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Abstract

In the pursue of accurately computing default probabilities of financial instruments, external credit ratings,
which are issued by credit rating agencies, have been commonly modelled by continuous-time Markov chains
[21] [22] [30]. The stochastic behaviour of these ratings, X, is driven by a generator matrix, Q, which can be
approximated using either discrete and anonymous or continuous rating data. Parameter estimation method-
ologies for both types of data have been optimized in past literature allowing for confidence intervals in the
resulting default probabilities [21] [22] [30] [37]. As there is strong evidence of non-Markovian behaviour among
credit ratings with downgrade momentum being dominant, a new non-Markovian model is described in recent
research modelling this form of momentum [4] [10] [15] [21] [37] [40] [41] [43]. As opposed to past non-Markovian
models, recent research successfully captures momentum accumulating and decaying over time using a parsi-
monious model [9] [14] [15] [16] [22] [25] [36]. Recent research hypothesized that the parameters, θ, could
only be estimated by a Metropolis-Hastings algorithm avoiding complex first and/or second derivatives of the
loglikelihood, l(θ|X), which required 8.5 hours of computational time [21]. This research has introduced a
new successful parameter estimation methodology according to a maximum likelihood estimator based (pro-
jected) Newton-Raphson method and explored several alternative models and estimators: a modified Markovian
model, heuristic estimator (based on Chapman-Kolmogorov equations) and discretized simulation [5] [24] [58].
The performances of the parameter estimation methodologies, alternative models and estimators were also
back-tested on simulated data using parameter estimations found in recent research [13] [19] [21]. Among the
alternative models and estimators, only the modified Markovian model has produced reasonable results by
approximating non-Markovian default probabilities. Applying a Markovian model based on realizations with
the same initial state and therefore similar momentum reduces the intertwining of ratings with significant or
none non-Markovian stochastic behaviour allowing for the Markovian model to be an appropriate model in the
setting of this research. The (projected) Newton-Raphson method has decreased computational time required
for parameter estimation of the non-Markovian model from 6 to 1 hour. Moreover, the maximum likelihood
estimator θ̂ according to the projected Newton-Raphson method is a strong initial guess for further parameter
estimations based on any sufficiently large subsamples of the realizations. This allows for computing confidence
intervals of the non-Markovian default probabilities via parametric bootstrapping as the parameter estimations
of subsamples require significantly less computational time. Further research can be done on the reduction of
the computational time required allowing for more precise confidence intervals of default probabilities per initial
state via parametric bootstrapping based on more subsamples. Also, the method for discretized simulation could
be reviewed investigating the possibility of disregarding certain simulated paths as their overall contribution
to default probabilities is negligible. Finally, model expansions incorporating correlation, upgrade momentum,
more granularity and business cycles can be considered in future non-Markovian models.
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1 Introduction

1.1 Probability of default

At the heart of pricing or measuring risk of any fi-
nancial instrument, e.g., companies’ equity, consumer
loans or complex derivatives, lies the computation of
its probability of default (PD) over time [56]. Any
participator in the financial market is exposed to some
form of such a (credit risk) assessment, however, in
the highly regulated banking industry correct credit
risk modelling is considered of vital importance [56].
During the global financial crises of ’07-’08, the signifi-
cance of accurate credit risk modelling was highlighted
and is currently emphasized by ongoing implementa-
tions of the revised Basel framework (Basel IV) and
reformed International Financial Reporting Standard
(IFRS-9) [3] [21]. These regulations demand computa-
tions of PDs for financial instruments over longer time
horizons, including their complete lifetimes, by banks
all over the world [21]. Besides an apparent demand
for more advanced mathematics, increasing data avail-
ability continues to drive research on further developed
methodologies in the financial market.

In general, there are two ways of determining PDs:
implied by current market valuations (risk-neutral) or
based on historical data (real-world) [3] [6] [21]. There
are various prominent credit risk methodologies using
historical data each with their own pros and cons from
a mathematical and economic point of view [3].

Definitions real-world and risk-neutral probability :
real-world (physical) PDs are based on historical data
and open to interpretation by various models [3] [6][21],
where (unique) risk-neutral PDs are implied by cur-
rent market valuations under the (strong) assumptions
that markets are arbitrage-free and complete with the
relevant financial instruments being priced according
to an universal model [21] [47].

This research expands on past literature that focused
on computing real-world PDs based on widely used
external credit ratings [21].

1.2 External credit ratings

Credit ratings of financial instruments (hereinafter re-
ferred to as “ratings”) are labels used as (finite) categor-
ical measures that allow financial instruments to be or-
dered based on their PDs (or solvency in general) [21].
Ratings are externally issued by credit rating agencies
(CRAs) or internally by banks themselves according to
the Basel regulatory framework [21]. External ratings
belong to the most widely used credit risk method-
ologies for banks all over the world [3]. Prior to the
application by banks, CRAs have based these ratings
on proprietary models with a wide range of drivers,
e.g., environmental conditions, competitive positions,
management quality and financial strengths [3]. Banks
benefit from this as external ratings are ready to use,

while evolving from complex analyses by CRAs. These
ratings are, however, also considered as relative and
subjective measures, which are not continuously mon-
itored and therefore allowing for deviations from the
real underlying rating throughout time [3].

1.3 Credit rating transitions

Because of changing underlying drivers over time ac-
cording to the proprietary models of CRAs, external
ratings are dynamic [21]. The issuance of a different
rating for a financial instrument (by the same CRA) is
called a credit rating transition (hereinafter referred to
as a “transition”) [21]. Consequently, a finite number
of possible ratings create a discrete state space, S,
including a default state, h. Ratings of financial in-
struments make transitions between these states over
time, which naturally leads to the construction of a
continuous-time Markov chain model (CTMC). Ac-
cording to a CTMC model the Markovian property is
assumed, which implies that transition probabilities
are solely dependent on the current rating of a finan-
cial instrument [26].

Definition Markovian property : a stochastic process
(rating) is said to be Markovian (or satisfy the Marko-
vian property) if event probabilities (transitions) only
depend on its current state creating a Markov chain
[26]. Non-Markovian behaviour implies that past states
(ratings) influence current transition probabilities [21].

1.4 Downgrade momentum

Past literature has shown significant statistical pres-
ence of non-Markovian behaviour among ratings in
datasets of various CRAs and also identified economic
drivers for this phenomena [4] [10] [15] [21] [37] [40]
[41] [43]. Among different non-Markovian behaviours,
credit rating downgrade momentum (hereinafter re-
ferred to as “momentum”) is considered to be domi-
nant [21] [37]. Momentum implies that financial in-
struments, which have been downgraded in the past,
are increasingly likely to be downgraded further in the
future. It has been shown that this effect accumulates
and decays over time [15] [21]. This effect is claimed to
be less apparent for upgrades and therefore not further
researched [4] [15] [21]. Considering the highly reg-
ulated and increasingly prudent nature of the global
banking industry, it is essential to accurately incorpo-
rate momentum in credit risk modelling as past lit-
erature has shown its implications become more pro-
nounced over time and may significantly affect long-
term PDs [15] [21] [56].

1.5 Literature study

Based on discrete and anonymous (missing) or con-
tinuous (full) external credit rating transition data,
various methodologies have been used to construct
CTMC models via maximum likelihood estimators
(MLE). The “classic” problem using missing data has
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been thoroughly researched and optimized via the esti-
mation of a generator matrix, Q, using an expectation-
maximization (EM) algorithm [7] [8] [21] [22] [30] [45]
[48]. Estimating Q via MLE using full data is rela-
tively straightforward [21] [30] [33] [37].

Past literature has also incorporated non-Markovian
behaviour of ratings using relatively less straightfor-
ward constructions like extended state spaces, mixture
models, hidden Markov models or semi-Markov mod-
els, focusing on momentum [9] [14] [16] [25] [36], but
failed to incorporate the accumulating behaviour de-
caying over time [15] [21]. Recent research is based on
exponential Hawkes marked point processes (EHMPP)
and successfully incorporated accumulating momen-
tum decaying over time, while allowing for granular-
ity in the momentum contribution per rating using a
parsimonious model [21]. Consequently, due to an in-
crease in model complexity (following recent research)
compared to classical CTMC models, there is an op-
portunity to back-test and possibly optimize current
parameter estimation methodologies. In addition, al-
ternative methodologies for computing PDs incorpo-
rating momentum to overcome certain computational
requirements can be explored.

In short, this report expands on recent research, which
describes a non-Markovian model incorporating mo-
mentum applied to credit ratings and is focused on the
following three topics [21]:

1. Back-testing current parameter estimation
methodologies on simulated data;

2. Introducing a new parameter estimation method-
ology focused on better performance with regards
to (i) robustness, (ii) accuracy and (iii) efficiency;

3. Exploring alternative methodologies for accu-
rately computing PDs incorporating momentum.

2 Theory

2.1 Markovian model
First, let X(t) = {X(t, ω) : [0, T ] × Ω → S} be a
right-continuous stochastic process defined on some
probability space (Ω,F t,P) taking on values in some
measurable finite state space (S,Σ) over time horizon
[0, T ] such that t ∈ [0, T ] with T ∈ R+, Ft the natural
filtration, S = {1, ..., h}, Σ = σ(S) and h ∈ N+ under
the probability measure P : F t → [0, 1]. X(t) de-
scribes a rating with a defaulting possibility modelled
by a finite state CTMC with an absorption state, h
[21] [22] [30].

Second, assume X(t) satisfies the Markovian property
implying memorylessness such that the probability
measure, P, only depends on the current state of X(t)
for any i ∈ S as follows [30] (5.2.1.1)

P(X(t+∆t) = i|Ft) = P(X(t+∆t) = i|Xt)

Third, assume X(t) is time-homogeneous implying P
is constant over time horizon [0, T ] for any i, j ∈ S,
∆t > 0 and t1, t2 ∈ [0, T ] such that t1 +∆t, t2 +∆t ∈
[0, T ] as follows [30] (5.2.1.2)

P(X(t1 +∆t) = j|X(t1) = i)

= P(X(t2 +∆t) = j|X(t2) = i)

Both assumptions are commonly used in past litera-
ture to describe CTMCs applied to ratings [30]. Con-
sequently, these assumptions imply that for any state
i ∈ S the holding times, Ti, are independent and iden-
tically distributed (IID) exponential random variables
with parameter qi > 0 as follows [30] [34] [39] [44] [52]
(5.2.1.3)

fTi
(x) = qie

−qix

such that the holding probability, P(Ti > ∆t), for any
∆t and t ∈ [0, T ] with t +∆t ∈ [0, T ] is defined by [1]
(5.2.1.4)

P(Ti > ∆t) = P({X(t̄) = i : t̄ ∈ [t, t+∆t]}|X(t) = i)

= e−qi∆t

Correspondingly, the number of transitions, N(∆t),
out of state i ∈ S over a time interval with length
∆t is Poisson distributed as follows [1] [27] [30] [54]
(5.2.1.4)

P(N(∆t) = k) =
(qi∆t)

k

k!
eqi∆t

such that the probability of a single transition out of
state i ∈ S, P(X(t + ∆t) = i|X(t) ̸= i), for any
t ∈ [0, T ] and ∆t > 0 with t+∆t ∈ [0, T ] is defined by
[1] [30] [35] [44] (5.2.1.4)

P(X(t+∆t) ̸= i|X(t) = i) = lim
∆t→0

qi∆t+O(∆t)

Next, define the conditional transition probability pa-
rameters, qij , by the following limit for any i, j ∈ S
with j ̸= i [30] [35] (5.2.1.5)

qij = lim
∆t→0

P(X(t+∆t) = j|X(t) = i)

∆t
∈ R+

such that according to Bayesian theorem the condi-
tional transition probability, P(X(t + ∆t) = j|X(t +
∆t) ̸= i,X(t) = i), is given by [30]

P(X(t+∆t) = j|X(t+∆t) ̸= i,X(t) = i)

=
P(X(t+∆t) = j|X(0) = i)

P(X(t+∆t) ̸= i|X(0) = i)

= lim
∆t→0

qij∆t+O(∆t)

qi∆t+O(∆t)

=
qij
qi

with O the big-O-notation [35]. Furthermore, as the
sum of all conditional transition probabilities, P(X(t+
∆t) = j|X(t + ∆t) ̸= i,X(t) = i), equals 1 for any
i ∈ S and j = 1, ..., h with j ̸= i, the conservation of
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probability implies that qi and qij are related as follows
[30]

h∑
j=1,j ̸=i

qij
qi

= 1 =⇒ qi =

h∑
j=1,j ̸=i

qij

such that the Markovian model is in summary defined
as follows for any i, j ∈ S

• holding times, Ti, in state i are IID exponential
random variables with parameter qi > 0 [30]

• given a transition out of state i, the conditional
transition probability, P(X(t + ∆t) = j|X(t +
∆t) ̸= i,X(t) = i), to state j is given by qij

qi
[30]

Subsequently, a stable conservative generator matrix,
Q ∈ Rh×h, can be constructed as follows [30]

Q =


−q1 q12 q13 · · · q1h
q21 −q2 q23 · · · q2h
q31 q32 −q3 · · · q3h
...

...
...

. . .
...

qh1 qh2 qh3 · · · −qh


such that the following conditions for any i, j ∈ S are
satisfied [30]

•
∑h

j=1 qij = 0

• 0 ≤ −qii = qi

• 0 ≤ qij with i ̸= j

Finally, given Q a transition probability matrix
(TPM), P ∈ Rh×h, is defined by [1] [30] (5.2.1.6)

P (t, t+∆t) = lim
∆t→∞

I +Q∆t+O(∆t)

such that Q and P are related for any t1, t2 ∈ [0, T ]
with t1 = t2 − n ·∆t are related as follows

P (t1, t2) = lim
n→∞

(I +Q∆t)n

= lim
n→∞

(I +Q
t2 − t1
n

)n

= eQ(t2−t1)

with e· = limn→∞(I + ·
n )

n an alternative definition of
the matrix exponential [21] [22] [30] [55].

2.2 Non-Markovian model
Following strong evidence of momentum in rating data
of various CRAs according to past literature [4] [10]
[15] [21] [37] [40] [41] [43] recent research has described
a model using EHMPPs successfully capturing accu-
mulating momentum decaying over time [21].

First, the likelihood of a single MPP, L(λ, f |X), for
X = X(T ) over time horizon [0, T ] is defined by [17]
[18] [21]

L(λ, f |X) =

N(T )∏
n=1

λ(tn)f(κn|tn)e−
∫ T
0

λ(x)dx

with N(T ) the total number of transitions, λ(t) the in-
tensity, κn a mark and f(κn|tn) the marks distribution.
Consequently, by setting λ(t) as follows

λ(tn) =

h∑
i=1

1{X(tn)=i}qi

with f(κn|tn) given by

f(κn|tn) =
h∑

i,j=1,j ̸=i

1{X(tn)=i,X(t+n )=j}qij

qi

and a i→ j transition at tn marked by κn the Marko-
vian model is again defined [21] [30] (5.2.2.1).

Second, the intensity λ(t) according to the non-
Markovian model is defined by an exponential Hawkes
process as follows [21]

λ(t) =

h−1∑
i=1

1{X(t)=i}qi +
∑

τ∈τ (t)

αe−β(t−τ)

with τ (t) = {t̄ : t̄ ∈ [0, t) ∧ X(t̄+) > X(t̄)} the set of
past downgrade times up to t and α the magnitude of
the intensity impulse, which exponentially decays with
rate β over time. Making use of recursive patterns λ(t)
is given by [21] [46] (5.2.2.2)

λ(tn) =

h−1∑
i=1

1{X(tn)=i}qi + αRn

with the non-Markovian intensity contribution, αRn =
αR(tn), defined by

αRn = α(Rn−1 + 1{X(t+n )>X(tn)})e
−β(tn−tn−1)

for R0 = 0 and t0 = 0.

Third, set f(κn|tn) as follows [21]

f(κn|tn) =
h∑

i,j=1,j ̸=i

1{X(tn)=i∧X(t+n )=j}

λ(tn)

×
(
qij +

1X(t+n>X(tn))

Gi

∑
τ∈τ (tn)

αe−β(tn−τ)
)

with αR evenly added to the conditional downgrade
probability parameters qij for any i, j ∈ S such that
j > i and thus Gi =

∑
j>i 1{qij>0} satisfying the con-

servation of probability and implying the loglikelihood,
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l(Q, α, β|X), is defined by [21] (5.2.2.3)

l(Q, α, β|X) =

N(T̄ )∑
n=1

log
( h∑

i,j=1

1{Xtn=i∧X(t+n )=j}qij

+ α
1X(t+n )>X(tn))

Gi
Rn

)
−
∫ T̄

0

h−1∑
i=1

1{X(x)=i}

( h∑
j=1,j ̸=i

qij

)
dx

+
∑

τ∈τ (T̄ )

α
(N(T̄ )∑

n=1

1X(t+n )>X(tn)

−RNe
−β(T̄−τN )

)
for T̄ = min{{t : X(t) = h} ∧ T} and N = N(T̄ ) as
there is no contribution to l(Q, α, β|X) after a default
by making a transition to state h.

Consequently, the non-Markovian model is summa-
rized as follows for any i, j ∈ S

• holding times, Ti,

– in state i are IID exponential random vari-
ables with baseline intensity qi > 0

– and at a downgrade intensity λ(t) > 0 in-
creases by an impulse of magnitude α > 0

– with intensity impulses accumulating and
exponentially decaying with rate β > 0 over
time totalling the non-Markovian intensity
contribution αR(t)

• conditional transition probabilities, P(X(t +
∆t) = j|X(t+∆t) ̸= i,X(t) = i),

– to state j given a transition out of state i
are defined by fi→j

λ with baseline qij
qi

– and αR(t) is evenly added to conditional
downgrade probability parameters qij

such that the following conditions similar to the Marko-
vian model are satisfied for any i, j ∈ S [21]

• λ(t)−
∑

j=1,j ̸=i λ(t)f(i→ j|t) = 0

• 0 ≤ −qii = qi = λ(t)− αR(t) ≤ λ(t)

• 0 ≤ qij ≤ qij +
f(i→j|t)−qij

Gi
= λ(t)f(i→ j|t)

with i ̸= j

Finally, some granularity is added to support evidence
of momentum with different magnitudes and decay
rates when downgraded from investment- or specula-
tive grade ratings while maintaining a robust and par-
simonious model [15] [21]. Investment grades are con-
sidered safe ratings from state 1 to h−1

2 for h = 9 with
speculative grades being the other ratings up to the de-
fault state keeping the recursive patterns and loglikeli-
hood function in tact and leading to an adjustment of
R as follows [21] [46]

αRn =

2∑
m=1

∑
τ∈τm(tn)

αme
−βm(tn−τ)

with m = 1, 2 indicating investment- or speculative
grade parameter sets.

2.3 Parameter estimation

2.3.1 Markovian model

2.3.1.1 Exact maximum likelihood estimator

First, assume ratings are independent such that the
MLE Q̂ for multiple realizations of X for any i, j ∈ S
is defined by [21] [22] [30] [37] (5.2.3.1)

q̂ij =
Nij(T̄ )

Ri(T̄ )

with the number of i→ j transitions, Nij(t), given by
[21] [22] [30] [37]

Nij(t) =

N(t)∑
n=1

1{X(tn)=i∧X(t+n )=j}

and the summed holding times in state i, Ri(T ), is
defined by [21] [22] [30] [37]

Ri(t) =

∫ t

0

1{X(t̄)=i}dt̄

both among all realizations.

Second, the Hessian of the loglikelihood Hl(Q̂|X) has
only nonzero diagonal entries, which are non positive
as follows [21] [22] [30] [37] (5.2.3.1)

(Hl(Q̂|X))kk =
∂2l(Q̂|X)

∂q2ij
= −Nij(T )

q2ij
≤ 0

with k = h(i− 1) + j such that for any i1, i2, j1j2 ∈ S
and (i1, j1) ̸= (i2, j2) the off-diagonal entries are given
by [21] [22] [30] [37]

∂2l(Q̂|X)

∂qi1j1∂qi2j2
= 0

implying the nonzero parameter set, VQ̂, called the
allowed pairs is strictly concave and Q̂ is unique. Fur-
thermore, no other estimator Q̃ with Q̃ ̸= Q̂ attains
or exceeds this global maximum (log)likelihood [54].

Finally, as Q̂ is diagonizable (almost surely) the corre-
sponding P̂ is unique and cannot be attained by any
other estimator Q̃ with Q̃ ̸= Q̂ [29] [42] [54] (5.2.3.2).

2.3.1.2 Expectation-maximization algorithm

A “classic” problem in past literature has been to ob-
tain Q̂ from missing rating data. For annualized data
described by a rating chain {Xn}n≥0 the MLE for a
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discrete P̂ for any i, j ∈ S is defined by [30] (5.2.3.3)

(P̂ )ij = pij =
Nij

Ni

with Nij the total number of i → j transitions and
Ni the number of ratings starting in state i summed
over each year, however, this does not provide insight
in any continuous transition probability. This problem
has been optimized in recent research by the use of
an EM algorithm, which allows for efficient parame-
ter estimations of Q̂ with known confidence intervals,
while solving both the embeddability and identification
problems [21] [22] [31].

As the field of missing rating data and Markovian mod-
els have been thoroughly researched and optimized the
methodologies and corresponding results are included
for comparison purposes, but are not part of the scope
of this research and therefore derivations have been
left out [21] [22].

2.3.1.3 The delta method

It is essential to determine how confidence intervals of
Q̂ translate to P̂ over time horizon [0, T ] for both ex-
act MLE and the EM algorithm, which is possible by
the use of the delta method. A necessary condition
is a consistent MLE, which converges by definition in
probability to the true Q̂ with asymptotic normality
according to the central limit theorem (CLT) as fol-
lows [21] [38]

√
n(Q− Q̂)

D−→ N (0,Σ)

with Σ the covariance matrix of Q̂. Subsequently,
there are 2 necessary conditions for consistency in Q̂,
which are identifiability and irreducibility of the em-
bedded rating chain {Xn}n≤0 = {X(tn)}n≤0 over time
horizon [0, T ] with transition times {tn}n≤0. [49].

First, as for any realization X, Q̂ does not allow for
nonzero entries, which not driving l(Q̂|X) implying
that if for any t ∈ [0, T ] P̂1 = P̂2, then Q̂1 = Q̂2, such
that the identifiability condition is satisfied. Addition-
ally, as for diagonizable Q̂ (almost surely) the matrix
exponential is a one-to-one mapping the identifiabil-
ity condition is satisfied for any realization X by a
contrapositive [11] [31] [38]

Q̂1 ̸= Q̂2 =⇒ P̂1 ̸= P̂2

Second, the embedded rating chain {Xn}n≤0 is not ir-
reducible, due to the possibility of defaulting described
by absorption state, h. The definition of irreducibil-
ity is that state j is accessible from state i via some
m,n ∈ N+ steps such that

P(Xm+n = j|Xn = i) = P(Xn = j|X0 = i) > 0

for any i, j ∈ S, which is trivially not the case for i = h
[53].

