
Applying Optimizations from Bracha-Dolev Broadcast Protocol to Bracha-CPA 
Broadcast Protocol

Qusay FantaziaE1 , Jérémie Decouchant1 ,
1TU Delft

Abstract

Broadcast protocols are a crucial building block for some
Agreement protocols. These are protocols used to reach
an agreement on common values, action or datum in a
distributed system through sending it in a message for other
processes to accept it [3]. Byzantine processes are processes
that hinder the network from reaching the agreement by
sending malicious (malicious processes) or faulty mes-
sages(faulty processes).

Many broadcast protocols for distributed systems have
been presented, depending on the topology, synchronic-
ity(the network is asynchronous or synchronous), etc. One
of these protocols, we are going to refer to as Bracha-Dolev,
has been presented in the paper Practical Byzantine Reliable
Broadcast on Partially Connected Networks[1]. Bracha-
Dolev protocol can be used to reach an agreement in at least
2f+1-connected, asynchronous network [1].
The second protocol we’re going to come across in this
paper is a protocol we’re going to refer to as Bracha-CPA.
Both Bracha-Dolev and Bracha-CPA are built by combining
two protocols. Bracha-Dolev is built through combining the
protocol presented by Gabriel Bracha [3] and the protocol
presented by Danny Dolev et al [4]. We’re going to refer
to these protocols with Bracha’s and Dolev’s protocol.
Bracha-CPA is built combining Bracha’s broadcast protocol
and the protocol presented by Chiu-Yuen [7] called Certified
Propagation Algorithm.

There are two important metrics when talking about broad-
cast protocol the first one is the average message complexity
which is the average number of messages until all processes
accept the message. The second is the average delivery time,
which is the average time until all the processes deliver the
message. This paper demonstrates that by applying some of
the optimizations applied to Bracha-Dolev [2], we can de-
crease the average message complexity of Bracha-CPA up to
20%. the average delivery time doesn’t seem to decrease. The
paper will also demonstrate that CPA has the highest prob-
ability of succeeding on a network with a k-diamond or k-
pasted graph when we have a maximum number of Byzantine
nodes.

1 Introduction
Agreement protocols are crucial to reach a consensus in the
presence of f Byzantine processes in a distributed network,
where f must satisfy the condition f < n/3 [3] and n is the
number of processes in the distributed network. A lot of
algorithms has been developed for this purpose [10; 8; 5;
6].

Bracha’s Agreement protocol uses a broadcast protocol
to reach an agreement in an asynchronous, fully-connected
network[3].
Another protocol we want to address is Dolev’s reliable
broadcast protocol, the protocol works on at least a 2f+1-
connected (any two processes have at least 2f+1 disjoint
paths) usually synchronous network. One drawback of this
protocol is that it is very computationally expensive because
of checking for the f+1 disjoint paths. In section 2, we
explain how Bracha’s and Dole’v broadcast protocol work.

By Combining Bracha’s and Dolev’s protocols, we
get state-of-the-art Bracha-Dolev broadcast protocol.
Bracha-Dolev broadcast protocol that works on at least
2f+1-connected(f the number of Byzantine processes), asyn-
chronous or synchronous network[1]. Bracha’s broadcast
protocol requires a fully connected network. That’s why we
use Dolev’s protocol to provide the abstraction of a reliable
point-to-point link[1]. Bracha-Dolev broadcast protocol is
explained further in section 3(problem description).
A lot of optimizations have been applied to the Bracha-Doelv
broadcast protocol to improve its latency and bandwidth
consumption, etc[1]. A drawback of this protocol is that it is
complex due to combining Bracha’s and Dolev’s protocols.
A message is accepted if it was accepted by both protocols.
Also, this protocol has to send a lot of messages before
all processes accept the message and it is computationally
expensive because Dolev’s part of the protocol checks that it
received the message from f+1 disjoint paths before it deliv-
ers it. There hasn’t been any work to discuss the possibility
of replacing Dolev’s protocol with another protocol and if
the resulting protocol will have better characteristics

We have two types of fault models: local and global.
Global fault model means there are at most f Byzantine
processes in the network, while local means there are at
most f Byzantine processes amongst the neighbour of any

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering



process. In all of the protocols mentioned above the number
of byzantine processes is globally bounded. The certified
propagation Algorithm protocol works on a network that is
f-locally bounded [11]. One caveat is that the CPA protocol
can’t be applied to all networks, therefore a lot of criteria has
been developed to check if a graph is f-locally bounded[11;
12; 9]. All of these papers lack any information about the
percentage of graphs we can apply CPA on or if there are
types of graphs CPA usually works on. in section 3, we
discuss the criteria that have been mentioned in these papers
and how CPA work.

With the complexity of Bracha-Dolev and its high average
message complexity and high computational complexity due
to checking for f+1 disjoint paths as mentioned above, we
have the option of replacing Dolev with CPA to get Bracha-
CPA. Replacing the Dolev broadcast protocol by CPA raises
some interesting points to research:

1. From the optimizations applied to Bracha-Dolev by Sil-
via Bonomi et al [1], Can we apply any of them to
Bracha-CPA?

2. What are the average message complexity and average
delivery time of Bracha-CPA with some of the optimiza-
tions mentioned in [1] compared to plain Bracha-CPA
and Bracha-Dolev?

