A Data-Driven
Decis1ion support Tool
for a priorl
Multi-Objective
Optimization of
Building Portfolio
: Assets

- Preference- Based Decision Support for Sustainable
- Rooftop Strategies

% Master Thesis - CME5200
Fedor Pallandt

TUDelft

A Data-Driven Decision
Support Tool for a priori

Multi-Objective Optimization
of Building Portfolio Assets

Preference-Based Decision Support for
Sustainable Rooftop Strategies

by

Fedor Pallandt

Student number: 4904702
Project duration: February 2025 — September 2025

Document type: Master thesis

Thesis committee: Dr.ir. S. van Nederveen, TU Delft, Chair
Dr.ir. R. Binnekamp, TU Delft, First supervisor
Dr. T. Chatzivasileiadis, = TU Delft, Second supervisor
G. van den Engel, Arcadis, Company supervisor

'i';U Delft A ARCADIS

Preface

To fully understand the context of this master thesis project within the Construction Management pro-
gram, it is important to distinguish between two possible approaches. One option is to conduct pure
research and write a full thesis report, while the other is to develop a tool or model that addresses
a specific need. This project follows the second approach, focusing on the development of a model
rather than extensive scientific research.

However, developing a model still requires identifying a scientific research gap and conducting research
to justify its design. While scientific studies have been conducted to ensure the model is well-founded
and fit for purpose, the emphasis remains on the creation and implementation of the model, rather than
providing an elaborate theoretical explanation of every underlying principle.

Writing this master thesis and developing the decision support tool has been an extremely learning full
experience. | am very proud of how this work brings together everything | have learned throughout my
academic career. Looking back, | realize how much the process has taught me. A master thesis is
essentially a project you manage on your own. As Ruud once told me, you are the project manager of
your own project.

Of course, there are academic and company supervisors who bring in their own perspectives and
expectations about how the project should be carried out. But in the end, it is up to you to make
decisions and steer the project in a direction that not only meets the minimum requirements of all
stakeholders involved but also remains meaningful and interesting to yourself.

At the beginning, | was faced with many possibilities for how this tool could be developed. My ideas
were still vague, and the abundance of data and options made it complex to determine where to start.
| felt that | first needed to do a lot of reading before | could design a concept, and | also believed
the modeling had to be correct right from the beginning, which made me cautious in taking the first
steps. With no clear case study in the beginning, it was difficult to see what the actual possibilities
were. Selecting The Hague as the case municipality, and looking at its portfolio and neighborhoods,
was a first start in creating a tangible test case where results and data could be verified. Starting with
this case study gave the project a clear direction and made the outcomes more concrete.

The real turning point was realizing the importance of starting very small and simple. A portfolio problem
involving hundreds of buildings and neighborhoods can quickly become extremely complex. However, if
you reduce the problem to just three buildings and three neighborhoods, one can more easily develop a
tool. Starting small enabled to test what kind of output the tool could produce, what could be measured,
and which parts required further research.

Another important shift was moving away from a strictly linear process, first research, then tool devel-
opment, towards a more parallel and iterative approach. | started developing small parts of the tool
and different prototypes early on, and whenever knowledge gaps appeared, | conducted research to
address them. This back-and-forth process allowed me to progress more effectively and learn along
the way. These two lessons, start small rather than waiting until everything is clear, and treat research
and development as parallel rather than sequential, were key in helping me converge, accelerate, and
bring this project to completion.

And to you, the reader: | hope you enjoy reading this thesis. | am always happy to answer questions
or to have a conversation about this work or any related topic.

Fedor Pallandt
Delft, September 2025

Acknowledgements

I would like to express my gratitude to everyone who supported me during this master thesis.

First, | would like to thank Sander van Nederveen for taking on the role of chair, ensuring that my
graduation committee was formally complete, and for your flexibility in this informal role.

| am very grateful to Theodoros Chatzivasileiadis for your continuous enthusiasm and flexibility from
the very beginning. Your course in Spatial Data Science increased my curiosity in data science and
inspired me to pursue this direction in my thesis.

| owe special thanks to Ruud Binnekamp for always being quick to respond, open to answering my
questions, and guiding me whenever | felt stuck. Your encouragement to start with the smallest possible
concept and gradually build on it was key in moving this project forward and completing it within the
scope of a master thesis.

I would also like to thank Stefan van de Schootbrugge for participating in the workshops with me, sharing
your expertise in decision support software and data, and introducing me to the world of software
development at your company.

Many thanks to Gerard van den Engel for giving me the opportunity to carry out my graduation internship
within your team at Arcadis. Your enthusiasm for sustainable portfolio management and strategy, your
involvement in meetings, and your constant reflections on how sustainability themes could be integrated
in decision-making helped me broaden my perspective on measuring and interpreting sustainability.

Thanks to Anne-marije Scheffe for involving me in your projects and introducing me to practical cases
where portfolio asset optimization strategies were applied, such as the project for the municipality of
Groningen and the UWC project. These experiences showed me the importance of setting clear goals
and KPls, and how stakeholder sessions are organized to gather input and define strategies in practice.

Finally, | want to thank my family and friends for their support throughout this process.

11

summary

Due to climate change, rising temperatures, extreme rainfall, biodiversity loss, and urban densification,
the pressure on the built environment within the urban landscape becomes more visible. Cities must
respond to these challenges by becoming climate adaptive, lively, safe, and socially connected. These
challenges are not evenly distributed, and each neighborhood faces its own unique issues. Therefore,
adaptation or mitigation strategies should be applied locally. Buildings can play a role in this response,
as they shape and directly interact with the built environment. They can contribute to neighborhood
resilience and, eventually, be part of creating a healthy city. Public buildings, often owned and managed
by municipalities, can play a key role in this. Municipalities can use buildings within their portfolio as
instruments to create resilient, livable neighborhoods and, ultimately, livable cities.

With the pressing challenges in the time to come, municipalities will need to improve their assets. How-
ever, with often hundreds of buildings within the portfolio, spread across the entire city, the number
of possible interventions and the varying local challenges make the decision-making process for an
effective real estate strategy highly complex. Data and decision support tools such as Multi-Objective
Optimization (MOO) and Multi-Criteria Decision Analysis (MCDA) become key components in building
an effective real estate strategy. However, within classical MOO and MCDA approaches, several flaws
exist. Namely: 1) stakeholders are not integrated a priori into the decision-making process, which re-
sults in solutions that are ineffective or unusable in practice; 2) a set of predefined design solutions is
evaluated, but this does not guarantee that the optimal design is included.3) aggregation and mathe-
matical modeling errors occur; 4) and many MOO approaches conclude with a Pareto front, a set of
non-dominated possible solutions, leaving the decision-maker without a clear final design.

As a response to these shortcomings, Open System Design (ODESYS) introduces Preferendus as a
decision support software. Preferendus addresses these common flaws in optimization: it integrates
stakeholders early, avoids fixed solution spaces, uses mathematically sound preference modeling, and
converges on a single optimal design.

This thesis develops and tests a multi-objective optimization (MOO) decision support tool, based on the
Preferendus framework, for municipal portfolio owners. The tool helps them manage their real estate
portfolio by identifying the most effective interventions, matched to specific buildings, targeted in the
neighborhoods where they are needed most, and aligned with the municipality’s own objectives.

To develop and test the model, a demonstrator case was used. Fictive sample data based on data
collected for neighborhoods in The Hague and buildings from the real estate portfolio of The Municipality
of The Hague. The data set contained roof surface data for 25 buildings, spread over 5 neighborhoods.
To model neighborhood challenges in these five areas, additional spatial data was used on biodiversity,
social cohesion, and surface water overload.

To make impact and adapt on these challenges through portfolio asset management, the optimization
focused on assigning rooftop interventions, such as green roofs, solar panels, water retention roofs,
and social-commercial roofs, to address challenges like biodiversity, social cohesion, and surface wa-
ter overload, while also minimizing investment costs or maximizing annual return to earn back the
investment over time.

The tool was validated in a live workshop with Stefan van de Schootbrugge, owner of Bress, a software
company providing software for municipal portfolio owners to query open-source data and link it to the
assets in their portfolio. Multiple iterations were run, in which Stefan took the role of portfolio owner and
introduced new objectives over time, adjusted weights, and changed preference curves in real-time to
observe how final design configurations changed. The results demonstrated that the tool is able to ef-
fectively guide decisions, explore trade-offs between objectives, and converge on feasible intervention
strategies that address spatial, data-driven neighborhood needs. It allowed portfolio owners to develop
and design a strategic portfolio-wide asset management plan.

11

v

Arcadis’ real estate portfolio sustainability team reviewed the workshop results, and both Arcadis and
Bress agreed that the core strength of Preferendus lies in its ability to model objectives, weights, pref-
erences, and constraints in real time, enabling portfolio owners to directly observe how optimal designs
evolve during iterative workshops. At the same time, the use of preference functions forces decision-
makers to make their objective valuations explicit, therefore tangible and comparable, a feature highly
valued by professionals from both organizations.

While the tool’s results appear promising, there are always points for further development such as an im-

provement of spatial impact modeling, data quality, a more user-friendly interface, and the prioritization
of assets over time.

In conclusion, the decision support tool showed that rooftop allocation, when approached through a
preference-based MOO framework, can serve as a powerful demonstrator for supporting sustainable
asset management at the portfolio scale. Preferendus proves capable of structuring complex decision-
making problems and translating stakeholder preferences and objectives into an optimized, spatial
data-driven intervention strategy, offering real potential within portfolio asset management.

contents

Preface

Acknowledgements

Summary

1

7

Introduction

1.1 Urban challenges and the role of buildings in local adaptation
1.2 Complex decision-making in public real estate portfolio strategies
1.3 Multi-Criteria Decision Analysis (MCDA) and Multi-Objective Optimization (MOO) as re-
sponse forcomplexity
Methodological shortcomings in MOOand MCDA
Odesys and Preferendus as MOO framework
Rooftops as a demonstrator case for portfolioMOO
Academic contribution and development statemento oL
1.8 Readingguide e

-
~No orh

Analysis
2.1 Review of MOO and MCDA frameworks studies in urban rooftop planning
2.2 Methodological framework Preferendus

Synthesis: mathematical structure model

3.1 Mathematical formulation of the optimization problem
3.2 Rooftypesasdesignvariables
3.3 Objectivefunctions e
3.4 Preferencefunctions
3.5 Constraintsandbounds
3.6 Nomenclature e

Operationalizing the decision support tool
4.1 Workflow Preferendus inflowcharts
4.2 Algorithmsettings

Demonstrator case results and evaluation

5.1 Data collection demonstrationcase 0.
5.2 Demonstrator case using simplified sampledataset.
5.3 Resultsdemonstratorcase e
5.4 Validation of the decision supporttool

Discussion

6.1 Limitations e
6.2 Steps for furtherdevelopment
6.3 Recommendationsinpractice L

Conclusion

References

A Validation iterations - workshop at Bress

B Python code - optimization

C Python code - choropleths

ONN OO0 P~ WwWN N ==

O I G G G Y
ONOOPPW_A =

NNDN
W = -

WWNNDN
(S0 NS RN I g -

WWwWww
NOo oo

o O A W W
a W = O o

Introduction

1.1. Urban challenges and the role of buildings in local adaptation

Dutch cities are becoming denser while pressures on the urban environment due to climate change
intensify more and more (College van Rijksadviseurs, 2022). Cities face urbanization, rising temper-
atures, extreme rainfall, and biodiversity loss. These challenges call cities to adapt and rethink how
space can be used. For the Netherlands, which has a dense urban setup and a long history of strategic
spatial planning, these challenges will take on a unique form. For cities, it is important that they are
able to adapt to the challenges of climate change, but for a city to be vibrant, it should also be lively,
safe, and socially connected (United Nations, 2015)(Arcadis, 2024). The challenges above call for both
adaptation and mitigation strategies in urban planning (Hurlimann et al., 2021).

To apply effective mitigation and adaptation strategies, geographical, or spatial, data analysis is cru-
cial to map where specific challenges arise (Roest et al., 2023). Namely, challenges are not evenly
distributed over neighborhoods. In some neighborhoods there is more heat stress, biodiversity loss,
water overload during peak rainfall, or a lack of access to green space and social infrastructure (Roest
et al., 2023). Therefore, it becomes inevitable that adaptation strategies must be tailored locally. Not
surprisingly, to understand the distribution of those challenges, geographical data analysis is already
being used in the Netherlands. Tools like Leefbaarheidsbarometer (Ministerie van Binnenlandse Zaken
en Koninkrijksrelaties, 2024) and the Sustainable Cities Index 2024 (Arcadis, 2024) help to visualize
which neighborhoods are under performing. Not only hard climate data is assessed, but also softer
social aspects such as safety, livability, and social cohesion are expressed in neighborhood-level data.

Buildings shape the livable environment of cities and play an important role in creating lively and re-
silient neighborhoods (Urban Land Institute, 2022). This also means that buildings can be part of
the solution. They provide means to address the challenges previously mentioned and support both
mitigation and adaptation efforts. Buildings do not exist in isolation but constantly interact with their
surroundings. Buildings and neighborhoods can therefore be seen as components within a bigger, in-
terconnected system. By applying targeted interventions that improve buildings and address specific
local needs, it becomes possible to reduce environmental and social pressures in the surrounding area.
Thus, upgrading buildings is not just about improving individual structures, but also about strengthening
neighborhood resilience and ultimately contributing to the resilience of the entire city.

1.2. Complex decision-making in public real estate portfolio strategies 2

1.2. Complex decision-making in public real estate portfolio strate-
gies

For a single building, applying interventions to mitigate environmental or social challenges can already
be complex, due to the technical, financial, architectural, and operational factors involved. However,
making decisions over an entire portfolio of buildings increases decision complexity significantly. Es-
pecially municipalities, which often own a substantial amount of buildings. For instance, the portfo-
lios of the municipalities of Amsterdam, The Hague, and Rotterdam contain approximately 1015, 800,
and 2600 public real estate assets respectively(Bouwstenen voor Sociaal, 2024; Gemeente Rotter-
dam, 2025). As public actors, municipalities are responsible to create healthy and resilient cities and
therefore neighborhoods. Their building, within their portfolios, are not just physical assets, but rather
instruments through which they can address climate, social, and spatial challenges. But as stated, the
complexity of decision making in asset management for municipalities grows significantly due to the
number of available interventions, the variety of spatial neighborhood challenges, and the diversity and
amount of buildings within the portfolio. Not surprisingly, making decisions that align real estate strate-
gies with broader goals is one of the most complex challenges in portfolio management (Arkesteijn,
2019).

1.3. Multi-Criteria Decision Analysis (MCDA) and Multi-Objective

Optimization (MOO) as response for complexity

As the number of buildings, interventions, and strategic goals increases, decision-making becomes
too complex to do manually. This is especially true in portfolio-level asset management. To create
structure and transparency within the decision-making processes, decision-makers increasingly rely
on decision-support tools. The most common used decision support methods are Multi-Criteria Deci-
sion Analysis (MCDA) and Multi-Objective Optimization (MOO) (Wolfert, 2023). MCDA is used to rank
a predefined set of alternatives based on multiple criteria. By assigning a weight to each criterion, it
becomes possible to score and rank alternatives. These scores are combined into a single score for
each alternative, often by using weighted sums. This makes comparison and selection of the most pre-
ferred option possible. MOO, on the other hand is best for situations with many or even infinite possible
solutions. Instead of evaluating predefined options, decision-makers define objective functions. Then
an algorithm searches the design space and generates a large range of alternatives. MOO helps to
explore trade-offs between objectives and identifies and generates a set of optimal solutions. MOO
allows decision-makers to see and understand how their input affects the generated set of solutions,
often referred to as final design configurations (Wolfert, 2023). Both MCDA and MOO are often used
in engineering, urban development, and design.

1.4. Methodological shortcomings in MOO and MCDA 3

1.4. Methodological shortcomings in MOO and MCDA

Recent literature by van Heukelum et al. (2023) and Zhilyaev et al. (2022) challenges key assumptions
in conventional MOO and MCDA approaches. These authors point out four systematic flaws that can
hinder or misguide the decision-making process.

1. Lack of a priori stakeholder integration: technically feasible but socially infeasible designs

In many MOO applications, stakeholders are either not integrated into the process at all or are only
involved afterwards, postiori, in a post hoc manner (van Heukelum et al., 2023). As a result, design
configurations might technically satisfy the conditions, but once they need to be implemented in practice,
they turn out to be politically or socially unfeasible. By not including stakeholders a priori of the optimiza-
tion, contextual factors or important objectives or constraints of key stakeholders might be ignored. As
a result, "optimal’ design configurations prove to be ineffective or even unusable in practice (Zhilyaev
et al., 2022).

2. Predefined and limited alternatives: not exploring the full design space

Another shortcoming in current optimization methods is the evaluation of a set of predefined design
configurations. This implies that the solution space already is defined in advance, and that not all
possibilities for potentially more optimal configurations are explored. As van Heukelum et al. (2023)
pointed out, this approach excludes potentially better solutions before evaluation begins, increasing
the risk of suboptimal results.

3. Aggregation and preference modeling errors

In multi-objective optimization (MOO), all objectives are often converted into a single common score,
scale, or domain (van Heukelum et al., 2023). But this can be problematic if it's not done in the right
way. Many objectives are measured on different scales, like euros (money) or kilograms of CO2. These
scales aren’t mathematically compatible, so adding or averaging them assumes they have the same
meaning, which they don’t (Barzilai, 2005, 2010). This could therefore go against the basic rules of
measurement theory and can lead to mathematically incorrect results(Barzilai, 2005; van Heukelum
et al., 2023).

To avoid invalid mathematical aggregation, objectives should be translated to a common scale that al-
lows mathematical operations. In practice, this is often done by expressing the value of objectives with
different scales in a monetary scale. However, this highly oversimplifies context. The monetary scale
doesn’t reflect how much people care about something or value different objectives(Barzilai, 2010).
According to utility measurement theory, the common scale of measuring how much we value some-
thing should be measured in preference, not just cost (van Heukelum et al., 2023). Additionally, by
not aggregating to a common nonlinear scale, one implies that preferences are linear and therefore
an increase and decrease are always valued the same. But real preferences are often nonlinear and
personal. Without a valid and shared preference scale, decisions can become unclear, unfair, or mis-
leading (Binnekamp, 2010).

4. Lack of decision-readiness: no single optimal configuration

With MOO, the final output often concludes with a Pareto front. A Pareto front is a set of potential trade-
off solutions that reflect competing objectives, where choosing a different solution cannot improve one
objective without worsening the other. The problem of concluding with a Pareto front is that it doesn’t
propose a single most optimal design configuration (van Heukelum et al., 2023). Instead, the final
decision is left to the decision-maker, who needs to navigate between trade-offs without a structured
decision-making framework (van Heukelum et al., 2023) (Wolfert, 2023).

1.5. Odesys and Preferendus as MOO framework 4

1.5. Odesys and Preferendus as MOO framework

To address the four systemic flaws from the previous section, Wolfert (2023) introduce ODESYS (Open
Systems Design) as a new way of thinking and approaching engineering design problems. A part
of ODESYS is Integrative Maximized Aggregated Preference (IMAP). IMAP is a MOO method that
maximizes the overall aggregated objectives measured in preference. IMAP forms the core of a new
software decision support tool introduced in ODESYS, the Preferendus. By using the Preferendus,
earlier-mentioned flaws can be addressed Wolfert (2023). Key components of the preferendus are
shown below:

1. Integrates stakeholders a priori

The Preferendus integrates stakeholders a priori in the decision-making process. Therefore, stake-
holder and preference are used as input, functioning like a decision compass where trade-offs are
explored interactively. The model becomes open-ended and human-interactive.

2. Proactive synthesis instead of evaluation

Unlike traditional methods that evaluate predefined (potentially suboptimal) alternatives, the Preferen-
dus proactively generates optimal configurations from the full solution space. This expands the range
of outcomes and supports creative and adaptive solutions.

3. Mathematically correct Preference Function Modeling (PFM)

Decision behavior is mathematically modeled based on the Preference Function Modeling (PFM) theory,
as described by (Barzilai, 2022). Objectives on a different scale are aggregated on a properly defined
scale that measures the value of the objective expressed in preference on a scale from 0 to 100. This
workflow allows mathematically correct aggregation and comparison.

4. Convergence to one final optimal design solution

Instead of concluding with a Pareto front and leaving decision makers without one optimal solution,
Preferendus iteratively generates one final optimal design configuration.

Figure 1.1 shows a summary figure of how the Preferendus overcomes shortcomings often committed
in other MOO or MCDA studies.

Shortcomings in MOO/MCDA Preferendus features
s 7 e
1. Lack of a priori stakeholder integration 1. Stakeholders integrated a priori
Technically feasible, socially infeasible designs Technically and socially feasible designs
& J &

P
2. Proactive synthesis
Exploring the full design space
&

g
2. Predefined and limited alternatives

Not exploring the full design space
. J

e (
3. Aggregation & preference modeling errors 3. Preference Function Modeling (PFM)

Mathematically incorrect aggregation Mathematically correct aggregation
& J &

e e
4. Lack of decision-readiness 4. Convergence to one final design

No single optimal configuration One single optimal configuration
& J &

Figure 1.1: From MOO/MCDA shortcomings to Preferendus features.

1.6. Rooftops as a demonstrator case for portfolio MOO 5

Following features of the Preferendus (see Figure 1.1), Arkesteijn (2019) has created a framework for
portfolio real estate alignment. Within this self-developed framework, the Preference-based Accom-
modation Strategy (PAS), Arkesteijn (2019) showcased that portfolio-level problems can be resolved
on several case studies. The PAS was specifically developed to integrate stakeholders a priori within
the decision-making process and align stakeholders preferences with organizational goals in portfolio
strategies. The PAS model proved effective in integrating strategic, spatial, and functional considera-
tions, ultimately delivering the design of an optimal and aligned real estate portfolio.

