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Abstract

GREEN-MARL is a domain-specific language for efficient graph analysis. In
this thesis, we define the formal static semantics of the language and provide
an implementation in the Spoofax language workbench. The type system of
GREEN-MARL includes limited forms of name-dependent types, overloading,
parametric polymorphism, and inference. We give a formal specification that
covers all aspects of this type system. We also describe our implementation of
the type system in the Spoofax language workbench, where we focus on the
capabilities of Spoofax’s meta-languages to describe the type system. GREEN-
MARL provides several parallel language constructs, as well as constructs to
mitigate data races that can occur in parallel regions. We give a formal de-
scription of a symbolic, tree-based dependence analysis that can check the
invariants of the mitigation strategies and find potential data races. We em-
ploy a rewrite system for the implementation of this analysis in the Spoofax
language workbench. Finally, we discuss the integration of these analyses with
successive program transformation steps. Each transformation step is informed
by the static analysis. However, transformation steps invalidate parts of the
analysis results, which inhibits the successive steps. A naive approach to re-
analyse the program after every transformation step does not scale. Therefore,
we incrementally update analysis results after each transformation step.
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Chapter 1

Introduction

Domain-specific languages are programming languages that are tailored to a specific
domain. Through the use of terms from this domain, a domain expert can describe
her problem and solution succinctly, without spending effort on an encoding in
general purpose programming constructs. Programs written in a domain-specific
language can be checked for domain-specific properties [37].

This thesis is about GREEN-MARL, a domain-specific language for efficient graph
analysis [23]. The language supplies domain specific, high-level features to allow the
user to write graph algorithms in a natural and concise way. Language constructs
to explicitly specify data-level parallelism allow the user to expose parallelism in
these algorithms. GREEN-MARL programs can be compiled to different execution
platforms.

Currently, the GREEN-MARL compiler is manually implemented in C++ by a one-
man team. This development is becoming harder as the language and the compiler
grow. This is not an uncommon situation for a domain-specific language. Domain-
specific languages usually have a smaller user base, simply by virtue of being domain
specific. Because of this smaller user base, there are typically limited resources avail-
able for the development and implementation of the language. The combination of
manual implementation, non-trivial features, and small team size hamper develop-
ment and the exploration that can help to evolve the language.

Language workbenches are suites of tools for programming language develop-
ment, that promise exploratory language design. The key idea of language work-
benches is that they allow a faster definition of a programming language, from
which they generate tools such as editors, compilers and interpreters [18]. This is done
through more high-level language declarations, that decrease language development
and maintenance effort and increase language extensibility. Common examples of
languages workbenches are XText [15], MPS [27] and Spoofax [43]. In this thesis we present
a re-implementation of the GREEN-MARL compiler in Spoofax.

In order to implement GREEN-MARL properly, we do need to understand its
semantics, which is currently given by informal text and implicitly by the imple-
mentation. In this thesis, we focus on the formal static semantics of GREEN-MARL,
because the language has a number of non-trivial features. The type system has
limited forms of name-dependent types, overloading, parametric polymorphism,
and inference. The language has several parallel language constructs, as well as
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1. INTRODUCTION

constructs to mitigate data races that can occur in parallel regions. A dependence
analysis is needed to check the invariants of the mitigation strategies and find po-
tential data races. We present a formal specification of both the type system and the
dependence analysis.

1.1 Research Questions

The challenges of understanding the static semantics of GREEN-MARL and imple-
menting it in a language workbench leads us to the following research questions.

RQ1. What is the static semantics of GREEN-MARL?

The GREEN-MARL language specification [22] is written in prose. The specification
of the language is in some places unclear, incomplete, and inconsistent. To fully
understand the language, we need to pin down its static semantics formally. This is
particularly important because the domain specific nature of GREEN-MARL’s type
system. A formal specification can be used to discuss GREEN-MARL’s semantics with
confidence and provides the foundation for implementations of the language.

RQ2. How can the static semantics be declared in Spoofax?

Formal type systems are typically not executable. Based on this type system, we
need to implement language processors such as a type checker, type analysis for
further compilation steps, and reference resolution for an editor. The Spoofax lan-
guage workbench can generate all these features from a specification of the type
system in its declarative meta-languages NABL [29] and TS. The type system includes
limited forms of name-dependent types, overloading, parametric polymorphism
and inference, which may not fit the constraints of the meta-languages. We explore if
the capabilities of the meta-languages are sufficient to describe GREEN-MARL’s type
system and search for workarounds when they are not.

RQ3. What is the formal semantics of the dependence analysis of
GREEN-MARL?

GREEN-MARL provides several parallel language constructs, as well as constructs
to mitigate data races that can occur in parallel regions. To validate the proper use
of those mitigation strategies, and detect data races, the language needs a depen-
dence analysis. Currently, this analysis is only described by example [23] and in a
C++ implementation. For a proper understanding of this analysis, we need a formal
specification. Based on this formal specification, implementations can be built.

RQ4. How can this dependence analysis be declared in Spoofax?

Again, the formal specification of such an analysis is typically not executable. Rewrite
systems are a common way to express static analyses [4]. Spoofax provides the trans-
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1.2. Contributions

formation language STRATEGO1. We explore how we can fit the dependence analysis
of GREEN-MARL into STRATEGO.

RQ5. How can analysis results be kept consistent after transformations?

The GREEN-MARL compiler performs successive program transformation steps for
optimisations. Each transformation step is informed by the static analysis. However,
each transformation step invalidates parts of the analysis results, which inhibits the
next step. A naive approach to re-analyse the program after every transformation
step does not scale. Therefore we seek an approach to incrementally update analysis
results after each transformation step.

1.2 Contributions

The contributions of this thesis are:

• A formal specification of GREEN-MARL’s type system (Chapter 3).

• A formal specification of a dependence analysis for GREEN-MARL (Chapter 4).

• The implementation of this static semantics in Spoofax (Chapter 5 and Sec-
tions 5.2,5.3).

• An approach to update analysis results specific to this implementation (Chap-
ter 5, Section 5.4), to integrate this implementation in a full Spoofax-based
GREEN-MARL compiler.

1.3 Outline

The remainder of the thesis is structured as follows: we introduce GREEN-MARL

in detail in Chapter 2 with two real world algorithm implementations. Through
these examples, we illustrate most of the language features, the type system and
the dependence analysis. We follow this up by our first contribution: a formal static
semantics of GREEN-MARL (Chapter 3). We use formal type rules to capture the
unique qualities of GREEN-MARL’s domain specific features. In Chapter 4 we describe
the dependence analysis. We describe our implementation of GREEN-MARL’s name
and type semantics in NABL and TS, the implementation of the dependence analysis
in STRATEGO, and the challenges we found along the way (Chapter 5). We end with
related work (Chapter 6) and discussion (Chapter 7).

1The citation is on Term Graph Rewrite Systems, but the same applies for Term Rewrite Systems
like STRATEGO.
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Chapter 2

GREEN-MARL by Example

In this chapter, we introduce the language with two example programs. These exam-
ples show most of the features of the language. We use them to informally introduce
the type system and the read-write analysis before we present the formal specifica-
tions in the next chapters.

2.1 Closeness Centrality

Both examples (Figures 2.1 and 2.2) implement an algorithm to calculate the Close-
ness Centrality (CC) measure of every node in a graph. The centrality of a node in a
graph is a measure that was first used in the social sciences by Bavalas [6]. The idea
behind centrality was that the most central node needs the least amount of time to
send a message to all other nodes in a graph. Since then many different variants of
centrality have been proposed [19].

The CC value of a node in a graph is inversely related to the sum of the shortest
paths to all other nodes in the graph. In other words, the reciprocal of the sum of the
distance between the node and all other nodes in the graph:

CC (x) = 1∑
y d(x, y)

where x and y are nodes and d is the distance function between two nodes.
To measure the distance between all pairs of nodes, there should be a path

between all pairs. This property is called connectedness for undirected graphs, and
strong connectedness for directed graphs [2].

The distance function measures the length of the shortest path between two
nodes. In an unweighted graph this is the hop distance, i.e. the amount of edges in
the path. Such a value is easy to find by doing a breadth-first search from one node
until we come across the other node. In a weighted graph, a shortest path algorithm,
e.g. Bellman-Ford [7,17], is needed to calculate the distance between two nodes.

2.2 Implementations

The two examples in Figures 2.1 and 2.2 calculate the CC measure for unweighted and
weighted graphs respectively. We follow the above definition of Closeness Centrality

5



2. GREEN-MARL BY EXAMPLE

1 procedure ccOne(g: graph; cc: nodeProperty <double >) : bool {
2 if(g.numNodes () == 0) { // corner case: empty graph
3 return true; // we cannot pick a random node from an empty graph
4 }
5
6 // Kosaraju (simplified)
7 nodeProperty <bool > checked;
8 g.checked = false;
9 node t = g.pickRandom ();

10 inDFS(n: g.nodes from t) {
11 n.checked = true;
12 }
13 if(any(v: g.nodes) {!v.checked }) {
14 return false; // Graph is not strongly connected
15 }
16 g.checked = false;
17 inDFS(n: g .̂nodes from t) {
18 n.checked = true;
19 }
20 if(any(v: g.nodes) {!v.checked }) {
21 return false; // Graph is not strongly connected
22 }
23
24 // Closeness Centrality
25 foreach(n: g.nodes) {
26 long levelSum = 0;
27 inBFS(v: g.nodes from n) {
28 levelSum += currentBFSLevel ();
29 }
30 n.cc = 1.0 / (double) levelSum;
31 }
32 return true;
33 }

Figure 2.1 – Closeness Centrality (Unit Length) – Simplified.

Copyright © 2013–2015 Oracle and/or its affiliates. All rights reserved. [35]

fairly closely in the implementation in GREEN-MARL.

GREEN-MARL works with directed graphs. These graphs carry only nodes and
edges, an arbitrary ordering between nodes, an arbitrary ordering between edges,
and the direction of each edge. A weighted graph is not a single entity in GREEN-
MARL, it is instead modelled as a directed graph with a separate weight property
defined for every edge.

Properties can be defined for nodes or edges of a graph. Since we calculate the
CC value for every node in the graph, the return value of both implementations
is a floating point number property on nodes (cc : nodeProperty<double>). However,
the graph that is input may not be strongly connected, which would make the CC
values for the nodes undefined. Therefore the examples have a Boolean return value
indicating whether the graph is strongly connected, and an output argument to
return the CC values.

Unweighted. In the first example, procedure ccOne in Figure 2.1, we define the
input argument g, which is the unweighted graph, the output argument cc after the
semicolon, which are the CC values, and the Boolean return type.

6



2.2. Implementations

Between lines 7 and 22 we check the graph for strong connectedness. We do this
by picking an arbitrary node and determining by depth-first search that it can access
all other nodes (8-15). Then we do another depth-first search from the same node on
the reverse graph to check that all nodes can reach this node (16-22).

The actual calculation of the measure is between lines 25 and 31. For the CC value
of a node we use a breadth-first search to find a shortest path to other nodes. The
hop distance is equal to the length of each path, we can sum up the current hop
distance from the start node for every node we visit in the breadth-first search.

We use a Boolean node property checked to track accessible nodes (7). The prop-
erty is initialised to false with a group assignment (8). This group assignment is
syntactic sugar for traversing all nodes (or edges for an edge property) in the graph
(or collection) and setting the property to false for each node. Moving on, we pick
a random start node t in the graph with GREEN-MARL’s built-in functions (9). The
depth-first search inDFS traverses the nodes of the graph sequentially from the start
node (10–12), and checks off visited nodes (11). Afterwards we see if any nodes were
not reached (13). The any expression is a reduction expression, which reduces the
values of a body expression to a single value. Next we reset the checked property, and
do the depth-first search on the reverse graph g^, i.e. the same graph with the edge
directions reversed. Again we see if we have reached all nodes, as this means that all
nodes have a path to our start node (16–22).

For every node in parallel (25) we calculate the sum of all shortest paths (26). The
breadth-first search (27–29) is also a parallel construct. It provides a built-in procedure
for current level (28), which is the hop distance from the start node. The addition
assignment+= is a numeric reduction assignment, which can be used to compute a
sum in a parallel context without race conditions. Within parallel contexts a += b is
not equal to a = a + b, the latter would result in a race. Finally, we take the reciprocal
of the sum for the CC value (30).

Weighted. Procedure ccVar in Figure 2.2 calculates the CC values for all nodes on a
weighted graph. The shortest path in a weighted graph is not necessarily the path
with the least hops, therefore we switch from a breadth-first search to the Bellman-
Ford algorithm [7,17]. The Bellman-Ford algorithm gradually minimises the length of
the paths from infinity (10) towards the shortest path. It does this by iterating over all
nodes to which a shorter path has been found in the last iteration (17). For each of
these it checks if through this node its neighbours (18) can be reached with a shorter
path (20). When the Bellman-Ford algorithm is done, any paths of infinite length
indicate that the graph is not strongly connected. If none are infinite, the sum of the
paths is used to calculate the CC value.

We calculate the CC value for every node sequentially (8). If we did this in parallel,
there would be data races on the four properties that are defined at the start. The
distance property dist is initialised at positive infinity, except for the root node (10).
Positive infinity can be typed with any numeric type, not just the floating point
types. We use a group assignment feature where the current node (or edge for edge
properties) can be referenced on the right-hand side with _ .

The updated property marks nodes that have been updated in the last iteration.
Each iteration (16–28), the program goes over all these updated nodes (17), and con-
siders its neighbours, the nodes connected through an outgoing edge, with the nbrs

7



2. GREEN-MARL BY EXAMPLE

1 procedure ccVar(g: graph , len: edgeProperty <double >;
2 cc: nodeProperty <double >) : bool {
3 nodeProperty <bool > updated;
4 nodeProperty <bool > updatedNext;
5 nodeProperty <double > dist;
6 nodeProperty <double > distNext;
7
8 for(root: g.nodes) {
9 // Bellman−Ford

10 g.dist = (_ == root) ? 0 : +INF;
11 g.updated = (_ == root) ? true : false;
12 g.distNext = _.dist;
13 g.updatedNext = _.updated;
14 bool notDone = true;
15
16 while(notDone) {
17 foreach(n: g.nodes )(n.updated) {
18 foreach(s: n.nbrs) {
19 edge e = s.toEdge ();
20 s.distNext <s.updatedNext > min= n.dist + e.len <true >;
21 }
22 }
23
24 g.dist = _.distNext;
25 g.updated = _.updatedNext;
26 g.updatedNext = false;
27 notDone = any(n: g.nodes ){n.updated };
28 }
29
30 // Closeness Centrality
31 bool b = any(v:g.nodes ){v.dist == INF};
32 double pathSum = sum(v:g.nodes ){v.dist};
33
34 if(b) { // disconnected graph
35 return false;
36 } else {
37 root.cc = 1.0 / pathSum;
38 }
39 }
40
41 return true;
42 }

Figure 2.2 – Closeness Centrality (Double Length) – Simplified.

Copyright © 2013–2015 Oracle and/or its affiliates. All rights reserved. [35]
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range (18). If a new shortest path is found by going from the updated node to the
neighbour node, the distNext is updated to the new shortest path length (20). This is
again done by a reduction assignment to make it safe in the parallel context. With
comparison reduction assignments, extra arguments can be given in angled brackets,
as we do with updatedNext. This allows the arguments to be updated atomically when
a new minimum is found. After the nested parallel loops, the distNext and updatedNext

properties are copied to their counterparts (24–25) and updatedNext is reset (26). When
no nodes were updated, the algorithm is done (27).

After the Bellman-Ford algorithm has finished, we check for an infinite length
shortest path with another any reduction (31). If we find an infinite length (34), we
return early (35) since the graph is not strongly connected. Otherwise we again take
the reciprocal of the sum of paths (32) as the CC value (37).

The sum is calculated outside of the if statement to expose more optimisation
opportunities to the compiler. We can reason that the sum is only one time extra
if we move it out of the else clause, because the other branch of the if statement
holds a return statement. And in that case the procedure stops early anyway, so this
is ok. The current compiler cannot reason about this and will not move calculations
outside conditional statements. One of the optimisation opportunities we expose to
the compiler by moving the sum out of the if statement is a fusion of the any and sum

reductions into a single loop over the nodes of the graph.

2.3 Type system

The examples illustrate the use of GREEN-MARL and some of its types. Among those
are both general purpose types and domain-specific types. In this section, we give an
informal overview of those types as well as the types of functions and procedures.
We provide a formal treatment of the type system in the next chapter.

General purpose types. GREEN-MARL provides standard numeric types int, long,
float and double, the standard bool and string types, and the date type. The date

type has no unique literals, instead all string literals can be typed as date. Built-in
procedures and functions can set the pattern that instructs how a date is parsed from
such a string literal, and such patterns can also be used to parse a string into a date
at run time.

Domain specific types. Beside general purpose types, GREEN-MARL provides the
graph type for directed graphs, and the node and edge types for graph elements. These
domain specific types are parametrised with the name of the graph they belong to in
round brackets, e.g. node(g). This graph parameter was left implicit in the examples,
as it can be inferred when only one graph is in scope. To use a graph or graph element,
the usual way as seen in the examples is to traverse a range such as the nodes of the
graph g.nodes or the neighbours of a node n.nbrs.

These graph elements can also be collected in sets, sequences, and orders (se-
quences with unique elements): nodeSet, edgeSet, nodeSequence, nodeSequence, nodeOrder
and edgeOrder. These types are again parametrised with a graph name. A collection
can be traversed by its items range.