3. what is the success probability of using CPA on some
types of graphs? Are there any guidelines to know if we
can apply CPA on a graph? [11; 12; 9]

In this paper, we will demonstrate that if we apply some
of the optimizations applied to Bracha-Dolev to Bracha-CPA,
we will have a protocol that needs up to 20% fewer messages
than normal Bracha-CPA and that needs up to 60% fewer
messages than Bracha-Dolev. We will also show that on some
types of graphs we can use Bracha-CPA or CPA on them with
high success probability for particular connectivity, number
of nodes and number of Byzantine nodes. An example is
when we have a maximum number of Byzantine nodes, the k-
pasted graphs has the highest success probability, followed by
k-diamond graphs, followed by k-regular graphs and finally
generalized-wheel graphs and multi-partite-wheel graphs.

Section 2 presents the problem description, where we
explain how Bracha’s, Dolev’s and Bracha-Dolev protocol
work.

In section 3, we state the contribution of this paper, we
first state the optimizations applied to Bracha-Dolev from the
paper [1] and choose the ones that we can apply to Bracha-
CPA. Afterwards, we summarize the criteria that have been
developed to check if we can use CPA on a graph[11; 9; 12]
and how CPA and Bracha-CPA work.

In section 4, We discuss our implementation of the algo-
rithm F, L, R partitioning. We use it to draw some interesting
conclusions about when we can use CPA on a graph and the
success probability of using CPA on some types of graphs,
like k-regular and k-diamond graphs. we also have a section
about responsible research where we discuss the possible im-
plication of this paper. Finally, we finish with some conclu-
sions.

There are two important metrics when talking about broad-
cast protocol the first one is the average message complexity

which is the average number of messages until all processes
accept the message. The second is the average delivery time,
which is the average time until all the processes deliver the
message. This paper demonstrates that by applying some of
the optimizations applied to Bracha-Dolev [2], we can de-
crease the average message complexity of Bracha-CPA up to
20%. the average delivery time doesn’t seem to decrease. The
paper will also demonstrate that CPA has the highest prob-
ability of succeeding on a network with a k-diamond or k-
pasted graph when we have a maximum number of Byzantine
processes.

2 Replacing Dolev with CPA in Bracha-Dolev
and CPA’s Limitations

Bracha-Dolev broadcast protocol
Bracha’s broadcast protocol uses three types of messages:
(initial, message),(echo, message) and (ready, message). The
broadcaster sends an (initial message) to all processes in
the network, a process sends its echo when it is certain that
a broadcaster sent the message (receives an initial message
from the broadcaster, receives (n+f)/2 echo messages, or f + 1
ready messages), ready is sent when a process believes that a
message is the only message sent by the broadcaster(receives
(n+f)/2 echo messages, or f+1 ready message and has sent its
echo message), finally when receiving 2f+1 ready messages
the process delivers(accept) the message.
In the Appendix Figure 2, there is a picture that depicts how
Bracha’s protocol works. the broadcaster process with id 0
sends the initial message, all the process receives the initial
message and send their echo. Next, a process that receives
n+f/2 echo can send its ready and wait for 2f+1 ready to
accept (deliver) the message.

Dolev’s broadcast Protocol works on at least a 2f+1 con-
nected synchronous network. Here are very simple steps on
how it works without any optimizations:

1. the source sends the message to all its neighbour pro-
cesses

2. A process relays the message to its neighbour processes
not included in the path appending the id of the sender
process to the path.

3. A message is delivered if there exits f+1 disjoints path
related to it.[2]

In the appendix figure 3, there is a picture that depicts how
Dolev’s broadcast protocol works. The broadcaster process 0
send a message with an empty path. Process 2 and 3 receive
the message from the source so they relay it to their neigh-
bours appending 0 to the path. process 4 will deliver the mes-
sage because it received it through two paths [02] and [03]
and relay the message again to process 2 and 3. process 2 and
3 will deliver the message next because they both received it
from through source and process 4.

Now it is time to discuss Bracha-Dolev and its disadvan-
tages further. we’ll keep the talk about the optimizations ap-
plied to Bracha Dolev to section 3.
Bracha-Dolev’s broadcasting protocol uses Dolev’s proto-
col to achieve the abstraction of point-to-point reliable



[!h]

Figure 1: the protocol stack of Bracha-Dolev

communication[1].
The Protocol’s stack can be seen in figure 1. The protocol
uses the same messages used by Bracha’s protocol: (initial,
message), (echo, message), (ready, message). The protocol
works as follows: when a message reaches a process, the
Dolev part of the protocol relays it to its neighbours. The
Dolev Part of the protocol forwards to the Bracha part if it re-
ceived through f+1 disjoint paths. Bracha part of the protocol
works as mentioned in the section above. When the Bracha
part of the protocol receives an initial message, n+f/2 echo or
f+1 ready message and it has not sent an echo message the
process sends its echo message, the ready message is sent if a
process sent its echo and it receives n+f/2 echo or f+1 ready
messages when a process receives 2f+1 ready messages it de-
livers(accepts) the message. Bracha-Dolev protocol delivers
the message when Bracha part of the protocol does[1].

Bracha-CPA and its limitation
We realize that the protocol has a high message complexity
because the Dolev part of the protocol relays a message to
other processes and the Bracha part generate its messages.
Also, the protocol has high computational complexity be-
cause of checking for the disjoint paths. We believe that
replacing Dolev with CPA will decrease the number of mes-
sages and the computation complexity associated with check-
ing for f+1-disjoint paths. One drawback is that we can not
apply CPA and thus Bracha-CPA on all graphs. In the next
section, we present some of the algorithms to check if we
can apply CPA on a graph and discuss their message com-
plexity. We are also going to discuss our implementation of
the algorithm developed in the paper [12] and talk about the
experiments we run.

