

A 7-Channel Code-Multiplexed Analog

CMOS Front-End using an On-Chip

Orthogonal Walsh-Hadamard Sequence

Generator

by

Dion Gavin Mascarenhas

in partial fulfilment of the Masters Degree

at

the Delft University of Technology,

Faculty of Electrical Engineering, Mathematics and Computer Science

Under the supervision of Prof. Dr. Ir. Wouter Serdijn

Defended publicly on 22nd August, 2024

Student Number 5154731

Thesis Committee Prof. Dr. Ir. W.A. Serdijn, TU Delft Supervisor

 Prof. Dr. Ir. K. Bult, TU Delft

 Dr. Ir. Samprajani Rout, External

i

Abstract

The recording of biosignals, such as atrial electrograms (AEG), electrocardiograms (ECG), and

electroencephalograms (EEG), is progressing towards the adoption of more dense electrode

arrays in order to improve spatial and temporal resolution. The proliferation of channels

necessitates some form of channel sharing technique so that efficient low power and area

recording can be achieved.

In this thesis, a code-division multiplexed analog front-end is designed due to its efficient use

of bandwidth in comparison to time and frequency multiplexing. Orthogonal coding schemes

such as Walsh-Hadamard sequences are best suited for minimising cross-talk. These codes are

typically implemented using an LUT or processor which becomes a significant overhead when

a large number of channels are to be multiplexed. However, by investigating the sequences

closely, a novel method of generating these codes from a clock signal using digital logic was

devised. The proposed algorithm to generate these sequences on-chip provides significant area

savings for sequences of length greater than 8, which makes the design scalable for a large

number of channels,. The reduction in area ranges from a factor of 10 for a code length of 8 up

to a factor as large as 200 for a code length of 128.

As orthogonal sequences require a low bandwidth, a low bandwidth low-noise amplifier and

ADC were used for amplification and digitisation of the signal. By using digitally inspired

analog blocks, such as an inverter-based amplifier, lower power consumption could be

achieved.

The entire design was implemented to share 7 channels. The code generator, low-noise

amplifier and ADC consume a total of 78.4µW, which corresponds to 11.2µW per channel.

This is a 3.3x improvement to the design in [5] where pseudo-random sequences were used as

the coding scheme. However, the design consumes more power than a state-of-the-art design

reported in [6] which uses 1.97µW per channel. While the design is currently not optimized

with respect to power consumption in comparison to the design in [6], the novel code

generation technique reported in this thesis makes the design scalable for larger number of

channels. This is because the area constraint of the LUT is no more the limiting factor in terms

of area.

ii

Acknowledgements

As I come to the culmination of my master's thesis work over the past year, I write these few

lines of appreciation to all those involved in helping and supporting me throughout this tough

but fulfilling journey.

Firstly, I thank the Almighty God for giving me the opportunity to pursue my masters and

giving me the strength, wisdom and perseverance to embark on this challenging journey.

My journey at the Department of Bioelectronics has been nothing short of remarkable. The

praise and gratitude I indebt to Prof. Wouter Serdijn can simply not be captured by mere words.

Right from understanding my difficulty in a different research group and accepting to mentor

me in a new master's thesis, Prof. Wouter has been incredibly supportive in every aspect of the

project. His mastery of telling you how to think instead of telling you what to do, although

frustrating at times, has developed me into a much better designer. The flexibility he gave me

to explore ideas and designs irrespective of whether they worked or not, made the journey of

research immensely satisfying. Prof Wouter, I can go on and on, but here's a big shout-out to

you for all that you’ve done. Thank you for molding me into a better designer in the world of

Analog IC Design! I indeed cherish and will miss the discussions we had from amplifiers to

ADCs, not to forget the long chats about politics, cookies, and even Dutch swear words!!

I would like to thank Dr. Sampi Rout who looked over this project and guided me with some

of the nitty gritty details. A special word of gratitude to Prof. Klaas Bult, who although was

not my supervisor, was always obliging to take time out whenever he was on campus to explain

and simplify many of the concepts related to Amplifiers and ADCs.

Throughout my master's degree, a never-ending source of encouragement and support has

come from my parents and sister. Mama, Dada, and Angie thank you for always being by my

side and instilling in me the confidence that I can do it.

Lastly, I also thank my colleagues especially Karolis, Floris, Arnau and Amar from whom I

learned a lot through casual discussions. A lot of knowledge gaps were plugged during these

casual exchanges. Thank you, and I wish you the best in your future career as IC designers.

iii

List of Figures

Fig. 1 Functioning of Normal Sinus Rhythm (Left) and Atrial Fibrillation (Right)……………………...

1

Fig. 2 Typical ECG signal [17].………………………………………………………………………....

1

Fig. 3 Normal Sinus Rhythm (Top) and Atrial Fibrillation (Bottom) Waveforms [2] ………….……….

2

Fig. 4 Block diagram of typical multi-channel acquisition systems. On the left, each channel uses an

LNA and an ADC of its own. On the right, the ADC is shared but each channel has its own LNA

[4] ………….………….………….………….………….………….…………………………….

3

Fig. 5 N input channels are time-multiplexed and summed to share one amplifier and ADC……………

7

Fig. 6 Traditional Chopping (Top) and Orthogonal Frequency Chopping (Bottom) [6]……….……….