9
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Local declarations. Local variables of the above mentioned types all belong to
the namespace of variables. For these local variables, shadowing or overloading is
disallowed.

Graph properties. Although defined in a similar fashion, names with a property
type reside in a different namespace, and are accessed by a dot notation: n.prop.
Another feature of properties is that they may be overloaded on the graph that they
belong to. This allows a property with the same name, e.g. weight, to be defined on
edges of two different graphs in the same procedure. Property types are not only
parametrised by graph name, they are also parametrised by the type that they hold.
Type parameters in GREEN-MARL are provided between angular brackets <> . The
graph parameter, if specified, comes after the type parameters.

Top level declarations. Procedures in GREEN-MARL are top-level constructs with
a separate namespace. They optionally have input arguments, output arguments,
and/or a return value. Input arguments are read-only values and are the only way to
introduce a graph. Output arguments are for returning extra values, but may also be
initialised by the caller to provide more input. User-defined procedures cannot be
parametrised by type, but they can take graphs as input arguments, which results
in a procedure type that is polymorphic in graph names. User-defined procedures
must not be overloaded. They cannot be defined anywhere other than at the top
level, therefore shadowing is impossible.

Built-in functions and procedures. Built-in functions like pickRandom in ccOne are
called on a subject with a dot notation, and can take more (input) arguments in their
round brackets. Functions types can be parametrised by graph names, types, or both.
pickRandom takes a graph, and returns a random node of that graph. The type has to
be parametrised by graph name, and the graph type need to be embellished with its
name itself to show this connection. This results in the following type for pickRandom:
∀n. F<graph(n),〈〉,N(n)>. The type describes that for all names n, this is a function that
takes a graph with the name n as a subject, it takes an empty list of arguments, and
has a node of that same graph n as a result.

Most of the functions in the API provide a way to manipulate collections. Beside
built-in functions, some procedures are also provided as built-ins. The function-
ality these procedure provide include mathematical operations and string to date
conversion. These built-in procedures can be overloaded.

2.4 Dependence analysis

GREEN-MARL provides both sequential and parallel loops. Beside explicit parallel
loops, the language provides higher-level abstractions and syntactic sugar for im-
plicitly parallel loops. For example, the breadth-first search is a parallel domain
abstraction, reduction expressions and group assignments are syntactic sugar for
parallel loops.

Parallel constructs can cause data races. GREEN-MARL employs a dependence
analysis called the read-write analysis to check for data-races, check for invariants of
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race mitigation constructs, and inform optimisations [23]. The analysis gathers infor-
mation about which names are written and read in which parts of the program. With
this read-write information we can derive the data dependence between statements.

The read-write analysis is an intraprocedural, bottom-up analysis. During the
analysis, we collect two pieces of information for each local declaration: modes of
access and the property access patterns. The possible access modes of access are:
read, write, defer(·) and reduce(·,·). The read and write modes are the normal modes
that can cause data races in parallel contexts. The defer and reduce modes have
specific invariants that need to be adhered.

The information on how properties are accessed is a refinement of the analysis
that can identify more situations as safe from data races. It can also indicate that
loops can be merged despite a dependence between the two loops. The possible
patterns are a single access to name n, access to a unique set of names, and access to
a random sample of possibly overlapping names.

The bottom-up analysis manifests in itself in the abstraction over the effect of
a statement with sub-statements. Every statement can be described in terms of
its read-write information. For statements comprised of sub-statements, the read-
write information is limited to the outside observable effects of the statement when
executed fully. For example, a block of statements with a local declaration inside will
not have that local declaration in its read-write information.

Breadth-first search. For the first example of an analysis, we use the breadth-first
search of ccOne. To avoid data races in this parallel breadth-first search, the levelSum

is summed with a reduction assignment:

27 inBFS(v: g.nodes from n) {
28 levelSum += currentBFSLevel ();
29 }

The analysis is bottom-up and first considers the breadth-first search body. The
body is a reduction reduce(·,·), which is scoped by the breadth-first search v, and
based on an addition+= .

line target rw mode
28 levelSum reduce(v,+=)

At the level of the breadth-first search itself, the outside effect of the search is
only a write to levelSum, a read on the start node n, and the graph g:

line target rw mode
27-29 levelSum write

n read

g read

To illustrate the detection of a conflict, we can change the reduction assignment
in the breadth-first search into a normal assignment and addition:

27 inBFS(v: g.nodes from n) {
28 levelSum = levelSum + currentBFSLevel ();
29 }

This changes the analysis results for the breadth-first search body to a normal
read and write on levelSum.

11
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line target rw mode
28 levelSum write

levelSum read

On the breadth-first search level, a normal write is now encountered in the body
statement. Since these write are done in parallel, this is a write-write conflict. Beside
this conflict, there is also a read-write conflict, as the read and write in the body
statement are not guaranteed to happen atomically.

line target rw mode
27-29 levelSum write-write conflict

levelSum read-write conflict
n read

g read

Nested parallel loops. The scope of a reduction assignment is automatically deter-
mined. The context that scopes the reduction is the outermost parallel context where
the target of the reduction is still defined. The breadth-first search in the previous
excerpt is inside of a parallel loop:

25 foreach(n: g.nodes) {
26 long levelSum = 0;
27 inBFS(v: g.nodes from n) {
28 levelSum += currentBFSLevel ();
29 }
30 n.cc = 1.0 / (double) levelSum;
31 }

However, the levelSum is defined inside of that loop, therefore the loop cannot be
the scope of the reduction, since that would put the write to the variable at the point
where it goes out of scope.

Consider instead the nested loops from the ccVar procedure:

17 foreach(n: g.nodes )(n.updated) {
18 foreach(s: n.nbrs) {
19 edge e = s.toEdge ();
20 s.distNext <s.updatedNext > min= n.dist + e.len <true >;
21 }
22 }

In this case the reduction target is the distNext node property. It is a minimising
reduction, which can come with extra arguments, which are considered part of the
reduction (reduce(·,arg(·))).

line target rw mode
20 distNext reduce(n,min)

updatedNext reduce(n,arg(min))

At the level of the inner loop the iterator through which is the properties are
accessed goes out of scope, but the analysis results stay the same, because n is still in
scope.

line target rw mode
18-21 distNext reduce(n,min)

updatedNext reduce(n,arg(min))
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Next is the outer loop, which scopes the reduction. Here n goes out of scope, the
reduction ends, and the observable effect becomes a write.

line target rw mode
17-22 distNext write

updatedNext write

If the scope of the reduction was set to the inner loop, then the reduction would
change to a write one level earlier. At the level of the outer loop, the write would be
encountered in the body, and a write-write conflict would be flagged. So reduction
assignments are scoped by the outermost parallel context for a reason. The read-
write analysis results for the reduced properties shows that the outer scope that the
language chooses avoids data races.

Access patterns. So far, we have purposely ignored property access patterns. In
the following example we show the access patterns of the last excerpt.

17 foreach(n: g.nodes )(n.updated) {
18 foreach(s: n.nbrs) {
19 edge e = s.toEdge ();
20 s.distNext <s.updatedNext > min= n.dist + e.len <true >;
21 }
22 }

line target rw mode access pattern
20 distNext reduce(n,min) s

updatedNext reduce(n,arg(min)) s

The simplest accessor of a property is a single value, in the form of a local variable,
as is the case for the distNext and updatedNext properties of the last excerpt. When the
variable s goes out of scope, we must abstract over the access pattern. A normal local
variable can have any value from any kind of expression. We do not try to predict
that value as it can be truly random (e.g. g.pickRandom()). Instead we use the access
pattern random, which is not fit for optimisations. In the excerpt, the accessor is an
iterator. An iterator over neighbours visits each node only once, therefore we use the
access pattern unique.

line target rw mode access pattern
18-21 distNext reduce(n,min) unique

updatedNext reduce(n,arg(min)) unique

If a property is accessed in a random pattern, it stays random when repeated. The
unique pattern comes from a repetition. Repeating that repetition is likely to result
in multiple property accesses in the same place. Therefore the unique pattern is also
turned into a random pattern when found in the body of a parallel loop:

line target rw mode access pattern
17-22 distNext write random

updatedNext write random
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Loop merging. In the following excerpt we have four short lines that initialise some
properties in ccVar.

10 g.dist = (_ == root) ? 0 : +INF;
11 g.updated = (_ == root) ? true : false;
12 g.distNext = _.dist;
13 g.updatedNext = _.updated;

Each of these assignments is a group assignment, which desugars into a parallel
loop over the nodes of the graph. The desugared version is given below. The assign-
ment uses the loop iterator instead of the graph on the left-hand side and instead of
the underscore on the right-hand side.

A10 foreach(n1: g.nodes) {
A11 n1.dist = (n1 == root) ? 0 : +INF;
A12 }
A13 foreach(n2: g.nodes) {
A14 n2.updated = (n2 == root) ? true : false;
A15 }
A16 foreach(n3: g.nodes) {
A17 n3.distNext = n3.dist;
A18 }
A19 foreach(n4: g.nodes) {
A20 n4.updatedNext = n4.updated;
A21 }

The read-write analysis is applied to the desugared program. The results for the
first loop body are that dist is written through n1, n1 is read, and root is read. These
resolve into unique writes on dist, and a read on root for the entire loop.

line target rw mode access pattern
A11 dist write n1

n1 read

root read

A10-A12 dist write unique

root read

The other analysis results looks similar:

line target rw mode access pattern
A10-A12 dist write unique

root read

A13-A15 updated write unique

root read

A16-A18 distNext write unique

dist read unique

A19-A21 updatedNext write unique

updated read unique

As a result, the only dependences between these loops are on dist and updated,
which are written, and then read. Because all the ranges are equal and all the depen-
dences are unique, the compiler can merge the loops:

foreach(n: g.nodes) {
n.dist = (n == root) ? 0 : +INF;
n.updated = (n == root) ? true : false;
n.distNext = n.dist;
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n.updatedNext = n.updated;
}

A final detail to point out is the conditional expression that the first two group
assignments use. It may seems strange to do a check to see if the iterator is equal to
the root node, since this only happens once. But if the dist property were assigned
+INF over the entire range, and root.dist was assigned 0 afterwards, that second
assignment would be in the way of merging all the loops into one.

B10 g.dist = +INF; // changed
B11 root.dist = 0; // new
B12 g.updated = false; // changed
B13 root.updated = true; // new
B14 g.distNext = _.dist;
B15 g.updatedNext = _.updated;

According to the dependences the assignments to root cannot be moved out
of the way, as the write to dist has to be read by the distNext group assignment.
Therefore we can only merge two pairs of loops:

C10 foreach(n: g.nodes) {
C11 n.dist = +INF;
C12 n.updated = false;
C13 }
C14 root.dist = 0;
C15 root.updated = true;
C16 foreach(n: g.nodes) {
C17 n.distNext = n.dist;
C18 n.updatedNext = n.updated;
C19 }
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Chapter 3

Type System

In the last chapter, we described GREEN-MARL by example. In this chapter we present
the formal specification of GREEN-MARL’s type system. The type system of a program-
ming language is typically described in terms of well-typedness and well-formedness
judgements for the syntactic domains of a language. In Figure 3.1 we present the cen-
tral judgements, syntax and semantic domains of the specification. The judgements
are:

• Well-formed units: ` u

Well-formed procedure declarations: Γ ` p

This is the starting point of the judgements. A well-formed compilation unit
consists of zero or more well-formed procedures. The well-formedness of
procedures is judged under environment Γ.

For these environments we use lookup notation Γ(n) and update notation Γ[n 7→
τ ]. Under the hood we model environments as point-wise defined functions.
A point-wise defined function f : X →fin Y is only defined for a finite subset of
domain X . For a value x ∈ X outside of the defined subset f (x) =⊥. The entirely
undefined function is denoted by ⊥.

The environment Γ we use is composed of sub-environments for procedures
Γp, graph properties Γg and local variables Γv . In the rules we do not explicitly
deconstruct the Γ, instead we use the subscript of the sub-environment when
we do a lookup or update.

• Procedure declarations: Γ ` p : Γ′

Procedures are named and contribute to the environment. The procedure
declaration are extracted and added to the environment separately. Only then
are the procedures judged on well-formedness, to allow all procedures to refer
to each other.

• Well-formed statements: τ,γ,Γ ` s

Statements are judged well-formed under environment Γ, return type τ and
formal graph arguments γ. The return type of a procedure is propagated down-
ward to type-check the return statement. The formal graph arguments to a
procedure are also propagated from the procedure level, for use in the semantic
type translation.
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We follow ideas from Implicit Propagation in Structural Operational Seman-
tics [31] to reduce notational overhead in many of the rules. In particular, we
leave off auxiliary arguments that are not used in a rule. These are considered
implicitly propagated. We print such auxiliary arguments in a grey box in the
judgement for clarity.

• Variable and graph property declarations: τ,γ,Γ ` s : Γ′

Some statements can introduce local names that are only visible within a list
of statements after the declaration statement. Most statements are simpler
and have a well-formedness judgement. For these we have a single rule that
passes the environment on unchanged.

• Well-typed expressions: Γ ` e : τ

We use semantic types τ instead of syntactic types t for our judgements, be-
cause not all types have a syntactic form (e.g. void) and other types can have
partially inferred information (e.g. graph(n)).

• Semantic type translation: γ` t ⇒ τ

Translation of the syntactic types to semantic ones is done with a translation
judgement that takes a list of the formal graph arguments of the current proce-
dure. This is used to validate or infer the graph argument to some graph-related
types.

In the remainder of the chapter we specify the rules of the judgements based on
the structure of the syntactic types. These are graph property types tg and value types
tv , where tv is further subdivided into primitive types tp, graphs and graph elements
graph, te , collection types tc , tcc , and map types tm.

3.1 Variable Declarations and References

Names in GREEN-MARL can refer to functions, procedures, graph properties, and
variables. Each name is used in a syntactically distinct way throughout a program.
Figure 3.2 describes the use of names for local variables in declarations, assignments,
references, and the variable environment.

Local declarations. The names of graph properties and local variables are intro-
duced with a local declaration. We only handle the local variables [decl-v] in Figure 3.3,
since graph properties are in a different sub-environment. The value type tv is trans-
lated to semantic type τ with the semantic type translation judgement. Note that
there is a check that the name is not defined yet, which purposely rules out shadow-
ing.

References. A reference can be used on the left-hand side of an assignment [assign]
or on the right-hand side in an expression [ref]. Some variables in GREEN-MARL can
be read-only, therefore we describe this write or read context with α. With an auxiliary
judgement for references we judge that reading a reference [ref-r] can always be done,
whereas writing to a reference [ref-w] requires the reference to be writable.
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syntax

n procedure, function, variable, property names Section 3.1
t = tv value types
| tg graph property types Section 3.5

tv = tp primitive types Section 3.2
| graph | te graph type and graph element types Section 3.3
| tc | tcc collection types Section 3.4
| tm map types Section 3.6

e expressions
s statements
p procedure declarations Section 3.7
u = p∗ compilation units Section 3.7

semantic domains

γ = n∗ formal graph arguments Sections 3.1, 3.7
Γ = Γv variable environment Section 3.1
× Γg graph property environment Section 3.5
× Γp procedure environment Section 3.7

τ = τp
| graph(n) | τe
| τc | τcc
| τm
| τg
| τi iterator types Sections 3.3, 3.4
| void void type Section 3.7

semantic judgements

` u well-formed units Section 3.7

Γ ` p : Γ′ procedure declarations Section 3.7

Γ ` p well-formed procedure declarations Section 3.7

τ,γ,Γ ` s : Γ′ variable and graph property declarations Sections 3.1, 3.5, 3.6

τ,γ,Γ ` s well-formed statements

Γ ` e : τ well-typed expressions

γ ` t ⇒ τ semantic type translation

Figure 3.1 – GREEN-MARL’s central syntactic domains, semantic domains and judge-
ments, along with the sections where they are defined.
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syntax

s = t n; local declaration
| er = e; assignments
| {s∗} blocks
| . . .

e = er references
| . . .

er = n
| . . .

semantic domains

Γv = n →fin (τ × α) variable environment
α = r | w access context

semantic judgements

α,Γ ` er : τ references

Figure 3.2 – Names, local variables and related syntax.

local declarations τ,γ,Γ ` s : Γ′

γ` tv ⇒ τ

∧ Γv (n) =⊥
∧ Γv [n 7→ 〈τ,w〉 ] = Γ′

τ′,γ,Γ ` tv n; : Γ′
[decl-v]

τ′,Γ ` s

τ′,γ,Γ ` s : Γ
[non-decl]

well-typed references α,Γ ` er : τ

Γv (n) = 〈τ,_〉

r,Γ ` n : τ
[ref-r]

Γv (n) = 〈τ,w〉

w,Γ ` n : τ
[ref-w]

well-typed expressions Γ ` e : τ

r,Γ ` er : τ

Γ ` er : τ
[ref]

well-formed statements τ,Γ ` s

w,Γ ` er : τ ∧ Γ ` e : τ

Γ ` er = e;
[assign]

Γ �̀ s∗ : _

Γ `{s∗}
[block]

Figure 3.3 – Basic name rules.
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Blocks. Any name introduced inside a block is only visible within that block [block].
The resulting environment of s∗ is ignored (_). The reverse connection between
the two statement judgements is in [non-decl], where well-formed non-declaration
statements preserve the environment unchanged.