3 Bracha-CPA with optimizations from
Bracha-Dolev and checking if we can apply
CPA on graph

3.1 Selecting optimizations from Bracha-Dolev to
apply to Bracha-CPA

The optimizations applied to Bracha-Dolev protocol in the
paper Practical Byzantine Reliable Broadcast On Partially
Connected Networks can be classified into 4 main categories,
each of them contains sub-optimizations [1]. Through this

chapter we are going through the optimizations applied to
Bracha-Dolev, if any of them is applicable, we are gonna dis-
cuss it, and if not, we will briefly say why not and proceed to
the next one.
We use the same message template used in [1] which is
[MessageType, Pi, (S, Pid), M, Path] where MessageType
= SEND, ECHO, READY; Pi the id of the process that
forwarded the message; S is the broadcasterid; Pid is the
message-id(this is used in case the process send the message
multiple times); M is the message; the path is the path through
which the message went to reach the process. Next to the
optimization name, we will add the optimization abbrevia-
tion used in the paper [MBD.Number], for example MBD.1
is used for the first optimization in the paper.
Bracha-CPA has the following Message template [Message-
type, LinkSenderId, EchoOrReadySenderId, BroadcasterId]
where MessageType=Echo or Ready; LinkSenderId is the id
of the process who sent the message; EchoOrReadySenderId
is the id of the process that generated the message, EchoOr-
ReadySenderId is different from LinkSenderId when the mes-
sage is relayed; BroadcasterId is the id of the process who
started he broadcast.

1. Limiting payload transmission [MBD.1]: When a pro-
cess Pi receives the message with an unknown payload
for the first time it chooses a local id to associate with
the payload and sends it along with the payload when
relaying the message. Later, when the same process pi
wants to send the same message, it can send the local
id instead of the whole payload. This optimization can
be applied by making each process generate a unique id
for each message he receives. When a process receives a
local id for a payload he can generate his own or use the
received one as his local id without any problems. Pro-
cesses should keep track of to whom they’ve sent their
local id.
This optimization has not been applied because it is hard
to implement and takes a long time to debug[1].

2. Bracha phase transitions
(a) Single-hop Send messages [MBD.2]: when a pro-

cess Dolev-delivers a send message it relays it to
its neighbours, the process also sends an echo mes-
sage because of the Bracha part of the protocol.
This optimization will make the process only send
an echo message, which other processes can use to
derive the send message using this rule : [Echo, pi,
(s, bid), m, path] − > [SEND, (s, bid), m, path].
We applied this optimization to Bracha-CPA as fol-
lows: In our implementation, we don’t have a send
message sent from the broadcaster instead we have
an echo, but it works the same because when the
processes receive the echo from the broadcaster it
sends its echo. Every process that receives an echo
message from a process pi [echo, pj, pi, broad-
caster] also handles the echo from the broadcaster
implicitly included in the message [ echo, pj, broad-
caster, broadcaster]. This optimization has been ap-
plied to Bracha-CPA.

(b) Echo to echo transitions [MBD.3]: When a process



Dolev-delivers an echo message, it forwards the
echo message to all of its neighbours. As a result
of Dolev-delivering, the Bracha-part of the protocol
might also want to send an echo message(after re-
ceiving a send a message or (N + f)/2 + 1 echo mes-
sage). To reduce the number of messages the pro-
cess sends, we send an echo-echo message instead
of sending the two echo messages. We applied this
optimization to Bracha-CPA as follows: when a
process pi CPA-validates echo message from pro-
cess pj (received the echo message from the Echo-
Sender pj or from f + 1 processes). The Bracha-part
of the protocol might want to send its echo message
that (received validated echo from the broadcaster
or has received f + 1 validated echo messages). The
process will then send [echo echo, pi, pj, Broadcas-
terId ], the process that receives the message from
pi can obtain the two echo message:[echo, pi, pi,
broadcasterId] and [echo, pi, pj, broadcasterId].

(c) Echo to Ready transitions[MBD.4]: when a process
Dolev-delivers an echo message, it relays it to all of
its neighbours. As a result of the Dolev-delivering
of the echo message, the Bracha-part of the proto-
col might also want to send a ready message (after
having Dolev-delivered 2f + 1 Echo messages). To
reduce the number of messages the process send,
we send an echo-ready message instead of send-
ing the the echo and the ready message separately.
We applied this optimization to Bracha-CPA as fol-
lows: when a process pi CPA-validates echo mes-
sage from process pj (received it from Echo-Sender
or f + 1 processes), the process might want to send
its Ready message(has (N+f)/2 + 1 validated echos
or f+1 validated ready message). The process will
then send [echo ready, pi, pj, BroadcasterId ], the
process that receives the message from pi can ob-
tain the two echoes message:[Ready, pi, pi, broad-
casterId] and [echo, pi, pj, broadcasterId].

3. Optimized messages[MBD.5]:
(a) Send messages: in Bracha-Dolev, Send messages

are single-hop messages, which means they are
only sent by the source. With This optimization, the
message doesn’t have to contain the source id be-
cause the links are reliable. the message will have
the following template [MessageType, (S, Pid), M,
Path] without Pi the sender id.
This optimization can be applied to Bracha-CPA by
not sending the linkSender id and even the echo-
sender id in the echo message sent by the source to
its neighbour. This optimization has not been ap-
plied due to a lack of time and limited value.

(b) Optional fields
i. PayloadBit: payload bit is a bit in the message to

tell the process that receives the message if the
message contains the payload or not(it is related
to the optimization Limiting payload Transition).
This optimization can be applied to Bracha-CPA.
This optimization hasn’t been applied to Bracha-

CPA because it takes a long time to debug the
code.

ii. SenderID: As we’ve said Send messages are
single-hop messages, we don’t include the
sender in the message. The Sender bit is included
in the message to tell the process that receives the
message if the source is included in the message.
This optimization can not be applied to Bracha-
CPA. This optimization hasn’t been applied to
Bracha-CPA due to lack of time and it is limited
value.