Several case studies in the fields of urban development, architecture, construction management, and
corporate real estate portfolio alignment have successfully used the Preferendus, or PFM, to support
decision making (Binnekamp, 2006; Binnekamp, 2010; De Visser et al., 2017; Arkesteijn, 2019; van
Eijck & Nannes, 2022; Raaphorst, 2024; Zhilyaev et al., 2022; van Heukelum et al., 2023). Recently,
Zhilyaev et al. (2022) published a Preferndus framework which engineers and designers can use for
real world design and construction decision-making problems. As a next step in the development of
this methodology, it Zhilyaev et al. (2022) highlighted the need to explore and test this framework in
specific domains, such as supply chain management or asset management.

1.6. Rooftops as a demonstrator case for portfolio MOO

An interesting demonstrator case for portfolio optimization in sustainable asset management could
be the optimization of rooftops of buildings within the portfolio. As exterior parts of the building, they
directly interact with the surrounding environment. Within big municipalities such as Amsterdam, Rot-
terdam, and The Hague, there is an increasing focus on using roof space effectively to tackle urban
challenges(Dakenplan, 2025). Not only in practice but also in the academic field, recent studies have
shown growing interest in rooftop optimization, especially within cities facing climate challenges and
the need to adapt existing buildings (Brenner et al., 2023; Dong et al., 2022, 2024; Kumar et al., 2022;
Langemeyer et al., 2020; Liu et al., 2022; Xiong et al., 2023; Yuan et al., 2025; Zhang et al., 2024).
However, many of these approaches still suffer from the earlier addressed four key methodological
flaws identified by (van Heukelum et al., 2023; Zhilyaev et al., 2022):

(1) A lack of early stakeholder integration: In Dong et al. (2024) stakeholder and policy factors are
mentioned only briefly at the end (Section 4.4.3). By stating that issues such as governance and
funding fall “beyond the scope,” the study places them outside the core of the design process.

(2) Reliance on a predefined set of alternatives: Xiong et al. (2023) evaluate only 64 fixed design strate-
gies, 32 green and 32 gray infrastructure scenarios, while Liu et al. (2022) only assess four predefined
static retrofitting scenarios with 10, 30, 50, and 100 percent green roof coverage.

(3) Flawed aggregation of incomparable indicators: This occurs in almost every study. Yuan et al.
(2025), for example, normalize CO2 emissions, economic cost, and food production, and combine
them into one score, treating them as commensurate. Dong et al. (2024) follow a similar approach
by aggregating cooling effect, runoff reduction, and investment cost. Xiong et al. (2023) go further by
converting ecological and environmental benefits into monetary values, assuming that all value can
be expressed in financial terms. Langemeyer et al. (2020), for instance, combine urban heat island
intensity, social cohesion, and income differentials into a single utility score using weighted sums. This
not only assumes scale compatibility but also imposes fixed, linear preferences.

(4) Limited decision-readiness of the results: This flaw occurs, for instance, in Zhang et al. (2024), who
also emphasize that their multi-objective optimization results in a set of Pareto-optimal solutions.

1.7. Academic contribution and development statement 6

1.7. Academic contribution and development statement

In the previous paragraphs, it becomes clear that cities face climate and societal challenges, which
differ per neighborhood, and which call for neighborhood-specific adaptation strategies. Buildings can
be a part of those strategies, and building owners can improve their buildings to tackle those challenges
and, eventually, contribute to addressing the issues cities face. For municipalities, who are responsi-
ble for creating a livable environment in those cities and who often own a large number of buildings
within their portfolio, coming up with a real estate strategy that responds to local needs, by selecting
the most suitable interventions within limited resources and across many assets, becomes a complex
decision-making problem. This asks for decision support tools such as Multi-Objective Optimization
(MOO) and Multi-Criteria Decision Analysis (MCDA). Arkesteijn (2019) showed that MOO with Prefer-
endus principles is possible in a portfolio context. Preferendus has shown to offer many advantages
and address flaws present in other MOO methods. A recently developed step-by-step Preferendus
methodology by Zhilyaev et al. (2022) calls for testing in other fields of the construction industry, such
as asset management. Rooftops can serve as a relevant demonstrator case: in practice, there is an
increasing focus on rooftop interventions, and in academic fields, many MOO studies, despite their
limitations addressed by Preferendus, have been performed on the strategic allocation of roofs in ur-
ban cities, but never in a portfolio context. This thesis aims to answer the following questions, which
respond to core challenges for portfolio owners, specifically for municipalities:

* In what way can building-level interventions be selected and spatially allocated to buildings in
neighborhoods in a way that reflects both local needs and organizational portfolio goals?

» Which buildings should be prioritized when financial resources are limited and several conflicting
objectives are relevant to the decision-maker?

In short, with limited resources and many buildings to manage, municipalities are faced with the urgent
question: How do | choose the right interventions, for the right buildings, in the right places, to achieve
the greatest impact while satisfying my own objectives?

To answer these questions, this thesis responds by developing a decision support tool that follows the
Preferendus methodology step by step, as proposed by Zhilyaev et al. (2022), and testing its applica-
bility in a portfolio asset management context.

See the development statement below:

“There is a need for a decision support tool in portfolio asset management that selects
interventions for buildings, in alignment with organizational objectives and neighborhood
needs, and results in a final optimal design configuration”

1.8. Reading guide

Chapter 2: Analysis presents the literature review on how to build the decision support tool. Section 2.1
reviews current MOO and MCDA studies to understand the workflow of rooftop optimization studies,
and to identify what types of challenges can be addressed by different roof types. Section 2.2 analyzes
the methodology of Zhilyaev et al. (2022) for the synthesis of the decision support tool.

Chapter 3: Synthesis sets up the entire mathematical structure of the model.

Chapter 4: Operationalization describes, on a conceptual level, how the mathematical problem can be
transposed into an operationalized decision support tool.

Chapter 5: Demonstration introduces a demonstrator case, which is used to validate the developed
decision support tool in a workshop. The chapter also discusses the results of the workshop and
concludes with a reflection on the validation of both the workshop and the tool.

Chapter 6: Discussion outlines the limitations of the decision support tool and proposes steps for further
development, as well as suggestions for future research.

Chapter 7: Conclusion reflects on how the decision support tool contributes to addressing complexity
in spatial problems and in portfolio asset management strategies for portfolio owners.

Analysis

2.1. Review of MOO and MCDA frameworks studies in urban rooftop

planning

Since MOO and MCDA often appear in rooftop planning studies, a brief analysis is conducted on what
kind of MOO was done and how spatial problems are integrated within the decision-making process of
urban strategies. All the studies discussed aim to identify optimal configurations of urban roof layouts.
However, the types of roof interventions and the objectives differ per study. Below, a selection of studies
is reviewed to highlight how multi-objective and MCDA frameworks are used to generate and assess
rooftop intervention strategies over an urban layout. First, the MOO studies are reviewed, followed by
the MCDA studies.

Previous MOO-based studies

Dong et al. (2024) use MOO to allocate green roofs in Xiamen, China. Using an algorithm, they explore
trade-offs between three objectives: storm water retention, urban cooling, and investment costs. An
optimal design configuration is selected from the Pareto front using Entropy-TOPSIS, a ranking method-
ology. Yuan et al. (2025) optimize objectives such as life cycle impact potential, operational benefits,
and costs by applying three rooftop types: Bare Roof (PV + water), Green Roof (vegetation + PV + wa-
ter), and Open-Air Farming. Zhang et al. (2024) optimize the allocation of PV panels, maximizing three
objectives: performance cost, visual impact, and spatial compactness. Kumar et al. (2022) optimize
storm-water management by allocating green roofs and infiltration trenches. The objectives that were
minimized and maximized included the volume of storm-water runoff, benefits, and costs.

Previous MCDA-based studies
Beyond MOO, several studies also use MCDA frameworks to allocate roof types.

Langemeyer et al. (2020) use MCDA to select an allocation of five possible green roof types: extensive,
semi-intensive, intensive, naturalized, and allotment. These types are evaluated against six ecosys-
tem service goals to support a healthy city: thermal regulation, runoff control, habitat provision and
pollination, food production, recreation, and social cohesion. First, spatial data on each ecosystem
service demand is plotted in choropleths to map where neighborhood needs are most visible. Second,
the green roof types receive scores based on how much they contribute to ecosystem service delivery.
Eventually, through MCDA, roof types are allocated where they are most needed.

Brenner et al. (2023) aim to mitigate the urban heat island effect by allocating green roofs where they
are most impactful. Two maps are overlaid based on spatial data: one vulnerability map combining
data on heat stress and sensitive groups such as the elderly, children, and low-income residents; and
one map based on satellite imagery of rooftops. This leads to a selection of roofs categorized as high
(high vulnerability + high/medium potential) and medium (high vulnerability + low potential), guiding
selection to areas with the most impact.

2.2. Methodological framework Preferendus 8

Dong et al. (2022) classify roof types and assign them suitability scores, while also including landscape
connectivity. This makes it possible to find the best combination of roof surfaces to upgrade to green
roofs. The goal is to allocate rooftops in a way that supports the creation of a biodiversity corridor
through the city.

Liu et al. (2022) aim to allocate extensive green roofs in Beijing. Existing rooftops are ranked using an
index that combines green space demand, runoff risk, and roof suitability. Rooftops are selected based
on the highest overall priority scores.

2.2. Methodological framework Preferendus

This thesis adapts the methodological framework for Preferendus modeling developed by (Zhilyaev et
al., 2022). The authors present a flowchart (see Figure 2.1) which represent 10 steps of this method-
ology. The 10 steps of this methodology are briefly summarized to give the reader an understanding
of how a design problem can be addressed using the Preferendus. For an in depth understanding and
mathematical explanation refer to (Zhilyaev et al., 2022). The mathematical problem will be discussed
less in this section, as it is elaborately presented in chapter 3.

Stakeholders Matlab Tetra algorithm
Start
|
'
o Defining objectives, variables, Finding minima and maxima of

bounds and hard constraints objective functions
]

9 Setting up an optimization
2} Selecting objective functions & problem (genetic algorithm)
specifying preferences i

o Generating the initial population

N —— e Caicuiating agercqated preforence en ’
. . . - . Calculating aggregated preference !
€©)| Assigning objectives’ weights Evaluation ’: gaggregatedp (7 }
1 sCOres |
Termination
criterion reached?
No
Creating the next population ‘
eneration
@ Results verification 9 &
No Design meets Selecting the best individual ‘

expectations?
Yes

The final design

Figure 2.1: Methodology flowchart by (Zhilyaev et al., 2022)

1. Defining the design problem
Stakeholders define the design problem by defining design variables, which are design param-
eters that can be varied, the bounds of these design variables, and any equality or inequality
constraints.

2. Finding the minima and maxima (ranges) of the objective functions
To understand the range and therefore boundaries of the stakeholder preferences, it is necessary
to run optimizations and understand the minimum and maximum raw values of the objectives.

3. Defining preferences
Preferences are measured on a preference scale from 0 to 100 for each objective. Stakeholders
need to at least select 3 points (the worst = 0, values in between, and the best=100) for each
objective. As a result preference curves can be constructed that translate the performance of

2.2. Methodological framework Preferendus 9

Preference

10.

each objective into a subjective desirability score (see Figure 2.2).

Construction costs

100
The best option

90
20
70 Resulting preference curve/function
60
50

40 The in-between option

The worst option

30
I e s e

10

1 2 3 4 5 6
Construction costs, million EUR

Figure 2.2: Preference curve by (Zhilyaev et al., 2022)

Specifying weights
Each objective needs to get assigned a weight, of which the total sum of the weights of objectives
must be 1. The weights express the relative importance of each objective.

Model setup

All the input data, variables, objectives, bounds, constraints, preferences, and weights can be
used to set up the optimization problem in Matlab, an environment for progamming. Within this
thesis, the problem is set up in Jupyter Notebook, an environment that supports Python scripts.

Generating the initial population

A genetic algorithm (GA) generates an initial population, where each individual is a possible de-
sign solution. For each individual, the raw value of the objective is calculated on the preference
scale (0-100) of the defined preference curve.

Preference aggregation and evaluation

Each individual of the population now has a preference score per objective (from step 6). Those
preferences need to be aggregated into a final score, which eventually reflects the individuals
values. The aggregated preference score is the score that the genetic algorithm will try to optimize
within one final objective function. Calculating this aggregated preference score is done on a
web server software tool called Tetra, after which the algorithm evaluates the results and their
feasibility.

Evolving the population over a next generation

Through mutation, and crossover, the algorithm generates new configurations in each generation.

Selecting the optimal configuration (best individual)
Once the stopping criterion is met, and the algorithm finds no further improvement, the GA selects
the configuration (individual) with the highest aggregated preference score.

Stakeholder verification and iteration
The selected solution is presented to stakeholders. If the outcome is satisfactory, the final configu-

2.2. Methodological framework Preferendus 10

ration is selected. Otherwise, stakeholders can change their preferences, weights, and objectives,
add constraints and the steps are repeated until the final design solution satisfies the stakeholder.

Synthesis: mathematical structure
model

3.1. Mathematical formulation of the optimization problem

This model assigns exactly one rooftop intervention to each roof surface in a building portfolio. It is
formulated as a discrete, multi-objective, nonlinear optimization problem with integer decision variables.
Each decision variable z,, represents the choice of a roof type ¢ (e.g., green roof, solar panels, or none)
from a predefined set of feasible options. Since roof types are indexed as integers and each surface
receives only one option, the problem is fully discrete.

The model optimizes six objectives O;: investment cost, financial return, CO, reduction, biodiversity,
social cohesion, and water retention. All these objectives have different measurement scales. These
are converted by using preference functions p;(O;(x)) which are measured on a common ’preference’
scale from (0—100).

O1(z) = p1(01(2)), 03(x) = p2(02(x)), ..., O1(x) = p1(O1(x)) 3.1)

Where:

* O,(z): Objective function ¢, calculated over the full design vector z. Examples include investment
cost, annual return, CO, savings, biodiversity, social cohesion, and water retention.

* p;(0;(x)) € [0,100]: Preference function ¢, translating the measured value from O;(z) into a
preference score.

* Of(z) € [0,100]: Rewritten preference function for O;(z).

A more detailed explanation and the final objective function of the algorithm are provided on the next
page.

11

3.1. Mathematical formulation of the optimization problem 12

The objective function for the algorithm, Equation (3.2), searches for the configuration with the maxi-
mized aggregated preference score (IMAP). Refer to van Heukelum et al. (2023) and Zhilyaev et al.
(2022) for more detailed explanation.

max P* (07 (x),05(x), ..., 07 (z); wi, wa, ..., wr) (3.2)
1=1,2,...,1
T = [L]Cl,iL'Q,..-,‘TN}
subject to:
gi(x) <0, j=12,....J (3.3)
hp(x) =0, k=1,2,....K (3.4)
x, €{0,1,2,3,4,5}, n=1,2...,N (3.5)
Where:

* max,: The optimization algorithm searches for the decision vector x that maximizes the aggre-
gated preference score.

P* €]0,100]: Aggregated preference score calculated by the Tetra web-server using Preference
Function Modeling (PFM) theory.

* © = [z1,29,...,2yN]: Design vector of decision variables, where each x,, represents the selected
rooftop intervention type ¢ for rooftop surface n.

» N: Total number of rooftop surfaces across all buildings in the portfolio.

» x,,: Decision variable for rooftop surface n. It takes on a discrete value corresponding to one of
the six available rooftop types ¢:

x, =t forsomet e {0,1,2,3,4,5} (3.6)

+ t€{0,1,2,3,4,5}: Index for the six predefined rooftop intervention types. Each ¢ corresponds to
a rooftype with each a unique set of technical, financial, and environmental parameters used in
the objectives.

* O;(x): Objective function 4, calculated over the full design vector . Examples include investment
cost, annual return, CO, savings, biodiversity, social cohesion, and water retention.

* w; €]0,1]: Weight for objective i, representing its importance. All weights sum to 1:

6
> wi=1 (3.7)
=1
* gj(z) <0forj=1,2,...,J: Inequality constraints (not used in validation).

* hi(x) =0for k =1,2,..., K: Equality constraints (not used in validation).

* x, €{0,1,2,3,4,5} forn = 1,2,..., N: Bounds: Each decision variable z,, represents the inter-
vention type ¢ assigned to rooftop surface n and can take one of six discrete values 0. .. 5.

3.2. Roof types as design variables 13

3.2. Roof types as design variables

Each decision variable z,, in the optimization model represents the selection of one rooftop interven-
tion from a discrete set of six alternatives. Each intervention is denoted by an index ¢ € {0, 1,2, 3,4, 5},
where each t represents a specific rooftop type (see Figure 3.1) with unique technical, environmental,
and financial characteristics (see Table 3.1). The decision variable z,, selects one of these types for
each rooftop surface n. The interventions differ in their contribution to the six objectives O;(x). Ta-
ble 3.1 lists the parameter values defined for each rooftop type ¢, with data derived and adapted from
(Municipality of Rotterdam & B.V., 2024). These values are used in the objective functions O;(z) dis-
cussed later. The coefficients «;, 5;, and v, represent the assumed effects of each rooftop type ¢ on
biodiversity, social cohesion, and water retention, respectively, and are used in Equation 3.14, Equa-
tion 3.16, and Equation 3.18. These coefficients are not derived from literature but can be defined by
the decision-maker, similar to the approach of Langemeyer et al. (2020).

The six rooftop types t are:
* 0 — No intervention
* 1 — Sedum roof
» 2 — Biodiversity roof
» 3 — Commercial social roof
* 4 — Water storage roof

* 5 — Solar panels

Sedum roof Biodiversity roof Commercial social roof Water roof Solar panels

Figure 3.1: Overview of rooftop intervention types used in the optimization model

t Roof type Description Slopel™™ (°) P (€/m?) [(€/m?) A (ElmPlyr) 1 (€MPyr) av () Bi () w(-) ke (kgCOx/mPlyr) Investment cost (€/m?) Annual return (€/m?/yr)
0 None No intervention 920 0 0 0.00 0.00 0 0 0 0 0 0.00
1 Green1 Sedum roof 45 45 50 1.20 0.00 30 0 30 0 95 -1.20
2 Green2 Biodiversity roof 4 45 75 1.80 0.00 100 0 40 0 120 -1.80
3 Red Commercial social roof 0 45 500 10.00 70 10 100 20 0 545 60.00
4 Blue Water roof 0 45 150 2.00 5.00 0 0 100 0 195 3.00
5 Yellow Solar panels 70 0 235 0.35 27.60 0 0 0 85.28 235 27.25

Table 3.1: Combined coefficient, slope constraint, and objective values per roof type

3.3. Objective functions 14

3.3. Objective functions

These six objective functions O, (z) form the basis of the aggregated preference score in Equation 3.2.
They are calculated using three key inputs: the surface area A,, of each rooftop surface n, the selected
rooftop type ¢, and the neighborhood-specific needs. The first three objectives; investment cost, annual
financial return, and annual CO, reduction mainly scale with total assigned area and are defined in
Equation 3.8, Equation 3.9, and Equation 3.10. The latter three; biodiversity, social cohesion, and
water retention, are spatially sensitive and combine roof-specific effect coefficients with neighborhood-
level needs, as shown in Equation 3.14, Equation 3.16, and Equation 3.18.

Objective 1: Investment cost

This objective calculates the total Investment cost needed for all rooftop interventions, summing the
installation and replacement costs for each selected roof type over all rooftop surfaces of the portfolio.

N
Or(@) =Y A, - (c;ep' n c;”S‘) (3.8)
n=1

* O1(z): Total investment cost (€) required for implementing all rooftop interventions across the
portfolio.

+ A,: Area (m?) of rooftop surface n.
« (P': Replacement cost (€/m?) for the chosen roof type ¢.
« st Installation cost (€/m?) for the chosen roof type t.

Objective 2: Annual financial return

This objective calculates the net annual return by subtracting annual maintenance costs from the annual
financial returns associated with each selected roof type over all rooftop surfaces of the portfolio.

N
On(2) = 3" Ay (ry —) (3.9)
n=1

* Oy(z): Total annual financial return (€/yr) gained for implementing all rooftop interventions across
the portfolio.

* 7 Annual financial return (€/m?/yr) for the roof type ¢.
« cna@int: Maintenance cost (€/m?/yr) for the roof type .

Objective 3: Annual CO; reduction

This objective calculates the total annual CO, savings achieved by assigning solar panel roofs (roof
type 5) across the building portfolio. The result sums the CO, reduction potential across all rooftop
surfaces.

N
Os(x) =Y Ay -y (3.10)
n=1

* O3(x): Total annual kg CO, (kgCO./yr) saved gained for implementing all rooftop interventions
across the portfolio.

* r¢: Annual CO, (kgCOs/m?/yr) savings for the chosen roof type t¢.

3.3. Objective functions 15

General structure for objectives 4, 5 and 6

Objectives O4(x), Os(x), and Og(x) represent the impact objectives on neighborhoods for biodiversity,
social cohesion, and water retention, respectively. Each of these objectives is calculated using the
same general structure: first, a raw impact score is computed across all rooftop surfaces and neighbor-
hoods; second, this score is normalized by dividing it by a calculated maximum value. This ensures
that the final objective value lies within the range [0, 1], where a value of 1 represents the maximum
possible impact if the most effective rooftop type ¢ were applied to every surface n of the portfolio.