8

Fig. 7 Conventional Code Division Multiplexed Systems. On the left, the digital output is multiplexed

before transmission and there is no sharing of the amplifier or ADC. On the right, the amplifier

output is multiplexed to share the ADC.…………….…………….……………………………

9

Fig. 8 Direct Coding of Input Channels in the Analog Domain [5]…………….…………….…………

10

Fig. 9 Narrow band signal spread to a wideband signal by multiplying it with a code sequence of a

much higher frequency [18].…………….…………….……………….…………………………

12

Fig. 10 De-spreading of the signal at the receiver/demodulating end causes the original signal to collapse

into a narrow band signal. However, now the interfering signals (if bandlimited) are spread and

their effect on the signal quality is reduced as a much smaller power density of the interferer

falls in band of the signal.…………….…………….……………………………………………..

13

Fig. 11 The 3 different spreading techniques. The top figure depicts Direct Sequence Spread Spectrum

(DSSS). The bottom left depicts Frequency Hopping Spread Spectrum (FHSS) and the bottom

right is Time Hopping Spread Spectrum (THSS).………………………………………………...

14

Fig. 12 Linear Feedback Shift Register (LFSR) formed by feeding back the XOR of tap 3 and 5………...

16

Fig. 13 Zero cross-correlation between all sequences for a 4x4 WH Matrix…………….………..………

19

Fig. 14 Arrhythmia (left) and atrial-fibrillation (right) ECG signals in the time (top) and frequency

(bottom) domain. Most of the features are captured in the lower frequencies as seen from the

higher PSD values in the low-frequency region.……..……..……..……..……..………...………

22

Fig. 15 SNR vs PRD for Arrhythmia (left) and Atrial Fibrillation (right) Signals.……..……….………

23

Fig. 16 Overlay of Corrupted and Original Signal for the Arrhythmia (left) and atrial fibrillation (right)

corresponding to an SNR of 30dB.………………………………………………………………

23

Fig. 17 SNR vs Modulation Frequency for Different Number of Channels……..……..……..….………

25

Fig. 18 On-Chip System Level Block Diagram……..……..……..……..……..……..……..……………

26

iv

Fig. 19 Off-Chip Signal Recovery using Digital Signal Processing……..……..……..……..…...………

27

Fig. 20 Simulink Model of System for 7 Shared Channels……..……..……..……..……..……..………..

28

Fig. 21 Time Domain Waveforms of the 7 input signals, each with a unique frequency.……..…………

29

Fig. 22 Frequency Spectrum of Input Signals……..……..……..……..……..……..……..……..……….

30

Fig. 23 Demodulated signals without moving average.……..……..……..……..……..……..…..………

30

Fig. 24 Demodulated Signal with Moving Average of 16 Samples each.……..……..……..…….………

31

Fig. 25 Frequency Spectrum of Demodulated Signals……..……..……..……..……..……..……………

31

Fig. 26 Frequency Division by 2 using a D Flip-Flop……..……..……..……..……..……..……………..

35

Fig. 27 WH8 Code Waveforms using the proposed circuit that solely uses digital logic.…..……..……..

38

Fig. 28 Area Comparison between LUT and Proposed Circuit……..……………………………………

39

Fig. 29 Factor of reduction in area for different code lengths.……..……..……..……..……..…...………

40

Fig. 30 Circuit Schematic of WH Code Generator……..……..……..……..……..……..……..…………

42

Fig. 31 WH8 Code Waveforms……..……..……..……..……..……..……..……..……..……………….

43

Fig. 32 WH8 Code Waveforms without any glitches.……………………………………………………

44

Fig. 33 Non-Overlapping Clock Generator………………………………………………………………

44

Fig. 34 Summing Amplifier Schematic…………………………………………………………………...

45

Fig. 35 Self-Biased Inverter based OTA………………………………………………………………….

46

Fig. 36 Gm/Gds vs Gm/Id of NMOS transistor for different channel lengths……………………………..

48

Fig. 37 Gm/Gds vs Gm/Id of PMOS transistor for different channel lengths……………………………..

48

Fig. 38 Differential Open Loop Gain……………………………………………………………………..

50

Fig. 39 Phase Margin……………………………………………………………………………………..

50

Fig. 40 Common Mode Gain……………………………………………………………………………...

51

Fig. 41 Common Mode Rejection Ratio…………………………………………………………………..

51

Fig. 42 Top Level Schematic of Ramp/Counter ADC……………………………………………………

52

Fig. 43 Modulation and Sampling Clock Signals…………………………………………………………

53

Fig. 44 ADC Control Signals for one cycle……………………………………………………………….

53

Fig. 45 Strong Arm Latch Comparator……………………………………………………………………

54

v

Fig. 46 Number of 1s and 0s for a balanced input (0mV input difference)………………………………...

55

Fig. 47 Distribution of 1s and 0s with a +1mV skewed input……………………………………………...

55

Fig. 48 Calculation of Offset from the probability distribution at a 1mV difference.……………………..

56

Fig. 49 Track and Hold Circuit…………………………………………………………………………… 57

Fig. 50 6-bit Register to save the counters output value…………………………………………………...

58

Fig. 51 6 bit Counter……………………………………………………………………………………… 58

Fig. 52 150mVpk-pk 4kHz input signal sampled at 16kHz. The dots represent the samples taken.………

59

Fig. 53 Reconstructed analog signal from the digital output.……………………………………………..

59

Fig. 54 FFT of Reconstructed Signal……………………………………………………………………...

60

Fig. 55 Distribution of 1s and 0s with a +2mV skewed input……………………………………………...

73

Fig. 56 Distribution of 1s and 0s with a -1mV skewed input……………………………………………...

73

Fig. 57 Distribution of 1s and 0s with a -2mV skewed input……………………………………………...

74

vi

List of Tables

Table 1 Number of Channels vs Minimum Code Length……………………………………….………..