4. Handling asynchrony:
(a) Ignore Echos received after Dolev-delivering the

corresponding Ready [MBD.6]: Ignore Echos re-
ceived after the Dolev-delivering the corresponding
Ready of a process because the Echo reflects an old
state of the process.
This can be applied to Bracha-CPA because a pro-
cess might receive a ready message from a process
and after that, an echo relayed through a longer path
from the same process. This optimization has been
applied to Bracha-CPA.

(b) Ignore Echos received after delivering the content
[MBD.7]: Ignore Echos received after delivering
the content because to Bracha-deliver a message
a process needs 2f+1 ready. These processes that
send their ready will exchange the ready and all
other processes will deliver the message.
This also can be applied to Bracha-CPA because for
a process to deliver a message it has also to wait for
the 2f+1 ready from the 2f+1 processes from which
only f processes might be byzantine, while the oth-
ers will relay and send their ready messages until
every process delivers the message. This optimiza-
tion has been applied to Bracha-CPA.

(c) Receiving Readys before transmitting
Echos[MBD.8]: If a node pi has Dolev-delivered
the Ready message of its neighbour pj, it can avoid
sending any future Echo message it receives to pj.
This optimization can be applied to Bracha-CPA
when CPA in a process pi validates a ready mes-
sage from a process pj, then there is no need to
send any echo messages to pj. This optimization
has not been applied to Bracha-CPA because it
takes a long time to debug.

(d) Avoiding neighbours that delivered[MBD.9]: If a
process pi has received 2f+1 Readys (generated by
2f+1 different processes) with empty paths that are
related to the same content from a neighbour pj,
then pi can avoid sending any message related to
that content to pj in the future. The reason why we
do not have to forward any messages is that pro-
cess pj will deliver the message (received 2f+1 echo
messages) so sending a message to the process is
also not necessary.
This can be applied to Bracha-CPA, the same way it
is applied to Bracha-CPA when a process received
2f+1 ready from one of its neighbours then it can



avoid sending any message to that process. This
optimization has not been applied because it takes
a long time to debug.

(e) Ignore messages whose path is a superpath of
a message [MBD.10]: This does not apply to
Bracha-CPA because we do not use paths in
Brach-CPA, the message template for Bracha-
CPA is [Message-type, LinkSenderId, EchoOr-
ReadySenderId, BroadcasterId] as mentioned ear-
lier.

5. Non-tight cases. These optimizations are used when we
have more 3f+1 processes in the network. this optimiza-
tion has two types:
(a) Reduced number of messages in Bracha [MBD.11]
(b) Send messages in Bracha-Dolev. [MBD.12]

both optimizations can be applied to Bracha-CPA. Both
optimizations haven’t been applied because they take a
long time to debug.

Here is a table of the optimizations applied to Bracha-
Dolev in the paper [1] and if they have been implemented
in Bracha-CPA(Yes or No). In case the optimization is very
hard or can not be implemented, there will be Doesn’t apply
next to it. The table can also be found in the appendix.

Optimization Implemented

Limiting payload transmissions Bracha No

Single-hop Send messages Yes

Echo to Echo transitions Yes

Echo to Ready transitions Yes

Optional field(payload bit) No

Optional field(Sender bit) No

Ignore Echos received after Dolev-delivering the corresponding Ready Yes

Ignore Echos received after delivering the content Yes

Receiving Readys before transmitting Echos No

Avoiding neighbors that delivered No

Ignore messages whose path is a superpath of a message Does not apply

Reduced number of messages in Bracha No

Send messages in Bracha-Dolev No

3.2 Checking if we can apply CPA on a graph
A network is f-locally bounded means that we can apply
the CPA algorithm on it with each process having at most
f Byzantine processes. The algorithm runs in this way.
The broadcaster (source) sends the message to all of its
neighbours and stop. A process accepts the message and
relays it to its neighbours if it received it from f+1 processes
or the broadcaster.

Next, we want to discuss some of the papers that de-
veloped some criteria to check if we can apply CPA to a
graph.
The first paper I want to address that tries to answer if a
graph is f-locally bounded, is the paper by Andrzej Pelc [11].
The paper introduces two parameters X(G) and LPC(G).
To compute X(G), we go over all the processes looking for
the process with the least number of neighbours that are
closer to s (the source) than to itself,

X(G) = min{X(v, s)|v, s ∈ V, (v, s) 6∈ E} (1)

where X(v,s) denote the number of neighbours of a node that
are closer to s than v including v. if f < X(G)/2 then the
graph is f-locally bounded. This condition is sufficient for
a Graph to be f-locally bounded, but not necessary because
there are f-locally bounded graphs that do not satisfy the
condition f < X(G)/2.
To compute LPC(G), we look into a cut in the graph, a set
of nodes whose removal will disconnect the graph into two
parts, such that the two parts induced by this cut are f-local
pair cut, LPC(G) is the smallest f such that we have f-local
pair cut. If f ≥ LPC(G) then the graph of the network is
not f-locally bounded. For f values between LPC(G) and
X(G), the paper doesn’t present any criteria to check if the
graph network is f-locally bounded or not[11].
The pseudo-code to compute X(G) can be found in Figure2.
looking at the pseudo code we can estimate the time com-
plexity of computing X(G). The time to compute the shortest
path between two nodes is O(Nodes2) (line 5 and 6). We
also have two for loops on lines 3 and 4. the first one goes
over all nodes which means it is O(Nodes). The second goes
over the neighbours of a node which takes constant time if
we have an adjacency list presentation of the graph. To sum
this up, the complexity is O(Nodes3).

