case.

is also clear from Fig. 1. Therefore, an anisotropic component
can be added to (21) as

f t
D(l, α) =

(
C t2

s l2ζs + C t2

w,maxl2ζw+r t
l

max + C t2

w,minl2ζw−r t
l

min

)1/2

with lmax = l
∣∣ cos

(
α − αt

max

)∣∣
lmin = l

∣∣ sin
(
α − αt

max

)∣∣. (24)

To limit the number of used variables, this is done by adding
three variables: the direction αt

max, related to the strongest
signal, the anisotropy scaling factor r t

l , and by splitting the
regional scaling parameter C t

w in two parameters, one param-
eter in the x-direction C t

w,max along azimuth αt
max and one

parameter in the y-direction C t
w,min orthogonal to x . By solving

the cost function given in (22), we then obtain the parameter
vector p̂

p̂t
=



C t
s

C t
w,max

C t
w,min

r t
l

αt
max

 (25)

and its variance–covariance matrix in log space Qlog
p̂t . Fig. 5

gives an example of the anisotropic single-epoch fit and the
relative error between the estimated and fitted anisotropic
single-epoch structure function. To clearly show the contri-
bution of the anisotropic part of the structure function fit,
also a decomposition in a separate isotropic and anisotropic
component is given in Fig. 6.

E. Transition Point
To give an indication of the point where the local and

regional components have equal strength, we introduced the
transition point T t earlier (see Fig. 4). As the transition point
T t is defined as the point where the isotropic local and regional
component are the same, the distance of the transition point,

Fig. 5. Comparison of estimated single-epoch structure function D̂t
d (l, α)

and the fit structure function f t
D(l, α) for March 27, 2018, the first epoch in

Fig. 1. (a) Estimated and fit function side by side, where the thick blue and
red line indicate the isotropic single-epoch estimate D̂t

d (l) and function fit
f t
D(l). (b) Relative error of the anisotropic and isotropic function fit is given.

This shows a good fit of the single-epoch structure function, with decreasing
accuracy at distances l > 50 km.

l t
T can be derived by

C t
wl tζw

T = C t
sl

tζs

T

l t
T =

(
C t

s

C t
w

) 1
ζw−ζs

. (26)

The log-scale standard deviation of the estimated l t
T is

then obtained using error propagation of the variances and
the covariance of C t

s and C t
w from the variance–covariance

matrix Qlog
p̂t .

F. Residuals of Single Epoch and Parameter Estimation
To analyze the residuals of the single epoch and parameter

estimation, we calculate and combine the residuals similar to
matrix Ŝ [see (20)] to estimate the residuals over specific
time steps t , distances l, and azimuths α. The residuals for
the derivation of single-epoch functions Ê s and parameter
estimation Ê p are given by

Ê s =
[
ŷl1,α1 ŷl1,α2 . . . ŷlz ,αk

]
−

[
yl1,α1 yl1,α2 . . . ylz ,αk

]
(27)

Ê p =


ŝ t1

ŝ t2

...

ŝ tn

 −


s t1

s t2

...

s tn

 (28)
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Fig. 6. Decomposition of the isotropic and anisotropic part of the structure function fit of a single-epoch for March 27, 2018, the second date for the
interferogram in Fig. 1. (a) Isotropic part, which can be derived from the two isotropic parameters in (24), C t

s and C t
w . (b) Anisotropic factor f t

D(l, α)/ f t
D(l).

