Measuring credit rating downgrade momentum

a study on parameter estimation methodologies for non-Markovian models

by

R.W.W. Sluijmer

To obtain a degree of Master of Science
at Delft University of Technology,
To be defended publicly on Friday February 11, 2022 at 15:00.

Student number: 4292685

Project duration:  from February 1 2021 to February 1 2022

Thesis committee: Dr. N. Parolya TU Delft, daily supervisor
Dr. A. Papapantoleon TU Delft

This thesis is confidential and cannot be made public until February 11, 2022.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

]
TU Delft



Abstract

In the pursue of accurately computing default probabilities of financial instruments, external credit ratings,
which are issued by credit rating agencies, have been commonly modelled by continuous-time Markov chains
[21] [22] |30]. The stochastic behaviour of these ratings, X, is driven by a generator matrix, @, which can be
approximated using either discrete and anonymous or continuous rating data. Parameter estimation method-
ologies for both types of data have been optimized in past literature allowing for confidence intervals in the
resulting default probabilities [21] [22] [30] [37]. As there is strong evidence of non-Markovian behaviour among
credit ratings with downgrade momentum being dominant, a new non-Markovian model is described in recent
research modelling this form of momentum [4] [10] [15] [21] [37] [40] |41] [43]. As opposed to past non-Markovian
models, recent research successfully captures momentum accumulating and decaying over time using a parsi-
monious model [9] [14] [15] [16] [22] [25] [36]. Recent research hypothesized that the parameters, 6, could
only be estimated by a Metropolis-Hastings algorithm avoiding complex first and/or second derivatives of the
loglikelihood, 1(0]|X), which required 8.5 hours of computational time [21]. This research has introduced a
new successful parameter estimation methodology according to a maximum likelihood estimator based (pro-
jected) Newton-Raphson method and explored several alternative models and estimators: a modified Markovian
model, heuristic estimator (based on Chapman-Kolmogorov equations) and discretized simulation [b] [24] [58].
The performances of the parameter estimation methodologies, alternative models and estimators were also
back-tested on simulated data using parameter estimations found in recent research 13| [19] [21]. Among the
alternative models and estimators, only the modified Markovian model has produced reasonable results by
approximating non-Markovian default probabilities. Applying a Markovian model based on realizations with
the same initial state and therefore similar momentum reduces the intertwining of ratings with significant or
none non-Markovian stochastic behaviour allowing for the Markovian model to be an appropriate model in the
setting of this research. The (projected) Newton-Raphson method has decreased computational time required
for parameter estimation of the non-Markovian model from 6 to 1 hour. Moreover, the maximum likelihood
estimator 6 according to the projected Newton-Raphson method is a strong initial guess for further parameter
estimations based on any sufficiently large subsamples of the realizations. This allows for computing confidence
intervals of the non-Markovian default probabilities via parametric bootstrapping as the parameter estimations
of subsamples require significantly less computational time. Further research can be done on the reduction of
the computational time required allowing for more precise confidence intervals of default probabilities per initial
state via parametric bootstrapping based on more subsamples. Also, the method for discretized simulation could
be reviewed investigating the possibility of disregarding certain simulated paths as their overall contribution
to default probabilities is negligible. Finally, model expansions incorporating correlation, upgrade momentum,
more granularity and business cycles can be considered in future non-Markovian models.
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1 Introduction

1.1 Probability of default

At the heart of pricing or measuring risk of any fi-
nancial instrument, e.g., companies’ equity, consumer
loans or complex derivatives, lies the computation of
its probability of default (PD) over time [56]. Any
participator in the financial market is exposed to some
form of such a (credit risk) assessment, however, in
the highly regulated banking industry correct credit
risk modelling is considered of vital importance [56].
During the global financial crises of ’07-’08, the signifi-
cance of accurate credit risk modelling was highlighted
and is currently emphasized by ongoing implementa-
tions of the revised Basel framework (Basel IV) and
reformed International Financial Reporting Standard
(IFRS-9) [3] [21]. These regulations demand computa-
tions of PDs for financial instruments over longer time
horizons, including their complete lifetimes, by banks
all over the world |21]. Besides an apparent demand
for more advanced mathematics, increasing data avail-
ability continues to drive research on further developed
methodologies in the financial market.

In general, there are two ways of determining PDs:
implied by current market valuations (risk-neutral) or
based on historical data (real-world) [3] [6] [21]. There
are various prominent credit risk methodologies using
historical data each with their own pros and cons from
a mathematical and economic point of view [3].

Definitions real-world and risk-neutral probability:
real-world (physical) PDs are based on historical data
and open to interpretation by various models [3] [6]|21],
where (unique) risk-neutral PDs are implied by cur-
rent market valuations under the (strong) assumptions
that markets are arbitrage-free and complete with the
relevant financial instruments being priced according
to an universal model [21] [47].

This research expands on past literature that focused
on computing real-world PDs based on widely used
external credit ratings [21].

1.2 External credit ratings

Credit ratings of financial instruments (hereinafter re-
ferred to as “ratings”) are labels used as (finite) categor-
ical measures that allow financial instruments to be or-
dered based on their PDs (or solvency in general) |21].
Ratings are externally issued by credit rating agencies
(CRAs) or internally by banks themselves according to
the Basel regulatory framework [21]. External ratings
belong to the most widely used credit risk method-
ologies for banks all over the world [3]. Prior to the
application by banks, CRAs have based these ratings
on proprietary models with a wide range of drivers,
e.g., environmental conditions, competitive positions,
management quality and financial strengths [3]. Banks
benefit from this as external ratings are ready to use,

while evolving from complex analyses by CRAs. These
ratings are, however, also considered as relative and
subjective measures, which are not continuously mon-
itored and therefore allowing for deviations from the
real underlying rating throughout time [3].

1.3 Credit rating transitions

Because of changing underlying drivers over time ac-
cording to the proprietary models of CRAs, external
ratings are dynamic [21]. The issuance of a different
rating for a financial instrument (by the same CRA) is
called a credit rating transition (hereinafter referred to
as a “transition”) [21]. Consequently, a finite number
of possible ratings create a discrete state space, S,
including a default state, h. Ratings of financial in-
struments make transitions between these states over
time, which naturally leads to the construction of a
continuous-time Markov chain model (CTMC). Ac-
cording to a CTMC model the Markovian property is
assumed, which implies that transition probabilities
are solely dependent on the current rating of a finan-
cial instrument [26].

Definition Markovian property: a stochastic process
(rating) is said to be Markovian (or satisfy the Marko-
vian property) if event probabilities (transitions) only
depend on its current state creating a Markov chain
[26]. Non-Markovian behaviour implies that past states
(ratings) influence current transition probabilities [21].

1.4 Downgrade momentum

Past literature has shown significant statistical pres-
ence of non-Markovian behaviour among ratings in
datasets of various CRAs and also identified economic
drivers for this phenomena [4] [10] [15] [21] [37] [40]
[41] [43]. Among different non-Markovian behaviours,
credit rating downgrade momentum (hereinafter re-
ferred to as “momentum”) is considered to be domi-
nant |21] [37]. Momentum implies that financial in-
struments, which have been downgraded in the past,
are increasingly likely to be downgraded further in the
future. It has been shown that this effect accumulates
and decays over time [15] [21]. This effect is claimed to
be less apparent for upgrades and therefore not further
researched [4] [15] [21]. Considering the highly reg-
ulated and increasingly prudent nature of the global
banking industry, it is essential to accurately incorpo-
rate momentum in credit risk modelling as past lit-
erature has shown its implications become more pro-
nounced over time and may significantly affect long-
term PDs [|15] [21] [56].

1.5 Literature study

Based on discrete and anonymous (missing) or con-
tinuous (full) external credit rating transition data,
various methodologies have been used to construct
CTMC models via maximum likelihood estimators
(MLE). The “classic” problem using missing data has



been thoroughly researched and optimized via the esti-
mation of a generator matrix, @, using an expectation-
maximization (EM) algorithm [7] [8] [21] |22] [30] [45]
[48]. Estimating @ via MLE using full data is rela-
tively straightforward [21] [30] [33] [37].

Past literature has also incorporated non-Markovian
behaviour of ratings using relatively less straightfor-
ward constructions like extended state spaces, mixture
models, hidden Markov models or semi-Markov mod-
els, focusing on momentum [9] [14] [16] [25] [36], but
failed to incorporate the accumulating behaviour de-
caying over time [15] [21]. Recent research is based on
exponential Hawkes marked point processes (EHMPP)
and successfully incorporated accumulating momen-
tum decaying over time, while allowing for granular-
ity in the momentum contribution per rating using a
parsimonious model |21]. Consequently, due to an in-
crease in model complexity (following recent research)
compared to classical CTMC models, there is an op-
portunity to back-test and possibly optimize current
parameter estimation methodologies. In addition, al-
ternative methodologies for computing PDs incorpo-
rating momentum to overcome certain computational
requirements can be explored.

In short, this report expands on recent research, which
describes a non-Markovian model incorporating mo-
mentum applied to credit ratings and is focused on the
following three topics [21]:

1. Back-testing current parameter estimation

methodologies on simulated data;

2. Introducing a new parameter estimation method-
ology focused on better performance with regards
to (i) robustness, (ii) accuracy and (iii) efficiency;

3. Exploring alternative methodologies for accu-
rately computing PDs incorporating momentum.

2 Theory

2.1 Markovian model

First, let X (¢) = {X(t,w) : [0,T] x @ — S} be a
right-continuous stochastic process defined on some
probability space (€2, F¢,P) taking on values in some
measurable finite state space (S, 3) over time horizon
[0,T] such that ¢t € [0,7] with T" € R*, F; the natural
filtration, S = {1,....,h}, ¥ = o(S) and h € N* under
the probability measure P : F; — [0,1]. X (¢) de-
scribes a rating with a defaulting possibility modelled
by a finite state CTMC with an absorption state, h
121] [22] [30]-

Second, assume X (t) satisfies the Markovian property
implying memorylessness such that the probability
measure, P, only depends on the current state of X ()
for any ¢ € S as follows [30] (5.2.1.1)

P(X(t + At) = i|F;) = P(X(t + At) = i| Xy)

Third, assume X (¢) is time-homogeneous implying P
is constant over time horizon [0,T] for any i,j € S,
At > 0 and t1,t2 € [0,T] such that t; + At,to + At €
[0,T] as follows [30] (5.2.1.2)

B(X(t1 + At) = jIX(t) = )
= P(X(tz + At) = | X (t2) = i)

Both assumptions are commonly used in past litera-
ture to describe CTMCs applied to ratings [30]. Con-
sequently, these assumptions imply that for any state
i € S the holding times, T}, are independent and iden-
tically distributed (IID) exponential random variables
with parameter ¢; > 0 as follows [30] [34] |39] [44] [52]
(5.2.1.3)

fr.(x) = qie™ "

such that the holding probability, P(T; > At), for any
At and t € [0,T] with ¢ + At € [0, is defined by [1]
(5.2.1.4)

P(T; > At) =P{X({#) =i:t € [t,t + At]}HX(t) = )
_ efint

Correspondingly, the number of transitions, N(At),

out of state ¢ € S over a time interval with length

At is Poisson distributed as follows [1] [27] [30] [54]

(5.2.1.4)

PN (ar) = ) = B30 g

such that the probability of a single transition out of
state i € S, P(X(t + At) = | X(¢t) # i), for any
t €10,7] and At > 0 with t + At € [0, 7] is defined by
[1] [30] [35] [44] (5.2.1.4)

P(X(t+At) il X(t) =) = Jim g:At+ O(A1)

Next, define the conditional transition probability pa-
rameters, g;j, by the following limit for any 4,5 € S
with j # 4 [30] [35] (5.2.1.5)

P(X(t+ At) = j|X(t) = 7)

R-‘r
At <

such that according to Bayesian theorem the condi-
tional transition probability, P(X (¢t + At) = j|X (¢t +
At) # i, X (t) = 1), is given by [30]

P(X(t+ At) = j|X(t+ At) # 4, X(t) = 1)

_ P(X(t+ At) = | X(0) =)
O P(X(t+ At) #4]X(0) = 4)
)

At—0 q; At + O(At)
_ %
qi

with O the big-O-notation [35]. Furthermore, as the
sum of all conditional transition probabilities, P(X (t +
At) = jIX(t + At) # i,X(t) = i), equals 1 for any
i€ S and j=1,.., h with j # 4, the conservation of



probability implies that ¢; and g;; are related as follows
130]

h h
Z %:1:Qi: Z qij

j=tizi 1 =Ly
such that the Markovian model is in summary defined

as follows for any i,j € S

e holding times, T;, in state ¢ are IID exponential
random variables with parameter ¢; > 0 [30]

e given a transition out of state i, the conditional

transition probability, P(X (¢t + At) = j|X(t +

At) # i, X(t) = i), to state j is given by %2 [30]

Subsequently, a stable conservative generator matrix,
Q € R"" can be constructed as follows [30]

—¢1 q12 Q13 qin
421 —q2 Q23 q2n
Q= q31 432 —(q3 q3h
qgn1  4n2  Gh3 —dqn

such that the following conditions for any i,j € S are
satisfied [30]

h
> i1q;=0
¢ 0< —Gi=¢q
e 0<gq; withi#j

Finally, given @ a transition probability matrix
(TPM), P € R"*" is defined by [1] [30] (5.2.1.6)

P(t,t + At) = lim I+ QAt+ O(At)

At—o0
such that @ and P are related for any t1,t2 € [0,7]
with t; = ta — n - At are related as follows

P(ti,t;) = lim (I + QAt)"

n—roo

hm (I+ Q tl

)"

— e (t2 t1)
with e’ = lim,, oo (I + )" an alternative definition of
the matrix exponential [21] [22] [30] |55].

2.2 Non-Markovian model

Following strong evidence of momentum in rating data
of various CRAs according to past literature [4] [10]
115] [21] [37] |40] [41] [43] recent research has described
a model using EHMPPs successfully capturing accu-
mulating momentum decaying over time [21].

First, the likelihood of a single MPP, L(\, f|X), for
X = X(T) over time horizon [0,7T] is defined by [17]
|18] [21]

N(T)
H )\ A(z)dz

L\ fIX) = F(Rnltn)e™ S0

with N(T') the total number of transitions, A(t) the in-
tensity, k,, a mark and f(k,|t,) the marks distribution.
Consequently, by setting A(t) as follows

h
= Z ]]'{X(tn)Zi}qi
i=1

with f(kn|tn) given by

zh: Lox =i x(th)=5} 9
qi

ij=1,j#i

f(Bnltn) =

and a ¢ — j transition at t,, marked by x, the Marko-
vian model is again defined [21] [30] (5.2.2.1).

Second, the intensity A(f) according to the non-
Markovian model is defined by an exponential Hawkes
process as follows [21]

ZIL{X(t) z}%"‘ Z ae Alt=7)

TeT(t)

with 7(¢) = {t : t € [0,£) A X(tT) > X (t)} the set of
past downgrade times up to t and « the magnitude of
the intensity impulse, which exponentially decays with
rate 8 over time. Making use of recursive patterns \(t)
is given by [21] [46] (5.2.2.2)

h—1
Atn) = Z Lix(t)=i1% + aRy

i=1

with the non-Markovian intensity contribution, aR,, =
aR(tr), defined by

aRp,=a(Rp—1+ ]l{X(tﬁ)>X(tn)})67ﬁ(tn7tn71)

for Ry = 0 and tg = 0.

Third, set f(kn|t,) as follows [21]

L x () =inx (t5) =5}
Altn)

h
ij=1,j#i

X <Qij +

f(“n|tn) =

Lot >x ()
G;

3 ae—ﬂ(tnw)

TET(tn)

with aR evenly added to the conditional downgrade
probability parameters ¢;; for any i,5 € S such that
7 >4 and thus G; = Zj>i 1¢4,,>0y satistying the con-
servation of probability and implying the loglikelihood,



1(Q,«a, B|X), is defined by [21] (5.2.2.3)
N(T) h
Q. B1X) = > 1og (D7 Lix, —inxi gy
n=1 ij=1
Lyt
X(t”)>X(tn)),R )
G; "
Th-1 h

—/0 gﬂ{xm—i}( > Qij)dx

j=1.j#i

+ «

N(T)
+ a( > Lx)>x ()
reT(T) n=1

_ RNe—ﬂ(T—m)

for T = min{{t : X(t) = h} AT} and N = N(T) as
there is no contribution to I[(Q, «, 5| X)) after a default
by making a transition to state h.

Consequently, the non-Markovian model is summa-
rized as follows for any 7,j € S

e holding times, T},

— in state ¢ are IID exponential random vari-
ables with baseline intensity ¢; > 0

— and at a downgrade intensity A(¢) > 0 in-
creases by an impulse of magnitude @ > 0

— with intensity impulses accumulating and
exponentially decaying with rate 5 > 0 over
time totalling the non-Markovian intensity
contribution a/R(t)

e conditional transition probabilities, P(X (¢t +

At) = jIX(t+ At) # 1, X (t) = 1),

— to state j given a transition out of state ¢
are defined by f% with baseline %4

i

— and aR(¢) is evenly added to conditional
downgrade probability parameters g;;

such that the following conditions similar to the Marko-
vian model are satisfied for any ,j € S [21]

° A(t) — Zj:Lj;éi At f(i—jlt)=0
0 0< —qu= 5 = Alt) — aR(1) < A()

o 0< gy < gy + LEZII=0 = X(6) f(i > 51
with ¢ #£ j

Finally, some granularity is added to support evidence
of momentum with different magnitudes and decay
rates when downgraded from investment- or specula-
tive grade ratings while maintaining a robust and par-
simonious model [15] [21]. Investment grades are con-
sidered safe ratings from state 1 to % for h =9 with
speculative grades being the other ratings up to the de-
fault state keeping the recursive patterns and loglikeli-
hood function in tact and leading to an adjustment of
R as follows [21] [46]

2
aRn:Z Z Qe Pm(tn=T7)

m=1rer,, (tn)

with m = 1,2 indicating investment- or speculative
grade parameter sets.

2.3 Parameter estimation
2.3.1 Markovian model
2.3.1.1 Exact maximum likelihood estimator

First, assume ratings are independent such that the
MLE @ for multiple realizations of X for any i,j € S
is defined by [21] [22] |30] |37] (5.2.3.1)

Ni; (T)
Ri(T

Gij =

~

with the number of ¢ — j transitions, INV;;(t), given by
[21] [22] [30] [37]

N
Nig(t) = 3 Vixa=inx(eh)=5)

n=1

and the summed holding times in state i, R;(T), is
defined by [21] [22] [30] [37]

t
R;i(t) = / Lix(p=iydt
0
both among all realizations.

Second, the Hessian of the loglikelihood H;(Q|X) has
only nonzero diagonal entries, which are non positive

as follows [21] [22] [30] [37] (5.2.3.1)

_UQIX) _ Ny(T)

(H(Q|X)) 1k o el <0

with k = h(i — 1) + j such that for any 1,142, j1j2 € S
and (i1,71) # (i2,J2) the off-diagonal entries are given
by [21] [22] [30] [37]

PUQX)
8%’1]‘1 aqigjz

implying the nonzero parameter set, V5, called the
allowed pairs is strictly concave and Q is unique. Fur-
thermore, no other estimator @ with @ # @Q attains
or exceeds this global maximum (log)likelihood [54].

Finally, as Q is diagonizable (almost surely) the corre-
sponding P is unique and cannot be attained by any
other estimator @ with Q # Q [29] [42] [54] (5.2.3.2).

2.3.1.2 Expectation-maximization algorithm

A “classic” problem in past literature has been to ob-
tain @ from missing rating data. For annualized data
described by a rating chain {X,,},>¢ the MLE for a



discrete P for any i,j € S is defined by [30] (5.2.3.3)

N
N;

(P)ij = pij =

with N;; the total number of ¢ — j transitions and
N; the number of ratings starting in state ¢ summed
over each year, however, this does not provide insight
in any continuous transition probability. This problem
has been optimized in recent research by the use of
an EM algorithm, which allows for efficient parame-
ter estimations of @ with known confidence intervals,
while solving both the embeddability and identification
problems [21] |22] [31].

As the field of missing rating data and Markovian mod-
els have been thoroughly researched and optimized the
methodologies and corresponding results are included
for comparison purposes, but are not part of the scope
of this research and therefore derivations have been
left out [21] [22].

2.3.1.3 The delta method

It is essential to determine how confidence intervals of
Q translate to P over time horizon [0, T] for both ex-
act MLE and the EM algorithm, which is possible by
the use of the delta method. A necessary condition
is a consistent MLE, which converges by definition in
probability to the true Q with asymptotic normality
according to the central limit theorem (CLT) as fol-
lows |21] [38]

ValQ - Q) 2 N (0, %)

with 3 the covariance matrix of Q Subsequently,
there are 2 necessary conditions for consistency in Q,
which are identifiability and irreducibility of the em-
bedded rating chain {X,, }n<o = {X (ts) }rn<o over time
horizon [0, 7] with transition times {t,}n<o. [49].