Another paper I want to mention is the paper by Chris
Litsas [9], the paper introduces three parameters K(G,D),
M(G,D,T) and T(G,D). K(G,D) is the max f such that the net-
work graph has a minimum f-level ordering. The following
induction gives us a definition of minimum f-level ordering

L1 = N(s) (2)

{Li = v ∈ V \ ∪j<=i−1Lj : |N(v) ∩ ∪j<=i−1| >= f}
(3)

, where N is a function that returns the neighbours of a pro-
cess. Any network graph with f < K(G,D)/2 is f-locally
bounded (sufficient, not necessary condition) and for any
graph, the fmax has to satisfy

K(G,D)/2− 1 <= fmax < K(G,D)

The time complexity to compute K(G,D) is O(E× δ) accord-
ing to [9].
Another parameter that is presented in this paper is
M(G,D,T).

min
T :f−localset

K(GT , D) (4)



In the formula above T is f-local set and Gt = G \ T (the
graph induced by removing T from the set of nodes). For a
graph with M(G, D, T) ≥ f + 1 the graph is f-locally bounded
( necessary and sufficient condition).
Last but not least, if we want to compute Max f for CPA we
can use the formula

T (G,D) = maxf∈NM(G,D, t) ≥ f + 1 (5)

, where N is all positive integer number.
the time complexity to compute M(G, D, t) is exponential
because it requires coming up with all possible f-local
fault set( a set where each process had at most f Byzantine
processes) [9]. A pseudo-code to compute M(G, D, t) can be
found in Algorithm2.

The last paper I want to address is the paper by Lewis
Tseng [12]. In the paper, it is stated that if a graph G(V, E)
can be split into 3 parts F, L and R such that the source is in
L, R is not empty and F is f-local fault set. if L and R satisfy
that L => R (R has a node that has at least f+1 incoming
neighbours from L) or R has a node that is neighbour of the
source, then the graph is f-locally bounded. For the set F to
be f-local fault set, it has to satisfy the following condition,
for every node in V that is not F, F has hast at most f distinct
incoming neighbors[12].
The algorithm has exponential running time because we have
to consider all possible set of F, L and R. A pseudo-code is in
(Figure 4).

In the appendix(C), there is a table that summarizes all the
parameters we mentioned from the papers [11; 12; 9], if the
condition related to them are sufficient or necessary and their
time complexity.

Algorithm 1 The pseudo-code to compute X(G)

1: nodes← nodes in the graph
2: minimum←MAXINTEGER
3: for node1← nodes do
4: for node2← neighbor(node1) do
5: distanceToS← Distance(node2, source)
6: numCloserToS← 0
7: distance12← Distance(node1, node2)
8: if distanceToSource < distancebetweentwo

then
9: numCloserToS ← umCloserToS + 1

10: end if
11: end for
12: if numNodesCloserToSource < minimum then
13: minimum← numNodesCloserToSource
14: end if
15: end for
16: return minimum

Algorithm 2 The pseudo-code to compute M(G,D,T)
Input t value , G (the graph)

1: nodes← nodes in the G
2: MConstat←MAXINTEGER
3: for localFaultSet← combinations(nodes) do
4: isF local← checkisflocal(nodeCombination)
5: if isT local then
6: G = G \ localFaultSet
7: KParamter ← computeK(G, t)
8: if KParamter ≤MConstat then
9: MConstat← KParamter

10: end if
11: end if
12: end for
13: return MConstat



Algorithm 3 The pseudo-code to compute if graph is f-
locally bounded using the F,L,R set from Lewis Tseng paper
Input f value , G (the graph)

NSet← nodes in G
for source← nodes do
NWithoutSource← NSet \ source
for LWithoutSource ⊂ NWithoutSource do
LSet = nodesinLWithouSource ∩ source
for RFSet = nodes \ LSet do

for FSet ⊂ RFNodes do
if checkFLOCALFAULTSET (FNodes)
then
RSet← FRSET \ FSet
RSetIsNeighbourofSource = False
RSethasf + 1NeighInL = False
for RNode ∈ RSet do

if source ⊆ Neighbour(RNode) then
RSetIsNeighbourofSource = True

end if
if size(Neighbour(RNode)) ∩ LSet ≥
f + 1 then
RSethasf + 1NeighInL = True

end if
if not(RSetIsNeighbourofSource) &
not(RSethasf + 1NeighInL) then

return false
end if

end for
end if

end for
end for

end for
end for
return true

3.3 Experimental work
After deciding which optimizations from Silvia Bonomi [1]
we want to apply to Bracha-CPA(section 3.1). In section
4, we compare Bracha-CPA, with optimizations, with both
Bracha-CPA(without optimizations) and Bracha-Dolev. All
these algorithms have been explained in the previous sections.

We also use our implementation of the partitioning into F,
L, R algorithm to give some statistics about the percentage of
graphs on which we can use CPA[12]. We will use a different
type of graphs: k-regular graphs, Generalized-wheel graphs,
multi-partite-wheel graphs, k-diamond graphs and k-pasted
graphs.

3.4 Improvement of an idea
The reason we decided to apply the optimizations from
Bracha-Dolev to Bracha-CPA is that they are similar and in
both protocols, some protocol provides a reliable point-to-
point link abstraction for Bracha’s protocol to work. In addi-
tion, CPA’s message size is smaller because it doesn’t contain
the path and CPA has less computational complexity because
it doesn’t check for f+1 disjoint paths.