The �̀ in the block rule is a short-hand for fold from the left. The expanded rule
is:
τ,Γ ` s1 : Γ1 ∧ . . . ∧ τ,Γn−1 ` sn : Γn

τ,Γ `{〈 s1, . . . , sn 〉}
[block-expanded]

3.2 Primitive Types

GREEN-MARL has numeric, boolean, string and date types. Figure 3.4 summarises
their related expressions and their related statements. The figure also shows how the
type translation of primitive types is trivial.

Numeric Types. GREEN-MARL supports the typical numeric types int, long, float
and double, but there are only literals for int and float. The long and double literals are
missing. (see Figure 3.5)

GREEN-MARL follows IEEE 754 [1] and provides numeric literals for positive and
negative infinity INF. The floating point types have special infinity values, but the
integer types do not normally have such special values. GREEN-MARL defines the
extreme values −231 and 231 −1 as the infinities for int and similarly −263 and 263 −1 for
long. These infinity values do not have defined behaviour for arithmetic, but they are
not statically excluded from arithmetic operations.

Numeric expressions include the standard arithmetic operations [num-op], [umin]
and [abs]. Comparison and equality operators are also supported [n-cop].

Numeric types can be explicitly cast using a C-like cast syntax. Note that this
operation is restricted to numeric casts, it is not a general escape hatch in the type
system. The numeric types can also be implicitly coerced to types with larger ranges
with [il-coerce], [lf-coerce] and [fd-coerce]. We treat the infinity literals as int only since
these implicit coercion take them to the other types.

String and Date Types. Strings and dates are introduced with the same string literal.
In the case of a date, the string literal’s content is interpreted as a date. Strings and
dates can be compared and checked for equality [s-cop] [d-cop].

Boolean Type. GREEN-MARL offers standard booleans literals true and false. The
standard have logic operations are available, as well as an if-else expression by means
of the C-style ternary operator. Booleans are also equatable [eop], but do not have
comparison defined.

The other primitive types have an order and can be compared. The comparison
operator domain oc contains the equality operators oe , so the string, date and numeric
types have equality operations defined as well.

Finally if, if-else, while, and do-while are the standard conditional statements of
GREEN-MARL.
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syntax

tp = tn numeric types
| string | date string and date types
| bool boolean type

tn = int | long | float | double
e = +INF | −INF | li | lf numeric literals

| ls string and date literals
| true | false boolean literals
| −e | |e| | e on e | (tp) e numeric expressions
| e oc e | e oe e boolean expressions
| !e | e ol e | e ? e : e

| . . .
s = if(e) s else s conditional statements

| if(e) s

| while(e) s

| do s while(e);

| . . .
on = + | −| * | / | % numeric operators
oc = < |<= | >= | > | oe comparison operators
oe = == | != equality operators
ol = && | || logic operators

li integer literals
lf floating point literals
ls string and date literals

semantic domains

τp = tp
τn = tn

semantic type translation γ` t ⇒ τ

γ` tp ⇒ tp [sem-pt]

Figure 3.4 – Primitive types, related syntax, and semantic type translation.
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well-typed expressions - numeric types Γ ` e : τ

+INF : int [p-inf]

li : int [i-lit]

−INF : int [n-inf]

lf : float [f-lit]

e : τn

−e : τn
[umin]

e : τn

|e| : τn
[abs]

e1 : τn ∧ e2 : τn

e1 on e2 : τn
[num-op]

e1 : τn ∧ e2 : τn

e1 oc e2 : bool
[n-cop]

e : tn

(tn) e : tn
[cast]

e : int

e : long
[il-coerce]

e : long

e : float
[lf-coerce]

e : float

e : double
[fd-coerce]

well-typed expressions - string and date types

ls : string [s-lit] ls : date [d-lit]

e1 : string

∧ e2 : string

e1 oc e2 : bool
[s-cop]

e1 : date

∧ e2 : date

e1 oc e2 : bool
[d-cop]

well-typed expressions - boolean types

true : bool [true] false : bool [false]

e : bool

!e : bool
[neg]

e1 : bool ∧ e2 : bool

e1 ol e2 : bool
[lop]

e1 : bool

∧ e2 : bool

e1 oe e2 : bool
[eop]

e1 : bool

∧ e2 : τ ∧ e3 : τ

e1 ? e2 : e3 : τ
[ter-if]

well-formed statements τ,γ,Γ ` s

e : bool ∧ ` s1 ∧ ` s2

` if(e) s1 else s2

[if-else]
e : bool ∧ ` s1

` if(e) s1

[if]

e : bool ∧ ` s

`while(e) s
[while]

e : bool ∧ ` s

` do s while(e);
[do]

Figure 3.5 – Primitive type related literals, expressions and statements.
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syntax

te = N | N(n) nodes
| E | E(n) edges

s = . . .
| for i s sequential loops
| foreach i s parallel loops
| inDFS is s inPost(e) s depth-first searches
| inBFS is s inReverse(e) s breadth-first searches
| er <= e | er <= e @ n deferred assignments
| er ran e | er ra l e | er <e∗r > rac e <e∗> reductions
| . . .

e = . . .
| NIL node/edge literal
| ron i {e} | ro l i {e} reductions
| . . .

ran = += | *= | rac numeric reduction assigments
rac = max= | min= comparison reduction assigments
ra l = &= | |= logic reduction assigments
ro l = any | all logic reduction operators

i = (n: r)(e) loop iterators
is = (n: n.nodes from n)(e)[e]

| (n: n .̂nodes from n)(e)[e] search iterators
r = n.nodes | n.edges | n .̂edges graph ranges

| n.inNbrs | n.outNbrs node ranges
| n.inEdges | n.outEdges

| n.upNbrs | n.downNbrs breadth-first search iterator ranges
| n.upEdges | n.downEdges

| . . .
ron = sum | product | max | min numeric reduction operators

semantic domains

τe = N(n) | E(n) graph elements
τi = I<ι,τe> iterators
ι = s standard iterator context

| b breadth-first search context
| n neighbour iteration context
| . . .

semantic judgements

ι,Γ ` is : Γ′ search iterators

Γ ` i : Γ′ loop iterators

Γ ` r : τ well-typed ranges

Figure 3.6 – Graph, nodes, edges and related syntax.

3.3 Graphs, nodes and edges

GREEN-MARL is a domain specific, graph oriented language, so it will come as no
surprise that there is a built-in notion of graphs. Figure 3.6 introduces the graph type,
and graph element types nodes and edges, along with traversals, iterators and ranges
that relate to these types.
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3.3. Graphs, nodes and edges

semantic type translation γ` t ⇒ τ

〈n 〉 ` N⇒ N(n) [n-i] 〈n 〉 ` E⇒ E(n) [e-i]

〈 . . . ,n, . . .〉 ` N(n)⇒ N(n) [sem-n] 〈 . . . ,n, . . .〉 ` E(n)⇒ E(n) [sem-e]

well-typed expressions Γ ` e : τ

NIL : N(n) [nil-node] NIL : E(n) [nil-edge]

e1 : τe ∧ e2 : τe

e1 oc e2 : bool
[e-cop]

Figure 3.7 – Type translation and iterator type coercion.

Graphs. The graph type in GREEN-MARL may look like a normal type but it is not.
First, there is no semantic type translation defined for the graph type, so its definition
can be restricted. Section 3.7 defines this rule, where a graph-typed variable may
only be introduced in the in-arguments of a procedure and is therefore read-only.
The list of graphs in scope γ is also built at that level and passed down only to be
read.

Second, a graph is not just a value, it is also a type parameter. A graph name is
present within round brackets for any graph related type, to bind the type to that
particular graph. For example, this allows the user to define a node of graph g as N(g).
When only one graph is in scope, the user can leave the graph parameter implicit.
One of the reasons for having semantic types is the explication of graph parameters
([n-i] and [e-i] in Figure 3.7).

Graph elements. . Nodes and edges are nullable types through the NIL literal. Be-
cause NIL does not belong to a particular graph, the rules uses an arbitrary name
n. The value itself is also not clearly a node or an edge, therefore [nil-node] and [nil-
edge] both apply to the literal. Side-conditions of rules in a type derivation tree can
eliminate the rule that is not applicable.

Nodes and edges have an arbitrary order, which allows a GREEN-MARL user to
use the comparison operators on nodes, and on edges (see [e-cop]).

Breadth- and depth-first searches. GREEN-MARL offers breadth-first search [bfs]
and depth-first search [dfs] (Figure 3.8). These searches go over a specified graph
from a specified start node, and execute statements on the way forward and on the
way back. The way back is described with inReverse and inPost respectively. Both
statements for forward and reverse have access to the iterator of the search, which
provides the current node of the search [it-coerce] and can be used in iterator-specific
places.

The search follows the edges of the graph from the start node, but it can skip
nodes that match a filter expression. These filter expressions are given in round
brackets, one for the forward part, one for the backward part of the search. The
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3. TYPE SYSTEM

well-formed statements τ,γ,Γ ` s

Γ′ ` e1 : bool ∧ Γ′ ` s1 : _
∧ Γ′ ` e2 : bool ∧ Γ′ ` s2 : _ ∧ b,Γ ` is : Γ′

Γ ` inBFS is s1 inReverse(e2) s2

[bfs]

Γ′ ` e1 : bool ∧ Γ′ ` s1 : _
∧ Γ′ ` e2 : bool ∧ Γ′ ` s2 : _ ∧ s,Γ ` is : Γ′

Γ ` inDFS is s1 inPost(e2) s2

[dfs]

Γ ` i : Γ′ ∧ Γ′ ` s : _

Γ ` for i s
[for-seq]

Γ ` i : Γ′ ∧ Γ′ ` s : _

Γ ` foreach i s
[for-par]

well-typed expressions Γ ` e : τ

e : I<_,τe>

e : τe
[it-coerce]

iterators ι,Γ ` is : Γ′, Γ ` i : Γ′

Γ ` n2 : graph(n2) ∧ Γv [n1 7→ 〈I<ι,N(n2)>,r〉 ][n3 7→ 〈Γv (n3) ,r〉 ] = Γ′

∧ Γ′ ` e1 : bool ∧ Γ′ ` e2 : bool

ι,Γ `(n1:n2.nodes from n3)(e1)[e2] : Γ′
[search-iter]

Γ ` n2 : graph(n2) ∧ Γv [n1 7→ 〈I<ι,N(n2)>,r〉 ][n3 7→ 〈Γv (n3) ,r〉 ] = Γ′

∧ Γ′ ` e1 : bool ∧ Γ′ ` e2 : bool

ι,Γ `(n1:n2 .̂nodes from n3)(e1)[e2] : Γ′
[rev-search-iter]

Γ ` r : τi ∧ Γv [n 7→ 〈τi ,r〉 ] = Γ′ ∧ Γ′ ` e : bool

Γ `(n:r)(e) : Γ′
[loop-iter]

Figure 3.8 – Loops and traversals, iterators and comparison expressions.

26



3.3. Graphs, nodes and edges

search can be influenced more strongly by a navigator expression, which is given in
square brackets to distinguish it from the filter expression. When a node matches the
navigator expression, its edges are excluded from the search. The matched node is
processed, but its unvisited neighbours are not unless there is another path to them.

The iterator name, graph, start node, forward filter, and navigator together make
up the search iterator is . When the graph name is followed by a ^, the search is done
over the reverse graph.

Sequential and parallel for loops. Iterators are also used GREEN-MARL’s for loops.
These are the sequential for and parallel foreach. Each loop has an iterator, a subject
and range, and a filter expression. Ranges over graph-typed subjects are over all
nodes or edges ([nodes] and [edges] in Figure 3.9). Again the ^ reverses the edges [rev-
edges]. A node-typed subject gives rise to ranges over the neighbourhood of the node,
based on in [in-nbrs][in-edges] or outgoing1 edges, or on the direction of a breadth-first
search. The breadth-first search direction up [up-nbrs][up-edges] is towards the start
node and down1 is towards unvisited nodes. Such a direction only makes sense for a
breadth-first search and is therefore only possible on an iterator from a breadth-first
search.

Deferred and Reduction Assignments. There are a number of special assignments
available for parallel traversals. The deferred assignment [def-n] (Figure 3.10) consists
of left-hand and right-hand side and a bound. This bound is an iterator that denotes
the traversal wherein the assignment is deferred. After the execution of the traversal
the assignment is visible, whereas within the traversal the old value is observed.
When no bound is provided [def], it is inferred as the closest parallel traversal.

There are multiple flavours of reduction assignments [red-l][red-n] based on differ-
ent operations ra l and ran. These reduction assignments do not specify a bound, it
is always inferred as the closest parallel traversal. The semantics of this reduction
assignment is that after the traversal the original value and all the values that the
traversal supplied are reduced and saved in the variable on the left-hand side. For
example, if a foreach loop uses a += reduction on int n, then after the loop n holds
the summation of its value before the loop started and all right-hand sides that the
loop supplied. Within the loop, the name n that is being reduced to cannot be read or
written. It may only be reduced to further with the same operator.

The minimising min= and maximising max= reductions have an extended form with
extra arguments [red-c], which are supplied on both sides between angle brackets.
These extra arguments are saved whenever a new minimum or maximum, respec-
tively, is found.

Reduction Expressions. Every reduction assignment has a corresponding expres-
sion form [num-red][bool-red]. For+= there is sum, for |= there is any etc. These still define
an iterator, range and filter like a loop, but only define the expression that needs to
be reduced.

1The type rules for outgoing ranges are those on ingoing edges with the range name changed. The
same holds for down and up ranges. Therefore we have not included those rules in the figure.
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3. TYPE SYSTEM

well-typed ranges Γ ` r : τ

Γ(n)v = 〈graph(n),_〉

Γ ` n.nodes : I<s,N(n)>
[nodes]

Γ(n)v = 〈graph(n),_〉

Γ ` n.edges : I<s,E(n)>
[edges]

Γ(n)v = 〈graph(n),_〉

Γ ` n .̂edges : I<s,E(n)>
[rev-edges]

Γ(n1)v = 〈N(n2),_〉

Γ ` n1.inNbrs : I<n,N(n2)>
[in-nbrs]

Γ(n1)v = 〈N(n2),_〉

Γ ` n1.inEdges : I<s,E(n2)>
[in-edges]

Γ(n1)v = I<b,〈N(n2),_〉>

Γ ` n1.upNbrs : I<n,N(n2)>
[up-nbrs]

Γ(n1)v = I<b,〈N(n2),_〉>

Γ ` n1.upEdges : I<s,E(n2)>
[up-edges]

Figure 3.9 – Graph related ranges.

well-formed statements τ,γ,Γ ` s

w,Γ ` er : τ ∧ e : τ

Γ ` er <= e
[def]

Γv (n) = 〈τi ,r〉
∧ w,Γ ` er : τ ∧ e : τ

Γ ` er <= e @ n
[def-n]

w,Γ ` er : bool ∧ e : bool

Γ ` er ra l e
[red-l]

w,Γ ` er : τn ∧ e : τn

Γ ` er ran e
[red-n]

w,Γ ` er : τn ∧ w,Γ `∗ e∗
r : τ∗ ∧ r,Γ ` e : τn ∧ r,Γ `∗ e∗ : τ∗

Γ ` er <e∗r > rac e <e∗>
[red-c]

well-typed expressions Γ ` e : τ

Γ ` i : Γ′

∧ Γ′ ` e : τn

Γ ` ron i {e} : τn
[num-red]

Γ ` i : Γ′

∧ Γ′ ` e : bool

Γ ` rol i {e} : bool
[bool-red]

Figure 3.10 – Reductions assignments and expressions.
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syntax

tc = N_S | N_S(n) | E_S | E_S(n) sets
| N_Q | N_Q(n) | E_Q | E_Q(n) sequences
| N_O | N_O(n) | E_O | E_O(n) orders

tcc = collection<tc> collections of collections
r = . . .

| n.items | n .̂items collection ranges

semantic domains

τc = S<τe> | Q<τe> | O<τe> graph collections
τcc = Q<τc> collections of collections
ι = . . . iterator context

| c collection access

Figure 3.11 – Syntax of collections.

3.4 Collections

There are three kinds of basic collections and a collection of basic collections in
GREEN-MARL. Basic collections are sets, sequences and orders of graph elements.
Each of the types is shown in Figure 3.11 along with the syntax for ranging over a
collection and the related semantic domains.

Sets, Sequences and Orders. Sets have unique elements but no ordering between
their elements. Sequences do not have unique elements but do have an ordering.
Orders have both unique elements and an ordering. These elements can only be
nodes or edges of a graph, and only those that are all of the same graph. The graph
name is used in the type and can be inferred if only one graph is in scope (e.g. [N-
S-i] in Figure 3.12). The semantic types describe only the three different kinds of
collections and take a graph element type as a type parameter, rather than having six
specialised types.

Collections of collections. The collection of collections is a sequence of a single
kind of basic collection [CC]. The basic collections must always be on the same graph
element and related to the same graph.

Ranges. All collections are iterable, through the items range. These ranges produce
a collection iterator c. This information is used in a later stage by a static analysis
that’s described separate from the type system in Chapter 4.

An ordered collection is also iterable in reverse with the ^.