First, as for any realization X, Q does not allow for
nonzero entries, which not driving I(Q\X ) implying
that if for any ¢ € [0,7] Py = P, then Q; = Q, such
that the identifiability condition is satisfied. Addition-
ally, as for diagonizable Q (almost surely) the matrix
exponential is a one-to-one mapping the identifiabil-
ity condition is satisfied for any realization X by a
contrapositive [11] [31] [38]

Q1 #Q: = P #P,
Second, the embedded rating chain {X,, },<o is not ir-
reducible, due to the possibility of defaulting described
by absorption state, h. The definition of irreducibil-

ity is that state j is accessible from state i via some
m,n € NT steps such that

P(Xpan =j|Xn=19)=P(X,, =j|Xo=1) >0

for any ¢,j € S, which is trivially not the case for i = h
[53].

Finally, consistency of Q is assumed as in recent re-
search, however, for multiple independent realizations
of X it is also claimed that irreducibility is not a nec-
essary condition, allowing for the delta method such
that the confidence intervals of P for any ¢,j € S over
time horizon [0, 7] are defined by [2]| [21] [22] [38] |49]
(5.2.3.4) (5.2.3.5)

8pij (VQ7 t)

6V£2

0pi;(Vs, t)
(st

Var(pis (Vg, 1) = ) x (~H@Q)™)

with
pij(Vg:t) = (€9

2.3.2 Non-Markovian model
2.3.2.1 Metropolis-Hastings algorithm

Recent research applies a Metropolis-Hastings (MH) al-
gorithm avoiding complex first- and/or second deriva-
tives of the (log)likelihood to obtained the posterior
distribution f, (6| X) without computing any normal-
izing constant through Bayes formula as follows |21]

f(01X) o< L(X16) f4(6)
= L(X10) fv, (V) fa(é) f5(B)

with 6 = { Vo &, ﬁ} a flattened matrix representation
of all nonzero parameter estimators with index set I,

L(X0) the likelihood and f4(0) the prior distribu-
tions.

First, fVQ(VQ)7 fa(&) and f,é(ﬂ) are chosen, such

that they reflect prior knowledge on . Following re-
cent research, it is assumed that ratings initially have
no momentum, thus fyv, (Vg) is set equal to Vi of the
Markovian model [21].

Second, based on recent research fs(a&) and fg 1)
are defined by [21]

fala) oc exp(pg')

and

f(8) o exp(3)

with appropriate means pgs and Mg reflecting the prior

knowledge that &, ,@ > 0 and expected parameter val-
ues being neither near 0 or too large, which is possibly
supported by CRAs pursuing stability after any rating
transition and momentum being significantly present
for several years after a downgrade [15] [21] [40].

Third, parameter values ; for any i € I are drawn
one-at-a~-time from an unnormalized truncated normal
proposal distribution with an appropriate variance
o = le — 3 as follows [21]

9i,n+1 ~ N(ai,na 0')



with P(6; n+110in) = ¢(0in+1|0:r) the proposal distri-
bution and 6;,4+1 < 0 drawn again creating Monte
Carlo Markov chains (MCMCs) {6;,}n<o. As an
unnormalized truncated normal distribution remains

symmetrical the acceptance probability of every draw
is defined by |21]

('X‘GZ TL?O—L n

, 0in)m(0in)
1 1,71+1‘ 7,n 7,n
mln{ (X‘Hz n+1a07 7,m

G _
( 7 n|91 n+1)7r(9i,n+1) } B
(0s,

)¢

)¢
min{l (X[0:m, 0—in )7 (0in) }

(X‘al n+1, 0*1 n)ﬂ-( 7 n+1)

with @_; ,, the first ¢ — 1 parameters after n draws.
Drawing from a normal distribution and dismissing
0i nt1 < 0 is considered an appropriate sampling
method allowing for faster computations compared
to using exponential- or Gamma distributions as in
recent research [21] [50].

Fourth, GALN is set equal to the posterior mean of
the MCMCs after N = 1le3 iterations with 1e2 burn-in
minimizing the expected mean squared error (MSE)
similar to recent research |22] [32].

Finally, sufficient conditions for convergence of the
MCMCs to the unique posterior distributions of 0 are
m-irreducibility and aperiodicity [12] [51] (5.2.4.1). A
sufficient condition for m-irreducibility is that for any
x,y € supp(¢) drawing y after = has a positive proba-
bility, such that ¢(y, ) > 0, which is trivially satisfied
for ¢ ~ N an unnormalized truncated normal distribu-
tion [51]. Next, a sufficient condition for aperiodicity
is that MCMCs can remain in the same state after
an iteration, such that P(6; ,41 = 6;,) > 0, which is
trivially true in case of rejecting a proposed parameter
value |51]. The rate of convergence for MH algorithms
is a classic problem on which no further research is
done. Current literature does not provide a general
framework to determine the rate of convergence of the
MH algorithms also applicable to complex settings |57].

2.3.2.2 Projected Newton-Raphson method

First, the Newton-Raphson (NR) method is an iter-
ative root finding method used to maximize the log-
likelihood /(@) by finding the (local) root of the partial
derivatives such that VI(0) = 0. For a one-dimensional
loglikelihood function f : R — [0, 1] the NR method is
defined by [5] (5.2.4.2)

f'(zn)
7 (zn)

implying quadratic convergence and an error propaga-
tion as follows [5] [58] (5.2.4.2)

enf" (&)
2" (wn)

with &, between z, and the root z,. An upper bound
for the error ¢, is defined by [5] [58] (5.2.4.2)

Tpn+1 = Tn —

€nt1 =

1
En+1 = §M€i

with

1" )‘
M=ol )
Second, the NR method can be expanded in general
to a multidimensional setting of 1(6|X), however,
D31(0|X) with D a difference operator cannot be
attained, due to the complexity [(6|X) and the size
of the parameter space ® implying the upper bound
for the error propagation cannot be computed [5] [58]
(5.2.4.2).

Third, overall sufficient condition for the existence
of a MLE is compactness of the parameter space ©
on which 1(6|X) is continuous [28]. Furthermore, 6
is unique, such that every local maximum is a global
maximum, if © or I(0]X) is concave [54]. (0|X)
is concave in Q and &, however, not in ﬁ implying
that there might exist multiple stationary points for
different values of 8, which do not attain the global
maximum of /(0| X) possibly causing incorrect conver-
gence (5.2.4.3). Sufficient conditions for convergence
of the projected NR method are as follows [5] [58]

1. V3(0|X) # 0 for any 8 > O
2. D31(0|X) # 0 is continuous almost everywhere
onf >0
3. 6y is sufficiently close to the root VI(6,|X) =0
with risks of incorrect convergence possibly caused by
15 58]
e Multiple stationary points

e Iteration cycles

e Poor initial guess

which can be mitigated by setting an upper bound of
2el iterations, where after a new attempts is done. 6o
is similarly chosen according to the prior distributions
used in the MH algorithm.

Fourth, to force 0 > 0, 0 is projected on © as fol-
lows
argmin||6;.,, — O]
6co

for any i € I and n > 0 with ||6;,, — O]
|0i,n - 5e — 5.
Now, 2el initial guesses of 8y are done to increase the
probability of convergence, where after the attempt
with the highest likelihood is considered as the 6.

{[d,00)}| for some small enough § =

Finally, 2 stopping criteria are defined by the following
conditions
€ > 10,11 — 0,
and
€ > ||Vi(0,41]X) — VI, X))

with € = le — 2 such that the projected NR method
should stop when close to 0,., but continuous in case
of a steep VI(0]X) far from being optimized.



2.3.2.3 The delta method

Assuming 0 is consistent, a closed form expression for
pij(é,t) is required to allow for the delta method to
be applied in the non-Markovian model. Now, a closed
form expression for p;; (6,t) over time horizon [0, T for
any 4,7 € S considers an incountably infinite number
of possible realizations from state i at time 0 to state
j at time T'. A path dependent closed form expression
for pij(é,T) is required to properly incorporate mo-
mentum as its contributions differs per realization. An
attempt is to consider all possible realizations in state 4
and j at times 0 and T respectively with an increasing
number of n transitionsover time horizon [0, T]. Com-
pact notation of a path dependent closed form expres-
sion of p;; (é,T) might allow for an expansion to the
non-Markovian model. Next, considering the Marko-
vian model with @ € R3*% and ¢;; = ¢ € R for any
i,7 € S =1{1,2,3} with j # ¢ the summed probabil-
ity of each possible realization from state 1 at time 0
to state 3 at time T is defined by p13(T) as follows
(5.2.4.4)

p13(T e 21 dy
(n— 1

=i, Z /
Unfortunately, the closed form expression for pi3(7T)
according to the Markovian model indicates that ap-
plying an empirical generator matrix Q with ¢;,5, #
Qirj, for any i1,i2,j2,jo € S. The same holds for
adding momentum as the probability of the embedded
rating chain {1,2, 3} is defined as follows

P({1,2,3}) = // q(q + aePlt2=t))

2(q+aePltz—t1)(t2— f1))dt dt
1402

which does not allow for a compact formulation similar
to the Markovian model.

2.3.2.4 Modified thinning simulation

First, as in recent research, P over time horizon [0, 7T
according to the non-Markovian model is empirically
approximated by the use of modified thinning simu-
lation [13] [19] [21] |46] (5.2.4.5). Modified thinning
allows for independent exact simulation of the under-
lying exponential Hawkes processes A(t) and thus of
X (t) [13] [19] [21] [46] (5.2.4.5). Independent and exact
simulation is used to approximate P over time horizon
[0,T] focusing on the PD for any initial state i € S
according the strong law of large numbers (SLLN) as
follows [20] [21]

P(X(t) = h|X (0 ) = i) = E[1{x()=hrx(0)=i}]

]\}gnoo N Z Lix, (t)=hnX, (0)=i}

P is assumed to be sufficiently approximated by 1le6
ratings.

Second, modified thinning simulation allows for the
construction of confidence intervals of P via para-
metric bootstrapping. Assuming all available rating
data resembles an entire population, then parametric
bootstrapping entails point estimates of P based on
subsamples drawn from the population with replace-
ment [23]. As the point estimates of P converge to a
normal distribution according to the CLT confidence
intervals can be constructed [23]. Setting the size of
the subsamples to the same order of magnitude as
the entire population X and drawing lel subsamples
might be considered sufficient to properly approximate
the confidence intervals of P.

Finally, modified thinning simulation is used to gener-
ate rating data to back-test the performance of differ-
ent parameter estimation methodologies in the (non-
)Markovian models.

2.4 Alternative methodologies
2.4.1 Chapman-Kolmogorov equations

First, time-inhomogeneous Chapman-Kolmogorov for-
ward, which are similar to backward-, equations are
defined as follows [24]

OP(t)
at

=P@)Q(1)
with
P0) =1,

and might be considered to approximate P according
to the non-Markovian model in combination with nu-
merical integration |24] (5.2.5.1).

Second, an attempt is to define the expected inten-
sity, E[A;(t)], for any ¢ € S, which subsequently fully
defines Q. Unfortunately, this leads to complex com-
putations as for any i € S, E[\;(t)] is approximated by
the intensities \; of uncountably infinite possible real-
izations in state ¢ at time ¢, weighted by the probability
according to the non-Markovian model. Furthermore,
applying E[A;(¢)] implies a strong assumption of lin-
earity as follows [52]

for any probability function f : (0,00) — [0, 1], which
is trivially incorrect for the underlying exponential
Hawkes process.

Third, the incorrectness of the strong assumption of
linearity is ignored and the non-Markovian model is
adjusted according to the strong, but reasonable as-
sumptions that momentum disappears after an up-
grade and that for any realization defaulting over time
horizon [0, T'] will do so by consecutive downgrades re-
ferred to as the heuristic estimator. This implies that
for ratings in state 1 at time 0 that E[A1(¢)] = A1(2),



which in turn fully defines E[A\y(¢)]. E[X2(t)] is now
defined as follows

t —
E[X2(1)] = g2 + (%) X t X /0 qle_lhtale—ﬂl(t—f)df

A general consequence is that Ay(t) is defined by the
baseline intensity g2 and non-Markovian contribution
of a 1 — 2 transition before time ¢ weighted by its
probability. Similarly, for ratings in state 1 at time 0,
As3(t) is defined as follows

E[/\zz(t)] = g3

t —
+ 83 i / e ageP1=Dgg
Q1 0
Go3 + 7712\,(;)

q3 + 2
t —
X / (g2 +’yg(ﬂ)e*(qz#fz(f))talefﬁl(t*t_)d[
0

X t

with
%) =EN@)] — @

such that in general for any ¢ € S with 11 (¢t) = 0,
E[A;(¢)] is given by

J i
E(XN] = E —_—
A) qi + (1)

i=1

t —
></ (g +i(F))e (@it @)t
0
X ame P =D qf

for m = 154 + 1.

2.4.2 Discretized simulation

To overcome the computational requirements for com-
puting P with confidence intervals via modified thin-
ning simulation an attempt is made to use linear ap-
proximations with small enough discretized timesteps
At similar to the Markovian model as follows

ta *tl)n

for some tq,ty € [O, T] with nAt =ty —t; and n € NT.
Unfortunately, this this method cannot directly be ap-
plied to the non-Markovian model, which is demon-
strated for the embedded rating chains {1,1,1,3} and
{1,2,1, 3} as follows

P(thtg) ~ (I+Q

P({1,1,1,3}) = (1 — ¢At) x (1 — gAt) x (qAt)
and
P({1,2,1,3}) = (qAt) x (qAt) x ((q + ce P20 At)

with ¢;; = ¢ for any 4,j € S, implying (Q)13 should
take on the 2 different values ¢ and ¢ + ae P2 to
approximate the probability of both embedded rating
chains correctly.

Now, an attempt is to create an iterative algorithm
properly incorporating momentum for m = 1, thus
not differentiating between investment- or speculative
grade ratings, with Q € R3*3, o, 8 > 0, T € R and
N € Nt defined by pseudo-code as follows

Input: Q, o, 5, T, N
1 Initialize ¥; = 0 € R3*3;
®, =0 c R¥>3;
Uy = Ql,d ce PRt ¢ R3%3;
Py = Qra-e 2 @ Noay € R
2 Set At =T/N
3forn=3,..N
5  Set Qn=Qn-1x (Qe A +Qy)
4 Set ®,, = Q,, ® Ny ar+
(Ql,u X Qﬁig X Qd) : 676At ®Na,At+
(I’nfl X Q+
@n—l . e—(n—l)BAt & Na,At

for
R 1—q At g2t qisAt
Q= ¢@At 1—-g@At g3At
0 0 0

with Qu the upper triangular matrix of Q including
the main diagonal resembling non-downgrade transi-
tions and Q the lower triangular matrix of Q exclud-
ing the main diagonal resembling downgrades. QAl,u
and Ql,d are constructed similarly, but only include
nonzero entries on the first row describing the initial
state 1 and for any M € R3*3 (5.2.5.2)

-1, L7,
M X Na,At = 0 71 — TQ
0 0

Ly
ﬁ 2
2 T,

+
_l’_
0

with

for any 7 € {1,2} with (P(n - At))13 = ((Is +
QAN )13 + (X7 ®,)13 for some ®,, € R3*3.

The rationale behind the algorithm is that @ incor-
porates non-Markovian intensity contributions for ev-
ery possible embedded rating chain weighted by its
probability, however, many complex cross products
have to be considered for properly simulating the non-
Markovian model in this manner. For n = 1,2,3,4,
®,, is demonstrated by writing out the non-Markovian
intensity contributions for all possible embedded rating
chains weighted by their probability (5.2.5.2). Unfor-
tunately, this iterative algorithm does not properly
incorporate the momentum, therefore not correctly
approximate P for small enough timestep At.

2.4.3 Modified Markovian model

The modified Markovian model over time horizon
[0,T] is defined by the Markovian model applied



to realizations with the same initial state such that
X' ={X(t): X(0) =iAt €[0,T]} for any i € S.
Subsequently, using exact MLE and the delta method
the corresponding Q' and modified P! are approx-
imated with confidence intervals for any ¢ € S. It
is hypothesized that the modified Markovian model
might sufficiently incorporate momentum and result
into a better approximation of P compared to the
Markovian model. The rationale behind this model is
that, in short, separating realizations based on their
initial state ¢ € S as for X; minimizes the intertwining
(non-)Markovian behaviour.

The intertwining of (non-)Markovian behaviour can
be demonstrated by only considering realizations with
initial state, e.g., 1, such that X! = {X(¢) : X(0) =
1At e [0,T]}. Similar to Q@ € R?%? according to the
Markovian model, the nonzero entry, by assumption,
qiy of Q! is driven by the total number of 8 — 9 tran-
sitions, Ngg(T'), and summed holding times R{(T) in
state 8 among all realizations over time horizon [0, 7
[21] [37] |30] |22]. Any realization X € X! making the
8 — 9 transition over time horizon [0, 7] it most likely
has been downgraded several times and at least once,
based on common empirical generator matrices Q [21]
[37] 130] [22]. If all realizations X € X! making the
8 — 9 transition somewhere over time horizon [0, 7]
have similar momentum, then g3 is solely based on re-
alizations with comparable stochastic behaviour. Next,
consider ¢gg based on realizations with initial states 1
or 8 such that X € X' U X8. Now, §gg is again de-
fined by the number of 8 — 9 transitions, Ngg(7'), and
the summed holding times in state 8, Rg(7T), among
all ratings over time horizon [0,7] which are driven
by realizations with most likely significant momen-
tum starting in state 1 or none starting in state 8.
Reducing this spread in stochastic behaviour might
improve the performance of approximating P incorpo-
rating momentum significantly using a straightforward
(modified) Markovian model allowing for confidence
intervals.

The ability of the modified Markovian model to prop-
erly incorporate momentum can be mathematically
demonstrated. Considering realizations X € X! mak-
ing the 8 — 9 transition somewhere over time horizon
[O,T]. Let t1,t5 € [O,T] with t; < to and At =ty — t1
and make the reasonable assumption that all realiza-
tions X € X! in state 8 at time ¢; have underlying
intensity similar to S\(t) This assumption can be con-
sidered reasonable as any realization X € X' most
likely has significant accumulated momentum when
making a transition to state 8 driving shorter hold-
ing times with lower probability that momentum has
decayed before leaving state 8 again. Also, ratings
are empirically most likely to get downgraded 1 or 2
states at once implying that the accumulated momen-
tum for any realization X € X! in state 8 is indeed

comparable [21] [37] [30] |22]. Now, by setting

to R
g5 = / Ayt
t

1

and given A(t)

qgy = f(8 — 9|5\(t1)7t1>

then P(X(t2) = 9|X(t1) = 8) is approximated for
fixed to by e 9Atggg for any X € X'. As realiza-
tions X € X' most likely have significant momen-
tum in state 8, the holding times 73 are expected
to be relatively short. Relative short holding times,
Ty, imply a relative small spread as the variance is
inversely proportional to 5\(15) such that ¢g and ggg
become even more reasonable approximations. In gen-
eral, the higher the expected momentum and thus
A(t1) the lower the variance among T} for any i € S,
which allows the modified Markovian model to be an
appropriate estimator at any time ¢ € [0,7]. If the
expected momentum A(t) for any state i € S at any
time t € [0,7] is low, then a (modified) Markovian
model is an appropriate estimator in the first place.

Finally, the first disadvantage of the modified Marko-
vian model is that the X? for any i € S is a subset
of X and thus smaller implying larger confidence in-
tervals of P. Furthermore, a second disadvantage is
that all realizations X € X° for any ¢ € S have no
momentum by assumption, which might be considered
a strong assumption and decreases the size of of the
rating data set even further by disallowing realizations
recently downgraded.

3 Results

3.1 DModified thinning simulation

The input for the modified thinning simulation is cho-
sen similar to recent research with h = 9 and thus
S = {1,...,9} with initial number of ratings per state
as follows

413 1313 2232 2318 2021 4504 1333 59

such that corresponding labels of the ratings are de-
fiend by [21]

Aaa Aa A Baa Ba B Caa Ca D

Non-Markovian momentum parameters o, 3 € R*2
are given by

a= (310 12.91) x107?
B = (352.34 170.95) x 1072



and the generator matrix @ € R*? is as follows

Q=

—8.69  8.36 0.31 0 0.02
1.17 —10.88 9.42 0.25 0.03
0.06 2.40 —9.38 6.66 0.17
0.02 0.16 3.87 —947 4.96
0.01 0.06 0.33 6.36 —17.74
0 0.03 0.12 0.35 5.03

0 0.02 0.01 0.13 0.48

0 0 0.18 0.29 0.50

0 0 0 0 0

0 0 0 0

0.01 0 0 0

0.07 0.02 0 0

0.40 0.06 0 0

10.60 0.37 0.01 0

—16.10 10.12 0.40 0.04

10.28 —19.76  6.22  2.61

4.47 13.46 —28.38 9.48

0 0 0 0

x 1072

resulting in the independent and exact simulation of
14,193 realizations according to the non-Markovian
model over time horizon [0, 7] with 7' = 30 using mod-
ified thinning as is demonstrated in figure 1.