(c) Full anisotropic fit.

where yl,α is the vector of interferometric structure function
values for a distance and azimuth pair and s t is the vector
of single-epoch structure function values for a specific epoch.
By replacing all vectors sl,α for ŝl,α to derive yl,α , we can
find the combined residuals for both the single epoch and the
parameter estimation, Êc

Êc =
[

Aŝl1,α1 Aŝl1,α2 . . . Aŝlz ,αk

]
−

[
yl1,α1 yl1,α2 . . . ylz ,αk

]
(29)

where sl,α is the vector of single-epoch structure function
values for a distance and azimuth pair. These residuals can then
be binned and or averaged for different azimuths α, distances
l, and epochs t to find a root-mean-square error (RMSE).
However, this value will be heavily skewed to the larger values
because the size of the residuals is often a fraction of the
structure function value. We will therefore use the root-mean-
square relative error (RMSRE). For example, the RMSRE of
the parameter estimation as a function of distance and azimuth
is given by

RMSREt
p(l, α) =

√√√√1
n

tn∑
t=t1

(
êt

p

ŝ t

)2

(30)

where ŝ t and Ê t
p are the row vectors from Ŝ and Ê p for spe-

cific time t , distance l, and azimuth α values. Similar to (30),
the RMSRE over distance and azimuth for the single-epoch
estimation RMSREt

s(l, α) and the combined single epoch and
parameter estimation RMSREt

c(l, α) can be calculated. The
summation can be done over time t but also over distance l
or azimuth α, providing us estimates for RMSREl,α

p (t) and
RMSREt,α

p (l).

IV. RESULTS AND DISCUSSION

In this section, we first discuss the results of the parameter-
ization of the isotropic and anisotropic single-epoch structure
functions for a time series of 151 Sentinel-1 images over
The Netherlands. We discuss the transition point between the

local and the regional component and the effect of phase
noise due to deformation and decorrelation in InSAR data
on the estimated structure functions. Finally, we discuss the
residuals of the single epoch and parameter estimation. The
used Sentinel-1 data stack in this study contains 1445 interfer-
ograms between early 2017 and late 2019, with a repeat pass
of six-day and satellite overpass around 7 A.M. local time.

A. Isotropic Estimates for Small and Large Distances

For the isotropic parameterization, the results can be sum-
marized in a time series of the local and the regional
component, C t

s and C t
w, respectively. Fig. 7(a) shows these

parameters over time, with a moving average filter of two
months. From (5), it follows that these parameter values
correspond to the local and regional component curves at 1 km.
Both parameters show a yearly cycle, with high values in sum-
mer and low values in winter. Seasonal temperature variation
affects the maximum water vapor pressure and, consequently,
the integrated refractivity. Although temperature in itself has
a negative linear correlation with refractivity [see (2)], the
maximum water vapor pressure increases exponentially with
increasing temperatures [see (3)], which causes the observed
higher parameter values in summer than in winter.

Fig. 7(a) also shows that the peak of the regional parameter
lags behind the peak of the local parameter. This suggests
that the local and regional variations are driven by different
mechanisms. The energy for the local component peaks in
early summer, which coincides with the yearly peak of incom-
ing solar radiation that drives small-scale turbulent processes.
These small-scale turbulence develop due to heating of the
surface by solar radiation and cause variations in both tempera-
ture and water vapor, which affects the InSAR delay variations.
The regional component peaks at the end of summer when the
mean air temperatures are highest [32], which mainly affects
the total delay differences due to large-scale weather patterns.

The error bars in Fig. 7(a) indicate the precision of the
local and regional parameter estimates in log space, σ 2

C t
s
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Fig. 7. Variation of the fit local parameter C t
s and regional parameter C t

w for single-epoch solutions. These values are equal to the local and regional
components C t

s l0.67 and C t
wl1.34 at 1 km l = 1, see Fig. 4. (a) Variations over time and their accuracies, σ 2

C t
s

and σ 2
C t

w
. The blue and red lines show the

two-month moving average. This shows that both variables follow a yearly cycle, with low values in winter and high values in summer, although the local
parameters show a larger peak. (b) Distribution of local and regional parameters. This shows a maximum relative difference of 10 for local parameters and
50 for regional parameters.

and σ 2
C t

w
, which indicates more certainty for local parameters

than for regional parameters. This is partly due to the lower
precision of structure function values for distances greater
than 50 km, which is because the uneven distribution and
strong decrease of available pixel pairs for distances close
to the satellite swath width. This leaves only a short reliable
interval to fit the regional component between the transition
from local to regional scaling around 10 km and the maximum
reliable distance of 50 km. Also, due to the longer distances,
few atmospheric features with the same distance size are
covered in one image, which makes the estimation less robust
as it is more sensitive to specific cases. Therefore, if the
regional parameter for a single epoch could not be reliably
estimated, it has been excluded from the analysis. Using a
maximum uncertainty interval of exp σ 2

pt
2

> 1.5, this led
to exclusion of 20% of the cases, which are also removed
in Fig. 7(a).