3.5 Graph properties

Beside collections, there is a graph related mapping type in GREEN-MARL. It is graph-
element specific like the collections and is called a graph property. The syntax and
related types are in Figure 3.13.
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semantic type translation γ` t ⇒ τ

〈 . . . ,n, . . .〉 ` N_S(n)⇒ S<N(n)> [N-S] 〈n 〉 ` N_S⇒ S<N(n)> [N-S-i]

〈 . . . ,n, . . .〉 ` E_S(n)⇒ S<E(n)> [E-S] 〈n 〉 ` E_S⇒ S<E(n)> [E-S-i]

〈 . . . ,n, . . .〉 ` N_Q(n)⇒ Q<N(n)> [N-Q] 〈n 〉 ` N_Q⇒ Q<N(n)> [N-Q-i]

〈 . . . ,n, . . .〉 ` E_Q(n)⇒ Q<E(n)> [E-Q] 〈n 〉 ` E_Q⇒ Q<E(n)> [E-Q-i]

〈 . . . ,n, . . .〉 ` N_O(n)⇒ O<N(n)> [N-O] 〈n 〉 ` N_O⇒ O<N(n)> [N-O-i]

〈 . . . ,n, . . .〉 ` E_O(n)⇒ O<E(n)> [E-O] 〈n 〉 ` E_O⇒ O<E(n)> [E-O-i]

γ` tc ⇒ τc

γ` collection<tc>⇒ Q<τc>
[CC]

well-typed ranges Γ ` r : τ

Γv (n) = 〈S<τe>,_〉

Γ ` n.items : I<c,τe>
[s-items]

Γv (n) = 〈Q<τe>,_〉

Γ ` n.items : I<c,τe>
[q-items]

Γv (n) = 〈Q<τe>,_〉

Γ ` n .̂items : I<c,τe>
[r-q-items]

Γv (n) = 〈O<τe>,_〉

Γ ` n.items : I<c,τe>
[o-items]

Γv (n) = 〈O<τe>,_〉

Γ ` n .̂items : I<c,τe>
[r-o-items]

Γv (n) = 〈Q<τc>,_〉

Γ ` n.items : I<c,τc>
[c-items]

Γv (n) = 〈Q<τc>,_〉

Γ ` n .̂items : I<c,τc>
[r-c-items]

Figure 3.12 – Collection translations and ranges.
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syntax

tg = N_P<tpc> | N_P<tpc>(n) node properties
| E_P<tpc> | E_P<tpc>(n) edge properties

tpc = tp | tc | tcc property targets
er = . . .

| n.n property access
| . . .

semantic domains

τg = P<τe,τpc> graph properties
τpc = τp | τc | τcc property targets
Γg = n ×n →fin (τ×α) graph property environment

judgements

` τ⇒ n graph reference extraction

Figure 3.13 – Syntax of graph properties.
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Properties. Graph properties are a full mapping from nodes or edges to some
primitive or collection type. It is a full mapping of all nodes or edges (keys) in a graph
. The result of accessing a property with NIL is undefined.

A graph property is defined like any other local variable, but gets added to the
graph property environment. Graph properties can be overloaded on different graphs,
therefore the graph property environment takes the name of the property and of the
graph as keys. We use an auxiliary judgement to extract the graph reference out of
properties to avoid duplicating the rules too much [p-ex][n-ex][r-ex].

A graph property is referenced using a dot-access syntax. For a node property the
node comes before the dot and the graph property comes after the dot. , therefore
the graph property environment uses both the name of the property and the graph
it belongs to as the way to look up the graph property type in [prop-r] and [prop-n] in
Figure 3.14.

Note that graph properties cannot be overloaded on graph element, because that
would make group assignment on graphs ambiguous.

Group assignments. You can use property assignment syntax to assign to multiple
keys concurrently by supplying either a collection of them [gs][gq][go] or the entire
graph [gg]. The right-hand side of such a group assignment has access to the ‘current’
key of the group through a placeholder called _ .

3.6 Maps

Another mapping type is the more general map between two ordered types. This is a
partial mapping as opposed to the full mapping of the graph property types from the
last section. Both the syntax and the rules are combined into Figure 3.15.

Maps. Maps define a partial mapping between keys and values. Values need to be
types that have an ordering defined and keys need to be types that have equality
defined. The API for maps (Section 3.8) offers functions to get the largest and smallest
value or key that maps to that value. The types with an ordering are all primitive types
tp and the graph-element types te except Booleans, which are excluded in translation
rule [m].

3.7 Top-Level Declarations

GREEN-MARL has compilation units consisting of procedure declarations. This sec-
tion describes the definition and call of procedures. The syntax and semantic do-
mains are Figure 3.16.

Procedure Declarations. Procedures are defined by a name, a list of named in-
arguments, a list of named out-arguments, optionally a return type, and the body
statements. In-arguments are normal procedure arguments, and are read-only in
GREEN-MARL. Out-arguments can be used both for supplying more arguments and
for returning multiple values from a procedure.

In-arguments to a procedure are the only way to introduce graphs in a GREEN-
MARL program [arg-t-gr]. Because these graphs’ names can be used in the types of
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references α,Γ ` er : τ

Γv (n1) = 〈τe ,_〉
∧ ` τe ⇒ n3

∧ Γg (n2,n3) =
〈P<τe,τpc>,_〉

r,Γ ` n1.n2 : τpc
[prop-r]

Γv (n1) = 〈τe ,_〉
∧ ` τe ⇒ n3

∧ Γg (n2,n3) =
〈P<τe,τpc>,w〉

w,Γ ` n1.n2 : τpc
[prop-w]

declarations τ,γ,Γ ` s : Γ′

γ` tg ⇒ τg ∧ Γv (n1) =⊥ ∧ ` τg ⇒ n2

τ′,γ,Γ ` tg n1; : Γg [〈n1,n2 〉 7→ 〈τg ,w〉 ]
[decl-g]

well-formed statements τ,Γ ` s

Γv (n1) = 〈graph(n1),_〉
∧ Γg (n2,n1) = 〈P<τe,τpc>,w〉
∧ Γ[_ 7→ 〈τe ,r〉 ] ` e : τpc

Γ ` n1.n2 = e
[gg]

Γv (n1) = 〈S<τe>,_〉
∧ ` τe ⇒ n3

∧ Γg (n2,n3) = 〈P<τe,τpc>,w〉
∧ Γ[_ 7→ 〈τe ,r〉 ] ` e : τpc

Γ ` n1.n2 = e
[gs]

Γv (n1) = 〈Q<τe>,_〉
∧ ` τe ⇒ n3

∧ Γg (n2,n3) = 〈P<τe,τpc>,w〉
∧ Γ[_ 7→ 〈τe ,r〉 ] ` e : τpc

Γ ` n1.n2 = e
[gq]

Γv (n1) = 〈O<τe>,_〉
∧ ` τe ⇒ n3

∧ Γg (n2,n3) = 〈P<τe,τpc>,w〉
∧ Γ[_ 7→ 〈τe ,r〉 ] ` e : τpc

Γ ` n1.n2 = e
[go]

semantic type translation γ` t ⇒ τ

γ = 〈 . . . ,n, . . .〉 ∧ γ` tpc ⇒ τpc

γ` N_P<tpc>(n)⇒ P<N(n),τpc>
[n-p]

γ = 〈n 〉 ∧ γ` tpc ⇒ τpc

γ` N_P<tpc>⇒ P<N(n),τpc>
[n-p-i]

γ = 〈 . . . ,n, . . .〉 ∧ γ` tpc ⇒ τpc

γ` E_P<tpc>(n)⇒ P<E(n),τpc>
[e-p]

γ = 〈n 〉 ∧ γ` tpc ⇒ τpc

γ` E_P<tpc>⇒ P<E(n),τpc>
[e-p-i]

graph reference extraction ` τ⇒ n

` N(n)⇒ n [n-ex] ` E(n)⇒ n [e-ex]
` τe ⇒ n

` P<τe,_>⇒ n
[p-ex]

Figure 3.14 – Graph property references and declarations, group assignments and
type translations.
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syntax

tm = map<tkv,tkv> maps
tkv = tp | te map keys/values
er = . . .

| n[e] map access

semantic domains

τm = map<τkv,τkv> maps
τkv = τp | τe map keys/values

references α,Γ ` er : τ

Γ ` e : τ1

∧ Γv (n) = 〈map<τ1,τ2>,_〉

r,Γ ` n[e] : τ2

[map-r]

Γ ` e : τ1

∧ Γv (n) = 〈map<τ1,τ2>,w〉

w,Γ ` n[e] : τ2

[map-w]

declarations τ,γ,Γ ` s : Γ′

γ` map<t1,t2>⇒ τ ∧ Γv (n) =⊥

τ′,γ,Γ ` map<t1,t2> n; : Γ[n 7→v 〈τ,w〉 ]
[decl-m]

semantic type translation γ` t ⇒ τ

γ` tkv ⇒ τkv ∧ τkv 6= bool ∧ γ` t ′kv ⇒ τ′kv ∧ τ′kv 6= bool

γ` map<tkv,t ′kv>⇒ map<τkv,τ′kv>
[m]

Figure 3.15 – Syntax and rules of maps.
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syntax

d = proc n ( f ∗; f ∗): t {s∗} procedure declarations
| proc n ( f ∗; f ∗){s∗}

f = n : t formal arguments
s = . . .

| n(e∗; a∗); procedure calls
| return e; | return; return statements
| . . .

e = . . .
| n(e∗; a∗) procedure calls
| . . .

a = er reference arguments
| ai ignored arguments

ai = #

semantic domains

Γp = n →fin σp procedure environment
σ = τ | σp | . . . semantic type schemes
σp = ∀ n∗. τp procedure signatures
τp = P<τ∗,τ∗,τ> procedure type with variables

semantic judgements

α,γ ` f : τ well-typed formal arguments

γ ` f : γ′ formal graph arguments

α,γ,Γ ` f : Γ′ formal argument names

Γ ` a : τ well-typed output arguments

Figure 3.16 – Syntax of compilation units, procedures, calls and return statements.
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well-typed formal arguments α,γ ` f : τ

r,γ ` n:graph : graph(n) [arg-t-gr]
γ` t ⇒ τ

_,γ ` n: t : τ
[arg-t]

formal graph arguments γ ` f : γ′

γ ` n:graph : 〈n :: γ〉 [gr]
t 6= graph

γ ` n: t : γ
[n-gr]

procedure environment extraction Γ ` p : Γ′

r,γ `∗ f ∗
i : τ∗i ∧ 〈〉 �̀ f ∗

i : γ

∧ w,γ `∗ f ∗
o : τ∗o ∧ Γp(n) =⊥

Γ ` proc n( f ∗
i ; f ∗

o ){s∗} : Γp[n 7→ ∀γ. P<τ∗i ,τ
∗
o,void> ]

[proc-v]

r,γ `∗ f ∗
i : τ∗i ∧ 〈〉 �̀ f ∗

i : γ

∧ w,γ `∗ f ∗
o : τ∗o ∧ Γp(n) =⊥ ∧ γ` t ⇒ τ

Γ ` proc n( f ∗
i ; f ∗

o ){s∗}: t : Γp[n 7→ ∀γ. P<τ∗i ,τ
∗
o,τ> ]

[proc-t]

well-formed procedure declarations Γ ` p

〈〉 �̀ f ∗
i : γ ∧ r,γ,Γ �̀ f ∗

i : Γ′

∧ w,γ,Γ′ �̀ f ∗
o : Γ′′ ∧ void,γ,Γ′′ �̀ s∗ : _

Γ ` proc n( f ∗
i ; f ∗

o ){s∗}
[wf-proc-v]

〈〉 �̀ f ∗
i : γ ∧ r,γ,Γ �̀ f ∗

i : Γ′

∧ w,γ,Γ′ �̀ f ∗
o : Γ′′ ∧ τ,γ,Γ′′ �̀ s∗ : _ ∧ γ` t ⇒ τ

Γ ` proc n( f ∗
i ; f ∗

o ): t {s∗}
[wf-proc-t]

formal argument names α,γ,Γ ` f : Γ′

α,γ` n: t ⇒ τ ∧ Γv (n) =⊥

α,γ,Γ ` n: t : Γv [n 7→ 〈τ,α〉 ]
[arg]

Figure 3.17 – Procedure declaration rules.
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well-formed statements τ,γ,Γ ` s

Γ `∗ e∗ : τ∗i
∧ Γ `∗ a∗ : τ∗o
∧ P<τ∗i ,τ

∗
o,τ> ¹ Γp(n)

Γ ` n(e∗; a∗);
[pcall-s]

Γ `∗ e∗ : τ∗i
∧ Γ `∗ a∗ : τ∗o
∧ w,Γ ` er : τ

∧ P<τ∗i ,τ
∗
o,τ> ¹ Γp(n)

Γ ` er = n(e∗; a∗);
[pcall-a]

e : τ

τ ` return e;
[ret-t] void ` return; [ret-v]

well-typed expressions Γ ` e : τ

Γ `∗ e∗ : τ∗i ∧ P<τ∗i ,τ
∗
o,τ> ¹ Γp(n)

Γ ` n(e∗; a∗
i ) : τ

[pcall-e]

well-typed output arguments Γ ` a : τ

w,Γ ` er : τ

Γ ` er : τ
[ref-a] Γ ` # : τ [ign]

well-formed units ` u

〈⊥,⊥,Γ0p 〉 �̀ p∗ : Γ ∧ Γ `∀ p∗

` p∗
[wf-u]

Figure 3.18 – Well-formed statements and units, and well-typed expressions.

other arguments, we need to collect these graph names separately [gr] (Figure 3.17)
and use them to check the correctness of the other types. Since procedures can be
called, graphs can be arguments, and the graph argument name can be used in
the types of other arguments, the type of a procedure has to be polymorphic in the
graph name [proc-v]. This is where we first use type schemes, types with a universal
quantification.

Procedure Calls. Procedures are called with expressions e∗ for the in-arguments
and references a∗ for the out-arguments. Only these are special references that can
also be the ignore symbol #. The ignore symbol is given an arbitrary type so it can
always be used ([ign] in Figure 3.18).

The types of the arguments are gathered and turned into a type signature for
a procedure, which is judged to be an instantiation ¹ of the type scheme that the
environment has of the procedure in question [pcall-s][pcall-a].

Note that procedure calls on the expression level can only have ignore symbols
a∗
i for out-arguments. GREEN-MARL uses this to guarantee that expressions do not

have side-effects.
37



3. TYPE SYSTEM

Return Statements. The return type τ of the procedure is provided in all well-
formedness judgements of statements as an optional argument ([wf-proc-v] and [wf-
proc-t]). It is implicitly passed down and only used by the return statement [ret-t]. The
semantic type void is used to describe a procedure with no return type [ret-v].

Compilation units. The top-level compilation unit of GREEN-MARL is based on
a file with procedure declarations. The procedure names are collected in an en-
vironment Γp, on top of the built-in procedures Γ0p. These built-ins are defined in
Section 3.8. Note that user-defined procedures are not allowed to be overloaded
[wf-u].

The well-formed units rule checks the well-formedness of all procedures p∗ using
`∀. In other procedure-related rules, we used checked well-typedness of lists by
mapping a judgement with `∗. By example, these expand to:

Γ ` p1 ∧ . . . ∧ Γ ` pn

Γ `∀ 〈p1, . . . , pn 〉
[forall]

Γ ` e1 : τ1 ∧ . . . ∧ Γ ` en : τn

Γ `∗ 〈e1, . . . ,en 〉 : 〈τ1, . . . ,τn 〉
[map]

3.8 Functions and API

GREEN-MARL has syntax for function calls, but not for function definitions (Fig-
ure 3.19). In this section we discuss function calls and the predefined functions and
procedures.

Function Calls. Function calls are different from procedure calls in that they are
called on a subject expression e, only take in-arguments and always have a result
type. Functions cannot be defined by users, instead GREEN-MARL provides some
built-in functions in Γ0f . These built-in functions can be polymorphic in graph name
or types, and the function call rule [fcall-e] uses the instantiation judgement similarly
to the procedure call rules in Section 3.7. We use τ̂ for type variables and τ̌ for types
with type variables.

Note that Γ0f is a multi-valued function. A built-in function can be overloaded, and
we consider the lookup of a function non-deterministic. In [fcall-e] the instantiation
judgement collapses the non-determinism.

Mathematics. There are a number of top-level math procedures defined: uniformly
distributed random numbers, random numbers within a range, base e logarithm
and exponentiation, square root, and power; these are all shown with their types in
Figure 3.20.

Strings. Strings may be queried for their length, substrings, prefixes, postfixes and
possibly case-insensitive equality.

Date and Time. The date and time procedures supply the current time, parsing
functionality, time difference, extract of components, and setting the default calendar
and parsing format.
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syntax

s = . . .
| e.n(e∗); function calls

e = . . .
| e.n(e∗) function calls

semantic domains

Γf = n →fin σ
∗
f built-in functions

σ = . . . | σf semantic type schemes
σf = ∀ n∗, τ̂∗. τ̌f function signatures
τf = F<τ,τ∗,τ> function type with variables
τ̂ type variables
τ̌ types with variables

well-formed statements τ,γ,Γ ` s

Γ ` e.n(e∗) : τ

Γ ` e.n(e∗);
[fcall-s]

well-typed expressions Γ ` e : τ

e : τe ∧ e∗ : τ∗

∧ F<τe,τ∗,τ> ¹ Γ0f (n)

e.n(e∗) : τ
[fcall-e]

Figure 3.19 – Syntax of functions calls, and their well-formedness and well-
typedness.
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Built-in math procedures

Γ0p(uniform) = P<〈〉,〈〉,double>
Γ0p(rand) = P<〈long〉,〈〉,long>
Γ0p(log) = P<〈double〉,〈〉,double>
Γ0p(exp) = P<〈double〉,〈〉,double>
Γ0p(sqrt) = P<〈double〉,〈〉,double>
Γ0p(pow) = P<〈double,double〉,〈〉,double>

Built-in string functions

Γ
0f (length) = F<string,〈〉,int>
Γ

0f (contains) = F<string,〈string〉,bool>
Γ

0f (beginsWith) = F<string,〈string〉,bool>
Γ

0f (endsWith) = F<string,〈string〉,bool>
Γ

0f (equals) = F<string,〈string,bool〉,bool>

Built-in date procedures

Γ0p(currentTime) = P<〈〉,〈〉,date>
Γ0p(parseTime) = P<〈string,string,string〉,〈〉,date>
Γ0p(parseTimeWithFormat) = P<〈string,string〉,〈〉,date>
Γ0p(diffTime) = P<〈date,date,string〉,〈〉,double>
Γ0p(extractTime) = P<〈date,string〉,〈〉,int>
Γ0p(setDefaultCalendarSystem) = P<〈string〉,〈〉,void>
Γ0p(setDefaultTimeLiteralFormat) = P<〈string〉,〈〉,void>

Figure 3.20 – Built-ins for mathematics, date and string.