Ba t

Credit rating

I L |
129 229 268 300

Time (years)

I
0.0 3.5

Figure 1: Simulation of randomly chosen realization ac-
cording to the non-Markovian model over time horizon
[0, T'] using modified thinning with h = 9 and T' = 30.

To confirm that the momentum is properly incorpo-
rated by the modified thinning simulation, T; can be
compared to the expected truncated exponential dis-
tribution for any ¢ € S according to the Markovian
model solely based on @ as is shown in figure 2.

0.14

[ Histogram

Truncated exponential distribution

0.12

=

0.08 a = [0.031, 0.1291]
A = [3.5234, 1.7095)

q: = 0.0047

0.06

Probability density

0.04

0 5 10 15 20 25 30
Holding time (years)

Figure 2: Distribution of T, according to the non-
Markovian model with expected truncated exponential
distribution solely based on g4 > 0 according to the
Markovian model.

In figure 2, T} is shifted towards shorter holding times
compared to the expected truncated exponential distri-
bution with g4 > 0 according to the Markovian model.
Momentum drives a decrease in holding times, there-
fore figure 2 is according to the expected behaviour of
the non-Markovian model.

The modified thinning simulation algorithm with re-
jected or accepted (thinned) proposed holding times
based on the intensity A(t), local maximum intensity
A(t) and u ~ U(0,1) is demonstrated in figure 3.

1.0

— — — - Local maximum intensity, A
Intensity, A

A Acceptance, Au < A

0.8 | x  Rejection, Az A

0.9

Intensity

0.3} T x
g2

0.1 -

0.0 .
0.0 3.5

L | I |
129 186 229 268 300

Time (years)

Figure 3: Simulation of A(¢) for randomly chosen real-
ization (corresponding to figure 1) with demonstrated
rejection or acceptance of proposed holding times based
on A(t), local maximum intensity A(¢) and u ~ U(0, 1)
according to the non-Markovian model over time hori-
zon [0, 7] using modified thinning.

The duration of modified thinning simulation accord-
ing to the Markovian model for the described setting
is ~ 5 seconds.
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3.2 Markovian model

3.2.1 Exact maximum likelihood estimator

By means of the exact MLE according to the Marko-
vian model the following generator matrix Q; € R*?
is computed

Q1=
—8.55  8.25 0.30 0 0
1.15  —10.97 9.50 0.28 0.03
0.05 236 —9.38 6.70 0.18
0.01 0.14 3.80 -9.36  4.87
0.01 0.08 0.34 6.42 —18.06
0 0.02 0.11 0.37 5.04
0 0.01 0 0.15 0.47
0 0 0.20 0.28 0.55
0 0 0 0 0
0 0 0 0
0.02 0 0 0
0.07 0.03 0 0
0.39 0.07 0 0
10.81 0.37 0.03 0
—16.63 10.37 0.54 0.19
10.46 —21.43  6.97 3.36
4.34 13.39 —30.42 11.67
0 0 0 0
x 1072

which in itself does not provide any insight as the mo-
mentum parameters are left out, however, P (t) = et
can be compared to a sufficient approximation of P us-
ing modified thinning simulation with 1e6 realizations.
This comparison is made together with I:’g, 1-:’37 134,
Py and P; according to the EM algorithm, modified
Markovian model and modified thinning simulation
following parameter estimations via the MH algorithm
and projected NR method in figure 9.

The duration of exact maximum likelihood estimator
according to the Markovian model for the described
setting is ~ 1 minute.

3.2.2 Expectation-maximization algorithm

The duration of the EM algorithm according to the
Markovian model is ~ 3 minutes for the described set-
ting with the stopping criteria e = 1le—9 chosen similar
to recent research and is applied to missing data [48|
121] [22].

By means of the MLE via the EM algorithm according
to the Markovian model the following generator matrix

Q- € R%*? is computed

Q2=

—8.43 816  0.27 0 0
1.13  —11.04 953 028  0.05
0.04 239 —-9.38 6.67 0.19
001 014 38 —9.33 483
001 008 039 6.39 —18.03
0 0.02 011 036  5.05
0 0.02 0 0.17 0.4
0 08 0.20  0.25  0.60
0 0 0 0 0
0 0 0 0
0.05 0 0 0
0.05 0.02 0 0
0.40 0.06 0 0
10.45  0.52 0.18 0
-16.39  9.85 0.56  0.45
10.46  —20.80 6.52  3.19
4.18 13.66 —29.33 10.44
0 0 0 0

x 1072

which again does not provide any insight, however,
Pg(t) = %! is compared to a sufficient approxima-
tion of P using modified thinning simulation with 1e6
realizations in figure 9. It is noticeable that Ql and
Qg are similar with the largest deviation in parameter
entries < 1.le — 2 therefore expecting to translate in
similar 131 and 132.

3.3 Non-Markovian model

3.3.1 Metropolis-Hastings algorithm

The MH algorithm is demonstrated in figure 4 by plot-
ting the MCMCs of &3 and ,5’3 with corresponding
posterior distribution, posterior mean and real mod-
ified thinning simulation input. In figure 12 and 13
(5.1) the MH algorithm is demonstrated similarly for

Qs (5.1).

The duration of the MH algorithm according to the
non-Markovian model is ~ 6 hours for the described
setting with most importantly 1le3 iterations, le2 burn-
in, pa = [0.1; 1] and pg = [10; 1].

By setting 03 equal to the posterior means of {0n}n>0
the MSE is minimized after applying the MH algorithm
according to the non-Markovian model. The following
non-Markovian momentum parameters &g, 85 € R1%2
are computed

a3 = (1.95 12.26) x 1072
B; = (338.84 181.06) x 1072

11



and the generator matrix Q3 € R?*9 is computed

Qs =

—8.49  8.17 0.32 0 0
1.15 —-10.95 9.48 0.28 0.03
0.05 236 —9.35 6.68 0.17
0.01 0.14 3.89 —9.35 4.87
0.01 0.08 0.34 6.43 —18.01
0 0.02 0.11 0.37 5.03

0 0.02 0.01 0.15 0.47

0 0 0.21 0.28 0.55

0 0 0 0

0 0 0 0

0.02 0 0 0

0.06 0.02 0 0

0.38 0.07 0 0

10.79 0.34 0.18 0

—16.19 10.23 0.39 0.04

10.44 —20.23 6.42 2.71

4.33 13.40 —28.39 9.61

0 0 0 0

x 1072

3.3.2 Projected Newton-Raphson method

By means of the MLE via the projected NR method ac-
cording to the non-Marovian model the following gen-
erator matrix Q4 € R%*? is computed

Qi =

—8.55  8.25 0.30 0 0
1.15 —10.97 9.50 0.28 0.02
0.05 236 —9.35 6.69 0.17
0.01 0.14 3.80 -9.33 4.86
0.01 0.08 0.34 642 —17.99
0 0.02 0.11 0.37 5.04

0 0.01 0.01 0.15 0.47

0 0 0.20 0.28 0.55

0 0 0 0

0 0 0 0

0.02 0 0 0

0.06 0.02 0 0

0.38 0.06 0 0

10.79 0.34 0.01 0

—16.19 10.22 0.39 0.04

10.46 —20.27 6.43 2.73

4.34 13.39 —28.36 9.60

0 0 0 0

x 1072

and non-Markovian momentum parameters &4, 34 €
R'%2 are computed

ay = (227 13.48) x 1072
B1 = (340.56 205.37) x 1072

after 9 iterations by the selected attempt leading to
the MLE, however, this attempt by the projected NR
method already seemed to have converged sufficiently
after approximately 5 iterations as demonstrated in

table 1 and figure 5. The second stopping criteria
€ > Vi(0,41|X) — Vi(6,|X) might not be satis-
fied after 5 iterations if the absolute partial deriva-
tive |VI(0,|X)| > 1 in some dimension i € I, im-
plying Vi(0,11|X) — VI(6,|X) will decrease slower
than |0,,41 — 6, demanding more iterations even if
near 6, already. The projected NR method is demon-
strated in figure 6 by plotting the iterative values of
d4,[§4 € R'x2,

The duration of the projected NR method accord-
ing to the non-Markovian model is ~ 1 hour for the
described setting with le2 initial guesses for 9470 with
a maximum number of iterations of le2, a stopping
criteria of € = le — 2 and § = 5e — 5.

X
206 F
2061 |
2062 | /
2063 | /
2064

2,065 | f

Loglikelihood

-2.066 -
/
-2.067 -/

-2.068 /,-“

/
-2.069 7‘

-1
o L

3 1 5 6
# of iterations

0 1

Figure 5: (6] X) of selected attempt during projected
NR method with 1e2 initial guesses for 0A470 with a max-
imum number of iterations of le2, a stopping criteria
of e =1e—2 and § = 5e — 5.

First, in figure 6 clear convergence to the neighbour-
hood of a and 3 is shown, however, not precisely. Pre-
cision might be influenced by size of the rating data set,
which might be supported by improved estimations of
P by P, using datasets of different sizes in figure 11
(5.1). Adding granularity to the non-Markovian model
by making a distinction between investment- and spec-
ulative grade might ratings decrease the precision as
there is relatively less rating data per estimated in ..

Second, in figure 6, the iterative values of &4 and [34 do
not monotonically converge to the roots é,., 3, € R1*2
which should be the case for a fully concave loglikeli-
hood function. This behaviour might be caused by a
complex (6, X) with multiple roots.

Third, in figure 7, 90% confidence intervals of P, are
shown for lel parameter estimations from subsamples
of le4 realizations via parametric bootstrapping and
sufficiently approximated by 1le6 ratings. One clear
outlier might be caused by the projected NR method
converging to a stationary point not equal to the global
maximum, therefore also demonstrating the weakness
of this parameter estimation methodology.

12
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Figure 4: MCMCs and corresponding posterior distribution, posterior mean and modified thinning simulation
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input of &s, ,33 during the MH algorithm for 1e3 iterations with 1e2 burn-in.

Table 1: d470,,8A470, Au, B, 1(6|X) and number of step

L
160

180

200

ay g
. . . . . . 0.14
before satisfying the stopping criteria with € = le — 2 _— ]
. e . . . o ey 0.12
or attaining 20 iterations during le2 initial guesses for
. . . 0.025
0y during the projected NR method according to the g o
non-Markovian model with 1e2 initial guesses for 64, Eom a0 i
- Fstimated value
a maximum number of iterations of 1e2, a stopping cri- ﬁnm L0 Simulation input
.015
teria of e = le — 2 and § = He — 5.. E 01 23 456789 01 234567829
o
CES) ; I A2
&g, B &y, B
| xile 2 | xle -2 | X 1le3 | Steps ,E 35 — 2 —

9.13,3.92] [17.80¢6, 0.01] g
[462.48, 147.15] [10.30e8. 0.01] —206.35 20 g 4 15

[28.23, 9.41] [0.01, 0.01]

[1255.80, 115.60] [5.89¢4, 0.01] —206.70 20 = 1

[3.72,4.58] [93.38e5, 0.01] 5
[143.03, 105.61] [36.30¢7, 0.01] —206.45 20 4 o

[1.11, 5.24] [9.00, 0.01] £
[607.87, 351.41] 52.50e7, 0.11 —206.69 20 . , L : L

[0.01, 22.79] 0.01, 47.03e6 _210.57 20 01 2 3 45 6 7 8 9 . (‘) 1 2 3 4 5 6 7 8 9

[1206.21.91, 98.75] 0.06,21.91e7 4 of iterations

[0.39,5.19] [0.01,13.51] 206.13 13
[584.34, 170.47) [62.29¢3, 205.63] :

[2.40, 0.24] [0.01, 0.01] — A . . ~ .
[G[i»ségo,lgﬁég]a [S[S‘Sfefgog%]” 206.70 ! Figure 6: &4 and B4 of selected attempt during pro-
[58[3,43’, 144, 97 [[0-01,’205’, 50) —206.13 20 jected NR method with 1e2 initial guesses for 6,0, a

2.26,27.31 37.24¢3,0.01 . . R . .
[186.20, 154.10] [43.88¢4,0.01] —20775 20 maximum number of iterations of le2, a stopping cri-

[2.96, 6.97] [20.91c5, 21.73¢6] 1092 20 R fe— _9 d6= _

[485.91, 211.36] [77.72€5, 100.83] teria of € = le aln = be 5.

1.50,17.13 [0.01, 6.30]

68.05, 2.99 [58.87e3, 35.14e3] —206.69 20

0.97,13.78 [1.23,0.01]

[189.47, 380.84] [15.58¢7, 0.01] —206.70 20

[0.30, 1.66] [2.16, 0.01]

[70.89, 229.80] [280.00, 11.14e4] —206.63 16

[1.61, 48.98] [0.01, 83.16€6]

[301.27, 198.72] [2.77.36.27¢7) —210.07 20

[5.65, 22.23] [10.87, 0.01]

[303.24, 403.79] 78.90e7,0.01 —206.87 20

[1.59,9.72] 46.61e3,0.01
[127.72, 61.00] 129.55,11.12 —206.14 20
[1, 39,43, 81] 0.01, 79.04e6 _210.05 20
[943.02, 195.00] [53.71e7, 37.75€7] : 3.3.3 Di tized si lati

[106°5.47] 327 15.48] Iy . 3. iscretized simulation
[316.20, 33.93] [340.56, 205.37] :

[1.03, 0.41] [2.16, 0.01]

[222.81, 192.06] [276.57, 11.14e4] —206.63 15

6.97, 6.36] [15.64¢7, 0.01] — .

[88.08,146.90] [11.12¢6,13.50] 20702 2 As demonstrated in figure 8 and table 2 (5.2.5.2) by

writing out all (non-)Markovian components for n =
1,2, 3,4 discretized simulation does not properly esti-
mate P sufficiently approximated via modified thin-
ning simulation with 1e6 realizations.
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Figure 7: Bootstrapped default probabilities sufficiently approximated by modified thinning with 1e6 realiza-
tions after application of projected NR method with 1 initial guess equal to 84 based on the entire population
for 8y, a maximum number of iterations of 1e2, a stopping criteria of e = le—2 and § = 5e—5 on 1lel subsamples

of size led allowing for 90% confidence intervals.

Sinmlation input
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I
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Figure 8: Default probabilities according to discretized
simulation attempt and simulation input sufficiently
approximated by modified thinning with 1le6 realiza-
tions for initial state 1 with S = {1, 2, 3} and some 6.

3.3.4 Default probabilities

Overall PD for any initial state ¢ € S is compared in
figure 9 with the true PD according to P sufficiently
approximated via modified thinning simulation 1e6 re-
alizations. Similarly, modified thinning simulation al-
lows the computation of Py and P; for the parameter
estimations according to the MH algorithm and pro-
jected NR method.

14

3.3.5 Model expansions

An important aspect to consider for further research
on the non-Markovian model is the possibility to be
expanded and incorporate essential economic drivers,
which are currently missing, e.g., correlation between
ratings, business cycles, upgrade momentum or more
granularity. An example of an expanded intensity func-
tion incorporating the above mentioned phenomena
could be defined as follows

h—1
Alt) = Z Tix(ty=i1qi(1 + i sin(0t + €))
i=1
N h-—1
ID DY
n m=1 Tm,de‘l'm,d(t)
N h-—1

2.0

n M=1 T W €T, u (t)

pnam de_ﬂm,d(t_Trn,d)

pnam de_ﬁnz,d(t_Tm,,u)

for some business cycle scale parameter per rating
~ € R", business cycle period parameter § > 0, busi-
ness cycle phase shift parameter ¢ > 0 and correlation
parameter p, € [—1,1].

4 Discussion & conclusion

First, both the MH algorithm and projected NR
method are reasonably accurate in terms of result-
ing Py and P, compared to P as demonstrated in
figure 9 (5.3.5), while the PDs for initial state Aaa
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Figure 9: Default probabilities according to exact MLE, heuristic estimator, modified Markovian model and
modified thinning simulation following parameter estimations via the MH algorithm and projected NR method

sufficiently approximated by 1le6 realizations.

All parameter methodologies are applied as described in the

theory (4) and results (5). As Py and P; are similar, the EM algorithm has been left out for clarity purposes.

show significant deviation over time horizon [0,T].
This approximation error of P is probably caused by
using a finite dataset with 6 not in the neighbourhood
of 8. Larger datasets, i.e., more initial ratings per
state, theoretically drive better approximations of p
especially for the initial state Aaa as demonstrated in
figure 11 (5.1). Although the results from both the MH
algorithm and the projected NR method are already
reasonably accurate, their precision can be improved
by increasing either the number of iterations from le3
to led, as is done in recent research, or initial guesses
from 2el to lel respectively [21]. The used setting
with regards to ¢, o, éo, € and & seems appropriate in
connection to the results.

Second, 9370 is sampled close to 6 as is shown in figures
4 (3.3.1), 12 and 13 (5.1) during the MH algorithm.
The projected NR method is less dependent on a sin-
gle value for 6y and has converged with a significant
deviation among values for 8, and therefore might be
considered more robust in practice.

Third, the MH algorithm and projected NR method
differ significantly in terms of efficiency, whereas in this
research the computational time is reduced from 6 to
1 hour by replacing the parameter estimation method-
ology. As the MH algorithm is demonstrated with 9370
close to 0, it might be that the number of iterations
needs to be increased from 1e3 to le4, as in recent re-
search, to ensure convergence in general. The required
computational time would then be approximately 60
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hours, however, recent research was able to decrease
the computational time needed for le4 iterations with
a le3 burn-in to 8.5 hours [21]. Other than comparing
the required computational time for both parameter
estimation methodology, there is not yet a framework
to properly compare the MH algorithm and projected
NR method in terms of the rate of convergence. The
model complexity does not allow a theoretical rate of
convergence of the MH algorithm to be determined,
while multiple roots and convexity might disturb the
quadratic convergence of the projected NR method as
is demonstrated in table 1 and figure 6 (3.3.2).

Fourth, the last aspect of performance is the possibility
of bootstrapping, which is tightly linked to the compu-
tational time required. As the delta method does not
seem to be applicable to the non-Markovian model and
the computational time required for parameter estima-
tion of multiple subsamples of the simulated dataset of
14,193 (or population) is impractically large for both
parameter estimation methodologies, bootstrapping
does not seem possible (5.2.4.4). However, for large
enough subsamples (near the size of the entire popu-
lation equal to led) 0 is a strong candidate for 94,0
during the projected NR method applied to each sub-
sample, which decreases the required iterations and
computational time. The bootstrapping results are
demonstrated in figure 7 (3.3.2), however, for a more
precise approximation of the confidence intervals of
Py, the number of subsamples should be increases sig-
nificantly.



Next, as demonstrated in figure 8 (3.3.4) and table
2 (5.2.5.2), discretized simulation is not possible for
the non-Markovian model as the cross-products can-
not be captured using an iterative algorithm. It seems
that all possible paths have to be considered sepa-
rately (as might be expected). A next step, however,
is to investigate if certain paths with negligible low
probability might be disregarded. Additionally, paths
with negligibly low non-Markovian contributions might
be properly approximated using a Markovian model.
These two steps possibly allow an iterative scheme to
sufficiently approximate PDs according to the non-
Markovian model.

Also, the idea behind the heuristic estimator based
on Chapman-Kolmogorov forward equations does not
lead to proper approximations of P as demonstrated in
figure 9 (5.3.5) , which might imply that the assump-
tions of (i) linearity, (ii) vanishing momentum after an
upgrade or (iii) defaults only a result of solely consecu-
tive downgrades are too strong. Chapman-Kolmogorov
equations do not seem to form a strong basis on which
the PDs according to the non-Markovian model can be
approximated.

Furthermore, the modified Markovian model is ro-
bust in terms of resulting TPM Ps compared to the
sufficient approximation of the real TPM P and allows
the delta method to compute exact confidence inter-
vals. The modified Markovian model outperforms the
MH algortihm and projected NR method in terms of
speed with a duration of ~ 2 minutes. Disadvantages
of the modified Markovian model are larger confidence
intervals as the rating data subsets X are smaller
than X for any ¢ € S. The modified Markovian model
might also perform differently if other non-Markovian
phenomena are incorporated other than momentum as
it does not have the flexibility to adjust for other types
of stochastic behaviour.

Moreover, the non-Markovian model shows great flex-
ibility to adjust for different stochastic behaviour in-
corporating other types of non-Markovian or time-

16

inhomogenuous phenomena often encountered in rat-
ings, like seasonality, correlation, business cycles or
upgrade momentum. This flexibility might also al-
low the non-Markovian model to be applied in dif-
ferent fields, like seismology, using similar types of
models, however, further adjustment might make the
non-Markovian model even more complex influencing
the accuracy of current parameter estimation method-
ologies as, e.g., the loglikelihood [(@]|X) might have
many more stationary points located near each other
preventing proper convergence [13].

