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Technology Evaluation and Uncertainty-Based Design
Optimization: A Review

Martijn Roelofs∗ and Roelof Vos†

Delft University of Technology, Delft, Zuid-Holland, 2600AA, The Netherlands

Evaluation and assessment of novel technologies for aerospace applications is essential for
business strategy and decision making regarding development efforts. Since technology is
evaluated in the conceptual design phase and little is known about the technology, large
uncertainty is present. This uncertainty needs to be accurately assessed and managed. To
investigate the research efforts that have been performed to perform technology evaluation
under uncertainty, a literature review was conducted, focusing on methods and modeling
approaches to assign and quantify these uncertainties. It is found that probability theory is
still the most popular theory for representing uncertainty. Polynomial Chaos Expansions
and Stochastic Collocation methods are gaining popularity for propagating uncertainty
through a modeling environment, but Monte Carlo Simulations are still widely used. Com-
monly, surrogate models are used to reduce computational effort. Other efforts focus on the
use of multifidelity approaches to reduce computational effort when high-fidelity methods
are required. Four issues that may need to be addressed in future research were identified.

I. Introduction

In the design of complex systems, such as aircraft, the systems engineering (SE) approach is usually employed.
It evolved during the 1950’s to fulfill the need for system performance and project management.1 In systems
engineering, a system is defined as an integrated set of elements to accomplish a defined objective and
comprises of elements, subsystems, assemblies, subassemblies, components and parts. The SE process is
iterative in nature, moving from a mission definition, to requirement specification to concept definition and
analysis to design, production and operation. SE encompasses the entire cycle-of-life (COL). However, early
in this lifecycle, i.e. at the conceptual design phase, important decisions need to be made with respect to
system configuration and technology selection, which impact the final system performance and risk. Figure 1
shows a typical relation between the freedom in design, commitment made to a certain design (and committed
funds) and the knowledge available on the design and its performance.2 From this relation, it follows that
these important decisions during the conceptual and preliminary design phases are based on relatively little
knowledge, or in other words, with large uncertainty.

Multidisciplinary design analysis (MDA) and multidisciplinary design optimization (MDO) techniques
have been developed to take into account the interactions in the design of complex systems and make sure
the optimal design meets key performance indicators set during the requirements definition.3–5 However,
especially when new technologies are involved, uncertainty exists in terms of the effect of these technologies
and parameters needed to model them.6 As such, the assumptions made are carried through the MDO
process and are reflected in the resulting design. To reduce the risk associated with these assumptions,
uncertainty based design can be employed which is concerned with improving robustness and/or reliability
of the resulting design.7

Needs and opportunities for uncertainty based design (UBD) are provided by Zang et al.8 They also
summarize the potential benefits of UBD:

• Increase in confidence in design tools
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Figure 1. Commitment, freedom and knowledge throughout the system design life cycle. Adapted from
Cooper2

• Reduction of design cycle time, cost and risk

• Increase in system performance while meeting reliability requirements

• More robust designs

• Assessment of systems at off-nominal conditions

• Increase in use of composite structures (although this is a rather aerospace related benefit, it could be
generalized into stating that use of any innovative technology will increase).

Despite these benefits, uncertainty based design is still not widely applied, mainly due to the difficulty of
proving these benefits7 and due to the computational cost associated with UBD methodologies.8

Applications of technology evaluation and selection in aircraft conceptual design are ubiquitous.3,9–11
This paper seeks answer to the question how technology evaluation and assessment is performed in the
current state-of-the-art. Some critical remarks are provided that reflect the shortcomings of current state-
of-the-art and possible areas of improvement.

II. Technology Evaluation and Selection

As outlined in the introduction, during the conceptual design phase important and irreversible decisions are
made regarding a design, including selection of technologies to be developed and implemented. The aim of
any technology selection methodology is a structured, repeatable and traceable way to exploit all data and
information available on applicable technologies and extracting useful information to reduce subjectivity in
the technology selection process.6 Addressing the benefit of possible novel and immature technologies during
the conceptual design phase to understand impact on design and top-level requirements is important.

In general, technology evaluation and selection is paired with uncertainty and as such this should be
incorporated in the analysis.12 Figure 2 shows an overview of the generic process for technology selection
under uncertainty. First, the variables that are uncertain need to be defined, including Technology Readiness
Level (TRL) and the Technology Impact Matrix (TIM). Then, since not all of these variables will be statis-
tically independent, their dependency structure needs to be established. These dependencies depend partly
on the second order effects between different technologies (synergistic or discordant) and the compatibility
between any two technologies. Then, the actual probability distributions and the correlation parameters are
estimated. All of this work, as will become evident from the following review, is commonly performed by
Subject Matter Experts (SMEs). Section III-B elaborates on these points. Finally, the Uncertainty Quan-
tification (UQ) can be performed, resulting in uncertainty distributions over Quantities of Interest (QoI) and
selection of the most promising technologies can be conducted, using, for example, TOPSIS (Technique for
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Order Preference based on Similarity to Ideal Solution). Throughout this review paper, we will touch upon
each of these constituent processes.

Figure 2. Technology evaluation and selection under uncertainty

Firstly, we look at the definition of the random variables. These include the technology impacts (and
possibly design variables) and the technology readiness levels. A common technique to account for the impact
of technologies is through assigning a difference to a certain parameter that is present in the aircraft system.
For example, the effect of an entire flap system can be represented by a change in CLmax and subsystem mass.
The TIES (Technology Identification, Evaluation and Selection)13–16 methodology, developed at Georgia
Tech, works this way. A probabilistic approach towards uncertainty is adopted and technology selection is
done based on the highest probability of meeting objectives. The impacts of technologies are called k-factors.
The advantage of using k-factors is that key disciplinary metrics are taken into account and no commitment
needs to be made to model a technology.12 It is therefore a straightforward approach, and can quickly
and easily identify the impact of certain technologies. However, subtle characteristics specific to a certain
technology may not be taken into account and therefore certain effects may be overlooked.