Calculate the raw impact score:

N

A, - (Sliects) . (need, 0

RaWimpacs = - (3.11)
> An
n=1

* Rawimpact: Raw (unnormalized) impact score, calculated across all rooftop surfaces.
» A,: Area (m?) of rooftop surface n.

« effect; € [0,100]: Effectiveness score of the roof type ¢

* need, € [0,100]: Relative urgency or need score of the neighborhood p

* v, §: Exponents used to adjust the sensitivity of the score to performance and need, respectively.
These components introduce non-linearity, so that rooftop types with a greater effect,,, or neigh-
borhoods with higher need,, are prioritized more strongly. In this way, the model assigns higher
scores (closer to 1) to high-impact rooftop types implemented in high-need areas.

The final normalized impact score becomes:

_ Rawimpact

O;(x) fori e {4,5,6}, O;(z) €0,1] (3.12)

Maximpact

* Maximpact: 1he maximum unnormalized impact score when all rooftops are assigned the type
that maximally contributes to the neighborhood need.

* O;(x) fori € {4,5,6}: The normalized impact score, taking values in [0, 1].
Objective 4: Biodiversity impact

Following the structure explained above, this objective calculates how well the selected roof types align
with the biodiversity needs of each rooftop location, taking into account both roof performance and local
neighborhood need. The raw biodiversity impact score is:

Rawbio = N (313)
Z An
n=1
* o4 € [0,100]: Biodiversity effect coefficient of the roof type ¢.
* Np° € [0,100]: Biodiversity need score of the neighborhood p.
The final, normalized biodiversity objective is:
Rawbio
Ou(z) = where Oy4(z) € [0,1] (3.14)
Maxbio

* Oy4(x) € [0,1]: Biodiversity impact score for implementing all rooftop interventions across the
portfolio.

3.4. Preference functions 16

Objective 5: Social cohesion impact

This objective calculates how effectively the selected roof interventions support social cohesion, again
using the general structure described earlier. The raw social cohesion score is:

N NSOC
£ () ()
Rawsoe = *— ~ (3.15)
Z A,
* 3; € [0,100]: Social cohesion effect coefficient of the roof type .
* N;°° € [0,100]: Social cohesion need score of the neighborhood p
The final, normalized social cohesion objective is:
Os(a) = T8Ws0e \hare 05 () € [0, 1] (3.16)
5 - Maxsoc 5) .

* Os(z) € [0, 1]: Social cohesion impact score for implementing all rooftop interventions across the
portfolio.

Objective 6: Water retention impact

This objective calculates the capacity of selected roof types to enhance water retention taking into
account both roof performance and local neighborhood need. As with the other objectives, it follows
the same structure:

Rawyat = ~ (3.17)
Z An
n=1
* v € [0,100]: Water retention effect coefficient of the roof type t.
* Ny € [0,100]: Water retention need score of the neighborhood p.
The final, normalized water retention objective is:
Rawwat
O¢(x) = ——— where Og(z) € [0, 1] (3.18)
Maxyat

* Og(x) € [0,1]: Water retention impact score for implementing all rooftop interventions across the
portfolio.

3.4. Preference functions

In the main objective function, Equation 3.2, the aggregated preference score P* depends on how each
objective value O;(z) is translated into a preference score. This requires the decision-maker to define
a separate preference function, p;(O;(x)), for each of the six objectives. These functions reflect how
desirable different outcome levels are and shape the overall optimization result (see Figure 3.2). The
blue dots can be set by the decision maker and determine the shape of the preference curve.

3.5. Constraints and bounds 17

COz Avoided Preference

Investment Cost Preference Annual Return Preference oo

—— Preference Curve

100 —— Preference Curve | 100 | — preference Curve

a0

Preference Score [0-100]

Preference Scare [0-100]
Preference Scare [0-100]

40 404
20
20 204
o g ' ' . "
0 0 0 100000 200000 300000 400000 500000
o0 05 L0 LS 20 0 50000 100000 150000 200000 250000 300000 €O: Avoided [kglyear]
Total Cost [€] le6 Annual Return[e/yr]
Biodiversity Impact Preference Sacial Cohesion Impact Preference Water Retention Impact Preference
100 7 —— Ppreference Curve 100 { —— preference Curve 1 100 1 —— preference Curve

= 80 T 80 T 801
s 2 S
e 60 g 60 g 60q
£ a0 g e T 0]
H H]
b T
¥
3 [£
&

20 20 204

0 . - + - v o - v v v — o4 v v + + v
0.0 02 04 0.6 08 10 00 02 04 06 0.8 Lo 0.0 02 04 0.6 08 10
Biodiversity Impact Score [0-11 Social Cohesion Score [0-1] Water Retention Score [0-1]

Figure 3.2: Example of preference functions, p;(O;(x)), for the six objectives O; to Og

3.5. Constraints and bounds

The optimization model includes various types of constraints that define the solution space: bounds
on decision variables, equality and inequality constraints, and feasibility constraints based on rooftop

typology.

1. Discrete bounds

A bound restricts a variable to a range of values. For this case the decision variable z,, represents the
intervention type ¢ assigned to rooftop surface n and can take one of six discrete values:

an €{0,1,2,3,4,5}, n=1,2,....N (3.19)

2. Equality and inequality constraints

Additional constraints ensure technical, financial, or policy-related requirements are met. These can
be formulated generically as:

gi(x) <0, j=1,2,...,J (3.20)
hi(z) =0, k=1,2,....K (3.21)

Examples include total budget limits, technical balance rules, or required assignments of specific inter-
ventions.

3. Feasibility domain constraints

In addition to the general bounds in Equation 3.19, each rooftop surface n is restricted to a subset of
feasible intervention types based on the surface slope and the maximum allowable slope for each roof
type. A roof type is only considered feasible if:

Slope,, < Slope;™®*, n=12,...,N, i=1,2,...,1 (3.22)

3.5. Constraints and bounds

18

* Slope,,: Actual slope (in degrees) of rooftop surface n.

max.

* Slope;***: Maximum slope (in degrees) allowed for the roof type ¢, as listed in Table 3.1.

3.6. Nomenclature

19

3.6. Nomenclature

Symbol Description Unit
Tn Decision variable: intervention type assigned to rooftop | —
surface n (integer index from 0-5)
x Design vector containing all x,, values for all rooftop sur- | —
faces
maxy The optimization algorithm searches for the decision vector | —
x that maximizes the aggregated preference score
N Total number of rooftop surfaces in the portfolio -
n Index of rooftop surface (used to iterate over N surfaces) | —
t Index representing one of the 6 predefined rooftop types -
D Index of neighborhood (used in need-based impact objec- | —
tives)
O;(z) Objective function 4, calculated over the full design vector | —
x. Examples include investment cost, annual return, CO,
savings, biodiversity, social cohesion, and water retention.
pi(0;(x)) Preference function 4, translating the measured value from | € [0, 100]
O;(z) into a preference score.
Of(x) Rewritten preference function for O;(x). € [0, 100]
P* Aggregated preference score, computed using PFM € [0,100]
O;(x) Objective function value for criterion ¢ given design z varies
wy Weight assigned to objective i (sum of all w; equals 1) -
g;(z) Inequality constraint j (e.g., budget, max area) -
hi () Equality constraint & (e.g., fixed assignments) -
Slope,, Actual slope of rooftop surface n degrees (°)
Slopemax t Maximum allowable slope for roof type ¢ degrees (°)
Sh Feasible set of intervention types for rooftop surface n | —

based on slope

zn €{0,1,2,3,4,5}

Bounds: rooftop n must be assigned a valid intervention
type t within a particular set of options

O1(z) Total investment cost across all rooftop surfaces €

A, Area of rooftop surface n m?

cee! Replacement cost for roof type t €/m?

cinst Installation cost for roof type ¢ €/m?

Os(z) Total annual financial return across all rooftop surfaces €lyear

T Annual financial return for roof type ¢ €/m?/year

cfnaint Annual maintenance cost for roof type ¢ €/m?/year

Os(x) Total annual CO, savings across the portfolio kg CO./year

Ky Annual CO; savings per m? for roof type ¢ kg COz/m?/year

Rawimpact Unnormalized total impact score over all surfaces -

effect; Effectiveness score of roof type ¢ used in Raw Impact | € [0, 100]
Score

need,, Relative need score for neighborhood p in Raw Impact | € [0, 100]
Score

~ Exponent for performance sensitivity scaling in impact ob- | —
jectives

1) Exponent for need sensitivity scaling in impact objectives | —

MaxXimpact Maximum possible value for normalization of Raw Impact | —

Score

3.6. Nomenclature 20
Symbol | Description Unit
O4(x) Normalized biodiversity impact score € [0,1]
Rawpio Unnormalized biodiversity impact score -
oy Biodiversity effect score of roof type ¢ € [0,100]
NPpio Biodiversity need score for the neighborhood of surface n € [0, 100]
Maxypio Maximum value for normalizing biodiversity score -

Os(x) Normalized social cohesion impact score € [0,1]
Rawgoce Unnormalized social cohesion impact score -

Bi Social cohesion effect score of roof type ¢ € [0,100]
NEee Social cohesion need score for the neighborhood of surface n € [0,100]
Maxgoc Maximum value for normalizing social cohesion score -

Og(z) Normalized water retention impact score € [0,1]
Rawyat Unnormalized water retention impact score -

Vi Water retention effect score of roof type ¢ € [0,100]
Nwat Water retention need score for the neighborhood of surface n € [0,100]
Maxwat Maximum value for normalizing water retention score -

Table 3.2: Nomenclature of symbols used in the optimization model

Operationalizing the decision support

tool

4.1. Workflow Preferendus in flowcharts

The mathematical notation of this problem has been formulated in chapter 3. The Python code, which
forms the core structure of the decision support model, generally follows this mathematical notation.
The Python code (see Appendix B) is attached as a notebook so that the line of reasoning behind the
coding can be followed.

To provide a general overview of how this decision support tool is set up for the demonstrator case
discussed in chapter 5, and how decision makers can interact with the tool to obtain the results they
are interested in, the first flowchart is shown in Figure 4.1. The workflow consists of five steps:

1.

Load and prepare data

There are three datasets: intervention roof types, roof data of the portfolio, and neighborhood
data. These datasets are exported to Excel and loaded into Jupyter Notebook. The code loads
these datasets as pandas DataFrames so that the optimizer can work with these values. Together,
the three datasets provide all the necessary input parameters to calculate the six objectives O; ().

Define parameters in interface

Within the Jupyter Notebook environment, separate cell blocks form the interface. In these cell
blocks, decision makers can adjust and express their objectives through preference curves, as-
sign relative importance by selecting weights, and introduce constraints if considered necessary.
It is also possible to change the algorithm settings, as described in Table 4.1.

Run model
Once everything is set according to the decision maker’s preferences (step 2), the following cells
can be executed to let the model run.

Model presents output
The output of the code provides an optimized plan with the optimized objectives and a layout of
how the portfolio should be redesigned.

Review optimized plan
As a decision maker, one can review the optimized plan. If the results are satisfactory, itis possible
to export them as a PDF. If not, step 2 can be revisited to adjust preferences and re-run the model.

21

4.1. Workflow Preferendus in flowcharts 22

_______________________________ @"“"“““"l
|o DATA AFeGIS |
| |Rooftype
=T oo [t m oA |
:)] ©Q BAGON BAGD13 BAGO14 !
| Q@9 |
@ o9 th oo H |
EA-] Q9 BAGOIS BAGO1S BAGOIS Ly |
: Intervention roof types Roof data of portfolio Neighborhood data I
T -
Export data
into Excel
| _ Optimized plan |
Load input data I 4~y & |
into python i Q N E |
environment 2V ! Obiacti |
» [31 Output | fECIes |
. H |
J Express desirability 33?33? i
e ______________ aol [
| Decision maker | e Run model :
! Interface |
I
|
1IN
I
| Objectives :
I : Change settings
: q& 4 ' interface
| e | +
|
| Weights Consr;!amts "‘
: Algorithm
I Settings :
________________ I

Figure 4.1: Simplified flowchart operationalizing Preferendus demonstrator case

The flowchart below (see Figure 4.2) zooms in on what happens after running the model (step 3 in
Figure 4.1) and shows how the algorithm converges towards an optimal individual. It provides a clearer
understanding of how the algorithm works and converges to one final optimal design configuration.
In this case, the final design specifies which roof types ¢ a portfolio owner should allocate to which
buildings, based on the selected objectives, weights, constraints, and preferences.

4.2. Algorithm settings 23

Flowchart

Preferendus
Demonstrator case

Roof Roof Roof surface Building 1D |Roofsurface ID Roof type
Inital random surface 1 |surface2| .. N Decode '"d_ex into Al 1 Solar
: = actual design for Al 2 water
population [mdividual 1 0 1SN | I 5 . | - 3
individuals Al 3 niodivers]
Individual 2 3 4 L 2 » iversity
Individual 3 4 3 . 6 A2 1 None
2 4 2 A2 2 None
e B B A2 3 Red
Individual 150 4 2 | e 3
E_25 1 Water
E_25 2 Sedum

Calculate objectives
for individuals

Individual 1 |Individual 2 Individual 150 Objectives _|Preference scores preference Investment cost
Investment cost 40 25 oo 34 Order scores in [investment cost 40 scores for Annual return
Annual return 30 21 67 matrix |Annual return 75 individuals |co2
co2 80 6 35 coz 80 4 (Biodiveristy
Biodiveristy 20 86 28 [Blodiveristy 30 Social
Social 93 76 o 100 Social 20 Water
Water 21 33 2 |water 95

Send matrix and

el T | Newpopulation based on fttestmember |

Create next

v Re}“"" aggregatetd Termination criteria population surface1 surface2| ... |surfaceN
preference scores to mEt—" . , d d fI 0 1 5
oA No generation ndividuatl | 0 | 1 | ..
W individual 2 3 4 | .. 2
Select best Individual 3 4 3 | . [s
Ves individual 2 4 2
Individual 150 4 2 | .. [3

surface 1 |surface 2
mowvidwalx | 0 | 1 | . 5

|
i
I
|
|
|
I
I
I
|
i
I
|
|
i
I
|
I
|
I
I
I
|
I
|
|
i [selectionmavixofpopulation | [FrETerEncEsCOe s Translate to
I
|
I
|
I
I
I
|
I
|
|
i
I
|
I
|
I
I
I
|
I
|
|
i
I

Figure 4.2: Simplified flowchart Preferendus algorithm demonstrator case

4.2. Algorithm settings

Algorithm settings that were used to run the model are displayed in Table 4.1. Changing the values of
these parameters can heavily effect the final result of the MOO.

Parameter Value Description

n_bits 4 Number of bits used to encode each variable

n_iter 100 Number of iterations (generations)

n_pop 150 Population size

r_cross 0.8 Crossover rate

max_stall 10 Max. generations without improvement before early stopping
aggregation tetra Aggregation method for preference scores

var_type int Variable encoding type

Table 4.1: Genetic algorithm settings used in the optimization model

Demonstrator case results and
evaluation

5.1. Data collection demonstration case
Selecting the demonstrator case: The Hague

To test the developed decision support tool, a demonstrator case was selected to ensure the proof of
concept could be grounded in real-world spatial and asset data. The city of The Hague was chosen
for two reasons: (1) its public real estate portfolio data was available, and (2) it includes diverse ur-
ban neighborhoods with varied environmental and social challenges, making it a suitable test case for
evaluating rooftop interventions at the portfolio level.

Data availability and scope

A critical first step was to assess what data is publicly available and relevant to the types of rooftop
challenges and functions explored in previous studies (see chapter Analysis) (e.g., storm water man-
agement, urban heat mitigation, biodiversity enhancement, and social cohesion).

Relevant challenge indicators were found to be available at the neighborhood level for all 114 neigh-
borhoods in The Hague. These include:

* Heat stress

» Storm water runoff
* Biodiversity

+ Social cohesion

By linking this data spatially to neighborhoods, it became possible to quantify the degree of local ur-
gency and identify areas where rooftop interventions could have the most contextual value. For each
challenge indicator, data were normalized on each neighborhood need to a scale from 0 to 100, where
100 indicates the neighborhood with the highest need for intervention and 0 the lowest.

To visualize the spatial variation in challenges, choropleth maps were generated in Python (see Ap-
pendix C and Figure 5.1). A choropleth is a thematic map where areas (in this case, neighborhoods)
are shaded in proportion to the value of a particular variable, such as heat stress or green space
deficiency. These visualizations provide an intuitive overview of where urban interventions are most
needed. The data of these visualizations, need,, is used in objectives O4(x), O5(z), and Og(x) .

24

5.1. Data collection demonstration case 25

Social cohesion v Surface water overload

Biodiversity

Figure 5.1: Choroplets: Social cohesion, Surface water overload, Biodiversity, Heat stress sensitivity

By overlaying the building footprints of the portfolio (see black dots) onto the challenge-based choro-
pleths, it becomes clear which buildings are located in high-need areas (see Figure 5.2). This spatial
intersection is key for portfolio owners: it helps them visualize which assets not only have technical
potential but are also situated in contexts where their impact could be maximized.

5.1. Data collection demonstration case 26

; : High need for High need for
Soclal cohesion Improvamantinterventior Surface water overload mprovement/mtorvention
100

100

Heat stress sensitivity

Figure 5.2: Choroplets with overlay of building portfolio : Social cohesion, Surface water overload, Biodiversity, Heat stress
sensitivity

Filtering roof data using BAG ID

Unlike previous rooftop optimization studies that evaluate all buildings in a city, this thesis focuses
on specific portfolios of buildings, mimicking the decision-making context of a portfolio owner such as
a municipality or housing association. To do this, detailed roof data had to be filtered for a specific
selection of buildings.

This was achieved using the BAG ID, a unique identifier assigned to each registered building in the
Netherlands. With this ID, it became possible to query high-resolution roof datasets and extract all
relevant data for only the buildings within the portfolio.

A Python script was used to loop through the dataset and select roof data for each BAG ID in the chosen
portfolio. This yielded a portfolio-specific dataset containing:

» Number of roof surfaces per building
 Surface area (m?)
+ Slope (in degrees)
» Polygon geometry (roof outline shape)
Visualizing extracted roof data: different roof surfaces n

The figure below shows one building from the dataset. The image displays each roof surface n with its
shape, size, and slope. This information helps decide which roofs are suitable for which interventions,
for example, flat roofs for green or blue roofs, and sloped, south-facing roofs for solar panels (see

5.1. Data collection demonstration case 27

Figure 5.3). The roof data for the portfolio was derived from the link of this reference (ArcGIS Online,
2025).

Roof type
[Flat

Sloped \J
..- _m,nf_ﬁil:'uzﬂ_,_kﬁ_.mfm&

Figure 5.3: Sample plot of roofsurfaces n of one building from portfolio

5.2. Demonstrator case using simplified sample dataset 28

5.2. Demonstrator case using simplified sample dataset

To support model development and validate its functionality before applying it to real-world data, a
simplified sample dataset has been constructed. This fictive dataset replicates the structure of the
actual dataset described in Section 2.2, including the same design variables and rooftop characteristics.
It offers a controlled, low-complexity environment to verify whether the model behaves as intended,
facilitates rapid iteration, and simplifies debugging in case of errors or unexpected outputs.

By working with this simplified dataset, it becomes possible to efficiently test and interpret model be-
havior, explore how different configurations influence outcomes, and fine-tune both the model logic and
the visualization of results.

Portfolio and building setup: roof surfaces n

In the demonstrative scenario, a fictive portfolio owner manages a portfolio of 25 buildings. These
buildings are distributed across five neighborhoods, labeled A through E, with each neighborhood con-
taining five buildings (e.g., A_1 refers to Building 1 in Neighborhood A). Each building consists of one
or more distinct roof surfaces n, each characterized by different roof surfaces in shape, size and slope
(see Figure 5.4).

A1(A) A2 (A} A3 (A} A4 (A) AS(A)

E-

E- i
% I

°

163.3 326.7 4300 O 163.3 326.7 4300 0 163.3 326.7 4300 00 163.3 326.7 490.0 163.3 326.7 490.0
e e e m

5.1(8) 5.2 (8) 8.3 (8) 8.4 (8) B85 (8)

D-
D. D

°

163.3 326.7 4300 0.0 163.3 326.7 4300 0. 163.3 326.7 4900 0 163.3 326.7 490.0 163.3 326.7 490.0

c1i) cz(c) c3 ca €500

o

i=-

e

e
°
o

163.3 326.7 4300 0.0 163.3 267 490.0
e m

o

163.3 3267 490.0 163.3 326.7 490.0 163.3 326.7 490.0
m m m

D_1(D) D_2 (D} 0_3 (D} D_4 (D) D_5 (D)

o
e

0.0 163.3 326.7 4300 00 163.3 267 4900 0.0 163.3 3267 490.0 163.3 326.7 4800 0.0 163.3 326.7 490.0

E_1(E) E_2(E) E 3 (E) E 4(E) E_S(E)

© T

163.3 326.7 4900 0.0 163.3 267 4900 0.0 163.3 3267 4%0.0 00 163.3 326.7 4800 0.0 163.3 326.7 490.0

Bl Flat roof
& Sloped roof

Figure 5.4: Roof surfaces n of the building portfolio of 25 Buildings in Neighborhoods A-E

Neighborhood challenge data: need,

To reflect varying urban needs, each of the five neighborhoods is assigned normalized scores (0—
100) for: biodiversity, storm water overload, and social cohesion. Within each category, the highest-
need neighborhood scores 100, and the lowest scores 0. These scores enable comparison across
neighborhoods within each domain, but are not aggregated across categories. Combining them would
violate measurement theory and lead to flawed conclusions, as discussed previously (Barzilai, 2005,
2010; Barzilai, 2022). Instead, this input data forms the need,, for each of the Objectives O4(z), Os(x),
and Og(x).