Additionally, throughout the application of all parame-
ter methodologies, MLE consistency has to be assumed
due to the use of an absorption state describing a de-
faulting possibility for of both the (non-)Markovian
models. Even so, the delta method cannot be applied
to the non-Markovian model as it is currently too com-
plex to find a path dependent closed form expression
for p;;(t) for any 4,5 € S.

Besides, solely the mathematical point of view, there
are some possible flaws in the non-Markovian model
with regards to financial aspects, like excluding restart
probabilities after default, seasonality, correlation, up-
grade momentum and business cycles. Additionally,
merits from other types of models like hidden Markov
models, trying to capture the fact that ratings are
not monitored continuously, are also neglected in the
current non-Markovian model. Additionally, after an
upgrade, there is still downgrade momentum, which
keep the recursive patterns in tact, however, might
incorrectly capture momentum. A downgrade not only
increases the probability of further downgrades, but
also decreases the stability of ratings, which is might
not be desirable.

Finally, an additional suggestion for further research is
to reduce the required computational time for both the
MH algorithm and projected NR method. As a result,
the projected NR method can be efficient enough to
allow for more precise parametric bootstrapping within
manageable time frames.



5 Appendix

5.1 Results
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Figure 10: Loglikelihood during EM algorithm according to the Markovian model with stopping criteria ¢ =
le — 9.
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Figure 11: Default probabilities according to modified thinning simulation following parameter estimations
via the projected NR method sufficiently approximated by modified thinning with 1e6 realizations on rating
datasets of 3 different sizes with 2el initial guesses of 84, a maximum number of iterations of 1e2, a stopping
criteria of € = le — 2 and § = be — 5.
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0.23
0

0
8.37
—9.82
3.95
0.33
0.07
0.02
0.13
0

1.51
7.40
—8.92
4.16
0.37
0.12
0
0.19
0

0
0.12
7.11

—8.49
4.76
0

0
0
0

0
0.29
6.53

—9.82
7.09
0.25
0.61

0

0

0
0.33
6.74

—9.43
6.32
0.31
0.08
0.65

0

0
0.38
6.74

—-9.24
6.42
0.30
0.23
0.12

0

0
0.22
7.02

—9.18
6.41
0.39
0.15
0.50

0

0
0.13
6.38

—9.66
6.51
0.38
0.14
0.25

0

0
0.03
0.25
4.61

—16.66
4.09
2.19

0

0

0

0
0.22
5.01

—19.35

3.80

0
0.67

0

0
0.04
0.16
5.03

—16.96
5.37
0.41
0.98

0

0
0.08
0.19
4.83

—17.84

5.31

0.45

0.58
0

0
0.22
0.12
4.61

—18.06
4.84
0.54
0.50

0

0

0
0.18
4.91

—18.52

5.10
0.40
0.40

0
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0
0.08
0.16
10.71

—16.36

13.12

0

0

0
0.01
0.08
0.50

11.20
—14.85
8.97
4.71
0

0
0.06
0.04
0.46
9.84

—17.52
11.27
4.26
0

0
0
0.08
0.35
10.53
—16.72
10.05
3.72
0

0

0
0.10
0.39
10.85

—17.22

10.56
3.89

0

0

0
0.18
0.33
11.19

—16.50

10.57
4.35

0

0 0 0
0 0 0
0.04 0 0
0.16 0 0
0.40 0 0
9.54 2.04 0.68
—21.87 0 6.56
0 -9.36 9.36
0 0 0
0 0 0
0 0 0
0.04 0 0
0.10 0 0
0.44 0 0
9.90 0.74  0.17
—23.46  9.99 3.88
14.80 —30.28 9.42
0 0 0
0 0 0
0 0 0
0.03 0 0
0.04 0 0
0.34 0.04 0
10.52 0.66 0.50
—23.45  7.46 4.23
10.81 —27.51 10.81
0 0 0
0 0 0
0 0 0
0.02 0 0
0.070 0 0
0.39 0.08 0
9.98 0.72  0.30
—-21.09 6.88 3.49
11.04 —24.86 9.18
0 0 0
0 0 0
0 0 0
0 0 0
0.10 0 0
0.36 0.01 0
10.87 0.67 0.35
—21.74  T7.12 3.35
14.23 —-31.78 12.54
0 0 0
0 0 0
0 0 0
0.10 0 0
0.08 0 0
0.36 0.01 0
10.32 0.46 0.11
—21.67 7 3.53
13.47 -30.21 11.55
0 0 0

x 1072

x 1072

x 1072

x 1072

x 1072

x 1072



—19.28 1446  4.82 0 0 0 0 0 0
1.76  —11.47 9.70 0 0 0 0 0 0
0.16 1.64 —-7.87 5.90 0.16 0 0 0 0
. 0.06 0.12 3.59 -9.25 5.17 0.30 0 0 0
Ql = 0.04 0.04 0.18 595 —1785 11.16 0.41 0.07 0 x 1072
0 0.04 0.09 0.34 491 -16.43 10.25 0.64 0.15
0 0.03 0 0.15 0.58 10.23  —20.52  6.68 2.87
0 0 0.28  0.16 0.80 4.82 13.69 —31.87 12.12
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
-1.73 1.73 0 0 0 0 0
. 499 -998  4.99 0 0 0 0
0 6.02 —18.05 11.03 1 0 0 x 1072

0.36 0.72 3.24 —-14.03 9.36 0 0.36
0 0.44 2.22 11.97 —-23.50 6.65 2.22
0 1.04 1.04 4.67 14.52  —=37.87 16.60
0 0 0 0 0 0 0

00
I
coocoocoocococoo
coocoocococoooco

5.2 Derivations

5.2.1 Markovian model

5.2.1.1 Markov property

X (t) satisfying the Markovian property for any 4,j € S and t1,t2 € [0,T] with t; < 5 is defined by [30]
P(X(t2) = i|Fy,) = P(X(t2) = i Xy, = j)

5.2.1.2 Time-homogeneity

X (t) satisfying the time-homogeneity property for any i,5 € S and t1,t2 € [0,7] with At > 0 such that
t1 + At,to + At € [0,T] is defined by [30]

P(X(t + At) = i|F,) = P(X (1 + At) = i| X (1)
=P(X(t2 + At) = i| X (t2)

J) Markovian property
J

/) Time-homogeneity

5.2.1.3 Holding times

First, define the holding times {7} > ¢} and {T; > t+ At} as {X(f) =i :t € [0,t]} and {X (¢) =i : ¢ € [0, ¢+ At]}
respectively for any ¢ € S, ¢ € [0,T] and At > 0 with ¢t + At € [0,T]. X (t) satisfying the Markovian and time-
homogeneity properties implies T; also holds these properties as follows [52]

P(T, >t+ AT, >t) =P(X(t) =i:t € [0,t+ At]|X(t) =i:t€[0,¢t]) Definition
:]P’(X(f)—z tet,t+At)|X({t)=1i:t€][0,t]) Adapted
=P(X@®)=i:teltt+At]|X(E) =1) Markovian property
=P(X(@#) =1:t€e0,At]|X(0) =1) Time-homogeneity
=P(T; > At) Definition

Second, define the survival function, S;(¢t) = P(T; > t), for any i € S, and the P(T; > ¢t + At|T; > t) according

to Bayesian theorem by the following relation [34] [39]

P(T; >t + At)
P(T; > t)

=P(T; > At) Markovian property & time-homogeneity

P(T; > t+ At|T; > t) = Bayesian theorem

implying for any z,t € [0, 7] and At > 0 with « = ¢ + At by setting A\; = —In(S;(1)) > 0 that S;(z) is given by
Si(x) = Si(t + At) = S;(t)S;(At) = S;(1)' T4 = §;(1)* = i)z = g=Aiw

such that T; are IID exponential random variables with parameter \; > 0 as follows [34]

dSi(z) 7d(e*)‘”’“’)
de dx

=\ e M®

le(fE) ==
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5.2.1.4 Conditional transition probabilities

Define N(t) as a counting process with holding times IID exponentially random variables driven by parameter
A > 0 over time horizon [0, ] for any ¢ > 0. Divide [0,¢] in n € N* equal bins with length At = £ such that for
z + y = At an upper bound for the probability of multiple transitions per bin is given by

z Yy
P(ky > 2) < P(ky = 2) = / e dz / e dz Definition
0 0
_ (1 _ 67)\96)(1 _ ef)\(Atfz)) _
<(1- ef)‘%f Upper bound

and according to a Maclaurin series expansion of f(x) = e® asymptotically equal to 0 as follows [1]

AAL

. > < 1 B _A\At\9o _ . A . 2 _
AI%IBOIP’(kb >2) < Alygo(l e 7)) Allltglo 1-2(1 ) )+ (1= AAL) + O((AA)*) =0
The probability of a single transition per bin is defined by
P(ky =1) = lim 1—P(k,=0)= lim 1— A-e Mdp = lim 1 — e MY
At—0 At—0 At At—0

which is according to a Maclaurin series expansion of f(x) = 1 —e™* asymptotically equal to AAt as follows [1]

Jim fAAL) = Jim F(0) + F(0)NAL + O((N\AL)?) = Jim AAE+ O((AAL)?) = NAt

N(t) asymptotically follows a binomial distribution with k transitions and (}) = n!/(n — k)! the binomial
coefficient by setting p = AAt as follows [27]

lim PN = k) = Tim (") x (32) x (1= D))" Definiti
Jim POVE) =) = tim ()< (0) < (1-00) efinition
o (At)k nl 1 PV P
- i ()« () (027 (0 217) e
First, the following relation holds
. n! 1 . nn—1)(n-2)---1 1 .
lim — = = ] (-%) Definit
nggo(n—k)!nk nggo(n—k)(n—k—l)(n—k—2)~-~1 nk crnmon
) n n—1 n—2 n—k+1
R N N e
=1 Asymptotically
Second, by setting x = - according to the definition of e = lim, (1 + %)I the following relation holds |54]
At 1.\
lim (1 - —)" = lim ((1 — 7)x> Rearranged
n—00 n T—00 T
1 ( 1 ))\t
= lim -
A
At
= Jm (G715) :
=e M Definition
Third, for any k£ > 0 the following relation holds
. Mg
A (- =1

such that for n — oo N(t) is asymptotically Poisson distributed as follows

lim P(N(1) = k) = A0 -

For infinitesimal At the probability of a single transition by X (¢) out of state ¢ € S with ¢; > 0 is defined by
130]

P(X(t) #i|X(t — At) = 1) = P(X(At) # | X(0) =4) Time-homogeneity
= g At - e Ut Definition

23



and according to a Maclaurin series expansion of f(z) = e” asymptotically equal to ¢; At + O(At) as follows [1]
130] [35] [44]

2 3
GAL- T TR = G A1 — ¢; At + %AtQ — %Aﬁ + e Maclaurin series
s 4
= At — (g At)? + Z—Z‘Atg — 3—1'At4 + - Rearranged
= ¢; At + O(At) Asymptotically

5.2.1.5 Stable conservative generator matrix

The unconditional transition probability of X (¢) for any i, j € S, infinitesimal At and ¢ € [0,T] with ¢t + At €
[0,T] is defined by [30]

P(X(t+dt) = j|X(t) = i) = P(X(At) = j|X(0) = 1) Time-homogeneity
= P(X(At) #i[X(0) = i)
x P(X (At) = j| X (At) # 4, X(0) = 1) Bayesian theorem
= (¢;At+ O(At)) x ¢ Time-homogeneity

with ¢ € [0,1] as the time-homogeneity property implies that P(X (At) = j| X (At) # i, X(0) = ¢) is constant.
Define the unnormalized conditional transition probability for any 4,j € S as follows [30] [35]

P(X(t) = j|X(t = At) = i)

qij = Alirgo At Definition
P(X(At) = j|X(0) =
= lim (X(At) = j1X(0) =) Time-homogeneity
At—0 At

such that the conditional transition probability for any ¢, j € S according to Bayesian theorem is asymptotically
given by [30]

P(X(t) =j|X(t— At) =1)
B)

. . . N g POX(

Al PX () = JIX (= A1) =, X(1) £1) = Yim 5 ZiX (= Af) =
L PX(A0) = j1X(0) = 1)

Ao P(X(AY) £ 0|1 X(0) = )

. qijAt+ O(At) ..

= Alir_I}O —qut - O(A) Definition

_ i

qi

Bayesian theorem

Time-homogeneity

and by the conservation of probability the following relation holds [30]
N
jetgti B j=1,j#i

5.2.1.6 Transition probability matrix

According to a Maclaurins series expansion of f(z) = e” for any ¢,7 € S and infinitesmal At the TPM is defined
by 1] [30]

(P(t — At, 1)y = (P(0, At)) s Time-homogeneity
=1-—qAt+ O(A¥) Definition

and by the conservation of probability for j # i the following relation holds [30]

(P(0,At));; = ;At5 4 O(AL) = gy At + O(AY)

3

such that in matrix notation P is given by [30]

P(t — At,t) = P(0,At) = T, + QAL + O(At)
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Set t1,ts € [0,T] with t3 > t1, n € NT and 3 = t; + nAt, then P is defined by [30] [55]

P(ty,t2) = lim I+ At-Q)" Maclaurin
n—oo
to —1 n
= lim (I + 2 1Q) Rearranged
= Qt2—t) Definition
= Pty — t1) Time-homogeneity

5.2.2 Non-Markovian model
5.2.2.1 Markovian marked point process

The likelihood of a single MPP X over time horizon [0,7] is defined by [17] [18] [21]
L\, fIX) = H A(tn) f (Kn|tn)e™ Jo M@)dz
such that by setting the intensity as follows |21] [30]

h
= Z Tix(t)=i1 %
=1

with the following marks distribution [21] [30]

h
Lexty=i, x(t4)=51 %5
f(’ﬁn|tn): Z {X(tn) ’q‘( )=3}
i,j=1,j7#i ’

the Markovian model is given by

N(T) . -‘
L. A%y = H {Zl{x(t"):i}qz} X { Z H{X(t,b):igf(ti):j}qw

n=1 =1 i =T g L
[ Tl X ()= z}‘hdf} Rearranging
= (e~ oM q”) (qje*Qj(tZ*tl)qu) N (qkeflﬂc(tN*tN—l)%) w e~ au(T—tn)
q; 9k
5.2.2.2 Recursive patterns
The intensity is defined by an exponential Hawkes process as follows [21]
Z Lix (=i} @i + Z ae P
TET(t)
such that by setting a recursion as follows [21] [46]
Rn = (Rn-1+ ]]-{X(tI)>X(tn)})eiﬁ(t"7t”71)
with Ro = 0 and ¢y = 0, A(t) is given by [21] [46]
h—1
Atnt1) = Z Lix(tpp)=i3% + @Rny1 Rearranging
i=1
- Z I{X(tnﬂ) iyqi + Z ae” ltnei =) h
TET(tnt1)
h—1
= Z LiX (tpyr)=i} i + Oé( Z e Alta—m) 4 1) e Altnti—tn) -
i=1 TET(tn)

= Z ]]'{X(tn+1)=i}% + OL(Rn + ]]‘{X(ti)>X(tn)})eiﬁ(t"Jrlit") -

i=1
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5.2.2.3 Loglikelihood
By filling the intensity [21]

Z]]-{X(t) G + Z e AU=T)

TET(L)

and marks distribution [21]

h
1 X (tn)=1,X (t ]lX tE>X (tn _ _
flialty) = S XK=t XED=) (qijJr (LX) § bt T>)
LT )\(tn) Gi
i,j=1,7#1% TET(tn)

into the likelihood of a single MPP [17] 18] |21]

N(T)

L\, fIX) = H A(tn) f (Kn|tp)e™ Jo AM@)dz

it follows that after cancelling out the A(¢,)-terms and writing out the following relation [21]

/ Z e PE=T) 4y = Z %(1—6_’8(T_T))

TeT(x) Ter(T)
the likelihood is defined by [21]
N(T) ﬂ{x( _—
> , o
L(Vy, é BIX) = H [( Z Lix, —ix@h=tii+ ——F~ Z e Bltn = ) Definition
n=1 i,j=1 TET(tn)
T h—1
X exp( / Z Ux(2)=i%i + Z Ge—Bla=m) dz)
TET(x)
N 4 ]l{X(t+>X
= [( Z ]l{th:LX(tm:j}qij + Z de=Bltn=) ) Rearranging
n=1 i,j=1 TET(tn)
T h—1 a o
X exp ( — / Z ]lX(x):iqidz) X exp ( - Z =(1- efﬁ(T*T)))
0 =1 TET(T)/B
such that the loglikelihood is given by [21]
5 D ]IX(f )>X(t
(Vg . 6|1X) = Z log Z Lix,, =i xah=n i + LY aefem)
3,7=1 TET(tn)
T h-1 4 o
[ Ttixomade - Sa-eron)
0 =1 rer(T) p
The equality ¢; = — 2?71 ;i 4i; implies the loglikelihood is defined by [21]
5 & Lx (t)> X (1)) ;
(Vg 6. 61X) = Z log Z ix, =ix=i®@i ¥ — g 2 Ge~Ple=)
i,j=1 v TET(ty)
T h—1 h & -
—/ > l{xu):z'}( > qij)d@” - ) =)
0 =1 J=1.57#i ren(r) P

and by use of the following recursive patterns [21] [46]

R = (Rt + Lix(tyo xay e
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with Rp = 0 and ¢y = 0 is given by [21] [46]

N(T) h 1
- A >x(a)
(Vg a,81X) = 3 1og( D Uity B A Rn)
ii—1 1

Th-1 h LN N
- /0 Z H{X(Z):i}( Z Qij>dx B Z E( Z Uyt x ) ~ RNe—B(T—TN))
i=1 Tt —

J=1,j#i reT(T)

for T =min{{t: X(t) = h} AT} and N = N(T).

5.2.3 Parameter estimation Markovian model
5.2.3.1 Maximum likelihood estimator

For a single realization X over time horizon [0, 7] with transition times {t1,%s,...,t5} for any i,7,k,1 € S and
N € N with ¢ # j and j # k the likelihood is defined by [22] |30] |37]

L(VglX) = et g e 9t gy ema(TiN) Definition
h h
= H H q;}[ij(T)e_q" Ri(T) Rearranging
i=1j#i
with R;( fo Tix( ﬂ_l}dt the summed holding times in state ¢, N;;(t) the number of ¢ — j transitions both

up to tlme t and the last holding time following a censored exponentlal random variable [22] [30] [37]. According
the equality ¢; = >, ; ¢i; the loglikelihood is defined by [22] [30] [37]

h
Q |X) = Z Z log( Qlj 2] Z GR Definition
i=1 i#j i=1
h hJ h h
- Z Z log(Gij) Nij ( Z Z Rearranging
i=1 i i=1 i

and the MLE defined by setting the partial derivative with respect to §;; equal to 0 as follows [22] [30] [37]

OUQIX) _ Niy(T) A
— = = — R’L T = 0 — i =
D4 dij ) %= R(T)
with corresponding Hessian matrix H;(Vj|X) for any ki = h(i1 — 1) + j1 and ka = h(iz — 1) + j2 given by [21]
[22]

0 IlQIX)
9izjo  Odiyjy

0 N;;(T)
 Odiyg,  Gij
Ni; (T)

A2 o .
4,5, '(E1,01)=(12,52)

(Hi(Vg| X)) bk, =

— Ry(T)

otherwise if (i1, j1) # (i2, j2), then (H,Vj3|X))k,k, is equal to 0.

5.2.3.2 Uniqueness transition probability matrix

As eigenvalues of matrices with continuous random variables as entries are continuous random variables them-
selves, the probability of Q not having h distinct eigenvalues is 0 almost surely [42]. Assume a stable conservative
generator matrix @ € R"*" is diagonizable with P(t) = e®*. log(P(t)) = Qt if P(t) is invertible with a suffi-
cient condition that det(P) # 0 [29]. As Qt = AVA~! with V a diagonal matrix with h distinct eigenvalues
as entries and A the corresponding eigenvectors the matrix exponential is defined by [29)

@t)?  (Q)?
=I,+Qt+—— 9] + 30
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and for any n € NT

t = - = - = - T .. T = -
Q)" = (AVA )" = (AVA )" = AVATIAVA L. .. AVA L = AVPA T

implying
AVZA~L  AV3AT!
Q= AVOATI L AVIATL 4 V2' + V3' e Definition
2 3
=AI+V + % + % 4+ )AT! Rearranging
=AeVA! -
= P(t) Definition

As the exponential function is one-to-one R ~ (0, 00) the eigenvalues eV of P are distinct and strictly positive
|54]. By definition det(P(t)) is the product of the eigenvalues of P(t) implying det(P(t)) > 0 [29].