Impact factors can be dependent on the state-of-the-art assumptions for a certain technology. Epistemic
uncertainty with regard to subsystem assessment and state-of-the-art (SOTA) assumptions can be dealt
with using k-factors. K-factors are applied to sources of epistemic uncertainty and consecutively modified
in a sensitivity study.17–19 In addition to SOTA, business strategy and value of a project (and hence,
technologies) should be taken into account when performing technology assessment and selection.20

Technology maturity level needs to be addressed to keep overall acquisition cost in check. A methodology
is shown in Figure 3 that combines the Technology Readiness Level (TRL), compatibility matrix, Integration
Readiness Level (IRL), sensitivity analysis and System Readiness Level (SRL). Uncertainty associated with
new technology can usually be derived based on the TRL.21 To associate TRL with uncertainty, the work
of Kirby and Mavris13 may be used. SRL can be seen as a more sophisticated measure than TRL, but the
difficulties in assigning IRL are exposed, as Jimenez et al.22 pointed out. UQ can be used to determine how
to progress the maturity level of technologies.23

Figure 3. Flow diagram of technology investigation method to assess impact on aircraft measures of effective-
ness. Adapted from Amadori6
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An elaborate characterization of technology readiness levels and technology integration is made by
Jimenez et al.,22 who conclude that technology integration is part of technology readiness and should be
accounted for as such. Two models to illustrate technology integration are the Vee model and the four-level
hierarchy proposed by NASA (Figure 4). There usually is a gap in between level 1 and 3 in Figure 4, since
it is difficult to create a method or tool that relates fundamental physics to technology specific responses.
Additionally, for novel technologies, level 1 is also lacking.

Figure 4. Integration through technology research and development. Adapted from Jimenez22

We now skip to the "Perform UQ" block from Figure 2. Technology assessment (and uncertainty quan-
tification) of aerospace vehicles requires an integrated, multidisciplinary platform, with parametric geometry
and sensitivity analysis. The multidisciplinary analysis platform should be able to capture those perfor-
mance aspects that are relevant for decision making. Additionally, the higher the fidelity of analyses used,
the more accurate the predictions become and the lower the associated uncertainty is. There is a trend
towards using physics-based analyses, which are more expensive than semi-empirical models.6 An example
of such physics-based analyses is the framework developed at Linköping University.24,25

Two major limitations of current conceptual design environments were identified by Lu et al.:26

1. The application of design tools is limited to a specific vehicle type, because the sizing method is fixed

2. Flexibility and scalability of disciplinary analysis tools is lacking

Both of these limitations should be overcome for effective evaluation of novel concepts and technologies. How-
ever, creating a flexible and modular design environment is challenging due to the coupling of operational and
systems capabilities.27 Another important issue for designing unconventional aircraft is geometry represen-
tation. As of now, no suitable geometry definition tool or CAD package is available that allows geometry to
be reused from conceptual design into detailed design.28 Some efforts were made to apply knowledge-based
engineering to carry over geometry among different design stages.29 Another tool, GENAIR, was developed
to create unconventional geometries using NURBS surfaces.30 Veley et al.4 state that an adaptive class
structure and a unified part model are necessary.

Despite these challenges, several efforts have been made to arrive at a conceptual aircraft design frame-
work, some including uncertainty quantification.31,32 A generalized methodology for sizing unconventional
aircraft and unconventional propulsion was proposed by Bucsan et al.,33 building on previous work.17,34,35
The work by Nam34 does include uncertainty quantification in the form of PASM (Probabilistic Aircraft
Sizing Method) and recommends inclusion of evidence theory or the Bayesian approach into the method.
It is remarked that sizing depends greatly on component model accuracy, which would be an area where
uncertainty quantification can help. An agile decision support system for aircraft design was proposed that
integrates M&S technology, data mining and artificial intelligence.36 Another probabilistic approach focuses
on integration of system-level and component-level requirements in a multidisciplinary optimization.37–40
It includes probabilistic margins and optimizes components separately, while satisfying consistency on an
integrated (system) level, which is supposedly more efficient.

Consideration of the entire life cycle of an aircraft system, including evolution of the design (upgrades,
redesigns, etc.), is desirable since performance degradation may be prevented.41 The Evaluation of Lifelong
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Vehicle Evolution (EvoLVE) framework was proposed, which relies on a Stochastic Programming with Re-
course (SPR) technique to account for uncertainties associated with future requirements. It is complemented
with a Risk-Averse Strategy Selection (RASS) technique to gauge risk. In addition, a study on fleet level
showed that more efficient aircraft do not necessarily lead to a global reduction in emissions.42 This indicates
that it may be necessary to not only model aircraft technology, but also include air travel growth and airline
operations into the future.43

NASA has developed several physics-based analysis tools for different aspects, which were used in an
aircraft design study for the Next Generation Air Transportation System.44 For engine thermodynamic
analysis, NPSS (Numerical Propulsion System Simulation) is used, engine component weights are estimated
using WATE (Weight Analysis of Turbine Engines), aircraft weights and performance are computed using
FLOPS (FLight OPtimization System), aircraft noise levels using ANOPP (Aircraft Noise Prediction Pro-
gram), wave drag using AWAVE, induced drag with WINGDES, skin friction drag with BDAP and low
speed aerodynamics with AERO2S. Hosted Simulation is a technique that can be applied when different
simulation tools use different models.45