24

Table 2 Comparison of SNR with and without a moving average for 7 channels at FMOD = 4kHz.……

32

Table 3 Design Specifications………...………...………...………...………...………...………...……..

32

Table 4 XNOR Logic Function and Symbol……………………………………………………………..

35

Table 5 WH Code Pattern of First N+1 Sequences……………………………………………..……….

37

Table 6 WH Code Patterns of Remaining Sequences from N+2 to 2N…………………………………

37

Table 7 Area Comparison between LUT and WH Code Generator……………………………………..

41

Table 8 OTA Transistor Sizes…………………………………………………………………………...

49

Table 9 ADC Specifications…………………………………………………………………………….. 53

Table 10 Comparator Transistor Sizes…………………………………………………………………… 57

Table 11 ADC Performance Metrics……………………………………………………………………... 60

Table 12 Power Consumption Summary…………………………………………………………………. 64

Table 13 Performance Comparison………………………………………………………………………. 64

vii

Contents

 Abstract i

 Acknowledgements ii

 List of Figures iii

 List of Tables vi

1 Introduction

1.1 Background of Medical Condition……………….………………….………….

1.2 Requirements & Challenges of Bio-Signal Acquisition…………….….….……

1.3 Problem Statement……………………………………………………………...

1.4 Thesis Organization…………………………………………………………......

1

1

3

4

5

2 Channel-Sharing Techniques & Prior Work in Shared Analog

Front Ends

2.1 Time-Division Multiplexing (TDM).………………….………………….…….

2.2 Frequency-Division Multiplexing (FDM)…….…….……….………….………

2.3 Code-Division Multiplexing (CDM)…....……………………………………....

6

6

8

9

3 Spread-Spectrum Modulation – Pseudo Random and

Orthogonal Sequences

3.1 Pseudo-Random Bit Sequences (PRBS)………………….…….…….………...

3.2 Walsh-Hadamard Sequences………………….….….….….….….….….……..

12

16

18

4 System-Level Design

4.1 Signal Properties….….….….….……..….….….….….……..….….….….……

4.2 Required Resolution….….….….….……..….….….….….……..….….….…...

4.3 Number of Channels (NCH) vs Code Length(L) ….….….….….……..….……

4.4 Modulation Frequency….….….….….……..….….….….….……..….….….…

4.5 System Block Diagram….….….….….……..….….….….….……..….….……

4.6 System Level Verification for 7 Shared Channels….….….….….……..….…...

4.7 System Level Specifications….….….….….……..….….….….….……..….….

21

21

22

24

25

26

28

32

viii

5 Walsh-Hadamard Code Generator using Digital Logic

5.1 Proposed Walsh-Hadamard Code Generator Circuit….….….….….……..……

5.2 Area Savings of Proposed WH Code Generator….….….….….…………...

34

34

38

6 Circuit Implementation

6.1 8 bit Walsh-Hadamard Sequence Generator….….….….….……..….….….…..

6.2 Amplifier….….….….….……..….….….….….……..….….….….….………...

6.3 Analog to Digital Converter….….….….….……..….….….….….……………

42

42

45

52

7 Conclusion and Discussion
7.1 Conclusions…..

7.2 Performance Comparison….….….….….….….….….….….….….…………...

7.3 Future Work and Recommendations….….….….….….….….….….….….…...

62
62

64

65

8 Appendices 66

9 References 75

1

Chapter 1

Introduction

1.1 Background of Medical Condition

Atrial Fibrillation (AFib) is one of the most prevalent types of arrhythmia that occurs in the

heart. The heart is divided into four chambers – the top two called atria, and the bottom two

called ventricles. AFib is characterized by an irregular heartbeat that is caused when the upper

chambers of the heart, the atria, beat chaotically and out of sync with the lower chambers of

the heart, the ventricles.

Fig. 1: Functioning of Normal Sinus Rhythm (Left) and

Atrial Fibrillation (Right) [1].

Fig. 2: Typical ECG signal

[17].

In a normal heart rhythm, the sinoatrial node (SA node), present in the right atrium shown in

Fig. 1, initiates electrical impulses that propagate through the electrical conduction system of

the heart. This pulse regulates a normal heartbeat consisting of contraction and relaxation. The

SA node is thus termed as the natural pacemaker of the heart. The activation of the SA node is

characterized by P waves in an electro-cardiac signal, as shown in Fig. 2. In atrial fibrillation,

however, there are sites in and around the atria, called ectopic sites, that initiate random

electrical impulses. These random impulses cause the atria to quiver or fibrillate instead of

contract. As most of these impulses do not pass the atrioventricular node (Fig. 1) into the

2

ventricle, there is a lack of synchronisation between the top and bottom chambers that leads to

an irregular heartbeat. There are multiple stages in the occurrence of atrial fibrillation. The first

stage is called paroxysmal which is the earliest stage. During this stage the quivers typically

occur for less than a week and vary in frequency and intensity. The paroxysmal stage can either

be severe that it leads to an attack, or mild enough that it resolves itself. The second stage is

persistent AFib which usually lasts for more than a week and does not resolve itself. This stage

develops after months or years of paroxysmal AFib. The last stage is long standing persistent

AFib which is considered to be resistant to treatment, wherein complete elimination is highly

unlikely. It is the most advanced stage in which the quivers are continuous for more than a

year.

Due to the irregular heartbeat, the heart pumps out less blood which leads to some residue that

can form clots. The most common implication is that these blood clots in the atria may then

pass into the bloodstream and block small arteries which can be fatal. For instance, if the blood

clot travels to arteries in the brain, it can result in a stroke.