5.2. Demonstrator case using simplified sample dataset 29

Social cohesion

Biodiversity

Surface water overload

A B C D E

Figure 5.5: Normalized neighborhood needs need,, and visual representation of urban challenges

The bars (see Figure 5.5) display the normalized needs (0—100) for each neighborhood (A-E) across
three urban challenges:

* For social cohesion, the highest need is in Neighborhood E (100), and the lowest need is in
Neighborhood A (0).

» For biodiversity, the highest need is in Neighborhood A (100), and the lowest need is in Neigh-
borhood E (0).

» For storm water overload, the highest need is in Neighborhood A (100), and the lowest need is
in Neighborhood C (0).

Bringing data together

Plotting the portfolio across the neighborhoods, as shown in (see Figure 5.6), reveals how assets are
distributed in areas facing the greatest challenges.

5.2. Demonstrator case using simplified sample dataset 30

A2

4
.
’ i I I]

Al
A2
A3
Ad
AS

Figure 5.6: Building portfolio of 25 buildings across Neighborhoods A-E, plotted against normalized neighborhood needs.

B.1

82

B3

B5

Social cohesion
Current state portfolio

Biodiversity
Current state portfolio

D E
» El I
’ Euz -
’ E-a -
’ - -
- - -
o
Surface water overload
Current state portfolio
D E
. - - I
= - = -
= - = -
= - = -
® - g -
20 10

B Flat roof
B Sloped roof

5.2. Demonstrator case using simplified sample dataset 31

Design variables

The possible interventions (roof types/design variables) (Figure 3.1) remain unchanged, reflecting the
options available in the real-world case.

Design solution space

As shown in constraint (3.22), each roof surface n can only be assigned intervention types whose
maximum allowed slope is not exceeded.This constraint excludes roof types that are not physically
feasible due to slope limitations. For the dataset used in this model, this results in the following feasible
type sets:

n =

{{0, 1,5} if surface n is sloped (based on dataset) (5.1)

{0,1,2,3,4,5} if surface n is flat

These sets are not universal rules, but follow from applying slope-based filtering to the current dataset
and result in the possibilities shown in (see Figure 5.7).

A_1 (A)

0.0 163.3 326.7 490.0

B Flat roof 2 i
mm Sloped roof Sedum roof Solar panels

Sloped roofs only allow Yellow and Green 1

Sedum roof Biodiversity roof Commercial social roof Water roof Solar panels

Flat roofs allow all possible roof types

Figure 5.7: Intervention feasibility based on current roof condition

5.3. Results demonstrator case 32

5.3. Results demonstrator case

The demonstrator case was used to validate the model. This was done during a workshop (see the
next section for more information on the validation). In this workshop, nine iterations, or runs, were
carried out to arrive at a final design configuration that satisfied the portfolio owner’s objectives. The
results are presented in this section.

Before running the model, all maximum values were calculated (see Table 5.1). These values give the
portfolio owner an understanding of the potential range of outcomes that the objectives can take.

Objective function Minimum value Maximum value Unit
Surface water overload 0 1 [-]
Biodiversity 0 1 [-]
Social cohesion 0 1 [-]
Avoided CO;, 0 495476.8 [kglyear]
Investment cost 0 2,258,150 [€]
Annual return 0 310,242.5 [Elyear]

Table 5.1: Minimum and maximum values for each objective function used in the optimization model.

Figure 5.8 contains the optimized raw values and weights for the objectives of the final (9th) iteration
of the workshop. The iterations and an interpretation of the results are extensively explained within the
appendix (see Appendix A).

w=0,3 wW=0,1 Ww=0,1
Investment Cost Preference CO: Impact Preference Social Impact Preference
100 4 —— Preference Curve 100 { — Preference Curve o P'E_"m('! Curve 1 1
L] OFIII'H"'l.‘d Result @ Optimized Result e Optimized Result
_m _ o .
g g g
] = £
s 604 ¥ o0 'y
H] H
H & &
Y % !
B 8 w0 i vl
3 5
3 % H
£ i 13
204 204 204
ol)] ! - J ol G . , ' — ol ! | | | |
oo Y o e vy 0 100000 00000 300000 400000 SO0000 00 23 Y} Y a8 T8
Total Cost [€] 1ot €0 Reduction [kg/year] So¢ial Cobeston Score
Annual Return Preference Biodiversity Impact Preference Water Retention Impact Preference
100 { —— Preference Curve 100 { = Preference Curve 100 | — Preference Curve
» Optimized Agsult ® Optimized Rasult ® Optimized Result
804 _ Boq o
g £ g
7 & $
3 2 L
—-— @ 604 g 604
£ 3 H
g i i
-} 2 ¥
5 w04 § %1 £ o
@ 3 H
g £ i
204 204 204
o ol - - . . ot ' ; . r r
[=11] a2 o4 oé og 10 (1] 0.2 04 13 o8 1.0
PO 5 3 o
] 50000 100 -Wﬂnn‘iﬁ:?? .-ic]Mt" 250000 IB0000 Beodeversity Impact Score Water Retention Score
ual Rt
wW=0,3 W =0,1 Ww=0,1

Figure 5.8: Optimized preference functions, p; (O;(x)), for the six objectives O; to Og

5.3. Results demonstrator case

Table 5.2 and Table 5.3 give some summary statistics of the allocated roof types.

Indicator Raw value Preference score Weight
Cost [€] 1,002,200 74.9 0.30
Annual return [€] 102,238 83.9 0.30
CO, reduction [kg] 224,286 8.2 0.10
Biodiversity 0.2958 29.6 0.10
Social cohesion 0.4301 75.4 0.10
Water retention 0.3413 78.1 0.10
Overall preference score 66.75

Table 5.2: Summary of optimized objectives and preferences.

Category Metric Roof type Value Unit
Summary Total roof area assigned None 5,810.00 m?
Summary Total roof surfaces None 84 count
Summary No intervention (%) None 310 %

Area per type Area Water retention 140.00 m?

Area per type Area Solar panels 2,630.00 m?

Area per type Area No intervention 1,860.00 m?

Area per type Area Sedum 230.00 m?

Area pertype Area Biodiversity 430.00 m?

Area per type Area Commerical social 520.00 m?
Count per type Count Solar panels 38 surfaces
Count per type Count No intervention 26 surfaces
Count per type Count Commerical social 9 surfaces
Count per type Count Biodiversity 6 surfaces
Count per type Count Sedum 3 surfaces
Count per type Count Water retention 2 surfaces

Table 5.3: Summary of assigned optimized roofs.

The final configuration of the roof allocation over the neighborhoods is shown below (see Figure 5.9).

5.3. Results demonstrator case

34

ad

A%

=0

Social cohesion
Optirmired design configuration

Bindiversisy
Opirwred design configurabon

Surface water overload
Optimired design configuratian

o

o4

C o E
oo |l oe fef w | me [} I
DF =] o= o= s) =N E]
B e [ERILAR 8]
o |- -l w Ed -n Iy =
pif|e]= |mpedm £s]E.

Figure 5.9: Iteration 9: final configuration of the workshop

Sedum roof
Brodmversity roof

Solar panets

Water storage roof
Commercial social roof
No intervention

geoong

5.4. Validation of the decision support tool 35

5.4. Validation of the decision support tool

The model has been validated during a validation workshop with Stefan van de Schootbrugge, founder
of the software company Bress, which has developed a software tool for real estate portfolio owners
to query and link open-source data directly to buildings within the portfolio. With major clients like the
municipalities of The Hague and Amsterdam, and a background in real estate management, Stefan
was well-positioned to assess the model.

This validation tested both the iterative nature of the framework proposed by Zhilalyv et al. (2022) and
its practical applicability for portfolio owners. The method is designed for flexibility: objectives and
constraints can be added, and preference weights adjusted to reflect stakeholder priorities. During the
session, Stefan acted as a portfolio owner working with municipal sustainability goals. For an extensive
summary refer to Appendix A.

Stefan emphasized two core strengths of the model. First, the ability to iterate input in real time enabled
flexible exploration of design solutions during the workshop. Second, the use of preference functions
required decision-makers to explicitly articulate how they value outcomes across different objectives,
making their priorities tangible and comparable. However, he highlighted that without a simple, user-
friendly interface, municipal portfolio owners would struggle to use the tool, as it currently requires
programming knowledge. These main findings were agreed upon by Arcadis’ real estate portfolio sus-
tainability team.

At present, Arcadis is conducting a portfolio optimization for the municipality of Groningen using a
software tool called Enterprise Decision Analytics (EDA). However, one of the main issues is that it is
difficult to model input from decision makers in real time. This was mainly due to the absence of an
EDA expert at the workshop, but it still highlights how highly relevant real-time iterative modeling, as
enabled by Preferendus, can be.

Discussion

6.1. Limitations

The limitations of this study are mainly related to how the objective functions are defined and to the
quality of the input data. In particular, the impact objectives Oy(x), Os(x), and Og(z), representing
biodiversity, social cohesion, and water retention, could be modeled in a more realistic manner. These
objectives rely on need, as an input parameter, expressed as a normalized neighborhood need, ¢
[0,100]. For Og(z), which represents water retention, this is problematic because normalizing the need
of an entire neighborhood does not adequately capture where the actual challenges occur. The effect
of roofs on water retention is highly localized, and using an average across the neighborhood therefore
oversimplifies the situation. For biodiversity and social cohesion this issue is less pronounced, since
the underlying data is expressed as a percentage of area. Still, working with averages always carries
risks, and more accurate neighborhood modeling would be possible, as demonstrated in studies such
as Dong et al. (2024), Yuan et al. (2025), and Xiong et al. (2023).

For the solar panels, more realistic constraints could have been set. Namely, all energy generated
by solar panels should ideally match the energy demand for that building. If solar panels yield more
energy, the additional energy surplus should be fed back into the electricity grid. However, in some
neighborhoods, due to net congestion, it cannot be fed into the grid. This would restrict feasibility of
installing as many solar panels as needed by the model.

6.2. Steps for further development

The current model shows a proof of concept and technical foundation, but there are some steps for
further development or further research in the applicability of the Preferendus domain:

» User-friendly interface
One of the key concerns expressed by Stefan and professionals from Arcadis was that the Pref-
erendus should have a user-friendly interface to ensure it can be applied in practice. Since the
current decision support tool is written in Python code, someone who understands coding logic
always needs to be present during stakeholder sessions to enable iterative modeling. A user-
friendly, interactive interface would therefore be highly recommended for real-world application.

Introduction of Preferendus to stakeholders

The mathematical modeling behind the tool might increase reluctance to adopt it, especially
among users without a technical background, because the tool could be perceived as a black box.
However, this is not the case: Preferendus functions more as an open glass iterative decision-
making compass, guiding users step-by-step toward an optimal design (Wolfert, 2023). Research
could be conducted into the most effective ways to introduce Preferendus and preference func-
tion modeling, and work with stakeholders with non-technical backgrounds, to ensure the tool is
accessible and useful as a decision support system.

36

6.3. Recommendations in practice 37

* Function modeling refinements
As discussed in the previous paragraph, objective functions and constraints could be modeled
more realistically.

» Algorithm settings

Additional research should be done on how one can easily determine optimal algorithm settings in
relation to running time and their influence on the final results. Especially the population size and
the crossover rate influence how algorithms explore the solution space. A larger population en-
courages better exploration but results in longer running time. A higher crossover rate promotes
more diversity and exploration, while a lower rate focuses more on exploiting current good solu-
tions. However, it remains difficult to understand how the algorithm can most efficiently generate
a solution that reaches the global optimum, rather than getting trapped in a local optimum.

* Roadmap-orientated asset management

Asset management in general, but also of buildings take time. Therefore often within asset man-
agement maintenance or improvement of assets due to interventions is set out in time. The time
component and which asset should be prioritized over time is missing. The current output of this
model for asset management shows what the optimal design should look like but doesn’t provide
information on how to get there over time in a time planning table. Further research could be
done on how this time component can be integrated and the Prefrendus doesn’t only show an
optmal design but also converges towards a roadmap. This feature is already present in Arcadis’
Enterprise Decision Analytics (EDA), where it is highly valued in the field of asset maintenance
management. Latifi et al. (2021) can be an interesting case studie to look at. They developed
a machine learning decision support system which optimizes multiple objectives and provides a
20-year roadmap as output of what maintenance type to do and when to apply it on an asset.

Connection to real-time data sources

Further research could explore how the tool can be connected to regularly updated data sources
such as QGIS or ArcGIS, so that the output remains current without the need for manual data
updates. A comparable approach is used in Bress, which queries data directly from the server in
real time.

Exploring Preferendus in other domains

Lastly, research or tool development could also extend beyond rooftops, for example, to public
space, transport infrastructure, or energy systems or other fields within engineering. This would
broaden the scope of Preferendus and strengthen its position as a general decision support frame-
work.

6.3. Recommendations in practice

The tool proved successful in designing an optimized building portfolio asset management plan. Roofs
were used as a demonstrator case, but Preferendus can also be applied to other portfolio problems, as
shown by Arkesteijn (2019) and De Visser et al. (2017) in earlier case studies such as office location
selection for Oracle or the transformation and upgrading of campus buildings.

From a consultancy perspective, using Preferendus or similar MOO software (e.g., EDA) is especially
valuable. In stakeholder sessions, Key Performance Indicators (KPIs) are often defined a priori to
track current performance and desired improvements. These KPIs can be translated into objectives and
therefore preference curves, while interventions, typically requiring investments, serve to improve them.
Preferendus can help to steer these KPls in the desired direction. Preferendus or EDA is recommended
when:

1. Large datasets are involved.
2. Objectives conflict and trade-offs must be explored.
3. The design space is complex, making manual scenarios unlikely to yield optimal results.

Conclusion

The developed decision support tool proved successful in addressing the methodological gaps identi-
fied in the introduction. The main challenge for portfolio owners was to select impactful interventions
in neighborhoods most in need and apply them efficiently on their building assets, and by doing so to
create an optimal design configuration that satisfies their objectives.

A large part of the complexity in this problem lies in gathering and connecting the right data. An impor-
tant step is the collection and preparation of data for the design problem. First, data on neighborhood
needs must be collected and cleaned. Once prepared, this data should be visually mapped in a choro-
pleth, to identify spatial variation. However, simply mapping neighborhood challenges is not enough;
portfolio-building data must also be collected and plotted. Plotting these assets already provides a
clearer picture of where potential actions can be taken. Eventually, to make the link between building
assets, interventions, and neighborhood needs, one needs to include data of these three components
within objective functions.

The tool was tested on a fictive sample dataset mimicking the same structure as the original datasets
of the Hague. This allowed the decision support tool to be developed in a controlled way. It's impor-
tant to note that this was a highly simplified demonstrator case, but that in reality, the Municipality of
The Hague owns around 800 buildings, with each having 20-30 roof surfaces of varying sizes across
114 neighborhoods. In such cases, the design space becomes exponentially larger, and designing
one’s own solutions might lead to suboptimal results. Additionally, complexity also increases once one
uses more realistic objective functions, decision variables or constraints which better model 'real world’
context.

To test the model’s functionality, nine iterations were run in a stakeholder workshop, simulating how
the tool could be used interactively. There were two core strengths of the model. First, it can generate
and present new configurations in real time, allowing portfolio owners to adjust preferences, introduce
new objectives, weights, or constraints during the session and immediately observe how the optimal
design evolves over iterations. Second, the use of preference functions requires decision-makers to
explicitly articulate how they value outcomes across different objectives, making their priorities both
tangible and comparable. Both of these strengths were highly valued by professionals from portfolio
strategies within Arcadis and Bress.

Of course, as mentioned in the section on further development, this decision support tool still needs
improvements before it can realistically model full-scale urban portfolio scenarios. However, it demon-
strates its applicability in portfolio asset management and spatial allocation problems. Even though
this test was performed in a portfolio context, the method could theoretically be applied to all buildings
in a city. By using ODESYS principles, this tool showcases that the methodological shortcomings in
the discussed MOO rooftop studies, could theoretically be addressed.

38

References

Arcadis. (2024). Sustainable cities index 2024 [Accessed July 3, 2025].

ArcGIS Online. (2025). Dakvlakken2d_plus_1set_gdb featureserver [ArcGIS Map Viewer. Accessed:
2025-09-11]. https://services1.arcgis.com/sbwSZYQOs4GMs7tr/ArcGlS/rest/services/dakvlak
ken2d_plus_1set_gdb/FeatureServer

Arkesteijn, M. (2019). Corporate real estate alignment: A preference-based design and decision ap-
proach [Doctoral dissertation, TU Delft] [Doctoral thesis]. https://journals.open.tudelft.nl/abe/
article/view/4125

Barzilai, J. (2005). Measurement and preference function modelling. International Transactions in Op-
erational Research, 12(2), 173—183. https://doi.org/10.1111/j.1475-3995.2005.00496.x

Barzilai, J. (2010). Preference function modelling: The mathematical foundations of decision theory.
In M. Ehrgott, J. R. Figueira, & S. Greco (Eds.), Trends in multiple criteria decision analysis
(pp- 57-86). Springer. https://link-springer-com.tudelft.idm.oclc.org/chapter/10.1007/978-1-
4419-5904-1_3

Barzilai, J. (2022, April 5). Pure economics. FriesenPress.

Binnekamp, R. (2006). Open design: A stakeholder-oriented approach in architecture, urban planning,
and project management (Vol. 1). 10S Press. https://research-ebsco-com.tudelft.idm.oclc.org/
c/54fx7qg/search/details/notyylqy75?db=nlebk

Binnekamp, R. (2010). Preference-based design in architecture. |0S Press. https://www.researchgate.
net/publication/43796818 Preference-Based_Design_in_Architecture#fullTextFileContent

Bouwstenen voor Sociaal. (2024). Actualisatie vastgoedstrategie (Rapport / PDF) (Geraadpleegd via
bouwstenen.nl op 3 juli 2025). Bouwstenen voor Sociaal. https://bouwstenen.nl/sites/default/
files/uploads/actualisatie_vastgoedstrategie.pdf

Brenner, J., Schmidt, S., & Albert, C. (2023). Localizing and prioritizing roof greening opportunities for
urban heat island mitigation: Insights from the city of krefeld, germany. Landscape Ecology,
38(7), 1697-1712. https://doi.org/10.1007/s10980-023-01644-8

College van Rijksadviseurs. (2022). Nederlands verdichtingsverleden in kaart: 15 jaar verdichting, ver-
dunning en krimp [Data-analyse op basis van CBSbuurtcijfers 2005-2020].

Dakenplan, S. N. (2025, July 5). Nationaal dakenplan [Accessed 5 July 2025]. Nationaal Dakenplan.
https://dakenplan.nl/

De Visser, H., Arkesteijn, M., Binnekamp, R., & de Graaf, R. (2017). Improving cre decision making at
oracle: Implementing the pas procedure with a brute force approach. 24th Annual Conference
of the European Real Estate Society (ERES 2017). https://pure.tudelft.nl/ws/portalfiles/portal/
51464195/P_20170114194419_111_1.pdf

Dong, J., Guo, F., Lin, M., Zhang, H., & Zhu, P. (2022). Optimization of green infrastructure networks
based on potential green roof integration in a high-density urban area—a case study of beijing,
china. Science of The Total Environment, 834, 155307. https://doi.org/10.1016/j.scitotenv.
2022.155307

Dong, J., Guo, R,, Lin, M., Guo, F., & Zheng, X. (2024). Multi-objective optimization of green roof spatial
layout in high-density urban areas—a case study of xiamen island, china. Sustainable Cities
and Society, 115, 105827. https://doi.org/10.1016/j.scs.2024.105827

Gemeente Rotterdam. (2025). Gemeentelijk vastgoed [Online; accessed 3 July2025]. https://www.
rotterdam.nl/gemeentelijk-vastgoed

Hurlimann, A., Moosavi, S., & Browne, G. R. (2021). Urban planning policy must do more to integrate
climate change adaptation and mitigation actions. Land Use Policy, 101, 105188. https://doi.
org/10.1016/j.landusepol.2020.105188

Kumar, S., Guntu, R. K., Agarwal, A., Villuri, V. G. K., Pasupuleti, S., Kaushal, D. R., Gosian, A. K., &
Bronstert, A. (2022). Multi-objective optimization for stormwater management by green-roofs
and infiltration trenches to reduce urban flooding in central delhi. Journal of Hydrology, 606,
127455. https://doi.org/10.1016/j.jhydrol.2022.127455

39

https://services1.arcgis.com/sbwSZYQOs4GMs7tr/ArcGIS/rest/services/dakvlakken2d_plus_1set_gdb/FeatureServer
https://services1.arcgis.com/sbwSZYQOs4GMs7tr/ArcGIS/rest/services/dakvlakken2d_plus_1set_gdb/FeatureServer
https://journals.open.tudelft.nl/abe/article/view/4125
https://journals.open.tudelft.nl/abe/article/view/4125
https://doi.org/10.1111/j.1475-3995.2005.00496.x
https://link-springer-com.tudelft.idm.oclc.org/chapter/10.1007/978-1-4419-5904-1_3
https://link-springer-com.tudelft.idm.oclc.org/chapter/10.1007/978-1-4419-5904-1_3
https://research-ebsco-com.tudelft.idm.oclc.org/c/54fx7q/search/details/notyylqy75?db=nlebk
https://research-ebsco-com.tudelft.idm.oclc.org/c/54fx7q/search/details/notyylqy75?db=nlebk
https://www.researchgate.net/publication/43796818_Preference-Based_Design_in_Architecture#fullTextFileContent
https://www.researchgate.net/publication/43796818_Preference-Based_Design_in_Architecture#fullTextFileContent
https://bouwstenen.nl/sites/default/files/uploads/actualisatie_vastgoedstrategie.pdf
https://bouwstenen.nl/sites/default/files/uploads/actualisatie_vastgoedstrategie.pdf
https://doi.org/10.1007/s10980-023-01644-8
https://dakenplan.nl/
https://pure.tudelft.nl/ws/portalfiles/portal/51464195/P_20170114194419_111_1.pdf
https://pure.tudelft.nl/ws/portalfiles/portal/51464195/P_20170114194419_111_1.pdf
https://doi.org/10.1016/j.scitotenv.2022.155307
https://doi.org/10.1016/j.scitotenv.2022.155307
https://doi.org/10.1016/j.scs.2024.105827
https://www.rotterdam.nl/gemeentelijk-vastgoed
https://www.rotterdam.nl/gemeentelijk-vastgoed
https://doi.org/10.1016/j.landusepol.2020.105188
https://doi.org/10.1016/j.landusepol.2020.105188
https://doi.org/10.1016/j.jhydrol.2022.127455

References 40

Langemeyer, J., Wedgwood, D., McPhearson, T., Bard, F., Madsen, A. L., & Barton, D. N. (2020).
Creating urban green infrastructure where it is needed — a spatial ecosystem service-based
decision analysis of green roofs in barcelona. Science of The Total Environment, 707, 135487.
https://doi.org/10.1016/j.scitotenv.2019.135487

Latifi, M., Darvishvand, F. G., Khandel, O., & Nowsoud, M. L. (2021). A deep reinforcement learning
model for predictive maintenance planning of road assets: Integrating LCA and LCCA [Version
3 revised 27 Nov 2023]. arXiv preprint arXiv:2112.12589. https://arxiv.org/abs/2112.12589

Liu, W., Qian, Y., Yao, L., Feng, Q., Engel, B. A., Chen, W., & Yu, T. (2022). |dentifying city-scale potential
and priority areas for retrofitting green roofs and assessing their runoff reduction effectiveness
in urban functional zones. Journal of Cleaner Production, 332, 130064. https://doi.org/10.1016/
jjclepro.2021.130064

Ministerie van Binnenlandse Zaken en Koninkrijksrelaties. (2024). Leefbaarheidsbarometer [Accessed
July 3, 2025].