Finally, consistency of Q̂ is assumed as in recent re-
search, however, for multiple independent realizations
of X it is also claimed that irreducibility is not a nec-
essary condition, allowing for the delta method such
that the confidence intervals of P̂ for any i, j ∈ S over
time horizon [0, T ] are defined by [2] [21] [22] [38] [49]
(5.2.3.4) (5.2.3.5)

Var(pij(VQ̂, t)) ≈
(∂pij(VQ̂, t)

∂V ˆ̂
Q

)
× (−H(Q̂)−1)

×
(∂pij(VQ̂, t)

∂V ˆ̂
Q

)T

with

pij(VQ̂, t) = (eQ̂t)ij

2.3.2 Non-Markovian model

2.3.2.1 Metropolis-Hastings algorithm

Recent research applies a Metropolis-Hastings (MH) al-
gorithm avoiding complex first- and/or second deriva-
tives of the (log)likelihood to obtained the posterior
distribution fθ̂(θ̂|X) without computing any normal-
izing constant through Bayes formula as follows [21]

fθ̂(θ̂|X) ∝ L(X|θ̂)fθ̂(θ̂)

= L(X|θ̂)fVQ̂
(VQ̂)fα̂(α̂)fβ̂(β̂)

with θ̂ = {VQ̂, α̂, β̂} a flattened matrix representation
of all nonzero parameter estimators with index set I,
L(X|θ̂) the likelihood and fθ̂(θ̂) the prior distribu-
tions.

First, fVQ̂
(VQ̂), fα̂(α̂) and fβ̂(β̂) are chosen, such

that they reflect prior knowledge on θ̂. Following re-
cent research, it is assumed that ratings initially have
no momentum, thus fVQ̂

(VQ̂) is set equal to VQ̂ of the
Markovian model [21].

Second, based on recent research fα̂(α̂) and fβ̂(β̂)

are defined by [21]

fα(α) ∝ exp(µ−1
α̂ )

and

fβ(β) ∝ exp(µ−1

β̂
)

with appropriate means µα̂ and µβ̂ reflecting the prior
knowledge that α̂, β̂ > 0 and expected parameter val-
ues being neither near 0 or too large, which is possibly
supported by CRAs pursuing stability after any rating
transition and momentum being significantly present
for several years after a downgrade [15] [21] [40].

Third, parameter values θ̂i for any i ∈ I are drawn
one-at-a-time from an unnormalized truncated normal
proposal distribution with an appropriate variance
σ = 1e− 3 as follows [21]

θi,n+1 ∼ N (θi,n, σ)
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with P(θi,n+1|θi,n) = ϕ(θi,n+1|θi,n) the proposal distri-
bution and θi,n+1 ≤ 0 drawn again creating Monte
Carlo Markov chains (MCMCs) {θi,n}n≤0. As an
unnormalized truncated normal distribution remains
symmetrical the acceptance probability of every draw
is defined by [21]

min
{
1,

π(X|θi,n,θ−i,n)ϕ(θi,n+1|θi,n)π(θi,n)
π(X|θi,n+1,θ−i,n)ϕ(θi,n|θi,n+1)π(θi,n+1)

}
=

min
{
1,

π(X|θi,n,θ−i,n)π(θi,n)

π(X|θi,n+1,θ−i,n)π(θi,n+1)

}
with θ−i,n the first i − 1 parameters after n draws.
Drawing from a normal distribution and dismissing
θi,n+1 ≤ 0 is considered an appropriate sampling
method allowing for faster computations compared
to using exponential- or Gamma distributions as in
recent research [21] [50].

Fourth, θ̂i,N is set equal to the posterior mean of
the MCMCs after N = 1e3 iterations with 1e2 burn-in
minimizing the expected mean squared error (MSE)
similar to recent research [22] [32].

Finally, sufficient conditions for convergence of the
MCMCs to the unique posterior distributions of θ̂ are
π-irreducibility and aperiodicity [12] [51] (5.2.4.1). A
sufficient condition for π-irreducibility is that for any
x, y ∈ supp(ϕ) drawing y after x has a positive proba-
bility, such that ϕ(y, x) > 0, which is trivially satisfied
for ϕ ∼ N an unnormalized truncated normal distribu-
tion [51]. Next, a sufficient condition for aperiodicity
is that MCMCs can remain in the same state after
an iteration, such that P(θi,n+1 = θi,n) > 0, which is
trivially true in case of rejecting a proposed parameter
value [51]. The rate of convergence for MH algorithms
is a classic problem on which no further research is
done. Current literature does not provide a general
framework to determine the rate of convergence of the
MH algorithms also applicable to complex settings [57].

2.3.2.2 Projected Newton-Raphson method

First, the Newton-Raphson (NR) method is an iter-
ative root finding method used to maximize the log-
likelihood l(θ) by finding the (local) root of the partial
derivatives such that ∇l(θ) = 0. For a one-dimensional
loglikelihood function f : R → [0, 1] the NR method is
defined by [5] (5.2.4.2)

xn+1 = xn − f ′(xn)

f ′′(xn)

implying quadratic convergence and an error propaga-
tion as follows [5] [58] (5.2.4.2)

ϵn+1 = −ϵ
2
nf

′′′(ξn)

2f ′′(xn)

with ξn between xn and the root xr. An upper bound
for the error ϵn is defined by [5] [58] (5.2.4.2)

ϵn+1 =
1

2
Mϵ2n

with

M = sup
x∈R

1

2

∣∣∣f ′′′(x)
f ′′(x)

∣∣∣
Second, the NR method can be expanded in general
to a multidimensional setting of l(θ|X), however,
D3l(θ|X) with D a difference operator cannot be
attained, due to the complexity l(θ|X) and the size
of the parameter space Θ implying the upper bound
for the error propagation cannot be computed [5] [58]
(5.2.4.2).

Third, overall sufficient condition for the existence
of a MLE is compactness of the parameter space Θ
on which l(θ|X) is continuous [28]. Furthermore, θ̂
is unique, such that every local maximum is a global
maximum, if Θ or l(θ|X) is concave [54]. l(θ|X)

is concave in Q̂ and α̂, however, not in β̂ implying
that there might exist multiple stationary points for
different values of θ̂, which do not attain the global
maximum of l(θ|X) possibly causing incorrect conver-
gence (5.2.4.3). Sufficient conditions for convergence
of the projected NR method are as follows [5] [58]

1. ∇2l(θ|X) ̸= 0 for any θ > O

2. D3l(θ|X) ̸= 0 is continuous almost everywhere
on θ > 0

3. θ̂0 is sufficiently close to the root ∇l(θr|X) = 0

with risks of incorrect convergence possibly caused by
[5] [58]

• Multiple stationary points

• Iteration cycles

• Poor initial guess

which can be mitigated by setting an upper bound of
2e1 iterations, where after a new attempts is done. θ̂0
is similarly chosen according to the prior distributions
used in the MH algorithm.

Fourth, to force θ̂ > 0, θ is projected on Θ as fol-
lows

argmin
θ̂∈Θ̂

||θ̂i,n − Θ̂||

for any i ∈ I and n ≥ 0 with ||θ̂i,n − Θ|| =

|θ̂i,n − {[δ,∞)}| for some small enough δ = 5e − 5.
Now, 2e1 initial guesses of θ̂0 are done to increase the
probability of convergence, where after the attempt
with the highest likelihood is considered as the θ̂.

Finally, 2 stopping criteria are defined by the following
conditions

ϵ ≥ ||θ̂n+1 − θ̂n||

and

ϵ ≥ ||∇l(θ̂n+1|X)−∇l(θ̂n|X)||

with ϵ = 1e − 2 such that the projected NR method
should stop when close to θr, but continuous in case
of a steep ∇l(θ|X) far from being optimized.
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2.3.2.3 The delta method

Assuming θ̂ is consistent, a closed form expression for
pij(θ̂, t) is required to allow for the delta method to
be applied in the non-Markovian model. Now, a closed
form expression for pij(θ̂, t) over time horizon [0, T ] for
any i, j ∈ S considers an incountably infinite number
of possible realizations from state i at time 0 to state
j at time T . A path dependent closed form expression
for pij(θ̂, T ) is required to properly incorporate mo-
mentum as its contributions differs per realization. An
attempt is to consider all possible realizations in state i
and j at times 0 and T respectively with an increasing
number of n transitionsover time horizon [0, T ]. Com-
pact notation of a path dependent closed form expres-
sion of pij(θ̂, T ) might allow for an expansion to the
non-Markovian model. Next, considering the Marko-
vian model with Q ∈ R3×3 and qij = q ∈ R for any
i, j ∈ S = {1, 2, 3} with j ̸= i the summed probabil-
ity of each possible realization from state 1 at time 0
to state 3 at time T is defined by p13(T ) as follows
(5.2.4.4)

p13(T ) = lim
m→∞

m∑
n=1

∫ T

0

qn
xn−1

(n− 1)!
e−2qxdx

Unfortunately, the closed form expression for p13(T )
according to the Markovian model indicates that ap-
plying an empirical generator matrix Q̂ with qi1j1 ̸=
qi2j2 for any i1, i2, j2, j2 ∈ S. The same holds for
adding momentum as the probability of the embedded
rating chain {1, 2, 3} is defined as follows

P({1, 2, 3}) =
∫ T

0

∫ t2

0

q(q + αe−β(t2−t1))

× e−2(q+αe−β(t2−t1)(t2−t1))dt1dt2

which does not allow for a compact formulation similar
to the Markovian model.

2.3.2.4 Modified thinning simulation

First, as in recent research, P over time horizon [0, T ]
according to the non-Markovian model is empirically
approximated by the use of modified thinning simu-
lation [13] [19] [21] [46] (5.2.4.5). Modified thinning
allows for independent exact simulation of the under-
lying exponential Hawkes processes λ(t) and thus of
X(t) [13] [19] [21] [46] (5.2.4.5). Independent and exact
simulation is used to approximate P over time horizon
[0, T ] focusing on the PD for any initial state i ∈ S
according the strong law of large numbers (SLLN) as
follows [20] [21]

P(X(t) = h|X(0) = i) = E[1{X(t)=h∧X(0)=i}]

= lim
N→∞

1

N

N∑
n=1

1{Xn(t)=h∧Xn(0)=i}

P is assumed to be sufficiently approximated by 1e6
ratings.

Second, modified thinning simulation allows for the
construction of confidence intervals of P via para-
metric bootstrapping. Assuming all available rating
data resembles an entire population, then parametric
bootstrapping entails point estimates of P based on
subsamples drawn from the population with replace-
ment [23]. As the point estimates of P converge to a
normal distribution according to the CLT confidence
intervals can be constructed [23]. Setting the size of
the subsamples to the same order of magnitude as
the entire population X and drawing 1e1 subsamples
might be considered sufficient to properly approximate
the confidence intervals of P̂ .

Finally, modified thinning simulation is used to gener-
ate rating data to back-test the performance of differ-
ent parameter estimation methodologies in the (non-
)Markovian models.

2.4 Alternative methodologies

2.4.1 Chapman-Kolmogorov equations

First, time-inhomogeneous Chapman-Kolmogorov for-
ward, which are similar to backward-, equations are
defined as follows [24]

∂P (t)

∂t
= P (t)Q(t)

with

P (0) = Ih

and might be considered to approximate P according
to the non-Markovian model in combination with nu-
merical integration [24] (5.2.5.1).

Second, an attempt is to define the expected inten-
sity, E[λi(t)], for any i ∈ S, which subsequently fully
defines Q. Unfortunately, this leads to complex com-
putations as for any i ∈ S, E[λi(t)] is approximated by
the intensities λi of uncountably infinite possible real-
izations in state i at time t, weighted by the probability
according to the non-Markovian model. Furthermore,
applying E[λi(t)] implies a strong assumption of lin-
earity as follows [52]

E[f(λ(t))] = f(E[λ(t)])

for any probability function f : (0,∞) → [0, 1], which
is trivially incorrect for the underlying exponential
Hawkes process.

Third, the incorrectness of the strong assumption of
linearity is ignored and the non-Markovian model is
adjusted according to the strong, but reasonable as-
sumptions that momentum disappears after an up-
grade and that for any realization defaulting over time
horizon [0, T ] will do so by consecutive downgrades re-
ferred to as the heuristic estimator. This implies that
for ratings in state 1 at time 0 that E[λ1(t)] = λ1(t),
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which in turn fully defines E[λ2(t)]. E[λ2(t)] is now
defined as follows

E[λ2(t)] = q2 +
(q12
q1

)
× t×

∫ t

0

q1e
−q1 t̄α1e

−β1(t−t̄)dt̄

A general consequence is that λ2(t) is defined by the
baseline intensity q2 and non-Markovian contribution
of a 1 → 2 transition before time t weighted by its
probability. Similarly, for ratings in state 1 at time 0,
λ3(t) is defined as follows

E[λ3(t)] = q3

+
q13
q1

× t×
∫ t

0

q1e
−q1 t̄α1e

−β1(t−t̄)dt̄

+
q23 +

γ2(t)
N2

q3 + γ2
× t

×
∫ t

0

(q2 + γ2(t̄))e
−(q2+γ2(t̄))t̄α1e

−β1(t−t̄)dt̄

with

γi(t) = E[λi(t)]− qi

such that in general for any i ∈ S with γ1(t) = 0,
E[λi(t)] is given by

E[λj ] =
j∑

i=1

qij +
γi

Ni

qi + γi(t)

×
∫ t

0

(qi + γi(t̄))e
−(qi+γi(t̄))t̄

× αme
−βm(t−t̄)dt̄

for m = 1{i>4} + 1.

2.4.2 Discretized simulation

To overcome the computational requirements for com-
puting P with confidence intervals via modified thin-
ning simulation an attempt is made to use linear ap-
proximations with small enough discretized timesteps
∆t similar to the Markovian model as follows

P (t1, t2) ≈ (I +Q
t2 − t1
n

)n

for some t1, t2 ∈ [0, T ] with n∆t = t2 − t1 and n ∈ N+.
Unfortunately, this this method cannot directly be ap-
plied to the non-Markovian model, which is demon-
strated for the embedded rating chains {1, 1, 1, 3} and
{1, 2, 1, 3} as follows

P({1, 1, 1, 3}) = (1− q∆t)× (1− q∆t)× (q∆t)

and

P({1, 2, 1, 3}) = (q∆t)× (q∆t)× ((q + αe−β(2∆t))∆t)

with qij = q for any i, j ∈ S, implying (Q)13 should
take on the 2 different values q and q + αe−β(2∆t) to
approximate the probability of both embedded rating
chains correctly.

Now, an attempt is to create an iterative algorithm
properly incorporating momentum for m = 1, thus
not differentiating between investment- or speculative
grade ratings, with Q ∈ R3×3, α, β > 0, T ∈ R+ and
N ∈ N+ defined by pseudo-code as follows

Input: Q, α, β, T,N
1 Initialize Ψ1 = 0 ∈ R3×3;

Φ1 = 0 ∈ R3×3;
Ψ2 = Q̂1,d · e−β∆t ∈ R3×3;
Φ2 = Q̂1,d · e−β∆t ⊗Nα,∆t ∈ R3×3;

2 Set ∆t = T/N
3 for n = 3, ...N
5 Set Qn = Qn−1 × (Q̂e−β∆t + Q̂d)
4 Set Φn = Qn ⊗Nα,∆t+

(Q̂1,u×Q̂n−3
u ×Q̂d) ·e−β∆t⊗Nα,∆t+

Φn−1 × Q̂+
Φn−1 · e−(n−1)β∆t ⊗Nα,∆t

for

Q̂ =

1− q1∆t q12∆t q13∆t
q21∆t 1− q2∆t q23∆t
0 0 0


with Q̂u the upper triangular matrix of Q̂ including
the main diagonal resembling non-downgrade transi-
tions and Q̂d the lower triangular matrix of Q̂ exclud-
ing the main diagonal resembling downgrades. Q̂1,u

and Q̂1,d are constructed similarly, but only include
nonzero entries on the first row describing the initial
state 1 and for any M ∈ R3×3 (5.2.5.2)

M ⊗Nα,∆t =

−Υ1
Υ1

2 −Υ2
Υ1

2 +Υ2

0 Υ1

2 −Υ2
Υ1

2 +Υ2

0 0 0


with

Υj = α∆t

3∑
i=1

(M)ij

for any j ∈ {1, 2} with (P (n · ∆t))13 = ((I3 +
Q∆t)n)13 + (

∑n
i Φi)13 for some Φn ∈ R3×3.

The rationale behind the algorithm is that Φ incor-
porates non-Markovian intensity contributions for ev-
ery possible embedded rating chain weighted by its
probability, however, many complex cross products
have to be considered for properly simulating the non-
Markovian model in this manner. For n = 1, 2, 3, 4,
Φn is demonstrated by writing out the non-Markovian
intensity contributions for all possible embedded rating
chains weighted by their probability (5.2.5.2). Unfor-
tunately, this iterative algorithm does not properly
incorporate the momentum, therefore not correctly
approximate P for small enough timestep ∆t.

2.4.3 Modified Markovian model

The modified Markovian model over time horizon
[0, T ] is defined by the Markovian model applied

8



to realizations with the same initial state such that
Xi = {X(t) : X(0) = i ∧ t ∈ [0, T ]} for any i ∈ S.
Subsequently, using exact MLE and the delta method
the corresponding Q̂i and modified P̂ i are approx-
imated with confidence intervals for any i ∈ S. It
is hypothesized that the modified Markovian model
might sufficiently incorporate momentum and result
into a better approximation of P̂ compared to the
Markovian model. The rationale behind this model is
that, in short, separating realizations based on their
initial state i ∈ S as for Xi minimizes the intertwining
(non-)Markovian behaviour.

The intertwining of (non-)Markovian behaviour can
be demonstrated by only considering realizations with
initial state, e.g., 1, such that X1 = {X(t) : X(0) =

1 ∧ t ∈ [0, T ]}. Similar to Q̂ ∈ R9×9 according to the
Markovian model, the nonzero entry, by assumption,
q189 of Q̂1 is driven by the total number of 8 → 9 tran-
sitions, N1

89(T ), and summed holding times R1
8(T ) in

state 8 among all realizations over time horizon [0, T ]
[21] [37] [30] [22]. Any realization X ∈ X1 making the
8 → 9 transition over time horizon [0, T ] it most likely
has been downgraded several times and at least once,
based on common empirical generator matrices Q̂ [21]
[37] [30] [22]. If all realizations X ∈ X1 making the
8 → 9 transition somewhere over time horizon [0, T ]
have similar momentum, then q̂189 is solely based on re-
alizations with comparable stochastic behaviour. Next,
consider q̂89 based on realizations with initial states 1
or 8 such that X ∈ X1 ∪ X8. Now, q̂89 is again de-
fined by the number of 8 → 9 transitions, N89(T ), and
the summed holding times in state 8, R8(T ), among
all ratings over time horizon [0, T ] which are driven
by realizations with most likely significant momen-
tum starting in state 1 or none starting in state 8.
Reducing this spread in stochastic behaviour might
improve the performance of approximating P̂ incorpo-
rating momentum significantly using a straightforward
(modified) Markovian model allowing for confidence
intervals.

The ability of the modified Markovian model to prop-
erly incorporate momentum can be mathematically
demonstrated. Considering realizations X ∈ X1 mak-
ing the 8 → 9 transition somewhere over time horizon
[0, T ]. Let t1, t2 ∈ [0, T ] with t1 < t2 and ∆t = t2 − t1
and make the reasonable assumption that all realiza-
tions X ∈ X1 in state 8 at time t1 have underlying
intensity similar to λ̂(t). This assumption can be con-
sidered reasonable as any realization X ∈ X1 most
likely has significant accumulated momentum when
making a transition to state 8 driving shorter hold-
ing times with lower probability that momentum has
decayed before leaving state 8 again. Also, ratings
are empirically most likely to get downgraded 1 or 2
states at once implying that the accumulated momen-
tum for any realization X ∈ X1 in state 8 is indeed

comparable [21] [37] [30] [22]. Now, by setting

q8 =

∫ t2

t1

λ̂(t)dt

and given λ̂(t)

q89 = f(8 → 9|λ̂(t1), t1)

then P(X(t2) = 9|X(t1) = 8) is approximated for
fixed t2 by e−q8∆tq89 for any X ∈ X1. As realiza-
tions X ∈ X1 most likely have significant momen-
tum in state 8, the holding times T8 are expected
to be relatively short. Relative short holding times,
T8, imply a relative small spread as the variance is
inversely proportional to λ̂(t) such that q8 and q89
become even more reasonable approximations. In gen-
eral, the higher the expected momentum and thus
λ̂(t1) the lower the variance among Ti for any i ∈ S,
which allows the modified Markovian model to be an
appropriate estimator at any time t ∈ [0, T ]. If the
expected momentum λ̂(t) for any state i ∈ S at any
time t ∈ [0, T ] is low, then a (modified) Markovian
model is an appropriate estimator in the first place.

Finally, the first disadvantage of the modified Marko-
vian model is that the Xi for any i ∈ S is a subset
of X and thus smaller implying larger confidence in-
tervals of P̂ . Furthermore, a second disadvantage is
that all realizations X ∈ Xi for any i ∈ S have no
momentum by assumption, which might be considered
a strong assumption and decreases the size of of the
rating data set even further by disallowing realizations
recently downgraded.

3 Results

3.1 Modified thinning simulation

The input for the modified thinning simulation is cho-
sen similar to recent research with h = 9 and thus
S = {1, ..., 9} with initial number of ratings per state
as follows

413 1313 2232 2318 2021 4504 1333 59

such that corresponding labels of the ratings are de-
fiend by [21]

Aaa Aa A Baa Ba B Caa Ca D

Non-Markovian momentum parameters α,β ∈ R1×2

are given by

α =
(
3.10 12.91

)
× 10−2

β =
(
352.34 170.95

)
× 10−2

9



and the generator matrix Q ∈ R9×9 is as follows [21]

Q =

−8.69 8.36 0.31 0 0.02
1.17 −10.88 9.42 0.25 0.03
0.06 2.40 −9.38 6.66 0.17
0.02 0.16 3.87 −9.47 4.96
0.01 0.06 0.33 6.36 −17.74
0 0.03 0.12 0.35 5.03
0 0.02 0.01 0.13 0.48
0 0 0.18 0.29 0.50
0 0 0 0 0

0 0 0 0
0.01 0 0 0
0.07 0.02 0 0
0.40 0.06 0 0
10.60 0.37 0.01 0
−16.10 10.12 0.40 0.04
10.28 −19.76 6.22 2.61
4.47 13.46 −28.38 9.48
0 0 0 0


× 10−2

resulting in the independent and exact simulation of
14, 193 realizations according to the non-Markovian
model over time horizon [0, T ] with T = 30 using mod-
ified thinning as is demonstrated in figure 1.

Figure 1: Simulation of randomly chosen realization ac-
cording to the non-Markovian model over time horizon
[0, T ] using modified thinning with h = 9 and T = 30.

To confirm that the momentum is properly incorpo-
rated by the modified thinning simulation, Ti can be
compared to the expected truncated exponential dis-
tribution for any i ∈ S according to the Markovian
model solely based on Q as is shown in figure 2.

Figure 2: Distribution of T4 according to the non-
Markovian model with expected truncated exponential
distribution solely based on q4 > 0 according to the
Markovian model.

In figure 2, T4 is shifted towards shorter holding times
compared to the expected truncated exponential distri-
bution with q4 > 0 according to the Markovian model.
Momentum drives a decrease in holding times, there-
fore figure 2 is according to the expected behaviour of
the non-Markovian model.

The modified thinning simulation algorithm with re-
jected or accepted (thinned) proposed holding times
based on the intensity λ(t), local maximum intensity
λ̄(t) and u ∼ U(0, 1) is demonstrated in figure 3.

Figure 3: Simulation of λ(t) for randomly chosen real-
ization (corresponding to figure 1) with demonstrated
rejection or acceptance of proposed holding times based
on λ(t), local maximum intensity λ̄(t) and u ∼ U(0, 1)
according to the non-Markovian model over time hori-
zon [0, T ] using modified thinning.