4 Experimental Setup and Results
4.1 Comparing Bracha-CPA and Bracha-Doelv
To compare Bracha-CPA with Bracha-Dolev we made a set of
networks with k-regular graphs varying the number of nodes
between 8, 10, 12, 14, 16, 18 and 20 and the connectivity
between 5 and 7. We used our implementation of F, L, R
partitioning Lewis Tseng [12] to check that we can apply CPA
on the graphs. In the figure beneath, we can observe that the
decrease percentage for average message complexity with the
connectivity

8 10 12 14 16 18 20

0.2

0.4

0.6

0.8

1

Number Of Nodes

D
ec

re
as

e
Pe

re
ce

nt
ag

e

Decrease Percentage for Connectivity= 5

8 10 12 14 16 18 20

0.2

0.4

0.6

0.8

1

Number Of Nodes

Comparison between Bracha-CPA and Brcha-Dolev

Decrease Percentage for Connectivity = 7

4.2 Comparing Bracha-CPA with optimizations
with Bracha-CPA without optimizations

We use the same type of regular networks with the same
number of processes and connectivities we used to compare
Bracha-CPA with Bracha-Dolev.In the figure beneath, We re-
alize a decrease of around 20 % for connectivity of around
half of the number of nodes.

8 10 12 14 16 18 20

0.2

0.4

0.6

0.8

1

Number Of Nodes

D
ec

re
as

e
Pe

re
ce

nt
ag

e

Figure 5: Comparison between Bracha-CPA with and without optimizations

Decrease Percentage for Connectivity= 5



4.3 Success Percentage of CPA on different Graph
types

To test this, we made our implementation of the algorithm F,
L, R partitioning mentioned in the paper [12] by Lewis Tseng.

We tested on k-regular Graphs, Generalized-wheel Graph,
Multi-Partite-Wheel Graphs, k-diamond Graphs and k-pasted
Graphs. We varied the size of the networks(N), the con-
nectivity(C) and the number of Byzantine processes. For
some types of graphs, there are some slight changes in the
connectivity and the number of nodes because the number of
nodes and the connectivity has to satisfy some conditions.
Through these experiments, we used a sample size of 10 for
each number of nodes and connectivity. Unfortunately, we
were not able to test for a large number of processes (18 and
above) because for large number of processes and a sample
size of 10 the code takes hours to finish(more than 14 hours).
One more important thing to note is that the maximum
number of Byzantine processes f = C-1/2 because C has to
satisfy C ≥ 2f + 1.

For Regular graphs, we varied the number of processes (N)
between 8, 10, 12, 14, 16 and the connectivity (C) between
5 and 7. For the number of Byzantine processes, we choose
(c-1)/2 the maximum number of Byzantine processes and c/2
- 1(less than the maximum number of Byzantine by 1 for odd
connectivity).
Regular Graphs have a very low success probability when
the number of Byzantine nodes is the maximum (c-1)/2 less
than 1%. when the number of Byzantine nodes is less than
or equal to c/2 - 1 the success probability is above 80%, the
success probability decreases when the number of nodes
increases and the Connectivity stays the same .

For Generalized-wheel graphs, we used the same number
of processes, the same connectivity and the same number of
Byzantine processes.
we realize that we have 100% success probability when
the number of Byzantine processes is less than or equal
to c/2 - 1. When the number of Byzantine processes
is equal to the maximum (c-1)/2 the success probability is
0%. Here we’re going to provide proof of why is that the case.

1

2

3

4

5

6C - 2 nodes
C-2

C-2

C-2

C-2

C-2

C-2

The generalized-wheel graph with N number of nodes and
C connectivity looks something like the graph above. where
the centre has C-2 processes and the rest of the processes
surround the centre. Each process outside the centre is
connected to the centre with C-2 edges. if the number of

Byzantine processes B is (C-1)/2 and the Byzantine process
are positioned at the centre, it means there are C-2 - (C-1)/2
= (C-3)/2correct processes in the centre. a process that is
adjacent to the source and in the centre will deliver because
they will receive the message from the source while the
processes that are not can at most receive the message from
the correct process in the centre plus one (C-3)/2 + 1 (C-1)/2
¡ f + 1 = (C+1)/2 so they will not deliver the message.

Multi-partite-wheel graphs have to satisfy the condition
C is not odd and C ≤ N/2. We also did not want to have
the number of Byzantine nodes equal to 0, which impacted
the number of nodes N and the connectivity C we choose.
For multi-partite-wheel graphs we choose the number of
processes equals 12, 14, 16 and used connectivity of 6. The
number of Byzantine nodes is equal is 2(maximum) or 1 .
we have a 100% success probability when the number of
Byzantine nodes is 1 and 33% success probability when the
number of Byzantine nodes is 2.

K-diamond graph has to satisfy the condition the C ≤ N/2.
We also did not want to have the number of Byzantine nodes
equal to 0, which impacted the number of nodes N and the
connectivity C we choose. That is why we use number nodes
equal to 12, 14 or 16 and the connectivity equals N/2 or N/2
- 1. For the number of Byzantine nodes, we used (C-1)/2 and
C/2 - 1 for odd connectivity and C/2 - 1 and c/2 - 2 for even
connectivity.
No matter the number of Byzantine node, the success
probability was 100%.

The data we used to draw these conclusions call all be
found in the appendix(D to F).

Regarding k-pasted graphs, we choose the same number
of nodes, connectivity and number of Byzantine processes as
we did with k-diamond graphs. The k-pasted graphs have a
high success probability of 100% for any number of Byzan-
tine nodes less than or equal to the maximum.