5.2.3.3 Exact maximum likelihood estimator discrete data

Given the initial state of an embedded discrete rating chain with N € N7 transitions {X1, Xa,..., Xy 1} the
probability of this realization is as follows [30]

N
P({X17X27 7XTL}) = H bPx,_1X,
n=2

h h N
- H H pij”

i=1j=1

= L(P|X)

with p;; = (P),; fully describing discrete rating chain behaviour and N;; the number of ¢ — j transitions in the
embedded rating chain { X3, Xo, ..., Xy11} for any 4, j € S. Using the conservation of probability as follows |30]

h
Zpij =1
j=1

for any i € S the loglikelihood is as follows by setting [30]

h
pin =1-— Zpij
j=2

such that
h h
I(P|X)= > Nilogpi + Nalog(l - pi;)
i=1,j=2 j=2

for any i € S by setting the derivative of the loglikelihood fuction with respect to p;; equal to 0 for any 4,j € S
with j # 1 the MLE is found as follows |30]

h h
I(P|X) _ d) iy j—o Nijlogpij + Nirlog(1 — > 0, pij)

Dij dpij
Nij N;
T s h
pz] 1-— Zj:Q pij
_ Ny Na
Pij pi1
=0
implying
Py _ Ny
for any j € S such that p;; o< N;; which leads to the MLE after normalization 30|
R Nij
Dij = —=p—
Zj:l Nij
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5.2.3.4 Consistency maximum likelihood estimator

By definition of the infinitesmal generator matrix @ driving X (¢) over time horizon [0, T'] the following definition
holds [2]

. _ E[N;(T)]
4= B[R(T)]

for any i,j € S as [2]

and [2]

E[Ny;(T)] = g5 /O P(X () = i)dt

since for At = L for some sufficiently large n € N* [2]

E[Ni; (T ZH{X((k-H)At) =5, X (kiAt)=i}
k=0

_ZP ((k+1)At) = j A X (kAt) = i) + O(At)
_Z q(i, ))P(X (kAL) = i) + O(Al)

T
S g /O P(X (1) = i)dt

as m — 00, since again per bin with length At only a single transition is considered with an error term of O(At).
Define the MLE of @ after m € N* IID realizations as ¢} such that [2|

o NE@)/m

mosoe 10 = B RI(T)/m 1

with in previous notation N7 (1) = N;;(T) and R]*(T) = R;(T). Now, the set of random variables

1 NG(T) — g B (T)
i(T)] ( \/% )}L;ﬁj

as m — oo by the extended version of the CLT [2]| being asymptotically

V@ —as)t ~ {grp

as it is allowed to set E[R;(T)] = i (T)

normal with mean 0 and covarlances
1 m m m m
E[Ri(T)]IE[Rk(T)]EKNU (T) - qini (T))(Nkl (T) - leRk (T))]

= 6((27.7)7 (k, l))]E[Rz(T”

ikl =

5.2.3.5 The delta method

The use of the Delta method does not generally hold as rating chains are not irreducible. It must be assumed
that the MLE is a consistent estimator such that [38]

V(6 —0) 2 N(0,%)
implying [38]
Vi(P(6) — P(8)) = N (0, Var(P(8))
First, apply a first order Taylor series on P around 0 as follows 138]

P(6)~ P(0) +VP(0)T(6-0)
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with 3 the covariance matrix of 6 implying that the variance is defined by [38|
Var(P(6)) ~ Var(P(0) + VP(6)" (6 — 6))
= Var(P(0) + VP(0)"6 — VP (0)70)
= Var(VP(6)79)
=VP(6)'SVP(0)

as Var(a + X) = Var(X) for any random variable X and constant a € R. Finally, the delta method implies as
0 is assumed to be consistent that [3§]

Vn(P(0) — P(8)) 2> N(0,VP(0)"SVP(0))

5.2.4 Parameter estimation non-Markovian model

5.2.4.1 Convergence Metropolis-Hastings algorithm

Part 1

The following proof on the convergence of the Metropolis-Hastings algorithm in general is simplified to a

single-dimensional finite state parameter space @, which can be expanded to a multidimensional continuous
setting |12].

Let {6, },>0 be a Markov chain sampled according the Metropolis-Hastings algorithm with some time-homogenuous
proposal function 1 (0,,11160,) translating into a transition matrix ¥ satisfying the Markov property and M € NT
dimensional finite state parameter space {01, ...,6M}. Assuming {6, },>0 is (i) irreducible, (ii) aperiodic and
(iii) there exists a stationary distribution, 7, such that w = w¥, then according to the basic limit theorem [12]

lim P(6,, = #%) lim =, (i) = 7(i)

n—oo n—oo

for any i = 1,..., N and any initial distribution 7y of 8y also defined by the total variation as follows |12]

|l — 7l| = sup (7 (A) — 7(A))
AcO

Part II

Define {¥,}n>0 as a Markov chain independent from {6,},>0 with similar ¥, but let ¥y have initial dis-
tribution 7 as opposed to 6y having initial distribution 7. Set the coupling time 7" as the first time 6,, equals
I [12

=inf{n:0, =9,}
and define a new Markov chain as follows [12]

ﬁ{ﬁn ifn<T

0, ifn>T

{_ﬁn}nzo is stationary as 9y = g with ¥y ~ 7 and m = wU" for any n € Nt implying the the total variation is
given by [12]

7 (A) — 7(A) = P(0, € A) — P, € A)
=P, € An>T)-PW, € An>T)+P0,c An<T)-PW, € An<T)
=P, € An<T)-PW, € An<T)
<P(T >n)

Proving convergence of the total variation ||m,, — || — 0 is equivalent to P(T" > n) — 0 or P(T' < o0) =1 as
n — oo [12].

Part III

30



Define the bivariate Markov chain {&, = (0, 95)}n>0 such that the coupling time T is defined by the event
that &, hits the diagonal line {(0%,9%) : ' = ¥ € O} with [12]

PE(Opy1 = 07,9041 = 310, = 0,9, =9") = P01 = 0710, = 0P 41 = ¥ |9, = )
for any 6%, 679" € © as ,, L ¥, for any n € NT with stationary distributions
78 (6%, 9%) = 7(8%) ()

The proof P(T' < oo) = 1 is now reduced to proving that &, hits the diagonal {&,, = (6,,,V») }n>0 with probability
1. Tt suffices to proof that {&,} is irreducible and recurrent, however, a stationary distribution 7 satisfies the
following condition [12]

> pil0) w0, 07) = m(¢")

for all n, such that if a state 7 is not recurrent (transient) it holds that m(67) = 0. As irreducibility holds
that ¥(6%,67) > 0 for any (6%,67) € © by definition it implies for a stationary distribution with 7(67) = 0 that
7(0%) = 0 for any (0%,67) € © contradicting that 7 is a stationary distribution summing to 1 and showing that
it suffices to proof that &, is irreducible [12].

Part IV

To proof &, is irreducible it must be proven that ¥™(6? 67) > 0 holds for sufficiently large n. This is done by
proving that 3N € NT such that Vn > N it holds that n € {fi : ¥"(0°,67)}. As {n : €"(¢,67)} is aperiodic
by assumption implying a greatest common divisor of 1 and is closed under addition it sufficies to proof that
the above condition holds for any set A, which is closed under addition and has a greatest common divisor 1 [12].

Let A be a set of integers closed under addition and with greatest common divisor equal to 1. First, it is
proven that A contains at least one pair of consecutive integers via a contradiction. Assume the minimal dis-
tance s > 1 between 2 sequential elements of A, then In; such that ny,n; + s € A. Set no € A as an integer
not divided by s, which must exist, since the greatest common divisor is 1. Let no = ms+r with 0 < r < s and
m € NT and define ng = (m + 1)(ny + s) € A and ngy = (m + 1)n; +nz € A since A is closed under addition.
Finally, ng —n4s = s — r € (0, s) contradicting that the minimal spacing is s > 1 [12].

It is proven that &, is irreducible for sufficiently large n such that P(T' < oo) = 1 and it is proven that any
irreducible and aperiodic Markov chain 6, with a stationary distribution 7 converges towards this stationary
distribution [12].

5.2.4.2 Convergence projected Newton-Raphson method
Part 1

The setting with sufficient conditions to proof convergence to a root is demonstrated in one dimension, then
generalized to a multidimensional case. Let f be a continuous twice differentiable loglikelihood function with
f:R~—0,1] and root = € R. Apply a second order Taylor series around an initial guess of the root zy € R |31]

1

f(zo + Ax) = f(xo) + ['(x0)Az + §JW(JT?0)A332
with Az € R and £, between zy and the root x. By taking the derivative with respect to Az and setting equal
to 0, f(xo + Az) is locally minimized or maximized over Az as follows [5] [58]

d d Ax?

= — A ~ —(A ! =Y e
0= 5 (Flwo + &) ~ 7o (A f(x0)  (w0)) + S (o)
= f'(z0) + " (w0) Az

implying [5] [58|

A = - L 1on)

()

Finally, f(xo) is locally minimized or maximized using a second order Taylor series approximation by setting
BBl [58]
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leading to a general iterative method by setting [5] [58]
f'(zn)

e )
n

Part I1

Define the error €, = x — x,, with the root x and set a second order Taylor series of f’(-) around the root x
equal to 0 as follows [5] 58]

(2 — x,)?

5 1"(6) =0

fl@) = f'(@n) + [ (@n) (@ — 20) +

with &, between z,, and the root z. By dividing both sides by f”(z,) it holds that

Fi - i
and by substitution according to the NR method as follows
st = 2 — f'(@n)
f(en)
such that the convergence of the NR method is at least quadratic according to [5] 58]
S 5 P
or
entf" (€n)

€=
o 2f"(an)
Error computation is made more robust by considering absolute values such that [5] [58]

2| g1
s = GHl ()

2[f"(zn)]
Furthermore, the error can be defined as follows
|67L+1| < Mei
with

/(@)

M= 8 | P @

z€(0,00)

such that an absolute upper bound for the error €, can be computed given an upper bound for ¢y. Based on
this derivation, the convergence conditions for the NR method requires that M|eo| < 1.

Part I11

As the principle of a second order Taylor series remains given infinitesimal A@ for any 0,0 + A8 € O, the NR
method can be extended to a multi dimensional setting by setting the gradient of 1(8]X) equal to 0 as follows
BBl [58]

VIO + AB|X) ~ VIO X) + V3(0)A0 =0
implying
AG = —(V21(8]X))"'VI(6]X)
such that

0,1 =6, (V(0]X))"'VI(6]X)
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given that [(0]X) is twice differentiable and continuous for 8 € ®. Accordingly, the error, €, is defined by [5]
58]

(V21(6,]X))"'D?1(£,] X)

€Ent+1 = —

Lo ‘3"“,\,

with &, between 6,, and the root 6, in any dimension and D* an hyper matrix [5] [58] such that

*1(6n|X)

, _ N LU IX)
D°l(&,]X) = 96,00,00,

0.6,6;

implying quadratic convergence. Due to complexity Dgl(ﬁn\X ) is not attained and absolute errors can not be
computed.

5.2.4.3 Partial derivatives loglikelihood

1yt
X(t5)>X (t)) .
@080 = 3 o 32 1, oty + L 5 i)
i,7=1 TET(tn)
Fh-1 h N it
- Z IL{X(ac):i}( Z Qij)dx - Z B(l —e )
0 =1 j=1,j#i rer(T)

with
R = (Rn—1 + IL{X(ﬁ>X(tn))})eiﬁ(t"7t"71)

for Ry = 0 and ¢p = 0 and X (0~) = X(0) implying the following partial derivatives

N(T) ]1
X (t5)>X (tn))
(Q,a,B|X) = Z log( Z Lix,, =ix =% + N, R”)
1,5=1
T h—1 h N(T)
_/ Z]]'{X(I):Z}( Z qij)dx_ Z (Z ]]‘X(t+)>X RN@ B(T— TN))
0 =1 j=1,j#i Tefm
N(T)
l(Q, e, B|X) Lxi)>x () Bt
S D Lr )20} N Y e Pl
m n=1 v TETm (tn)
h
Lyeh)>x(t) >>X(t ) (=) )
X ( 2 Vixn=ixh =y @i + Yo D ame M ))
ig=1 m=1,2 7€7,,(tn)
1 — s
— Z B(l_e AT=7)y
TGTm(T)
N(T)
Q. o, B|X) Ly )>x(tn)) B (tn—)\ >
T > (]l{fm(tn#@} N, > )
n=1 TETm (tn)
h
1 t+ -2
)>X n) m (tn—T
X(Z (X (t)=i.X ()=} %7 T LYY ape )>
i,j=1 m=1,2 77, (tn)
<0
%1(Q, o, B X) _ZT H (]1 Lxeh>x() 3 e—Bm(tn—T))
60[130(2 n=1 m=1 {620} Ni TETH (tn)
h
1 t* —2
)>X m\ln—T
(2 Tpxnrmsxerns + LYY apetn)”
i,7=1 m=1,2 r€7,, (tn)

<0
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N(T)

olQ,a,B|X)
0. = Z Lixta=ix =i
Qz] n=1
‘ 1 t+ >X(tn (tn—7) -
X(Zl{xunzi,xut):j}qw Y. D, ame )
i,j=1 m=1,2 re7,,(t,)
T h—1
*/ Y Lx@=ide
0 =1
N(T)
2’1(Q, o, B|X) Z 1
—6(1‘2‘ {X (tn=1,X (t:1)=75}
ij
X(t+ >X(t”)) _n\ 2
(Z DX (b= x () =53 %3 T Y. DL ame )>
i,5=1 m=1,2 €1, (t,)
<0
9%1(Q, o, B|X) _ 9%1(Q, a, B|X) _
06ij0qrt  1(i.9)# (kD) 0qri0qij  1(i,5)# kD)
N(T)
al(Q7a7/6‘X) X t+ X(tn _ _r
B - ﬂ{rmun)#w};( D D s Eag
m n=1 v Te‘rnl(tn)
h
Lx@h>x(ta)) >>X(t ) =1\
x ( Y Lix(e)mixe)=i3 % + Y. > ame ™l ))
1,j=1 m= 127—67—771( n)
+ Z O‘f;n(l _ e_ﬁvn(T_T))
TETHM (T) m
_ Z ZA(T,T)B B (T—7)
TETHM (T) m
2*1(Q, o, B|X) p Lx@h)>x(tn)) B (tn—1))>
T Z (]].{.,.m(tn)?g@} N, Z Ozm(tn —T)E )
m n=1 v TETm (tn)
- 1 Lxh>x @) B (ta—7))
(Z (X (tn)=i, X (t)=jy B T D D ame )
J=1 m= 12767'7n(tn)
X ]lX(t+)>X(t ))
+ Y L — > am(ty — 1) Pmlin=T)
n=1 ¢ TETm (tn)
- 1 RS GAES () B (ta—1)) "
x ( D Lixumix =i dis + N, Y. Y ame )
i,j=1 ¢ m=1727'e7'7n(tn)
) Z Gm (1 _ e=6m(T=1))
TGTn7(T)
+2 Z a—;n(T—T)efﬁ’"(TfT)
TETH (T) m
+ Y gﬂ(T )2 Bm(T=1)
7€M (T) m
N(T)
(Q, o, B|X) Ly iy>x () B (tn—1)
—omon - Z H L, (t0)# S A Z o (tn, — T)e
n=1 m=1,2 TETm (tn)

1y

>>X(t ) (ta=r))
x ( Y Lix(e)mix )=y % + Y. Y ame ))

4,j=1 m=1,2 7€Tm (tn)
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oQ,a, B X)  0Q,a,B|X)

aO‘m aqij B 3%‘;‘ 805m
N(T
_ (Z) ) Ly (6)>X (ta)) S e nlta)
- {X (tn=1,X (t)=5} N,

n=1 TETm(tn)

h 1

X(t )>X(t" vn n—T -2
X(Z Lix (tu=ix i) =iy %ia + Y. D ame ™l )>

3,7=1 m=121€T (tn)

Q,a,B|X)  0UQ, ,B|X)
0BmOq;; 0q;;08m
N(T) 1

X(#h)>X (tn)) —Bon (b —7
= Z ]I{X(tn=i,X(ti)=j}T Z m (ty, — T)e Brm (¢ )
n=1 v TETm (tn)

1

h
X () >X(tn B (tn—1)) 2
X ( Z L (=i, x (65)=j3 G5 T Z Z e Pt )>

7,5=1 m=12 717, (tn)

oQ, 0, B|X)  0l(Q,a,B|X)
00, 00, B 0BmOauy,
N(T)

X(tH>X B .
=" Z {Tm(tn)#@}% Z (tn - 7')6 ﬁ""(t" )

= v TETm (tn)

X(t+)>x (tn)) ST
X(Z Lix (tny=iox )= i + S ame it ))

t,j=1 m=1,2 7€Ty, (tn)

N(T
@ ) Lxh)>x(t)) B (tn—7)
+ 3 ( b)) > e )

n=1 TETm (tn)

Ly ity x(tn B .
8 (1{rm<tn>¢®}$ Z U (b — 7)™ Pmtn ))

TETm (tn )

1

h
X<t+>>X(t ) =)\ 2
x ( D L emix (=i dis + Yo D> ame MO ))

m=1,2re7,,(t,)

ig=1
v Y ¢=Bm(T=7))
TGTm(T)
]‘ T - I—r
_ Z F(Ti,]—)e Bm (T ))
TET,,,L(T) m
AUQ.0pX) Q. pIX))
ﬁamlaﬂmz mi1F#ma 85m28am1 mi#Eme
W Lx (t)>X (1)
_ Z (]l{fml(tn)7£@} nN' n Z e—Bml (tn_T))
n=1 ' TETm, (tn)

]lX tH)>X (¢, _ _r
. (hw(%#@}% >y (ty —T)e Pmalin >)

TETm, (tn)

h
1 t* -2
)>X(t O
. ( > L (b=t x ()= B + Z Y. ame )>

i,j=1 m=1,27€7,,(t,)
5.2.4.4 The delta method

Let Q € R**3 with ¢;; = ¢ € R for any 4,5 € {1,2,3} with ¢ # j and 1 # 3. To consider the probability of
p13(T') per possible path the realization with n = 1 transition {1, 3} is looked at. For any embedded paths from
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state 1 at time O to state 3 at time 7" the number of possible realizations is 1 for every value of n € NT. The
probability P({1,3}) is defined as follows with t,, transition times for n = 1,2,3, ...

T q T
/ 2qe™ 21 Lt = q/ e 2ati gy,
0 2q 0

1
= 5(1 — 672qT)

now for n = 2 the embedded rating chain {1, 2,3}

T ta q q T to
/ / 2ge 24t L oge—2alta=t) L g dp, = q2/ / e 2982 q¢, dty
o Jo 2q 2q o Jo

T
= q2 / t2€72qt2 dtQ
0

now for n = 3 the embedded rating chain {1,2,1, 3}

T oty pto q q q T pts pta
/ / / 2ge 21t —2qe‘2q<t2_t1)—2qe‘2q(t3_t2)—dt1dt2dt3 = q3/ / / 7293 dt, dtodis
o Jo Jo 2q 2q 2q o Jo Jo

T t2
= q3/ B2t gty
0 2

To conclude that p13(7T) is defined by the sum of the probability of the embedded rating chains with n transitions
from state 1 at time 0 to state 3 at time T’

oo

T xnfl
p13(T) _ Z qn/ 672qwd$
1 0

(n—1)!

n=

after which the order of integration and taking derivatives according to Leibniz rule could be applied to use the
closed form expression for pi3(¢) in the delta method.

5.2.4.5 Modified thinning simulation

Let N (t) be a time homogeneous Poisson process over time horizon [0, 7] with intensity function A and N = N(T)
event times t1,ty,--- ,tx. Consider a time-inhomogenuous intensity function as follows 0 < A(t) < A for any
t € [0,7]. Thin for n = 1,2,..., N the event times ¢5 with probability 1 — A(¢,)/), then the remaining event
times follow a time-inhomogenuous Poisson process with intensity A(t) as follows [46] [13] [19]

T T T i N
0 t1 tN_1 et by
-Ap T T T N
:eN' / / / H()\_)\(t”))dsld32dsn
: 0 0 o a1l

:exlT(/OT(A - )\(tn))ds)N

= e]\;‘!T (;\T - /ab /\(s)ds> "

with {s1, $2, ..., sy} the unordered event times and the summed probability of all possible number of events N
should retrieve the time inhomogenuous Poisson process driven by A(t) as follows [46] [13] [19]

0o o T n
;JP(N(T):n):e ATHZ%(AT— /0 As)ds)" /nl

AT AT [ As)ds

= e

— e~ fOT A(s)ds
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5.2.5 Alternative methodologies
5.2.5.1 Time-inhomogeneous Chapman-Kolmogorov equations

Assuming the Markovian property for X (¢) driven by P, the Chapman-Kolmogorov equations for any i,j € S
and t1,to,t3 € [0,7T] such that t; <t < t3 are defined by [24]

(P(t1,t3))i5 = Y (P(t1,t2))ik (P(ta, t3)) 1

keS

and given an infinitesmal timestep At and generator matrix @, the forward (and backward) equations are
derived for any t,t + At € [0,T] as follows [24]

(P)i;(t + At) = Z(P)ik(t)(P)kj(At) Chapman-Kolmogorov
kes
= (P)i;(1)(P);;(At) + Z (P)i(t)(P)k;j(AL) Rearranged
k€S k#j
~ (P)iy(t)(1— qi5(AL) + Y (P)a(t)ar; At Asymptotically
k€S k#j
= (P)i;(t) + (P)i;(t)q;; (At) + Z (P)ix(t)qu; At Rearranged
k€S, k]
= (P)i;(t) + Z(P)ik(t)ijAt -
kesS
with
P80 =Pall) _ prity ~ 30 (Pattlans
keS

and thus the forward equation in general matrix form is P’(¢t) = P(¢)Q (and backward P’'(t) = QP(t)).