Municipality of Rotterdam & B.V., A. N. (2024, March). Background report on key figures: LIFE@urban
roofs 3.0 (Technical Report) (Calculation tool version 3.0). LIFE@Urban Roofs / Municipality
of Rotterdam. https://dakenplan.nl/storage/docs/Background % 20report%20LIFE @ Urban%
20R00fs%203.0.pdf

Raaphorst, T. B. (2024). Raising the acceptance for a preference-based design methodology in the
context of urban development [Master’s thesis, Delft University of Technology]. https://reposit
ory.tudelft.nl/file/File_bf59e7ed-32d0-48db-bdf3-5e355064269b?preview=1

Roest, A. H., Weitkamp, G., van den Brink, M., & Boogaard, F. C. (2023). Mapping spatial opportunities
for urban climate adaptation measures in public and private spaces using a gis-based decision
support model. Sustainable Cities and Society, 96, 104651. https://doi.org/10.1016/j.scs.2023.
104651

United Nations. (2015). The millennium development goals report 2015 [Accessed July 3, 2025]. https:
/lunstats.un.org/unsd/mdg/Resources/Static/Products/Progress2015/MDG_Report_2015.pdf

Urban Land Institute. (2022). Enhancing resilience through neighborhood-scale strategies (Accessed
July 3, 2025). Urban Land Institute. Washington, DC. https://knowledge.uli.org/en/reports/
research-reports/2022/enhancing-resilience-through-neighborhood-scale-strategies

van Eijck, S., & Nannes, R. (2022). Preference-based decision support system for waelpolder: An a
priori design optimization approach (pdoa) as decision support system, applied to the urban
development of waelpolder [Master’s thesis, Delft University of Technology]. http://resolver.
tudelft.nl/uuid:36146902-4c0c-4d50-8643-59c067008978

van Heukelum, H., Binnekamp, R., & Wolfert, R. (2023). Human preference and asset performance
systems design integration. https://www.researchgate.net/publication/370058771_Human_
preference_and_asset performance_systems_design_integration

Wolfert, A. (2023). Open design systems. 10S Press BV.

Xiong, L., Lu, S., & Tan, J. (2023). Optimized strategies of green and grey infrastructures for integrated
control objectives of runoff, waterlogging and wwdp in old storm drainages. Science of The
Total Environment, 901, 165847. https://doi.org/10.1016/j.scitotenv.2023.165847

Yuan, Q., Meng, F., Li, W., Lin, J., Puppim de Oliveira, J. A., & Yang, Z. (2025). Tradeoff optimization of
urban roof systems oriented to food-water-energy nexus. Applied Energy, 380, 124987. https:
//doi.org/10.1016/j.apenergy.2024.124987

Zhang, J., Zheng, H., & Wu, B. (2024). Multi-objective optimization of distributed photovoltaics on build-
ing surfaces from visual impact. Journal of Asian Architecture and Building Engineering, 1-18.
https://doi.org/10.1080/13467581.2024.2397097

Zhilyaev, D., Binnekamp, R., & Wolfert, R. (2022). Best fit for common purpose: A multi-stakeholder
design optimization methodology for construction management. Buildings, 12(5), 527. https:
//doi.org/10.3390/buildings 12050527

https://doi.org/10.1016/j.scitotenv.2019.135487
https://arxiv.org/abs/2112.12589
https://doi.org/10.1016/j.jclepro.2021.130064
https://doi.org/10.1016/j.jclepro.2021.130064
https://dakenplan.nl/storage/docs/Background%20report%20LIFE@Urban%20Roofs%203.0.pdf
https://dakenplan.nl/storage/docs/Background%20report%20LIFE@Urban%20Roofs%203.0.pdf
https://repository.tudelft.nl/file/File_bf59e7ed-32d0-48db-bdf3-5e355064269b?preview=1
https://repository.tudelft.nl/file/File_bf59e7ed-32d0-48db-bdf3-5e355064269b?preview=1
https://doi.org/10.1016/j.scs.2023.104651
https://doi.org/10.1016/j.scs.2023.104651
https://unstats.un.org/unsd/mdg/Resources/Static/Products/Progress2015/MDG_Report_2015.pdf
https://unstats.un.org/unsd/mdg/Resources/Static/Products/Progress2015/MDG_Report_2015.pdf
https://knowledge.uli.org/en/reports/research-reports/2022/enhancing-resilience-through-neighborhood-scale-strategies
https://knowledge.uli.org/en/reports/research-reports/2022/enhancing-resilience-through-neighborhood-scale-strategies
http://resolver.tudelft.nl/uuid:36146902-4c0c-4d50-8643-59c067008978
http://resolver.tudelft.nl/uuid:36146902-4c0c-4d50-8643-59c067008978
https://www.researchgate.net/publication/370058771_Human_preference_and_asset_performance_systems_design_integration
https://www.researchgate.net/publication/370058771_Human_preference_and_asset_performance_systems_design_integration
https://doi.org/10.1016/j.scitotenv.2023.165847
https://doi.org/10.1016/j.apenergy.2024.124987
https://doi.org/10.1016/j.apenergy.2024.124987
https://doi.org/10.1080/13467581.2024.2397097
https://doi.org/10.3390/buildings12050527
https://doi.org/10.3390/buildings12050527

Validation 1terations - workshop at
Bress

The iterations below stem from a validation workshop with Stefan van de Schootbrugge. Figure A.1
shows, how different objectives, weights and curves where changed during iterations. The summary
tables show also the raw values from all the objectives of the iterations. Later, an interpretation of each
iteration is given, supported by visual choropleths.

Iteration Cost (€) | Annual Return (€) | CO; Red. (kg) | Biodiversity | Social Cohesion | Water Retention
1 789,650 33,886 12,792 1.0000 0.4677 0.5092
2 353,450 -4,962 0 0.8974 0.0000 0.4594
3 321,900 -4,518 0 0.8650 0.0000 0.4576
4 460,950 -6,462 0 0.9887 0.0000 0.5083
5 344,500 -1,627 1,706 0.6600 0.0000 0.7548
6 1,287,050 143,046 54,579 0.5875 0.9020 0.5831
7 1,010,950 92,277 104,042 0.5639 0.3480 0.6895
8 1,073,100 80,746 110,011 0.6847 0.5748 0.7272
9 1,002,200 102,238 224,286 0.2958 0.4301 0.3413
Iteration Cost Score Return Score CO, Score Biodiv. Score Social Score Water Score Pref. Score
1 171 73.7 0.0 100.0 77.6 61.6 100.00
2 84.5 0.0 0.0 89.7 0.0 55.6 87.11
3 92.0 0.0 0.0 86.5 0.0 55.4 89.23
4 88.5 0.0 0.0 98.9 0.0 61.4 96.79
5 91.4 0.0 0.0 66.0 0.0 94.9 84.83
6 38.7 86.3 0.2 58.7 99.3 89.4 71.88
7 74.5 83.0 1.1 56.4 72.0 92.9 7714
8 69.7 81.9 1.2 68.5 88.2 94.1 79.13
9 74.9 83.9 8.2 29.6 75.4 78.1 66.75

Table A.1: Performance of indicators and preference scores across 9 iterations.

41

42

Iteration 1:

Investment Cost Preference

O, Impact Preference

Social Impact Preference

Iteration 2:

Notinuse Not inuse Notinuse
Anmual 100
H
Notinuse £ Notinuse
i

Investment Cost Prefer ence (W 0,50)

€O, Impact Preference

Social Impact Preference

Iteration 3:

il Notinuse Notinuse
Annual . 050,
Not in use Not in use

Investment Cost Prefer ence (W 0,50)

€0, Impact Preference

Social Impact Preference

Not inuse Notinuse
Annual b 50)
Notinuse 3 Notinuse

Iteration 5:

Investment Cost Prefer ence (W 0,40]

€O, Impact Preference.

Notinuse

Social Impact Preference

Not in use

w030

Notinuse s H
Iteration7:
Investment Cost Preference (W 0.20) C0, Impact Preference SocialImpact Preference
Not in use Notinuse
X 25)
fe fof feo
i i i

Iteration 4:

Investment Cost Preference (W 0,20

CO, Impact Preference.

Social Impact Preferance

i, Not in use Not inuse
Not inuse ; Not inuse

Iteration 6:

Investment Cost Preference (W 0,20

cO, Impact Preference

Social Impact Preference

H

H Notinuse Not in use
“Annual 20) X 20

Iteration 8:

Investment Cost Profer ence (W 0,20

o, Impact Preference

Social Impact Preference

Iteration 9:

H Notinuse Not in use
“Annual

Investment Cost Preference (W 0,30)

CO, Impct Preference (W0,10)

SoclalImpact Preference (W0,10)

H
Annual Profit Preference (W 0,30) Biodiversity Impact Preference (W 0,10) Water Retention Impact Preference (W 0,10}
H g

Figure A.1: Optimized preference functions for the 9 iterations of the validation workshop

43

Iteration 1: Understanding neighborhood needs and biodiversity allocation

We initially focus on biodiversity impact (a single objective), to better understand how the model al-
locates roof types based on neighborhood needs. This objective is represented by an index ranging
from 0 to 1. A linear preference curve was used to maximize the biodiversity impact. The model allo-
cated biodiversity roofs to all flat rooftops, since these offer the highest contribution to biodiversity. This
was according to the expectation. Sloped roofs received sedum roofs, contributing less to biodiversity,
however the only feasible option for sloped surfaces, and therefore the best option.

We noted an exception in Neighborhood E, receiving a rather random mix of roof types. This may be
explained by the fact that Neighborhood E has a biodiversity need score of zero. Consequently, any
rooftop intervention results in a biodiversity impact score of zero, making all options equally valid. As
a result the model randomly allocated rooftops in such a situation.

Biodiversi
ﬂl‘l.’.-‘f‘.'}'l‘ﬂ'df‘i.gl" conl gl.‘(ﬂllﬂﬂ

:
=
LA L Ly

- [

; I h
[u o

B Sedum roof

R Biodiversity roof

=2 Solar panels

== Water storage roof
Em Commercial social roof
3 No intervention

Figure A.2: Iteration 1

44

Iteration 2: Introducing cost as a conflicting objective

Stefan suggested to test the model with an extra element and we added cost as conflicting objective
to see how the model would responds next to the biodiversity needs as a single objective. The cost
objective was modeled with a nonlinear preference curve, whereas the biodiversity impact preference
curve remained linear. Both objectives were assigned equal weights (50/50).

A more nuanced allocation pattern was demonstrated by the model, at this iteration. The model started
to weigh cost against impact; selecting either sedum or intensive biodiversity roofs, based on the bal-
ance of the costs and contribution to biodiversity.

* In Neighborhood A (with the highest biodiversity need), all roofs were assigned either a biodi-
versity or sedum roof.

* In Neighborhood D (2nd highest need), most rooftops were assigned, except for three surfaces
(buildings D_2, D_D_1, and D_3). The three surfaces received no intervention at all, probably
due to unfavorable cost-benefit tradeoffs.

* In Neighborhood B (3rd highest need), only biodiversity roofs were applied and no sedum roofs
were applied. Some rooftops received no intervention, indicating a stricter application of tradeoffs.

* In Neighborhood C (low biodiversity need), only a few rooftops received biodiversity roofs. For
example, Neighborhood B received 300 m2 of interventions, whereas Neighborhood C received
only 240 m2. This demonstrated that the model applies lower-impact interventions in areas with
less need.

* Neighborhood E, with zero biodiversity need, received no interventions in this iteration. In con-
trast with Iteration 1, where the absence of a cost objective resulted in random allocation. With this
Iteration 2, the model correctly assigns zero-cost interventions in situations where the expected
benefit is also zero.

Biodiversit
Optimized design conhguration

A B C o E
L }
E we | e
¥ L1 0]]

B Sedum roof

B Biodiversity roof

= Solar panels

= Water storage roof
@ Commercial social roof
=3 Mo intervention

Figure A.3: Iteration 2

45

Iteration 3: Adjusting the cost preference curve

After carefully reviewing the results of the first two iterations, we revisited the steepness of the cost
preference curve. We assumed that the original curve penalized higher costs too strongly. In order to
test this, we created a less steep cost curve, and thus allowing for a more gradual drop in preference
at increasing costs levels.

After running the model we saw that this adjustment had a rather subtle but noticeable impact. Since
the upper end of the curve (representing lower costs) after this adjustment, received higher preference
values, the model became somewhat more sensitive to cost again. As a consequence, the overall
investment decreased, though the rooftop allocation pattern remained mostly similar.

The most noticeable difference occurred in Neighborhood C, characterized by relatively low biodiver-
sity needs. In this neighborhood, a smaller area of biodiversity roofs was allocated in comparison to
the previous iteration. This clearly demonstrates how even minor changes in preference curve shapes,
can influence allocation decisions, particularly in areas with less pressing needs.

Biodiversit
Optimized design configuration

A B c D E
wio]wo|m=) 1 ﬂ
F - i =] e | W
e] 1= UWH
ca E D4 4 |y w |w) e b ®
LA E] ol 1o o D S Iul &
&0 o

B Sedum roof

B Biodiversity roof

£ solar panels

== Water storage roof
Em Commercial social roof
=1 Mo intervention

Figure A.4: Iteration 3

46

Iteration 4: changing the relative importance of objectives

In this iteration we tested how the relative weighting of objectives would have an impact on rooftop
allocation. In the first three iterations iterations, both biodiversity impact and investment cost were
equally weighted at 0.50 each.

To put more emphasis on biodiversity, the weights were adjusted as follows:
* Biodiversity: 0.80
* Investment cost: 0.20
The impact of the adjustment was immediately shown:
* The total assigned rooftop surface area increased to 460,950 m2.
+ A significantly higher number of rooftops received either sedum or biodiversity roofs.

+ Also, areas with lower needs for biodiversity (such as the neighborhoods C and B) obtained more
interventions, showing the higher priority put on maximizing the impact over minimizing the costs.

This fourth iteration shows how the model responds to strategic priorities selected by the portfolio
owner. By manipulating the weights of the model, users may actively manage the outcome towards
the sustainability objectives, they are aiming for.

Biodiversity
Optimuzed design conliguration

A] C D E

o

El Sedum roof

W Biodiversity roof

O Solar panels

== Water storage roof
B Commercial social roof
=3 Mo intervention

Figure A.5: Iteration 4

47

Iteration 5: Adding water impact as a third objective

In this scenario the portfolio owner introduced water retention as a third objective and chose a non-
linear preference curve. Earlier on we already commented on the fact that sedum and biodiversity
roofs offer some water retention, although less so than blue roofs. The latter are specifically designed
for that purpose. The weights chosen for the various objectives were: 0.40 for investment cost, 0.30 for
biodiversity impact, and 0.30 for water impact. In Neighborhood A (high biodiversity and water needs)
the model allocated a mix of sedum, biodiversity, and blue roofs. Neighborhood B (as neighborhood
A also with high water needs) obtained several blue roofs.

Biodiversit
Optimized design configuration
A B C D E
cill=m =] == E2 }
c2 o | uo E2 1 | we
£3 o E3 e e

Surface water overload
Optimized design configuration

C

SRIENE] E AN B E_L ﬂ
3 ||m] ue D2 E ne | »e
ca|] = o 0.3

cs || = | =] nuI 0

Bl Sedum moof

R Biodiversity roof

£ Solar panels

=0 ‘Water storage roof
Em Commercl $ocial ool
=0 N interventsan

Figure A.6: Iteration 5

48

Iteration 6: Introducing annual return as objective

This sixth iteration we tested how the model reacts if annual return is added as a dominant objective. In-
vestments in rooftops may provide financial returns; advantages for instance by providing solar energy
and savings, as well as for commercial use. Based on Stefan’s experience, an attractive investment is
expected to have a payback period of about 12 years.

To simulate this, the weights were set as follows: annual return at 0.40, and investment cost, biodi-
versity, and water impact each at 0.20. The model gave priority to profitable rooftop types, especially
in Neighborhoods C and E with low biodiversity and/or water needs. This result is fully aligned with
the model’s logic: in areas with limited neighborhood needs, financial return is considered as more
important.

The result was a total investment of 1,287,050 EUR and an expected annual return of 143,046 EUR,
yielding a payback period of 9 years. This is considered to be within an acceptable range. However,
the investment exceeded a 1 million EUR budget, asking for a new iteration to adjust weights and/or
apply a stricter budget constraint.

Biodiversity
Oplrmuled desapn configuralion

ca L

H Sedum roof

R Bicdreeruty ool

=1 Solar panets

== Water storage roof
E Commercial social Focl
=3 Mo inkeraenton

Figure A.7: lteration 6

49

Iteration 7: Adjusting weights to target a 1 million investment

To meet the 1 million EUR budget requirement, the weights of the model were adjusted as follows;
investment cost was increased to 0.30 and the weight for annual return was lowered to 0.30. Biodi-
versity and water retention were both set at 0.25. The model then generated a total investment need
of 1,010,950 EUR and expected an annual return of 92,277 EUR. The payback period is then approx-
imately 11 years, according to Stefan’s within an acceptable range. However, Stefan also shared his
concerns about the of the believability of these results. With the rather high performance on sustain-
ability of the selected rooftops, Stefan considered the high financial return as rather optimistic. This
may imply that the model overestimates the financial returns and/or underestimates the costs for cer-
tain roof types. This seventh iteration emphasizes the need to validate the input data as well as the
assumptions when making financial performance part of a sustainability model.

Biodiversity
Optvrred dessgn confguratnan

Surface water overload
Opbmared desgn configurabon

B Sedum rood

B Beddvesrsity rool

=) Sodar paneis

= Water storage ool
 Commerosl soial rool
=3 Mo vtErvention

Figure A.8: Iteration 7

50

Iteration 8: Adjusting parameters annual return for social commercial roof

The annual return for quite a sustainable investment seems a bit to high, this is why Stefan wanted to
have a look at the input parameters, which are used for solar panels and social commercial roof. The
annual return for social commercial roofs /m2 was 90, this value was changed to 70. Within the output
it becomes visible, that solar panels are more often assigned then commercial roofs. This stems from
the slightly, almost negligible, better annual return of solar panels.

Biod iversi%
ﬂilrllrl'.n'ﬂfl'kl.lr [4-] AF Aecn

Surface water overload
Optimu e Seign ¢onfguaranan

Sedum ool
Bindreersaly roof

Salar pansh

Water siarage rool
Commrcial social rood
Mo interventson

gaoonn

Figure A.9: Iteration 8

51

Iteration 9: Adding final ojectives social cohesion and CO,

To efficiently allocate the rooftops and to trust data where social cohesion is low, this portfolio owner
wants to strategically allocate the social commercial roofs, also CO, was introduced as objective to
express the importance of solar panels not only in annual return due to energy savings but also to
see how much CO, can be avoided. The eventual investment cost where 1,002,200, with an annual
return of 102,238 , which is a payback period of around 10 years. This final result was accepted as
an interesting final design configuration. When we look how rooftops are allocated it now becomes
clear how the model carefully allocates the roof types. The social commercial roofs (red) are only
allocated in the neighborhoods C and E which have the highest neighborhood need of 80 and 70.
For the water impact roofs, they are only assigned to neighborhoods with the highest water needs
A and B. Biodiversity and sedum roofs are only allocated at the 3 neighborhoods with highest need
for biodiversity A,B and D. Solar panels are distributed to ensure annual return and the final design
configuration was accepted.