5 Responsible Research
Through this section, we’re going to explain how the results
we obtained in section 4 Experimental Setup and Results can
be reproduced.

The first result we presented in section 4 was the decrease
percentage in the average message complexity between
Bracha-CPA and Bracha-Dolev. To produce the same
result, the user has to run the ini files using omnet++ in the
folder /rp21-group31-2-fantazia/BRB-partially-connected-
networks-main/BroadcastSign/simulation/randomGr-
aphs/regularGraphs with Bracha-CPA with optimiza-
tions and Bracha-Dolev. To change the protocol the
simulation uses, the user can change that from base.h
in rp21-group31-2-fantazia/BRB-partially-connected-
networks-main/BroadcastSign/src. The result will be logged
to the stats folder in the folder rp21-group31-2-fantazia/BRB-
partially-connected-networks-main/BroadcastSign. Now all
the user has to do is subtract the number of messages



for Bracha-CPA with optimizations from the number of
messages for Bracha-Dolev, divide that by the number for
messages for Bracha-Dolev and finally plot that for each
number of nodes and connectivity.
The second result presented in Section 4 was the decrease
percentage in the average message complexity between
Bracha-CPA with optimizations and Bracha-CPA without
optimizations. we can flow the same steps we used for
Bracha-CPA and Bracha-Dolev. Next, we subtract the num-
ber of messages for Bracha-CPA with optimizations from
Bracha-CPA without optimizations, divide by the number of
messages for Bracha-CPA without optimizations and plot for
the different number of nodes and connectivity.
The last result we presented was regarding when we can apply
CPA on a different type of graphs and the success probability.
To obtain the same result, all we have to do is run main.py
in the folder /rp21-group31-2-fantazia/GenerateGraphs. the
results will be logged to the stats folder in the same directory.
Now all one has to do is do some simple arithmetic to obtain
the results.

Distributed systems are present in a lot of fields. I’d
recommend testing the code further with networks for a big-
ger size and be cautious when using the code for real-world
applications.

6 Conclusions and Future Work
The first point we wanted to research was,from the optimiza-
tions applied to Bracha-Dolev by Silvia Bonomi et al [1], Can
we apply any of them to Bracha-CPA? the optimizations that
we can apply are [MBD.2], [MBD.3], [MBD.4], [MBD.5 ]
and [MBD.7].

The second point we wanted to research was, what are
the average message complexity and average delivery time
of Bracha-CPA with of the optimizations we applied from
[1]compared to plain Bracha-CPA and Bracha-Dolev?
Bracha-CPA with the optimizations has up to 20% smaller
message complexity compared to Bracha-CPA and up to
60% smaller massage complexity compared to Bracha Dolev.
The average delivery time doesn’t seem to decrease after
applying the optimizations.
The last point we wanted to research is the success probabil-
ity of using CPA on a graph. we also wanted to research if
there are any guidelines to know if we can apply CPA on a
graph. we realized that for a maximum number of Byzantine
nodes, this is the order of the types of graphs starting for
the smallest: Generalized-wheel, k-regular, Multi-partite-
wheel, k-diamond and k-pasted. For a number of Byzantine
equals maximum -1, the k-regular has the smallest success
probability while all the others types of graphs have 100%
success probability. Note that these conclusions are based
on a network size between 8 and 16. Regarding guidelines,
we proved that a generalized wheel graph has a 0% success
probability if we have a maximum number of Byzantine
processes. We can also prove the success probability would
be 100% if we had a number of Byzantine processes smaller
than the maximum.

Future work can focus on looking into applying the opti-
mizations from the paper[1] that have not been applied in this
paper and applying optimizations and other optimization.
Future work should also focus on implementing the condition
presented in [9] to check if we can CPA to a graph and see if it
has better or worse running time than the implementation we
made using the paper[12]. It is probably also a good idea to
find approve why some graphs have some success probability
for some connectivity and number of Byzantine of nodes.

References
[1] Silvia Bonomi, Jérémie Decouchant, Giovanni Farina,

Vincent Rahli, and Sébastien Tixeuil. Practical byzan-
tine reliable broadcast on partially connected networks.
arXiv preprint arXiv:2104.03673, 2021.

[2] Silvia Bonomi, Giovanni Farina, and Sébastien Tixeuil.
Multi-hop byzantine reliable broadcast with honest
dealer made practical. Journal of the Brazilian Com-
puter Society, 25(1):1–23, 2019.

[3] Gabriel Bracha. Asynchronous byzantine agreement
protocols. Information and Computation, 75(2):130–
143, 1987.

[4] Danny Dolev, Michael J Fischer, Rob Fowler, Nancy A
Lynch, and H Raymond Strong. An efficient algorithm
for byzantine agreement without authentication. Infor-
mation and Control, 52(3):257–274, 1982.

[5] Danny Dolev and H Raymond Strong. Polynomial al-
gorithms for multiple processor agreement. In Proceed-
ings of the fourteenth annual ACM symposium on The-
ory of computing, pages 401–407, 1982.

[6] Danny Dolev and H. Raymond Strong. Authenticated
algorithms for byzantine agreement. SIAM Journal on
Computing, 12(4):656–666, 1983.

[7] Chiu-Yuen Koo. Broadcast in radio networks tolerating
byzantine adversarial behavior. In Proceedings of the
twenty-third annual ACM symposium on Principles of
distributed computing, pages 275–282, 2004.

[8] Leslie Lamport. Using time instead of timeout for
fault-tolerant distributed systems. ACM Transactions
on Programming Languages and Systems (TOPLAS),
6(2):254–280, 1984.