Fig. 3: Normal Sinus Rhythm (Top) and Atrial Fibrillation (Bottom) Waveforms [2].

The waveforms of a normal sinus rhythm (SR) and that of atrial fibrillation (AFib) are shown

in Fig. 3. From the waveforms, it can be seen that in AFib, P waves are absent and there is a

presence of irregular narrow QRS complexes. The P waves are absent because they are clouded

by the activity of ectopic sites firing random impulses. The presence of larger ectopic sites

results in flatter baselines between two spikes in the waveform.

3

1.2 Requirements & Challenges of Bio-Signal Acquisition

As is the case with all medical anomalies and diseases, mitigation can be done only when the

root cause can be identified and mapped accurately. In the case of bio-signal recording,

methods such as electrocardiography (ECG) and electroencephalography (EEG) are widely

adopted. These methods of signal acquisition are popular due to their convenience and non-

intrusiveness. However, since the electrodes are much further away from the site of activity to

be recorded, they typically have low temporal and spatial resolution. This is because as the site

of recording gets further away from the actual site that is being recorded, the signal undergoes

filtering, and what is seen on the surface of the body is a vector summation of the signals over

a distance. The spreading and refraction of the signals as they conduct through various layers

of the body is termed as volume conduction which causes a drop in resolution. Reference

electrodes also play a role in distorting the potentials due to contamination or electrolyte

depletion that introduces low-frequency noise or baseline wander [3]. In situations where more

detailed information is required for better accuracy, implantable chips with a multitude of

electrodes close to the recording site are desired due to the high temporal and spatial resolution

they offer. In AFib for instance, ECGs can provide sufficient information to detect its presence.

However, they do not provide enough resolution to precisely map the sources of the substrate

that perpetuate AFib. While an implantable with multiple electrodes does provide superior

resolution, these devices come with their own set of challenges that need to be addressed. Some

of these challenges are described below.

Fig. 4: Block diagram of typical multi-channel acquisition systems. On the left, each channel

uses an LNA and an ADC of its own. On the right, the ADC is shared but each channel has its

own LNA [4].

4

As an implantable device aims to be as minimally invasive as possible, the proliferation in the

number of channels that are used in recording pose 3 main hurdles, [5].

i. Firstly - the circuit overhead scales proportionally to the number of channels. A typical

recording system requires an LNA and ADC for each channel or only shares an ADC,

as shown in Fig. 4. The increase in the front-end circuitry required for each channel

causes large power and area consumption. This is highly undesirable for a minimally

invasive SoC.

ii. Secondly - the long cable that reads out the data can cause significant degradation in

the signal quality due to interference. The interferers could be from neighbouring

channels, the power supply, or any external electromagnetic interference (EMI).

iii. Lastly - the number of wires going out restricts movement and can cause motion

artifacts which once again will degrade the quality of the signal. The diameter of the

catheter further restricts the number of wires that can be used for the readout.

1.3 Problem Statement

The recording of atrial electrogram (AEG) signals from multiple locations concurrently,

through an invasive setup allows for identifying the trigger or substrate perpetuating AFib [7].

In the acquisition process, a low- or high-resolution recording may be required as per the

doctor's/medical practitioner’s preference. A low-resolution recording can be performed when

a mere activation map of the site is desired to be looked at. This low-resolution recording allows

the doctor to “zoom out” and look at the overall features or propagation of the wavefronts in a

larger region of interest. On the other hand, a high-resolution recording can be done when the

doctor/medical practitioner desires to “zoom in” and look at more distinctive, clear features of

the cardiac signals.

Minimizing the overhead of the readout circuitry and number of outgoing wires due to the large

number of recording electrodes (channels) necessitates some form of circuit-sharing technique.

The three forms of multiplexing to share the readout circuitry among the different channels are:

Time-Division Multiplexing (TDM), Frequency-Division Multiplexing (FDM) and Code-

Division Multiplexing (CDM). Chapter 2 describes the merits and flaws of each of the three

techniques and justifies the use of CDM for this application. CDM is chosen, as it is the most

5

efficient in terms of bandwidth, which in turn allows for a huge reduction in chip area and

power.

Thus, in the context of a multi-channel CDM system that makes use of a shared analog CMOS

front-end, this thesis tries to answer/address the following:

i. How do various multiplexing coding schemes contrast in their capability to minimize

cross-talk between channels while utilizing an optimal bandwidth?

ii. How can generation of these multiplexing codes be achieved on-chip with minimal

form factors that show a significant improvement from existing techniques?

iii. To what degree can digital signal processing (DSP) off-chip help alleviate the recording

constraints so that an area and power efficient chip can be realised?

iv. What circuit architectures can be deployed for higher efficiencies to reduce power and

area that are also suitable for advanced technology nodes with shrinking voltages?

1.4 Thesis Organization

This thesis is organized in the following manner. In Chapter 2, the three channel-sharing

techniques are evaluated qualitatively to make a choice for the system. As CDM is chosen as

the multiplexing technique, Chapter 3 delves into spread-spectrum modulation and some of the

various kinds of codes: its properties, efficiency in terms of bandwidth usage, cross-talk and

ease of generation. Chapter 4 describes the system-level design and derives the specifications

of the individual blocks. Chapter 5 describes how a new and efficient method of generating

Walsh-Hadamard sequences using simple digital logic was devised and the systematic

approach that allows a WH code of any length to be constructed using a simple algorithm. In

Chapter 6, the circuit-level implementation of the code generator, low-noise amplifier, and

analog to digital converter is provided. The circuit schematics, design methodology and

simulation results are extensively explained in this chapter. Finally, Chapter 7 concludes the

thesis with the key results and future recommendations. Additionally, some of the

computations and design of certain circuit blocks have automation routines that are written in

MATLAB and are available in the appendices.