The duration of modified thinning simulation accord-
ing to the Markovian model for the described setting
is ∼ 5 seconds.
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3.2 Markovian model

3.2.1 Exact maximum likelihood estimator

By means of the exact MLE according to the Marko-
vian model the following generator matrix Q̂1 ∈ R9×9

is computed

Q̂1 =

−8.55 8.25 0.30 0 0
1.15 −10.97 9.50 0.28 0.03
0.05 2.36 −9.38 6.70 0.18
0.01 0.14 3.89 −9.36 4.87
0.01 0.08 0.34 6.42 −18.06
0 0.02 0.11 0.37 5.04
0 0.01 0 0.15 0.47
0 0 0.20 0.28 0.55
0 0 0 0 0

0 0 0 0
0.02 0 0 0
0.07 0.03 0 0
0.39 0.07 0 0
10.81 0.37 0.03 0
−16.63 10.37 0.54 0.19
10.46 −21.43 6.97 3.36
4.34 13.39 −30.42 11.67
0 0 0 0


× 10−2

which in itself does not provide any insight as the mo-
mentum parameters are left out, however, P̂1(t) = eQ̂1t

can be compared to a sufficient approximation of P us-
ing modified thinning simulation with 1e6 realizations.
This comparison is made together with P̂2, P̂3, P̂4,
P̂5 and P̂6 according to the EM algorithm, modified
Markovian model and modified thinning simulation
following parameter estimations via the MH algorithm
and projected NR method in figure 9.

The duration of exact maximum likelihood estimator
according to the Markovian model for the described
setting is ∼ 1 minute.

3.2.2 Expectation-maximization algorithm

The duration of the EM algorithm according to the
Markovian model is ∼ 3 minutes for the described set-
ting with the stopping criteria ϵ = 1e−9 chosen similar
to recent research and is applied to missing data [48]
[21] [22].

By means of the MLE via the EM algorithm according
to the Markovian model the following generator matrix

Q̂2 ∈ R9×9 is computed

Q̂2 =

−8.43 8.16 0.27 0 0
1.13 −11.04 9.53 0.28 0.05
0.04 2.39 −9.38 6.67 0.19
0.01 0.14 3.86 −9.33 4.83
0.01 0.08 0.39 6.39 −18.03
0 0.02 0.11 0.36 5.05
0 0.02 0 0.17 0.44
0 08 0.20 0.25 0.60
0 0 0 0 0

0 0 0 0
0.05 0 0 0
0.05 0.02 0 0
0.40 0.06 0 0
10.45 0.52 0.18 0
−16.39 9.85 0.56 0.45
10.46 −20.80 6.52 3.19
4.18 13.66 −29.33 10.44
0 0 0 0


× 10−2

which again does not provide any insight, however,
P̂2(t) = eQ̂2t is compared to a sufficient approxima-
tion of P using modified thinning simulation with 1e6
realizations in figure 9. It is noticeable that Q̂1 and
Q̂2 are similar with the largest deviation in parameter
entries < 1.1e − 2 therefore expecting to translate in
similar P̂1 and P̂2.

3.3 Non-Markovian model

3.3.1 Metropolis-Hastings algorithm

The MH algorithm is demonstrated in figure 4 by plot-
ting the MCMCs of α̂3 and β̂3 with corresponding
posterior distribution, posterior mean and real mod-
ified thinning simulation input. In figure 12 and 13
(5.1) the MH algorithm is demonstrated similarly for
Q̂3 (5.1).

The duration of the MH algorithm according to the
non-Markovian model is ∼ 6 hours for the described
setting with most importantly 1e3 iterations, 1e2 burn-
in, µα̂ = [0.1; 1] and µβ̂ = [10; 1].

By setting θ̂3 equal to the posterior means of {θn}n≥0

the MSE is minimized after applying the MH algorithm
according to the non-Markovian model. The following
non-Markovian momentum parameters α̂3, β̂3 ∈ R1×2

are computed

α̂3 =
(
1.95 12.26

)
× 10−2

β̂3 =
(
338.84 181.06

)
× 10−2
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and the generator matrix Q̂3 ∈ R9×9 is computed

Q̂3 =

−8.49 8.17 0.32 0 0
1.15 −10.95 9.48 0.28 0.03
0.05 2.36 −9.35 6.68 0.17
0.01 0.14 3.89 −9.35 4.87
0.01 0.08 0.34 6.43 −18.01
0 0.02 0.11 0.37 5.03
0 0.02 0.01 0.15 0.47
0 0 0.21 0.28 0.55
0 0 0 0 0

0 0 0 0
0.02 0 0 0
0.06 0.02 0 0
0.38 0.07 0 0
10.79 0.34 0.18 0
−16.19 10.23 0.39 0.04
10.44 −20.23 6.42 2.71
4.33 13.40 −28.39 9.61
0 0 0 0


× 10−2

3.3.2 Projected Newton-Raphson method

By means of the MLE via the projected NR method ac-
cording to the non-Marovian model the following gen-
erator matrix Q̂4 ∈ R9×9 is computed

Q̂4 =

−8.55 8.25 0.30 0 0
1.15 −10.97 9.50 0.28 0.02
0.05 2.36 −9.35 6.69 0.17
0.01 0.14 3.89 −9.33 4.86
0.01 0.08 0.34 6.42 −17.99
0 0.02 0.11 0.37 5.04
0 0.01 0.01 0.15 0.47
0 0 0.20 0.28 0.55
0 0 0 0 0

0 0 0 0
0.02 0 0 0
0.06 0.02 0 0
0.38 0.06 0 0
10.79 0.34 0.01 0
−16.19 10.22 0.39 0.04
10.46 −20.27 6.43 2.73
4.34 13.39 −28.36 9.60
0 0 0 0


× 10−2

and non-Markovian momentum parameters α̂4, β̂4 ∈
R1×2 are computed

α̂4 =
(
2.27 13.48

)
× 10−2

β̂4 =
(
340.56 205.37

)
× 10−2

after 9 iterations by the selected attempt leading to
the MLE, however, this attempt by the projected NR
method already seemed to have converged sufficiently
after approximately 5 iterations as demonstrated in

table 1 and figure 5. The second stopping criteria
ϵ ≥ ∇l(θn+1|X) − ∇l(θn|X) might not be satis-
fied after 5 iterations if the absolute partial deriva-
tive |∇l(θn|X)| > 1 in some dimension i ∈ I, im-
plying ∇l(θn+1|X) − ∇l(θn|X) will decrease slower
than |θn+1 − θn| demanding more iterations even if
near θr already. The projected NR method is demon-
strated in figure 6 by plotting the iterative values of
α̂4, β̂4 ∈ R1×2.

The duration of the projected NR method accord-
ing to the non-Markovian model is ∼ 1 hour for the
described setting with 1e2 initial guesses for θ̂4,0 with
a maximum number of iterations of 1e2, a stopping
criteria of ϵ = 1e− 2 and δ = 5e− 5.

Figure 5: l(θ̂|X) of selected attempt during projected
NR method with 1e2 initial guesses for θ̂4,0 with a max-
imum number of iterations of 1e2, a stopping criteria
of ϵ = 1e− 2 and δ = 5e− 5.

First, in figure 6 clear convergence to the neighbour-
hood of α and β is shown, however, not precisely. Pre-
cision might be influenced by size of the rating data set,
which might be supported by improved estimations of
P by P̂4 using datasets of different sizes in figure 11
(5.1). Adding granularity to the non-Markovian model
by making a distinction between investment- and spec-
ulative grade might ratings decrease the precision as
there is relatively less rating data per estimated in θ̂4.

Second, in figure 6, the iterative values of α̂4 and β̂4 do
not monotonically converge to the roots α̂r, β̂r ∈ R1×2

r

which should be the case for a fully concave loglikeli-
hood function. This behaviour might be caused by a
complex l(θ̂4|X) with multiple roots.

Third, in figure 7, 90% confidence intervals of P̂4 are
shown for 1e1 parameter estimations from subsamples
of 1e4 realizations via parametric bootstrapping and
sufficiently approximated by 1e6 ratings. One clear
outlier might be caused by the projected NR method
converging to a stationary point not equal to the global
maximum, therefore also demonstrating the weakness
of this parameter estimation methodology.

12



Figure 4: MCMCs and corresponding posterior distribution, posterior mean and modified thinning simulation
input of α̂3, β̂3 during the MH algorithm for 1e3 iterations with 1e2 burn-in.

Table 1: α̂4,0, β̂4,0, α̂4, β̂4, l(θ|X) and number of step
before satisfying the stopping criteria with ϵ = 1e − 2
or attaining 20 iterations during 1e2 initial guesses for
θ0 during the projected NR method according to the
non-Markovian model with 1e2 initial guesses for θ̂4,0,
a maximum number of iterations of 1e2, a stopping cri-
teria of ϵ = 1e− 2 and δ = 5e− 5..

α̂0, β̂0
×1e − 2

α̂4, β̂4
×1e − 2

l(θ|X)
×1e3

Steps

[9.13, 3.92]
[462.48, 147.15]

[17.80e6, 0.01]
[10.30e8, 0.01]

−206.35 20

[28.23, 9.41]
[1255.80, 115.60]

[0.01, 0.01]
[5.89e4, 0.01]

−206.70 20

[3.72, 4.58]
[143.03, 105.61]

[93.38e5, 0.01]
[36.30e7, 0.01]

−206.45 20

[1.11, 5.24]
[607.87, 351.41]

[9.00, 0.01]
[52.50e7, 0.11]

−206.69 20

[0.01, 22.79]
[1206.21.91, 98.75]

[0.01, 47.03e6]
[0.06, 21.91e7]

−210.57 20

[0.39, 5.19]
[584.34, 170.47]

[0.01, 13.51]
[62.29e3, 205.63]

−206.13 13

[2.40, 0.24]
[653.70, 26.68]

[0.01, 0.01]
[58.93e3, 0.01]

−206.70 14

[1.36, 12.62]
[583, 43, 144, 97]

[0.01, 13, 50]
[0.01, 205, 50]

−206.13 20

[2.26, 27.31]
[186.20, 154.10]

[37.24e3, 0.01]
[43.88e4, 0.01]

−207.75 20

[2.96, 6.97]
[485.91, 211.36]

[20.91e5, 21.73e6]
[77.72e5, 100.83]

−210.92 20

[1.50, 17.13]
[68.05, 2.99]

[0.01, 6.30]
[58.87e3, 35.14e3]

−206.69 20

[0.97, 13.78]
[189.47, 380.84]

[1.23, 0.01]
[15.58e7, 0.01]

−206.70 20

[0.30, 1.66]
[70.89, 229.80]

[2.16, 0.01]
[280.00, 11.14e4]

−206.63 16

[1.61, 48.98]
[301.27, 198.72]

[0.01, 83.16e6]
[2.77, 36.27e7]

−210.07 20

[5.65, 22.23]
[303.24, 403.79]

[10.87, 0.01]
[78.90e7, 0.01]

−206.87 20

[1.59, 9.72]
[127.72, 61.00]

[46.61e3, 0.01]
[129.55, 11.12]

−206.14 20

[1, 39, 43, 81]
[943.02, 195.00]

[0.01, 79.04e6]
[53.71e7, 37.75e7]

−210.05 20

[1.96, 5.47]
[316.20, 33.93]

[2.27, 13.48]
[340.56, 205.37]

−206.07 9

[1.03, 0.41]
[222.81, 192.06]

[2.16, 0.01]
[276.57, 11.14e4]

−206.63 15

[6.97, 6.36]
[88.08, 146.90]

[15.64e7, 0.01]
[11.12e6, 13.50]

−207.02 20

Figure 6: α̂4 and β̂4 of selected attempt during pro-
jected NR method with 1e2 initial guesses for θ̂4,0, a
maximum number of iterations of 1e2, a stopping cri-
teria of ϵ = 1e− 2 and δ = 5e− 5.

3.3.3 Discretized simulation

As demonstrated in figure 8 and table 2 (5.2.5.2) by
writing out all (non-)Markovian components for n =
1, 2, 3, 4 discretized simulation does not properly esti-
mate P sufficiently approximated via modified thin-
ning simulation with 1e6 realizations.
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Figure 7: Bootstrapped default probabilities sufficiently approximated by modified thinning with 1e6 realiza-
tions after application of projected NR method with 1 initial guess equal to θ̂4 based on the entire population
for θ̂0, a maximum number of iterations of 1e2, a stopping criteria of ϵ = 1e−2 and δ = 5e−5 on 1e1 subsamples
of size 1e4 allowing for 90% confidence intervals.

Figure 8: Default probabilities according to discretized
simulation attempt and simulation input sufficiently
approximated by modified thinning with 1e6 realiza-
tions for initial state 1 with S = {1, 2, 3} and some θ.

3.3.4 Default probabilities

Overall PD for any initial state i ∈ S is compared in
figure 9 with the true PD according to P sufficiently
approximated via modified thinning simulation 1e6 re-
alizations. Similarly, modified thinning simulation al-
lows the computation of P̂3 and P̂4 for the parameter
estimations according to the MH algorithm and pro-
jected NR method.

3.3.5 Model expansions

An important aspect to consider for further research
on the non-Markovian model is the possibility to be
expanded and incorporate essential economic drivers,
which are currently missing, e.g., correlation between
ratings, business cycles, upgrade momentum or more
granularity. An example of an expanded intensity func-
tion incorporating the above mentioned phenomena
could be defined as follows

λ(t) =

h−1∑
i=1

1{X(t)=i}qi(1 + γi sin(δt+ ϵ))

+

N∑
n

h−1∑
m=1

∑
τm,d∈τm,d(t)

ρnαm,de
−βm,d(t−τm,d)

+

N∑
n

h−1∑
m=1

∑
τm,u∈τm,u(t)

ρnαm,de
−βm,d(t−τm,u)

for some business cycle scale parameter per rating
γ ∈ Rh, business cycle period parameter δ > 0, busi-
ness cycle phase shift parameter ϵ > 0 and correlation
parameter ρn ∈ [−1, 1].

4 Discussion & conclusion

First, both the MH algorithm and projected NR
method are reasonably accurate in terms of result-
ing P̂3 and P̂4 compared to P̂ as demonstrated in
figure 9 (5.3.5), while the PDs for initial state Aaa
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Figure 9: Default probabilities according to exact MLE, heuristic estimator, modified Markovian model and
modified thinning simulation following parameter estimations via the MH algorithm and projected NR method
sufficiently approximated by 1e6 realizations. All parameter methodologies are applied as described in the
theory (4) and results (5). As P̂1 and P̂2 are similar, the EM algorithm has been left out for clarity purposes.

show significant deviation over time horizon [0,T].
This approximation error of P̂ is probably caused by
using a finite dataset with θ̂ not in the neighbourhood
of θ. Larger datasets, i.e., more initial ratings per
state, theoretically drive better approximations of P̂
especially for the initial state Aaa as demonstrated in
figure 11 (5.1). Although the results from both the MH
algorithm and the projected NR method are already
reasonably accurate, their precision can be improved
by increasing either the number of iterations from 1e3
to 1e4, as is done in recent research, or initial guesses
from 2e1 to 1e1 respectively [21]. The used setting
with regards to ϕ, σ, θ̂0, ϵ and δ seems appropriate in
connection to the results.

Second, θ̂3,0 is sampled close to θ̂ as is shown in figures
4 (3.3.1), 12 and 13 (5.1) during the MH algorithm.
The projected NR method is less dependent on a sin-
gle value for θ̂0 and has converged with a significant
deviation among values for θ̂0 and therefore might be
considered more robust in practice.

Third, the MH algorithm and projected NR method
differ significantly in terms of efficiency, whereas in this
research the computational time is reduced from 6 to
1 hour by replacing the parameter estimation method-
ology. As the MH algorithm is demonstrated with θ̂3,0
close to θ̂r it might be that the number of iterations
needs to be increased from 1e3 to 1e4, as in recent re-
search, to ensure convergence in general. The required
computational time would then be approximately 60

hours, however, recent research was able to decrease
the computational time needed for 1e4 iterations with
a 1e3 burn-in to 8.5 hours [21]. Other than comparing
the required computational time for both parameter
estimation methodology, there is not yet a framework
to properly compare the MH algorithm and projected
NR method in terms of the rate of convergence. The
model complexity does not allow a theoretical rate of
convergence of the MH algorithm to be determined,
while multiple roots and convexity might disturb the
quadratic convergence of the projected NR method as
is demonstrated in table 1 and figure 6 (3.3.2).

Fourth, the last aspect of performance is the possibility
of bootstrapping, which is tightly linked to the compu-
tational time required. As the delta method does not
seem to be applicable to the non-Markovian model and
the computational time required for parameter estima-
tion of multiple subsamples of the simulated dataset of
14, 193 (or population) is impractically large for both
parameter estimation methodologies, bootstrapping
does not seem possible (5.2.4.4). However, for large
enough subsamples (near the size of the entire popu-
lation equal to 1e4) θ̂ is a strong candidate for θ̂4,0
during the projected NR method applied to each sub-
sample, which decreases the required iterations and
computational time. The bootstrapping results are
demonstrated in figure 7 (3.3.2), however, for a more
precise approximation of the confidence intervals of
P̂4, the number of subsamples should be increases sig-
nificantly.
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Next, as demonstrated in figure 8 (3.3.4) and table
2 (5.2.5.2), discretized simulation is not possible for
the non-Markovian model as the cross-products can-
not be captured using an iterative algorithm. It seems
that all possible paths have to be considered sepa-
rately (as might be expected). A next step, however,
is to investigate if certain paths with negligible low
probability might be disregarded. Additionally, paths
with negligibly low non-Markovian contributions might
be properly approximated using a Markovian model.
These two steps possibly allow an iterative scheme to
sufficiently approximate PDs according to the non-
Markovian model.

Also, the idea behind the heuristic estimator based
on Chapman-Kolmogorov forward equations does not
lead to proper approximations of P as demonstrated in
figure 9 (5.3.5) , which might imply that the assump-
tions of (i) linearity, (ii) vanishing momentum after an
upgrade or (iii) defaults only a result of solely consecu-
tive downgrades are too strong. Chapman-Kolmogorov
equations do not seem to form a strong basis on which
the PDs according to the non-Markovian model can be
approximated.

Furthermore, the modified Markovian model is ro-
bust in terms of resulting TPM P8 compared to the
sufficient approximation of the real TPM P and allows
the delta method to compute exact confidence inter-
vals. The modified Markovian model outperforms the
MH algortihm and projected NR method in terms of
speed with a duration of ∼ 2 minutes. Disadvantages
of the modified Markovian model are larger confidence
intervals as the rating data subsets Xi are smaller
than X for any i ∈ S. The modified Markovian model
might also perform differently if other non-Markovian
phenomena are incorporated other than momentum as
it does not have the flexibility to adjust for other types
of stochastic behaviour.

Moreover, the non-Markovian model shows great flex-
ibility to adjust for different stochastic behaviour in-
corporating other types of non-Markovian or time-

inhomogenuous phenomena often encountered in rat-
ings, like seasonality, correlation, business cycles or
upgrade momentum. This flexibility might also al-
low the non-Markovian model to be applied in dif-
ferent fields, like seismology, using similar types of
models, however, further adjustment might make the
non-Markovian model even more complex influencing
the accuracy of current parameter estimation method-
ologies as, e.g., the loglikelihood l(θ|X) might have
many more stationary points located near each other
preventing proper convergence [13].

Additionally, throughout the application of all parame-
ter methodologies, MLE consistency has to be assumed
due to the use of an absorption state describing a de-
faulting possibility for of both the (non-)Markovian
models. Even so, the delta method cannot be applied
to the non-Markovian model as it is currently too com-
plex to find a path dependent closed form expression
for pij(t) for any i, j ∈ S.

Besides, solely the mathematical point of view, there
are some possible flaws in the non-Markovian model
with regards to financial aspects, like excluding restart
probabilities after default, seasonality, correlation, up-
grade momentum and business cycles. Additionally,
merits from other types of models like hidden Markov
models, trying to capture the fact that ratings are
not monitored continuously, are also neglected in the
current non-Markovian model. Additionally, after an
upgrade, there is still downgrade momentum, which
keep the recursive patterns in tact, however, might
incorrectly capture momentum. A downgrade not only
increases the probability of further downgrades, but
also decreases the stability of ratings, which is might
not be desirable.

Finally, an additional suggestion for further research is
to reduce the required computational time for both the
MH algorithm and projected NR method. As a result,
the projected NR method can be efficient enough to
allow for more precise parametric bootstrapping within
manageable time frames.
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5 Appendix

5.1 Results

Figure 10: Loglikelihood during EM algorithm according to the Markovian model with stopping criteria ϵ =
1e− 9.