To tackle the issue of flexibility in MDA (and flexible synthesis/representation of systems), an interesting
technique is functional decomposition (FD).46 It is commonly used for design synthesis, since it allows
systems to be represented by their intended functions and actual behaviours. Hirtz et al.47 have constructed
a functional basis of generic physical functions, through reconciling previous efforts. Avoiding ambiguity
is the aim of such a basis, while maintaining representational flexibility. This basis is used by Yuan48 to
set up an automated functional decomposition framework. Functional decomposition is starting to be used
in aircraft conceptual design,46,49,50 and it is expected to gain popularity. Several different approaches
to functional decomposition exist (well documented in multiple review papers51,52), including Structure-
Behaviour-Function (SBF) decomposition53 and SAPPhIRE.54 Principles for specific cognitively oriented AI
methodology for functional modeling are presented by Goel et al.,55 and the evolution of SBF is analyzed.
Functional decomposition is closely related to knowledge based engineering (KBE). A comprehensive review
of KBE identifies several shortcomings, of which most relevant to technology evaluation are: case-based, ad
hoc development of KBE applications; a tendency toward development of black-box applications; and, a lack
of knowledge re-use.56

Technologies can be analyzed individually or as combinations: technology portfolios. Technology selection
then becomes portfolio selection. Technologies are first evaluated individually, followed by a global sensitivity
analysis to identify the most influential k-factors. UQ is used to propagate the impacts and uncertainties
to system level and consecutively identify technology portfolio performance. When displaying the results,
two metrics can be used for comparison: probability of success (POS) and signal-to-noise ratio (S/N). S/N
represents both performance and uncertainty and therefore offers a dimensionality reduction.57 TOPSIS
(Technique for Order Preference by Similarity to Ideal Solution) is used to create a ranking of portfolios.

It is recognized that most modern UQ techniques only take into account the variance of quantities of
interest, while a distinction should be made between positive and negative uncertainty, which should be
characterized by an asymmetric distribution. Moreover, a multi-objective methodology should be used for
trade-offs.20 In that case, the objective of a design optimization is a weighted function of multiple objectives
and the weighting is fixed throughout the search. Therefore, to obtain a change in solution depending on
the weighting, the optimization has to be repeated for different weights. This results in a Pareto front of
solutions. However, such a method is computationally expensive, which is why a Niched-Pareto approach was
developed.58 This method uses a posteriori articulation of preferences, where the Multi-Objective Decision
Making (MODM) process is run to obtain Pareto-optimal solutions. A multi-objective genetic algorithm is
used by Jimenez et al.59 to generate a set of Pareto-optimal technology combinations and the results show
promising technologies to reach aircraft environmental goals in a decade.

III. Uncertainty Quantification

The process of uncertainty quantification has the goal to propagate the uncertainty distributions on the input
variables to quantities of interest. Additionally, it used to identify where sources of uncertainty are largest,
such that these can be reduced (e.g. through experiments). It is not necessarily the purpose to estimate the
discrepancy with reality, but to ascertain the validity of decisions based on model evaluations, assuming the
model has some resemblance of reality.60

Aside from computational effort associated with uncertainty quantification methods, there are two major
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issues:

1. Identification and specification of a dependency structure between random variables

2. Validation of expert judgment for estimation of input distributions

As indicated earlier, the dependencies of random variables are often neglected in uncertainty quantification
endeavors, although they are important to take into account to fully reflect the integration effects of tech-
nologies on a complete system. A powerful technique to specify a dependency structure between two random
variables is the copula.61 The joint distribution defined by a copula can take on any desired form while
its univariate marginal distributions remain uniform.62 They are used for technology evaluation to reduce
the overall uncertainty of the analysis.62–64 Copula based sampling for a Bayesian Network is employed by
Liang65,66 for stochastic multidisciplinary analysis with high-dimensional coupling. Bayesian Networks67 are
ubiquitously applied for modeling dependency structures of systems and combined with copulas to specify
the joint distribution functions. Vines, and vine copulas, can be used to model high-dimensional distribu-
tions.68–70 An application of Bayesian Belief Networks (BBN) to design space exploration leads to a new
technique called sculpting.71 The BBN computes probabilistic measures of merit and includes dependencies
between design, uncertain and margin variables. Cobweb plots are used to down-select the most feasible re-
gions of the design space. When uncertain variables are dependent and the joint distribution does not follow
a specific type, mixtures are an effective method to represent these joint distributions. Additionally, they
are well capable of representing multimodality or tail characteristics, such as leptokurtosis or skewness.72

Although several mathematical techniques exist to represent dependencies, the actual structure and
correlation parameters commonly are assumed by experts. That leads to the second issue with UQ. As
shown in Figure 2, the estimation of distributions of random variables, dependencies and correlations are
performed by experts. However, as Cooke71 points out, experts suffer from overconfidence, inaccuracy
and lack of informativeness. In order to mitigate these problems, cross-validation of expert estimates can
be performed.73 Another (not mutually exclusive) technique is to update elicited expert judgments using
Bayesian calibration.74,75

A. Uncertainty Definition and Taxonomies

Regardless of how the dependencies and probability distributions are assigned, uncertainty quantification can
be performed in a multitude of techniques. However, first, a definition of uncertainty is required. Secondly,
uncertainty can be mathematically defined with different theories. Finally, several propagation techniques
exist that compute the uncertainty on quantities of interest.

Uncertainty can be defined as the incompleteness in knowledge and the inherent variability of the system
and its environment.7 The most common distinction is the division into two classes:

1. Aleatory (or statistical) uncertainty, which can be seen as the inherent variation in variables. Other
ways to define aleatory uncertainty is as type A or stochastic uncertainty. It is an inevitable, irreducible
and uncontrollable form of uncertainty, but well identifiable.

2. Epistemic uncertainty, i.e. uncertainty due to lack of knowledge. It is also known as cognitive, type
B, reducible or subjective uncertainty.

As is done in the works by Oberkampf et al.,76–78 it is convenient to use the following three characteriza-
tions: aleatory and epistemic uncertainty and (numerical) error, where the latter is not actually a form of
uncertainty, but does affect the accuracy of the solution. Error is seen as purely numerical noise due to
floating point arithmetic.