6

Chapter 2

Channel-Sharing Techniques & Prior

Work in Shared Analog Front Ends

To tackle the challenges and limitations imposed by a multi-channel recording system, as stated

in Section 1.2, sharing of the front-end resources among a certain number of channels must be

performed. By using a single LNA and/or ADC for multiple channels, significant strides can

be made in reducing the power and area consumption. The three available multiplexing

schemes are Time-Division Multiplexing (TDM), Frequency-Division Multiplexing (FDM),

and Code-Division Multiplexing (CDM). Each of these schemes have different implications on

the system such as complexity of implementation, efficient use of bandwidth, as well as

determining which blocks can be shared. In this chapter, a qualitative analysis is carried out for

each of these schemes in the context of analog front-ends. After evaluating the various benefits

and drawbacks of each technique, CDM is ultimately chosen.

2.1 Time-Division Multiplexing (TDM)

Time-Division Multiplexing/ Time-Interleaving is a technique in which multiple channels can

share circuit resources by allocating a fixed time slot for each channel to be readout. In the case

of analog front-end designs that involve an LNA and ADC, either the ADC or both the LNA

and ADC can be shared. The most obvious choice would be to share both the blocks (Fig. 5)

so that the power of one amplifier and one ADC can be used to process multiple channels. The

implications of time multiplexing N channels on the SNR, bandwidth and settling time is

briefly explained below.

7

Fig. 5: N input channels are time-multiplexed and summed to share one amplifier and ADC

As explained in [8], for N channels without an anti-alias filter, the SNR is proportional to
1

𝑁
.

The primary reason for this limitation is the difference between the signal and noise bandwidths

and the different sampling frequency as well. In TDM, the signal is sampled at
𝐹𝑆

𝑁
 , whereas the

noise is sampled at FS. Since the amplifier is shared, its bandwidth must be N times larger than

that of a single channel. This is required to be able to process all the channels, i.e. it must have

a large enough bandwidth to be able to settle to a particular accuracy before the next sample is

taken. A consequence of this is that even though each signal uses only
1

𝑁
 of the total available

bandwidth, the noise is integrated across the entire bandwidth. Hence, the noise across the

entire bandwidth is N times larger than that of a single channel bandwidth. This causes a

decrease in the SNR for an increasing number of channels. Apart from noise, the high

bandwidth required by the amplifier for each channel to settle in time is not fully utilized by

each channel. This is essentially a waste of the total available bandwidth.

As a result of this limitation, typically in many time-division multiplexed designs, each pair of

electrode (channel) uses a dedicated amplifier to ease the noise and settling requirements.

However, for recording systems that have 100s of channels, this cannot be easily scaled, as

area and power constraints once again come into play. This concludes the fact that TDM is not

the most efficient channel sharing technique, as it either requires large bandwidth that is not

optimally used or requires a dedicated amplifier per input channel.

8

2.2 Frequency-Division Multiplexing (FDM)

Frequency-Division Multiplexing is another method that can be used to share the analog front

end by allocating a different frequency band to each channel. Traditional modulation/chopping,

as shown on top of Fig. 6, uses a single frequency to modulate each channel in parallel. This

method requires an amplifier and low pass filter for each channel. This is of little to no interest

in this application as the number of amplifiers and filters scale proportionally with the number

of channels, eating up into the power and area overhead.

Fig. 6: Traditional Chopping (Top) and Orthogonal Frequency Chopping (Bottom) [6].

An alternative solution is to use orthogonal frequency chopping (OFC). In this technique, each

channel is allocated a different frequency. For this to be effective however, the modulation

frequencies are chosen in multiples of 2. This is done to reduce the intermodulation products

between neighbouring channels and maintain orthogonality [9]. After passing through the

shared amplifier, the signals are demodulated back into baseband. In both the above techniques,

modulating the input signal makes it easier to get rid of flicker (1/f) noise as well as other noise

sources that get added in the signal path. The noise sources such as external interference, flicker

and EMI are upmodulated at the demodulation side, which are then filtered out through a low-

pass filter. However, it must be noted that the thermal noise still remains but is relatively easy

to suppress by increasing gm, although that means a higher current and power consumption.

9

While OFC makes use of the shared analog front end, the issues and challenges it brings about

do not make it a suitable choice. Firstly, the chopping frequency for N channels grows

exponentially as the frequency for each channel is double the frequency of the previous

channel. Thus, the highest frequency to be generated is 2(N-1)*fc, where fc is the chopping

frequency of the first channel. This implies that the shared amplifier requires a bandwidth equal

to that of the fastest chopper, thereby using a massive amount of power [6]. Additionally, each

of these frequencies to be generated requires either a dedicated oscillator [10] or can be done

using frequency division circuits in the digital domain. On-chip oscillators occupy a lot of area

and consume huge amounts of power. While the frequency division circuits are area efficient,

the power overhead for higher frequencies is still significant. All these factors do not satisfy

the constraints on area and power for this particular implantable SoC. Thus, it is concluded that

the increase in implementation complexity for OFC comes without much benefit.

2.3 Code-Division Multiplexing (CDM)

In code-division multiplexing, the same frequency band is used for multiple channels by

assigning a different code/sequence to each of the channels. CDM makes use of the concept of

spread spectrum, wherein a narrow band signal is purposely spread into a wideband signal.