As time-homogeneity is not necessarily assumed for X (¢), the forward (and backward) equation holds for
time-inhomogeneous Q as follows [24]

and backward equation

5.2.5.2 Discretized simulation

Let Q € R332 o,3,T € R and N € N* with At = T/N. Hypothesize (P(n - At))13 = ((Is + QAt)")13 +
(>°F ®;)13 for some B, € R3*3 by making no distinction between investment- or speculative grades in the
non-Markovian model, such that a = o and 8 = . According a Maclaurin series with f(z) = e for small
enough At and intensity A(t); an approximation for P is as follows

(P(t)i = 1— (Ni(t)At
and for any 4,j € such that j # 1
(P(t)ij =~ Xi(t) f(i — jlt)At
An attempt to simulate (P);3 by discretizing [0, 7] such that to = 0,¢; = At, to = 2At,....,txy = T is as follows

Input: Q, o, 5,7, N
1 Initialize ¥; = @7 P, = (Z), v, = QALdJru . 6_6At, b, = Ql,d ce BAL X Na,At;
2 Set At = T/N
3forn=3,..N
5 Set Qn = Qn—l X (QeiﬂAt + Qd)
4 Set <Dn = Qn ® NoéyAt-f—
(Ql,u X Q;—?; X Qd) e PR @ Ny At
(I)nfl X Q+
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(I)nfl : ei(nil)ﬂAt ® Na,At

with
. 1—qAt  q2At gzt
Q= @At 1—-gAt g3At
0 0 0
and
. 1-— qlAt O O
Qu=| @At 1-g@At 0
0 0 0
and
1-— qlAt 0 0
O = 0 00
0 0 0
and
X 0 qi2At qi3At
Q=10 0 qa3 At
0 0 0
and

X 0 qi2At qusAt
Qia= 1|0 0 0
0 0 0

and for any M € R3*3

=T ?—Tz ?+T2
M®Ngat=| 0 F -T2 F+7T,
0 0 0

for any j € {1,2}

=1
with
(®1)13=0
and
(®2)13 = (qr2At) (e PALAL)
and

(®3)1 = (q12A0) (g1 A1) (Fe A1 AY)
+ (q1aAt) (1 — goAt) (e 2PALAL)
+ (1 — 1 At) (qraAt) (e PALAL)
+ (quaAt)(—ae PALAL) (gasAt)
+ (qraAt) (—ae PAAL) (—ae 2PAAL)
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and

(®4)13 = (q12At) (g1 At)(1 — qlAt)( 30 AY)
+ (q128) (g21 At) (2 At) (e 3BAtAt)
+ (q12A8)(1 — qQAt)(qzlAt)( e 3AAY)
+ (a128)(1 = @ A0)(1 = q2At><ae—3ﬂAtAt>
+ (q12At) (g2 AL) (qraAt) (e 22T AL)
+ (1= A (1 — g At)(qr2At) (ae” P2 AL)
(@281 = 1 A8 (—ae AL (23 A0)
+(qlet)(meAt)(%e_gﬁAtAt)(q%At)
+ (q12At)(g21 A1) (—ae P AL (i3 At)
+ (1 — 1 At) (qaAt) (—ae PALAL) (qas At)
+ (g2t (—ae P A1 — g2At) (g2 At)
+ (qu2At) (—ae P2 Aty (—ae A AL) (a3 At)
+ (q12At)(1 — QQAt)(—a6_2BAtAt)(ae—3,3AtAt)
+ (g2t )(qzlAt)( e~ 2L (e~ 3PD AL)
+(
+(
+(
+(
+(

QIQAt)(%At)(foze*mtAt)(%e*WtAt)

1 — L A (qraAt) (—ae PAEAL) (e 3PALAL)
02At)(—ae” PAAL) (1 — gaAt) (ae” AL
G2 A1) (—ae PAIAL) (—ae 20 AL (ae A AY)

qlgAt)(—ae_ﬂAtAt)(qlgAt)(%e_wAtAt)
which does not capture {1,2,1,2,3} properly.
Unfortunately, for n = 4, (3" ®;)13 does not capture the non-Markovian momentum contribution properly

as demonstrated below. This might imply an iterative scheme is not possible and all possible realizations have
to simulated separately implying too much computational requirements for a long time horizon [0, T).
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5.3 Relevant Matlab scripts

5.3.1 Modified thinning simulation

%% Modified thinning simulation (~5 seconds)

clc

clear

close all

tic

%% Model input

Q=...

[-0.0869 0.0836 0.0031 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000;
0.0117 —0.1088 0.0942 0.0025 0.0003 0.0001 0.0000 0.0000 0.0000;
0.0006 0.0240 —0.0938 0.0666 0.0017 0.0007 0.0002 0.0000 0.0000;
0.0002 0.0016 0.0387 —0.0947 0.0496 0.0040 0.0006 0.0000 0.0000;
0.0001 0.0006 0.0033 0.0636 —0.1774 0.1060 0.0037 0.0001 0.0000;
0.0000 0.0003 0.0012 0.0035 0.0503 —0.1610 0.1012 0.0040 0.0004;
0.0000 0.0002 0.0001 ©0.0013 0.0048 0.1028 —0.1976 0.0622 0.0261;
0.0000 0.0000 0.0018 0.0029 0.0050 0.0447 0.1346 —0.2838 0.0948;
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000];

[0.0310 0.1291];

= [3.5234 1.7095];

ig = 4;

ve = {'Aaa', 'Aa','A','Baa’','Ba','B','Caa’','Ca','D"'};
% Simulation input
T = 30;

N = [413 1313 2232 2318 2021 4504 1333 59];
% Computations

im = size(Q,1);

j = sum(triu(Q)>0,2);

(eye(dim)==1) = —sum(Q,2)+Q(eye(dim)==1);

M = sum(N);
%% Preallocations

[m,t1,t2,t3,t4,11,12,13,14,v1,v2] = deal(cell(M,1));
[I,J,K] = deal(ones(M,1));

[L,rig,rsg] = deal(zeros(M,1));
%% Modified thinning simulation

parfor i = 1:M
m{i} = find(cumsum(N)>=i,1);

mu = —Q(m{i},m{i});

—~ ~ O 9
(o]

o°

oP

o =2 Q

L1{i}(I(1)) = mu;

12{i}(I(i)) = mu;

t1{i}(I(i)) = —log(rand)/11{i};
v1{i}(I(i)) = rand;

L4{i}(I(1)) = 11{i}(I(1));

P = cumsum([0 Q(m{i},1:m{i}—1) 0 Q(m{i},m{i}+1:dim)])./12{i};
I(i) = I(i)+1;
m{i}(I(i)) = find(P>=rand,1)—1;
mu = —Q(m{i}(I(i)),m{i}(I(i)));
if m{i}(I(i)) > m{i}(I(i)-1)
if m{i}(I(i)—1) <= lig
t2{i} = t1{i};
T1{i}(I(1i)) = mu+a(l);
t1{i}(I(i)) = t1{i}—log(rand)/11{i}(I(i));
rig(i) = exp(—b(1)*(t1{i}(I(i))—t1{i}(I(i)-1)));
J(i) = J(i)+1;
else
t3{i} = t1{i};
T1{i}(I(1i)) = mu+a(2);
t1{i}(I(1)) = t1{i}-log(rand)/11{i}(I(1));
rsg(i) = exp(-—b(2)*(t1{i}(I(i))-t1{i}(I(i)-1)));
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K(i) = K(i)+1;
end

else

end
14{i}(I(1i))
12{i}(I(1))

11{i}(I(1))
t1{i}(I(1))

mu;
t1{i}(I(i)—1)-log(rand)/11{i}(I(1));

11{i}(I(1));
mu+a(1l)*rig(i)+a(2)xrsg(i);

while t1{i}(I(i)) < T && m{i}(I(i)) < dim

end

v1{i}(I(i)) = rand;
if vI{i}(I(1))*11{i}(I(1i)) <= 12{i}(I(1))

dg = (12{i}(I(1))-mu)/Nj(m{i}(I(1)));

P = cumsum([0 Q(m{i}(I(i)),1:m{i}(I(i))-1) O ...
Q(m{i}(I(1)),m{i}(I(1))+1:dim)+...
(Q(m{i}(I(1)),m{i}(I(1))+1:dim)>0)=dq])./12{i}(I(1));

I(i) = I(i)+1;

m{i}(I(i)) = find(P>=rand,1)—1;

mu = —Q(m{i}(I(1)),m{i}(I(1)));

if m{i}(I(1)) > m{i}(I(i)-1)
if m{i}(I(1)—1) <= lig

t2{i}(3(1)) = t{iH(I(1)—-1);
T1{i}(I(1i)) = dg*Nj(m{i}(I(i)—1))+mu+a(l);
t1{i}(I(1)) = tI1{i}(I(i)—1)-log(rand)/11{i}(I(1));

rig(i) = exp(—b(1)*(t1{i}(I(i))—t1{i}(I(i)—1)))*...
(1+rig(i));

rsg(i) = exp(—b(2)*(t1{i}(I(i))—t1{i}(I(i)—1)))*rsg(i);

J(i) = J(1i)+1;

else
t3{i} (K(1)) = t1{i}(I(i)—1);
L1{i}(I(1)) = dg*Nj(m{i}(I(i)—1))+mu+a(2);
t1{i}(I(1)) = t1{i}(I(i)—1)>-log(rand)/11{i}(I(1));

rig(i) = exp(—b(1)*(t1{i}(I(i))—t1{i}(I(i)—1)))*rig(i);
rsg(i) = exp(—b(2)*x(t1{i}(I(i))—t1{i}(I(i)—1)))*...
(1+rsg(i));

K(i) = K(i)+1;

end

else
LI{i}(I(1)) = dg*Nj(m{i}(I(i)—1))+mu;
t1{i}(I(i)) = t1{i}(I(i)—1)-Llog(rand)/11{i}(I(1i));

rig(i) = exp(—b(1)*(t1{i}(I(i))—t1{i}(I(i)—1)))*rig(i);
rsg(i) = exp(—b(2)*(t1{i}(I(i))—t1{i}(I(i)—1)))*rsg(i);

end

else

L(i) = L(i)+1;

t4{i}(L(1)) = t1{i}(I(i));

v2{i}(L(1)) = v1{i}(I(i));

13{i}(L(1)) = 11{i}(I(1));

L1{i} (I(1)) = 12{i}(I(1));

t1{i}(I(i)) = t1{i}(I(i))—log(rand)/11{i}(I(i));

rig(i) = exp(—b(1)*(t1{i}(I(1i))—t4{i}(L(1))))*rig(i);
rsg(i) = exp(—b(2)*(t1{i}(I(i))—t4{i}(L(1))))*rsg(i);
end
T4{i} (I(i)+L(1)) = 11{i}(I(1));
12{i}(I(i)) = mu+a(1l)*rig(i)+a(2)*rsg(i);

t1{i} = [0 nonzeros(t1{i}(1:I(i)—1).*(t1{i}(1:I(i)—1)<T))."' TI1;
m{i} = m{i}(1:length(t1{i})—1);

I(i) = length(m{i});

11{i} = W1{i}(1:I(1));

12{i} = 2{i}(1:I(1));

LL{i}(I(1)) = WL{i}(I(i))—11{i}(I(i))*(m{i}(I(i))==dim(1));
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L2{i}(I(1)) = W2{i}(T(1))12{i}(I(1))*(m{i}(I(1))==dim(1));
T4{i}(I(1)+L(1)) = W4{i}(T(i)+L(1))—14{i}(T(i)+L(i))*...
(m{i}(I(i))==dim(1));
end
%% Input
path = matlab.desktop.editor.getActiveFilename;
cd(strcat(path(l:strlength(path)—strlength(mfilename)-2),...
'l. Modified thinning simulation input'));
save('Q','Q'); save('a','a'); save('b','b"); save('lig','lig');
save('T','T"); save('N','N"); save('lve','lve');
%% Output
cd(strcat(path(l:strlength(path)—strlength(mfilename)-2),...
'2. Modified thinning simulation output'));
save('dim', 'dim'); save('Nj','Nj'); save('vl','vl'); save('v2','v2");
save('tl','tl'); save('t2','t2'); save('t3','t3"); save('t4d','t4");
save('l1l','11'); save('l2','12'); save('13','13'); save('l4','14"');
save('I','I'); save('J','J"); save('K','K"'); save('L','L"); save('m','m");
toc

43




5.3.2 Exact maximum likelihood estimation

%% Exact maximum likelihood estimator (~1 minute)

clc

clear

close all

tic

%% Modified thinning simulation input

path = matlab.desktop.editor.getActiveFilename;

cd(strcat(path(l:strlength(path)—strlength(mfilename)—2),...
'1l. Modified thinning simulation input'));

load('lig'); load('T'); load('N"'); load('dt');

%% Modified thinning simulation output

cd(strcat(path(l:strlength(path)—strlength(mfilename)—2),...
'2. Modified thinning simulation output'));

load('m'); load('tl'); load('dim'); load('I"'); load('Nj');

cd(strcat(path(l:strlength(path)—strlength(mfilename)—2)));

%% Estimation input

X = 0.975;
%% Computations
0 = round(T/dt);
M = sum(N);

%% Preallocations
Nij = cell(M,1);
Ri = cell(M,1);
%% Exact likelihood estimator
parfor i = 1:M
Nij{i} = zeros(dim);
Ri{i} = zeros(dim,1);
for j = 1:dim—1
Ri{i}(j) = sum((m{i}==j).*xdiff(t1{i}));
for k = 1:dim
Nij{i}(j,k) = sum((m{i}(1:I(i)—1)==j).*...
(m{i}(2:I(i))==K));
end
end
end
mle = sum(cat(3,Nij{:}),3)./sum(cat(3,Ri{:}),3);
mle(eye(dim)==1) = —sum(mle,2)+mle(eye(dim)==1);
mle(isnan(mle)) = 0;
mle(dim,:) = 0;
%% Preallocations
v = cell(1,12);
C = cell(dim,dim);
dpv = cell(0+1,dim,dim);
pme zeros(0+1,dim,dim);
pmi = zeros(0+1,dim—1,dim);
%% Computations

%dt = T/0;
[ver,hor,nrp,~,~] = fb_allowedpairsfunction(m,dim,1);
[t1,~,~,~,~,~,~,~,v6] = fc_vectorfunction(m,tl,ver,hor,Nj,lig);

v{1l} = M; v{2} = nrp; v{3} = I; v{6} = cell(M,1); v{12} = v6;
h = fd_markovianloghessianfunction(m,mle,v);
f = —inv(h);
%% Confidence intervals
parfor i = 1l:dim
ei = zeros(dim,1); ei(i) = 1;
for j = 1:dim
ej = zeros(dim,1); ej(j) = 1;
C{i,j} = [mle eixej.'—eixei.'; zeros(dim) mlel;
end
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end
parfor i = 1:0+1
t2 = (i—1)xdt;
for j = 1l:dim
for k = 1:dim
dpv{i,j,k} = zeros(1l,nrp);
for 1. = 1:nrp
dum = expm(C{ver(1l),hor(l)}*t2);
dpv{i,j,k} (1) = dum(j,dim+k);
end
end
end
end
%% Default probability
parfor i = 1:0+1
pme(i,:,:) = expm(mlex(i—1)*xdt);
end
for i = 1:0+1
for j = 1:dim—1
for k = 1:dim
pmi(i,j,k) = norminv(x)x*xsqrt(dpv{i,j, k}*fxdpv{i,j,k}."');
end
end
end
%% Input
cd(strcat(path(l:strlength(path)—strlength(mfilename)—2),...
'7. Exact maximum likelihood estimator input'));
save('x','x");
%% Output
cd(strcat(path(l:strlength(path)—strlength(mfilename)—2),...
'8. Exact maximum likelihood estimator output'));
save('mle','mle'); save('pme','pme'); save('pmi', 'pmi');
save('ver','ver'); save('hor','hor'); save('nrp','nrp');
toc
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5.3.3 Expectation-maximization algorithm

%% Expectation—maximization algorithm (~3 minutes)

close all

clc

clear

tic

%% Modified thinning simulation input

path = matlab.desktop.editor.getActiveFilename;

cd(strcat(path(l:strlength(path)—strlength(mfilename)—2),...
'1l. Modified thinning simulation input'));

load('lig'); load('T'); load('N"'); load('dt');

%% Modified thinning simulation output

cd(strcat(path(l:strlength(path)—strlength(mfilename)—2),...
'2. Modified thinning simulation output'));

load('m'); t = load('tl'); t = t.tl; load('dim'); load('I");

%% Exact maximum likelihood estimator input

cd(strcat(path(l:strlength(path)—strlength(mfilename)-2),...
'7. Exact maximum likelihood estimator input'));

load('x");

%% Exact maximum likelihood estimator output

cd(strcat(path(1l:strlength(path)—strlength(mfilename)—2),...
'8. Exact maximum likelihood estimator output'));

load('mle'); load('ver'); load('hor'); load('nrp');

%% Estimation input

eps = le—9;

mit = le3;

%% Computations

mle = eps*x(mle>eps);

0 round(T/dt);

M sum(N) ;

%% Preallocations

dml = zeros(T+1,M);

ttm zeros(T,dim,dim);

1nl zeros(1,mit+1);

%% Computations

for h = 1:T+1

for 1 = 1:M
dml(h,i) = m{i}(sum(find(t{i}(2:I(i))<h—1,1," 'last"'))+1);
if h>1
ttm(h—1,dm1(h—1,i),dml(h,i)) = ttm(h—1,dml(h—1,i),dml(h,i))+1;
end
end
end
%% Expectation maximization algorithm
i=1;

while i < mit
esj zeros(1l,dim);
ekk zeros (dim);
for j = 1:dim
ea = zeros(dim,1);

ea(j) = 1;
for 1. = 1:T
ecp = expm([mle eaxea.'; zeros(dim) mle]);
eqt = expm(mle);
esj(j) = esj(j)+...
nansum(squeeze(ttm(l,:,:)).xecp(l:dim,dim+1:2xdim)./...
eqt, 'all');

for k = setdiff(linspace(1l,dim,dim),j)
eb = deal(zeros(dim,1));
eb(k) = deal(1l);
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ecg = expm([mle mle(j,k)*eaxeb.'; zeros(dim) mle]);
ekk(j,k) = ekk(j,k)+...
nansum(squeeze(ttm(l,:,:)).*xecg(l:dim,dim+1:2xdim)./...
eqt, 'all');
end
end
end
mle = ekk./esj.';
mle(eye(dim)==1) = —sum(mle,2)+mle(eye(dim)==1);
mle(isnan(mle)) = 0;
for j = 1l:dim
for k = 1:dim
for 1 = 1:T
P = expm(mle);
if P(j,k) > 0
Inl(i+1l) = Unl(i+1)+ttm(1,j,k)*log(P(j,k));
end
end
end
end
rer = abs(lnl(i+1)—lnl(i))/abs(lnl(1i));
if 1 > 2 && rer <= eps
break
end
i = 1i+1;
end
nl = Inl(lnl~=0);
%% Preallocations
C = cell(dim,dim);
pme zeros(0+1,dim,dim);
pmi = zeros(0+1,dim—1,dim);
dpv cell(0+1,dim,dim);
H = zeros(nrp);
%% Fisher information
for h = 1:nrp
for i = 1l:nrp
dH = zeros(T,dim,dim);
[a,b,m,v] = deal(ver(h),hor(h),ver(i),hor(i));
[ea,eb,em,ev] = deal(zeros(dim,1));
[ea(a),eb(b),em(m),ev(v)] = deal(l);

ca = [mle eaxeb.'—eaxea.'; zeros(dim) mle];
cm = [mle emxev.'—emxem.'; zeros(dim) mle];
dc = [emxev.'—emx*em.' zeros(dim); zeros(dim) emxev.'—emxem.'];

cX [ca dc; zeros(2xdim) cal;

[eq,ecx] = deal(expm(mle),expm(cx));
[eca,ecm] = deal(expm(ca),expm(cm));
for j = 1:T

-
o
3
—~ =

dH(j,k,1) = ttm(j,k,1)/eq(k,1)*...
(eca(k,dim+1)*ecm(k,dim+1)/eq(k,1)—ecx(k,3xdim+1));
end
end
end
H(h,i) = nansum(dH, 'all');
end
end
F = abs(inv(H));
%% Default probability & confidence intervals
or i = 1l:dim
ei = zeros(dim,1);