Graphs, nodes and edges. The functions for graphs and nodes can count nodes,
edges and neighbours, and pick random nodes and neighbours. The pickRandom show-
cases the need to have the semantic graph type refer to the name of the graph,
because otherwise the node that is returned cannot be typed with the right graph.

The functions for edges provide the start and end of an edge. The functions for
neighbour iterators provide the edge in between the origin node of the iteration and
the current neighbour. These neighbour function show the use of remembering the
iterator is a neighbour iterator, as well as a reason why we even introduced iterators
as a type instead of extra context information.

Collections and Maps. The Collections and Maps API showcase overloading of
functions and polymorphism in types. The functions on the collections are polymor-
phic in the type of element in the collection. The map API is polymorphic in the
types of both the keys and the values.
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graphs

Γ
0f (numNodes) =∀n. F<graph(n),〈〉,int>
Γ

0f (numEdges) =∀n. F<graph(n),〈〉,int>
Γ

0f (pickRandom) =∀n. F<graph(n),〈〉,N(n)>

nodes

Γ
0f (pickRandomNbr) =∀n. F<N(n),〈〉,N(n)>

Γ
0f (numInNbrs) =∀n. F<N(n),〈〉,int>
Γ

0f (numOutNbrs) =∀n. F<N(n),〈〉,int>
Γ

0f (hasEdgeFrom) =∀n. F<N(n),〈N(n)〉,bool>
Γ

0f (hasEdgeTo) =∀n. F<N(n),〈N(n)〉,bool>
edges

Γ
0f (fromNode) =∀n. F<E(n),〈〉,N(n)>

Γ
0f (toNode) =∀n. F<E(n),〈〉,N(n)>

neighbour iterators

Γ
0f (fromEdge) =∀n. F<I<n,N(n)>,〈〉,E(n)>

Γ
0f (toEdge) =∀n. F<I<n,N(n)>,〈〉,E(n)>

Figure 3.21 – Graph-related API.

Individual functions such as size, has and the entire sequence API are overloaded
for different types. In the case of the sequence API it is shared by sequences, orders
and collections of collections. The set function add is an example of an overloaded
function for the same type, where one adds a single element to a set, and the other
adds a whole other set and is an alias of addAll.
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set functions

Γ
0f (size) =∀τ̂. F<S<τ̂>,〈〉,int>
Γ

0f (has) =∀τ̂. F<S<τ̂>,〈〉,bool>
Γ

0f (isSubsetOf) =∀τ̂. F<S<τ̂>,〈S<τ̂>〉,bool>
Γ

0f (add) =∀τ̂. F<S<τ̂>,〈 τ̂〉,void>
Γ

0f (add) =∀τ̂. F<S<τ̂>,〈S<τ̂>〉,void>
Γ

0f (remove) =∀τ̂. F<S<τ̂>,〈 τ̂〉,void>
Γ

0f (remove) =∀τ̂. F<S<τ̂>,〈S<τ̂>〉,void>
Γ

0f (addAll) =∀τ̂. F<S<τ̂>,〈S<τ̂>〉,void>
Γ

0f (removeAll) =∀τ̂. F<S<τ̂>,〈S<τ̂>〉,void>
Γ

0f (retainOnly) =∀τ̂. F<S<τ̂>,〈S<τ̂>〉,void>
Γ

0f (clear) =∀τ̂. F<S<τ̂>,〈〉,void>
sequence functions

Γ
0f (size) =∀τ̂. F<Q<τ̂>,〈〉,int>
Γ

0f (has) =∀τ̂. F<Q<τ̂>,〈〉,bool>
Γ

0f (front) =∀τ̂. F<Q<τ̂>,〈〉,τ̂>
Γ

0f (back) =∀τ̂. F<Q<τ̂>,〈〉,τ̂>
Γ

0f (pop) =∀τ̂. F<Q<τ̂>,〈〉,τ̂>
Γ

0f (popFront) =∀τ̂. F<Q<τ̂>,〈〉,τ̂>
Γ

0f (popBack) =∀τ̂. F<Q<τ̂>,〈〉,τ̂>
Γ

0f (push) =∀τ̂. F<Q<τ̂>,〈 τ̂〉,void>
Γ

0f (pushFront) =∀τ̂. F<Q<τ̂>,〈 τ̂〉,void>
Γ

0f (pushFront) =∀τ̂. F<Q<τ̂>,〈Q<τ̂>〉,void>
Γ

0f (pushBack) =∀τ̂. F<Q<τ̂>,〈 τ̂〉,void>
Γ

0f (pushBack) =∀τ̂. F<Q<τ̂>,〈Q<τ̂>〉,void>
map functions

Γ
0f (size) =∀τ̂1, τ̂2. F<map<τ̂1,τ̂2>,〈〉,int>
Γ

0f (hasKey) =∀τ̂1, τ̂2. F<map<τ̂1,τ̂2>,〈 τ̂1 〉,bool>
Γ

0f (hasMinValue) =∀τ̂1, τ̂2. F<map<τ̂1,τ̂2>,〈 τ̂1 〉,bool>
Γ

0f (hasMaxValue) =∀τ̂1, τ̂2. F<map<τ̂1,τ̂2>,〈 τ̂1 〉,bool>
Γ

0f (getMaxKey) =∀τ̂1, τ̂2. F<map<τ̂1,τ̂2>,〈〉,τ̂1>

Γ
0f (getMinKey) =∀τ̂1, τ̂2. F<map<τ̂1,τ̂2>,〈〉,τ̂1>

Γ
0f (getMaxValue) =∀τ̂1, τ̂2. F<map<τ̂1,τ̂2>,〈〉,τ̂2>

Γ
0f (getMinValue) =∀τ̂1, τ̂2. F<map<τ̂1,τ̂2>,〈〉,τ̂2>

Figure 3.22 – Collection and Map APIs.
42



Chapter 4

Read-Write Analysis

In the last chapter we introduced the formal specification of GREEN-MARL’s type sys-
tem. In this chapter we extend these with judgements that formalise the dependence
analysis and use this information to check the invariants of the reduce and the defer
assignments.

General concept. The read-write analysis is a tree-based, symbolic analysis. The
tree-based aspect gives us rules that define the read-write information for every
statement. Block statements scope local names in sub-statements, therefore those
are eliminated from the read-write information in blocks. In general only the outside
observable effects of a statement are in the read-write information. This allows for a
bottom-up approach that abstracts as it goes up.

The symbolic aspect of the analysis revolves around properties and traversals.
Properties are considered special cases because they represent a large amount of
individually accessible information under one name. The name of the accessor of a
property is kept in the read-write information for as long as possible. When it goes
out of scope, an approximate access pattern is saved instead. The accessor is kept
symbolically, because properties are accessed by nodes and edges, which do not have
literals. Most nodes and edges in a GREEN-MARL program come from a traversals
that ranges over a part of the graph. We can approximate the behaviour of a traversal
over a range well enough in some cases, that we can apply optimisations such as
loop fusion.

The semantic domains and judgements of this chapter are in Figure 4.1. The
central judgements are:

• Expression analysis: `rw e : %

We judge expressions e to have a read-write set %. This is a set of 3-tuples of
read-write information ri which associates a name n with a read-write mode
mode and a property access pattern patt .

The access mode includes the standard options read and write, and the more
domain specific defer(n) and reduce(n,ra) which includes information about
the bound and the reduction operator.

The access pattern includes N/A for normal variables, a name n for access to a
single graph element, unique for access to a unique set of graph elements, random
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for access unpredictable sample of graph elements, including the possibility of
accessing the same element multiple times.

• Statement analysis: Γ `rw s : %

We judge a statement s to have a read-write set % under environment Γ. Most
rules in this chapter are of this judgement.

• Well-formed read-write sets: `seq %, `par %

To determine that reduction and deferred assignments are not applied in
combination with, for example, normal write accesses, we employ a well-
formedness judgement. This judgement is applied at sequential and parallel
traversals.

• Read-write set transformation: n,patt `seq %⇒ %′, n,patt `par %⇒ %′

At the same traversals where we check the well-formedness of the read-write
set, we transform a reduction or deferred assignment to a normal write if the
assignments is bound by the traversal. This transformation is necessary to
abstract over the observable effects of the traversal. At this point we also record
the property access pattern of the traversal’s iterator.

semantic domains

mode = read | write read and write modes
| defer(n) defer mode
| reduce(n,ra) reduce mode

patt = N/A not a property access
| n single point access
| unique access each point zero or one times
| random access in an unpredictable way

ra = ran | ra l reduction operators
| arg(rac) min/max argument

o = on | oc | oe | ol binary operators

% = ri∗ read-write set
ri = n ×mode ×patt read-write information

semantic judgements

mode `rw er : % reference analysis

`rw e : % expression analysis

`rw r : % range analysis

Γ `rw s : % statement analysis

Γ `ap r ⇒ patt access patterns of ranges

`seq % well-formed sets of sequential traversals

`par % well-formed sets of parallel traversals

n,patt `seq % ⇒ %′ set transformation for sequential traversals

n,patt `par % ⇒ %′ set transformation for parallel traversals

Γ `mr ri ⇒ ri ′ transformation for properties accessed through local variables

Figure 4.1 – Overview of the semantic domains and judgements.
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well-analysed references mode `rw er : %

mode `rw n :
{〈n,mode , N/A 〉} [scalar]

mode `rw n1.n2 :
{〈n2,mode ,n1 〉

}
[property]

`rw e : %

mode `rw n[e] : %+〈n,mode , N/A 〉
[map]

well-analysed expressions `rw e : %

read `rw er : %

`rw er : %
[ref]

`rw e1 : %1

∧ `rw e2 : %2

`rw e1 o e2 : %1 ∪%2

[bin-op]

`∪
rw e∗ : %

`rw n(e∗; #∗) : %
[proc]

n2 ∈MutFun ∧ `∪
rw e∗ : %

`rw n1.n2(e∗) : %+〈n1,write, N/A 〉
[func-1]

n2 ∉MutFun ∧ `∪
rw e∗ : %

`rw n1.n2(e∗) : %+〈n1,read, N/A 〉
[func-2]

mutating functions

MutFun=


add , addAll , push, pushFront, pushBack

remove , removeAll, pop , popFront , popBack

retainOnly, clear


Figure 4.2 – Read-write rules for references, expressions and functions.

4.1 Expressions

We start with the read-write rules for expressions. References are of particular interest,
as well as functions.

References and simple expressions. Most expressions have no side-effects on vari-
ables. The [ref] rule handles references as read (Figure 4.2). The reference rules [scalar],
[property] and [map] are configurable by mode , this way we can reuse the rules for
left-hand sides of assignments. We use the + operator to denote the insertion of a
single element into a set.

Simple expressions like a binary operator [bin-op] combine the two operands’
read-write sets with a union. The rule for procedures [proc] does the same for a list of
expressions e∗ by using an abbreviation of judgements denoted with a union symbol.
The unabbreviated version of the rule is:

`rw e1 : %1 ∧ . . . ∧ `rw en : %n

`rw n(〈e1, . . . ,en 〉; #∗) : %1 ∪ . . .∪%n

[proc-expanded]
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well-analysed statements Γ `rw s : %

`rw s1 : %1 ∧ `rw s2 : %2 ∧ `rw e : %3

`rw if(e) s1 else s2 : %1 ∪%2 ∪%3

[if-else]

`rw s : %1 ∧ `rw e : %2

`rw while(e) s : %1 ∪%2

[while]

`rw s : %1 ∧ `rw e : %2

`rw do s while(e) : %1 ∪%2

[do-while]

Γ `∪
rw s∗ : %

Γ `rw{s∗} : %/Γ

[block]

Figure 4.3 – Read-write rules for conditional statements and blocks.

We elide further rules where only unions of sub-expression sets are taken.

Functions. Built-in functions on collections can mutate a collection. For simplicity,
we consider this a write. The original implementation in the GREEN-MARL compiler
treats collection mutation as a special case for better compiler warnings and to in-
form optimisations. Although function calls are expressions, the ones with a mutation
effect have a return type void, which makes them only suitable as a statement.

4.2 Statements

Most of our read-write rules relate to statements. They mostly centre around loops
and parallel contexts. We start the section with simple conditional statements and
the block statement.

Conditionals. The conditional statements have simple rules [if-else], [while] and [do-
while] in Figure 4.3. These are comparable to the previous expression statements in
that they only union the read-write sets of sub-expressions and sub-statements. The
original implementation in the GREEN-MARL compiler tracks conditional read-write
information as an extra piece of information, making ri a 4-tuple.

Blocks. Block statements drop names from the read-write set which are defined
within that block. When these names are used to access into a property, we cannot
be sure that a repetition of block accesses the property in the same place, so we use
random as a conservative value. This transformation of the read-write set is written as
a restriction to the environment: %/Γ. More formally, the restriction is defined as:

%/Γ =
{

ri
∣∣ 〈n,mode ,patt 〉 ∈ %∧Γ(n) 6= ⊥∧Γ`mr 〈n,mode ,patt 〉⇒ r i

}
where the mr judgement is:
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Γ(n2) =⊥

Γ`mr 〈n1,mode ,n2 〉⇒ 〈n1,mode ,random 〉
[restr-trans-1]

Γ(n2) 6= ⊥

Γ`mr 〈n1,mode ,n2 〉⇒ 〈n1,mode ,n2 〉
[restr-trans-2]

patt ∈ {N/A,unique,random}

Γ`mr 〈n1,mode ,patt 〉⇒ 〈n1,mode ,patt 〉
[restr-trans-3]

Assignments. Write information originates from assignments. Rule [assign] in Fig-
ure 4.4 handles for the normal assignment. This is the second place where we use
the judgement for references.

Deferred and reduction assignments are covered by rules [defer] and [reduce]
respectively. They depend on an unformalised desugaring step that infers bounds of
the assignments, given after the @. This inference takes the outermost parallel loop
where the left-hand side is still defined (the property if it is a property assignment).
When the assignment is not in a parallel context at all, the deferred assignment is
bound by the outermost sequential traversal and the reduction assignment is turned
into a normal assignment.

The augmented minimum and maximum reduce assignments [arg-min/max] are
very similar to the normal reduce assignment rule, except that the extra arguments
are annotated as such.

Loops. Iterators from loops can be used in two place: as the accessor of a property,
or as bounds for reduction and deferred assignments.

The rules [for] and [foreach] in Figure 4.5 are very similar. Both 1) take the read-
write set for the range, 2) get the access pattern of the range, 3) use this range to
transform the read-write set of the body statement, 4) union the set of the range

well-analysed statements Γ `rw s : %

`rw e : %1 ∧ write `rw er : %2

`rw er = e : %1 ∪%2

[assign]

defer(n) `rw er : %1 ∧ `rw e : %2

`rw er <= e @ n : %1 ∪%2

[defer]

reduce(n,ra) `rw er : %1 ∧ `rw e : %2

`rw er ra e @ n : %1 ∪%2

[reduce]

reduce(n,rac) `rw er : %1 ∧ `rw e : %3

∧ reduce(n,arg(rac)) `∪
rw e∗

r : %2 ∧ `∪
rw e∗ : %4

`rw er <e∗r > rac e <e∗> @ n : %1 ∪%2 ∪%3 ∪%4

[arg-min/max]

Figure 4.4 – Read-write rules for assignments.
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well-analysed statements Γ `rw s : %

Γ `rw s : %1 ∧ `ap n: r : patt

∧ `rw r : %2 ∧ n,patt `seq %1 ⇒ %3

Γ `rw for(n: r) s : (%2 ∪%3)/Γ

[for]

Γ `rw s : %1 ∧ `ap n: r : patt

∧ `rw r : %2 ∧ n,patt `par %1 ⇒ %3

Γ `rw foreach(n: r) s : (%2 ∪%3)/Γ

[foreach]

Γ `rw s1 : %1 ∧ `rw e : %2

∧ Γ `rw s2 : %3 ∧ `rw r : %4

∧ n1,unique`par (%1 ∪%2 ∪%3) ⇒ %5

∧ {〈n1,read, N/A 〉,〈n2,read, N/A 〉}= %6

Γ `rw inBFS(n1: r from n2)[e] s1 inReverse s2 : (%4 ∪%5 ∪%6)/Γ

[BFS]

Γ `rw s1 : %1 ∧ `rw e : %2

∧ Γ `rw s2 : %3 ∧ `rw r : %4

∧ n1,unique`seq (%1 ∪%2 ∪%3) ⇒ %5

∧ {〈n1,read, N/A 〉,〈n2,read, N/A 〉}= %6

Γ `rw inDFS(n1: r from n2)[e] s1 inPost s2 : (%4 ∪%5 ∪%6)/Γ

[DFS]

well-analysed ranges `rw r : %

read `rw n : %

`rw n.nodes : %
[nodes]

read `rw n : %

`rw n.nbrs : %
[nbrs]

read `rw n : %

`rw n.edges : %
[edges]

Figure 4.5 – Read-write rules for loops, searches and ranges.

and the transformed set, 5) and finally restrict these two to the environment. The
difference between the two is that [for] uses the sequential rule for transformation of
the read-write set, whereas [foreach] uses the parallel transformation rule.