An important form of epistemic uncertainty is model (form) uncertainty and model discrepancy. Model
discrepancy is the uncertainty in the prediction from a certain model. Model form uncertainty is the un-
certainty related to selection of the appropriate model for a certain phenomenon.79 It is related to model
discrepancy in the sense that the model with least discrepancy to the real world is most likely the most
appropriate model. Obviously, complete certainty regarding the real world is not possible, even through
experiments, since there always exists measurement uncertainty and experiments often ignore certain pa-
rameters.

Current V& V and UQ applications require a lot of accurate information, which limits their use in
practice. A framework for early model validation with limited information is presented by Carlsson.80,81 By
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reducing the amount of uncertain parameters the uncertainty quantification issue is solved. This reduction
comes from only modeling at component output level, rather than at component input.

Model discrepancy can be modeled as:

y(x, t) = f(x, t, ϕ) + ϵ(x, t, ϕ) + ϵy (1)

where the response y is modeled by the model f depending on the input vector x, time t and to-be-calibrated
variables ϕ (more on this later in the discussion of Bayesian model calibration). The model discrepancy is
modeled using the function ϵ and ϵy is the measurement error in the response data. Many other researchers
lump the last two parts together:79,82–84

y(x) = f(x) + δ(x) (2)

Model discrepancy quantification is concerned with estimating either ϵ(x, t, ϕ) or δ(x).
Bayesian calibration is a method that is often used to quantify model form uncertainty85 and the founda-

tions were laid by Kennedy and O’Hagan.86 A model can be represnted as a Bayesian Network (or Dynamic
Bayesian Network for time-dependent models). Such a network connects responses through probabilistic
paths. The Bayesian Network can be calibrated using experimental data using Bayes’ rule. DeCarlo et
al.87–89 use it for increasing confidence of a coupled aerothermoelastic analysis.

In a coupled system, which often occurs in aircraft design (e.g. aero-structural coupling) model discrep-
ancy propagates in a loop, and therefore, rigorous quantification of this uncertainty is essential. Especially
for multifidelity approaches this is important, since different levels of fidelity may be used simultaneously.
The coupled system can be modeled as a Markov Chain (essentially, a Dynamic Bayesian Network can be
represented as a Markov Chain), in which uncertainty is propagated using Gibbs sampling (which is a Markov
Chain Monte Carlo (MCMC) method).83 Important is that consistency is reached between coupling vari-
ables, i.e. a detailed balance condition is applied to ensure that stopping at any point in the Markov Chain
results in a consistent answer. An optimization routine finds the statistics of the sampling results. Normal
distributions were assumed for the model discrepancy, but later work modeled these as a Gaussian process
with a squared exponential covariance function.84 A pattern search optimization ensures the marginal and
conditional distributions of each variable are approximately equal, to satisfy detailed balance.

Extension of Bayesian calibration to high-dimensional, spatially varying model parameters is researched
by Nath et al.90 An approach is presented that uses singular value decomposition (SVD) to reduce dimension-
ality for surrogate models build using the Kriging approach. Bayesian calibration using Gaussian processes
is shown to successfully estimate parameter uncertainty, surrogate modeling uncertainty and characterized
and uncharacterized observation and modeling errors.91 Further work is recommended to extend surrogate
modeling capabilities and the transfer of posterior uncertainty to new predictions.

Bayesian model averaging is a methodology that handles both model discrepancy (or model form uncer-
tainty) and parametric uncertainty, by integrating model predictions weighted by model probabilities.79,82,92–94
The adjustment factor approach builds upon the model averaging technique and works by adjusting the pre-
diction of the best model by a factor that is computed using the predictions of all models. The adjustment
factor can either be additive or multiplicative. Riley et al.92 point out that the adjustment factor approach
is dependent on expert opinion rather than experiments. Additionally, they state Bayesian model averaging
requires many experiments, which often are unavailable and hence propose a framework that determines
where additional experiments are required.

A novel approach to model form uncertainty is to apply game theory and have processes play adversarial
games with respect to missing information.95 As such, partial information is taken into account and reduced
order models can be constructed.

B. Uncertainty Modeling

Probability theory is a commonly used technique for representation of uncertainty, since it is relatively
easy to implement and is well understood by engineers. A probability density function (PDF) is assigned
to uncertain variables, which assigns a probability to each value the variable can attain. With sufficient
data available, a PDF can easily be fitted. The PDF model can be chosen depending on uncertainty
characteristics and its parameters can be estimated using the method of moments or maximum likelihood
method. However, usually during conceptual design little information is available and the probability model
has to be assumed by engineers (commonly uniform96), which adds to the uncertainty of the design results.97
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Aleatory uncertainty is often modeled using probability theory, but representing epistemic uncertainty using
probability is questionable since there is no reason to prefer one probability distribution over another.98 All
other theories discussed here are capable of representing both aleatory and epistemic uncertainty.

Bayesian theory (BT) is an extension of probability theory that includes evidence to support some
hypothesis. Essentially, the theory revolves around Bayes’ rule which is stated as follows:

P (b|a) = P (a|b)P (b)

P (a)
(3)

where P ( · ) is the probability of the contained statement, a and b are some variables and the operator |
should be interpreted as "given" (P ( · | · ) is called a conditional probability). The P (b) is called the prior,
i.e. an estimation of the probability of b without evidence, while P (b|a) is called the posterior, i.e. the
updated probability of b now that some evidence has become available.

A more general form of Bayes’ rule is:

P (Y |X, e) =
P (X|Y, e)P (Y |e)

P (X|e)
(4)

where e is some background evidence. Using this formulation it is clear that Bayesian theory allows for
revision of the probability of some condition when new evidence becomes available.