This is achieved by modulating the input with a code sequence that has a much higher

bandwidth in comparison to the bandwidth of the original signal. The reason for spreading the

signal across a larger bandwidth is its immunity to interference and band-limited noise sources

[11]. A more elaborate explanation of spread spectrum and its benefits are in Chapter 3.

Fig. 7: Conventional Code Division Multiplexed Systems. On the left, the digital output is

multiplexed before transmission and there is no sharing of the amplifier or ADC. On the right,

the amplifier output is multiplexed to share the ADC.

10

Fig. 8: Direct Coding of Input Channels in the Analog Domain [5].

CDM can be applied either in the digital or analog domain. Conventional designs code the

channels either after digitization or amplification as shown in Fig. 7. Modulating the signal

after digitization still requires an LNA and ADC per channel, hence is of no interest.

Modulation after amplification has two distinct disadvantages. Firstly, the number of amplifiers

scales with the number of channels. Secondly, the noise sources such as flicker noise and any

external interference or EMI can fall in band and become inseparable. Removing the interferes

would require filtering whereas flicker noise cannot be removed since it falls exactly in the

signal band. Since the objective is a shared channel, the inputs are coded directly in the analog

domain (Fig. 8). This allows us to reap the benefits of the flicker noise being modulated out of

band as well as makes use of a shared LNA as well as ADC.

Since CDM uses the same frequency for all the channels, the bandwidth of the amplifier can

be optimally used as all the channels are stacked by adding up the signals on top of each other.

Therefore, each signal makes use of the entire available bandwidth without wasting any

resource. By digitizing the signals prior to demodulation, the overhead that comes with

encoding for the transmitter can be avoided. Furthermore, the demodulation can be performed

off chip, relieving the power and area constraints [6]. At the receiver end, the signals are

multiplied with the same codes they were modulated with. It is important to synchronise the

demodulation for the accurate recovery of the signal. If the signals are multiplied without

synchronisation, the output signal will just look like noise. This is one of the properties of a

spread-spectrum signal as explained in Chapter 3. At the demodulation side, the unwanted

noise and interference is upmodulated by the code at the receiver end and can be filtered out

easily.

11

Mathematically, the transmitted and received signal can be expressed as in [5]:

The sum of the incoming signal u(t), modulated with the codes c(t) is:

𝑚(𝑡) = ∑𝑢𝑖(𝑡) ∗ 𝑐𝑖(𝑡)

𝑁

𝑖=1

(2.3.1)

The transmitted signal after addition of noise sources, interference and subsequent

amplification and digitization is:

𝑠(𝑡) = 𝐴[𝑚(𝑡) + 𝑛1/𝑓(𝑡) + 𝑛th(𝑡) + 𝑛emi(𝑡)] + 𝑛q(𝑡)

 (2.3.2)

Finally, on the receiver end the received signal s(t) is multiplied with the code again to give:

𝑟𝑖(𝑡) = 𝑠(𝑡) ∗ 𝑐𝑖(𝑡)

𝑟𝑖(𝑡) = 𝐴𝑢𝑖(𝑡) + 𝑐𝑖(𝑡) ∗ [𝐴𝑛1
𝑓

(𝑡) + 𝐴𝑛𝑒mi(𝑡) + 𝑛q(𝑡)]

 (2.3.3)

From this analysis, we observe that CDM allows for the efficient use of bandwidth as the signal

uses the entire available bandwidth of the amplifier. If the input signal is directly modulated,

CDM has the nice property of OFC modulation wherein it modulates most of the unwanted

noise sources and interference out of band. This removes the need for steep filters. With these

benefits of code-division multiplexing, it is deemed as a perfect option for the sharing of analog

front-end circuitry in a multi-channel signal-acquisition system. The main consideration to be

taken into account for CDM is the choice of codes and the frequency at which they operate.

These two parameters must be chosen appropriately as they are key to minimizing the cross

talk between channels and keep the unwanted tones out of band. Chapter 3 describes the

different type of codes, their properties and their ease of generation in detail.

12

Chapter 3

Spread-Spectrum Modulation – Pseudo

Random and Orthogonal Sequences

As Code-Division Multiplexing is chosen as the channel-sharing technique, in this chapter the

concept of spread spectrum is discussed as CDM essentially spreads the spectrum to a larger

bandwidth. Additionally, the different types of codes, their properties and ease of generation

are discussed. This is done to choose the appropriate codes for modulation to maximise

performance by minimising cross-talk between channels.

Spread-spectrum modulation is a technique in which a signal at baseband with a particular

bandwidth is purposely spread to a much larger bandwidth by modulating it with a higher

frequency signal. The modulation is performed by multiplying the signal with a code or

sequence running at a higher frequency. Fig. 9 depicts this operation wherein a narrow band

signal (green) is spread to a wideband signal (blue). The higher the frequency of the code signal,

the wider the baseband signal is spread. The resulting signal is a noise-like looking signal which

provides the basis of many benefits of this technique [11].

Fig. 9: Narrow band signal spread to a wideband signal by multiplying it with a code sequence

of a much higher frequency [18].

13

Typically in communication systems, spreading the spectrum is done for reasons such as anti-

jamming, anti-interference, multi-user random access communications and low interception

probability. The reason for this is best visualized from Fig. 10 below. Since the desired signal

has been spread, it is at a much lower power spectral density spanning across a larger frequency

range. At the receiver or demodulation side, the incoming signal contains the desired signal

along with all the jammers, interferers and noise. This signal is now multiplied with an identical

copy of the sequence with which the first spreading operation was carried out. This has two

consequences. Firstly, the desired signal is now de-spread and its bandwidth collapses to that

of its original narrow bandwidth. However, the interferers and jammers (if they are

bandlimited) are now spread over a large bandwidth as they haven’t been modulated before.