The rules for these loops expect a desugared version where the filter expression
has been turned into an if-statement that wraps the body of the loop.

Searches. The breadth and depth-first search have very similar rules to the loops.
These searches have two body statements, a navigator and a range with source node.
The union of the bodies’ and navigator’s sets are transformed. As the actual range of a
search is always the same (the graph nodes), we directly use the access pattern of the
search, which is unique. The depth-first search uses the transformation for sequential
traversals, the breadth-first search uses the one for parallel traversals. Again the
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Access patterns Γ `ap r ⇒ patt

`ap n.upEdges⇒ unique [level-up-e]

`ap n.upNbrs⇒ unique [level-up-n]

`ap n.nodes⇒ unique [graph-nodes]

`ap n.inEdges⇒ unique [in-edges]

`ap n.downEdges⇒ unique [level-down-e]

`ap n.downNbrs⇒ unique [level-down-n]

`ap n.edges⇒ unique [graph-edges]

`ap n.outEdges⇒ unique [out-edges]

Γv (n) = 〈Q<_>,_〉

Γ`ap n.items⇒ random
[sequences]

Γv (n) = 〈S<_>,_〉

Γ`ap n.items⇒ unique
[sets]

Γv (n) = 〈O<_>,_〉

Γ`ap n.items⇒ unique
[orders]

Figure 4.6 – Access patterns by range.

union of the transformed set and the local names from the iterator definition is taken
and restricted to the environment.

Access patterns. The access patterns of most ranges is unique (Figure 4.6). In fact
the only non-unique access pattern is that of [sequences].

4.3 Transformations

The transformations of the read-write analysis that we use for the loops and searches
consists of three parts: well-formedness, transformation of the mode and transforma-
tion of the patt . The first is defined in Figure 4.7, the second and third are defined in
Figure 4.8 along with the combining rule.

Well-formedness. A read-write set is well-formed when a number of invariants
apply. While a variable has a deferred write on it, it should not be written to directly
[write-defer]. This is checked on all traversals. On parallel traversals [all-errors], the
following other invariants are checked:

1. Reduction assignment target are not written to.

2. Reduction assignment target are not read.

3. Reduction assignment target are not written to in deferred manner.

4. Reduction assignment target are not reduced to with other operators.

Transformation of mode. A deferred and reduction assignment are bound by
traversals. Within those traversals they are special assignments, but when we consider
their effect from the outside, they simply write to their target. This is what [tr-defer]
and [tr-reduce] denote. When the assignment is scoped by the current traversal n1, we
turn the mode into write.
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To keep the rules simple, we do not define the transformation for all read-write
information. Instead we use another judgement modifier, that maps a transformation
over a set, and preserves the values in the set that the transformation is undefined
for:

(n ` ri 1 ⇒ ri ′1 else ri ′1 = ri 1) ∧ . . . ∧ (n ` ri n ⇒ ri ′n else ri ′n = ri n )

n `~ 〈ri 1, . . . ,ri n 〉⇒ 〈ri ′1, . . . ,ri ′n 〉
[map-try]

Transformation of access pattern. The access pattern of an iterator is derived
from the range. When we find read-write information on a property that is accessed
through the iterator of the traversals that we are at, we simply replace it by its access
pattern ([name] in Figure 4.8). The random access pattern is simply preserved, so we
do not really need [random], but we defined for clarity. Finally a unique pattern turns
random when repeated, as it is possible that a property will be accessed through the
same graph element repeatedly.

4.4 Integration with type rules

We have presented the read-write analysis as a separate analysis from the type system
of GREEN-MARL. The analysis is orthogonal to the type system, except that it uses
the same environment. The read-write analysis does not adapt the environment, it
does not influence the type system, therefore we argue that the integration with the
type rules is trivial. We give three examples of type rules on the left and fused type
rules and read-write rules on the right below:

τ′,Γ ` s

τ′,γ,Γ ` s : Γ
[non-decl]

τ′,Γ `fused s : %

τ′,γ,Γ `fused s : Γ,%
[non-decl-fused]

Γ �̀ s∗ : _

Γ `{s∗}
[block]

Γ `�,∪
fused s∗ : _,%

Γ `fused{s∗} : %
[block-fused]

w,Γ ` er : τ ∧ Γ ` e : τ

Γ ` er = e;
[assign]

w,Γ `fused er : τ,%1

∧ Γ `fused e : τ,%2

Γ `fused er = e; : %1 ∪%2

[assign-fused]
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well-formed sets `seq %, `par %

{〈n,defer(_),patt 〉,〈n,write,patt 〉} 6⊆%
`seq %

[write-defer]

{〈n,defer(_),patt 〉,〈n,write,patt 〉} 6⊆%
∧ {〈n,reduce(_,_),patt 〉,〈n,write,patt 〉} 6⊆%
∧ {〈n,reduce(_,_),patt 〉,〈n,read,patt 〉} 6⊆%
∧ {〈n,reduce(_,_),patt 〉,〈n,defer(_),patt 〉} 6⊆%
∧ {〈n,reduce(_,ra 1),patt 〉,〈n,reduce(_,ra 2),patt 〉} 6⊆%
∧ ra 1 6= ra 2

`par %
[all-errors]

Figure 4.7 – Language invariant checks around defer and reduce.

transformation of read/write mode n ` ri ⇒ ri ′

n1 ` 〈n2,defer(n1),patt 〉⇒ 〈n2,write,patt 〉 [tr-defer]

n1 ` 〈n2,reduce(n1,_),patt 〉⇒ 〈n2,write,patt 〉 [tr-reduce]

transformation of access pattern n,patt ` ri ⇒ ri ′

n1,patt ` 〈n2,mode ,n1 〉⇒ 〈n2,mode ,patt 〉 [name]

n1,patt ` 〈n2,mode ,random 〉⇒ 〈n2,mode ,random 〉 [random]

n1,patt ` 〈n2,mode ,unique〉⇒ 〈n2,mode ,random 〉 [unique]

transformation of access pattern n,patt `seq %⇒ %′, n,patt `par %⇒ %′

`seq %1 ∧ n,patt `~ %1 ⇒ %2 ∧ n `~ %3 ⇒ %4

n,patt `seq %1 ⇒ %4

[general-seq]

`par %1 ∧ n,patt `~ %1 ⇒ %2 ∧ n `~ %3 ⇒ %4

n,patt `par %1 ⇒ %4

[general-par]

Figure 4.8 – Read-write set transformation.
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Chapter 5

Implementation

The original GREEN-MARL compiler gm_comp is written in C++. It targets a C++ run-
time and a JAVA run-time, and applies a large number of optimisations. We imple-
mented our own compiler gm_spoofax that targets the pre-existing JAVA run-time and
applies only a subset of gm_comp’s optimisations.

We used the Spoofax language workbench [43] to implement gm_spoofax. It served
the dual purpose of helping us gain a better understanding GREEN-MARL, and giving
us an executable specification of GREEN-MARL. This executable specification enabled
us to explore how to declaratively specify the static semantics, and see if Spoofax’s
meta-languages were able to fully and easily capture GREEN-MARL. In this chapter,
we report on the challenges we have found during the implementation of the static
semantics and compare the implementation with the formal specification.

5.1 Compiler overview

The gm_spoofax compiler performs the steps illustrated in Figure 5.1. The boxed steps
are this discussed in this chapter. The list of steps is:

1. The compiler starts with GREEN-MARL source code. It parses this code into an
Abstract Syntax Tree (AST). The parser is derived from a grammar specification
in SDF3 [39], Spoofax’s syntax definition formalism.

2. This AST is then simplified, desugared, with rewrite rules in the STRATEGO

transformation language [11]. This is Spoofax’s language for term rewrite sys-
tems.

3. The desugared AST is analysed. In particular we do a type analysis, which is
derived from name binding rules in NABL [29], type rules in TS [38], and custom
extensions defined in STRATEGO. These rules are applied by an incremental
task engine [42], which annotates the tree with results. Notably the AST itself
stays the same, it only gains associated analysis information. (Section 5.2)

4. Another desugaring step is defined in STRATEGO that simplifies the AST based
on the now available analysis results. Note that not only the AST is transformed.
The analysis results are transformed with it to stay valid for the transformed
AST. (Section 5.4)
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GREEN-MARL

GREEN-MARL AST JAVA AST

JAVA

type
analysis
results

read
write

analysis
results
added

parse

desugar

type
analysis

§5.2

desugar

§5.4

read
write

analysis

§5.3

optimise

§5.4

transform

prettyprint

Figure 5.1 – Overview of the gm_spoofax compiler steps. The double arrows are trans-
formations. The dashed arrows are identity transformations. The boxes with grey
lines are source code. The triangles are trees. The rectangles under the trees are
associated information.

5. We apply the read-write analysis on the desugared AST with type information.
This analysis is defined in STRATEGO. Note that the AST again gains extra
analysis information, but the tree itself is not changed. (Section 5.3)

6. The preservation of analysis results remains a theme, in the transformation step
after the read-write analysis. We apply optimisations based on the analysis
results, but the analysis results need to be maintained to allow further steps
access to still valid results. We describe our strategy for the preservation, which
is again defined in STRATEGO. (Section 5.4)

7. After all optimisation and desugaring steps are complete, the GREEN-MARL

AST is transformed into a JAVA AST with STRATEGO.

8. This AST is then turned into JAVA code with a prettyprinter that was derived
from an SDF3 JAVA grammar.

5.2 Type System

The formal specification of the type system mixes the name binding and type rules in
one formalism. In Spoofax, type rules are conceptually separated from name binding
rules. For these two aspects, Spoofax provides name binding language NABL and
type system language TS. The argument for a separate name binding language is as
follows:

The references in a language are governed by rules for name binding
and scope. The key concepts in these rules are definitions that introduce
names, references to definitions, and scopes that restrict the visibility
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5.2. Type System

Block(_):
scopes Variable , Property

Decl(ty@IntTy(), v):
defines Variable v

of type ty
in subsequent scope

Γ �̀ s∗ : _

Γ `{s∗}
[block]

γ` tv ⇒ τ

∧ Γv (n) =⊥
∧ Γv [n 7→ 〈τ,w〉 ] = Γ′

τ′,γ,Γ ` tv n; : Γ′
[decl-v]

Figure 5.2 – NABL rules (left) and formal rules (right) for block scope and declara-
tions in subsequent scope.

of definitions. However, those rules are typically not directly expressed.
Rather they are programmatically encoded and repeated in many parts
of a language implementation, such as the definition of a substitution
function, the implementation of name resolution for editor services, and
refactorings.
—Visser et al. [38] (p. 101,102)

The two meta-languages are complementary systems. NABL rules can refer to types
as if the type analysis is already complete, and TS rules can use bindings as if the
name analysis is already complete.

The two languages share a concept of properties. Properties are a generalisation
of types, and can be attached to names in NABL rules and to arbitrary AST nodes in
TS rules. Because GREEN-MARL also has a concept of graph properties, we call the
properties in the meta-languages NABL properties, as property names are declared
in NABL.

In the remainder of this section, we show examples of the NABL and TS rules
that easily correspond to the formal rules and discuss the more challenging parts of
the implementation.

Block scope and subsequent scope. NABL has a notion of namespaces and scopes.
A namespace is the space to which a name belongs. GREEN-MARL’s namespaces
are Variable, Property, and Procedure. When an AST node scopes a certain namespace,
the names that are defined within that sub-tree are only visible within this scope.
In GREEN-MARL, block statements scope variables and properties. In rule [block] in
Figure 5.2, this is encoded by not propagating the environment we received from the
sub-statements. In NABL we declare this with a scopes clause.

Local declarations within a block define names for the following statements. In
the formal rule [decl-v], we add the name to the environment and return it to be used
for the next declarations. In NABL, we 1) define the variable, 2) declare the type of
the variable, and 3) restrict the scope to the subsequent statements. Without the
restriction of the scope, the variable would be visible to any statements before the
declaration statement in the block. Now, NABL creates an anonymous scope for the
next statements in the list and defines the new name inside this new scope.

Shadowing. GREEN-MARL does not allow shadowing of local variables. Rule [decl-v]
encodes that a variable must not have been defined before. We cannot get the same
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// disallow any and all shadowing
nabl−constraint (|ctx): Decl(ty,n) → <fail >
where not(PropTy(_,_,_) := ty)

; lookup := <nabl−lookup−lexical−parent(|ctx)> n
; <task−create−error−on−success(|ctx , lookup

, $[Shadowing (duplicate) definition ])> n

// constrain types to define their associated graph when there are
// multiple defined
nabl−constraint (|ctx) = ?term; one(?i@Implicit ())

; <has−annotation(?Use(lookup))> i
; <task−create−error−on−multiple(|ctx , lookup

, $[Multiple graphs found , specify associated graph])> term
; fail

Figure 5.3 – Stratego rules that add custom NaBL constraints for shadowing and
implicit graph parameters in the presence of multiple graphs.

behaviour from inside NABL. By default, NABL assumes names to be unique, so
that a second definition of a name in the same scope results in an automatic error
message. But NABL also assumes that a sub-scope may override defined names.
Therefore we use the custom constraints to disallow shadowing. NABL provides an
extension point for such custom constraints in STRATEGO, a term rewrite language.
In Figure 5.3 we set an error on a variable declaration when another variable of that
name is already defined.

Graph references. Domain-specific types in GREEN-MARL can have a reference to
a graph that they belong to. When they do not have this reference, the graph can be
inferred if only one graph is in scope. Rule [decl-v] uses semantic type translation to
infer or validate the graph reference. For example, to infer the graph of a node, when
only one graph is in scope, we use:

〈n 〉 ` N⇒ N(n) [n-i]

Name dependent types are not readily supported by NABL and TS. Therefore, we
handle the graph reference as a separate NABL property, the graph property. Figure 5.4
shows the rules that extract the graph from a type and propagate it to references. The
idea is that the declaration of a graph also implicitly declares the graph on a special
name. This special name is already present in types that do not specify the graph
reference.

We represent the type node(g) as ItemTy(Node(),GraphRef("g")). Similarly, the type
node is represented as ItemTy(Node(),Implicit()). In both situations, we need to resolve
the graph in order to assign the graph property (Figure 5.4, first two lines). Therefore,
the NABL rule for input arguments of type graph defines not only the graph variable,
but also a variable Implicit(). Because the implicit graph reference is not in the
matched sub-tree, the NABL rule specifies that this is an implicit name definition.
Now both kinds of graph references can be resolved. In the TS rule for Implicit(), we
can look up the definition of the implicit variable.

The separate NABL property for graph references requires a small amount
of duplication, since all AST nodes with type rules also need graph rules. This du-
plication starts to become more cumbersome with parametrised types such as
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i@Implicit (): refers to Variable i

GraphRef(g): refers to Variable g

FormalInArg(g, ty@GraphTy ()):
defines Variable g

of type ty
of varKind InArg()
of graph g

implicitly defines Variable Implicit ()
of type ty
of varKind InArg()
of graph g

g@Implicit () has graph g ′
where definition of g has graph g ′

GraphRef(g) has graph g ′
where definition of g has graph g ′

and definition of g : ty
and ty == GraphTy ()

else error $[expected graph but got [ty]] on g

ItemTy(_, g) has graph g ′ where g has graph g ′

Figure 5.4 – NABL rules (top) and TS rules (bottom) for graph references.

node/edgeProperty and map. Graph properties belong to one graph, but their type pa-
rameter may belong to another graph altogether. Maps have a similar problem. A map
itself does not belong to any graph, but keys and values may. For the same map, keys
and values can belong to different graphs. For example, consider map(node(g),edge(h)).
The keygraph of this map type is g, and the valuegraph of this map is h. We have to use
separate properties propgraph, keygraph and valuegraph. And each of these properties
need their own duplicate rules.

Type relations. GREEN-MARL has different kinds of related types. The formal rules
make use of different semantic sub-domains to constrain rules to certain kinds
of types. For example, τn in rule [num-op] restricts the arithmetic operations to the
numeric types. We model these kinds of types in TS through a type relation. Figure 5.5
shows the definition of a <kind: relation for the primitive types and the type rule for
arithmetic operations.

In the formal specification, we define two rules for NIL, one for node and one for
edge. The graph name can be any name, and this non-determinism is resolved at
the site where this rule is used. In TS we have to be more explicit. We define NIL to be
of type NilTy(), which is a subtype of any node or edge regardless of the graph they
belong to (Figure 5.6). We define a subtype relation <type: between a and b where a

and b are either 1) equal under extended equality1, or 2) when a is NilTy() and b is
a node or edge type where we ignore the graph reference. We consistently use this
subtype relation instead of direct equality in most other type rules.