Figure 11: Default probabilities according to modified thinning simulation following parameter estimations
via the projected NR method sufficiently approximated by modified thinning with 1e6 realizations on rating
datasets of 3 different sizes with 2e1 initial guesses of θ4,0, a maximum number of iterations of 1e2, a stopping
criteria of ϵ = 1e− 2 and δ = 5e− 5.
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Q̂1 =



−8.59 8.38 0.21 0 0 0 0 0 0
1.30 −10.60 9.15 0.12 0.03 0 0 0 0
0.04 2.41 −9.95 7.11 0.25 0.08 0.04 0 0
0 0.08 3.47 −8.49 4.61 0.16 0.16 0 0
0 0 0.79 4.76 −16.66 10.71 0.40 0 0
0 0 0 0 4.09 −16.36 9.54 2.04 0.68
0 0 0 0 2.19 13.12 −21.87 0 6.56
0 0 0 0 0 0 0 −9.36 9.36
0 0 0 0 0 0 0 0 0


× 10−2

Q̂2
6 =



−8.03 7.82 0.21 0 0 0 0 0 0
1.05 −10.99 9.64 0.29 0 0.01 0 0 0
0.04 2.36 −9.27 6.53 0.22 0.08 0.04 0 0
0.01 0.12 4.08 −9.82 5.01 0.50 0.10 0 0
0.06 0.12 0.44 7.09 −19.35 11.20 0.44 0 0
0 0 0 0.25 3.80 −14.85 9.90 0.74 0.17
0 0 0 0.61 0 8.97 −23.46 9.99 3.88
0 0 0.67 0 0.67 4.71 14.80 −30.28 9.42
0 0 0 0 0 0 0 0 0


× 10−2

Q̂3
6 =



−8.05 7.35 0.70 0 0 0 0 0 0
1.22 −11.68 10.04 0.33 0.04 0.06 0 0 0
0.05 2.32 −9.33 6.74 0.16 0.04 0.03 0 0
0.01 0.10 3.79 −9.43 5.03 0.46 0.04 0 0
0 0.06 0.36 6.32 −16.96 9.84 0.34 0.04 0
0 0 0.16 0.31 5.37 −17.52 10.52 0.66 0.50
0 0 0 0.08 0.41 11.27 −23.45 7.46 4.23
0 0 0 0.65 0.98 4.26 10.81 −27.51 10.81
0 0 0 0 0 0 0 0 0


× 10−2

Q̂4
6 =



−11.72 10.36 1.35 0 0 0 0 0 0
1.30 −10.85 9.09 0.38 0.08 0 0 0 0
0.04 2.55 −9.61 6.74 0.19 0.08 0.02 0 0
0.01 0.15 3.82 −9.24 4.83 0.35 0.070 0 0
0 0.10 0.31 6.42 −17.84 10.53 0.39 0.08 0
0 0.04 0.07 0.30 5.31 −16.72 9.98 0.72 0.30
0 0 0 0.23 0.45 10.05 −21.09 6.88 3.49
0 0 0.23 0.12 0.58 3.72 11.04 −24.86 9.18
0 0 0 0 0 0 0 0 0


× 10−2

Q̂5
6 =



−11.23 11.23 0 0 0 0 0 0 0
1.98 −10.79 8.37 0.22 0.22 0 0 0 0
0.07 2.50 −9.82 7.02 0.12 0.10 0 0 0
0 0.13 3.95 −9.18 4.61 0.39 0.10 0 0

0.01 0.09 0.33 6.41 −18.06 10.85 0.36 0.01 0
0 0.04 0.07 0.39 4.84 −17.22 10.87 0.67 0.35
0 0.02 0.02 0.15 0.54 10.56 −21.74 7.12 3.35
0 0 0.13 0.50 0.50 3.89 14.23 −31.78 12.54
0 0 0 0 0 0 0 0 0


× 10−2

Q̂6
6 =



−3.01 1.51 1.51 0 0 0 0 0 0
0.39 −7.92 7.40 0.13 0 0 0 0 0
0.03 2.06 −8.92 6.38 0.18 0.18 0.10 0 0
0.01 0.17 4.16 −9.66 4.91 0.33 0.08 0 0
0.01 0.06 0.37 6.51 −18.52 11.19 0.36 0.01 0
0 0.01 0.12 0.38 5.10 −16.50 10.32 0.46 0.11
0 0.01 0 0.14 0.40 10.57 −21.67 7 3.53
0 0 0.19 0.25 0.40 4.35 13.47 −30.21 11.55
0 0 0 0 0 0 0 0 0


× 10−2
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Q̂7
6 =



−19.28 14.46 4.82 0 0 0 0 0 0
1.76 −11.47 9.70 0 0 0 0 0 0
0.16 1.64 −7.87 5.90 0.16 0 0 0 0
0.06 0.12 3.59 −9.25 5.17 0.30 0 0 0
0.04 0.04 0.18 5.95 −17.85 11.16 0.41 0.07 0
0 0.04 0.09 0.34 4.91 −16.43 10.25 0.64 0.15
0 0.03 0 0.15 0.58 10.23 −20.52 6.68 2.87
0 0 0.28 0.16 0.80 4.82 13.69 −31.87 12.12
0 0 0 0 0 0 0 0 0


× 10−2

Q̂8
6 =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 −1.73 1.73 0 0 0 0 0
0 0 4.99 −9.98 4.99 0 0 0 0
0 0 0 6.02 −18.05 11.03 1 0 0
0 0 0.36 0.72 3.24 −14.03 9.36 0 0.36
0 0 0 0.44 2.22 11.97 −23.50 6.65 2.22
0 0 0 1.04 1.04 4.67 14.52 −37.87 16.60
0 0 0 0 0 0 0 0 0


× 10−2

5.2 Derivations

5.2.1 Markovian model

5.2.1.1 Markov property

X(t) satisfying the Markovian property for any i, j ∈ S and t1, t2 ∈ [0, T ] with t1 ≤ t2 is defined by [30]

P(X(t2) = i|Ft1) = P(X(t2) = i|Xt1 = j)

5.2.1.2 Time-homogeneity

X(t) satisfying the time-homogeneity property for any i, j ∈ S and t1, t2 ∈ [0, T ] with ∆t > 0 such that
t1 +∆t, t2 +∆t ∈ [0, T ] is defined by [30]

P(X(t1 +∆t) = i|Ft1) = P(X(t1 +∆t) = i|X(t1) = j) Markovian property
= P(X(t2 +∆t) = i|X(t2) = j) Time-homogeneity

5.2.1.3 Holding times

First, define the holding times {Ti > t} and {Ti > t+∆t} as {X(t̄) = i : t̄ ∈ [0, t]} and {X(t̄) = i : t̄ ∈ [0, t+∆t]}
respectively for any i ∈ S, t ∈ [0, T ] and ∆t > 0 with t+∆t ∈ [0, T ]. X(t) satisfying the Markovian and time-
homogeneity properties implies Ti also holds these properties as follows [52]

P(Ti > t+∆t|Ti > t) = P(X(t̄) = i : t̄ ∈ [0, t+∆t]|X(t̄) = i : t̄ ∈ [0, t]) Definition
= P(X(t̄) = i : t̄ ∈ [t, t+∆t]|X(t̄) = i : t̄ ∈ [0, t]) Adapted
= P(X(t̄) = i : t̄ ∈ [t, t+∆t]|X(t) = i) Markovian property
= P(X(t̄) = i : t̄ ∈ [0,∆t]|X(0) = i) Time-homogeneity
= P(Ti > ∆t) Definition

Second, define the survival function, Si(t) = P(Ti > t), for any i ∈ S, and the P(Ti > t+∆t|Ti > t) according
to Bayesian theorem by the following relation [34] [39]

P(Ti > t+∆t|Ti > t) =
P(Ti > t+∆t)

P(Ti > t)
Bayesian theorem

= P(Ti > ∆t) Markovian property & time-homogeneity

implying for any x, t ∈ [0, T ] and ∆t > 0 with x = t+∆t by setting λi = − ln(Si(1)) > 0 that Si(x) is given by

Si(x) = Si(t+∆t) = Si(t)Si(∆t) = Si(1)
t+∆t = Si(1)

x = eln(Si(1))x = e−λix

such that Ti are IID exponential random variables with parameter λi > 0 as follows [34]

fTi(x) = −dSi(x)

dx
= −d(e

−λix)

dx
= λi · e−λix
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5.2.1.4 Conditional transition probabilities

Define N(t) as a counting process with holding times IID exponentially random variables driven by parameter
λ > 0 over time horizon [0, t] for any t > 0. Divide [0, t] in n ∈ N+ equal bins with length ∆t = t

n such that for
x+ y = ∆t an upper bound for the probability of multiple transitions per bin is given by

P(kb ≥ 2) ≤ P(kb = 2) =

∫ x

0

λe−λzdz

∫ y

0

λe−λzdz Definition

= (1− e−λx)(1− e−λ(∆t−x)) -

≤ (1− e−λ∆t
2 )2 Upper bound

and according to a Maclaurin series expansion of f(x) = ex asymptotically equal to 0 as follows [1]

lim
∆t→0

P(kb ≥ 2) ≤ lim
∆t→0

(1− e−λ∆t
2 )2 = lim

∆t→0
1− 2(1− λ∆t

2
) + (1− λ∆t) +O((λ∆t)2) = 0

The probability of a single transition per bin is defined by

P(kb = 1) = lim
∆t→0

1− P(kb = 0) = lim
∆t→0

1−
∫ ∞

∆t

λ · e−λxdx = lim
∆t→0

1− e−λ∆t

which is according to a Maclaurin series expansion of f(x) = 1− e−x asymptotically equal to λ∆t as follows [1]

lim
∆t→0

f(λ∆t) = lim
∆t→0

f(0) + f ′(0)λ∆t+O((λ∆t)2) = lim
∆t→0

λ∆t+O((λ∆t)2) = λ∆t

N(t) asymptotically follows a binomial distribution with k transitions and
(
n
k

)
= n!/(n − k)! the binomial

coefficient by setting p = λ∆t as follows [27]

lim
n→∞

P(N(t) = k) = lim
n→∞

(
n

k

)
×
(
λ
t

n

)k

×
(
1− (λ

t

n
)
)n−k

Definition

= lim
n→∞

( (λt)k
k!

)
×
( n!

(n− k)!

1

nk

)
×

(
(1− λt

n
)n
)
×

(
(1− λt

n
)−k

)
Rearranged

First, the following relation holds

lim
n→∞

n!

(n− k)!

1

nk
= lim

n→∞

n(n− 1)(n− 2) · · · 1
(n− k)(n− k − 1)(n− k − 2) · · · 1

( 1

nk

)
Definition

= lim
n→∞

(n
n

)
×
(n− 1

n

)
×

(n− 2

n

)
× · · · ×

(n− k + 1

n

)
Rearranged

= 1 Asymptotically

Second, by setting x = n
λt according to the definition of e = limx→∞(1 + 1

x )
x the following relation holds [54]

lim
n→∞

(1− λt

n
)n = lim

x→∞

(
(1− 1

x
)x
)λt

Rearranged

= lim
x→∞

( 1

(1 + 1
x−1 )

x−1(1 + 1
x−1 )

)λt

-

= lim
x→∞

( 1

(1 + 1
x )

x

)λt

-

= e−λt Definition

Third, for any k > 0 the following relation holds

lim
n→∞

(1− λt

n
)−k = 1

such that for n→ ∞ N(t) is asymptotically Poisson distributed as follows

lim
n→∞

P(N(t) = k) =
(λt)k

k!
e−λt

For infinitesimal ∆t the probability of a single transition by X(t) out of state i ∈ S with qi > 0 is defined by
[30]

P(X(t) ̸= i|X(t−∆t) = i) = P(X(∆t) ̸= i|X(0) = i) Time-homogeneity

= qi∆t · e−qi∆t Definition
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and according to a Maclaurin series expansion of f(x) = ex asymptotically equal to qi∆t+O(∆t) as follows [1]
[30] [35] [44]

qi∆t · e−qi∆t = qi∆t(1− qi∆t+
q2i
2!
∆t2 − q3i

3!
∆t3 + · · · Maclaurin series

= qi∆t− (qi∆t)
2 +

q3i
2!
∆t3 − q4i

3!
∆t4 + · · · Rearranged

= qi∆t+O(∆t) Asymptotically

5.2.1.5 Stable conservative generator matrix

The unconditional transition probability of X(t) for any i, j ∈ S, infinitesimal ∆t and t ∈ [0, T ] with t+∆t ∈
[0, T ] is defined by [30]

P(X(t+ δt) = j|X(t) = i) = P(X(∆t) = j|X(0) = i) Time-homogeneity
= P(X(∆t) ̸= i|X(0) = i)

× P(X(∆t) = j|X(∆t) ̸= i,X(0) = i) Bayesian theorem
= (qi∆t+O(∆t))× c Time-homogeneity

with c ∈ [0, 1] as the time-homogeneity property implies that P(X(∆t) = j|X(∆t) ̸= i,X(0) = i) is constant.
Define the unnormalized conditional transition probability for any i, j ∈ S as follows [30] [35]

qij = lim
∆t→0

P(X(t) = j|X(t−∆t) = i)

∆t
Definition

= lim
∆t→0

P(X(∆t) = j|X(0) = i)

∆t
Time-homogeneity

such that the conditional transition probability for any i, j ∈ S according to Bayesian theorem is asymptotically
given by [30]

lim
∆t→0

P(X(t) = j|X(t−∆t) = i,X(t) ̸= i) = lim
∆t→0

P(X(t) = j|X(t−∆t) = i)

P(X(t) ̸= i|X(t−∆t) = i)
Bayesian theorem

= lim
∆t→0

P(X(∆t) = j|X(0) = i)

P(X(∆t) ̸= i|X(0) = i)
Time-homogeneity

= lim
∆t→0

qij∆t+O(∆t)

qi∆t+O(∆t)
Definition

=
qij
qi

-

and by the conservation of probability the following relation holds [30]

∑
j=1,j ̸=i

qij
qi

= 1 =⇒ qi =

h∑
j=1,j ̸=i

qij

5.2.1.6 Transition probability matrix

According to a Maclaurins series expansion of f(x) = ex for any i, j ∈ S and infinitesmal ∆t the TPM is defined
by [1] [30]

(P (t−∆t, t))ii = (P (0,∆t))ii Time-homogeneity
= 1− qi∆t+O(∆t) Definition

and by the conservation of probability for j ̸= i the following relation holds [30]

(P (0,∆t))ij = qi∆t
qij
qi

+O(∆t) = qij∆t+O(∆t)

such that in matrix notation P is given by [30]

P (t−∆t, t) = P (0,∆t) = Ih +Q∆t+O(∆t)
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Set t1, t2 ∈ [0, T ] with t2 > t1, n ∈ N+ and t2 = t1 + n∆t, then P is defined by [30] [55]

P (t1, t2) = lim
n→∞

(I +∆t ·Q)n Maclaurin

= lim
n→∞

(
I +

t2 − t1
n

Q
)n

Rearranged

= eQ(t2−t1) Definition
= P (t2 − t1) Time-homogeneity

5.2.2 Non-Markovian model

5.2.2.1 Markovian marked point process

The likelihood of a single MPP X over time horizon [0, T ] is defined by [17] [18] [21]

L(λ, f |X) =

N(T )∏
n=1

λ(tn)f(κn|tn)e−
∫ T
0

λ(x)dx

such that by setting the intensity as follows [21] [30]

λ(tn) =

h∑
i=1

1{X(tn)=i}qi

with the following marks distribution [21] [30]

f(κn|tn) =
h∑

i,j=1,j ̸=i

1{X(tn)=i,X(t+n )=j}qij

qi

the Markovian model is given by

L(λ, f |X) =

N(T )∏
n=1

[ h∑
i=1

1{X(tn)=i}qi

]
×
[ h∑
i,j=1,j ̸=i

1{X(tn)=i,X(t+n )=j}qij

qi

]
×
[
e−

∫ T
0

∑h
i=1 1{X(x)=i}qidx

]
Rearranging

= (qie
−qit1

qij
qi

)× (qje
−qj(t2−t1)

qjk
qj

)× · · · × (qke
−qk(tN−tN−1)

qkl
qk

)× e−ql(T−tN ) -

5.2.2.2 Recursive patterns

The intensity is defined by an exponential Hawkes process as follows [21]

λ(t) =

h−1∑
i=1

1{X(t)=i}qi +
∑

τ∈τ (t)

αe−β(t−τ)

such that by setting a recursion as follows [21] [46]

Rn = (Rn−1 + 1{X(t+n )>X(tn)})e
−β(tn−tn−1)

with R0 = 0 and t0 = 0, λ(t) is given by [21] [46]

λ(tn+1) =

h−1∑
i=1

1{X(tn+1)=i}qi + αRn+1 Rearranging

=

h−1∑
i=1

1{X(tn+1)=i}qi +
∑

τ∈τ (tn+1)

αe−β(tn+1−τ) -

=

h−1∑
i=1

1{X(tn+1)=i}qi + α
( ∑

τ∈τ (tn)

e−β(tn−τ) + 1
)
e−β(tn+1−tn) -

=

h−1∑
i=1

1{X(tn+1)=i}qi + α
(
Rn + 1{X(t+n )>X(tn)}

)
e−β(tn+1−tn) -
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5.2.2.3 Loglikelihood

By filling the intensity [21]

λ(t) =

h−1∑
i=1

1{X(t)=i}qi +
∑

τ∈τ (t)

αe−β(t−τ)

and marks distribution [21]

f(κn|tn) =
h∑

i,j=1,j ̸=i

1{X(tn)=i,X(t+n )=j}

λ(tn)
×

(
qij +

1X(t+n>X(tn))

Gi

∑
τ∈τ (tn)

αe−β(tn−τ)
)

into the likelihood of a single MPP [17] [18] [21]

L(λ, f |X) =

N(T )∏
n=1

λ(tn)f(κn|tn)e−
∫ T
0

λ(x)dx

it follows that after cancelling out the λ(tn)-terms and writing out the following relation [21]∫ T̄

0

∑
τ∈τ(x)

αe−β(x−τ)dx =
∑

τ∈τ (T̄ )

α

β
(1− e−β(T̄−τ))

the likelihood is defined by [21]

L(VQ̂, α̂, β̂|X) =

N(T̄ )∏
n=1

[( h∑
i,j=1

1{Xtn=i,X(t+n )=j}qij +
1{X(t+n>X(tn))}

Gi

∑
τ∈τ (tn)

α̂e−β̂(tn−τ)
)]

Definition

× exp
(
−
∫ T

0

h−1∑
i=1

1X(x)=iqi +
∑

τ∈τ (x)

α̂e−β̂(x−τ))dx
)

=

N(T̄ )∏
n=1

[( h∑
i,j=1

1{Xtn=i,X(t+n )=j}qij +
1{X(t+n>X(tn))}

Gi

∑
τ∈τ (tn)

α̂e−β̂(tn−τ)
)]

Rearranging

× exp
(
−
∫ T

0

h−1∑
i=1

1X(x)=iqidx
)
× exp

(
−

∑
τ∈τ (T̄ )

α̂

β̂
(1− e−β̂(T̄−τ))

)
such that the loglikelihood is given by [21]

l(VQ̂, α̂, β̂|X) =

N(T̄ )∑
n=1

log
( h∑

i,j=1

1{Xtn=i,X(t+n )=j}qij +
1X(t+n )>X(tn))

Gi

∑
τ∈τ (tn)

α̂e−β̂(tn−τ)
)

−
∫ T̄

0

h−1∑
i=1

1{X(x)=i}qidx−
∑

τ∈τ (T̄ )

α̂

β̂
(1− e−β̂(T̄−τ))

The equality qi = −
∑h

j=1,j ̸=i qij implies the loglikelihood is defined by [21]

l(VQ̂, α̂, β̂|X) =

N(T̄ )∑
n=1

log
( h∑

i,j=1

1{Xtn=i,X(t+n )=j}qij +
1X(t+n )>X(tn))

Gi

∑
τ∈τ (tn)

α̂e−β̂(tn−τ)
)

−
∫ T̄

0

h−1∑
i=1

1{X(x)=i}

( h∑
j=1,j ̸=i

qij

)
dx−

∑
τ∈τ (T̄ )

α̂

β̂
(1− e−β̂(T̄−τ))

and by use of the following recursive patterns [21] [46]

Rn = (Rn−1 + 1{X(t+n )>X(tn)})e
−β̂(tn−tn−1)
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with R0 = 0 and t0 = 0 is given by [21] [46]

l(VQ̂, α̂, β̂|X) =

N(T̄ )∑
n=1

log
( h∑

i,j=1

1{Xtn=i,X(t+n )=j}qij + α̂
1X(t+n )>X(tn))

Gi
Rn

)

−
∫ T̄

0

h−1∑
i=1

1{X(x)=i}

( h∑
j=1,j ̸=i

qij

)
dx−

∑
τ∈τ (T̄ )

α̂

β̂

(N(T̄ )∑
n=1

1X(t+n )>X(tn)
−RNe

−β̂(T̄−τN )
)

for T̄ = min{{t : X(t) = h} ∧ T} and N = N(T ).

5.2.3 Parameter estimation Markovian model

5.2.3.1 Maximum likelihood estimator

For a single realization X over time horizon [0, T ] with transition times {t1, t2, ..., tN} for any i, j, k, l ∈ S and
N ∈ N+ with i ̸= j and j ̸= k the likelihood is defined by [22] [30] [37]

L(VQ̂|X) = e−qit1qije
−qj(t2−t1)qjk · · · e−ql(T−tN ) Definition

=

h∏
i=1

h∏
j ̸=i

q
Nij(T )
ij e−qiRi(T ) Rearranging

with Ri(t) =
∫ t

0
1{X(t̄)=i}dt̄ the summed holding times in state i, Nij(t) the number of i → j transitions both

up to time t and the last holding time following a censored exponential random variable [22] [30] [37]. According
the equality qi =

∑
i̸=j qij the loglikelihood is defined by [22] [30] [37]

l(VQ̂|X) =

h∑
i=1

h∑
i ̸=j

log(q̂ij)Nij(T )−
h∑

i=1

q̂iRi(T ) Definition

=

h∑
i=1

h∑
i ̸=j

log(q̂ij)Nij(T )−
h∑

i=1

h∑
i ̸=j

q̂ijRi(T ) Rearranging

and the MLE defined by setting the partial derivative with respect to q̂ij equal to 0 as follows [22] [30] [37]

∂l(Q̂|X)

∂q̂ij
=
Nij(T )

q̂ij
−Ri(T ) = 0 =⇒ q̂ij =

Nij(T )

Ri(T )

with corresponding Hessian matrix Hl(VQ̂|X) for any k1 = h(i1 − 1) + j1 and k2 = h(i2 − 1) + j2 given by [21]
[22]

(Hl(VQ̂|X))k1k2
=

∂

∂q̂i2j2

∂l(Q̂|X)

∂q̂i1j1

=
∂

∂q̂i2j2

Nij(T )

q̂ij
−Ri(T )

= −Nij(T )

q̂2i1j1

∣∣∣
(i1,j1)=(i2,j2)

otherwise if (i1, j1) ̸= (i2, j2), then (HlVQ̂|X))k1k2
is equal to 0.

5.2.3.2 Uniqueness transition probability matrix

As eigenvalues of matrices with continuous random variables as entries are continuous random variables them-
selves, the probability of Q̂ not having h distinct eigenvalues is 0 almost surely [42]. Assume a stable conservative
generator matrix Q ∈ Rh×h is diagonizable with P (t) = eQt. log(P (t)) = Qt if P (t) is invertible with a suffi-
cient condition that det(P ) ̸= 0 [29]. As Qt = ΛV Λ−1 with V a diagonal matrix with h distinct eigenvalues
as entries and Λ the corresponding eigenvectors the matrix exponential is defined by [29]

eQt = Ih +Qt+
(Qt)2

2!
+

(Qt)3

3!
+ · · ·
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and for any n ∈ N+

(Qt)n = (ΛV Λ−1)n = (ΛV Λ−1)n = ΛV Λ−1ΛV Λ−1 · · ·ΛV Λ−1 = ΛV nΛ−1

implying

eQt = ΛV 0Λ−1 +ΛV 1Λ−1 +
ΛV 2Λ−1

2!
+

ΛV 3Λ−1

3!
+ · · · Definition

= Λ(I + V +
V 2

2!
+

V 3

3!
+ · · · )Λ−1 Rearranging

= ΛeV Λ−1 -
= P (t) Definition

As the exponential function is one-to-one R 7→ (0,∞) the eigenvalues eV of P are distinct and strictly positive
[54]. By definition det(P (t)) is the product of the eigenvalues of P (t) implying det(P (t)) > 0 [29].