Fig. 7(b) shows the total distribution of the local and
regional parameter, which shows a smaller spread of the
local parameters than for the regional parameters. Under the
assumption that both are log-normally distributed, the respec-
tive logarithmic mean and standard deviation are 10−5.5 m2

and 0.60 for the local parameters and 10−6.3 m2 and 0.84 for
the regional parameters, which is equivalent to the maximum
relative difference of 10 for local parameters and 50 for
regional parameters.

This parameter estimation assumes that the signal is sta-
tionary over the whole scene. Although, in most cases, the
weather state will be similar over the entire scene and the
values in Fig. 7 are representative. In specific cases, however,
there can be nonstationarity, for example, if there is a weather
front present with different weather types at either side of
the weather front. This spatial variation can cause variation
as large as the expected seasonal variations, i.e., the vertical
bandwidth in Fig. 7(a), leading to a local overestimation or
underestimation. Yet, the estimated value for these cases is
still valuable as an estimate of the average atmospheric signal
for the whole scene.

B. Anisotropic Solution

The level of anisotropy at (l) at distance l for every structure
function is defined based on (24)

at (l) =
C t

w,maxl2ζw+r t
l

max

C t
w,minl2ζw−r t

l
min

(31)

where at (l) is the anisotropic factor as a function of distance l.
The magnitude of the anisotropic factor is defined by the
strength of the scaling parameter r t

l , which describes the
difference in scaling between the azimuth direction with the
highest variability, i.e., αt

max, and its orthogonal complement,
and the difference in strength between the two directions
C t

w,max and C t
w,min. Cases with a dominant anisotropic signal

are usually connected with a strong delay gradient over the
original InSAR image. In these cases, the regional regime is
relatively dominant compared to the local regime. Fig. 8(a)
shows the relationship between the level of anisotropy and the
location of transition point l t

T , which scales with the ratio of
the regional and local parameters C t

s and C t
w [see (26)]. The

level of anisotropy is shown at 50 km because the anisotropy
is more distinct at larger distances, and until 50 km, the
anisotropic single-epoch structure function can still be reliably
estimated. The level of anisotropy at 50 km ranges between 1,
which means no anisotropy, to about 16, with most cases
around a value of 2. Values with low accuracies are those
where the regional component of the structure function is not
well defined (see Fig. 7), which also leads to lower accuracies
for the anisotropy values.

C. Transition Point

Fig. 8(b) shows the distribution of the distances of the
transition point l t

T between the regional and local regimes.
High values indicate a dominant local regime, while low
values indicate a dominant regional regime. A dominant local
regime is related to a very turbulent troposphere, i.e., strong
convective processes. A dominant regional regime indicates
wide-scale delay trends, i.e., related to passing weather fronts.
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Fig. 8. Relation between level of anisotropy for single-epoch structure function and the distribution and precision of the transition point l t
T . (a) Correlation

between the level of anisotropy and the location of the transition point l t
T , which scales with the ratio of the local C t

s and regional C t
w parameters [see (26)

and Fig. 4]. The level of anisotropy is given as the ratio between the direction with the highest and lowest structure function value at 50 km [see (31)]. The
correlation between the level of anisotropy and location of the transition point indicates that when large-distance weather systems are dominant, the level of
anisotropy for these systems also increases. (b) Distribution of the ratio of the local C t

s and regional C t
w parameter. The standard deviation per epoch σT,t is

represented by the shade of blue, with darker blue for lower standard deviation. This shows that although there is a large distribution of l t
T , the high accuracy

estimation is clustered around the 5–10-km range.