1Extended equality is another relation we defined where node and node(g) are equal when only
graph g is in scope.
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relations

define <kind:

IntTy () <kind: NumericKind ()
LongTy () <kind: NumericKind ()
FloatTy () <kind: NumericKind ()
DoubleTy () <kind: NumericKind ()

type rules

τn = int | long | float | double
e1 : τn ∧ e2 : τn

e1 on e2 : τn
[num-op]

Mul(e1 , e2) +
Div(e1 , e2) +
Mod(e1 , e2) +
Add(e1 , e2) +
Sub(e1 , e2) : ty
where e1: ty1 and ty1 <kind: NumericKind ()
else error $[expected numeric type but got [ty1]] on e1
and e2: ty2 and ty2 <kind: NumericKind ()

else error $[expected numeric type but got [ty2]] on e2
and ( ty1 <type: ty2 and ty2 ⇒ ty

or ty2 <type: ty1 and ty1 ⇒ ty )

Figure 5.5 – Numeric kinds in TS and formal rules (top-right).

type rules

NIL() : NilTy ()

relations

a <type: b
where a <eq: b

or a ⇒ NilTy ()
and ( b ⇒ ItemTy(Node(),_)

or b ⇒ ItemTy(Edge(),_) )

NIL : N(n) [nil-node]

NIL : E(n) [nil-edge]

Figure 5.6 – Type rules for NIL, with formal rules on the right.

Return types. Procedures in GREEN-MARL define their return type at the start of
the procedure, and use the return statement to return a value of that type. In the
formal rules, we passed down the return type of a procedure towards the return
statement. In NABL and TS, rules are context-free. Thus, we cannot depend on
rules to pass down information. Instead we introduce the artificial reference Ret(),
to the return statement during the desugaring phase before the analysis. Similar
to the implicit graph reference, we define Ret() implicitly for each procedure and
assign it the type of the return type (Figure 5.7). The TS rules then use this artificial
name as a reference to the procedure return type, by looking up the type of the
definition of Ret(). Alternatively, we could also propagate the return type itself in the
transformation as the formal rules do.

Placeholders. In group assignments, we can refer to the current node or edge with
a placeholder _. This placeholder is treated as just another name in the formal rules,
defined within the right-hand side expression [gg]. To type the placeholder, we look
up the property to see if it is on nodes or edges.
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ReturnTy(ty):
implicitly defines Variable Ret() of type ty

ty@NoReturnTy ():
implicitly defines Variable Ret() of type ty

Return(r@Ret ()):
refers to Variable r

ReturnWith(r@Ret(),_):
refers to Variable r

s@Return(r@Ret()) :−
where definition of r : ty

and ty == NoReturnTy ()
else error $[expected [ty]] on s

ReturnWith(r@Ret(),e) :−
where definition of r : ty

and e : ety
and ety <type: ty

else error $[expected [ty] but got [ety]] on e

Figure 5.7 – Name binding rules (top) and the type rules (bottom) for the return type
and statement.

Γv (n1) = 〈graph(n1),_〉 ∧ Γg (n2,n1) = 〈P<τe,τpc>,w〉 ∧ Γ[_ 7→ 〈τe ,r〉 ] ` e : τpc

Γ ` n1.n2 = e
[gg]

Assign(PropAssign(_,_),_):
scopes Variable

pa@PropAssign(e,p):
refers to Property p of graph g

where e has graph g
implicitly defines Variable Placeholder ()

of type ty
of graph g

where pa has phty ty
and e has graph g

p@Placeholder (): refers to Variable p

ph@Placeholder (): ty
where definition of ph : ty

PropAssign(_, p) has phty ItemTy(i1 ,Ign ())
where definition of p : PropTy(i1 , ty , _)

and ( ety == GraphTy ()
or <coll−item > ety ⇒ ItemTy(i2 ,_) and i1 == i2)

Figure 5.8 – Name binding rules (middle) and type rules (bottom) for the group
assignment placeholder, and the corresponding formal rule on top.
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FuncCall(e, "pickRandom", e∗) : ItemTy(Node(),Ign ())
where e : ty

and ty == GraphTy ()
else error $[expected graph but got [ty]] on e
and e∗ : [[]]

else error $[no arguments expected] on e∗

FuncCall(e, built−in−pickRandom(), e∗) has graph g
where e has graph g

Figure 5.9 – The TS rules for pickRandom.

In our NABL rules (Figure 5.8), we make assignments scope the variable name-
space and implicitly define the placeholder. However, we cannot resolve the property
reference and deconstruct the type to give the placeholder the appropriate type from
NABL. We can do so in TS, but then we need to get the information back into NABL.
So, we create a special NABL property, the placeholder type phty. Then we use TS
to assign this NABL property to the PropAssign, and in NABL we propagate it to the
placeholder. The final condition of the TS rule makes sure we only define phtywhen
the property assignment is on a graph or a collection of graph elements of the right
kind.

Polymorphic functions. In our formal rules, the combination of built-in, over-
loaded, polymorphic functions are supported through a multi-valued function and
an instantiation judgement. TS does not support polymorphism. Instead, we use a
separate rule for every built-in function. For example, consider the rules for pickRandom
in Figure 5.9. We return a node type, with an Ign() (ignore) in the graph reference
position. We do not compare that AST node in graph element types anyway, as it
can hold both an implicit and an explicit graph reference that can refer to the same
graph. Instead, we use a separate rule that sets the graph NABL property.

5.3 Read-write analysis

The read-write analysis implementation differs strongly from the type system imple-
mentation. Whereas our type system implementation was mainly based on declar-
ative meta-languages, which guided the implementation in a particular direction,
Spoofax does not provide a specific meta-language for other static analyses. So we
used the STRATEGO transformation language, in which we specify a term rewrite sys-
tem. Rewrite systems are a common implementation approach to static analyses [4].

The read-write analysis is only described by illustration in publications [21,23]. An
example GREEN-MARL program is given, along with a table of analysis results and
a short description of the results. The only implementation was in gm_comp in C++,
and the understanding of its details were lost. Therefore our first attempt to un-
derstand and recreate this analysis in STRATEGO was a re-engineering effort. Our
implementation in gm_spoofax is able to provide the same information as the gm_comp

implementation. However, we achieved this by staying close to the procedural im-
plementation in C++. This means that the STRATEGO code differs strongly from the
formal specification.
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1 read−write−analysis = bottomup(try(set−rwMap(|<rw−analyze >)))
2
3 rw−analyze: Block(s∗) → res
4 with rwMaps := <map(get−rwMap);rwMap−unions > s∗
5 ; decls := <retain−all(decl−name);make−set > s∗
6 ; no−decl−info := <dict−diff−keys−uri > (rwMaps , decls)
7 ; res := <map−rwInfo(rw−block−helper(|decls))> no−decl−info

Γ `∪
rw s∗ : %

Γ `rw{s∗} : %/Γ

[block]

Figure 5.10 – The bottomup read-write analysis and the analysis rule for block state-
ments (top), and the formal rule for block statements (bottom).

rw−iter−helper1(|rng ,iter) =
with(access−pattern := <range−to−AccessPattern > (iter ,rng))

; let is−iter = where(\i ′ → <eq−uri > (iter ,i ′ )\)
iter−prop−to−scalar = Property(is−iter);!Scalar ()
rd2w = \RedDef(_,_) → Write ()\

in RwInfo(try(rd2w), id, !access−pattern , iter−prop−to−scalar)
end//let

n1 ` 〈n2,defer(n1),patt 〉⇒ 〈n2,write,patt 〉 [defer]

n1 ` 〈n2,reduce(n1,_),patt 〉⇒ 〈n2,write,patt 〉 [reduce]

n1,patt ` 〈n2,mode ,n1 〉⇒ 〈n2,mode ,patt 〉 [name]

Figure 5.11 – The helper rule that replaces a property access through an iterator by
the access pattern of the loop/search.

Despite this, we did gain a better understanding of the analysis, which eventually
turned into the formal specification we presented earlier. In the rest of this section,
we connect some small examples of our STRATEGO code with the formal rules.

Top-level and Block rule. We use an rw−analyze rule for every kind of statement,
and cache the read-write information in an annotation on the statement. With a
generic bottomup strategy we apply the analysis on the entire program. Figure 5.10
shows this top-level definition of the read-write analysis, and an example rule for
the block statement. The block statement rule gets and combines the read-write
information of the statements on Line 4, collects all local declarations (5), removes
those local declarations (6), and uses a helper strategy to turn property accesses
through those local declarations into random accesses (7). The formal rule applies
step 1 in the premise, and steps 2–4 with the restriction to the environment.

The rules for statements are all fairly similar to the formal rules, although more
verbose, as demonstrated in the figure. The STRATEGO rules that implement the
read-write set transformations are more complex. This is partly due to our incom-
plete understanding at the time, and partly because these transformations do more
than the ones in the formal specification. In this implementation, we migrated the
entire read-write analysis from the C++ implementation, including such things as
conditionality tracking, collection mutation, and a special property access pattern
for breadth-first search iterators. In Figure 5.11 we show the simplest rule, which
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replaces a property access with an iterator into a property access with the pattern
of the iterator. The range−to−AccessPattern strategy corresponds to the · `ap ·⇒ · judge-
ment. The rd2w strategy corresponds to rules [defer] and [reduce]. And the strategies
!access−pattern, iter−prop−to−scalar together correspond to [name].

5.4 Preservation of analysis results

The gm_spoofax compiler has to do multiple successive transformation steps, e.g. for
desugaring and optimisation. Most of these steps require analysis results to inform
them. Each step changes the program slightly, but the analysis results were based on
the unchanged program. So each step invalidates parts of the analysis results, and
we need accurate analysis results to inform the next step.

Fortunately, GREEN-MARL requires certain analyses and transformation that
combine well. We can apply incremental updates with every transformation to keep
the program well-analysed. In the remainder of this section, we describe our ap-
proach to these incremental updates for both of the analyses. Our approach here is
language-specific. We discuss possible directions to solving this problem generically
in Chapter 7.

Type analysis. When the task engine has finished the type analysis, we can use
the analysis results inside STRATEGO to inform program transformations. However,
when such a transformation is done we do not automatically gain new name and
type information on the transformed program. We cannot naively re-analyse the
entire program. The incremental task engine was designed to support incremental
changes to the program by the user, not small successive changes by STRATEGO.

However, the transformations we need have a number of properties that keep
the changes local to the transformation site: (1) We do not change the types or other
NABL properties of existing names. (2) We do not change the existing bindings. (3) We
introduce new declarations and references at the same time. (4) When we replace
expressions, they are replaced with an expression of the same type. (5) We replace
statements, but these do not have types.

Because of these properties of the transformations, we can apply a transforma-
tion and be sure that no analysis information in other parts of the AST are invalidated.
The part that we transform is the part that we control, therefore we can manually
annotate new AST nodes with the correct NABL properties and their values.

This manual annotation is a re-implementation of the name binding and type
rules. This is an unfortunate duplication of effort that leaves the transformation code
bloated. Making changes to name binding and type rules is also more error-prone
with the duplication.

We demonstrate what a transformation with manual updates looks like in Fig-
ure 5.12. This is a desugaring from a group assignment to a parallel loop. We need
a new name for the iterator, and the range of the loop. The loop introduces a new
scope within which the name is contained, so it cannot affect anything outside of
the transformed portion of the program. The transformation selects assignments
(Line 2) to properties (3), where the type (5) and graph (4) of the property are defined
and the assignment is to a graph or collection (6). It then creates the range for the
loop from the graph or collection (2) and graph element kind elemKind. The varKind is
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1 group−assignment−to−foreach: Assign(pa@PropAssign(ref ,propName),expr) →
2 ForEach(Parallel(), IterBounds(nIter ,range ,NoFilter ()), Assign(pa ′ ,expr ′ ))
3 where PropTy(elemKind ,_,_) := <get−type > propName
4 ; graph := <get−graph > propName
5 ; reftype := <get−type > ref
6 ; <?GraphTy () + ?CollTy(_,_,_) + ?HOCollTy(_,_)> reftype
7 with (range ,varKind) := <group−assign−range > (ref , reftype , elemKind)
8 ; annos := [ (Type(),ItemTy(elemKind ,GraphRef(graph )))
9 , (NablProp_varKind (), varKind)

10 , (NablProp_graph (), graph) ]
11 ; nIter :=
12 <build−group−prefixed−name;add−annotations (|annos)> propName
13 ; rIter := <set−annos > (VarRef(nIter), annos)
14 ; expr ′ := <alltd(\ Placeholder () → rIter\)> expr
15 ; pa ′ := <PropAssign(!rIter ,id)> pa

group−assignment−to−foreach: Assign(pa@PropAssign(ref ,propName),expr) →
ForEach(Parallel(), IterBounds(nIter ,range ,NoFilter ()), Assign(pa ′ ,expr ′ ))

3 where PropTy(elemKind ,_,_) := <get−type > propName
; reftype := <get−type > ref
; <?GraphTy () + ?CollTy(_,_,_) + ?HOCollTy(_,_)> reftype

6 with range := <group−assign−range > (ref , reftype , elemKind)
; nIter := <newname > propName
; expr ′ := <alltd(\ Placeholder () → VarRef(nIter)\)> expr

9 ; pa ′ := <PropAssign(!VarRef(nIter),id)> pa

Figure 5.12 – Transformation rule for turning group assignment into a parallel loop
with (top) and without (bottom) code to update the analysis information.

the type of iterator that the range yields and is kept in a separate NABL property (8).
The name for the iterator is created (12), and both the definition and reference (13)
are annotated with the properties that we have gathered. We replace the placeholder
and property assignment left-hand side with the iterator references (15), and use the
adapted expression and property assignment in the final result (2).

In the same figure, we also give the program with the analysis update code
stripped from it. This shows that for this transformation rule, the incremental update
requires a 67% increase in lines of code.

Read-write analysis. The read-write analysis is not based on the task engine. Be-
cause we wrote it directly in STRATEGO we have more control over when and where
we apply it. More importantly, it is a bottom-up analysis, at most the spine towards
the root of the AST has to be changed when we do a transformation somewhere in the
tree. And in fact, the transformations we apply do not affect the abstract read-write
information of the names that are subject to the transformation. We only introduce
new names inside new scopes, therefore those names are abstracted over in the
parent nodes of the transformed node.

We wrote our STRATEGO implementation so we can reapply the analysis on a
transformed AST where it reuses the results that are still cached on unchanged sub-
trees. This makes sure that we do not have to manually apply the read-write rules
in the transformation, as we have to do with the NABL and TS rules to preserve a
completely analysed program.
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Chapter 6

Related Work

In this chapter we describe the previous work on related subjects, namely GREEN-
MARL, formal static semantics of programming languages, language workbenches,
and static analyses.

6.1 GREEN-MARL

The GREEN-MARL graph analysis language was originally developed as part of the
PhD dissertation of Sungpack Hong [21]. Parts of this work were also published [23].
Now, the GREEN-MARL language is defined in a Language Specification. We formally
described the language based on version 0.6.2 [22]. The latest version that is online at
this time is 0.7.1 [24].

The language definition describes the GREEN-MARL’s purpose: easy develop-
ment of graph-data processing programs. It is intended to exploit modern, parallel
hardware. It does so by offering the user features to specify parallelism in algorithm
implementations. The language syntax is first described, with a formal BNF-like nota-
tion and accompanying text that describes identifiers, literals, and comments. Then,
through prose and examples, the basic language entities are described (procedures,
statements and expressions), and a short description of the scoping rules is given.
This description using prose text and examples continues as the type system, parallel
execution semantics, and miscellaneous details are described.

The dissertation and publication go into more detail and describe the compila-
tion process of GREEN-MARL to a parallel, shared-memory environment and to a
distributed environment. Checks and optimisations are described, again informally
with prose text and examples. A particular focus is the experimental evidence of
GREEN-MARL’s efficiency, where its simple algorithm implementations are faster
than manually optimised implementations in other programming languages. Our
work does not focus on the efficiency of programs compiled in the language. Instead
we describe the language in a structured, formal way.

6.2 Formal Static semantics

Specification of the formal static semantics of programming languages is a practice
with a long history. A prominent example is the definition of STANDARD ML [30],
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which describes that the design of the language, the formal definition, and the
implementation all influenced each other, and they cannot imagine that each of
them could have been properly when done separately.

Other languages, such as JAVA, gained a formal static semantics outside of the
definition. As a result, there are many lightweight versions of JAVA where the lan-
guage is reduced to enable rigorous arguments [12,16,34]. One example of such a static
semantics on a particularly small core is FEATHERWEIGHT JAVA [26], which is described
as: ‘Featherweight Java bears a similar relation to Java as the lambda-calculus does
to languages such as ML and Haskell.’ (p. 396) This example only formally describes
the static semantics of a small core of JAVA, but it still found a bug in the Generic
JAVA compiler [10] (the precursor of generics in JAVA 1.5). And, the authors argue, it has
been a useful tool clarify their thought.

We have experienced our formalisation efforts similarly. Describing the static
semantics of GREEN-MARL has added rigour to our understanding of the language,
and led us to ask after points where the language specification was unclear.

And yet, not all language designers are proponents of formally defined semantics
of programming languages. Hudak et al. argue that for HASKELL, the absence of a
formal definition allowed the language to evolve more easily, as the cost of updating
the formal specification of the language with every proposed change would be too
heavy and would discourage all changes [25] (p. 9).

We certainly understand the argument. In our experience, it is difficult to develop
a complete and correct formal specification of a programming language when it
is all written by hand. We imagine that automatic theorem provers could help the
development of both the first specification and any updates. We find it even more
promising that an executable, declarative meta-language such as the meta-languages
in Spoofax can derive formal specifications automatically [38]. We do believe there
is merit in the definition of a formal static semantics to clarify the meaning of the
programming language, regardless of whether that semantics is written, defined in a
theorem prover or derived from a declarative specification.