Although the Bayesian (subjectivist) view of probability has its merits over the classical (frequentist)
probability theory, one of its largest drawbacks is through the “Principle of Insufficient Reason”.99 Basically,
the Bayesian approach relies on a complete probabilistic model of the domain, or in other words, a frame of
discernment. This frame of discernment sometimes has to be chosen arbitrarily, while it has a major impact
on the resulting probabilities. Therefore, the Bayesian approach needs to distinguish between uncertainty and
ignorance.99 A similar argument is given by Soundappan et al.:100 if the evidence is imprecise, assumptions
need be made to estimate the likelihood of the evidence. The posterior probability can be sensitive to these
assumptions.

Possibility theory can be seen as an extension of classical probability theory with two measures: necessity
and possibility. It was developed by Zadeh101 and builds upon his theory of fuzzy sets. When using
probability (not possibility!) theory, one has to assume a certain distribution, which is incorrect if not
enough data is available to make a good decision on the type of distribution. Therefore, taking upper and
lower bounds on the probability of uncertain variables is useful, which is what interval analysis and fuzzy
set theory aim to do.102

A review of possibilistic approaches to reliability analysis and optimization in engineering design is
presented by He et al.103 Most research effort on possibility theory is focused on the integration of reliability-
based and possibility-based design optimization and the improvement of efficient numerical techniques for
computing the metrics.

Interval analysis only takes an upper and a lower bound on the uncertain variables. Hence, no uncertainty
structure is imposed on the uncertain variables. These minima and maxima are propagated to the output,
usually through algebraic procedures.104,105 Interval analysis can be seen as a special case of possibility
theory for crisp sets.76 However, two major drawbacks are associated with this theory: the computational
cost is prohibitive for large number of inputs and the output range is only valid for monotonic functions. In
other words, if the output features local extrema, the interval analysis is usually wrong.102

Dempster-Schafer (D-S) theory (also called theory of belief functions or evidence theory) is a more gen-
eral uncertainty theory than either classical probability theory or possibility theory.76 It was developed by
Shafer,106 who built on the work by Dempster.107 The theory applies to both aleatory and epistemic uncer-
tainty. It concerns two complementary measures: belief and plausibility, which are both fuzzy measures. D-S
theory can be used when there is conflicting evidence, otherwise possibility theory is advised.102 Addition-
ally, it can be used when only a small amount of information is available. Oberkampf et al.76 argue it could
be an effective path forward in engineering applications due to its ability to deal with well characterized
uncertainty as well as situations of near-total ignorance. An even more general method than D-S theory is
Dezer-Smarandache (DSm) theory, which uses new models for the FD and new rules of combination to take
into account paradoxical and uncertain information.108

Akram and Mavris use D-S theory for a technology valuation process / technology portfolio analy-
sis,109–113 and conclude it is better capable of providing insight into epistemic uncertainties, as compared to
deterministic or probability theory methods. Additionally they state: “It reduces the number of assumptions
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during the elicitation process, when experts are forced to assign probability distributions to their opinions
without sufficient knowledge.” In a comparison with Monte Carlo approaches it results that both methods
scale similarly, but D-S theory is an order of magnitude quicker.110 Furthermore, D-S theory can be used
for the quantification of model form uncertainty and model discrepancy.93,114

Comparing the theories presented, it can be concluded that probability theory provides the least conser-
vative results.106,115 D-S theory is less conservative, and will converge to the probability theory result with
enough information.104 Probability theory might provide a false sense of exactness,104 while D-S theory and
possibility theory may lead to wide bounds, on which no decisions can be based.100 Using D-S theory, the
analyst does not need to make assumptions. However, it is recommended to use both BT and D-S theory
for decision-making, since D-S theory leads to worse decisions in the long run.100 Despite the promising
conclusions drawn by practitioners of D-S theory, there are compelling arguments against its use. These
revolve around the lack of operational meaning of the metrics in theories other than (subjective) probability
theory.116,117

A literature review on uncertainty quantification metrics for whole product life cycle cost in aerospace
innovation is presented by Schwabe et al.,118 who indicate that the probability density function is still the
most used metric. Additionally, quantification of uncertainty is still largely subjective (i.e. expert judgment
of uncertainty) and no commonly accepted cost estimation methodologies exist for research and development
projects. Key future concepts are: entropy, complex adaptive systems, uncertainty treshold responses and
deep uncertainty, rather than the current approaches based on the Central Limit Theorem (or law of large
numbers). A framework is developed based on this premise, i.e. one that does not rely on the Central
Limit Theorem, but instead uses spatial geometry and the notion of symmetry to estimate cost variance over
time.119

C. Uncertainty Propagation

Different methods are available to propagate uncertainties of input and (modeling) parameters to the output
quantities. The characterizations and management of uncertainties are required at both the discipline level
and integrated system level, such that also the relationship between uncertainties affecting input and those
affecting output are involved.8 Computational efficiency is the main challenge that is to be tackled by these
methods. Most methods suffer from the so-called curse of dimensionality, i.e. with an increase in uncertain
variables, the algorithmic expense grows exponentially. Additionally, the propagation method can introduce
an error in the estimated uncertainty, for example by using too few samples, or simply because it assumes
a certain function for the uncertainty. An entire framework for uncertainty quantification, encompassing all
forms of uncertainty and error, has been introduced.120 An example of industrial interest in uncertainty
quantification for the evaluation of complex physical systems is the DARPA EQUiPS (Enabling Quantifica-
tion of Uncertainty in Physical Systems) program,121 which aims to develop a rigorous framework for the
propagation and management of uncertainty in modeling and design of complex engineering systems.