Because the precision of the single-epoch structure function
deteriorates at distances over 50 km due to the InSAR image
size, the estimated distances of the transition points l t

T become
less precise if they approach 50 km. This can be seen from
Fig. 8(a), but also Fig. 8(a) where transition point l t

T values
with low precision are indicated in light blue. Fig. 8(a) shows
that there is a clear relationship between the level of anisotropy
and the location of the transition point, with a smaller distance
of the transition point with increasing anisotropy. This trend
indicates that when the regional component is more dominant,
which results in a lower estimate of l t

T , the level of anisotropy
is also larger. This is possibly related to cases with a less
turbulent character of the delay, where the delays are mainly
caused by large-scale trends in pressure and temperature,
which leads to a strong anisotropic component.

The position of the transition point is often related to the
effective height of the wet troposphere [24], [33], which would
lead to different scaling behavior between smaller atmospheric
processes that are not limited by the height of the atmosphere
and larger processes that are limited by the height of the
atmosphere [34]. However, the estimated values of l t

T of tenths
of kilometers are too high to represent the effective height of
the wet troposphere, and also, the range between the lowest
and highest values of l t

T indicates that a direct conversion
between the transition point and the effective height of the
wet troposphere cannot be made. Interestingly, there are also
no gaps between local and regional curves, which indicates
that both processes are present at all scales, but that one is
dominant at local distances and the other at regional distances.
This is also implicated in (21) and (24) and can be seen
from the compounding effect around the transition point (see
Fig. 4). Similar scaling values for local and regional distances
and location of the transition points are found for wind
measurements [35], [36], [37], which could represent the same
processes as we see in InSAR data although the underlying
measurement is very different. Also, another explanation for
the observed scaling behavior has been hypothesized [38],

[39], [40], but how these would result in similar scaling in
InSAR data is unclear.

D. Bias in Estimated Structure Functions

In addition to the atmospheric components, a part of the
InSAR delay variations consists of deformation and decorre-
lation noise, which is only partly mitigated by masking out
highly decorrelated areas and removal of interferograms with
evident extreme deformation patterns. Because we expected
that the noise term would increase with temporal baseline
Bt , only interferograms with a maximum temporal baseline
of 60 days were included in the analysis, to limit the noise in
our final estimate (see Section III-C). To quantify the increase
in noise with temporal baseline, we analyze the results for the
single-epoch estimation for varying temporal baselines.

The noise increase with larger temporal baselines can be
shown by the ratio between the interferometric structure func-
tions and the adjusted interferometric structure functions yl/ŷl

for specific temporal baselines Bt [see (13)]. The resulting
ratios are given in Fig. 9, which shows the structure function
values of the observations yl=5 and adjusted observations ŷl=5
at 5 km distance as a function of the date of the primary SAR
acquisition and the temporal baseline. Fig. 9(c) shows a clear
increase in this ratio with larger temporal baselines, which
indicates increasing noise values for larger temporal baselines.
There is also a clear correlation between larger ratios, shown
in red in Fig. 9(c) and low structure function values, which
are blue in Fig. 9(a) and (b). This is likely because the relative
contribution of deformation and decorrelation noise becomes
larger with less atmospheric turbulence.

So far, Fig. 9 has shown the ratios for 5 km, but these
are expected to decrease with distance as phase variations
due to temporal decorrelation and deformation are generally
only correlated over short distances, while the atmospheric
delays scale with distance. Fig. 10 shows the dependence of
the noise parameter on distance. Similar to Fig. 9, we show
the ratios yl/ŷl , but now for a specific temporal baseline 1t
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Fig. 9. Comparison adjusted interferometric structure function values
ŷl=5 and calculated interferometric structure function values yl=5 at a 5-km
distance. (a) and (b) Show measured and reconstructed values at different
temporal baselines. (c) Shows Ratio between measurement and estimate.
Because the absolute values vary a lot between seasons, we use a ratio instead
of absolute values. This shows that as the temporal baseline increases, the
structure function results become more contaminated with nonatmospheric
noise due to decorrelation and deformation. The primary date of the interfer-
ogram is the most recent date of the two dates of an interferogram.