6.3 Language workbenches

We used the Spoofax language workbench for gm_spoofax, but there are many other
language workbenches [13]. We will focus on the following modern ones: XText [15],
MPS [27], and RASCAL [28]. Although RASCAL is not language workbench so much as
a meta-programming language, it is still capable of defining domain-specific lan-
guages.

Xtext [15] is a workbench for developing programming languages and is developed
as part of the Eclipse Modeling Framework project. It provides JAVA-like language
Xtend in which a type system can be implemented through low-level calculations,
but it also provides Xbase, Xsemantics [8] and XTS [40]. The comparison between these
options [9] shows that Xtend has the verbosity of a plain JAVA solution but can be
used to implement any type system. Xbase is well-suited for JAVA-like languages
that need tight integration with JAVA. Xbase gives the domain-specific language the
complete JAVA type system, which is very helpful if you need the JAVA type system, but
not otherwise. Xsemantics is an interesting domain-specific language for definition
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of both static and dynamic semantics that uses a syntax that is similar to formal
inference rules. This sounds like a promising way to implement the static semantics
of a programming language with virtually no gap between the specification and
implementation. We do wonder whether this system is truly capable of supporting all
rules that we use. If so, we might also use it to implement the read-write analysis of
GREEN-MARL. XTS is a domain-specific language specifically for type systems and is
therefore more concise than Xsemantics. However, it is also more specialised towards
standard object-oriented type system features, therefore the implementation of
GREEN-MARL’s type system would likely still involve a lot of JAVA code, connected
with XTS rules for simpler parts of the type system. Although XTS is a JAVA library
with domain-specific language, we expect that even the library will not be able to
support GREEN-MARL’s name-dependent types, therefore we cannot predict the
feasibility of implementing GREEN-MARL’s type system in XTS.

MPS [27] is a language workbench with a distinctive projectional editor. The type
system engine of the language workbench uses unification and allows the language
implementer to define type rules in the form of equations that should be solved [41].
This unification approach looks quite powerful, but we cannot ascertain how much
name and type information can be mixed in these equations. Even based on the
in-depth documentation1, we do not see features that would be able to model the
name-dependent types of GREEN-MARL. What we can see is that MPS’ built-in
support for data-flow analysis is not able to support GREEN-MARL’s tree-based,
symbolic read-write analysis. The built-in support for data-flow analysis requires a
translation of the domain-specific language to a simple intermediate representation
that consists of reads, writes, labels, jumps, and subroutines. It resembles a tiny
assembly language that abstracts over operations and only models sequential flow of
control.

RASCAL [28] is a domain-specific language for program analysis and transforma-
tion. It has a dedicated location type with literals, which is heavily used in its library
for code analysis M 3 [5], and a domain-specific language and library DCFlow for con-
structing control-flow graphs [20]. RASCAL has the term rewriting and generic traversals
that we know from STRATEGO but is also statically typed, supports types such as sets,
relations and locations, and has libraries tailored to static analyses. Based on this, we
consider the language very well-suited for a cleaner implementation of the read-write
analysis of GREEN-MARL. However, for the type system of GREEN-MARL, RASCAL does
not seem to offer anything close to the high-level specification of TS or Xsemantics. A
lower-level, more operational implementation of the type system is certainly feasible,
and likely to be less verbose than an implementation in JAVA, but would still be quite
involved.

6.4 Dependence analyses

The read-write analysis of GREEN-MARL is a form of dependence analysis. Or rather,
it gathers all knowledge that is required to calculate the dependence between state-
ments by simple set intersection. Dependence analysis is a well-established analysis,
there is even a full book on Optimising Compilers for Modern Architectures based

1https://confluence.jetbrains.com/display/MPSD30/Typesystem
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on dependence analysis [3]. The difference between the dependence analysis from
this book and that of GREEN-MARL is that symbolic analysis is not the focus of the
book. It is mentioned in small subsections in two places in the book, and most of
the work uses examples based on constant loop bounds. GREEN-MARL’s read-write
analysis on the other hand is completely symbolic, and abstracts over sub-statement
dependences.
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Chapter 7

Discussion

In this chapter we discuss the insights from this thesis, the remaining challenges,
and future work. We structure the chapter by our research questions.

RQ1. What is the static semantics of GREEN-MARL?

The type system chapter of the GREEN-MARL Language Specification [22] starts with
the sentence: ‘Green-Marl has a very simple type system.’ The formalisation in
this thesis tells a different story. We have standard type system features such as
parametrised types and overloading. We also have domain specific types that are
name-dependent and use a limited form of type inference. For each of these features
we looked for the underlying general principle from standard type theory, and how
we could combine it with the theory we needed for other features. Chapter 3 answers
this research question in full.

Interesting future work includes an extension of the type system to update to
GREEN-MARL version 0.7 [24]. That version introduces vector types. These vector types
are parametrised by type and by length, which makes them value-dependent types.

RQ2. How can the static semantics be declared in Spoofax?

Spoofax is language designer’s workbench, and aspires to be ‘a one-stop-shop for de-
velopment, implementation, and validation of language designs’ [38]. We have found
that this aspiration is not yet attained, given the gap between our formal rules for
GREEN-MARL and our implementation. Spoofax’s meta-languages for the specifica-
tion of name binding and type rules—NABL and TS—do provide us with a way to
declare the static semantics of GREEN-MARL, but they sometimes require inelegant
workarounds:

Two workarounds. One challenge is the inability for NABL and TS to handle return
types of procedures declaratively. Instead we apply rewrite rules before the analysis
phase. These rules propagate an artificial name to return statements to connect
the procedure declaration with the return statements. The formal rules simply pass
down the return type from the procedure declaration to the return statements, which
is not possible in NABL/TS.
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Another challenge comes from the name dependent types of GREEN-MARL,
where a type node(g) refers to graph g to which it belongs. We model the graph
reference in types as a separate NABL property. But this does not scale well to
parametrised types, where the type arguments can have different graph references.
That type needs two NABL properties to model the names in the name-dependent
types. Each of those properties needs duplicate rules to propagate the graph refer-
ences.

Scope graphs and constraints. We expect a more declarative approach within the
Spoofax ecosystem to come from the new Scope Graph [32] and type constraints [36]

work. The mix between names and types is an explicit topic in the latter work on type
constraints. We have done a preliminary investigation and are confident that this
approach can model GREEN-MARL’s type system.

For the return type situation, we could use a transformation to a scope graph
that mimics the formal rules, simply passing down the return type. However, this
hides the connection between the procedure return type and the return statement. If
instead of top-down passing of information, we find a way to put that connection
into the constraints during a bottom-up traversal of the program, that would help
with incremental analysis [14].

RQ3. What is the formal semantics of the dependence
analysis of GREEN-MARL?

The dependence analysis of GREEN-MARL, called the read-write analysis, is men-
tioned in publications [23], but not described in detail. Only examples with analysis
results are shown, where the meaning and use of the analysis results are explained.
Based on this information and the original implementation1 we reconstructed the
analysis.

We give a formal specification of the dependence analysis based on inference
rules. We purposely removed some of the features from the analysis to make the
formalisation easier to understand. Future work is a description of the extensions
that restore the original capabilities of the implementation.

More work that could be done in the future is the formalisation of additional
analyses from the gm_comp compiler. These can range from classic analyses, such as
Reaching Definitions, to language specific ones, such as finding nested breadth-
first searches, which are currently not supported and should therefore be statically
disallowed. A number of these smaller analyses are implemented but not formalised.

RQ4. How can this dependence analysis be declared in
Spoofax?

Spoofax has a term rewrite language called STRATEGO. Our compiler implementation
uses STRATEGO’s rewrite rules to implement the read-write analysis. The current

1Old open-source version: https://github.com/stanford-ppl/Green-Marl/blob/

4c0d62e67d431d535ca27140df60b25c234a808b/src/frontend/gm_rw_analysis.cc
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implementation is not closely related to the formal rules. We believe that a new
implementation in STRATEGO can come closer to the formal specification. However,
this does not solve how much more verbose STRATEGO is. A more domain-specific
meta-language for static analysis would be more appropriate, but since Spoofax lacks
such a meta-language, this is a future research topic.

The design goal of this meta-language would be a declarative approach to static
analyses. The ability to influence and be influenced by already available analyses for
name binding and types is an interesting feature. Scope graphs are quite powerful
because they can have this interaction with types. For this feature, the meta-language
should target a constraint based system. The Monotone Framework [33] for example,
is an interesting meta-language basis that could interact with constraint based scope
graphs and types.

Analysis driven optimisation. We only apply a loop merging optimisation to loops
that are consecutive in the program. Since not all loops are actually adjacent in
the program, we move all loops upwards as far as the dependences allow us, to
create more optimisation opportunities. This is a heuristic from gm_comp and can be
counter-productive in some cases.

Instead of this heuristic, we could think of this problem as a control-flow graph,
where we relax the strictly linear flow in a block of statements to the graph of depen-
dences that are found between the statements. With this graph, we should be able to
easily identify loops that do not have statements in between.

We did not implement this idea because time was short and STRATEGO is ori-
ented towards trees rather than graphs. An analysis driven specification language for
optimisations is interesting future work.

RQ5. How can analysis results be kept consistent after
transformations?

A recurring issue we found while implementing GREEN-MARL in Spoofax is the need
to manually update analysis information when applying transformations. Whether
these transformations were used for desugaring or optimisation, any change to the
abstract syntax tree could break the connection to the analysis results or invalidate
them.

Our approach is to manually patch the name and type information in our trans-
formations. We could not use the incremental task engine that backs NABL and TS.
That engine is meant for incremental changes by the user, which occur less frequently
than small transformation steps in the compiler.

Our STRATEGO implementation of the read-write analysis gave us much more
control over its evaluation. We used this control to make use of earlier analysis results
if those were available. This allows partial reuse of analysis results on transformed
programs, and prevents the analysis from polluting the transformations.

Our manual updates seems mechanical and very similar to the NABL and TS
rules. We suspect that for an easily analysable subset of STRATEGO, we could au-
tomate the patching of analysis results. With a more declarative approach to the
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read-write analysis, we consider this feasible for that analysis as well. This auto-
mated analysis consistency for intra-language transformations is another interesting
research avenue.
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Appendix A

Type system overview figures

This appendix contains summary figures of GREEN-MARL’s judgements, syntax,
semantic domains, and semantic type translation.

judgements

Γ ` e : τ well-typed expressions

τ,γ,Γ ` s well-formed statements

α,Γ ` er : τ well-typed references

τ,γ,Γ ` s : Γ′ variable and graph declarations

γ ` t ⇒ τ semantic type translation

ι,Γ ` i : Γ′ traversal iterators

Γ ` i : Γ′ loop iterators

Γ ` r : τ well-typed ranges

` u well-formed units

Γ ` p : Γ′ procedure declarations

Γ ` p well-formed procedure declarations

α,γ ` f : τ well-typed formal arguments

γ ` f : γ′ formal graph arguments

α,γ,Γ ` f : Γ′ formal argument names

Γ ` a : τ well-typed output arguments

γ ` t ⇒ τ translation of syntactic to semantic types

` τ ⇒ n graph reference extraction

Figure A.1 – GREEN-MARL judgements.
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syntax

u = p∗ compilation units
p = proc n ( f ∗; f ∗): t {s∗} procedure declarations

| proc n ( f ∗; f ∗){s∗}
f = n: t formal arguments
s = {s∗} block statements

| t n; local declaration
| n(e∗;a∗); procedure calls
| e.n(e∗); function calls
| return e; | return; return statements
| if(e) s else s conditional statements
| while(e) s | do s while(e);

| for i s sequential iteration
| foreach i s parallel iteration
| inDFS is s inPost(e) s depth-first searches
| inBFS is s inReverse(e) s breadth-first searches
| er <=e | er <=e @ n deferred assignments
| er ran e | er ra l e | er <e∗r > rac e <e∗> reduction assignments

i = (n:r)(e) iterator declarations
is = (n: n.nodes from n)(e)[e]

| (n: n .̂nodes from n)(e)[e] search iterators
r = n.nodes | n.edges | n .̂edges graph ranges

| n.inNbrs | n.outNbrs node ranges
| n.inEdges | n.outEdges

| n.upNbrs | n.downNbrs BFS iterator ranges
| n.upEdges | n.downEdges

| n.items | n .̂items collection ranges
ran = += | *= | rac numeric reduction assignments
rac = max= | min= comparison reduction assignments
ra l = &= | |= logic reduction assigments

e = er references
| n(e∗;a∗) procedure calls
| e.n (e∗ ) function calls
| +INF | −INF | li | lf numeric literals
| ls string and date literals
| true | false boolean literals
| NIL node/edge literal
| − e | |e| | e on e | (t) e numeric expressions
| e oc e | !e | e ol e | e ?e :e boolean expressions
| ron i {e } | ro l i {e } reduction expressions

on = + | − | * | / | % numeric operators
oc = < |<= | >= | > | oe comparison operators
oe = == | != equality operators
ol = && | || logic operators

ron = sum | product | max | min numeric reduction operators
ro l = any | all logic reduction operators

a = er | ai arguments
ai = # ignored arguments

n procedure, function, variable, property names
li integer literals
lf floating point literals
ls string and date literals

Figure A.2 – GREEN-MARL values.
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syntax

t = tv variable types
| tg graph property types

tv = graph graph type
| tp primitive types
| tm map types
| te graph elements
| tc | tcc collections

tm = map<t,t>

tg = N_P<td> | N_P<td>(n) node properties
| E_P<td> | E_P<td>(n) edge properties

td = tp | tc properties destinations
tp = tn numeric types

| string | date string and date types
| bool boolean type

tn = int | long | float | double
te = N | N(n) | E | E(n) graph elements
tc = N_S | N_S(n) | E_S | E_S(n) sets

| N_Q | N_Q(n) | E_Q | E_Q(n) sequences
| N_O | N_O(n) | E_O | E_O(n) orders

tcc = collection<tc> collections

semantic domains

γ = n∗ graph arguments
α = r | w access context
ι = s | b | c | n iterator context

τ̂ type variables
τ = void | graph(n) | τp semantic types

| τm | τe | τc | τcc | τg | τi
τp = tp
τn = tn
τm = map<τ,τ> maps
τe = N(n) | E(n) graph elements
τc = S<τe> | Q<τe> | O<τe> graph collections
τcc = Q<τc> collections
τg = P<τe,τ> graph properties
τf = F<τ,τ∗,τ> function type
τp = P<τ∗,τ∗,τ> procedure type
τi = I<ι,τe> iterator

τ̌ types with type variables
σ = τ | σf | σp semantic type schemes
σf = ∀ n∗, τ̂∗. τ̌f function signatures
σp = ∀ n∗, τ̂∗. τ̌p procedure signatures

Γ = Γv ×Γg ×Γp all environments
Γv = n →fin (τ×α) variables
Γg = n →fin n →fin (τ×α) graph properties
Γp = n →fin σp procedures

Γf = n →fin σf built-in functions

Figure A.3 – GREEN-MARL types and semantic domains.
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semantic type translation γ` t ⇒ τ

γ` tp ⇒ tp [sem-pt]

〈n 〉 ` N⇒ N(n) [n-i]

〈n 〉 ` E⇒ E(n) [e-i]

〈 . . . ,n, . . .〉 ` N(n)⇒ N(n) [sem-n]

〈 . . . ,n, . . .〉 ` E(n)⇒ E(n) [sem-e]

〈n 〉 ` N_S⇒ S<N(n)> [N-S-i]

〈n 〉 ` E_S⇒ S<E(n)> [E-S-i]

〈n 〉 ` N_Q⇒ Q<N(n)> [N-Q-i]

〈n 〉 ` E_Q⇒ Q<E(n)> [E-Q-i]

〈n 〉 ` N_O⇒ O<N(n)> [N-O-i]

〈n 〉 ` E_O⇒ O<E(n)> [E-O-i]

〈 . . . ,n, . . .〉 ` N_S(n)⇒ S<N(n)> [N-S]

〈 . . . ,n, . . .〉 ` E_S(n)⇒ S<E(n)> [E-S]

〈 . . . ,n, . . .〉 ` N_Q(n)⇒ Q<N(n)> [N-Q]

〈 . . . ,n, . . .〉 ` E_Q(n)⇒ Q<E(n)> [E-Q]

〈 . . . ,n, . . .〉 ` N_O(n)⇒ O<N(n)> [N-O]

〈 . . . ,n, . . .〉 ` E_O(n)⇒ O<E(n)> [E-O]

γ` tc ⇒ τc

γ` collection<tc>⇒ Q<τc>
[CC]

γ = 〈 . . . ,n, . . .〉 ∧ γ` tpc ⇒ τpc

γ` N_P<tpc>(n)⇒ P<N(n),τpc>
[n-p]

γ = 〈n 〉 ∧ γ` tpc ⇒ τpc

γ` N_P<tpc>⇒ P<N(n),τpc>
[n-p-i]

γ = 〈 . . . ,n, . . .〉 ∧ γ` tpc ⇒ τpc

γ` E_P<tpc>(n)⇒ P<E(n),τpc>
[e-p]

γ = 〈n 〉 ∧ γ` tpc ⇒ τpc

γ` E_P<tpc>⇒ P<E(n),τpc>
[e-p-i]

γ` tkv ⇒ τkv ∧ τkv 6= bool ∧ γ` t ′kv ⇒ τ′kv ∧ τ′kv 6= bool

γ` map<tkv,t ′kv>⇒ map<τkv,τ′kv>
[m]

Figure A.4 – GREEN-MARL type translations.
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