The undesired signals now have a much lower power spectral density and are spread over a

much larger bandwidth. Hence, the portion of the interferers falling in-band is greatly reduced

and a better SNR can be achieved. In a multiple-access application, all the codes operate at the

same frequency and hence make use of the entire available spectrum. Despite occupying a

larger bandwidth than the original signal, it is compensated by the fact that multiple channels

or users occupy the spectrum.

Fig. 10: De-spreading of the signal at the receiver/demodulating end causes the original signal to

collapse into a narrow band signal. However, now the interfering signals (if bandlimited) are

spread and their effect on the signal quality is reduced as a much smaller power density of the

interferer falls in band of the signal.

14

There are several techniques by which this spreading of the spectrum can be performed. The

first is time-hopping spread spectrum (THSS). In this technique, the signal is transmitted in

brief spurts at random intervals of time. The time spurts are initiated by a pseudorandom

sequence. The second is frequency-hopping spread spectrum (FHSS), wherein a carrier is used

to shift the frequency of the signal in a pseudorandom way. The third is direct-sequence spread

spectrum (DSSS). DSSS directly multiplies the code with the signal by causing phase

transitions in the original signal itself [11]. In all cases the sequences are not truly random as a

copy of the sequence is needed at the demodulation side to precisely recover the signal. In the

domain of Analog IC Design, DSSS is the same as the chopping technique and can be directly

applied to the input with only two pairs of switches which makes its implementation extremely

easy. FHSS needs a frequency synthesiser for the sequence to translate into different

frequencies. Hence, its complexity is increased. Finally, THSS applies the sequence to the

transmission and is applied to the amplifier. This involves switching the amplifier on or off

which requires careful design to ensure that the amplifier can operate accurately while being

switched. Considering the implementation complexity of the three schemes, DSSS is the easiest

to implement while at the same time providing benefits such as reducing the effect of 1/f noise

and offset. Hence, in this project, DSSS was implemented.

Fig. 11: The 3 different spreading techniques. The top figure depicts Direct Sequence Spread

Spectrum (DSSS). The bottom left depicts Frequency Hopping Spread Spectrum (FHSS) and

the bottom right is Time Hopping Spread Spectrum (THSS).

15

While in theory, a truly random sequence can modulate the signal, in practice it cannot be

random as a copy of the code is required for demodulation. Hence, pseudorandom codes are

typically used for modulation. There are various types of codes that are available, each with

their own properties depending on the application. In the sections below, the properties and

generation of two classes of codes and how they are generated is discussed keeping in line with

the properties desired for a shared analog front end. The two classes are pseudorandom bit

sequences (PRBS) and orthogonal Walsh-Hadamard (WH) sequences.

In this thesis, DSSS is of main interest as code-division multiplexing is essentially a direct-

sequence modulation scheme that spreads the bandwidth. As the signals read out from the

electrode array in this project are done by a wire, aspects such as anti-jamming and security

are not of primary concern. The main aspects that need to be taken into consideration are the

cross-talk between channels and the ease of generation or storage of these sequences on chip.

Cross-talk between channels can occur if there is non-zero cross-correlation between the

various code sequences. This will affect the recovery of the signal as the spillover of other

channels will degrade the SNR. Since there will be capacitive coupling on chip between

channels that already degrades the SNR, it is important to use code sequences that do not

exacerbate this problem. Choosing orthogonal codes gives a zero cross-correlation in theory,

although in practice it will be some non-zero value. The non-zero cross correlation in practice

comes from non-idealities in real systems such as synchronisation errors, system noise and

jitter that do hamper the perfect alignment of the sequences in the time domain. The small time

shifts present from one sequence to another will deteriorate its cross-correlation property.

However, as seen from [6], the cross-talk is sufficiently low to not have an adverse effect on

performance.

In the following two subsections, PRBS and WH codes are explained in greater detail. Since

this thesis makes use of WH codes due to their orthogonality, there is more emphasis placed

on this type of code. However, PRBS codes and their generation is briefly discussed too in

Section 3.1 and more information can be found in Appendix A. Section 3.2 gives an

explanation of how the WH matrices come about in the mathematical domain and why

computation or memory seems necessary. Following this, a novel simplified method of

generating the codes is proposed with an example in Chapter 5.

16

3.1 Pseudo-Random Bit Sequences (PRBS)

Introduction, Types and Properties of PRBS Codes

Pseudo-Random or Pseudo-Noise (PN) Sequences are a type of sequence that spread a

spectrum and can be used for CDM. They possess good randomness properties, have long

periods and are easy to generate [11]. The two main pseudo-random codes that are explored in

this thesis are the Maximum Length (ML) and Gold Sequences. While there are other types of

sequences such as Kasami, Gold-like and Dual-BCH sequences, they were not explored as a

much better code in terms of performance was achieved and is explained in Section 3.2. In this

section, the properties and generation of ML and Gold sequences are briefly discussed as some

of the work carried out in this thesis went into exploring them as possible implementations for

CDM in shared analog front-ends.

In terms of circuit implementation, these PN sequences can be easily realized using linear

feedback shift-registers (LFSR). LFSRs are digital circuits that use a shift register whose input

is a linear function of two or more states of the intermediate shift registers [14]. Fig. 12 shows

how an LFSR is realized. The input is a feedback connection of the XOR function of the taps

at positions 3 and 5. The output sequence of these LFSRs is determined by the initial state

loaded onto the shift-registers and the feedback connections. The feedback coefficients are

determined by a certain type of polynomials. More information about the generation of the

polynomials is available as a MATLAB automation script in Appendix A.1. The script was

used to generate polynomials up to the 13th degree. Larger degrees are possible but will take a

much longer time to generate due to the sheer number of polynomials that exist.