instead of a specific distance yl,Bt =1t/ŷl,Bt =1t . This gives a
clear view on the average structure function values per distance
for the different temporal baselines Bt = [6, 12, . . . , Bt,60].
This indicates that structure function values at Bt = 60 days
are more than 50% larger than those at Bt = 6 days for
local distances. As expected, the noise contributions decrease
with distance. Due to the used weights for the single-epoch
estimation, the average noise in the adjusted interferograms is
about the same as the measured 18-day interferograms. This
means that in estimated single-epoch solutions, there is a larger
noise contribution than in the structure functions for six- and
12-day interferograms.

To minimize the noise contributions in the single-epoch
estimation, we could therefore increase the weight for structure
functions with short temporal baselines, but this could cause
problems in case one SAR acquisition has a bad quality, due
to, for example, decorrelation caused by snow cover. Also,
the improvement will be limited to local distances, while the
new solutions for regional distances will degrade as they are
much less affected by noise and provide better solutions with
more equal weights for different temporal baselines. Another
solution would be to use a network of PSs instead of the
used spatial averaging technique. However, this would cause
a very uneven sampling, with most data points in build up
areas, resulting in a bias of the estimated structure functions.
Different weighting techniques could therefore help to mitigate
decorrelation and deformation noise but would introduce other
errors in the single-epoch estimates.

The change in grid cell size and maximum temporal baseline
will also reduce the bias, which becomes clear from Fig. 10.
If the maximum temporal baseline is decreased, the more
biased interferograms, shown as the top lines in Fig. 10, are
removed from the analysis, resulting in a reduced bias in the
single-epoch estimate. Similarly, a larger grid cell will cut off
the x-axis in Fig. 10, removing the distances that are mostly
affected by biases.

Fig. 10. Comparison of the relative residuals yl,Bt =1t/ŷl,Bt =1t for different
temporal baselines 1t . This shows that relative residuals increase with
temporal baseline, especially at smaller distances, which indicates that the
relative contribution of nontropospheric noise is larger with larger temporal
baselines and smaller distances. The increase with shorter distances is largely
due to the smaller tropospheric signal, while the nontropospheric noise
remains constant as its spatial correlation is small. Due to the used weighting
techniques, the noise level of the final solution averages around the value for
18-day interferograms.

E. Residuals of Structure Function Parameterization

To quantify how well the estimated isotropic and anisotropic
models can represent the statistical characteristics of the calcu-
lated structure functions and estimated single-epoch structure
functions, the RMSRE is used (see Section III-F). The RMSRE
gives the average relative deviation of the model from the
observed value as a fraction, for different epochs, distances,
or directions (see Fig. 11). Most found RMSRE values are
between 0.1 and 0.3, which corresponds to a relative error
of 10%–30%, but there are some cases with larger residuals.
Fig. 11(a), (d), and (g) shows the average RMSRE over
distance; Fig. 11(b), (e), and (h) shows the average RMSRE
for different epochs; and Fig. 11(c), (f), and (i) shows the
average RMSRE over both distance and azimuth.

The residuals over distance for the single-epoch estimates
in Fig. 11(a) show that for almost every distance bin, the
anisotropic solution shows a better performance. This dif-
ference is smallest for distances lower than ∼5 km, as the
structure functions are much more isotropic over these dis-
tances. The anisotropic curve in Fig. 11(a), (d), and (g)
first decreases until about 5–10 km and increases again at
distances larger than ∼10 km. The higher residuals at small
distances are mainly due to biases caused by deformation and
phase noise, as discussed in Section IV-D. This affects the
single-epoch estimation because (11) only holds when the
temporal baseline does not affect the structure function of an
interferogram, which does hold for the tropospheric delays but
not for deformation and phase noise.