5.2.3.3 Exact maximum likelihood estimator discrete data

Given the initial state of an embedded discrete rating chain with N ∈ N+ transitions {X1, X2, ..., XN+1} the
probability of this realization is as follows [30]

P({X1, X2, ..., Xn}) =
N∏

n=2

pXn−1Xn

=

h∏
i=1

h∏
j=1

p
Nij

ij

= L(P |X)

with pij = (P )ij fully describing discrete rating chain behaviour and Nij the number of i→ j transitions in the
embedded rating chain {X1, X2, ..., XN+1} for any i, j ∈ S. Using the conservation of probability as follows [30]

h∑
j=1

pij = 1

for any i ∈ S the loglikelihood is as follows by setting [30]

pi1 = 1−
h∑

j=2

pij

such that

l(P |X) =

h∑
i=1,j=2

Nij log pij +Ni1 log(1−
h∑

j=2

pij)

for any i ∈ S by setting the derivative of the loglikelihood fuction with respect to pij equal to 0 for any i, j ∈ S
with j ̸= 1 the MLE is found as follows [30]

l(P |X)

pij
=
d
∑h

i=1,j=2Nij log pij +Ni1 log(1−
∑h

j=2 pij)

dpij

=
Nij

pij
− Ni1

1−
∑h

j=2 pij

=
Nij

pij
− Ni1

pi1

= 0

implying

pij
pi1

=
Nij

Ni1

for any j ∈ S such that pij ∝ Nij which leads to the MLE after normalization [30]

p̂ij =
Nij∑h
j=1Nij
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5.2.3.4 Consistency maximum likelihood estimator

By definition of the infinitesmal generator matrix Q driving X(t) over time horizon [0, T ] the following definition
holds [2]

qij =
E[Nij(T )]

E[Ri(T )]

for any i, j ∈ S as [2]

E[Ri(T )] =

∫ T

0

P(X(t) = i)dt

and [2]

E[Nij(T )] = qij

∫ T

0

P(X(t) = i)dt

since for ∆t = T
n for some sufficiently large n ∈ N+ [2]

E[Nij(T )] =

n∑
k=0

1{X((k+1)∆t)=j,X(k∆t)=i}

=

n∑
k=0

P(X((k + 1)∆t) = j ∧X(k∆t) = i) +O(∆t)

=

n∑
k=0

q(i, j)P(X(k∆t) = i) +O(∆t)

→ qij

∫ T

0

P(X(t) = i)dt

as n→ ∞, since again per bin with length ∆t only a single transition is considered with an error term of O(∆t).
Define the MLE of Q after m ∈ N+ IID realizations as q̂mij such that [2]

lim
m→∞

q̂mij = lim
m→∞

Nm
ij (T )/m

Rm
i (T )/m

= qij

with in previous notation Nm
ij (T ) = Nij(T ) and Rm

i (T ) = Ri(T ). Now, the set of random variables

{
√
m(q̂mij − qij)} ∼

{ 1

E[Ri(T )]

(Nm
ij (T )− qijR

m
i (T )

√
m

)}
i̸=j

as it is allowed to set E[Ri(T )] =
Rm

i (T )
k as m→ ∞ by the extended version of the CLT [2] being asymptotically

normal with mean 0 and covariances

Σi,j,k,l =
1

E[Ri(T )]E[Rk(T )]
E[(Nm

ij (T )− qijR
m
i (T ))(Nm

kl (T )− qklR
m
k (T ))]

= δ((i, j), (k, l))E[Ri(T )]

5.2.3.5 The delta method

The use of the Delta method does not generally hold as rating chains are not irreducible. It must be assumed
that the MLE is a consistent estimator such that [38]

√
n(θ̂ − θ)

D−→ N (0,Σ)

implying [38]

√
n(P (θ̂)− P (θ))

D
=⇒ N (0,Var(P (θ)))

First, apply a first order Taylor series on P around θ̂ as follows [38]

P (θ̂) ≈ P (θ) +∇P (θ)T (θ̂ − θ)
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with Σ the covariance matrix of θ̂ implying that the variance is defined by [38]

Var(P (θ̂)) ≈ Var(P (θ) +∇P (θ)T (θ̂ − θ))

= Var(P (θ) +∇P (θ)T θ̂ −∇P (θ)Tθ)

= Var(∇P (θ)T θ̂)

= ∇P (θ)TΣ∇P (θ)

as Var(a+X) = Var(X) for any random variable X and constant a ∈ R. Finally, the delta method implies as
θ̂ is assumed to be consistent that [38]

√
n(P (θ̂)− P (θ))

D
=⇒ N (0,∇P (θ)TΣ∇P (θ))

5.2.4 Parameter estimation non-Markovian model

5.2.4.1 Convergence Metropolis-Hastings algorithm

Part I

The following proof on the convergence of the Metropolis-Hastings algorithm in general is simplified to a
single-dimensional finite state parameter space Θ, which can be expanded to a multidimensional continuous
setting [12].

Let {θn}n≥0 be a Markov chain sampled according the Metropolis-Hastings algorithm with some time-homogenuous
proposal function ψ(θn+1|θn) translating into a transition matrix Ψ satisfying the Markov property and M ∈ N+

dimensional finite state parameter space {θ1, ..., θM}. Assuming {θn}n≥0 is (i) irreducible, (ii) aperiodic and
(iii) there exists a stationary distribution, π, such that π = πΨ, then according to the basic limit theorem [12]

lim
n→∞

P(θn = θi) lim
n→∞

πn(i) = π(i)

for any i = 1, ..., N and any initial distribution π0 of θ0 also defined by the total variation as follows [12]

||πn − π|| = sup
A∈Θ

(πn(A)− π(A))

Part II

Define {ϑn}n≥0 as a Markov chain independent from {θn}n≥0 with similar Ψ, but let ϑ0 have initial dis-
tribution π as opposed to θ0 having initial distribution π0. Set the coupling time T as the first time θn equals
ϑn [12]

T = inf{n : θn = ϑn}

and define a new Markov chain as follows [12]

ϑ̄ =

{
ϑn if n < T

θn if n ≥ T

{̄ϑn}n≥0 is stationary as ϑ̄0 = ϑ0 with ϑ0 ∼ π and π = πΨn for any n ∈ N+ implying the the total variation is
given by [12]

πn(A)− π(A) = P(θn ∈ A)− P(ϑ̄n ∈ A)

= P(θn ∈ A, n ≥ T )− P(ϑ̄n ∈ A, n ≥ T ) + P(θn ∈ A, n < T )− P(ϑ̄n ∈ A, n < T )

= P(θn ∈ A, n < T )− P(ϑ̄n ∈ A, n < T )

< P(T > n)

Proving convergence of the total variation ||πn − π|| → 0 is equivalent to P(T > n) → 0 or P(T < ∞) = 1 as
n→ ∞ [12].

Part III
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Define the bivariate Markov chain {ξn = (θn, ϑn)}n≥0 such that the coupling time T is defined by the event
that ξn hits the diagonal line {(θi, ϑi) : θi = ϑi ∈ Θ} with [12]

Pξ(θn+1 = θj , ϑn+1 = ϑj |θn = θi, ϑn = ϑi) = P(θn+1 = θj |θn = θi)P(ϑn+1 = ϑj |ϑn = ϑi)

for any θi, θjϑiϑj ∈ Θ as θn ⊥ ϑn for any n ∈ N+ with stationary distributions

πξ(θi, ϑi) = π(θi)π(ϑi)

The proof P(T <∞) = 1 is now reduced to proving that ξn hits the diagonal {ξn = (θn, ϑn)}n≥0 with probability
1. It suffices to proof that {ξn} is irreducible and recurrent, however, a stationary distribution π satisfies the
following condition [12] ∑

i

pi(θi)Ψ
n(θi, θj) = π(θj)

for all n, such that if a state θj is not recurrent (transient) it holds that π(θj) = 0. As irreducibility holds
that Ψ(θi, θj) > 0 for any (θi, θj) ∈ Θ by definition it implies for a stationary distribution with π(θj) = 0 that
π(θi) = 0 for any (θi, θj) ∈ Θ contradicting that π is a stationary distribution summing to 1 and showing that
it suffices to proof that ξn is irreducible [12].

Part IV

To proof ξn is irreducible it must be proven that Ψn(θi, θj) > 0 holds for sufficiently large n. This is done by
proving that ∃N ∈ N+ such that ∀n ≥ N it holds that n ∈ {n̄ : Ψn̄(θi, θj)}. As {n̄ : Ψn̄(θi, θj)} is aperiodic
by assumption implying a greatest common divisor of 1 and is closed under addition it sufficies to proof that
the above condition holds for any set A, which is closed under addition and has a greatest common divisor 1 [12].

Let A be a set of integers closed under addition and with greatest common divisor equal to 1. First, it is
proven that A contains at least one pair of consecutive integers via a contradiction. Assume the minimal dis-
tance s > 1 between 2 sequential elements of A, then ∃n1 such that n1, n1 + s ∈ A. Set n2 ∈ A as an integer
not divided by s, which must exist, since the greatest common divisor is 1. Let n2 = ms+ r with 0 < r < s and
m ∈ N+ and define n3 = (m+ 1)(n1 + s) ∈ A and n4 = (m+ 1)n1 + n2 ∈ A since A is closed under addition.
Finally, n3 − n4 = s− r ∈ (0, s) contradicting that the minimal spacing is s > 1 [12].

It is proven that ξn is irreducible for sufficiently large n such that P(T < ∞) = 1 and it is proven that any
irreducible and aperiodic Markov chain θn with a stationary distribution π converges towards this stationary
distribution [12].

5.2.4.2 Convergence projected Newton-Raphson method

Part I

The setting with sufficient conditions to proof convergence to a root is demonstrated in one dimension, then
generalized to a multidimensional case. Let f be a continuous twice differentiable loglikelihood function with
f : R 7→ [0, 1] and root x ∈ R. Apply a second order Taylor series around an initial guess of the root x0 ∈ R [31]

f(x0 +∆x) ≈ f(x0) + f ′(x0)∆x+
1

2
f ′′(x0)∆x

2

with ∆x ∈ R and ξ0 between x0 and the root x. By taking the derivative with respect to ∆x and setting equal
to 0, f(x0 +∆x) is locally minimized or maximized over ∆x as follows [5] [58]

0 =
d

d∆x
(f(x0 +∆x)) ≈ d

d∆x
(∆xf(x0)f

′(x0)) +
∆x2

2
f ′′(x0)

= f ′(x0) + f ′′(x0)∆x

implying [5] [58]

∆x = − f ′(xn)

f ′′(xn)

Finally, f(x0) is locally minimized or maximized using a second order Taylor series approximation by setting
[5] [58]

x1 = x0 −
f ′(x0)

f ′′(x0)
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leading to a general iterative method by setting [5] [58]

xn+1 = xn − f ′(xn)

f ′′(xn)

Part II

Define the error ϵn = x − xn with the root x and set a second order Taylor series of f ′(·) around the root x
equal to 0 as follows [5] [58]

f ′(x) = f ′(xn) + f ′′(xn)(x− xn) +
(x− xn)

2

2
f ′′′(ξn) = 0

with ξn between xn and the root x. By dividing both sides by f ′′(xn) it holds that

f ′(xn)

f ′′(xn)
+ (x− xn)−

f ′′′(xn)

2f ′′(xn)
(x− xn)

2 = 0

and by substitution according to the NR method as follows

xn+1 = xn − f ′(xn)

f ′′(xn)

such that the convergence of the NR method is at least quadratic according to [5] [58]

x− xn+1 −
f ′′′(xn)

2f ′′(xn)
(x− xn)

2 = 0

or

ϵn+1 = −ϵ
2
nf

′′′(ξn)

2f ′′(xn)

Error computation is made more robust by considering absolute values such that [5] [58]

|ϵn+1| =
ϵ2n|f ′′′(ξn)|
2|f ′′(xn)|

Furthermore, the error can be defined as follows

|ϵn+1| ≤Mϵ2n

with

M = sup
x̄∈(0,∞)

∣∣∣∣∣ f ′(x̄)f ′′(x̄)

∣∣∣∣∣
such that an absolute upper bound for the error ϵn can be computed given an upper bound for ϵ0. Based on
this derivation, the convergence conditions for the NR method requires that M |ϵ0| < 1.

Part III

As the principle of a second order Taylor series remains given infinitesimal ∆θ for any θ,θ +∆θ ∈ Θ, the NR
method can be extended to a multi dimensional setting by setting the gradient of l(θ|X) equal to 0 as follows
[5] [58]

∇l(θ +∆θ|X) ≈ ∇l(θ|X) +∇2l(θ)∆θ = 0

implying

∆θ = −(∇2l(θ|X))−1∇l(θ|X)

such that

θn+1 = θn − (∇2l(θ|X))−1∇l(θ|X)
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given that l(θ|X) is twice differentiable and continuous for θ ∈ Θ. Accordingly, the error, ϵ, is defined by [5]
[58]

ϵn+1 = −ϵ2n
2
(∇2l(θn|X))−1D3l(ξn|X)

with ξn between θn and the root θr in any dimension and D3 an hyper matrix [5] [58] such that

D3l(ξn|X) =
∑ ∂3l(ξn|X)

∂θi∂θj∂θk
θiθjθk

implying quadratic convergence. Due to complexity D3l(ξn|X) is not attained and absolute errors can not be
computed.

5.2.4.3 Partial derivatives loglikelihood

l(Q,α,β|X) =

N(T̄ )∑
n=1

log
( h∑

i,j=1

1{Xtn=i,X(t+n )=j}qij +
1X(t+n )>X(tn))

Ni

∑
τ∈τ (tn)

αe−β(tn−τ)
)

−
∫ T̄

0

h−1∑
i=1

1{X(x)=i}

( h∑
j=1,j ̸=i

qij

)
dx−

∑
τ∈τ (T̄ )

α

β
(1− e−β(T̄−τ))

with

Rn = (Rn−1 + 1{X(t+n>X(tn))})e
−β(tn−tn−1)

for R0 = 0 and t0 = 0 and X(0−) = X(0) implying the following partial derivatives

l(Q,α,β|X) =

N(T̄ )∑
n=1

log
( h∑

i,j=1

1{Xtn=i,X(t+n )=j}qij + α
1X(t+n )>X(tn))

Ni
Rn

)

−
∫ T̄

0

h−1∑
i=1

1{X(x)=i}

( h∑
j=1,j ̸=i

qij

)
dx−

∑
τ∈τ (T̄ )

α

β

(N(T̄ )∑
n=1

1X(t+n )>X(tn)
−RNe

−β(T̄−τN )
)

∂l(Q,α,β|X)

∂αm
=

N(T̄ )∑
n=1

1{τm(tn )̸=∅}
1X(t+n )>X(tn))

Ni

∑
τ∈τm(tn)

e−βm(tn−τ)

×
( h∑

i,j=1

1{X(tn)=i,X(t+n )=j}qij +
1X(t+n )>X(tn))

Ni

∑
m=1,2

∑
τ∈τm(tn)

αme
−βm(tn−τ)

)−1

−
∑

τ∈τm(T̄ )

1

β
(1− e−β(T̄−τ))

∂2l(Q,α,β|X)

∂α2
m

= −
N(T̄ )∑
n=1

(
1{τm(tn )̸=∅}

1X(t+n )>X(tn))

Ni

∑
τ∈τm(tn)

e−βm(tn−τ)
)2

×
( h∑

i,j=1

1{X(tn)=i,X(t+n )=j}qij +
1X(t+n )>X(tn))

Ni

∑
m=1,2

∑
τ∈τm(tn)

αme
−βm(tn−τ)

)−2

< 0

∂2l(Q,α,β|X)

∂α1∂α2
= −

N(T̄ )∑
n=1

∏
m=1,2

(
1{τm(tn) ̸=∅}

1X(t+n )>X(tn))

Ni

∑
τ∈τm(tn)

e−βm(tn−τ)
)

×
( h∑

i,j=1

1{X(tn)=i,X(t+n )=j}qij +
1X(t+n )>X(tn))

Ni

∑
m=1,2

∑
τ∈τm(tn)

αme
−βm(tn−τ)

)−2

< 0
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∂l(Q,α,β|X)

∂qij
=

N(T )∑
n=1

1{X(tn=i,X(t+n )=j}

×
( h∑

i,j=1

1{X(tn=i,X(t+n )=j}qij +
1X(t+n )>X(tn))

Ni

∑
m=1,2

∑
τ∈τm(tn)

αme
−βm(tn−τ)

)−1

−
∫ T̄

0

h−1∑
i=1

1{X(x)=i}dx

∂2l(Q,α,β|X)

∂q2ij
= −

N(T )∑
n=1

1{X(tn=i,X(t+n )=j}

×
( h∑

i,j=1

1{X(tn=i,X(t+n )=j}qij +
1X(t+n )>X(tn))

Ni

∑
m=1,2

∑
τ∈τm(tn)

αme
−βm(tn−τ)

)−2

< 0

∂2l(Q,α,β|X)

∂qij∂qkl

∣∣∣
(i,j)̸=(k,l)

=
∂2l(Q,α,β|X)

∂qkl∂qij

∣∣∣
(i,j) ̸=(k,l)

= 0

∂l(Q,α,β|X)

∂βm
= −

N(T̄ )∑
n=1

1{τm(tn )̸=∅}
1X(t+n )>X(tn))

Ni

∑
τ∈τm(tn)

αm(tn − τ)e−βm(tn−τ)

×
( h∑

i,j=1

1{X(tn)=i,X(t+n )=j}qij +
1X(t+n )>X(tn))

Ni

∑
m=1,2

∑
τ∈τm(tn)

αme
−βm(tn−τ)

)−1

+
∑

τ∈τm(T̄ )

αm

β2
m

(1− e−βm(T̄−τ))

−
∑

τ∈τm(T̄ )

αm

βm
(T̄ − τ)e−βm(T̄−τ)

∂2l(Q,α,β|X)

∂β2
m

= −
N(T̄ )∑
n=1

(
1{τm(tn )̸=∅}

1X(t+n )>X(tn))

Ni

∑
τ∈τm(tn)

αm(tn − τ)e−βm(tn−τ)
)2

×
( h∑

i,j=1

1{X(tn)=i,X(t+n )=j}qij +
1X(t+n )>X(tn))

Ni

∑
m=1,2

∑
τ∈τm(tn)

αme
−βm(tn−τ)

)−2

+

N(T̄ )∑
n=1

1{τm(tn )̸=∅}
1X(t+n )>X(tn))

Ni

∑
τ∈τm(tn)

αm(tn − τ)2e−βm(tn−τ)

×
( h∑

i,j=1

1{X(tn)=i,X(t+n )=j}qij +
1X(t+n )>X(tn))

Ni

∑
m=1,2

∑
τ∈τm(tn)

αme
−βm(tn−τ)

)−1

− 2
∑

τ∈τm(T̄ )

αm

β3
m

(1− e−βm(T̄−τ))

+ 2
∑

τ∈τm(T̄ )

αm

β2
m

(T̄ − τ)e−βm(T̄−τ)

+
∑

τ∈τm(T̄ )

αm

βm
(T̄ − τ)2e−βm(T̄−τ)

∂l(Q,α,β|X)

∂β1∂β2
= −

N(T̄ )∑
n=1

∏
m=1,2

1{τm(tn )̸=∅}
1X(t+n )>X(tn))

Ni

∑
τ∈τm(tn)

αm(tn − τ)e−βm(tn−τ)

×
( h∑

i,j=1

1{X(tn)=i,X(t+n )=j}qij +
1X(t+n )>X(tn))

Ni

∑
m=1,2

∑
τ∈τm(tn)

αme
−βm(tn−τ)

)−2
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∂l(Q,α,β|X)

∂αm∂qij
=
∂l(Q,α,β|X)

∂qij∂αm

= −
N(T )∑
n=1

1{X(tn=i,X(t+n )=j}
1X(t+n )>X(tn))

Ni

∑
τ∈τm(tn)

e−βm(tn−τ)

×
( h∑

i,j=1

1{X(tn=i,X(t+n )=j}qij +
1X(t+n )>X(tn))

Ni

∑
m=1,2

∑
τ∈τm(tn)

αme
−βm(tn−τ)

)−2

∂l(Q,α,β|X)

∂βm∂qij
=
∂l(Q,α,β|X)

∂qij∂βm

=

N(T )∑
n=1

1{X(tn=i,X(t+n )=j}
1X(t+n )>X(tn))

Ni

∑
τ∈τm(tn)

αm(tn − τ)e−βm(tn−τ)

×
( h∑

i,j=1

1{X(tn=i,X(t+n )=j}qij +
1X(t+n )>X(tn))

Ni

∑
m=1,2

∑
τ∈τm(tn)

αme
−βm(tn−τ)

)−2

∂l(Q,α,β|X)

∂αm∂βm
=
∂l(Q,α,β|X)

∂βm∂αm

= −
N(T̄ )∑
n=1

1{τm(tn )̸=∅}
1X(t+n )>X(tn))

Ni

∑
τ∈τm(tn)

(tn − τ)e−βm(tn−τ)

×
( h∑

i,j=1

1{X(tn)=i,X(t+n )=j}qij +
1X(t+n )>X(tn))

Ni

∑
m=1,2

∑
τ∈τm(tn)

αme
−βm(tn−τ)

)−1

+

N(T̄ )∑
n=1

(
1{τm(tn )̸=∅}

1X(t+n )>X(tn))

Ni

∑
τ∈τm(tn)

e−βm(tn−τ)
)

×
(
1{τm(tn )̸=∅}

1X(t+n )>X(tn))

Ni

∑
τ∈τm(tn)

αm(tn − τ)e−βm(tn−τ)
)

×
( h∑

i,j=1

1{X(tn)=i,X(t+n )=j}qij +
1X(t+n )>X(tn))

Ni

∑
m=1,2

∑
τ∈τm(tn)

αme
−βm(tn−τ)

)−2

+
∑

τ∈τm(T̄ )

1

β2
m

(1− e−βm(T̄−τ))

−
∑

τ∈τm(T̄ )

1

βm
(T̄ − τ)e−βm(T̄−τ))

∂l(Q,α,β|X)

∂αm1
∂βm2

∣∣∣
m1 ̸=m2

=
∂l(Q,α,β|X)

∂βm2
∂αm1

∣∣∣
m1 ̸=m2

=

N(T̄ )∑
n=1

(
1{τm1

(tn) ̸=∅}
1X(t+n )>X(tn))

Ni

∑
τ∈τm1

(tn)

e−βm1
(tn−τ)

)
×
(
1{τm2 (tn) ̸=∅}

1X(t+n )>X(tn))

Ni

∑
τ∈τm2

(tn)

αm2(tn − τ)e−βm2
(tn−τ)

)

×
( h∑

i,j=1

1{X(tn)=i,X(t+n )=j}qij +
1X(t+n )>X(tn))

Ni

∑
m=1,2

∑
τ∈τm(tn)

αme
−βm(tn−τ)

)−2

5.2.4.4 The delta method

Let Q ∈ R3×3 with qij = q ∈ R+ for any i, j ∈ {1, 2, 3} with i ̸= j and 1 ̸= 3. To consider the probability of
p13(T ) per possible path the realization with n = 1 transition {1, 3} is looked at. For any embedded paths from
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state 1 at time 0 to state 3 at time T the number of possible realizations is 1 for every value of n ∈ N+. The
probability P({1, 3}) is defined as follows with tn transition times for n = 1, 2, 3, ...∫ T

0

2qe−2qt1
q

2q
dt1 = q

∫ T

0

e−2qt1dt1

=
1

2
(1− e−2qT )

now for n = 2 the embedded rating chain {1, 2, 3}∫ T

0

∫ t2

0

2qe−2qt1
q

2q
2qe−2q(t2−t1)

q

2q
dt1dt2 = q2

∫ T

0

∫ t2

0

e−2qt2dt1dt2

= q2
∫ T

0

t2e
−2qt2dt2

now for n = 3 the embedded rating chain {1, 2, 1, 3}∫ T

0

∫ t3

0

∫ t2

0

2qe−2qt1
q

2q
2qe−2q(t2−t1)

q

2q
2qe−2q(t3−t2)

q

2q
dt1dt2dt3 = q3

∫ T

0

∫ t3

0

∫ t2

0

e−2qt3dt1dt2dt3

= q3
∫ T

0

t23
2
e−2qt3dt3

To conclude that p13(T ) is defined by the sum of the probability of the embedded rating chains with n transitions
from state 1 at time 0 to state 3 at time T

p13(T ) =

∞∑
n=1

qn
∫ T

0

xn−1

(n− 1)!
e−2qxdx

after which the order of integration and taking derivatives according to Leibniz rule could be applied to use the
closed form expression for p13(t) in the delta method.

5.2.4.5 Modified thinning simulation

LetN(t) be a time homogeneous Poisson process over time horizon [0, T ] with intensity function λ̄ andN = N(T )
event times t1, t2, · · · , tN . Consider a time-inhomogenuous intensity function as follows 0 ≤ λ(t) ≤ λ̄ for any
t ∈ [0, T ]. Thin for n = 1, 2, ..., N the event times tN with probability 1 − λ(tn)/λ̄, then the remaining event
times follow a time-inhomogenuous Poisson process with intensity λ(t) as follows [46] [13] [19]

P(N(T ) = N) =

∫ T

0

∫ T

t1

· · ·
∫ T

tN−1

λ̄ne−λ̄T
N∏

n=1

(
1− λ(tn)

λ̄

)
dtN · · · dt2dt1

=
e−λ̄T

N !