52

Social cohesion
Optirmired design configuration

ad

g L = £l o |l i e ow | o | -
S

&3 By a g i o= :WH-IIU
L

...I.u. .

Bindiversisy
Opirwred design configurabon

B C [s] E

e [l lml m] o . :u:nuﬂ
|- 1l

o] HH

H -] -
o G0 iE N BEEEE

Surface water overload
Optimired design configuratian

C o E
ciffmim] = | = oo |l oe fef w | owe | o= [} I
po e = e | N
B e [ERILAR 8]

Sedum roof
Brodmversity roof

Solar panets

Water storage roof
Commercial social roof
No intervention

geoong

Figure A.10: lteration 9

5

Python code - optimization

See code next page.

53

02-07-2025, 08:50 Python code Multi objective optimization

Multi-objective Optimization Notebook

This notebook is structured into three chapters:

1. Plotting and visualizing data sets

* Plot roof surfaces portfolio
* Plot neighborhoods
® Plot portfolio and neighborhoods

2. Optimization model

* Import libraries and genetic algorithm

® load input data

® Build feasible design space for optimization
® Objective function formula definitions

¢ Defining and plotting preference curves

* Define bounds

* Define constraints

® Define weights

¢ Define objective function for algorithm

® Run and adjust algorithm

3. Visualizing and loading results

* Optimized output statistics

® Preference functions with optimized points

* Plot portfolio and optimized roof surfaces

* Optimized portfolio as overlayer over neighborhoods

Remarks

This code follows the general structure, of the deepnote environment from TUDELFT-
ODESYS. Therefore it contains similar structure and similar parts of code as provided in
the examples. For more insights visit: https://deepnote.com/workspace/tudelft-odesys-
e3302e92-17a2-4a90-b40f-45cdf271893a/project/OPEN-DESIGN-SYSTEMS-e410fe0f-
e33d-4092-8e69-745b3b09d0eb/notebook/Chapter-8-DA4-South-Korean-floating-wind-

farm-ed75b0a5c01d4ab1948c7cc88ba31ea5

For coding, debugging, style, variable names, and titles, CHATGPT has been used.

1. Plotting and visualizing data sets

file:///C:/Users/fdjpa/Downloads/Python code Multi objective optimization.html

1/31

02-07-2025, 08:50 Python code Multi objective optimization
Plot roof surfaces portfolio

We start with visualizations of the current data frames, starting with a plot of the roof

surfaces of the portfolio.

Visualize roof surface units per building with scaled width

import matplotlib.pyplot as plt
import pandas as pd

import matplotlib.patches as patches
import numpy as np

Load data
roof_data_path = "./Data_mockup/Colored_Roof_Surface_Data test.xlsx"
roof_df = pd.read_excel(roof_data_path, sheet_name='Sheetl")

Clean column names and rename
roof_df.columns = [col.strip() for col in roof_df.columns]
roof_df = roof_df.rename(columns={

'Bag_ Pand_ Id': 'Building’,

'Object dak unit id': 'Surface_ID',

'oppervlak': 'Area‘,

'Helling graden': 'Slope’,

'Object label (schuin/ plat)': 'Type',

'Buurt': 'Buurt’

1}

Calculate total area per building
building totals = roof_df.groupby('Building')["Area’].sum()
global max_area = building_ totals.max()

Group by building
grouped = roof_df.groupby('Building")

Create plot
fig, axs = plt.subplots(6, 5, figsize=(18, 10))
axs = axs.flatten()

for i, (building_id, group) in enumerate(grouped):
ax = axs[i]
buurt = group['Buurt'].iloc[0]
ax.set_title(f"{building_id} ({buurt})", fontsize=10)

X_start = 0
for _, row in group.iterrows():
type_str = str(row['Type']).strip().lower()
color = 'gray' if type_str == 'plat' else 'mediumpurple’
width = row['Area']
rect = patches.Rectangle((x_start, 0.1), width, 0.8, edgecolor="black',
ax.add_patch(rect)
ax.text(x_start + width / 2, 0.5, f"{int(width)}", ha='center', va='cent
x_start += width

Use global scale for all buildings
ax.set_xlim(@, global max_area * 1.05)
ax.set_ylim(e, 1)

ax.set_xticks(np.linspace(9, global _max_area, 4))
ax.set_xlabel("m2")

file:///C:/Users/fdjpa/Downloads/Python code Multi objective optimization.html 2/31

02-07-2025, 08:50

ax.set_yticks([])
ax.grid(True, axis='x', linestyle='--', alpha=0.3)

Hide unused subplots
for j in range(i + 1, len(axs)):
axs[j].axis('off")

Add legend
legend_elements = [
patches.Patch(facecolor="gray', edgecolor='black', label='Flat roof'),

patches.Patch(facecolor="mediumpurple', edgecolor="black', label='Sloped roc

]

Python code Multi objective optimization

fig.legend(handles=legend_elements, loc='lower right', fontsize=10)

plt.tight_layout()

plt.show()

A1 (A)

A2 (A)

A3 (A)

A4 (A)

A5 (A)

0.0 163.3 326.7

B_1(B)

490.0

Q-

163.3 326.7

B_2 (B)

490.0

o

163.3 326.7

B_3(B)

490.0

0.0 163.3 326.7 490.0

B 4(8)

163.3 326.7 490.0

B_5(B)

4. Q

o °
=. ﬂ

163.3 326.7

ci©

490.0

0.0 163.3 326.7

c2(©

490.0

0.0 163.3 326.7

c3(©

490.0

0.0 163.3 326.7 490.0

ca(c)

163.3 326.7 490.0

cs(

0.0 163.3 326.7

D_1 (D)

490.0

0.0 163.3 326.7

D_2 (D)

490.0

0.0 163.3 326.7

D_3 (D)

490.0

Q-

0. 163.3 326.7 490.0

D_4 (D)

0.0 163.3 326.7 490.0

D5 (D)

0.0 163.3 326.7 490.0 0.0 163.3 326.7 490.0 0.0 163.3 326.7 490.0 0.0 163.3 326.7 490.0 0.0 163.3 326.7 490.0
e me m m m
E_1(E) E_2 (E) E_3 (E) E_4 (E) E_5 (E)
.0 163.3 326.7 490.0 0.0 163.3 326.7 490.0 0.0 163.3 326.7 490.0 0.0 163.3 326.7 490.0 0.0 163.3 326.7 490.0

B Flat roof

0 sloped roof

This plot above shows the roof surfaces of the portfolio of 25 buildings. It shows how

each rooftop surface is distributed per building, with surface width proportional to its

area (in m?). Each rectangle represents a surface unit, colored by roof type: flat roofs in

gray and sloped roofs in purple. Buildings are grouped by their BAG Pand ID, and all

plots use the same x-axis scale for comparability. A_1, for example is building 1 in

neighborhood A.

Plot neighborhoods

Below the data is plotted for neighborhoods and their challenges.

import pandas as pd
import matplotlib.pyplot as plt

import matplotlib.colors as mcolors

from matplotlib.patches import Rectangle

Load Excel
file_path = './Data_mockup/Buurten_need.xlsx"’
df = pd.read_excel(file path, sheet_name='Sheetl")

file:///C:/Users/fdjpa/Downloads/Python code Multi objective optimization.html

3/31

02-07-2025, 08:50

Python code Multi objective optimization

Skip first row and rename columns

df = df.iloc[1:]

df.columns = ['Symbol', 'Nsoc', 'Nbio', 'Nwat', 'Abuurt']
df.set_index('Symbol', inplace=True)

Convert to numeric
df[['Nsoc', 'Nbio', 'Nwat']] = df[['Nsoc', 'Nbio', 'Nwat']].apply(pd.to_numeric,

Updated choropleth function with neighborhood Labels underneath
def plot_block_choropleth(data, title, cmap_name):

values = data.values.astype(float)

labels data.index

cmap = plt.colormaps.get_cmap(cmap_name)

norm = mcolors.Normalize(vmin=0, vmax=100)

colors = cmap(norm(values))

fig, ax = plt.subplots(figsize=(len(values), 2.8))

for i, (val, color, label) in enumerate(zip(values, colors, labels)):
ax.add_patch(Rectangle((i, ©.5), 1, 1, color=color))
ax.text(i + 0.5, 1.9, f"{int(val)}", va='center', ha='center', fontsize=
ax.text(i + 0.5, 0.2, label, va='center', ha='center', fontsize=12, colc

ax.set_xlim(@, len(values))
ax.set_ylim(e, 1.5)
ax.set_xticks([])
ax.set_yticks([])
ax.set_title(title, fontsize=14)
ax.axis('off")
plt.tight_layout()

plt.show()

Run the plots
plot_block_choropleth(df['Nsoc'], 'Social cohesion', 'Reds')

plot_block_choropleth(df['Nbio'], 'Biodiversity', 'Greens')
plot_block_choropleth(df['Nwat'], 'Surface water overload', 'Blues')

Social cohesion

20

file:///C:/Users/fdjpa/Downloads/Python code Multi objective optimization.html

4/31

02-07-2025, 08:50 Python code Multi objective optimization

Biodiversity

0

A B C D E
Surface water overload

0 20 10

A B C D E

The plot above shows the need scores for social cohesion, biodiversity, and surface water
overload across neighborhoods, based on the dataset Buurten_need.xlsx.

Each colored block represents a single neighborhood (labeled underneath), and the color
intensity indicates the urgency or priority level on a scale from 0 to 100. The color

mapping within each plot is to highlight relative differences between neighborhoods A-E.
Plot portfolio and neighborhoods

The code below is used to plot an overview of which buildings from the portfolio are

located in which neighborhood, the individual building plots have been overlaid.

import pandas as pd

import matplotlib.pyplot as plt
import matplotlib.patches as patches
import matplotlib.colors as mcolors
import numpy as np

Load data

neigh_file = './Data_mockup/Buurten_need.xlsx'

df = pd.read_excel(neigh_file, sheet_name='Sheetl")

df = df.iloc[1:]

df.columns = ['Symbol', 'Nsoc', 'Nbio', 'Nwat', 'Abuurt']
df.set_index('Symbol', inplace=True)

file:///C:/Users/fdjpa/Downloads/Python code Multi objective optimization.html 5/31

02-07-2025, 08:50 Python code Multi objective optimization

df.index = df.index.astype(str).str.strip()

roof_data_path = './Data_mockup/Colored_Roof_Surface_Data test.xlsx'
roof_df = pd.read_excel(roof_data_path, sheet_name='Sheetl")
roof_df.columns = [col.strip() for col in roof_df.columns]
roof_df = roof_df.rename(columns={

'Bag_ Pand_ Id': 'Building’,

'Object dak unit id': 'Surface_ID',

'oppervlak': 'Area‘,

'Helling graden': 'Slope’,

'Object label (schuin/ plat)': 'Type',

'Buurt': 'Neighborhood’

})
roof_df['Neighborhood'] = roof_df['Neighborhood'].astype(str).str.strip()

building totals = roof_df.groupby('Building')["Area’].sum()
global_max_area = building_totals.max()

Plot function
def plot_neighborhood_roofs_with_challenge(theme_col, title, cmap_name):
challenge_data = df[theme_col].to_dict()

neighborhoods = sorted(roof_df['Neighborhood'].unique())
buildings_per_neigh = {n: roof_df[roof df['Neighborhood'] == n].groupby('Bui

fig, ax = plt.subplots(figsize=(14, 6))

bar_width = 1

bar_gap = 0.3
building_height = 0.12
roof_gap = 0.02

cmap
norm

plt.colormaps.get_cmap(cmap_name)
mcolors.Normalize(vmin=0, vmax=100)

for i, neighborhood in enumerate(neighborhoods):
challenge _val = challenge_data.get(neighborhood, 9)
neigh_color = cmap(norm(challenge_val))

x_pos = i * (bar_width + bar_gap)
ax.add_patch(patches.Rectangle((x_pos, 0), bar_width, 1, facecolor=neigh

Neighborhood Label above the bar
ax.text(x_pos + bar_width / 2, 1.07, f"{neighborhood}",
ha="'center', va='bottom', fontsize=10)

Challenge value inside the bar
ax.text(x_pos + bar_width / 2, ©.02, f"{challenge_val:.of}",
ha="'center', va='bottom', fontsize=9, color='black', fontweight=

grouped = buildings_per_neigh[neighborhood]
for j, (building_id, group) in enumerate(grouped):
y_base = 0.85 - j * (building_height + roof_gap)
x_building = x_pos + 0.05
x_start = x_building
for _, row in group.iterrows():
type_str = str(row['Type']).strip().lower()
color = 'gray' if type_str == 'plat' else 'mediumpurple’
width = row['Area'] / global_max_area * (bar_width - 0.1)
rect = patches.Rectangle((x_start, y base), width, building heig

file:///C:/Users/fdjpa/Downloads/Python code Multi objective optimization.html 6/31

02-07-2025, 08:50

Python code Multi objective optimization

ax.add_patch(rect)

Area Label

ax.text(x_start + width / 2, y_base + building_height / 2, f"{in
ha='center', va='center', fontsize=6, color='black")

x_start += width + 0.005

Building ID label on the left
ax.text(x_pos - 0.05, y base + building_height / 2, building_id,
va='center', ha='right', fontsize=7)

ax.set_xlim(@, len(neighborhoods) * (bar_width + bar_gap))
ax.set_ylim(e, 1.2)
ax.axis('off")

Legend just next to the last bar
x_last = (len(neighborhoods) - 1) * (bar_width + bar_gap)
x_legend = x_last + bar_width + 0.1
axis_width = len(neighborhoods) * (bar_width + bar_gap)
legend_x_frac = x_legend / axis_width

legend_elements = [
patches.Patch(facecolor="gray', edgecolor='black', label='Flat roof'),
patches.Patch(facecolor="mediumpurple', edgecolor="black', label='Sloped

]

ax.legend(handles=1legend_elements, loc='lower left', bbox_to_anchor=(legend_

Title and subtitle
fig.text(0.41, 0.91, f"{title}", ha="center', va='center', fontsize=14)
fig.text(0.41, 0.88, 'Current state portfolio', ha='center', va='center', fc

plt.tight layout(rect=[0, ©.05, ©0.88, 0.91])
plt.show()

Run for each theme

plot_neighborhood roofs _with_challenge('Nsoc', 'Social cohesion', 'Reds')
plot_neighborhood_roofs with_challenge('Nbio', 'Biodiversity', 'Greens')
plot_neighborhood_roofs with_challenge('Nwat', 'Surface water overload', 'Blues’

Social cohesion
Current state portfolio

B C

w
i [
=
=

I I U

B Flat roof
[Sloped roof

.

(-] bl
@
s

20

file:///C:/Users/fdjpa/Downloads/Python code Multi objective optimization.html 7131

02-07-2025, 08:50 Python code Multi objective optimization

Biodiversity
Current state portfolio

El

E2

E3

E4

ES

B Flat roof
I Sloped roof

Surface water overload
Current state portfolio

E1l

E2

E3

EA4

ES

B Flat roof
[Sloped roof

5 m o m

This combined plot above helps to quickly see which buildings belong to which
neighborhood.

2. Optimization model

Import libraries and genetic algorithm

from genetic_algorithm_pfm import GeneticAlgorithm

Import Libraries

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from scipy.interpolate import pchip_interpolate

Load inputdata

file:///C:/Users/fdjpa/Downloads/Python code Multi objective optimization.html 8/31

02-07-2025, 08:50 Python code Multi objective optimization

There are three data sets that need to be loaded. First, the data set containing information
on roofs of the building portfolio, including their roof surfaces, slope, surface area, and
the neighborhoods they belong to. Second, the data set outlining neighborhood
challenges, specifically biodiversity, social cohesion, and water surface overload, which
have been selected for this example. Lastly, the data set describing possible rooftop
interventions and the characteristics of each roof type.

Load and clean roof, buurt, and dak parameter data
import pandas as pd

File paths

roof_data_path = "./Data_mockup/Colored_Roof_Surface_Data test.xlsx"
buurten_path = "./Data_mockup/Buurten_need.xlsx"
dak_params_path = "./Data_mockup/Dak parameters.xlsx"

Load roof data
roof_df = pd.read_excel(roof_data_path, sheet_name="Sheetl")
roof_df.columns = [col.strip() for col in roof_df.columns]
roof_df = roof_df.rename(columns={

'Bag_ Pand_ Id': 'Building’,

'Object dak unit id': 'Surface_ID',

'oppervlak': 'Area‘,

'Helling graden': 'Slope’,

'Object label (schuin/ plat)': 'Type',

'Buurt': 'Buurt'’

1}

Load BUURTEN NEEDS (neighborhood)

buurten_raw = pd.read_excel(buurten_path, sheet_name="Sheetl")
buurten_df = buurten_raw.iloc[1:].copy().reset_index(drop=True)
buurten_df.columns = ['Buurt', 'Nsoc', 'Nbio', 'Nwat', 'Abuurt']
for col in ['Nsoc', 'Nbio', 'Nwat']:

buurten_df[col] = pd.to_numeric(buurten_df[col], errors='coerce")

Load DAK PARAMETERS (roof type)

dak_raw = pd.read_excel(dak_params_path, sheet_name="Sheetl")
dak_df = dak_raw.iloc[1:].copy().reset_index(drop=True)

Rename columns

dak_df.columns = [
'Dak kleur', 'Omschrijving', 'Max hellingsgraad', 'Crepl', 'Cinst’,
'Gewicht dak', 'Waterberging', 'Cmaint', 'Levensduur', 'WOZ increase’,
'ROI', 'Biodiv effect', 'Sociaal effect', 'Water effect'

]

Replace commas with dots and convert to numeric
for col in ['Crepl', 'Cinst', 'Gewicht dak', 'Waterberging', 'Cmaint’,
"Levensduur', 'WOZ increase', 'ROI',
'Biodiv effect', 'Sociaal effect', 'Water effect']:
dak_df[col] = dak_df[col].astype(str).str.replace(',"', '.")
dak_df[col] pd.to_numeric(dak_df[col], errors='coerce')

Print first few rows data sets

file:///C:/Users/fdjpa/Downloads/Python code Multi objective optimization.html 9/31

02-07-2025, 08:50

print("Roof data:")

Python code Multi objective optimization

display(roof_df.head())

print("\nBuurten needs:")
display(buurten_df.head())

print("\nDak parameters:")
display(dak_df.head())

Roof data:

0

Building Surface_ID

A1 1
A1 2
Al 3
A1 4
A1 5

Buurten needs:

4

Buurt Nsoc Nbio

A 0 100
B 30 60
C 70 40
D 20 80
E 100 0

Dak parameters:

0

4

Dak

Kleur Omschrijving

Geen Geeningreep

Groer11 Sedium dak
Groeg Natuurdak
Sociaal

Ao Tuindak

Blauw Blauw dak

Area Slope Type Buurt

30 0 plat
110 0 plat
50 5 schuin

40 25 schuin

30 25 schuin

Nwat Abuurt

100 NaN
70 NaN
0 NaN
20 NaN
10 NaN
Max

Crepl

hellingsgraad rep

90 0

45 45

4 45

0 45

0 45

A

A

A

A

A
Cinst Gewicht Waterberging Cmaint

dak

0 0 0 0.0
50 80 20 1.2
75 300 45 1.8
500 600 20 10.0
150 250 150 2.0

4 G —

Build feasible design space for optimization

The first two datasets to be merged are roof_df and buurten_df, that is, the roof data of

the current portfolio and the data on neighborhood needs. These datasets can be

merged using the common column 'neighborhood'. The third dataset, which contains

possible roof interventions, is later combined using a Cartesian product. Each roof

file:///C:/Users/fdjpa/Downloads/Python code Multi objective optimization.html

Lev

10/31

02-07-2025, 08:50

Python code Multi objective optimization

surface is paired with every possible roof intervention. The result is a dataset
(design_space_df) with all the possible roof types on each roof surface.

Constraint: Before optimization, a feasibility constraint is already applied. This is
explained in the section on constraints and bounds, where the actual slope of the current
roof surface must be less than or equal to the maximum allowable slope of the proposed
roof type intervention.

from itertools import product

Merge roof surfaces with buurt needs
roof_with_needs = pd.merge(roof_df, buurten_df, on='Buurt', how='left")

Create cartesian product (each surface with every roof type)
surface_ids = roof_with_needs.index

roof_type_ids = dak_df.index

combinations = list(product(surface_ids, roof_type_ids))

Build expanded dataframe

expanded_rows = []

for surface_idx, roof_type idx in combinations:
surface = roof_with_needs.loc[surface_idx]
roof_type = dak_df.loc[roof_type_idx]

Always include 'Geen' regardless of slope
if roof_type['Dak kleur'].strip().lower() != 'geen':

FEASIBILITY CONSTRAINT: the actual slope of current roofsurface <= max

if surface['Slope'] > roof_type['Max hellingsgraad']:
continue

expanded_rows.append({
'Surface_ID': surface['Surface_ID'],
'Building': surface['Building'],
'Buurt': surface['Buurt'],
'"Area': surface['Area'],
'Slope': surface['Slope'],
'Nsoc': surface['Nsoc'],
'Nbio': surface['Nbio'],
"Nwat': surface['Nwat'],
'Dak type': roof_type['Dak kleur'].strip(),
'"Crepl': roof_type['Crepl'],
"Cinst': roof_type['Cinst'],
'"Cmaint': roof_type['Cmaint'],
'ROI': roof_type['ROI'],
'Biodiv effect': roof_type['Biodiv effect'],
'Sociaal effect': roof_type['Sociaal effect'],
'"Water effect': roof_type['Water effect']

1)

Final design space is the result, all the possible rooftypes which could be on

design_space_df = pd.DataFrame(expanded_rows)

print(f"Feasible design options generated: {len(design_space_df)} rows")
display(design_space_df.head())

Feasible design options generated: 372 rows

file:///C:/Users/fdjpa/Downloads/Python code Multi objective optimization.html

11/31

02-07-2025, 08:50

Python code Multi objective optimization

Surface_ID Building Buurt Area Slope Nsoc Nbio Nwat tI;;'e(Crepl Cinst Cn
0 1 AT A 30 0 0 100 100 Geen 0 0
1 1 AT A 30 0O 0 100 100 Groe? 45 50
2 1 AT A 30 0O 0 100 100 Groe; 45 75
3 1 A_T A 30 0 0 100 100 Rood 45 500
4 1 A_1 A 30 0 0 100 100 Blauw 45 150
< CEE e — >

Above we see the head of the dataframe, which forms the design solution space. All

unique Surface_IDs have gotten rows with their possible 'DAK Type ," which is the possible

rooftop intervention.