—
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ei(i) = 1;
for j = 1:dim
ej = zeros(dim,1);
ej(j) = 1;
C{i,j} = [mle eixej.'—eixei.'; zeros(dim) mlel;
end
end
for i = 1:0+1
t2 = (i—1)xdt;
for j = 1l:dim
for k = 1:dim
dpv{i,j,k} = zeros(1l,nrp);
for 1. = 1l:nrp
dm2 = expm(C{ver(1l),hor(l)}*t2);
dpv{i,j,k} (1) = dm2(j,dim+k);
end
end
end
end
parfor i = 2:0+1
pme(i,:,:) = expm(mlex(i—1)*xdt);
end
pme(l,:,:) = eye(dim);
for i = 1:0+1
for j = 1:dim-1
for k = 1:dim
pmi(i,j,k) = norminv(x)x*xsqrt(dpv{i,j, k}*Fxdpv{i,j,k}."');
end
end
end
%% Input
cd(strcat(path(1l:strlength(path)—strlength(mfilename)—2),...
'10. Expectation—maximization algorithm input'));
save('eps','eps'); save('mit','mit');
%% Output
cd(strcat(path(l:strlength(path)—strlength(mfilename)—2),...
'11. Expectation—maximization algorithm output'));
save('mle', 'mle'); save('pme','pme'); save('pmi','pmi'); save('lnl','lnl");
toc
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5.3.4 Metropolis-Hastings algorithm

%% Metropolis—Hastings algortihm (~6 hours)
clc

clear

close all

set(groot, 'defaulttextinterpreter', 'latex');
%% Estimation input

ite = 1le3;
bii = 1le2;
var = le—3;

%% Modified thinning simulation input

path = matlab.desktop.editor.getActiveFilename;

cd(strcat(path(l:strlength(path)—strlength(mfilename)—2),...
'l. Modified thinning simulation input'));

load('a'); load('b"'); load('lig'); load('N"'); load('T');

%% Modified thinning simulation output

cd(strcat(path(l:strlength(path)—strlength(mfilename)-2),...
'2. Modified thinning simulation output'));

t = load('tl'); t = t.t1; load('m'); dml = load('dim'); dml = dml.dim;

load('I");

%% Exact maximum likelihood estimator output

cd(strcat(path(l:strlength(path)—strlength(mfilename)—-2),...
'8. Exact maximum likelihood estimator output'));

Q = load('mle'); Q = Q.mle; load('nrp');

%% Markovian projected Newton Raphson method output

cd(strcat(path(l:strlength(path)—strlength(mfilename)—2),...
'14. Markovian projected Newton—Raphson method output'));

load('v');

%% Non Markovian projected Newton Raphson method input

cd(strcat(path(l:strlength(path)—strlength(mfilename)—2),...
'16. Non markovian projected Newton—Raphson method input'));

load('eps');

cd(strcat(path(l:strlength(path)—strlength(mfilename)—2)));

%% Computations

M = sum(N);
ite = ite+bii;
dm2 = dml"2;

a = exprnd(a);

b = exprnd(b);

mab = [[0.1; 1]1;[10; 11];
%% Preallocations

X = zeros(dm2+4,1);

ip = zeros(dm2+4,1);

= 0;

%% Computations

for i = 1:dm2

0

if Q(i) > 0
c = c+1;
x(i) = Q(1i);
ip(c) = 1i;
end

end

ip(dm2+1:dm2+4) = dm2+1:dm2+4;

ip(ip==0) = [];

X (dm2+1:dm2+4) = [a b];

%% Preallocations

x = [x repmat(zeros(dm2+4,1),1,ite)];

[r,10,11] = deal(zeros(nrp+4,ite+l));

%% Metropolis Hastings algorithm

P = waitbar(0, '\textbf{Please wait}', 'Name', ...
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'Metropolis—Hastings algorithm');
s2 = 0;
10(1,1) = fi_loglikelihoodfunction(m,t,Q,a,b,Vv);
i=1;
while i <= ite
tic
for j = l:nrp+4
d = 1ip(j);
while x(d,i+l) < eps
x(d,i+1l) = normrnd(x(d,i),var);
end
Q = reshape([x(1l:min(d,dm2),i+1); x(d+1l:dm2,i)],[dml dml]);
Q(eye(dml)==1) = —sum(Q,2)+Q(eye(dml)==1);
a = [x(dm2+1:min(d,dm2+2),i+1)."'; x((max(d+1,dm2+1):dm2+2),i)].";
b = [x(dm2+3:min(d,dm2+4),1i+1)."'; x((max(d+1,dm2+3):dm2+4),1i)].";
11(j,1i) = fi_loglikelihoodfunction(m,t,Q,a,b,v);
if ip(j) > dm2
r(j,i) = exp(11(j,i)-10(j,i))*...
exppdf (x(d,i+1),mab(ip(j)—dm2))/...
exppdf (x(d,i),mab(ip(j)—dm2));
else
r(j,i) = exp(l1(j,1)-10(j,1));
end
u = rand<=r(j,1i);
10(j+1+(nrp+4)x(i—1)) = ux11(j,1)+(1—u)*10(j,1);
x(d,i+1l) = uxx(d,i+1)+(1—u)=*x(d,i);
end
s2 = s2+toc;
waitbar(i/ite,P,['\textbf{Remaining time (min): }',...
num2str((s2/i)*(ite—-i)/60,2)1)
if i > ite
break
end
i = 1i+1;
end
close(P)
%% Input
cd(strcat(path(l:strlength(path)—strlength(mfilename)—-2),...
'22. Metropolis—Hastings algorithm input'));
save('ite','ite'); save('bii','bii'); save('var','var');
%% Output
cd(strcat(path(1l:strlength(path)—strlength(mfilename)—2),...
'23. Metropolis—Hastings algorithm output'));
save('x','x"); save('l0','10"); save('ll','1l1"); save('u','u");
save('r','r");
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5.3.5 Projected Newton-Raphson method

%% Non—Markovian Projected Newton Raphson method (~1 hour)
clc

clear

close all

tic

%% Estimation input
eps = 5e—5;

scl = le—2;

sc2 = 2el-1;

Ni = 2el;

%% Modified thinning simulation input
path = matlab.desktop.editor.getActiveFilename;
cd(strcat(path(l:strlength(path)—strlength(mfilename)—2),...
'l. Modified thinning simulation input'));
ma = load('a'); ma = ma.a; mb = load('b'); mb = mb.b; load('lig');
load('T");
%% Modified thinning simulation output
cd(strcat(path(l:strlength(path)—strlength(mfilename)—2),...
'2. Modified thinning simulation output'));
load('m'); t = load('tl'); t = t.t1l; load('dim'); load('I");
%% Markovian maximum likelihood estimator output
cd(strcat(path(l:strlength(path)—strlength(mfilename)-2),...
'8. Exact maximum likelihood estimator output'));
load('mle'); load('ver'); load('hor'); load('nrp');
%% Markovian projected Newton—Raphson method input
cd(strcat(path(l:strlength(path)—strlength(mfilename)—2),...
'14. Exact projected Newton—Raphson method output'));
load('v');
cd(strcat(path(l:strlength(path)—strlength(mfilename)—2)));
%% Preallocations
[Qm,am,bm] = deal(cell(sc2,Ni));
[Km,Lm] = deal(zeros(1,Ni));
%% Non—Markovian Projected Newton Raphson method
for 1 = 1:Ni

X = zeros(nrp+4,1);

k =0;

a = exprnd(ma);

b = exprnd(mb);

Q = mle;

for i = 1l:nrp
x(i) = Q(ver(i),hor(i));

x(nrp+l:nrp+2) a;
x(nrp+3:nrp+4) = b;
Qm{1,1} = Q; am{1,1} = a; bm{l,1} = b;
g = fg_loggradientQabfunction(m,t,Q,a,b,v);
h fh_loghessianQabfunction(m,t,Q,a,b,v);
y = h\g;
X ((x—y)>eps) .x(x—y)+((x-y)<=eps)xeps;
for j = l:nrp
Q(ver(j),hor(j)) = x(j);
end
Q(eye(dim)==1) = —sum(Q,2)+Q(eye(dim)==1);
a = x(nrp+l:nrp+2);
b X(nrp+3:nrp+4);
k = k+1;
e = fg_loggradientQabfunction(m,t,Q,a,b,v);
Qm{k+1,1} = Q; am{k+1,1} = a; bm{k+1,1} = b;
while (max(abs(y)) >= scl || max(abs(e—g)) >= scl) && k <= sc2
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= e;
= fh_loghessianQabfunction(m,t,Q,a,b,v);
h\g;
((x—y)>eps) .x(x—y)+((x—y)<=eps)*eps;
for j = l:nrp

Q(ver(j),hor(j)) = x(j);
end
Q(eye(dim)==1) = —sum(Q,2)+Q(eye(dim)==1);
a x(nrp+l:nrp+2);
b x(nrp+3:nrp+4);
k = k+1;
e = fg_loggradientQabfunction(m,t,Q,a,b,v);
Qm{k+1,1} = Q; am{k+1,1} = a; bm{k+1l,1} = b;

X < TQ
|

end

Lm(1l) = fi_loglikelihoodfunction(m,t,Q,a,b,v);
Km(l) = k;

disp(l);

end
%% Input
cd(strcat(path(1l:strlength(path)—strlength(mfilename)—2),...

'16. Non—markovian projected Newton—Raphson method input'));
save('eps','eps'); save('scl',6'scl'); save('sc2',6'sc2'); save('Ni','Ni");
%% Output
cd(strcat(path(l:strlength(path)—strlength(mfilename)—2),...

'17. Non—markovian projected Newton—Raphson method output'));
save('Qm','Qm'); save('am',6'am'); save('bm','bm");
save('Lm','Lm'); save('Km',6 'Km');
toc
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5.3.6 Discretized simulation

%% Non—Markovian discretized simulation (~3 seconds)

clc

clear

close all

tic

%% Simulation input

Q=1[-0.2 0.1 0.1;
0.1 —0.2 0.1;
0.0 0.0 0.0];

a=20.1;

b =1;

T = 10;

dt = le—2;

lig = 2;

lve = {'A",'B','C'};

Nj = sum(triu(Q)>0,2);

%% Computations

N = round(T/dt);

dim = length(Q);

Q(eye(dim)==1) = —sum(Q,2)+Q(eye(dim)==1);
Qb = eye(dim)+Qxdt;

Qd = triu(Qb)—diag(diag(Qb));
Qu = Qb-—Qd;

Qbl = Qb;

Qbl(2:dim,:) = 0;

Qd1 = Qd;

Qd1(2:dim,:) = 0;

Qul = Qu;

Qul(2:dim,:) = 0;

%% Preallocations

[Phn,Psn] = deal(zeros(dim,dim,N+1));
[P1,P2] = deal(zeros(dim,dim,N+1));

%% Non—Markovian discretized simulation
P1(:,:,1) = eye(dim);

P2(:,:,1) = eye(dim);
P1(:,:,2) = Qb;
P2(:,:,2) = Qb;

Psn(:,:,2) = Qdlxexp(—bx*dt);

duml = sum(Psn(:,:,2),1);

Phn(:,:,2) = axdtx[—duml(1l) duml(1l)/2—duml(2)
0 duml(1)/2—duml(2)
0 0

for n = 3:N+1

duml(1)/2+duml(2);
duml(1)/2+duml(2);
01;

Psn(:,:,n) = Psn(:,:,n—1)*x(Qbxexp(—b*dt)+Qd);

dum2 = sum(Psn(:,:,n),1);
dum3 = sum(QulxQu”™(n—3)*Qdxexp(—bxdt),1);

dum4 = sum(Phn(:,:,n—1)xexp(—(n—1)*bxdt),1);
dum5 = axdtx[—dum2(1) dum2(1l)/2—dum2(2) dum2(1)/2+dum2(2);

0 dum2(1)/2—dum2(2) dum2(1)/2+dum2(2);
0 0 0];

dum6 = axdtx[—dum3(1) dum3(1l)/2—dum3(2) dum3(1l)/2+dum3(2);
0 dum3(1)/2—dum3(2) dum3(1l)/2+dum3(2);
0 0 0];

dum7 = axdtx[—dum4 (1) dumd4(1l)/2—dumd4(2) dumd(1)/2+dumd4(2);
0 dum4(1)/2—dum4(2) dumd(1l)/2+dum4d(2);
0 0 01;

Phn(:,:,n) = dum5+dum6+dum7+Phn(:,:,n—1)*Qb;

P1(:,:,n) = Qb™n;
P2(:,:,n) = Qb”n+sum(Phn(:,:,1:n),3);
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end

%% Input

path = matlab.desktop.editor.getActiveFilename;

cd(strcat(path(l:strlength(path)—strlength(mfilename)—2),...
'28. Non—Markovian discretized simulation input'));

save('Q','Q"'); save('a','a"); save('b','b'); save('T','T");

save('dt','dt'); save('lig','lig'); save('lve','lve');

%% Output
cd(strcat(path(l:strlength(path)—strlength(mfilename)—2),...
'29. Non—Markovian discretized simulation output'));
save('P1','P1'); save('P2','P2"); save('dim','dim'); save('Nj','Nj");

toc
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5.3.7 Heuristic estimator

%% Non—Markovian heuristic estimator (~3 seconds)

clc

clear

close all

tic

%% Modified thinning simulation input

path = matlab.desktop.editor.getActiveFilename;

cd(strcat(path(l:strlength(path)—strlength(mfilename)—2),...
'1l. Modified thinning simulation input'));

load('Q'); load('a'); load('b'); load('lig'); load('dt'); load('T");

load('lve');

%% Modified thinning simulation output

path = matlab.desktop.editor.getActiveFilename;

cd(strcat(path(l:strlength(path)—strlength(mfilename)—2),...
'2. Modified thinning simulation output'));

load('dim'); load('Nj");

%% Computations

0 = round(T/dt);

tl linspace(0,T,0+1);

t2 = tl.';

%% Preallocations

[P1,P2] = deal(zeros(dim—1,dim,dim,0+1));

%% Heuristic estimator

for h = 1:dim—1

[w,x] = deal(zeros(dim,0+1));

for 1 = h:dim—1
u=—(Q(i,i)+w(i,:)).xexp((Q(i,i)—w(i,:)).xtl);
v = a((i>lig)+1)*exp(—b((i>1lig)+1)*(t2—t1)).*u;

w(i+l,:) = dtxtl.*(sum(triu(v."'),1l)—(diag(v).'+v(:,1)."')/2);
for j = 1:i-1
X(i,:) = x(i,:)+w(j+1,:).*%(Q(j,i)+x(j,:)/Nj(i))./...
(—Q(3,3)+x(3,:))/Nj(i);
end
end
x(1,:) = zeros(1,0+1);
x(dim,:) = zeros(1,0+1);

P1(h,:,:,1) = zeros(dim);

P1(h,h,h,1) = 1;

P2(h,:,:,1) = P1(h,:,:,1);

for i = 1:0
P1(h,:,:,i+1l) = squeeze(Pl(h,:,:,1))*...

(eye(dim)+(Q+(triu(Q>0)—eye(dim).xNj."').xx(:,1))*dt);

P2(h,:,:,i+1l) = squeeze(P2(h,:,:,1i))*(eye(dim)+Qxdt);

end

end

%% Output

cd(strcat(path(l:strlength(path)—strlength(mfilename)—2),...
'38. Non—Markovian heuristic estimator output'));

save('P1','P1'); save('P2','P2");

toc
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5.3.8 Modified Markovian model

%% Modified Markovian maximum likelihood estimator (~2 minutes)
clc
clear
close all
tic
%% Modified thinning simulation input
path = matlab.desktop.editor.getActiveFilename;
cd(strcat(path(l:strlength(path)—strlength(mfilename)—2),...
'1l. Modified thinning simulation input'));
load('lig'); load('T'); load('N"'); load('dt');
%% Modified thinning simulation output
cd(strcat(path(l:strlength(path)—strlength(mfilename)—2),...
'2. Modified thinning simulation output'));
load('m'); load('tl'); load('I"'); load('dim');
%% Exact discretized simulation output
cd(strcat(path(l:strlength(path)—strlength(mfilename)-2),...
'7. Exact maximum likelihood estimator input'));
load('x");
cd(strcat(path(l:strlength(path)—strlength(mfilename)—2)));
%% Preallocations
Mv2 = zeros(1l,dim);
mle = cell(dim—1,1);
%% Computations
M = sum(N);
0 = round(T/dt);
for i = 1:M
Mv2(m{i}(1)+1) = Mv2(m{i}(1)+1)+1;
end
Mvl = cumsum(Mv2);
%% Modified maximum likelihood estimator
parfor i = 1:dim—1
Nij = zeros(dim);
Ri = zeros(dim,1);
for j = Mv1(i)+1:Mv1(i+1)
for k = 1:dim—1
Ri(k) = Ri(k)+sum((m{j}==k).xdiff(t1{j}));
for 1 = 1:dim
Nij(k,1) = Nij(k,U)+sum((m{j}(1:I(j)—1)==Kk).*..
(m{3}(2:1(§))==1));
end
end
end
mle{i} = Nij./Ri;
mle{i} (eye(dim)==1) = —sum(mle{i},2)+mle{i}(eye(dim)==1);
mle{i} (isnan(mle{i})) = 0O;
mle{i}(dim,:) = 0O;
end
%% Preallocations
v = cell(1,12);
C = cell(dim,dim);
dpv = cell(0+1,dim—1);

dpv = cell(0+1,dim);
pme = zeros(dim—1,0+1,dim,dim);
pmi = zeros(dim—1,0+1,dim);

f = cell(1l,dim—1);

%% Confidence intervals

for i = 1:dim—1
m2 m(Mv1(i)+1:Mv1(i+l));
t2 t1(Mv1(i)+1:Mv1(i+l));
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nrp = sum(mle{i}>0, 'all');
[ver,hor,~,Nj,~] = fb_allowedpairsfunction(m2,dim,1);
[t2,~,~,~,~,~,~,~,v6] = fc_vectorfunction(m2,t2,ver,hor,Nj,lig);
v{1l} = Mv2(i+l); v{2} = nrp; v{12} = v6;
v{3} I(Mv1(i)+1:Mv1(i+1)); v{6} = cell(Mv1(i+1)—Mvl(i));
h = fd_markovianloghessianfunction(m2,mle{i},v);
f{i} = —inv(h);
for j = 1:dim
ej = zeros(dim,1); ej(j) = 1;
for k = 1:dim
ek = zeros(dim,1); ek(k) = 1;
C{j, k} = [mle{i} ej*ek.'—ejxej."'; zeros(dim) mle{i}];
end

end
for j = 1:0+1
t3 = (j—1)xdt;
for k = 1:dim
dpv{j,k} = zeros(1l,nrp);
for 1 = 1l:nrp
dum = expm(C{ver(1l),hor(l)}*t3);
dpv{j,k}(1) = dum(k,2*dim);
end
end
pme(i,j,:,:) = expm(mle{i}*x(j—1)*dt);
for k = 1:dim
pmi(i,j,k) = norminv(x)x*sqrt(dpv{j, k}*xf{i}*xdpv{j,k}.");
end
end
end
%% input
cd(strcat(path(l:strlength(path)—strlength(mfilename)—2),...
'34. Modified markovian maximum likelihood estimator input'));
save('dt','dt'); save('x','x");
%% Output
cd(strcat(path(l:strlength(path)—strlength(mfilename)—2),...
'35. Modified markovian maximum likelihood estimator output'));
save('mle', 'mle'); save('pme', 'pme'); save('pmi', 'pmi');
toc
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5.3.9 Allowed pairs function

function [ver,hor,nrp,Nj,Q] = fb_allowedpairsfunction(m,dim,eps)
[Q,ver,hor] = deal(zeros(dim));
nrp = 0;
M = size(m,1);
for 1 = 1:dim
for j = 1:dim
if 1 ~=
for k = 1:M
if ~isempty(strfind(m{k},[i j1))
nrp = nrp+l;

Q(i,j) = eps;
ver(nrp) = 1i;
hor(nrp) = j;
break

end
end
end
end
end
ver = nonzeros(ver);
hor = nonzeros(hor);
Q(eye(dim)==1) = —sum(Q,2)+Q(eye(dim)==1);
Nj = sum(triu(Q)=>0,2).";
end
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5.3.10 Vectorization function

function [t,rv,Nv,vl,v2,v3,v4,v5,v6] = fc_vectorfunction(m,t,ver,hor,Nj,...