∫ T

0

∫ T

0

∫ T

0

N∏
n=1

(λ̄− λ(tn))ds1ds2 · · · dsn

=
e−λ̄T

N !

(∫ T

0

(λ̄− λ(tn))ds
)N

=
e−λ̄T

N !

(
λ̄T −

∫ b

a

λ(s)ds
)N

with {s1, s2, ..., sN} the unordered event times and the summed probability of all possible number of events N
should retrieve the time inhomogenuous Poisson process driven by λ(t) as follows [46] [13] [19]

∞∑
n=0

P(N(T ) = n) = e−λ̄T
∞∑

n=0

(
λ̄T −

∫ T

0

λ(s)ds
)n

/n!

= e−λ̄T · eλ̄T−
∫ T
0

λ(s)ds

= e−
∫ T
0

λ(s)ds
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5.2.5 Alternative methodologies

5.2.5.1 Time-inhomogeneous Chapman-Kolmogorov equations

Assuming the Markovian property for X(t) driven by P , the Chapman-Kolmogorov equations for any i, j ∈ S
and t1, t2, t3 ∈ [0, T ] such that t1 ≤ t2 ≤ t3 are defined by [24]

(P (t1, t3))ij =
∑
k∈S

(P (t1, t2))ik(P (t2, t3))jk

and given an infinitesmal timestep ∆t and generator matrix Q, the forward (and backward) equations are
derived for any t, t+∆t ∈ [0, T ] as follows [24]

(P )ij(t+∆t) =
∑
k∈S

(P )ik(t)(P )kj(∆t) Chapman-Kolmogorov

= (P )ij(t)(P )jj(∆t) +
∑

k∈S,k ̸=j

(P )ik(t)(P )kj(∆t) Rearranged

≈ (P )ij(t)(1− qjj(∆t) +
∑

k∈S,k ̸=j

(P )ik(t)qkj∆t Asymptotically

= (P )ij(t) + (P )ij(t)qjj(∆t) +
∑

k∈S,k ̸=j

(P )ik(t)qkj∆t Rearranged

= (P )ij(t) +
∑
k∈S

(P )ik(t)qkj∆t -

with

Pij(t+∆t)− Pij(t)

∆t
= P ′(t) ≈

∑
k∈S

(P )ik(t)qkj

and thus the forward equation in general matrix form is P ′(t) = P (t)Q (and backward P ′(t) = QP (t)).

As time-homogeneity is not necessarily assumed for X(t), the forward (and backward) equation holds for
time-inhomogeneous Q as follows [24]

P ′(t) = P (t)Q(t)

and backward equation

P ′(t) = Q(t)P (t)

5.2.5.2 Discretized simulation

Let Q ∈ R3×3, α, β, T ∈ R and N ∈ N+ with ∆t = T/N . Hypothesize (P (n · ∆t))13 = ((I3 + Q∆t)n)13 +
(
∑n

i Φi)13 for some Φn ∈ R3×3 by making no distinction between investment- or speculative grades in the
non-Markovian model, such that α = α and β = β. According a Maclaurin series with f(x) = ex for small
enough ∆t and intensity λ(t)i an approximation for P is as follows

(P (t))ii ≈ 1− (λi(t))∆t

and for any i, j ∈ such that j ̸= i

(P (t))ij ≈ λi(t)f(i→ j|t)∆t

An attempt to simulate (P )13 by discretizing [0, T ] such that t0 = 0, t1 = ∆t, t2 = 2∆t, ..., tN = T is as follows

Input: Q, α, β, T,N
1 Initialize Ψ1 = ∅,Φ1 = ∅,Ψ2 = Q̂1,d+u · e−β∆t,Φ2 = Q̂1,d · e−β∆t ⊗ Nα,∆t;
2 Set ∆t = T/N
3 for n = 3, ...N
5 Set Qn = Qn−1 × (Q̂e−β∆t + Q̂d)
4 Set Φn = Qn ⊗ Nα,∆t+

(Q̂1,u × Q̂n−3
u × Q̂d) · e−β∆t ⊗ Nα,∆t+

Φn−1 × Q̂+

37



Φn−1 · e−(n−1)β∆t ⊗Nα,∆t

with

Q̂ =

1− q1∆t q12∆t q13∆t
q21∆t 1− q2∆t q23∆t
0 0 0


and

Q̂u =

1− q1∆t 0 0
q21∆t 1− q2∆t 0
0 0 0


and

Q̂1,u =

1− q1∆t 0 0
0 0 0
0 0 0


and

Q̂d =

0 q12∆t q13∆t
0 0 q23∆t
0 0 0


and

Q̂1,d =

0 q12∆t q13∆t
0 0 0
0 0 0


and for any M ∈ R3×3

M ⊗ Nα,∆t =

−Υ1
Υ1

2 −Υ2
Υ1

2 +Υ2

0 Υ1

2 −Υ2
Υ1

2 +Υ2

0 0 0


for any j ∈ {1, 2}

Υj = α∆t

3∑
i=1

(M)ij

with

(Φ1)13 = 0

and

(Φ2)13 = (q12∆t)(αe
−β∆t∆t)

and

(Φ3)13 = (q12∆t)(q21∆t)(
α

2
e−2β∆t∆t)

+ (q12∆t)(1− q2∆t)(αe
−2β∆t∆t)

+ (1− q1∆t)(q12∆t)(αe
−β∆t∆t)

+ (q12∆t)(−αe−β∆t∆t)(q23∆t)

+ (q12∆t)(−αe−β∆t∆t)(−αe−2β∆t∆t)
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and

(Φ4)13 = (q12∆t)(q21∆t)(1− q1∆t)(
α

2
e−3β∆t∆t)

+ (q12∆t)(q21∆t)(q12∆t)(αe
−3β∆t∆t)

+ (q12∆t)(1− q2∆t)(q21∆t)(
α

2
e−3β∆t∆t)

+ (q12∆t)(1− q2∆t)(1− q2∆t)(αe
−3β∆t∆t)

+ (q12∆t)(q21∆t)(q12∆t)(e
−2β∆t∆t)

+ (1− q1∆t)(1− q1∆t)(q12∆t)(αe
−β∆t∆t)

+ (q12∆t)(1− q1∆t)(−αe−2β∆t∆t)(q23∆t)

+ (q12∆t)(q21∆t)(
α

2
e−2β∆t∆t)(q23∆t)

+ (q12∆t)(q21∆t)(−αe−2β∆t∆t)(q13∆t)

+ (1− q1∆t)(q12∆t)(−αe−β∆t∆t)(q23∆t)

+ (q12∆t)(−αe−β∆t∆t)(1− q2∆t)(q23∆t)

+ (q12∆t)(−αe−β∆t∆t)(−αe−2β∆t∆t)(q23∆t)

+ (q12∆t)(1− q2∆t)(−αe−2β∆t∆t)(αe−3β∆t∆t)

+ (q12∆t)(q21∆t)(
α

2
e−2β∆t∆t)(αe−3β∆t∆t)

+ (q12∆t)(q21∆t)(−αe−2β∆t∆t)(
α

2
e−3β∆t∆t)

+ (1− q1∆t)(q12∆t)(−αe−β∆t∆t)(αe−3β∆t∆t)

+ (q12∆t)(−αe−β∆t∆t)(1− q2∆t)(αe
−3β∆t∆t)

+ (q12∆t)(−αe−β∆t∆t)(−αe−2β∆t∆t)(αe−3β∆t∆t)

+ (q12∆t)(−αe−β∆t∆t)(q12∆t)(
α

2
e−3β∆t∆t)

which does not capture {1, 2, 1, 2, 3} properly.

Unfortunately, for n = 4, (
∑n

i Φi)13 does not capture the non-Markovian momentum contribution properly
as demonstrated below. This might imply an iterative scheme is not possible and all possible realizations have
to simulated separately implying too much computational requirements for a long time horizon [0, T ].
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5.3 Relevant Matlab scripts

5.3.1 Modified thinning simulation

1 %% Modified thinning simulation (~5 seconds)
2 clc
3 clear
4 close all
5 tic
6 %% Model input
7 Q = ...
8 [−0.0869 0.0836 0.0031 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000;
9 0.0117 −0.1088 0.0942 0.0025 0.0003 0.0001 0.0000 0.0000 0.0000;

10 0.0006 0.0240 −0.0938 0.0666 0.0017 0.0007 0.0002 0.0000 0.0000;
11 0.0002 0.0016 0.0387 −0.0947 0.0496 0.0040 0.0006 0.0000 0.0000;
12 0.0001 0.0006 0.0033 0.0636 −0.1774 0.1060 0.0037 0.0001 0.0000;
13 0.0000 0.0003 0.0012 0.0035 0.0503 −0.1610 0.1012 0.0040 0.0004;
14 0.0000 0.0002 0.0001 0.0013 0.0048 0.1028 −0.1976 0.0622 0.0261;
15 0.0000 0.0000 0.0018 0.0029 0.0050 0.0447 0.1346 −0.2838 0.0948;
16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000];
17 a = [0.0310 0.1291];
18 b = [3.5234 1.7095];
19 lig = 4;
20 lve = {'Aaa','Aa','A','Baa','Ba','B','Caa','Ca','D'};
21 %% Simulation input
22 T = 30;
23 N = [413 1313 2232 2318 2021 4504 1333 59];
24 %% Computations
25 dim = size(Q,1);
26 Nj = sum(triu(Q)>0,2);
27 Q(eye(dim)==1) = −sum(Q,2)+Q(eye(dim)==1);
28 M = sum(N);
29 %% Preallocations
30 [m,t1,t2,t3,t4,l1,l2,l3,l4,v1,v2] = deal(cell(M,1));
31 [I,J,K] = deal(ones(M,1));
32 [L,rig,rsg] = deal(zeros(M,1));
33 %% Modified thinning simulation
34 parfor i = 1:M
35 m{i} = find(cumsum(N)>=i,1);
36 mu = −Q(m{i},m{i});
37 l1{i}(I(i)) = mu;
38 l2{i}(I(i)) = mu;
39 t1{i}(I(i)) = −log(rand)/l1{i};
40 v1{i}(I(i)) = rand;
41 l4{i}(I(i)) = l1{i}(I(i));
42 P = cumsum([0 Q(m{i},1:m{i}−1) 0 Q(m{i},m{i}+1:dim)])./l2{i};
43 I(i) = I(i)+1;
44 m{i}(I(i)) = find(P>=rand,1)−1;
45 mu = −Q(m{i}(I(i)),m{i}(I(i)));
46 if m{i}(I(i)) > m{i}(I(i)−1)
47 if m{i}(I(i)−1) <= lig
48 t2{i} = t1{i};
49 l1{i}(I(i)) = mu+a(1);
50 t1{i}(I(i)) = t1{i}−log(rand)/l1{i}(I(i));
51 rig(i) = exp(−b(1)*(t1{i}(I(i))−t1{i}(I(i)−1)));
52 J(i) = J(i)+1;
53 else
54 t3{i} = t1{i};
55 l1{i}(I(i)) = mu+a(2);
56 t1{i}(I(i)) = t1{i}−log(rand)/l1{i}(I(i));
57 rsg(i) = exp(−b(2)*(t1{i}(I(i))−t1{i}(I(i)−1)));
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58 K(i) = K(i)+1;
59 end
60 else
61 l1{i}(I(i)) = mu;
62 t1{i}(I(i)) = t1{i}(I(i)−1)−log(rand)/l1{i}(I(i));
63 end
64 l4{i}(I(i)) = l1{i}(I(i));
65 l2{i}(I(i)) = mu+a(1)*rig(i)+a(2)*rsg(i);
66 while t1{i}(I(i)) < T && m{i}(I(i)) < dim
67 v1{i}(I(i)) = rand;
68 if v1{i}(I(i))*l1{i}(I(i)) <= l2{i}(I(i))
69 dq = (l2{i}(I(i))−mu)/Nj(m{i}(I(i)));
70 P = cumsum([0 Q(m{i}(I(i)),1:m{i}(I(i))−1) 0 ...
71 Q(m{i}(I(i)),m{i}(I(i))+1:dim)+...
72 (Q(m{i}(I(i)),m{i}(I(i))+1:dim)>0)*dq])./l2{i}(I(i));
73 I(i) = I(i)+1;
74 m{i}(I(i)) = find(P>=rand,1)−1;
75 mu = −Q(m{i}(I(i)),m{i}(I(i)));
76 if m{i}(I(i)) > m{i}(I(i)−1)
77 if m{i}(I(i)−1) <= lig
78 t2{i}(J(i)) = t1{i}(I(i)−1);
79 l1{i}(I(i)) = dq*Nj(m{i}(I(i)−1))+mu+a(1);
80 t1{i}(I(i)) = t1{i}(I(i)−1)−log(rand)/l1{i}(I(i));
81 rig(i) = exp(−b(1)*(t1{i}(I(i))−t1{i}(I(i)−1)))*...
82 (1+rig(i));
83 rsg(i) = exp(−b(2)*(t1{i}(I(i))−t1{i}(I(i)−1)))*rsg(i);
84 J(i) = J(i)+1;
85 else
86 t3{i}(K(i)) = t1{i}(I(i)−1);
87 l1{i}(I(i)) = dq*Nj(m{i}(I(i)−1))+mu+a(2);
88 t1{i}(I(i)) = t1{i}(I(i)−1)−log(rand)/l1{i}(I(i));
89 rig(i) = exp(−b(1)*(t1{i}(I(i))−t1{i}(I(i)−1)))*rig(i);
90 rsg(i) = exp(−b(2)*(t1{i}(I(i))−t1{i}(I(i)−1)))*...
91 (1+rsg(i));
92 K(i) = K(i)+1;
93 end
94 else
95 l1{i}(I(i)) = dq*Nj(m{i}(I(i)−1))+mu;
96 t1{i}(I(i)) = t1{i}(I(i)−1)−log(rand)/l1{i}(I(i));
97 rig(i) = exp(−b(1)*(t1{i}(I(i))−t1{i}(I(i)−1)))*rig(i);
98 rsg(i) = exp(−b(2)*(t1{i}(I(i))−t1{i}(I(i)−1)))*rsg(i);
99 end

100 else
101 L(i) = L(i)+1;
102 t4{i}(L(i)) = t1{i}(I(i));
103 v2{i}(L(i)) = v1{i}(I(i));
104 l3{i}(L(i)) = l1{i}(I(i));
105 l1{i}(I(i)) = l2{i}(I(i));
106 t1{i}(I(i)) = t1{i}(I(i))−log(rand)/l1{i}(I(i));
107 rig(i) = exp(−b(1)*(t1{i}(I(i))−t4{i}(L(i))))*rig(i);
108 rsg(i) = exp(−b(2)*(t1{i}(I(i))−t4{i}(L(i))))*rsg(i);
109 end
110 l4{i}(I(i)+L(i)) = l1{i}(I(i));
111 l2{i}(I(i)) = mu+a(1)*rig(i)+a(2)*rsg(i);
112 end
113 t1{i} = [0 nonzeros(t1{i}(1:I(i)−1).*(t1{i}(1:I(i)−1)<T)).' T];
114 m{i} = m{i}(1:length(t1{i})−1);
115 I(i) = length(m{i});
116 l1{i} = l1{i}(1:I(i));
117 l2{i} = l2{i}(1:I(i));
118 l1{i}(I(i)) = l1{i}(I(i))−l1{i}(I(i))*(m{i}(I(i))==dim(1));
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119 l2{i}(I(i)) = l2{i}(I(i))−l2{i}(I(i))*(m{i}(I(i))==dim(1));
120 l4{i}(I(i)+L(i)) = l4{i}(I(i)+L(i))−l4{i}(I(i)+L(i))*...
121 (m{i}(I(i))==dim(1));
122 end
123 %% Input
124 path = matlab.desktop.editor.getActiveFilename;
125 cd(strcat(path(1:strlength(path)−strlength(mfilename)−2),...
126 '1. Modified thinning simulation input'));
127 save('Q','Q'); save('a','a'); save('b','b'); save('lig','lig');
128 save('T','T'); save('N','N'); save('lve','lve');
129 %% Output
130 cd(strcat(path(1:strlength(path)−strlength(mfilename)−2),...
131 '2. Modified thinning simulation output'));
132 save('dim','dim'); save('Nj','Nj'); save('v1','v1'); save('v2','v2');
133 save('t1','t1'); save('t2','t2'); save('t3','t3'); save('t4','t4');
134 save('l1','l1'); save('l2','l2'); save('l3','l3'); save('l4','l4');
135 save('I','I'); save('J','J'); save('K','K'); save('L','L'); save('m','m');
136 toc
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5.3.2 Exact maximum likelihood estimation

1 %% Exact maximum likelihood estimator (~1 minute)
2 clc
3 clear
4 close all
5 tic
6 %% Modified thinning simulation input
7 path = matlab.desktop.editor.getActiveFilename;
8 cd(strcat(path(1:strlength(path)−strlength(mfilename)−2),...
9 '1. Modified thinning simulation input'));

10 load('lig'); load('T'); load('N'); load('dt');
11 %% Modified thinning simulation output
12 cd(strcat(path(1:strlength(path)−strlength(mfilename)−2),...
13 '2. Modified thinning simulation output'));
14 load('m'); load('t1'); load('dim'); load('I'); load('Nj');
15 cd(strcat(path(1:strlength(path)−strlength(mfilename)−2)));
16 %% Estimation input
17 x = 0.975;
18 %% Computations
19 O = round(T/dt);
20 M = sum(N);
21 %% Preallocations
22 Nij = cell(M,1);
23 Ri = cell(M,1);
24 %% Exact likelihood estimator
25 parfor i = 1:M
26 Nij{i} = zeros(dim);
27 Ri{i} = zeros(dim,1);
28 for j = 1:dim−1
29 Ri{i}(j) = sum((m{i}==j).*diff(t1{i}));
30 for k = 1:dim
31 Nij{i}(j,k) = sum((m{i}(1:I(i)−1)==j).*...
32 (m{i}(2:I(i))==k));
33 end
34 end
35 end
36 mle = sum(cat(3,Nij{:}),3)./sum(cat(3,Ri{:}),3);
37 mle(eye(dim)==1) = −sum(mle,2)+mle(eye(dim)==1);
38 mle(isnan(mle)) = 0;
39 mle(dim,:) = 0;
40 %% Preallocations
41 v = cell(1,12);
42 C = cell(dim,dim);
43 dpv = cell(O+1,dim,dim);
44 pme = zeros(O+1,dim,dim);
45 pmi = zeros(O+1,dim−1,dim);
46 %% Computations
47 %dt = T/O;
48 [ver,hor,nrp,~,~] = fb_allowedpairsfunction(m,dim,1);
49 [t1,~,~,~,~,~,~,~,v6] = fc_vectorfunction(m,t1,ver,hor,Nj,lig);
50 v{1} = M; v{2} = nrp; v{3} = I; v{6} = cell(M,1); v{12} = v6;
51 h = fd_markovianloghessianfunction(m,mle,v);
52 f = −inv(h);
53 %% Confidence intervals
54 parfor i = 1:dim
55 ei = zeros(dim,1); ei(i) = 1;
56 for j = 1:dim
57 ej = zeros(dim,1); ej(j) = 1;
58 C{i,j} = [mle ei*ej.'−ei*ei.'; zeros(dim) mle];
59 end
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60 end
61 parfor i = 1:O+1
62 t2 = (i−1)*dt;
63 for j = 1:dim
64 for k = 1:dim
65 dpv{i,j,k} = zeros(1,nrp);
66 for l = 1:nrp
67 dum = expm(C{ver(l),hor(l)}*t2);
68 dpv{i,j,k}(l) = dum(j,dim+k);
69 end
70 end
71 end
72 end
73 %% Default probability
74 parfor i = 1:O+1
75 pme(i,:,:) = expm(mle*(i−1)*dt);
76 end
77 for i = 1:O+1
78 for j = 1:dim−1
79 for k = 1:dim
80 pmi(i,j,k) = norminv(x)*sqrt(dpv{i,j,k}*f*dpv{i,j,k}.');
81 end
82 end
83 end
84 %% Input
85 cd(strcat(path(1:strlength(path)−strlength(mfilename)−2),...
86 '7. Exact maximum likelihood estimator input'));
87 save('x','x');
88 %% Output
89 cd(strcat(path(1:strlength(path)−strlength(mfilename)−2),...
90 '8. Exact maximum likelihood estimator output'));
91 save('mle','mle'); save('pme','pme'); save('pmi','pmi');
92 save('ver','ver'); save('hor','hor'); save('nrp','nrp');
93 toc
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5.3.3 Expectation-maximization algorithm

1 %% Expectation−maximization algorithm (~3 minutes)
2 close all
3 clc
4 clear
5 tic
6 %% Modified thinning simulation input
7 path = matlab.desktop.editor.getActiveFilename;
8 cd(strcat(path(1:strlength(path)−strlength(mfilename)−2),...
9 '1. Modified thinning simulation input'));

10 load('lig'); load('T'); load('N'); load('dt');
11 %% Modified thinning simulation output
12 cd(strcat(path(1:strlength(path)−strlength(mfilename)−2),...
13 '2. Modified thinning simulation output'));
14 load('m'); t = load('t1'); t = t.t1; load('dim'); load('I');
15 %% Exact maximum likelihood estimator input
16 cd(strcat(path(1:strlength(path)−strlength(mfilename)−2),...
17 '7. Exact maximum likelihood estimator input'));
18 load('x');
19 %% Exact maximum likelihood estimator output
20 cd(strcat(path(1:strlength(path)−strlength(mfilename)−2),...
21 '8. Exact maximum likelihood estimator output'));
22 load('mle'); load('ver'); load('hor'); load('nrp');
23 %% Estimation input
24 eps = 1e−9;
25 mit = 1e3;
26 %% Computations
27 mle = eps*(mle>eps);
28 O = round(T/dt);
29 M = sum(N);
30 %% Preallocations
31 dm1 = zeros(T+1,M);
32 ttm = zeros(T,dim,dim);
33 lnl = zeros(1,mit+1);
34 %% Computations
35 for h = 1:T+1
36 for i = 1:M
37 dm1(h,i) = m{i}(sum(find(t{i}(2:I(i))<h−1,1,'last'))+1);
38 if h > 1
39 ttm(h−1,dm1(h−1,i),dm1(h,i)) = ttm(h−1,dm1(h−1,i),dm1(h,i))+1;
40 end
41 end
42 end
43 %% Expectation maximization algorithm
44 i = 1;
45 while i < mit
46 esj = zeros(1,dim);
47 ekk = zeros(dim);
48 for j = 1:dim
49 ea = zeros(dim,1);
50 ea(j) = 1;
51 for l = 1:T
52 ecp = expm([mle ea*ea.'; zeros(dim) mle]);
53 eqt = expm(mle);
54 esj(j) = esj(j)+...
55 nansum(squeeze(ttm(l,:,:)).*ecp(1:dim,dim+1:2*dim)./...
56 eqt,'all');
57 for k = setdiff(linspace(1,dim,dim),j)
58 eb = deal(zeros(dim,1));
59 eb(k) = deal(1);
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60 ecg = expm([mle mle(j,k)*ea*eb.'; zeros(dim) mle]);
61 ekk(j,k) = ekk(j,k)+...
62 nansum(squeeze(ttm(l,:,:)).*ecg(1:dim,dim+1:2*dim)./...
63 eqt,'all');
64 end
65 end
66 end
67 mle = ekk./esj.';
68 mle(eye(dim)==1) = −sum(mle,2)+mle(eye(dim)==1);
69 mle(isnan(mle)) = 0;
70 for j = 1:dim
71 for k = 1:dim
72 for l = 1:T
73 P = expm(mle);
74 if P(j,k) > 0
75 lnl(i+1) = lnl(i+1)+ttm(l,j,k)*log(P(j,k));
76 end
77 end
78 end
79 end
80 rer = abs(lnl(i+1)−lnl(i))/abs(lnl(i));
81 if i > 2 && rer <= eps
82 break
83 end
84 i = i+1;
85 end
86 lnl = lnl(lnl~=0);
87 %% Preallocations
88 C = cell(dim,dim);
89 pme = zeros(O+1,dim,dim);
90 pmi = zeros(O+1,dim−1,dim);
91 dpv = cell(O+1,dim,dim);
92 H = zeros(nrp);
93 %% Fisher information
94 for h = 1:nrp
95 for i = 1:nrp
96 dH = zeros(T,dim,dim);
97 [a,b,m,v] = deal(ver(h),hor(h),ver(i),hor(i));
98 [ea,eb,em,ev] = deal(zeros(dim,1));
99 [ea(a),eb(b),em(m),ev(v)] = deal(1);