Objective functions formula definitions

Formulas of the objective functions are defined below.

Define formulas for 6 objective functions

def

def

def

def

def

calculate_investment_cost(df):
"""[1] Calculate total investment cost across selected roof types.
return np.sum(df['Area'] * (df['Crepl'] + df['Cinst']))

calculate_annual_profit(df):
"""[2] Calculate total net financial return per year.
return np.sum(df['Area'] * (df['ROI'] - df['Cmaint']))

calculate_co2_impact(df, co2_per_m2=85.28):

"""[3] Calculate total CO, avoided (kg/year), only for yellow ('Geel') roofs
geel mask = df['Dak type'].str.lower() == 'geel’

return np.sum(df.loc[geel mask, 'Area']) * co2_per_m2

calculate_biodiversity impact(df, gamma=1.2, delta=2, max_value=0.2559):
"""[4] Calculate normalized Total Biodiversity Impact Score (scaled to max=1
weighted_sum = np.sum(
df['Area’] *
(df['Biodiv effect'] / 100) ** gamma *
(df['Nbio'] / 1@0) ** delta
)
total _area = np.sum(df['Area’])
raw_score = weighted_sum / total_area if total_area > 0 else @
return min(raw_score / max_value, 1.0) # Clamp at 1 to avoid overshoot

calculate_social_impact(df, gamma=1.2, delta=2, max_value=0.1693):
"""[5] Calculate normalized Total Social Cohesion Impact Score (scaled to ma
weighted_sum = np.sum(
df['Area'] *
(df['Sociaal effect'] / 100) ** gamma *
(df['Nsoc'] / 1e0) ** delta
)
total_area = np.sum(df['Area'])

file:///C:/Users/fdjpa/Downloads/Python code Multi objective optimization.html

12/31

02-07-2025, 08:50 Python code Multi objective optimization

raw_score = weighted_sum / total_area if total_area > 0 else ©
return min(raw_score / max_value, 1.0)

def calculate_water_impact(df, gamma=1.2, delta=2, max_value=0.1288):
"""I6] Calculate normalized Total Water Retention Impact Score (scaled to ma
weighted_sum = np.sum(
df['Area’] *
(df['Water effect'] / 100) ** gamma *
(df['Nwat'] / 100) ** delta
)
total_area = np.sum(df['Area'])
raw_score = weighted_sum / total_area if total_area > 0 else @
return min(raw_score / max_value, 1.0)

Defining and Plotting preference curves

Preferences and outcomes of objectives are defined and plotted.

load Llibraries

import matplotlib.pyplot as plt

import numpy as np

from scipy.interpolate import pchip_interpolate

Decision-maker-defined preference points:
x point: is the ouctome of the objective to which a preference score 1is define
y pont: corresponding preference score

1. Investment Cost (€) - Lower is better
X_cost = [0, 600000, 1 000 000, 1 500 000, 2 300 000]
y_cost = [1@0, 85, 75, 15, @]

2. Annual Profit (€/yr) - higher 1is better
x_profit = [0, 10 000, 20 000, 200 000, 310 000]
y profit = [0, 40, 70, 90, 100]

3. CO» Avoided (kg/year) - higher is better
X_co2 = [0, 310_000, 320 000, 400 000, 500 000]
y_co2 = [@, 20, 50, 75, 100]

4. Bilodiversity Impact Score [0-1] - higher 1is better
x_bio = [0, 0.7, 0.8, 0.9, 1.0]
y _bio = [0, 70, 80, 90, 100]

5. Social Cohesion Impact Score [0-1] - higher 1is better
X_soc = [0.0, ©.05, 0.5, 0.6, 1.0]
y_soc = [0, 50, 80, 90, 100]

6. Water Retention Impact Score [0-1] - higher 1is better
x_water = [0.0, 0.05, 0.3, 0.6, 1.0]
y_water = [0, 30, 75, 90, 100]

Plot the defined preference functions with points defined from above so decisi

fig, axs = plt.subplots(3, 2, figsize=(12, 12))
axs = axs.flatten()

x_curves = [x_cost, x_profit, x_co2, x_bio, x_soc, x_water]

y_curves = [y_cost, y_profit, y co2, y bio, y_soc, y water]
titles = [

file:///C:/Users/fdjpa/Downloads/Python code Multi objective optimization.html 13/31

02-07-2025, 08:50 Python code Multi objective optimization

'Investment Cost Preference',
'Annual Profit Preference’,
'CO, Avoided Preference',
'Biodiversity Impact Preference’,
'Social Cohesion Impact Preference’,
'Water Retention Impact Preference'’
1
xlabels = [
'Total Cost [£]°,
'Annual Profit [€/yr]’',
'CO, Avoided [kg/year]',
'Biodiversity Impact Score [0-1]",
'Social Cohesion Score [0-1]",
'"Water Retention Score [0-1]'

for i in range(6):
x_vals = np.linspace(min(x_curves[i]), max(x_curves[i]), 300)
y_vals = pchip_interpolate(x_curves[i], y_curves[i], x_vals)
axs[i].plot(x_vals, y vals, label='Preference Curve', color='black")
axs[i].scatter(x_curves[i], y_curves[i], color="blue', s=60)
axs[i].set_title(titles[i])
axs[i].set_xlabel(xlabels[i])
axs[i].set_ylabel('Preference Score [0-100]")
axs[i].grid(True)
axs[i].set_ylim(@, 105)
axs[i].legend()

plt.tight_layout()
plt.show()

file:///C:/Users/fdjpa/Downloads/Python code Multi objective optimization.html 14/31

02-07-2025, 08:50

Preference Score [0-100] Preference Score [0-100]

Preference Score [0-100]

Python code Multi objective optimization

Investment Cost Preference

Annual Profit Preference

100 —— preference Curve 100 1 —— preference Curve
80 1 S 80+
(=]
—
=)
60 + L 60
o
L
w
[
s}
40 4 g 404
&
£
20 A 201
0 T T T T T 0 " T T T T T T
0.0 0.5 10 1.5 2.0 0 50000 100000 150000 200000 250000 300000
Total Cost [€] le6 Annual Profit [€/yr]
CO:z Avoided Preference Biodiversity Impact Preference
100 - —— Preference Curve 100 1 —— Preference Curve
80 4 S 804
(=]
-
=)
60 + 2 60
=]
o
vl
[
s}
40 4 g 404
o
2
o
20 A 201
0L T T T T T 0 g T T T T T
0 100000 200000 300000 400000 500000 0.0 0.2 0.4 0.6 0.8 1.0
CO: Avoided [kg/year] Biodiversity Impact Score [0-1]
Social Cohesion Impact Preference Water Retention Impact Preference
100 - —— Preference Curve 100 1 —— Preference Curve
80 4 S 804
(=]
-
=
60 + 2 60
=]
o
vl
[
s}
40 g 40
o
2
o
20 - 201
0 y T T T T T 0 f T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Social Cohesion Score [0-1]

Water Retention Score [0-1]

The plots above help stakeholders to understand how they value the outcome of

objectives.

Bounds

Below the bounds are set. The bound ensures that eaxh surface roofsurface n gets at leas

one rooftype intervention.

Get all unique surface IDs from the design space

unique_surface_ids =

Count how many surfaces there are
N = len(unique_surface_ids)

design_space_df['Surface_ID'].unique()

Create a List of bounds for each surface

bounds = []
for surface_id in unique_surface_ids:

Count how many roof type options are available for this surface

num_options =

Select from the range of values in the designspace one rooftype

bounds.append([0, num_options - 1])

file:///C:/Users/fdjpa/Downloads/Python code Multi objective optimization.html

Choose one integer rooftype for each

len(design_space_df[design_space_df['Surface ID'] == surface_i

15/31

02-07-2025, 08:50

weights
weights

Python code Multi objective optimization

Constraints

No constraints have been used for this optimization, instead constraints have been

introduced prior in creating the final design_space_df.

Define weights

Stakeholder weights
w_cost = 0.30
w_profit
w_co2
w_bio
w_soc
w_wat

1
OO0

[w_cost, w_profit, w_co2, w_bio, w_soc, w_wat] # make a List of weight
[w / sum(weights) for w in weights] # Safety check: if weights do not

Define objective function for algorithm

Clamp preference score between © and 100
def check_p_score(p):

Clamp preference scores between © and 100
if np.isnan(p) or np.isinf(p):

return @ # Return lowest possible score 1if invalid
return max(@, min(100, p)) # Clamp scores [0, 100]

Decode selection indices into actual design choices (SELECTED ROOFTYPES)
def decode_solution(selection_indices, design_space_df):

Extract the selected row per roof surface using index selections.
Get all unique surface IDs from the design space

unique_surfaces = design_space_df['Surface_ID'].unique()
selected_rows = []

For each surface, find the selected intervention based on the 1index

for surface_id, option_index in zip(unique_surfaces, selection_indices):
Get all intervention options for the current surface
options_for_surface = design_space_df[design_space_df['Surface_ID'] == s
Check 1if the index 1is valid; raise error 1if not

if not (@ <= option_index < len(options_for_surface)):
raise IndexError(f"Invalid index {option_index} for surface {surface

Append the selected option (row) to the result

selected_rows.append(options_for_surface.iloc[option_index])
Return DataFrame with one selected intervention per surface

return pd.DataFrame(selected_rows)

Final objective function for the genetic algorithm

def objective(selection_matrix):

"""Evaluate preference scores for a population of roof intervention selectio
prefs_list = [] # Will store the 6 objective scores for each individual
for selection_indices in selection_matrix:

selected_df = decode_solution(selection_indices, design_space_df)

file:///C:/Users/fdjpa/Downloads/Python code Multi objective optimization.html 16/31

02-07-2025, 08:50

Python code Multi objective optimization

cost = calculate_investment_cost(selected_df)
profit = calculate_annual_profit(selected _df)
co2 = calculate_co2_impact(selected_df)

bio = calculate_biodiversity impact(selected_df)
soc = calculate social_impact(selected_df)

wat = calculate_water_impact(selected _df)

scores = [

check_p_score(pchip_interpolate(x_cost, y_cost, cost)),
check_p_score(pchip_interpolate(x_profit, y_profit, profit)),

check_p_score(pchip_interpolate(x_co2, y_co2, co2)),
check_p_score(pchip_interpolate(x_bio, y_bio, bio)),
check_p_score(pchip_interpolate(x_soc, y_soc, soc)),

check_p_score(pchip_interpolate(x_water, y water, wat))

]

prefs_list.append(scores)
prefs_array = np.array(prefs_list).T # Transpose into proper format
assert prefs_array.shape[1l] > 0, "No valid individuals evaluated."

return weights, prefs_array.tolist()

Run and adjust algorithm

Run the Genetic Algorithm
change how algorithm explores options
options = {

'n_bits': 4, # Number of bits per variable
'n_iter': 100, # Number of generations
'n_pop': 150, # Number of populations
'r_cross': 0.8, # Cross over rate
'max_stall': 10, # Stop early if no improvement
'aggregation': 'tetra’,

'var_type': 'int'

}

print("Running Genetic Algorithm...")

ga = GeneticAlgorithm(objective=objective, constraints=[], bounds=bounds, option

score_opt, selection_opt, = ga.run()

Decode and show result
best_design_df = decode_solution(selection_opt, design_space_df)

display(best_design_df[['Surface_ID', 'Building', 'Buurt', 'Area', 'Dak type'l]])

file:///C:/Users/fdjpa/Downloads/Python code Multi objective optimization.html

17131

02-07-2025, 08:50

Running Genetic Algorithm...

The type of aggregation is set to tetra
Best score
n-feasible results

Generation

Mean

No initial starting point for

lation is generated.

0 -100.
1 -100.
2 -100.
3 -100.
4 -100.
5 -100.
6 -100.
7 -100.
8 -100.
9 -100.
10 -100.
11 -100.
12 -100.
13 -100.
14 -100.
15 -100.
16 -100.
17 -100.
18 -100.
19 -100.
20 -100.
21 -100.
22 -100.
23 -100.
24 -100.
25 -100.
26 -100.
27 -100.
28 -100.
29 -100.
30 -100.
31 -100.
32 -100.
33 -100.
34 -100.
35 -100.

Stopped at gen 35

Execution time was 909.3716 seconds

file:///C:/Users/fdjpa/Downloads/Python code Multi objective optimization.html

0

[SS IR S I S v T s B R B A B O B S B A B B A B S R B B S B R ™ A B O A O O O A)

-43.
-53.
-68.
-67.
-78.
-75.
-78.
-79.
-82.
-82.
-84.
-74.
-73.
-78.
-81.
-67.
-76.
-83.
-78.
-73.
-92.
-84.
-78.
-77.
-82.
-82.
-76.
-78.
-79.
-71.
-71.
-78.
-74.
-59.
-77.
-62.

Python code Multi objective optimization

the optimization with tetra is given. A random popu

0046
2015
2053
8445
2344
686

8351
3388
4039
7839
5332
3835
3821
7345
879

2336
588

0113
6949
5363
411

5804
145

4849
5133
6246
5495
6892
1584
2116
0405
3992
9935
6729
1594
1503

Max stall

VWCoOoONOOTUVD,WWNRRPRWNMNRERPUDMOOCDUDWNNRERPUDWNEREWNERDDWERPR

Iy
()

Diversity

O 0O 0O 0O 0000000000000

.255
.298
.289
.298
.294
.288
.297
.296
.309
.291
.307
.305
.303
.294
.294
.299
.306
.32

.324
.32

.314
.318
.318
.329
.311
.318
.328
.335
.338
.342
.34

.327
.323
.318
.319
.319

Number of no

(S I S R SRR O T s B O B O A B S B A B B S B B S B R B o ™ R S A A O O A O O S A

18/31

02-07-2025, 08:50 Python code Multi objective optimization

Surface_ID Building Buurt Area Dak type

2 1 A_1 A 30 Groen?2
2 2 A_1 A 110 Groen 2
2 3 Al A 50 Geel
1 4 A_1 A 40 Groen 1
2 5 A1 A 30 Gee
0 80 E4 E 80 Geen
5 81 E5 E 20 Geel
5 82 E5 E 110 Geel
3 83 ES5 E 80 Rood
3 84 E5 E 40 Rood

84 rows x 5 columns

3. Visualizing and loading results

The code blocks below present the optimization results in the form of visualizations,

summary statistics, and tables.

Optimized output statistcis

import pandas as pd
from IPython.display import display, Markdown

Decode the optimal design and recalculate indicators
best_design_df = decode_solution(selection_opt, design_space_df)

cost = calculate_investment_cost(best_design_df)
profit = calculate_annual_profit(best_design_df)
co2 = calculate_co2_impact(best_design_df)

bio = calculate_biodiversity impact(best_design_df)
soc = calculate_social impact(best_design_df)

wat = calculate water_impact(best_design_df)

Preference scores

scores = [
check_p_score(pchip_interpolate(x_cost, y_cost, cost)),
check_p_score(pchip_interpolate(x_profit, y_profit, profit)),

check _p_score(pchip_interpolate(x_co2, y_co2, co2)),
check_p_score(pchip_interpolate(x_bio, y_bio, bio)),
check_p_score(pchip_interpolate(x_soc, y_soc, soc)),

check_p_score(pchip_interpolate(x_water, y water, wat))

]

Roof statistics
roof_area_per_type = best_design_df.groupby('Dak type')['Area’].sum()

file:///C:/Users/fdjpa/Downloads/Python code Multi objective optimization.html 19/31

02-07-2025, 08:50

Python code Multi objective optimization

roof_count_per_type = best_design_df['Dak type'].value_counts()

num_geen = best_design df['Dak type'].str.strip().str.lower().eq('geen').sum()
percent_geen = 100 * num_geen / len(best_design_df) if len(best_design_df) > 0 €

Main preference table
overview df = pd.DataFrame({
"Indicator': [
"Cost (€)',
'"Profit (€)',
'CO, Reduction (kg)',
'Biodiversity',
'Social Cohesion',
'Water Retention'
]J
'Raw Value': [
f"{cost:,.0f}",
f"{profit:,.of}",
f"{co2:,.0f}",
f"{bio:.4f}",
f"{soc:.4f}",
f"{wat:.4f}"
]J
'Preference Score': [f"{s:.1f}" for s in scores],
"Weight': [f"{w:.2f}" for w in weights]
)

Overall weighted preference score
overall score = sum(w * s for w, s in zip(weights, scores))

final row = pd.DataFrame({
"Indicator': ['Overall Preference Score'],
'Raw Value': [''],
'"Preference Score': [f"{overall_score:.2f}"],
"Weight': ['']

})
overview df _final = pd.concat([overview_df, final row], ignore_index=True)
Styling
def highlight overall(row):
is_last = row.name == len(overview df_final) - 1
return [

'font-weight: bold' if is_last and col in ['Indicator', 'Preference Scor
for col in overview_df_final.columns

1
styled_table = overview_df final.style.apply(highlight overall, axis=1)

Rename 'geen' to 'No intervention'’
roof_area_per_type_cleaned = roof_area_per_type.rename(index=lambda x: 'No inter
roof_count_per_type_cleaned = roof_count_per_type.rename(index=lambda x: 'No int

Summary metrics

summary_data = [
['Summary', 'Total Roof Area Assigned', None, f"{roof_area_per_type.sum():,.
['Summary', 'Total Roof Surfaces', None, f"{len(best_design_df)}", 'count'],
['Summary', 'No Intervention (%)', None, f"{percent_geen:.1f}", '%']

Area per type
area_data = [

file:///C:/Users/fdjpa/Downloads/Python code Multi objective optimization.html 20/31

02-07-2025, 08:50

Python code Multi objective optimization

["Area per Type', 'Area', rtype, f"{area:,.2f}", 'm2']
for rtype, area in roof_area_per_type_cleaned.items()

Count per type

count_data = [
['Count per Type', 'Count', rtype, f"{count}", 'surfaces']
for rtype, count in roof_count_per_type cleaned.items()

]

Combine tables

combined_data = summary_data + area_data + count_data

columns = ['Category', 'Metric', 'Roof Type', 'Value', 'Unit']
combined_df = pd.DataFrame(combined_data, columns=columns)

Display

display(Markdown ("###t# Summary optimized objectives and preferences"))

display(styled_table)

display(Markdown ("#### Summary assigned optimized roofs"))
display(combined_df)

Summary optimized objectives and preferences

4

5

6

Indicator Raw Value Preference Score Weight

Cost (€) 1,002,200 74.9 0.30
Profit (€) 102,238 83.9 0.30
CO, Reduction (kg) 224,286 8.2 0.10
Biodiversity 0.2958 29.6 0.10
Social Cohesion 0.4301 75.4 0.10
Water Retention 0.3413 78.1 0.10
Overall Preference Score 66.75

Summary assigned optimized roofs

file:///C:/Users/fdjpa/Downloads/Python code Multi objective optimization.html

21/31

02-07-2025, 08:50 Python code Multi objective optimization

Category Metric Roof Type Value Unit

0 Summary Total Roof Area Assigned None 5,810.00 m?
1 Summary Total Roof Surfaces None 84 count
2 Summary No Intervention (%) None 31.0 %
3 Area per Type Area Blauw 140.00 m?
4 Area per Type Area Geel 2,630.00 m?
5 Area per Type Area No intervention 1,860.00 m?
6 Area per Type Area Groen 1 230.00 m?
7 Area per Type Area Groen2 430.00 m?
8 Area per Type Area Rood 520.00 m?
9 Count per Type Count Geel 38 surfaces
10 Count per Type Count No intervention 26 surfaces
11 Count per Type Count Rood 9 surfaces
12 Count per Type Count Groen 2 6 surfaces
13 Count per Type Count Groen 1 3 surfaces
14 Count per Type Count Blauw 2 surfaces

Preference functions with optimized points

This code plots the earlier defined preference function with the optimized result.

import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import pchip_interpolate

Use the actual optimized result dataframe

cost = calculate_investment_cost(best_design_df)
profit = calculate_annual_profit(best_design_df)

co2 = calculate_co2_impact(best_design_df)

biodiv = calculate_biodiversity_impact(best_design_df)
soc = calculate_social_impact(best_design_df)

water = calculate_water_impact(best_design_df)