lig)
M = size(m,1);
dim = max([ver; hor]);
nrp = size(ver,1);
I = zeros(M,1);
[rv,Nv] = deal(cell(M,1));
[vl,v2,v3,v4] = deal(cell(M,1));
[v5,v6] = deal(cell(M,nrp));
parfor i = 1:M
I(i) = length(m{i});
rv{i} = zeros(1l,I(i)—1);
Nv{i} = Nj(m{i}(1:I(i)-1));
t{i}(I(i)+1) = t{i}(T(L)+1)+(t{i}(I(i))—t{i}(I(i)+1))*...
(m{i}(I(i))==dim);

vi{i} = (diff(m{i})>0).x(m{i}(1:I(i)—1)<=1lig);
v2{i} = (diff(m{i})>0).*(m{i}(1:I(i)—1)>1ig);

v3{i} = m{i}(I(1)) == dim && m{i}(I(i)) <= lig;
v4{i} = m{i}(I(1)) == dim && m{i}(I(i)) > lig;

for j = 1l:inrp
v5{i,j} = zeros(1,I(i));
v6{i,j} = zeros(1,I(i)—1);
for k = 1:I(i)—1
if length(m{i}) > 1
if m{i} (k) == ver(j)
v5{i,j}(k) = 1;
if m{i}(k+1) == hor(j)
v6{i,j}(k) = 1;
end
end
end
end
v5{i,j}(I(i)) = m{i}(I(i)) == ver(j);
end
end
end
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5.3.11 Logarithmic Markovian gradient function

function g = fe_markovianloggradientfunction(m,t,Q,v)
M = v{1}; nrp = v{2}; I = v{3}; rig = v{4}; Nv = v{5}; Qv = v{6};
vl = v{7}; v2 = v{8}; v3 = v{9}; v4 = v{10}; v5 = v{11l}; v6 = v{12};
rsg = rig;
[ml,m2] = deal(zeros(M,nrp));
parfor i = 1:M
if I(1i) >
Qv{i} diag(Q(m{i}(1:I(i)—1),m{i}(1:I(i)—1)+diff(m{i}))).";
for j = 1l:nrp
ml(i,j)
m2(i,j)
end
else
for j = l:nrp
ml(i,j) = sum(—v5{i,j}.xdiff(t{i}));
end

=

sum(—v5{i,j}.xdiff(t{i}));
sum(v6{i,j}./(Qv{i}));

end
end
g = sum(ml+m2,1)."';
end
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5.3.12 Logarithmic Markovian hessian function

function h = fd_markovianloghessianfunction(m,Q,v)
M = v{1}; nrp = v{2}; I = v{3}; rigl = v{4}; Nv
vl = v{7}; v2 = v{8}; v3 = v{9}; v4 = v{10}; v5
ml = zeros(M,nrp);
parfor i = 1:M
if I(i) > 1
Qv{i} diag(Q(m{i}(1:I(i)—1),m{i}(1:I(i)—1)+diff(m{i}))).";
for j = l:nrp
ml(i,j) = sum(—v6{i,j}./Qv{i}."2);
end

v{5}; Qv = v{6};
v{1ll}; v6 = v{12};

end
end
h = diag(sum(ml,1));
end
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5.3.13 Logarithmic Markovian likelihood function

function 1 = ff_markovianloglikelihoodfunction(m,t,Q,v)
M = v{1}; nrp = v{2}; I = v{3}; rigl = v{4}; Nv = v{5}; Qvl = v{6};
vl = v{7}; v2 = v{8}; v3 = v{9}; v4 = v{10}; v5 = v{11l}; v6 = v{12};
rsgl = rigl;
Qv2 = Qvl;
[ml,m2,m3] = deal(zeros(M,1));
parfor i = 1:M
Qvl{i} = diag(Q(m{i},m{i})).";
Qv2{i} = diag(Q(m{i}(1:I(i)—1),m{i}(1:I(i)—1)+diff(m{i}))).";

if I(i) > 1
ml(i) = sum(Qvl{i}.xdiff(t{i}));
m2(i) = sum(log(Qv2{i}));
else
m3(i) = sum(Qvl{i}.xdiff(t{i}));
end
end
1 = sum(ml+m2+m3);
end
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5.3.14 Logarithmic non-Markovian gradient function

function g = fg_loggradientQabfunction(m,t,Q,a,b,v)
M = v{1}; nrp = v{2}; I = v{3}; rigl = v{4}; Nv = v{5}; Qv = v{6};
vl = v{7}; v2 = v{8}; v3 = v{9}; v4 = v{10}; v5 = v{11l}; v6 = v{12};
rsgl = rigl; rsg2 = rsgl; rsg3 = rsgl; rig2 = rigl; rig3 = rigl;
[ml,m2] = deal(zeros(M,nrp));
[m3,m4,m5,m6,m7,m8,m9,m10] = deal(zeros(1,M));
parfor i = 1:M
if I(i) > 1
rig3{i}(1) = v1{i}(1)*(t{i}(I(i)+1)—t{i}(2))=*...
exp(—b(1)*(t{i}(I(1)+1)-t{i}(2)));
rsg3{i} (1) = v2{i}(1)*(t{i}(I(i)+1)—t{i}(2))*...
exp(—b(2)*x (t{i} (I(1)+1)—t{i}(2)));
for j = 2:I(i)—1
rigl{i}(j) = exp(-—b(1)*(t{i} (j+1)—t{i}(j)))=*...
(vi{i}(j—1)+rigl{i}(j—1));
rsgl{i}(j) = exp(=b(2)*(t{i} (j+1)—t{i}(j)))*...
(v2{i}(j—1)+rsg1l{i}(j—1));
for k = 1:j—1
rig2{i}(j) = rig2{i}(j)+vi{i}(k)=...
(t{i} (F+1)—t{i} (k+1))*...
exp(—b(1)*(t{i} (j+1)—t{i}(k+1)));
rsg2{i}(j) = rsg2{i}(j)+v2{i}(k)*...
(t{i}(F+1)—t{i} (k+1))*...
exp(—b(2)x(t{i} (j+1)—t{i}(k+1)));
end
rig3{i}(j) = v{i} () (t{i}(T(1)+1)—t{i} (j+1))*...
exp(—b (1) (t{i} (I(i)+1)—t{i}(j+1)));
rsg3{i}(j) = v2{i}(J)*(t{i}(T(1)+1)—t{i}(j+1))*...
exp(—b(2)*(t{i}(I(i)+1)—t{i}(j+1)));

end
Qu{i} = diag(Q(m{i}(1:I(i)—1),m{i}(1:I(i)—1)+diff(m{i}))).";
for j = 1l:nrp

ml(i,j) = sum(—v5{i,j}.*xdiff(t{i}));

m2(i,j) = sum(v6{i,j}./(Qv{i}+(v1{i}+v2{i}).*...

(a(1).xrigl{i}+a(2).*rsgl{i})./Nv{i}));
end

m3(i) = —(sum(vl{i})—v3{i}-...
(rigl{i}(I(i)—1)+v1{i}(I(i)—1)—v3{i})*...
exp(—b(1)*(t{i} (I(i)+1)—t{i}(I(i)))))/b(1);

ma(i) = sum(((vi{i}+v2{i}).*rigl{i}./Nv{i})./(Qv{i}+...
(a(l)*rigl{i}+a(2).*rsgl{i})./Nv{i}));

m5(i) = —(sum(v2{i})—v4{i}—...
(rsgl{i}(I(i)—1)+v2{i}(I(i)—1)—va{i})*...
exp(—b(2)* (t{i} (I(i)+1)—t{i}(I(i)))))/b(2);

m6(i) = sum(((vi{i}+v2{i}).*rsgl{i}./Nv{i})./(Qv{i}+...
(a(l)*rigl{i}+a(2)*rsgl{i})./Nv{i}));

m7(i) = ((sum(vl{i})—v3{i})=*a(1l)/b(1)"2)—a(1l)/b(1)"2x*...
(rigl{i}(I(i)—1)+v1{i}(I(i)—1)v3{i})*...
exp(—b(1)*(t{i} (I(i)+1)—t{i}(I(i))))—...
(a(1)/b(1)*sum(rig3{i}));

m8(i) = —sum((a(l)*(v1{i}+v2{i}).*rig2{i}./Nv{i})./...
(Qv{i}+(a(1l)*rigl{i}+a(2)=*rsgl{i})./Nv{i}));

mo(i) = ((sum(v2{i})—v4{i})=*a(2)/b(2)"2)-a(2)/b(2)"2x*...
(rsgl{i}(I(i)—1)+v2{i}(I(i)—1)—va{i})*...
exp(—b(2)* (t{i} (I(i)+1)—t{i}(I(i))))—...
(a(2)/b(2)*sum(rsg3{i}));

mle(i) = —sum((a(2)*(v1{i}+v2{i}).*rsg2{i}./Nv{i})./...
(Qv{i}+(a(1l)*rigl{i}+a(2)*rsgl{i})./Nv{i}));
else
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end

for j = 1l:nrp
ml(i,j) = sum(—v5{i,j}.*diff(t{i}));
end
end
end
g = [sum(ml+m2,1)."'; sum(m3+m4); sum(m5+m6); sum(m7+m8); sum(m9+mlO)];
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5.3.15 Logarithmic non-Markovian Hessian function

function h = fh_loghessianQabfunction(m,t,Q,a,b,v)
M = v{1}; nrp = v{2}; I = v{3}; rigl = v{4}; Nv
vl = v{7}; v2 = v{8}; v3 = v{9}; v4 = v{10}; v5

v{5}; Qv = v{6};
v{1l}; v6 = v{12};

rsgl = rigl;
rig2 = rigl; rig3 = rigl; rig4 = rigl; rig5 = rigl;
rsg2 = rsgl; rsg3 = rsgl; rsg4 = rsgl; rsg5 = rsgl;

[m1,m2,m3,m4,m5] = deal(zeros(M,nrp));
[m6,m7,m8,m9,m10,m11,m12,m13,m14,m15] = deal(zeros(1l,M));
parfor i = 1:M
if I(i) > 1
rig3{i}(1) = vI{i}(1)*(t{i}(I(i)+1)—t{i}(2))=*...
exp(—b(1)*(t{i} (I(i)+1)—t{i}(2)));
rsg3{i} (1) = v2{i} (1) *(t{i}(I(i)+1)—t{i}(2))*...
exp(—b(2)*(t{i} (I(1)+1)—t{i}(2)));
rig5{i} (1) = vI{i}(1)*(t{i}(I(i)+1)—t{i}(2))"2x*...
exp(—b(1)x(t{i} (I(i)+1)—t{i}(2)));
rsg5{i} (1) = v2{i} (1) *(t{i} (I (i)+1)—t{i}(2))"2%...
exp(—b(2)*(t{i} (I(1)+1)—t{i}(2)));
for j = 2:I(i)-1
rigl{i}(j) = exp(—b(1)*(t{i} (j+1)—t{i}(j)))*...
(vI{i}(j—1)+rigl{i}(j—1));
rsgl{i}(j) = exp(-b(2)*(t{i} (j+1)—t{i}(j)))*...
(v2{i}(j—1)+rsg1{i}(j—1));
for k = 1:j-1
rig2{i}(j) = rig2{i}(j)+vi{i}(k)=*...
(t{i}(j+1)—t{i} (k+1))*exp(—b(1)*...
(t{i} (j+1)—t{i} (k+1)));
rsg2{i}(j) = rsg2{i}(j)+v2{i}(k)*...
(t{i} (j+1)—t{i} (k+1))=*exp(-—b(2)x*...
(t{i} (j+1)—t{i}(k+1)));
rigd{i}(j) = rigd{i}(j)+vi{i}(k)=*...
(t{i}(j+1)—t{i} (k+1))"2*xexp(—b(1)=*. ..
(t{i} (j+1)—t{i} (k+1)));
rsg4{i}(j) = rsgd{i}(j)+v2{i}(k)*...
(t{i} (j+1)—t{i}(k+1))"2xexp(—b(2)*...
(t{i} (j+1)—t{i}(k+1)));
end
rig3{i}(j) = vI{i}(§)*(t{it (T(1)+1)—t{i}(j+1))*...
exp(—b(1)*(t{i} (I (1)+1)—t{i}(j+1)));
rsg3{i}(j) = v2{i} () *(t{i}(T(1)+1)—t{i}(j+1))x*...
exp(—b(2)* (t{i} (I(i)+1)—t{i}(j+1)));
rig5{i}(j) = v1{i} () *(t{i}(T(1)+1)—t{i}(j+1))"2*...
exp(—b(1)*(t{i} (I(1)+1)—t{i}(j+1)));
rsg5{i}(j) = v2{i}(j)*(t{it (T (1)+1)—t{i}(j+1))"2x*...
exp(—b(2)*(t{i} (I(i)+1)—t{i}(j+1)));
end
Qv{i} = diag(Q(m{i}(1:I(i)—1),m{i}(1:I(i)—1)+diff(m{i}))).";
for j = 1l:nrp
ml(i,j) = sum(—v6{i,j}./(Qv{i}+(v1l{i}+v2{i}).*...
(a(l)*rigl{i}+a(2)*rsgl{i})./Nv{i})."2);
m2(i,j) = sum(—v6{i,j}.*(vi{i}+v2{i}).*xrigl{i}./Nv{i}./...
(Qv{i}+(a(1l)*rigl{i}+a(2)*rsgl{i})./Nv{i})."2);
m3(i,j) = sum(—v6{i,j}.*x(v1i{i}+v2{i}).*rsgl{i}./Nv{i}./...
(Qv{i}+(a(1l)*rigl{i}+a(2)*rsgl{i})./Nv{i})."2);
ma(i,j) = sum(a(l)*ve{i,j}.x(vl{i}+v2{i}).*xrig2{i}./...
Nv{i}./(Qv{i}+(a(1l)*rigl{i}+a(2)*rsgl{i})./Nv{i})."2);
m5(i,j) = sum(a(2)*v6{i,j}.*x(vl{i}+v2{i}).*rsg2{i}./...
Nv{i}./(Qv{i}+(a(1)*rigl{i}+a(2)=*rsgl{i})./Nv{i})."2);
end
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m6(i) = sum(—(vl{i}+v2{i}).*(rigl{i}./Nv{i})."2./...
(Qu{i}+(a(l)*rigl{i}+a(2)*rsgl{i})./Nv{i})."2);
m7(1i) = sum(—(v1l{i}+v2{i}).*rigl{i}.*rsgl{i}./Nv{i}."2./...
(Qu{i}+(a(l)*rigl{i}+a(2)*rsgl{i})./Nv{i})."2);
m8(i) = sum(—(v1{i}+v2{i}).*rig2{i}./Nv{i}./...
(Qu{i}+(a(l)*rigl{i}+a(2)*rsgl{i})./Nv{i})+...
a(l)*(vl{i}+v2{i}) .xrigl{i}.*rig2{i}./Nv{i}."2./...
(Qv{i}+(a(l)*rigl{i}+a(2)*rsgl{i})./Nv{i})."2)—...
sum(rig3{i})/b(1)+...
(sum(v1{i})—v3{i})/b(1)"2—...
(rigl{i}(I(i)—1)+v1{i}(I(i)—1)v3{i})*...
exp(—b(1)*(t{i} (I(i)+1)—t{i}(I(i))))/b(1)"2;
m9(i) = sum(a(2)*x(vl{i}+v2{i}) .*rigl{i}.*rsg2{i}./Nv{i}."2./...
(Qu{i}+(a(l)*rigl{i}+a(2)*rsgl{i})./Nv{i})."2);
mlo(i) = sum(—(v1{i}+v2{i}).=*(rsgl{i}./Nv{i})."2./...
(Qu{i}+(a(1l)*rigl{i}+a(2)*rsgl{i})./Nv{i})."2);
mll(i) = sum(a(l)*(v1{i}+v2{i}) .*xrsgl{i}.*xrig2{i}./Nv{i}."2./...
(Qv{i}+(a(l)*rigl{i}+a(2)*rsgl{i})./Nv{i})."2);
ml2(i) = sum(—(v1{i}+v2{i}).*rsg2{i}./Nv{i}./...
(Qu{i}+(a(l)*rigl{i}+a(2)*rsgl{i})./Nv{i})+...
a(2)x(vl{i}+v2{i}) .*rsgl{i}.*rsg2{i}./Nv{i}."2./...
(Qv{i}+(a(l)*rigl{i}+a(2)*rsgl{i})./Nv{i})."2)—...
sum(rsg3{i})/b(2)+...
(sum(v2{i})—v4{i})/b(2)"2—...
(rsgl{i}(I(i)—1)+v2{i}(I(i)—1)—va{i})=*...
exp(—b(2)* (t{i}(I(1)+1)—t{i}(I(i))))/b(2)"2;
m13(i) = sum(a(l)*(v1{i}+v2{i}).*xrig4{i}./Nv{i}./...
(Qv{i}+(a(1l)*rigl{i}+a(2)*rsgl{i})./Nv{i}))—...
sum( (v1{i}+v2{i}).*(a(1)*rig2{i}./Nv{i})."2./...
(Qu{i}+(a(l)*rigl{i}+a(2)*rsgl{i})./Nv{i})."2)—...
(sum(v1l{i})—v3{i})=*2*a(1l)/b(1)"3+...
2+a(1)/b(1)"3*xsum( (rigl{i}(I(i)—1)+v1i{i}(I(i)—1)—v3{i})*...
exp(—b(1)* (t{i} (I (i)+1)—t{i}(I(i)))))+...
2*xa(l)/b(1l)"2+sum(rig3{i})+...
a(l)/b(l)*sum(rig5{i});
ml4(i) = sum(—a(l)*a(2).*rig2{i}.*rsg2{i}.x(v1{i}+v2{i})./...
Nv{i}.”2./(Qv{i}+(a(1l)*rigl{i}+a(2)*rsgl{i})./Nv{i})."2);
ml5(i) = sum(a(2)*(v1l{i}+v2{i}).*rsg4{i}./Nv{i}./...
(Qv{i}+(a(1l)*rigl{i}+a(2)*rsgl{i})./Nv{i}))—...
sum( (vi{i}+v2{i}).*(a(2)*rsg2{i}./Nv{i})."2./...
(Qu{i}+(a(l)*rigl{i}+a(2)*rsgl{i})./Nv{i})."2)—...
(sum(v2{i})—va{i})=*2*a(2)/b(2)"3+...
2%a(2)/b(2)"3*xsum((rsgl{i}(I(i)—1)+v2{i}(I(i)—1)—va{i})*...
exp(—b(2)* (t{i} (I(i)+1)—t{i}(I(i)))))+...
2*xa(2)/b(2)"2+«sum(rsg3{i})+. ..
a(2)/b(2)*sum(rsg5{i});
end
end
h=...
[diag(sum(ml,1)) sum(m2,1).' sum(m3,1).' sum(m4,1l)."' sum(m5,1).';...
sum(m2,1) sum(m6) sum(m7) sum(m8) sum(m9);...
sum(m3,1) sum(m7) sum(ml@) sum(mll) sum(ml2);...
sum(m4,1) sum(m8) sum(mll) sum(ml3) sum(ml4);...
sum(m5,1) sum(m9) sum(ml2) sum(ml4) sum(ml5)];
end
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5.3.16 Logarithmic non-Markovian likelihood function

function 1 = fi_loglikelihoodfunction(m,t,Q,a,b,v)
M = v{1}; nrp = v{2}; I = v{3}; rigl = v{4}; Nv = v{5}; Qvl = v{6};

vl = v{7}; v2 = v{8}; v3 = v{9}; v4 = v{10}; v5 = v{11l}; v6 = v{12};
rsgl = rigl;
Qv2 = Qvl;
[ml,m2,m3,m4,m5] = deal(zeros(M,1));
parfor i = 1:M
for j = 2:I(i)—1
rigl{i}(j) = exp(-—b(1)*(t{i} (j+1)—t{i}(j)))=*...
(vI{i}(j—1)+rigl{i}(j—1));
rsgl{i}(j) = exp(-b(2)*(t{i} (j+1)—t{i}(3)))*...
(v2{i}(j—1)+rsg1{i}(j—1));

end

Qvl{i} = diag(Q(m{i},m{i})).";

Qv2{i} = diag(Q(m{i}(1:I(i)—1),m{i}(1:I(i)-1)+diff(m{i}))).";
if I(i) > 1

ml(i) = sum(Qvl{i}.xdiff(t{i}));

m2(i) = —a(l)/b(1l)*(sum(v1l{i})—v3{i}—...
(rigl{i}(I(1i)—1)+v1{i}(I(1i)—1)—~v3{i})=*..
exp(—b (1) (t{i} (I(1)+1)—t{i}(I(i)))));

m3(i) = —a(2)/b(2)*(sum(v2{i})—va{i}—...
(rsgl{i}(I(1i)—1)+v2{i}(I(1i)—1)—v4{i})*...
exp(—b(2)* (t{i} (I(1)+1)—t{i}(I(1)))));

m4 (i) = sum(log(Qv2{i}+(a(l)*rigl{i}+a(2)*rsgl{i})./...
Nv{i}.x(v1i{i}+v2{i})));

else
m5(i) = sum(Qvl{i}.xdiff(t{i}));
end
end
1 = sum(ml+m2+m3+m4+m5) ;

end
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