100 ca = [mle ea*eb.'−ea*ea.'; zeros(dim) mle];
101 cm = [mle em*ev.'−em*em.'; zeros(dim) mle];
102 dc = [em*ev.'−em*em.' zeros(dim); zeros(dim) em*ev.'−em*em.'];
103 cx = [ca dc; zeros(2*dim) ca];
104 [eq,ecx] = deal(expm(mle),expm(cx));
105 [eca,ecm] = deal(expm(ca),expm(cm));
106 for j = 1:T
107 for k = 1:dim
108 for l = 1:dim
109 dH(j,k,l) = ttm(j,k,l)/eq(k,l)*...
110 (eca(k,dim+l)*ecm(k,dim+l)/eq(k,l)−ecx(k,3*dim+l));
111 end
112 end
113 end
114 H(h,i) = nansum(dH,'all');
115 end
116 end
117 F = abs(inv(H));
118 %% Default probability & confidence intervals
119 for i = 1:dim
120 ei = zeros(dim,1);
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121 ei(i) = 1;
122 for j = 1:dim
123 ej = zeros(dim,1);
124 ej(j) = 1;
125 C{i,j} = [mle ei*ej.'−ei*ei.'; zeros(dim) mle];
126 end
127 end
128 for i = 1:O+1
129 t2 = (i−1)*dt;
130 for j = 1:dim
131 for k = 1:dim
132 dpv{i,j,k} = zeros(1,nrp);
133 for l = 1:nrp
134 dm2 = expm(C{ver(l),hor(l)}*t2);
135 dpv{i,j,k}(l) = dm2(j,dim+k);
136 end
137 end
138 end
139 end
140 parfor i = 2:O+1
141 pme(i,:,:) = expm(mle*(i−1)*dt);
142 end
143 pme(1,:,:) = eye(dim);
144 for i = 1:O+1
145 for j = 1:dim−1
146 for k = 1:dim
147 pmi(i,j,k) = norminv(x)*sqrt(dpv{i,j,k}*F*dpv{i,j,k}.');
148 end
149 end
150 end
151 %% Input
152 cd(strcat(path(1:strlength(path)−strlength(mfilename)−2),...
153 '10. Expectation−maximization algorithm input'));
154 save('eps','eps'); save('mit','mit');
155 %% Output
156 cd(strcat(path(1:strlength(path)−strlength(mfilename)−2),...
157 '11. Expectation−maximization algorithm output'));
158 save('mle','mle'); save('pme','pme'); save('pmi','pmi'); save('lnl','lnl');
159 toc
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5.3.4 Metropolis-Hastings algorithm

1 %% Metropolis−Hastings algortihm (~6 hours)
2 clc
3 clear
4 close all
5 set(groot,'defaulttextinterpreter','latex');
6 %% Estimation input
7 ite = 1e3;
8 bii = 1e2;
9 var = 1e−3;

10 %% Modified thinning simulation input
11 path = matlab.desktop.editor.getActiveFilename;
12 cd(strcat(path(1:strlength(path)−strlength(mfilename)−2),...
13 '1. Modified thinning simulation input'));
14 load('a'); load('b'); load('lig'); load('N'); load('T');
15 %% Modified thinning simulation output
16 cd(strcat(path(1:strlength(path)−strlength(mfilename)−2),...
17 '2. Modified thinning simulation output'));
18 t = load('t1'); t = t.t1; load('m'); dm1 = load('dim'); dm1 = dm1.dim;
19 load('I');
20 %% Exact maximum likelihood estimator output
21 cd(strcat(path(1:strlength(path)−strlength(mfilename)−2),...
22 '8. Exact maximum likelihood estimator output'));
23 Q = load('mle'); Q = Q.mle; load('nrp');
24 %% Markovian projected Newton Raphson method output
25 cd(strcat(path(1:strlength(path)−strlength(mfilename)−2),...
26 '14. Markovian projected Newton−Raphson method output'));
27 load('v');
28 %% Non Markovian projected Newton Raphson method input
29 cd(strcat(path(1:strlength(path)−strlength(mfilename)−2),...
30 '16. Non markovian projected Newton−Raphson method input'));
31 load('eps');
32 cd(strcat(path(1:strlength(path)−strlength(mfilename)−2)));
33 %% Computations
34 M = sum(N);
35 ite = ite+bii;
36 dm2 = dm1^2;
37 a = exprnd(a);
38 b = exprnd(b);
39 mab = [[0.1; 1];[10; 1]];
40 %% Preallocations
41 x = zeros(dm2+4,1);
42 ip = zeros(dm2+4,1);
43 c = 0;
44 %% Computations
45 for i = 1:dm2
46 if Q(i) > 0
47 c = c+1;
48 x(i) = Q(i);
49 ip(c) = i;
50 end
51 end
52 ip(dm2+1:dm2+4) = dm2+1:dm2+4;
53 ip(ip==0) = [];
54 x(dm2+1:dm2+4) = [a b];
55 %% Preallocations
56 x = [x repmat(zeros(dm2+4,1),1,ite)];
57 [r,l0,l1] = deal(zeros(nrp+4,ite+1));
58 %% Metropolis Hastings algorithm
59 P = waitbar(0,'\textbf{Please wait}','Name',...
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60 'Metropolis−Hastings algorithm');
61 s2 = 0;
62 l0(1,1) = fi_loglikelihoodfunction(m,t,Q,a,b,v);
63 i = 1;
64 while i <= ite
65 tic
66 for j = 1:nrp+4
67 d = ip(j);
68 while x(d,i+1) < eps
69 x(d,i+1) = normrnd(x(d,i),var);
70 end
71 Q = reshape([x(1:min(d,dm2),i+1); x(d+1:dm2,i)],[dm1 dm1]);
72 Q(eye(dm1)==1) = −sum(Q,2)+Q(eye(dm1)==1);
73 a = [x(dm2+1:min(d,dm2+2),i+1).'; x((max(d+1,dm2+1):dm2+2),i)].';
74 b = [x(dm2+3:min(d,dm2+4),i+1).'; x((max(d+1,dm2+3):dm2+4),i)].';
75 l1(j,i) = fi_loglikelihoodfunction(m,t,Q,a,b,v);
76 if ip(j) > dm2
77 r(j,i) = exp(l1(j,i)−l0(j,i))*...
78 exppdf(x(d,i+1),mab(ip(j)−dm2))/...
79 exppdf(x(d,i),mab(ip(j)−dm2));
80 else
81 r(j,i) = exp(l1(j,i)−l0(j,i));
82 end
83 u = rand<=r(j,i);
84 l0(j+1+(nrp+4)*(i−1)) = u*l1(j,i)+(1−u)*l0(j,i);
85 x(d,i+1) = u*x(d,i+1)+(1−u)*x(d,i);
86 end
87 s2 = s2+toc;
88 waitbar(i/ite,P,['\textbf{Remaining time (min): }',...
89 num2str((s2/i)*(ite−i)/60,2)])
90 if i > ite
91 break
92 end
93 i = i+1;
94 end
95 close(P)
96 %% Input
97 cd(strcat(path(1:strlength(path)−strlength(mfilename)−2),...
98 '22. Metropolis−Hastings algorithm input'));
99 save('ite','ite'); save('bii','bii'); save('var','var');

100 %% Output
101 cd(strcat(path(1:strlength(path)−strlength(mfilename)−2),...
102 '23. Metropolis−Hastings algorithm output'));
103 save('x','x'); save('l0','l0'); save('l1','l1'); save('u','u');
104 save('r','r');
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5.3.5 Projected Newton-Raphson method

1 %% Non−Markovian Projected Newton Raphson method (~1 hour)
2 clc
3 clear
4 close all
5 tic
6 %% Estimation input
7 eps = 5e−5;
8 sc1 = 1e−2;
9 sc2 = 2e1−1;

10 Ni = 2e1;
11 %% Modified thinning simulation input
12 path = matlab.desktop.editor.getActiveFilename;
13 cd(strcat(path(1:strlength(path)−strlength(mfilename)−2),...
14 '1. Modified thinning simulation input'));
15 ma = load('a'); ma = ma.a; mb = load('b'); mb = mb.b; load('lig');
16 load('T');
17 %% Modified thinning simulation output
18 cd(strcat(path(1:strlength(path)−strlength(mfilename)−2),...
19 '2. Modified thinning simulation output'));
20 load('m'); t = load('t1'); t = t.t1; load('dim'); load('I');
21 %% Markovian maximum likelihood estimator output
22 cd(strcat(path(1:strlength(path)−strlength(mfilename)−2),...
23 '8. Exact maximum likelihood estimator output'));
24 load('mle'); load('ver'); load('hor'); load('nrp');
25 %% Markovian projected Newton−Raphson method input
26 cd(strcat(path(1:strlength(path)−strlength(mfilename)−2),...
27 '14. Exact projected Newton−Raphson method output'));
28 load('v');
29 cd(strcat(path(1:strlength(path)−strlength(mfilename)−2)));
30 %% Preallocations
31 [Qm,am,bm] = deal(cell(sc2,Ni));
32 [Km,Lm] = deal(zeros(1,Ni));
33 %% Non−Markovian Projected Newton Raphson method
34 for l = 1:Ni
35 x = zeros(nrp+4,1);
36 k = 0;
37 a = exprnd(ma);
38 b = exprnd(mb);
39 Q = mle;
40 for i = 1:nrp
41 x(i) = Q(ver(i),hor(i));
42 end
43 x(nrp+1:nrp+2) = a;
44 x(nrp+3:nrp+4) = b;
45 Qm{1,l} = Q; am{1,l} = a; bm{1,l} = b;
46 g = fg_loggradientQabfunction(m,t,Q,a,b,v);
47 h = fh_loghessianQabfunction(m,t,Q,a,b,v);
48 y = h\g;
49 x = ((x−y)>eps).*(x−y)+((x−y)<=eps)*eps;
50 for j = 1:nrp
51 Q(ver(j),hor(j)) = x(j);
52 end
53 Q(eye(dim)==1) = −sum(Q,2)+Q(eye(dim)==1);
54 a = x(nrp+1:nrp+2);
55 b = x(nrp+3:nrp+4);
56 k = k+1;
57 e = fg_loggradientQabfunction(m,t,Q,a,b,v);
58 Qm{k+1,l} = Q; am{k+1,l} = a; bm{k+1,l} = b;
59 while (max(abs(y)) >= sc1 || max(abs(e−g)) >= sc1) && k <= sc2
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60 g = e;
61 h = fh_loghessianQabfunction(m,t,Q,a,b,v);
62 y = h\g;
63 x = ((x−y)>eps).*(x−y)+((x−y)<=eps)*eps;
64 for j = 1:nrp
65 Q(ver(j),hor(j)) = x(j);
66 end
67 Q(eye(dim)==1) = −sum(Q,2)+Q(eye(dim)==1);
68 a = x(nrp+1:nrp+2);
69 b = x(nrp+3:nrp+4);
70 k = k+1;
71 e = fg_loggradientQabfunction(m,t,Q,a,b,v);
72 Qm{k+1,l} = Q; am{k+1,l} = a; bm{k+1,l} = b;
73 end
74 Lm(l) = fi_loglikelihoodfunction(m,t,Q,a,b,v);
75 Km(l) = k;
76 disp(l);
77 end
78 %% Input
79 cd(strcat(path(1:strlength(path)−strlength(mfilename)−2),...
80 '16. Non−markovian projected Newton−Raphson method input'));
81 save('eps','eps'); save('sc1','sc1'); save('sc2','sc2'); save('Ni','Ni');
82 %% Output
83 cd(strcat(path(1:strlength(path)−strlength(mfilename)−2),...
84 '17. Non−markovian projected Newton−Raphson method output'));
85 save('Qm','Qm'); save('am','am'); save('bm','bm');
86 save('Lm','Lm'); save('Km','Km');
87 toc
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5.3.6 Discretized simulation

1 %% Non−Markovian discretized simulation (~3 seconds)
2 clc
3 clear
4 close all
5 tic
6 %% Simulation input
7 Q = [−0.2 0.1 0.1;
8 0.1 −0.2 0.1;
9 0.0 0.0 0.0];

10 a = 0.1;
11 b = 1;
12 T = 10;
13 dt = 1e−2;
14 lig = 2;
15 lve = {'A','B','C'};
16 Nj = sum(triu(Q)>0,2);
17 %% Computations
18 N = round(T/dt);
19 dim = length(Q);
20 Q(eye(dim)==1) = −sum(Q,2)+Q(eye(dim)==1);
21 Qb = eye(dim)+Q*dt;
22 Qd = triu(Qb)−diag(diag(Qb));
23 Qu = Qb−Qd;
24 Qb1 = Qb;
25 Qb1(2:dim,:) = 0;
26 Qd1 = Qd;
27 Qd1(2:dim,:) = 0;
28 Qu1 = Qu;
29 Qu1(2:dim,:) = 0;
30 %% Preallocations
31 [Phn,Psn] = deal(zeros(dim,dim,N+1));
32 [P1,P2] = deal(zeros(dim,dim,N+1));
33 %% Non−Markovian discretized simulation
34 P1(:,:,1) = eye(dim);
35 P2(:,:,1) = eye(dim);
36 P1(:,:,2) = Qb;
37 P2(:,:,2) = Qb;
38 Psn(:,:,2) = Qd1*exp(−b*dt);
39 dum1 = sum(Psn(:,:,2),1);
40 Phn(:,:,2) = a*dt*[−dum1(1) dum1(1)/2−dum1(2) dum1(1)/2+dum1(2);
41 0 dum1(1)/2−dum1(2) dum1(1)/2+dum1(2);
42 0 0 0];
43 for n = 3:N+1
44 Psn(:,:,n) = Psn(:,:,n−1)*(Qb*exp(−b*dt)+Qd);
45 dum2 = sum(Psn(:,:,n),1);
46 dum3 = sum(Qu1*Qu^(n−3)*Qd*exp(−b*dt),1);
47 dum4 = sum(Phn(:,:,n−1)*exp(−(n−1)*b*dt),1);
48 dum5 = a*dt*[−dum2(1) dum2(1)/2−dum2(2) dum2(1)/2+dum2(2);
49 0 dum2(1)/2−dum2(2) dum2(1)/2+dum2(2);
50 0 0 0];
51 dum6 = a*dt*[−dum3(1) dum3(1)/2−dum3(2) dum3(1)/2+dum3(2);
52 0 dum3(1)/2−dum3(2) dum3(1)/2+dum3(2);
53 0 0 0];
54 dum7 = a*dt*[−dum4(1) dum4(1)/2−dum4(2) dum4(1)/2+dum4(2);
55 0 dum4(1)/2−dum4(2) dum4(1)/2+dum4(2);
56 0 0 0];
57 Phn(:,:,n) = dum5+dum6+dum7+Phn(:,:,n−1)*Qb;
58 P1(:,:,n) = Qb^n;
59 P2(:,:,n) = Qb^n+sum(Phn(:,:,1:n),3);
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60 end
61 %% Input
62 path = matlab.desktop.editor.getActiveFilename;
63 cd(strcat(path(1:strlength(path)−strlength(mfilename)−2),...
64 '28. Non−Markovian discretized simulation input'));
65 save('Q','Q'); save('a','a'); save('b','b'); save('T','T');
66 save('dt','dt'); save('lig','lig'); save('lve','lve');
67 %% Output
68 cd(strcat(path(1:strlength(path)−strlength(mfilename)−2),...
69 '29. Non−Markovian discretized simulation output'));
70 save('P1','P1'); save('P2','P2'); save('dim','dim'); save('Nj','Nj');
71 toc
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5.3.7 Heuristic estimator

1 %% Non−Markovian heuristic estimator (~3 seconds)
2 clc
3 clear
4 close all
5 tic
6 %% Modified thinning simulation input
7 path = matlab.desktop.editor.getActiveFilename;
8 cd(strcat(path(1:strlength(path)−strlength(mfilename)−2),...
9 '1. Modified thinning simulation input'));

10 load('Q'); load('a'); load('b'); load('lig'); load('dt'); load('T');
11 load('lve');
12 %% Modified thinning simulation output
13 path = matlab.desktop.editor.getActiveFilename;
14 cd(strcat(path(1:strlength(path)−strlength(mfilename)−2),...
15 '2. Modified thinning simulation output'));
16 load('dim'); load('Nj');
17 %% Computations
18 O = round(T/dt);
19 t1 = linspace(0,T,O+1);
20 t2 = t1.';
21 %% Preallocations
22 [P1,P2] = deal(zeros(dim−1,dim,dim,O+1));
23 %% Heuristic estimator
24 for h = 1:dim−1
25 [w,x] = deal(zeros(dim,O+1));
26 for i = h:dim−1
27 u = −(Q(i,i)+w(i,:)).*exp((Q(i,i)−w(i,:)).*t1);
28 v = a((i>lig)+1)*exp(−b((i>lig)+1)*(t2−t1)).*u;
29 w(i+1,:) = dt*t1.*(sum(triu(v.'),1)−(diag(v).'+v(:,1).')/2);
30 for j = 1:i−1
31 x(i,:) = x(i,:)+w(j+1,:).*(Q(j,i)+x(j,:)/Nj(j))./...
32 (−Q(j,j)+x(j,:))/Nj(i);
33 end
34 end
35 x(1,:) = zeros(1,O+1);
36 x(dim,:) = zeros(1,O+1);
37 P1(h,:,:,1) = zeros(dim);
38 P1(h,h,h,1) = 1;
39 P2(h,:,:,1) = P1(h,:,:,1);
40 for i = 1:O
41 P1(h,:,:,i+1) = squeeze(P1(h,:,:,i))*...
42 (eye(dim)+(Q+(triu(Q>0)−eye(dim).*Nj.').*x(:,i))*dt);
43 P2(h,:,:,i+1) = squeeze(P2(h,:,:,i))*(eye(dim)+Q*dt);
44 end
45 end
46 %% Output
47 cd(strcat(path(1:strlength(path)−strlength(mfilename)−2),...
48 '38. Non−Markovian heuristic estimator output'));
49 save('P1','P1'); save('P2','P2');
50 toc
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5.3.8 Modified Markovian model

1 %% Modified Markovian maximum likelihood estimator (~2 minutes)
2 clc
3 clear
4 close all
5 tic
6 %% Modified thinning simulation input
7 path = matlab.desktop.editor.getActiveFilename;
8 cd(strcat(path(1:strlength(path)−strlength(mfilename)−2),...
9 '1. Modified thinning simulation input'));

10 load('lig'); load('T'); load('N'); load('dt');
11 %% Modified thinning simulation output
12 cd(strcat(path(1:strlength(path)−strlength(mfilename)−2),...
13 '2. Modified thinning simulation output'));
14 load('m'); load('t1'); load('I'); load('dim');
15 %% Exact discretized simulation output
16 cd(strcat(path(1:strlength(path)−strlength(mfilename)−2),...
17 '7. Exact maximum likelihood estimator input'));
18 load('x');
19 cd(strcat(path(1:strlength(path)−strlength(mfilename)−2)));
20 %% Preallocations
21 Mv2 = zeros(1,dim);
22 mle = cell(dim−1,1);
23 %% Computations
24 M = sum(N);
25 O = round(T/dt);
26 for i = 1:M
27 Mv2(m{i}(1)+1) = Mv2(m{i}(1)+1)+1;
28 end
29 Mv1 = cumsum(Mv2);
30 %% Modified maximum likelihood estimator
31 parfor i = 1:dim−1
32 Nij = zeros(dim);
33 Ri = zeros(dim,1);
34 for j = Mv1(i)+1:Mv1(i+1)
35 for k = 1:dim−1
36 Ri(k) = Ri(k)+sum((m{j}==k).*diff(t1{j}));
37 for l = 1:dim
38 Nij(k,l) = Nij(k,l)+sum((m{j}(1:I(j)−1)==k).*...
39 (m{j}(2:I(j))==l));
40 end
41 end
42 end
43 mle{i} = Nij./Ri;
44 mle{i}(eye(dim)==1) = −sum(mle{i},2)+mle{i}(eye(dim)==1);
45 mle{i}(isnan(mle{i})) = 0;
46 mle{i}(dim,:) = 0;
47 end
48 %% Preallocations
49 v = cell(1,12);
50 C = cell(dim,dim);
51 dpv = cell(O+1,dim−1);
52 dpv = cell(O+1,dim);
53 pme = zeros(dim−1,O+1,dim,dim);
54 pmi = zeros(dim−1,O+1,dim);
55 f = cell(1,dim−1);
56 %% Confidence intervals
57 for i = 1:dim−1
58 m2 = m(Mv1(i)+1:Mv1(i+1));
59 t2 = t1(Mv1(i)+1:Mv1(i+1));
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60 nrp = sum(mle{i}>0,'all');
61 [ver,hor,~,Nj,~] = fb_allowedpairsfunction(m2,dim,1);
62 [t2,~,~,~,~,~,~,~,v6] = fc_vectorfunction(m2,t2,ver,hor,Nj,lig);
63 v{1} = Mv2(i+1); v{2} = nrp; v{12} = v6;
64 v{3} = I(Mv1(i)+1:Mv1(i+1)); v{6} = cell(Mv1(i+1)−Mv1(i));
65 h = fd_markovianloghessianfunction(m2,mle{i},v);
66 f{i} = −inv(h);
67 for j = 1:dim
68 ej = zeros(dim,1); ej(j) = 1;
69 for k = 1:dim
70 ek = zeros(dim,1); ek(k) = 1;
71 C{j,k} = [mle{i} ej*ek.'−ej*ej.'; zeros(dim) mle{i}];
72 end
73 end
74 for j = 1:O+1
75 t3 = (j−1)*dt;
76 for k = 1:dim
77 dpv{j,k} = zeros(1,nrp);
78 for l = 1:nrp
79 dum = expm(C{ver(l),hor(l)}*t3);
80 dpv{j,k}(l) = dum(k,2*dim);
81 end
82 end
83 pme(i,j,:,:) = expm(mle{i}*(j−1)*dt);
84 for k = 1:dim
85 pmi(i,j,k) = norminv(x)*sqrt(dpv{j,k}*f{i}*dpv{j,k}.');
86 end
87 end
88 end
89 %% input
90 cd(strcat(path(1:strlength(path)−strlength(mfilename)−2),...
91 '34. Modified markovian maximum likelihood estimator input'));
92 save('dt','dt'); save('x','x');
93 %% Output
94 cd(strcat(path(1:strlength(path)−strlength(mfilename)−2),...
95 '35. Modified markovian maximum likelihood estimator output'));
96 save('mle','mle'); save('pme','pme'); save('pmi','pmi');
97 toc
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5.3.9 Allowed pairs function