Monte Carlo Simulations (MCS) remain a popular method to propagate uncertainty through a system,
especially when a black-box system is used. The main reasons are the ease of implementation and the
insensitivity to the dimensionality of the problem. The main disadvantage of MCS is the large sample size
required to provide an accurate estimate, due to the Central Limit Theorem. To improve the accuracy
of the estimation, i.e. reducing its variance, many variance reduction techniques were invented: antithetic
variates, control variates, importance sampling, conditional Monte Carlo sampling and stratified sampling,
for example.60 A review of improved Monte Carlo methods in UMDO for aerospace vehicles is provided by
Hu et al.122

Polynomial Chaos (PC) is a technique for probabilistic analysis of uncertainties by means of solving
stochastic differential equations. Its cost is several orders of magnitude greater than for the deterministic
solution of a partial differential equation. However, it is still much cheaper than sampling methods such
as Monte Carlo analysis.8 Uncertain variables are transformed to independent standard random variables
for which, ideally, known orthogonal polynomials exist with respect to the probability distribution of these
variables.123 Then, the coefficients of these polynomials are to be found, using one of two methods: spectral
projection (Galerkin projection) or linear regression (point collocation or stochastic response method). The
integrals in Galerkin projection are usually computed using quadrature methods, which suffer from the curse
of dimensionality.124

Methods for computation of higher-order statistical moments of the response distributions obtained using
either intrusive or non-intrusive polynomial chaos expansions are detailed by Savin et al.125 These methods
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are useful when more properties, other than mean and variance, of the response are required. Polynomial
chaos expansions are frequently used in recent research on uncertainty quantification in aerospace appli-
cations. This shows the potential it has to replace the common Monte Carlo method, as is supported by
Shimoyama and Inoue.126

Stochastic collocation (SC)127–129 is similar to PC, except that the interpolation functions to a known
set of coefficients are to be found. These interpolation functions are usually Lagrange polynomials and
the coefficients are the response values at the collocation points. Stochastic collocation has very similar
performance to PC, but is shown to be slightly more efficient.123 Another advantage is it only is dependent
on the collocation points, and not on the synchronized definition of expansion formulations and coefficient
estimation.123 Both polynomial chaos and stochastic collocation result in a functional description of response
uncertainty, such that statistical features can easily be deduced and consecutively used for design under
uncertainty.130

Beside the three aforementioned approaches, many other techniques for uncertainty propagation exist,
such as First-Order Reliability Model (FORM) or Second-Order Reliability Model (SORM),131 Fast Proba-
bility Integration (FPI),12,13 among others. However, these approaches do not appear often in literature and
therefore it may be concluded their applicability and benefits are limited. Another interesting perspective is
that of analytical propagation of uncertainty.132,133 Such an approach avoids sampling error and provides
a functional form of response uncertainty, rather than some fixed number. Propagation techniques for the
D-S theory metrics (belief and plausibility) are different from those used by probability theory. Nonetheless,
several methods have been proposed.98,106,115,128

IV. Sensitivity Analysis

Sensitivity analysis provides design insight on a local level, or method insight on a global level. In a
deterministic setting, local sensitivity analysis is usually performed to find the impact of a change in input
variables on the output variables.133 This results in partial derivatives of the output. Several techniques
can be used to compute these derivatives, which are discussed below. Gradient-based optimizers make use
of these gradients to guide a design solution to a local optimum.

In the context of design under uncertainty, input variables have a distribution of possible values, and
global sensitivity analysis (GSA) is performed to investigate the effect on output variables with respect to
the entire range of input values.133 GSA can either be used before design to screen out those variables that
have little influence (i.e. neglect uncertainty in these variables, to reduce dimensionality in the context of
uncertainty quantification) and investigate the interaction between design and noise variables. Otherwise, it
can be applied after design has finished to determine where efforts should be made to reduce uncertainty.

A. Local Sensitivity Analysis

Different techniques exist for computing gradients, i.e. derivatives, of functions (or equivalently, systems).
Symbolic differentiation (which is very similar to differential calculus) produces an exact derivative. However,
for even moderately complex functions, the symbolic derivative can amount to several pages of expressions.
Nonetheless it has successfully been applied in an aerodynamic shape optimization algorithm.134 Numerical
differentiation, i.e. finite differences or divided differences, is an approximate differentiation technique that
is well known and can easily be applied to any function, no matter how complex. However, it only produces
an estimate of the derivative and for functions with many inputs and outputs, the computational cost of this
technique is considerable, if not prohibitive.

Lastly, automatic differentiation was introduced as a method that has neither of these problems: it
produces an exact result at only a small computational cost. Automatic differentiation is in principle the
application of the chain rule to computer programs.135 The technique can either be applied in a forward-
mode or reverse-mode fashion (or a hybrid combination thereof). The reverse-mode is closely related to
adjoint differential equations.135

Several papers discuss the principles of automatic differentiation.136–139 A robust optimization of an
aircraft concept using automatic differentiation is presented by Su et al.140 These studies were all performed
in the last century and recent research makes no use of automatic differentiation, which may lead to the
conclusion that its drawbacks are more significant than its merits. A likely explanation is the issues involved
with applying automatic differentiation to existing software, i.e. black-box systems.
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B. Global Sensitivity Analysis

Global Sensitivity Analysis (GSA) can be performed using various methods, but in general, a trade-off is
made: accuracy of the solution versus computational efficiency. In order to take the entire probability
distribution into account, which provides an accurate description of results, GSA becomes computationally
inefficient. In fact, for a large number of variables it becomes an intractable problem. On the other hand,
simplifying the analysis by only considering certain statistical parameters such as variance, GSA can be
performed, at a loss of accuracy and a high computational burden. Another important observation is that
most GSA techniques assume independence of input variables, which, in many cases, is warranted. If not,
different approaches should be used, such as copulas.133

ANOVA (analysis of variance) is a commonly used method for GSA. It decomposes a function into its
contributing components, for which the effects and variances can be determined.133 From the variance, so
called sensitivity indexes can be computed: the main sensitivity index (MSI), which describes the effect of
one variable, and the total sensitivity index (TSI), which is the effect of a variable and all its interaction
effects combined. ANOVA is used in a study by Bae et al.,141 where it is used to investigate the effect of
component confidence intervals on the system confidence interval of Bayesian networks.