The increase of RMSRE values for distances over ∼10 km
is likely also because the isotropic condition in (11) is not
met. This is because the structure function becomes more
anisotropic at these distances, which is also reflected in the
increase in RMSRE of the isotropic relative to the anisotropic
solution in Fig. 11(a), (d), and (g). The further increase around
50 km for the parameter estimation in Fig. 11(d) is due to
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Fig. 11. RMSRE of the residuals after (a)–(c) estimation of single-epoch structure functions es , (d)–(f) fitting of these functions e f , and (g)–(i) combined
et (see Section III-F). RMSRE values can be interpreted as a mean relative error, e.g., a value of 0.01 is equivalent to a 1% error. (a), (d), and (g) Overall
accuracy for the isotropic and the anisotropic over different distances. (b), (e), and (h) Distribution of the mean residuals per epoch. (g)–(i) Mean anisotropic
residuals in both azimuth and distance. This shows that residuals for the anisotropic solution are generally better, but mainly at higher distances. Lowest
residuals are found at the 5–10-km range for the anisotropic case, with about two times larger residuals at the smallest distances and about five larger higher
residuals at the largest distances. The overall mean RMSRE is 0.18 for the anisotropic and 0.31 for the isotropic case.

the uneven distribution and strong decrease of the number of
available pixel pairs for distances close to the satellite swath
width.

Fig. 11(b), (e), and (h) shows that isotropic residuals are
higher than the anisotropic ones, the latter having an RMSRE
of lower than 0.2 for most individual epochs. The distribution
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for the isotropic case is also more skewed, because for cases
with a high level of anisotropy, the precision of the isotropic
parameter estimation decreases. Fig. 11(c) shows the average
RMSRE in both distance and azimuth, which shows largely the
same pattern as the anisotropic curve in Fig. 11(a), but shows
a lower precision around the dominant west–south–west wind
direction for larger distances, which is likely due to stronger
anisotropic InSAR delay trends in this direction.

Fig. 11(g), (h), and (i) shows the combined error of both
the single epoch and parameter estimates. Interestingly, the
RMSRE for the combined residuals in Fig. 11(g) is for some
distances lower than the RMSRE distribution for the parameter
estimation in Fig. 11(a) and (d). This is due to a “correction”
of low-precision single-epoch estimations at large distances
in the parameter estimation. The overall mean RMSRE value
derived from the distribution in Fig. 11(h) is 0.31, with a
standard deviation of 0.15 for the isotropic case and 0.18 with
a standard deviation of 0.07 for the anisotropic case.

V. CONCLUSION

In this article, we developed a new method to estimate
and parameterize single-epoch structure functions, using the
scaling properties over local and regional distances. Using
this method, we showed that we can accurately describe
the strength and statistical characteristics of the tropospheric
signal for single-epoch SAR acquisitions, using only two
isotropic and three anisotropic parameters.

To derive these results, the structure functions of an inter-
connected subset of interferograms need to be calculated
from unwrapped InSAR interferograms and used to derive
single-epoch structure functions. These single-epoch struc-
ture function are then parameterized using an isotropic and
anisotropic function fit in log space.

The results show a clear distinction between a local scaling
up to 3–30 km and a regional scaling for larger distances
with increasing anisotropy. Both in local and regional scaling,
a clear seasonal cycle was observed due to temperature and
water vapor variations, with peak values in early summer for
local and late summer for regional distances. In our study case
over The Netherlands, this resulted in a maximum variation
with a factor of ∼10 for the local and ∼50 for the regional
parameters during the study period.

The resulting single-epoch structure functions can be used
as a physics-based method to quantify the atmospheric signal
in the InSAR time series. This can then be used as a precision
and weighting factor in model estimation for InSAR defor-
mation time series, as it provides a measure for atmospheric
noise for every individual SAR scene based on distance and
azimuth. In addition, the gained insights can be used to
assimilate InSAR data in weather models as a meteorological
measurement.
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