1 function [ver,hor,nrp,Nj,Q] = fb_allowedpairsfunction(m,dim,eps)
2 [Q,ver,hor] = deal(zeros(dim));
3 nrp = 0;
4 M = size(m,1);
5 for i = 1:dim
6 for j = 1:dim
7 if i ~= j
8 for k = 1:M
9 if ~isempty(strfind(m{k},[i j]))

10 nrp = nrp+1;
11 Q(i,j) = eps;
12 ver(nrp) = i;
13 hor(nrp) = j;
14 break
15 end
16 end
17 end
18 end
19 end
20 ver = nonzeros(ver);
21 hor = nonzeros(hor);
22 Q(eye(dim)==1) = −sum(Q,2)+Q(eye(dim)==1);
23 Nj = sum(triu(Q)>0,2).';
24 end
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5.3.10 Vectorization function

1 function [t,rv,Nv,v1,v2,v3,v4,v5,v6] = fc_vectorfunction(m,t,ver,hor,Nj,...
2 lig)
3 M = size(m,1);
4 dim = max([ver; hor]);
5 nrp = size(ver,1);
6 I = zeros(M,1);
7 [rv,Nv] = deal(cell(M,1));
8 [v1,v2,v3,v4] = deal(cell(M,1));
9 [v5,v6] = deal(cell(M,nrp));

10 parfor i = 1:M
11 I(i) = length(m{i});
12 rv{i} = zeros(1,I(i)−1);
13 Nv{i} = Nj(m{i}(1:I(i)−1));
14 t{i}(I(i)+1) = t{i}(I(i)+1)+(t{i}(I(i))−t{i}(I(i)+1))*...
15 (m{i}(I(i))==dim);
16 v1{i} = (diff(m{i})>0).*(m{i}(1:I(i)−1)<=lig);
17 v2{i} = (diff(m{i})>0).*(m{i}(1:I(i)−1)>lig);
18 v3{i} = m{i}(I(i)) == dim && m{i}(I(i)) <= lig;
19 v4{i} = m{i}(I(i)) == dim && m{i}(I(i)) > lig;
20 for j = 1:nrp
21 v5{i,j} = zeros(1,I(i));
22 v6{i,j} = zeros(1,I(i)−1);
23 for k = 1:I(i)−1
24 if length(m{i}) > 1
25 if m{i}(k) == ver(j)
26 v5{i,j}(k) = 1;
27 if m{i}(k+1) == hor(j)
28 v6{i,j}(k) = 1;
29 end
30 end
31 end
32 end
33 v5{i,j}(I(i)) = m{i}(I(i)) == ver(j);
34 end
35 end
36 end
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5.3.11 Logarithmic Markovian gradient function

1 function g = fe_markovianloggradientfunction(m,t,Q,v)
2 M = v{1}; nrp = v{2}; I = v{3}; rig = v{4}; Nv = v{5}; Qv = v{6};
3 v1 = v{7}; v2 = v{8}; v3 = v{9}; v4 = v{10}; v5 = v{11}; v6 = v{12};
4 rsg = rig;
5 [m1,m2] = deal(zeros(M,nrp));
6 parfor i = 1:M
7 if I(i) > 1
8 Qv{i} = diag(Q(m{i}(1:I(i)−1),m{i}(1:I(i)−1)+diff(m{i}))).';
9 for j = 1:nrp

10 m1(i,j) = sum(−v5{i,j}.*diff(t{i}));
11 m2(i,j) = sum(v6{i,j}./(Qv{i}));
12 end
13 else
14 for j = 1:nrp
15 m1(i,j) = sum(−v5{i,j}.*diff(t{i}));
16 end
17 end
18 end
19 g = sum(m1+m2,1).';
20 end
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5.3.12 Logarithmic Markovian hessian function

1 function h = fd_markovianloghessianfunction(m,Q,v)
2 M = v{1}; nrp = v{2}; I = v{3}; rig1 = v{4}; Nv = v{5}; Qv = v{6};
3 v1 = v{7}; v2 = v{8}; v3 = v{9}; v4 = v{10}; v5 = v{11}; v6 = v{12};
4 m1 = zeros(M,nrp);
5 parfor i = 1:M
6 if I(i) > 1
7 Qv{i} = diag(Q(m{i}(1:I(i)−1),m{i}(1:I(i)−1)+diff(m{i}))).';
8 for j = 1:nrp
9 m1(i,j) = sum(−v6{i,j}./Qv{i}.^2);

10 end
11 end
12 end
13 h = diag(sum(m1,1));
14 end
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5.3.13 Logarithmic Markovian likelihood function

1 function l = ff_markovianloglikelihoodfunction(m,t,Q,v)
2 M = v{1}; nrp = v{2}; I = v{3}; rig1 = v{4}; Nv = v{5}; Qv1 = v{6};
3 v1 = v{7}; v2 = v{8}; v3 = v{9}; v4 = v{10}; v5 = v{11}; v6 = v{12};
4 rsg1 = rig1;
5 Qv2 = Qv1;
6 [m1,m2,m3] = deal(zeros(M,1));
7 parfor i = 1:M
8 Qv1{i} = diag(Q(m{i},m{i})).';
9 Qv2{i} = diag(Q(m{i}(1:I(i)−1),m{i}(1:I(i)−1)+diff(m{i}))).';

10 if I(i) > 1
11 m1(i) = sum(Qv1{i}.*diff(t{i}));
12 m2(i) = sum(log(Qv2{i}));
13 else
14 m3(i) = sum(Qv1{i}.*diff(t{i}));
15 end
16 end
17 l = sum(m1+m2+m3);
18 end
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5.3.14 Logarithmic non-Markovian gradient function

1 function g = fg_loggradientQabfunction(m,t,Q,a,b,v)
2 M = v{1}; nrp = v{2}; I = v{3}; rig1 = v{4}; Nv = v{5}; Qv = v{6};
3 v1 = v{7}; v2 = v{8}; v3 = v{9}; v4 = v{10}; v5 = v{11}; v6 = v{12};
4 rsg1 = rig1; rsg2 = rsg1; rsg3 = rsg1; rig2 = rig1; rig3 = rig1;
5 [m1,m2] = deal(zeros(M,nrp));
6 [m3,m4,m5,m6,m7,m8,m9,m10] = deal(zeros(1,M));
7 parfor i = 1:M
8 if I(i) > 1
9 rig3{i}(1) = v1{i}(1)*(t{i}(I(i)+1)−t{i}(2))*...

10 exp(−b(1)*(t{i}(I(i)+1)−t{i}(2)));
11 rsg3{i}(1) = v2{i}(1)*(t{i}(I(i)+1)−t{i}(2))*...
12 exp(−b(2)*(t{i}(I(i)+1)−t{i}(2)));
13 for j = 2:I(i)−1
14 rig1{i}(j) = exp(−b(1)*(t{i}(j+1)−t{i}(j)))*...
15 (v1{i}(j−1)+rig1{i}(j−1));
16 rsg1{i}(j) = exp(−b(2)*(t{i}(j+1)−t{i}(j)))*...
17 (v2{i}(j−1)+rsg1{i}(j−1));
18 for k = 1:j−1
19 rig2{i}(j) = rig2{i}(j)+v1{i}(k)*...
20 (t{i}(j+1)−t{i}(k+1))*...
21 exp(−b(1)*(t{i}(j+1)−t{i}(k+1)));
22 rsg2{i}(j) = rsg2{i}(j)+v2{i}(k)*...
23 (t{i}(j+1)−t{i}(k+1))*...
24 exp(−b(2)*(t{i}(j+1)−t{i}(k+1)));
25 end
26 rig3{i}(j) = v1{i}(j)*(t{i}(I(i)+1)−t{i}(j+1))*...
27 exp(−b(1)*(t{i}(I(i)+1)−t{i}(j+1)));
28 rsg3{i}(j) = v2{i}(j)*(t{i}(I(i)+1)−t{i}(j+1))*...
29 exp(−b(2)*(t{i}(I(i)+1)−t{i}(j+1)));
30 end
31 Qv{i} = diag(Q(m{i}(1:I(i)−1),m{i}(1:I(i)−1)+diff(m{i}))).';
32 for j = 1:nrp
33 m1(i,j) = sum(−v5{i,j}.*diff(t{i}));
34 m2(i,j) = sum(v6{i,j}./(Qv{i}+(v1{i}+v2{i}).*...
35 (a(1).*rig1{i}+a(2).*rsg1{i})./Nv{i}));
36 end
37 m3(i) = −(sum(v1{i})−v3{i}−...
38 (rig1{i}(I(i)−1)+v1{i}(I(i)−1)−v3{i})*...
39 exp(−b(1)*(t{i}(I(i)+1)−t{i}(I(i)))))/b(1);
40 m4(i) = sum(((v1{i}+v2{i}).*rig1{i}./Nv{i})./(Qv{i}+...
41 (a(1)*rig1{i}+a(2).*rsg1{i})./Nv{i}));
42 m5(i) = −(sum(v2{i})−v4{i}−...
43 (rsg1{i}(I(i)−1)+v2{i}(I(i)−1)−v4{i})*...
44 exp(−b(2)*(t{i}(I(i)+1)−t{i}(I(i)))))/b(2);
45 m6(i) = sum(((v1{i}+v2{i}).*rsg1{i}./Nv{i})./(Qv{i}+...
46 (a(1)*rig1{i}+a(2)*rsg1{i})./Nv{i}));
47 m7(i) = ((sum(v1{i})−v3{i})*a(1)/b(1)^2)−a(1)/b(1)^2*...
48 (rig1{i}(I(i)−1)+v1{i}(I(i)−1)−v3{i})*...
49 exp(−b(1)*(t{i}(I(i)+1)−t{i}(I(i))))−...
50 (a(1)/b(1)*sum(rig3{i}));
51 m8(i) = −sum((a(1)*(v1{i}+v2{i}).*rig2{i}./Nv{i})./...
52 (Qv{i}+(a(1)*rig1{i}+a(2)*rsg1{i})./Nv{i}));
53 m9(i) = ((sum(v2{i})−v4{i})*a(2)/b(2)^2)−a(2)/b(2)^2*...
54 (rsg1{i}(I(i)−1)+v2{i}(I(i)−1)−v4{i})*...
55 exp(−b(2)*(t{i}(I(i)+1)−t{i}(I(i))))−...
56 (a(2)/b(2)*sum(rsg3{i}));
57 m10(i) = −sum((a(2)*(v1{i}+v2{i}).*rsg2{i}./Nv{i})./...
58 (Qv{i}+(a(1)*rig1{i}+a(2)*rsg1{i})./Nv{i}));
59 else
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60 for j = 1:nrp
61 m1(i,j) = sum(−v5{i,j}.*diff(t{i}));
62 end
63 end
64 end
65 g = [sum(m1+m2,1).'; sum(m3+m4); sum(m5+m6); sum(m7+m8); sum(m9+m10)];
66 end
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5.3.15 Logarithmic non-Markovian Hessian function

1 function h = fh_loghessianQabfunction(m,t,Q,a,b,v)
2 M = v{1}; nrp = v{2}; I = v{3}; rig1 = v{4}; Nv = v{5}; Qv = v{6};
3 v1 = v{7}; v2 = v{8}; v3 = v{9}; v4 = v{10}; v5 = v{11}; v6 = v{12};
4 rsg1 = rig1;
5 rig2 = rig1; rig3 = rig1; rig4 = rig1; rig5 = rig1;
6 rsg2 = rsg1; rsg3 = rsg1; rsg4 = rsg1; rsg5 = rsg1;
7 [m1,m2,m3,m4,m5] = deal(zeros(M,nrp));
8 [m6,m7,m8,m9,m10,m11,m12,m13,m14,m15] = deal(zeros(1,M));
9 parfor i = 1:M

10 if I(i) > 1
11 rig3{i}(1) = v1{i}(1)*(t{i}(I(i)+1)−t{i}(2))*...
12 exp(−b(1)*(t{i}(I(i)+1)−t{i}(2)));
13 rsg3{i}(1) = v2{i}(1)*(t{i}(I(i)+1)−t{i}(2))*...
14 exp(−b(2)*(t{i}(I(i)+1)−t{i}(2)));
15 rig5{i}(1) = v1{i}(1)*(t{i}(I(i)+1)−t{i}(2))^2*...
16 exp(−b(1)*(t{i}(I(i)+1)−t{i}(2)));
17 rsg5{i}(1) = v2{i}(1)*(t{i}(I(i)+1)−t{i}(2))^2*...
18 exp(−b(2)*(t{i}(I(i)+1)−t{i}(2)));
19 for j = 2:I(i)−1
20 rig1{i}(j) = exp(−b(1)*(t{i}(j+1)−t{i}(j)))*...
21 (v1{i}(j−1)+rig1{i}(j−1));
22 rsg1{i}(j) = exp(−b(2)*(t{i}(j+1)−t{i}(j)))*...
23 (v2{i}(j−1)+rsg1{i}(j−1));
24 for k = 1:j−1
25 rig2{i}(j) = rig2{i}(j)+v1{i}(k)*...
26 (t{i}(j+1)−t{i}(k+1))*exp(−b(1)*...
27 (t{i}(j+1)−t{i}(k+1)));
28 rsg2{i}(j) = rsg2{i}(j)+v2{i}(k)*...
29 (t{i}(j+1)−t{i}(k+1))*exp(−b(2)*...
30 (t{i}(j+1)−t{i}(k+1)));
31 rig4{i}(j) = rig4{i}(j)+v1{i}(k)*...
32 (t{i}(j+1)−t{i}(k+1))^2*exp(−b(1)*...
33 (t{i}(j+1)−t{i}(k+1)));
34 rsg4{i}(j) = rsg4{i}(j)+v2{i}(k)*...
35 (t{i}(j+1)−t{i}(k+1))^2*exp(−b(2)*...
36 (t{i}(j+1)−t{i}(k+1)));
37 end
38 rig3{i}(j) = v1{i}(j)*(t{i}(I(i)+1)−t{i}(j+1))*...
39 exp(−b(1)*(t{i}(I(i)+1)−t{i}(j+1)));
40 rsg3{i}(j) = v2{i}(j)*(t{i}(I(i)+1)−t{i}(j+1))*...
41 exp(−b(2)*(t{i}(I(i)+1)−t{i}(j+1)));
42 rig5{i}(j) = v1{i}(j)*(t{i}(I(i)+1)−t{i}(j+1))^2*...
43 exp(−b(1)*(t{i}(I(i)+1)−t{i}(j+1)));
44 rsg5{i}(j) = v2{i}(j)*(t{i}(I(i)+1)−t{i}(j+1))^2*...
45 exp(−b(2)*(t{i}(I(i)+1)−t{i}(j+1)));
46 end
47 Qv{i} = diag(Q(m{i}(1:I(i)−1),m{i}(1:I(i)−1)+diff(m{i}))).';
48 for j = 1:nrp
49 m1(i,j) = sum(−v6{i,j}./(Qv{i}+(v1{i}+v2{i}).*...
50 (a(1)*rig1{i}+a(2)*rsg1{i})./Nv{i}).^2);
51 m2(i,j) = sum(−v6{i,j}.*(v1{i}+v2{i}).*rig1{i}./Nv{i}./...
52 (Qv{i}+(a(1)*rig1{i}+a(2)*rsg1{i})./Nv{i}).^2);
53 m3(i,j) = sum(−v6{i,j}.*(v1{i}+v2{i}).*rsg1{i}./Nv{i}./...
54 (Qv{i}+(a(1)*rig1{i}+a(2)*rsg1{i})./Nv{i}).^2);
55 m4(i,j) = sum(a(1)*v6{i,j}.*(v1{i}+v2{i}).*rig2{i}./...
56 Nv{i}./(Qv{i}+(a(1)*rig1{i}+a(2)*rsg1{i})./Nv{i}).^2);
57 m5(i,j) = sum(a(2)*v6{i,j}.*(v1{i}+v2{i}).*rsg2{i}./...
58 Nv{i}./(Qv{i}+(a(1)*rig1{i}+a(2)*rsg1{i})./Nv{i}).^2);
59 end
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60 m6(i) = sum(−(v1{i}+v2{i}).*(rig1{i}./Nv{i}).^2./...
61 (Qv{i}+(a(1)*rig1{i}+a(2)*rsg1{i})./Nv{i}).^2);
62 m7(i) = sum(−(v1{i}+v2{i}).*rig1{i}.*rsg1{i}./Nv{i}.^2./...
63 (Qv{i}+(a(1)*rig1{i}+a(2)*rsg1{i})./Nv{i}).^2);
64 m8(i) = sum(−(v1{i}+v2{i}).*rig2{i}./Nv{i}./...
65 (Qv{i}+(a(1)*rig1{i}+a(2)*rsg1{i})./Nv{i})+...
66 a(1)*(v1{i}+v2{i}).*rig1{i}.*rig2{i}./Nv{i}.^2./...
67 (Qv{i}+(a(1)*rig1{i}+a(2)*rsg1{i})./Nv{i}).^2)−...
68 sum(rig3{i})/b(1)+...
69 (sum(v1{i})−v3{i})/b(1)^2−...
70 (rig1{i}(I(i)−1)+v1{i}(I(i)−1)−v3{i})*...
71 exp(−b(1)*(t{i}(I(i)+1)−t{i}(I(i))))/b(1)^2;
72 m9(i) = sum(a(2)*(v1{i}+v2{i}).*rig1{i}.*rsg2{i}./Nv{i}.^2./...
73 (Qv{i}+(a(1)*rig1{i}+a(2)*rsg1{i})./Nv{i}).^2);
74 m10(i) = sum(−(v1{i}+v2{i}).*(rsg1{i}./Nv{i}).^2./...
75 (Qv{i}+(a(1)*rig1{i}+a(2)*rsg1{i})./Nv{i}).^2);
76 m11(i) = sum(a(1)*(v1{i}+v2{i}).*rsg1{i}.*rig2{i}./Nv{i}.^2./...
77 (Qv{i}+(a(1)*rig1{i}+a(2)*rsg1{i})./Nv{i}).^2);
78 m12(i) = sum(−(v1{i}+v2{i}).*rsg2{i}./Nv{i}./...
79 (Qv{i}+(a(1)*rig1{i}+a(2)*rsg1{i})./Nv{i})+...
80 a(2)*(v1{i}+v2{i}).*rsg1{i}.*rsg2{i}./Nv{i}.^2./...
81 (Qv{i}+(a(1)*rig1{i}+a(2)*rsg1{i})./Nv{i}).^2)−...
82 sum(rsg3{i})/b(2)+...
83 (sum(v2{i})−v4{i})/b(2)^2−...
84 (rsg1{i}(I(i)−1)+v2{i}(I(i)−1)−v4{i})*...
85 exp(−b(2)*(t{i}(I(i)+1)−t{i}(I(i))))/b(2)^2;
86 m13(i) = sum(a(1)*(v1{i}+v2{i}).*rig4{i}./Nv{i}./...
87 (Qv{i}+(a(1)*rig1{i}+a(2)*rsg1{i})./Nv{i}))−...
88 sum((v1{i}+v2{i}).*(a(1)*rig2{i}./Nv{i}).^2./...
89 (Qv{i}+(a(1)*rig1{i}+a(2)*rsg1{i})./Nv{i}).^2)−...
90 (sum(v1{i})−v3{i})*2*a(1)/b(1)^3+...
91 2*a(1)/b(1)^3*sum((rig1{i}(I(i)−1)+v1{i}(I(i)−1)−v3{i})*...
92 exp(−b(1)*(t{i}(I(i)+1)−t{i}(I(i)))))+...
93 2*a(1)/b(1)^2*sum(rig3{i})+...
94 a(1)/b(1)*sum(rig5{i});
95 m14(i) = sum(−a(1)*a(2).*rig2{i}.*rsg2{i}.*(v1{i}+v2{i})./...
96 Nv{i}.^2./(Qv{i}+(a(1)*rig1{i}+a(2)*rsg1{i})./Nv{i}).^2);
97 m15(i) = sum(a(2)*(v1{i}+v2{i}).*rsg4{i}./Nv{i}./...
98 (Qv{i}+(a(1)*rig1{i}+a(2)*rsg1{i})./Nv{i}))−...
99 sum((v1{i}+v2{i}).*(a(2)*rsg2{i}./Nv{i}).^2./...

100 (Qv{i}+(a(1)*rig1{i}+a(2)*rsg1{i})./Nv{i}).^2)−...
101 (sum(v2{i})−v4{i})*2*a(2)/b(2)^3+...
102 2*a(2)/b(2)^3*sum((rsg1{i}(I(i)−1)+v2{i}(I(i)−1)−v4{i})*...
103 exp(−b(2)*(t{i}(I(i)+1)−t{i}(I(i)))))+...
104 2*a(2)/b(2)^2*sum(rsg3{i})+...
105 a(2)/b(2)*sum(rsg5{i});
106 end
107 end
108 h = ...
109 [diag(sum(m1,1)) sum(m2,1).' sum(m3,1).' sum(m4,1).' sum(m5,1).';...
110 sum(m2,1) sum(m6) sum(m7) sum(m8) sum(m9);...
111 sum(m3,1) sum(m7) sum(m10) sum(m11) sum(m12);...
112 sum(m4,1) sum(m8) sum(m11) sum(m13) sum(m14);...
113 sum(m5,1) sum(m9) sum(m12) sum(m14) sum(m15)];
114 end
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5.3.16 Logarithmic non-Markovian likelihood function

1 function l = fi_loglikelihoodfunction(m,t,Q,a,b,v)
2 M = v{1}; nrp = v{2}; I = v{3}; rig1 = v{4}; Nv = v{5}; Qv1 = v{6};
3 v1 = v{7}; v2 = v{8}; v3 = v{9}; v4 = v{10}; v5 = v{11}; v6 = v{12};
4 rsg1 = rig1;
5 Qv2 = Qv1;
6 [m1,m2,m3,m4,m5] = deal(zeros(M,1));
7 parfor i = 1:M
8 for j = 2:I(i)−1
9 rig1{i}(j) = exp(−b(1)*(t{i}(j+1)−t{i}(j)))*...

10 (v1{i}(j−1)+rig1{i}(j−1));
11 rsg1{i}(j) = exp(−b(2)*(t{i}(j+1)−t{i}(j)))*...
12 (v2{i}(j−1)+rsg1{i}(j−1));
13 end
14 Qv1{i} = diag(Q(m{i},m{i})).';
15 Qv2{i} = diag(Q(m{i}(1:I(i)−1),m{i}(1:I(i)−1)+diff(m{i}))).';
16 if I(i) > 1
17 m1(i) = sum(Qv1{i}.*diff(t{i}));
18 m2(i) = −a(1)/b(1)*(sum(v1{i})−v3{i}−...
19 (rig1{i}(I(i)−1)+v1{i}(I(i)−1)−v3{i})*...
20 exp(−b(1)*(t{i}(I(i)+1)−t{i}(I(i)))));
21 m3(i) = −a(2)/b(2)*(sum(v2{i})−v4{i}−...
22 (rsg1{i}(I(i)−1)+v2{i}(I(i)−1)−v4{i})*...
23 exp(−b(2)*(t{i}(I(i)+1)−t{i}(I(i)))));
24 m4(i) = sum(log(Qv2{i}+(a(1)*rig1{i}+a(2)*rsg1{i})./...
25 Nv{i}.*(v1{i}+v2{i})));
26 else
27 m5(i) = sum(Qv1{i}.*diff(t{i}));
28 end
29 end
30 l = sum(m1+m2+m3+m4+m5);
31 end
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