Define all 1input data: x/y values and optimized result values

preference_data = |
("Investment Cost Preference", "Total Cost [€]", x_cost, y_cost, cost),
("Annual Profit Preference", "Annual Profit [€]", x_profit, y_profit, profit
("CO, Impact Preference", "CO, Reduction [kg/year]", x_co2, y_co2, co2),
("Biodiversity Impact Preference", "Biodiversity Impact Score", x_bio, y_bic
("Social Impact Preference", "Social Cohesion Score", x_soc, y_soc, soc),
("Water Retention Impact Preference", "Water Retention Score", x_water, y_wa

]

Plot each preference function with optimized result
for title, xlabel, x_vals, y_vals, result_val in preference_data:
c = np.linspace(min(x_vals), max(x_vals), 300)

file:///C:/Users/fdjpa/Downloads/Python code Multi objective optimization.html 22/31

02-07-2025, 08:50 Python code Multi objective optimization

pref = pchip_interpolate(x_vals, y vals, c)
result_point = pchip_interpolate(x_vals, y_vals, result_val)

plt.figure()

plt.plot(c, pref, label="Preference Curve", color='black")
plt.scatter([result_val], [result_point], color='red', label='Optimized Resu
plt.title(title)

plt.xlabel(xlabel)

plt.ylabel("Preference Score [0-100]")

plt.ylim(0, 105)

plt.grid(True)

plt.legend()

plt.show()

Investment Cost Preference

100 —— Preference Curve
® Optimized Result

80 ~

60

40

Preference Score [0-100]

20~

T
0.0 0.5 1.0 1.5 2.0
Total Cost [€] le6

file:///C:/Users/fdjpa/Downloads/Python code Multi objective optimization.html 23/31

02-07-2025, 08:50 Python code Multi objective optimization

Annual Profit Preference

100 4 =—— Preference Curve
® Optimized Result
80 ~
o
o
—
=)
w 60 -
o
[
un
1]
[
=
U 40 -
X
v
o
20
D I T T T T T T
0 50000 100000 150000 200000 250000 300000
Annual Profit [€]
COz Impact Preference
100 4 —— Preference Curve
® Optimized Result
80 -
o
o
i
=)
w 60 -
o
[}
un
1]
[
=
U 40 A
X
v
o
20
] 1

T T T T T
0 100000 200000 300000 400000 500000
CO: Reduction [kg/year]

file:///C:/Users/fdjpa/Downloads/Python code Multi objective optimization.html 24/31

02-07-2025, 08:50

Python code Multi objective optimization

Biodiversity Impact Preference

100

80 ~

60

40

Preference Score [0-100]

20~

—— Preference Curve
® Optimized Result

T T
0.0 0.2 0.4 0.6 0.8 1.0
Biodiversity Impact Score

Social Impact Preference

100 -

80

60

40 -

Preference Score [0-100]

20~

—— Preference Curve
® Optimized Result

T T
0.0 0.2 0.4 0.6 0.8 1.0
Social Cohesion Score

file:///C:/Users/fdjpa/Downloads/Python code Multi objective optimization.html

25/31

02-07-2025, 08:50 Python code Multi objective optimization

Water Retention Impact Preference

100 +— —— Preference Curve
® Optimized Result

80 ~

60

40

Preference Score [0-100]

20~

T T
0.0 0.2 0.4 0.6 0.8 1.0
Water Retention Score

Plot portfolio and optimized roof surfaces

To directly interpretate result, it is handy to plot the assigned roof types after
optimization.

import matplotlib.pyplot as plt
import pandas as pd

import matplotlib.patches as patches
import numpy as np

Use the optimized assignment
df = best_design_df.copy()

Color map (harmonized with other plots)
color_map = {

'Green 1': 'limegreen’,

'Green 2': 'green',

'Yellow': 'gold',

'Blue': 'skyblue',

'Red': 'tomato',

"None': 'lightgray'

Translate Dutch Dak type to English
dak_type_translation = {

'Groen 1': 'Green 1°',
'Groen 2': 'Green 2',
'Geel': 'Yellow',
'Blauw': 'Blue’,
'Rood': 'Red’,
'Geen': 'None'

file:///C:/Users/fdjpa/Downloads/Python code Multi objective optimization.html 26/31

02-07-2025, 08:50

Python code Multi objective optimization

}

Compute total area per building
building totals = df.groupby('Building')["Area’].sum()
global max_area = building totals.max()

Group by building
grouped = df.groupby('Building")

Create plot
fig, axs = plt.subplots(6, 5, figsize=(18, 10))
axs = axs.flatten()

for i, (building_id, group) in enumerate(grouped):
ax = axs[i]
buurt = group['Buurt'].iloc[0]
ax.set_title(f"{building_id} ({buurt})", fontsize=10)

x_start = 0
for _, row in group.iterrows():
dak_type nl = str(row['Dak type']).strip()
dak_type_en = dak_type_translation.get(dak_type nl, dak_type _nl)
color = color_map.get(dak_type_en, 'gray') # fallback to gray
width = row['Area']
rect = patches.Rectangle((x_start, ©.1), width, 0.8, edgecolor='black',
ax.add_patch(rect)
ax.text(x_start + width / 2, 0.5, f"{int(width)}", ha='center', va='cent
x_start += width

ax.set_x1im(@, global max_area * 1.05)
ax.set_ylim(o, 1)

ax.set_xticks(np.linspace(@, global max_area, 4))
ax.set_xlabel("m2")

ax.set_yticks([])

ax.grid(True, axis='x", linestyle='--', alpha=90.3)

Hide unused subplots
for j in range(i + 1, len(axs)):
axs[j].axis('off")

Add legend for harmonized roof types

legend_elements = [patches.Patch(facecolor=color, edgecolor="'black', label=label
for label, color in color_map.items()]

fig.legend(handles=legend_elements, loc='lower right', fontsize=10)

Add title and subtitle aligned slightly to the Lleft
fig.text(0.41, 0.91, 'Portfolio', ha='center', va='center', fontsize=14)
fig.text(0.41, 0.88, 'Optimized design configuration', ha='center', va='center',

plt.tight_layout(rect=[0, 0, 1, ©.87]) # Leave space at the top for the title
plt.show()

file:///C:/Users/fdjpa/Downloads/Python code Multi objective optimization.html

27131

02-07-2025, 08:50 Python code Multi objective optimization

Portfolio
optimized design configuration

Al(A) A2(A) A3 (A) A4 (A) A5 (A)

e |
[& |
|
=]

&
N

0.0 163.3 3267 490.0 0. 163.3 326.7 4900 0.0 163.3 326.7 4900 0.0 163.3 326.7 490.0 00 1633 326.7 490.0
m m m m m
B_1(B) B2 (B) B_3(B) B 4(8) B_5(B)
Zl - H B - HH
0.0 163.3 3267 490.0 0.0 163.3 326.7 4900 0.0 163.3 326.7 4900 0.0 163.3 326.7 490.0 00 1633 326.7 490.0
me m e e e
C_1(C) C_2(C) C_3(C) C_4(C) c5(0
’ nn i] - i n H -
0.0 163.3 3267 4900 0.0 163.3 326.7 4900 0.0 163.3 326.7 4900 0.0 1633 326.7 490.0 00 163.3 326.7 490.0
me m e e e
D_1 (D) D_2 (D) D_3 (D) D_4 (D) D_5 (D)
ml S ERE o] = ,‘,Hm] z . e Im m || = Sl - |- = |
0.0 163.3 3267 490.0 0.0 163.3 326.7 4900 0.0 163.3 326.7 4900 0.0 163.3 326.7 490.0 00 1633 326.7 490.0
m? m? m m m
E_1(E) E_2 (E) E_3 (E) E_4(E) E_5(E)
I - “ . nﬂa H -
0.0 163.3 3267 490.0 0.0 163.3 326.7 4900 0.0 163.3 326.7 490.0 0.0 163.3 326.7 490.0 00 163.3 326.7 490.0
m m m m m 0 Green 1
N Green 2
3 Yellow
3 Blue
= Red
3 None

Optimized portfolio as overlayer over neighborhoods

Since objectives 3-6 are linked to specific locations, it's useful to see how roof types are
allocated in relation to neighborhood needs. Therefore the code below creates a plot.
However note, that if one of these spatial objectives is set to zero weight, its associated
neighborhood needs no longer influence the outcome, making the corresponding
choropleth irrelevant.

import matplotlib.pyplot as plt
import matplotlib.patches as patches
import matplotlib.colors as mcolors
import pandas as pd

import numpy as np

Define custom color map for optimized roof types
color_map = {

'Green 1': 'limegreen',

'Green 2': 'green’,

'Yellow': 'gold',

'Blue': 'skyblue',

'Red': 'tomato',

‘None': 'lightgray'

Translate Dutch to English
dak_type_translation = {
'Groen 1': 'Green 1',
'Groen 2': 'Green 2°',
'Geel': 'Yellow',
'Blauw': 'Blue’,
'Rood': 'Red’,
'Geen': 'None'

def plot_optimized_roofs_per_neighborhood(best_design_df, theme_col, title, cmap
best_design df['Buurt'] = best_design_df['Buurt'].astype(str).str.strip()
df.index = df.index.astype(str).str.strip()

challenge_data = df[theme_col].to_dict()

file:///C:/Users/fdjpa/Downloads/Python code Multi objective optimization.html

28/31

02-07-2025, 08:50

Python code Multi objective optimization

building totals = best_design_df.groupby('Building')['Area’].sum()
global_max_area = building_totals.max()

neighborhoods = sorted(best_design_df['Buurt’].unique())
buildings_per_neigh = {buurt: best_design_df[best_design_df['Buurt'] == buur

fig, ax = plt.subplots(figsize=(14, 6))

bar_width = 1

bar_gap = 0.3

building height = 0.12
roof_gap = 0.02

cmap
norm

plt.colormaps.get_cmap(cmap_name)
mcolors.Normalize(vmin=0, vmax=100)

for i, buurt in enumerate(neighborhoods):
challenge_val = challenge_data.get(buurt, 0)
neigh_color = cmap(norm(challenge_val))

x_pos = i * (bar_width + bar_gap)
ax.add_patch(patches.Rectangle((x_pos, ©), bar_width, 1, facecolor=neigh

Neighborhood lLetter above the bar
ax.text(x_pos + bar_width / 2, 1.07, f"{buurt}",
ha="'center', va='bottom', fontsize=10)

Bold challenge value inside the bar
ax.text(x_pos + bar_width / 2, 0.02, f"{challenge_val:.of}",
ha='center', va='bottom', fontsize=9, color='black', fontweight=

grouped = buildings_per_neigh[buurt]
for j, (building_id, group) in enumerate(grouped):
y base = ©.85 - j * (building_height + roof_gap)
x_building = x_pos + 0.05
x_start = x_building
for _, row in group.iterrows():
dak_type _nl = str(row['Dak type']).strip()
dak_type_en = dak_type_translation.get(dak_type nl, dak_type_nl)
color = color_map.get(dak_type_en, 'gray')
width = row['Area'] / global max_area * (bar_width - ©.1)
rect = patches.Rectangle((x_start, y_base), width, building heig
ax.add_patch(rect)

Only show area (not dak type)

ax.text(x_start + width / 2, y base + building_height / 2, f"{in
ha='center', va='center', fontsize=6, color='black")

x_start += width + 0.005

Building ID on Lleft side
ax.text(x_pos - 0.05, y base + building height / 2, building_id,
va='center', ha='right', fontsize=7)

ax.set_x1im(@, len(neighborhoods) * (bar_width + bar_gap))
ax.set_ylim(e, 1.2)
ax.axis('off")

Legend in bottom-right corner
legend_elements = [patches.Patch(facecolor=color, edgecolor='black', label=1
for label, color in color_map.items()]

file:///C:/Users/fdjpa/Downloads/Python code Multi objective optimization.html 29/31

02-07-2025, 08:50

Python code Multi objective optimization

ax.legend(handles=1legend_elements, loc='lower right', bbox_to_anchor=(1.05,

Title and subtitle aligned more to the Lleft

fig.text(0.41, 0.91, f"{title}", ha='center', va='center', fontsize=14)
'Optimized design configuration', ha='center', va='cent

fig.text(0.41, 0.88,

plt.tight_layout(rect=[0, ©0.05, 0.88, 0.91])

plt.show()

Run for each theme

plot_optimized_roofs_per_neighborhood(best_design_df,
plot_optimized_roofs_per_neighborhood(best_design_df,
plot_optimized_roofs_per_neighborhood(best_design_df,

Optimized design configuration

n E 5
o I

@
n
—=

Optimized design configuration

Surface water overload
Optimized design configuration

Social cohesion

Biodiversity

C

00

snuul

C

'Nsoc',
"Nbio',
"Nwat',

'Social cohesion',
'Biodiversity', 'C
'Surface water ove

8
El
]

00

file:///C:/Users/fdjpa/Downloads/Python code Multi objective optimization.html

20

gooona

gpoona

gpoona

Green 1
Green 2
Yellow
Blue
Red
None

Green 1
Green 2
Yellow
Blue
Red
None

Green 1
Green 2
Yellow
Blue
Red
None

30/31

02-07-2025, 08:50

Python code Multi objective optimization
Extra info

A different legend makes output understandable.

import matplotlib.pyplot as plt
import matplotlib.patches as patches

Define custom color map with descriptive rooftop Labels
color_map = {

'Sedum roof': 'limegreen’,

'Biodiversity roof': 'green',

'Solar panels': ‘'gold’,

'Water storage roof': 'skyblue',

'Commercial social roof': 'tomato’,

'No intervention': 'lightgray'

}

Create figure and axis only for the lLegend
fig, ax = plt.subplots(figsize=(4, 2))
ax.axis('off")

Create legend patches
legend_elements = [patches.Patch(facecolor=color, edgecolor="black', label=label
for label, color in color_map.items()]

Add legend to plot
ax.legend(handles=1legend_elements, loc='center', fontsize=10, frameon=True, ncol

plt.tight_layout()
plt.show()

Sedum roof
Biodiversity roof

Solar panels

Water storage roof
Commercial social roof
No intervention

IRiRigiy

file:///C:/Users/fdjpa/Downloads/Python code Multi objective optimization.html

31/31

C

Python code - choropleths

See code next page.

85

29-06-2025, 17:18

Plotting Choropleths all themes structured

Plotting Choropleths

The code below presents how the Choropleths were created.

Import libraries

import pandas as pd

import geopandas as gpd

from shapely.geometry import Point

import matplotlib.pyplot as plt

from mpl_toolkits.axes_gridl import make_axes_locatable

Load and prepare ata

This code loads three data sets: the real estate portfolio of The Hague, neighborhood-
level indicators (e.g., heat stress, social cohesion), and a shape file of The Hague's

neighborhood boundaries. It merges the indicators with the shape file and converts the
real estate data into a spatial format for mapping and analysis. Data and SHP files have

been collected from: https://denhaag.incijfers.nl

Load data

real _estate df = pd.read_excel("Data/RealEstate_Cleaned Final2.xlsx")
neighborhood_data = pd.read_excel("Data/Final data all themes clean - cleaned.xl
gdf _buurten = gpd.read_file("Data/buurten.shp™)

Preprocess neighborhood data and merge on common column

gdf_plot = gdf buurten.copy()

neighborhood_data_plot = neighborhood_data.copy()

gdf plot["BUURTNAAM"] = gdf plot["BUURTNAAM"].str.strip().str.lower()
neighborhood_data_plot["BUURTNAAM"] = neighborhood_data_plot["BUURTNAAM"].str.st
gdf_merged = gdf_plot.merge(neighborhood_data_plot, on="BUURTNAAM", how="left")

Create GeoDataFrame from real estate
geometry = [Point(xy) for xy in zip(real_estate_df["x_clean"], real_estate_df["y
gdf_real estate_with_buurt = gpd.GeoDataFrame(real estate_df, geometry=geometry,

Select columns to plot

columns_to_plot = [
("Rapportcijfer 'Sociale Cohesie' [rapportcijfer] [2023] (0 is slecht 10 is
("Oppervlakte gebied 'meer dan 10 cm overstroming' [m2] [2021]", 'Blues', Fa
('waarnemingen in de 10-jaar periode 2007-2016\nvan de volgende soorten: bro
('Percentage van gebied dat zeer gevoelig is voor hittestress op zomerse dag

Plot neighborhood challenges as choropleths

Let's first plot the data as choropleths.

for col, cmap, reverse, title in columns_to_plot:
Plot original data (no normalization, no dots)
fig, ax = plt.subplots(figsize=(10, 10))

file:///C:/Usersl/fdjpa/Downloads/Plotting Choropleths all themes structured (1).html

1/9

29-06-2025, 17:18 Plotting Choropleths all themes structured

divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.1)

gdf_merged.plot(

column=col,

cmap=cmap,

linewidth=0.5,

ax=ax,

edgecolor="black",

legend=True,

cax=cax,

missing_kwds={"color": "lightgrey", "label": "No data"}
)

ax.set_title(f"{col}\n(original scale, no dots)", fontsize=12)
ax.axis("off")

plt.tight_layout()

plt.show()

Rapportcijfer 'Sociale Cohesie' [rapportcijfer] [2023] (0 is slecht 10 is goed)
(original scale, no dots)

7.0

file:///C:/Usersl/fdjpa/Downloads/Plotting Choropleths all themes structured (1).html 2/9

ed (1).html

29-06-2025, 17:18 Plotting Choropleths all themes structured

Percentage van gebied dat zeer gevoelig is voor hittestress op zomerse dagen [procent (%)][2021] (1)
(original scale, no dots)

0.30

0.25

r0.10

r 0.05

Normalize scale for optimization

To enable optimization, the original data has been normalized to a 0-100 scale, where
higher values (and more intense colors) indicate a greater need for intervention.

for col, cmap, reverse, title in columns_to_plot:
Normalize to ©-100
col_min, col_max = gdf_merged[col].min(), gdf_merged[col].max()
norm_col = f"{col} norm"
gdf_merged[norm_col] = ((gdf_merged[col] - col_min) / (col_max - col _min)) *
if reverse:
gdf _merged[norm_col] = 100 - gdf_merged[norm_col]

Plot normalized data without dots

fig, ax = plt.subplots(figsize=(10, 10))

divider = make_axes_locatable(ax)

cax = divider.append_axes("right", size="5%", pad=0.1)

gdf_merged.plot(

column=norm_col,

cmap=cmap,

linewidth=0.5,

ax=ax,

edgecolor="black",

legend=True,

cax=cax,

missing_kwds={"color": "lightgrey", "label": "No data"}
)

cax.text(0.5, 1.091, 'High need\nfor intervention', ha='center', fontsize=8,

file:///C:/Usersl/fdjpa/Downloads/Plotting Choropleths all themes structured (1).html 4/9

29-06-2025, 17:18 Plotting Choropleths all themes structured

cax.text(0.5, -0.01, 'Low need\nfor intervention', ha='center', fontsize=8,

ax.set_title(title, fontsize=12)
ax.axis("off")
plt.tight_layout()

plt.show()

Social cohesion

file:///C:/Usersl/fdjpa/Downloads/Plotting Choropleths all themes structured (1).html

High need
for intervention
10

80

60

40

20

Low nee
for inferven

&h

5/9

ed (1).html

29-06-2025, 17:18

Plotting Choropleths all themes structured

P High d
Heat stress sensitivity for irﬁer::ﬁcian
100

80

60

40

20

Low nee
for interventidh

Neighborhood challenges and portfolio

To see which buildings of the portfolio are located in areas with high needs, the portfolio

is plotted as visual overlay.

for col, cmap, reverse, title in columns_to_plot:

norm_col = f"{col} norm"

Plot normalized data with real estate buildings as dots
fig, ax = plt.subplots(figsize=(10, 10))

divider = make_axes_locatable(ax)

cax = divider.append_axes("right", size="5%", pad=0.1)

gdf_merged.plot(

column=norm_col,

cmap=cmap,

linewidth=0.5,

ax=ax,

edgecolor="black",

legend=True,

cax=cax,

missing_kwds={"color": "lightgrey", "label": "No data"}
)

gdf_real estate_with_buurt.plot(ax=ax, color="black", markersize=5, alpha=90.

cax.text(0.5, 1.091, 'High need\nfor intervention', ha='center', fontsize=8,
cax.text(0.5, -0.01, 'Low need\nfor intervention', ha='center', fontsize=8,

ax.set_title(f"{title}\nReal estate portfolio the hague; black dots", fontsi
ax.axis("off")

file:///C:/Usersl/fdjpa/Downloads/Plotting Choropleths all themes structured (1).html

7/9

5 how(;

ed (1).html

ed (1).html

	Preface
	Acknowledgements
	Summary
	Introduction
	Urban challenges and the role of buildings in local adaptation
	Complex decision-making in public real estate portfolio strategies
	Multi-Criteria Decision Analysis (MCDA) and Multi-Objective Optimization (MOO) as response for complexity
	Methodological shortcomings in MOO and MCDA
	Odesys and Preferendus as MOO framework
	Rooftops as a demonstrator case for portfolio MOO
	Academic contribution and development statement
	Reading guide

	Analysis
	Review of MOO and MCDA frameworks studies in urban rooftop planning
	Methodological framework Preferendus

	Synthesis: mathematical structure model
	Mathematical formulation of the optimization problem
	Roof types as design variables
	Objective functions
	Preference functions
	Constraints and bounds
	Nomenclature

	Operationalizing the decision support tool
	Workflow Preferendus in flowcharts
	Algorithm settings

	Demonstrator case results and evaluation
	Data collection demonstration case
	Demonstrator case using simplified sample dataset
	Results demonstrator case
	Validation of the decision support tool

	Discussion
	Limitations
	Steps for further development
	Recommendations in practice

	Conclusion
	References
	Validation iterations - workshop at Bress
	Python code - optimization
	Python code - choropleths