The advantage of variance-based sensitivity analysis is that it is easy to implement and interpret, but
it can not sufficiently describe uncertainty of systems with highly skewed or multimodal responses.85 An
alternative to ANOVA, but still a variance-based method, is FAST (Fourier amplitude sensitivity test).142
Alternatively, Sobol’ indices143 are anoter variance-based GSA technique. GSA based on Sobol’ indices is
used by DeCarlo et al.144 on an aerothermal problem, where an importance sampling-based kernel method is
developed to estimate the indices. It allows for time-dependent multidisciplinary analysis of the sensitivity. A
study by Chen et al.133 develops an analytical variance based GSA method, by observing that many surrogate
models are in the form of multivariate tensor-product basis functions, for which analytical solutions exist of
the integrals needed to compute the sensitivity indices. It is shown that the method performs faster than
Monte Carlo simulation and avoids sampling error. The Multidisciplinary Statistical Sensitivity Analysis
(MSSA)85 method is a relative-entropy-based SA technique proposed by Jiang et al.,85 which captures the
entire distribution of a QoI and is therefore especially suitable for reliability-based design optimization.
Another method, based on Kullback-Leibler entropy, leads to the same conclusion.145 High-dimensional
model representation (HDMR) theory combined with ANOVA was introduced by Opgenoord and Willcox146

to efficiently compute sensitivities of computationally costly models. The sensitivities are used to update risk
and uncertainty budgets, based on which a design can be evaluated. Polynomial Dimensional Decomposition
(PDD) can also be employed for GSA and UQ of stochastic systems and a sparse representation can be
obtained that results in fewer model calls.147

C. Reduced Order Modeling

An alternative to sensitivity analysis to reduce a problem’s dimensionality is the use of active subspaces.
Active subspaces are defined on the coordinates of the design space where variability is largest.148 It is
shown that for problems where only few variables contribute to variability, the active subspace method is
more efficient than local sensitivity techniques. For developing design insights, the active subspace method
also proves useful.149 It can be used to identify active dimensionless parameters, and, even more interestingly,
to detect important missing variables. In a study by Del Rosario et al.,149 dependence of lift on the camber
of an airfoil was discovered algorithmically using active subspaces. Similar to active subspaces, but more
general, is principal component analysis (PCA), also known as proper orthogonal decmoposition (POD).150
It can also be used for data reconstruction.

V. Uncertainty-based Multidisciplinary Design and Optimization

When evaluating a technology or technology portfolio, either a cycled or an uncycled design analysis can
be performed. The latter would mean that a technology is simply added or replacing an existing system
and the effect on measures of merit is evaluated. The former case would require an update of the design,
including the technology, and hence require an optimization strategy to minimize some objective function.
This section deals with design optimization, and particularly design optimization under uncertainty.

Traditionally, aircraft design incorporates uncertainty through safety factors, which are set arbitrarily.
These factors, or margins, lead to oversized aircraft that are very likely to meet requirements. However, this
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approach is inefficient, hence, a probabilistic method to set these margins was developed.151 The strategy
would not provide the same confidence in the probability of success as the full probabilistic analysis, but
would provide much more confidence than a conventional deterministic process.

UMDO is a relatively new trend of MDO and tries to enhance systems design by exploiting synergistic
effects and properly accounting for uncertainty, reducing conservative solutions.7 Traditional design opti-
mization does not take into account uncertainty and is therefore also referred to as deterministic design
optimization.

Nondeterministic (or uncertainty-based) design can be divided into two objectives, namely design for
robustness and design for reliability.8 A robust system is one that has low sensitivity to variations in the
system itself and its environment. A reliable system is one that has a high likelihood of performing its
function without failure under stated (severe) operating conditions. In relation to probability, robustness
and reliability can be seen as shown in Figure 5, where robustness is associated with the mean of the PDF and
reliability with the tail. Evidently, it is more difficult to characterize the tail of the distribution. Nonetheless,
methods for robust design are less well-developed than reliability-based design procedures.8

Figure 5. Reliability versus robustness in terms of the probability density function. Adapted from Zang8

Robust design optimization is a methodology where a design is optimized for insensitivity to various
variations. Robust design to uncertainty is more likely to meet performance requirements as incorporated
technologies mature over the aircraft design process, avoiding expensive redesigns.152 Different applications
to aircraft design problems have been demonstrated.21,153 However, only very conceptual design is considered
there, with around 10 design variables. An extensive discussion of the strengths and weaknesses of different
robust optimization techniques is presented by Beyer and Sendhoff154 and support the statement that most
design problems in literature are low-dimensional. They indicate that evolutionary algorithms are suitable
direct optimization techniques that work well on noisy problems (such as highly-coupled aircraft design).
However, these techniques still should be matured, i.e. knowledge on the expected performance indices
must be extended. Additionally, the relation between performance (of a system) and robustness should be
more closely examined. An approach based on Bayesian calibration, including both aleatory and epistemic
uncertainty has also been proposed for robustness-based design optimization.65,155–157

Reliability-based design optimization (RBDO) optimizes a design to have a small chance of failure. Several
methods are proposed that aim to improve the computational efficiency of RBDO, which classically is per-
formed using a bi-level strategy.158,159 Additionally, dealing with epistemic (particularly model discrepancy)
appears challenging in reliability analysis,160 but solutions for this problem have also been proposed.159,161

A combination of robust and reliability-based design optimization is also possible, where the objective
function of robust design optimization and the constraint function of reliability-based design optimization
are combined into a single formulation. An example of a method using both reliability and robustness for
conceptual aircraft MDO is presented by Jaeger et al.162 They consider both model and design variable
uncertainty, but model the former using normal distributions.