[9] Chris Litsas, Aris Pagourtzis, and Dimitris Sakavalas. A
graph parameter that matches the resilience of the cer-
tified propagation algorithm. In International Confer-
ence on Ad-Hoc Networks and Wireless, pages 269–280.
Springer, 2013.

[10] Marshall Pease, Robert Shostak, and Leslie Lamport.
Reaching agreement in the presence of faults. Journal
of the ACM (JACM), 27(2):228–234, 1980.

[11] Andrzej Pelc and David Peleg. Broadcasting with lo-
cally bounded byzantine faults. Information Processing
Letters, 93(3):109–115, 2005.

[12] Lewis Tseng, Nitin Vaidya, and Vartika Bhandari.
Broadcast using certified propagation algorithm in pres-



ence of byzantine faults. Information Processing Let-
ters, 115(4):512–514, 2015.



Appendices
A How Bracha’s protocol work

Figure 2: how Bracha’s protocol works in a network with 5 pro-
cesses and 1 Byzantine process



B How Dolev’s protocol work

Figure 3: how Dolev’s protocol works in a network with 5 processes
and 1 Byzantine process

C Checking if we can apply CPA on graph

Theoretical parameter Condition Time complexity Sufficient Necessary

X(G)[11] Graph is f-local f < X(G/2) O(nodes3) Yes No
LPC(G)[11] Graph is not f-local f ≥ LPC(G) Exponential Yes Yes
K(G,D) [9] Graph is f-local f < k(G,D)/2 O(E × log δ) Yes No

M(G,D,t) [9] Graph is f-local f + 1 ≤M(G,D, T ) Exponential Yes Yes
T(G,D) [9] Graph is f-localf + 1 ≤ T (G,D) Exponential Yes Yes

Partitioning into F, L, R [12] L => R or R has a neighbour of the source Exponential Yes Yes

Table 1: A table for different theoretic parameters introduced in this
paper to check if we can apply CPA on a graph, their complexity and
if the conditions that build on them are sufficient, necessary ors both



D Tables of success probability of CPA on
k-regular graphs

number of nodes (N) maximum Byzantine processes maximum -1
8 1 10
10 0 10
12 0 10
14 0 9
16 0 9

Figure 4: A table that shows the number of successes when using
CPA on a network with a k-regular graph network with connectivity
5

number of nodes (N) maximum Byzantine processes maximum -1
8 10 10
10 0 10
12 0 10
14 0 8
16 0 5

Figure 5: A table that shows the number of successes when using
CPA on a network with a k-regular graph network with connectivity
7

E Tables of success probability of CPA on
generlized-wheel graphs

number of nodes (N) maximum Byzantine processes maximum -1
8 0 10
10 0 10
12 0 10
14 0 10
16 0 10

Figure 6: A table that shows the number of successes when using
CPA on a network with a generalized-wheel graph network with
connectivity 5

number of nodes (N) maximum Byzantine processes maximum -1
8 10 10
10 0 10
12 0 10
14 0 10
16 0 10

Figure 7: A table that shows the number of successes when using
CPA on a network with a generalized-wheel graph network with
connectivity 7



F Tables of success probability of CPA on
multi-partite-wheel graphs

number of nodes (N) maximum Byzantine processes maximum -1
12 10 10
14 0 10
16 0 10

Figure 8: A table that shows the number of successes when using
CPA on a network with a multi-partite-wheel graph network with
connectivity 6

G Tables of success probability of CPA on
k-diamond graphs

number of nodes (N) maximum Byzantine processes maximum -1
12 10 10
14 10 10
16 10 10

Figure 9: A table that shows the number of successes when using
CPA on a network with a k-diamond graph network with connectiv-
ity N/2

number of nodes (N) maximum Byzantine processes maximum -1
12 10 10
14 10 10
16 10 10

Figure 10: A table that shows the number of successes when using
CPA on a network with a k-diamond graph network with connectiv-
ity N/2 - 1

H Tables of success probability of CPA on
k-pasted graphs

number of nodes (N) maximum Byzantine processes maximum -1
12 10 10
14 10 10
16 10 10

Figure 11: A table that shows the number of successes when using
CPA on a network with a k-pasted graph network with connectivity
N/2

number of nodes (N) maximum Byzantine processes maximum -1
12 10 10
14 10 10
16 10 10

Figure 12: A table that shows the number of successes when using
CPA on a network with a k-pasted graph network with connectivity
N/2 - 1


	Introduction
	Replacing Dolev with CPA in Bracha-Dolev and CPA's Limitations
	Bracha-Dolev broadcast protocol
	Bracha-CPA and its limitation


	Bracha-CPA with optimizations from Bracha-Dolev and checking if we can apply CPA on graph
	Selecting optimizations from Bracha-Dolev to apply to Bracha-CPA 
	Checking if we can apply CPA on a graph
	Experimental work
	Improvement of an idea

	Experimental Setup and Results
	Comparing Bracha-CPA and Bracha-Doelv
	Comparing Bracha-CPA with optimizations with Bracha-CPA without optimizations
	Success Percentage of CPA on different Graph types

	Responsible Research
	Conclusions and Future Work
	Appendices
	How Bracha's protocol work
	 How Dolev's protocol work
	Checking if we can apply CPA on graph
	Tables of success probability of CPA on k-regular graphs
	Tables of success probability of CPA on generlized-wheel graphs
	Tables of success probability of CPA on multi-partite-wheel graphs
	Tables of success probability of CPA on k-diamond graphs
	Tables of success probability of CPA on k-pasted graphs