Regardless of the type of optimization under uncertainty, it is also possible to optimize to match a desired
response distribution as closely as possible, which is what a density-matching approach was developed for.163
As such, skewness in the response may be obtained, rather than only the first two statistical moments that
conventional RBDO obtains. An alternative is horsetail matching, which has been shown to be superior
to density matching in terms of computational efficiency while producing satisfactory designs.164 Horsetail
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matching allows to optimize for different targets. However, when many uncertainties are involved, the
employed surrogate model effectiveness deteriorates and it has to be investigated how to deal with higher
dimensionality. For optimization with expensive objective functions, Bayesian optimization has become a
popular approach.165

Decoupling of a multidisciplinary environment allows for parallel execution of analyses, which leads
to shorter computation times.166–168 Different coupling approaches exist, such as Concurrent Subspace
Optimization (CSSO)169 and Analytical Target Cascading (ATC), Colloborative Optimization (CO) and
Bilevel System Integrated System Synthesis (BLISS). Some works address the issues that consequently arise
regarding uncertainty quantification.167,168

Different models can be used for analysis and modeling of the system under investigation: low-fidelity
models offer low accuracy estimates of quantities of interest at low computational cost, while high-fidelity
models offer required accuracy at high computational cost. Outer loop applications, such as optimization,
inference and uncertainty quantification require many model evaluations and the cost of high-fidelity models
consequently becomes prohibitive.60 Multifidelity methods can be employed to reduce computational time
while accuracy is maintained, as several applications show.170–173 The multifidelity approach can be used
both for the actual objective function (M& S environment) or the uncertainty quantification method.130

Two important properties of multi-fidelity methods are to leverage low-fidelity models to speedup com-
putations, and to have recourse to high-fidelity models to maintain accuracy and/or convergence. The two
ingredients necessary to accomplish this are: low-fidelity models that usefully approximate the response
of the high-fidelity models, and a model management strategy that guarantees accuracy and convergence
through distributing work among models in an efficient manner. An important observation is that mod-
els can be seen as information sources and as such can be used in conjunction with e.g. expert opinions,
experimental data and historical data.60

All these topics come together in the form of multifidelity optimization under uncertainty, where the
objective function usually includes one or more statistics that depend on the underlying uncertainty. There-
fore, each optimization iteration embeds an uncertainty quantification loop. Different researchers have used
different approaches to this end, but, as Peherstorfer et al.60 note: “optimization under uncertainty is an
important target area for future multi-fidelity methods. It is a computationally demanding process, but
one with critical importance to many areas, including engineering design.”. They conclude with the impor-
tant observation that multi-fidelity methods rely on the assumption that the high-fidelity models resemble
some truth and in principle all models are inadequate. The way forward for multi-fidelity methods is to
move beyond models solely and include other information sources as well. This in turn requires new model
management strategies that have to decide when and where to evaluate the information sources.

Many techniques exist for multi-fidelity optimization, even targeted to aircraft design. These include
an approach relying on an information reuse estimator,152,174,175 statistical surrogate modeling for non-
hierarchical information sources,176 a Multilevel Monte Carlo (MLMC) method,177 a regular Monte Carlo
method27 and gradient-optional multi-fidelity methods.178

Coupled multidisciplinary systems are usually solved through fixed point iteration (FPI), in order to
arrive at a consistent solution for all disciplines. However, a new method is proposed that leverages adaptive
surrogates for uncertainty analysis in black-box systems.179 Other methods have solved the feedback-coupling
problem by decoupling the system. However, when sensitivity to coupling variables is high, such approaches
might produce poor results.

Surrogate models of the modeling and simulation environment are often employed to reduce the compu-
tational time required for uncertainty quantification and optimization under uncertainty. The problems and
challenges still present in the creation and use of metamodels are extensively reviewed by Viana et al.180 The
main challenges are the curse of dimensionality, computational complexity, numerical noise, mixed discrete
and continuous variables and validation of metamodels and underlying models. Fuzzy clustering analysis can
be used to decrease the amount of sample points for construction of the surrogates.181 In order to enhance
multi-fidelity optimization and uncertainty quantification, a multi-fidelity locally optimized surrogate that
is more efficient than global single-fidelity ones is proposed.182 To represent both epistemic and aleatory
uncertainty a surrogate modeling approach based on non-deterministic Kriging is proposed.183 Another
surrogate modeling approach was developed for propagating uncertainty and for global sensitivity analysis,
balancing between computational time and uncertainty in QoI estimation.184
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VI. Conclusions

A literature review was conducted on technology evaluation and selection, including uncertainty quantifica-
tion and design under uncertainty for aerospace applications specifically. While many works have focused on
these topics, it remains a challenging task to accurately predict performance of novel technologies or aircraft
designs in the conceptual design phase. Moreover, effective quantification of uncertainty remains a challenge.
The workload of uncertainty quantification is estimated twice the development effort for only model devel-
opment and verification and validation. To accurately predict the impact of novel technologies, a generalized
sizing and assessment method is deemed appropriate. Unfortunately such a method does not exist, yet.
This is partly due to the challenge of parameterizing geometry and using generic analysis methods. Another
issue is the modeling at technology level. Usually, this step is avoided and replaced by introducing factors
that account for a technology’s impact on system parameters. Such approaches require expert knowledge
as input, which is is not necessarily a problem. However, subjectivity, conservatism or overconfidence may
result, not even mentioning the common lack of experts. Regarding uncertainty quantification, dependencies
should be taken into account and assumptions regarding probability distributions should be reduced. Both
these problems still need to be tackled. Model form uncertainty remains difficult to quantify and most ef-
forts focus on correction strategies using Bayesian calibration or multi-fidelity approaches. Both require high
fidelity data, which may not be available or requires significant computational effort. High dimensionality of
practical engineering problems is an often mentioned issue. Techniques to reduce a problem’s dimensionality
are available, but are not effective enough to tackle this issue entirely.

Summarizing, we believe technology evaluation including uncertainty has come a long way in the past
couple of decades. It is effectively applied in practice, but several practical issues remain. Therefore,
additional research efforts that focus on the issues identified here are deemed necessary.
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