Fig. 12: Linear Feedback Shift Register (LFSR) formed by feeding back the XOR of tap 3 and 5

17

Maximum-Length Sequences: This is a type of sequence in which the period of the sequence is

2𝑁 − 1, where N is the degree. For instance a 4 state register has a maximum period of 15

(24 − 1), since the all-zeros case is not included. The choice of the feedback taps determine

whether a maximal length sequence is produced or not.

The determination of these polynomials stems from field theory, and more specifically belong

to a small finite field termed GF(2). Within this field, the polynomials of a given degree must

be irreducible and primitive polynomials. A maximum-length sequence is only generated by

primitive polynomials. The MATLAB scripts in Appendix A.1 generate these primitive

polynomials. The feedback taps are the coefficients in the polynomials. For instance, Fig. 12

is a circuit that generates an ML Sequence, that incorporates the polynomial 𝑥5 + 𝑥3 + 1. The

feedback taps are 3 and 5 and 1 is the input. The actual output sequence also depends on the

initial states that the registers are set to.

The auto-correlation of ML sequences are two-valued:

 𝑁, 𝑎𝑡 0 𝑠ℎ𝑖𝑓𝑡𝑠

−1, 𝑎𝑡 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑠ℎ𝑖𝑓𝑡𝑠

 (3.1.1)

The cross-correlation is much more complicated. In this case we focus on special class called

the preferred pairs of polynomials. These are pairs of ML polynomials that either have a 3- or

4-valued spectra. The 4-valued spectra is if 𝑛 is a multiple of 4 and the 3-valued spectra for

other cases. The different cross correlation values in the spectra are given by the formulae:

−1, −𝑡(𝑛) & 𝑡(𝑛) − 2

}
𝑡(𝑛) = 1 + 2

𝑛+2
2

n is the degree of the sequence −1,−1 + 2
𝑛
2 , −𝑡(𝑛) 𝑎𝑛𝑑 𝑡(𝑛) − 2

 (3.1.2)

If, for a given application, a single ML sequence is required, using any of the primitive

polynomials is acceptable. However, if there are multiple required, it is better to use these pairs

of preferred polynomials for better cross-correlation properties. A more detailed mathematical

description can be found in [12].

18

Gold Sequences: These are a class of sequences with much better cross-correlation properties

in comparison to ML sequences. As seen from the cross-correlation formula for a preferred

pair of polynomials, as 𝑛 increases, the peak cross-correlation also increases. Gold codes solve

this problem by performing the XOR operation between two preferred pairs of polynomials.

The auto-correlation remains good while the cross-correlation is reduced.

The auto-correlation of a Gold sequence = 2𝑁 − 1

The cross-correlation between 2 sequences is −1,−1 + 2
𝑛+1

2 & 1 + 2
𝑛+1

2

As these codes still have non-zero cross-correlation, it affects the cross-talk between channels

and hence the following section addresses a set of orthogonal sequences which are favourable

for channel sharing.

3.2 Walsh-Hadamard Sequences

Introduction and Properties of Walsh-Hadamard Codes

The Walsh-Hadamard transform belongs to a class of Fourier transforms from which

orthogonal matrices are generated. The starting point is a base matrix of size 1, defined as:

𝐻1 = [1]

The consecutive matrices of size 2𝑁 are computed from a base matrix of size 𝑁 by the recursive

Kronecker product that can be expressed as [13]:

𝐻2𝑁 = [
𝐻𝑁 𝐻𝑁

𝐻𝑁 −𝐻𝑁
]

For a 2x2 matrix this is defined below. From the following sections, the -1 coefficients will be

replaced by a 0 for ease of visualization and resemblance to binary signals in the electrical

domain.

𝐻21,−1
= [

1 1
1 −1

] ↔ 𝐻21,0
= [

1 1
1 0

]

19

Similarly a 4x4 and 8x8 matrix can be formulated as:

𝐻41,0
= [

𝐻21,0
𝐻21,0

𝐻21,0
−𝐻21,0

] =

[

1 1
1 0

 1 1
 1 0

1 1
1 0

 0 0
 0 1]

𝐻81,0
 =

[

1 1

1 0

 1 1

 1 0

1 1

1 0

 0 0

 0 1

1 1

1 0

 1 1

 1 0

1 1

1 0

 0 0

 0 1

1 1

1 0

 1 1

 1 0

1 1

1 0

 0 0

 0 1

0 0

0 1

 0 0

 0 1

0 0

0 1

 1 1

 1 0]

As these codes are orthogonal, the cross correlation between each of them is 0. This is one of

the key properties that makes this type of code useful for CDM. Fig. 13 shows the proof of this

in the plot below.

Fig. 13: Zero cross-correlation between all sequences for a 4x4 WH Matrix

20

By evaluating the correlation between all the possible sequence combinations for a 4x4 matrix,

it can be seen that the cross-correlation between any two sequences in a set is equal to 0. On

the vertical axis of the plots, the cross-correlation value is depicted and along the horizontal

axis is the shifts by each bit.

From the above analysis and comparison of PRBS codes and WH codes, it can be concluded

that WH codes, being orthogonal, are best suited for code multiplexing since the main

limitation is reducing cross-talk in this application. In the following chapter, by making use of

the WH codes, the system level design will be built up to quantify the optimal parameters

required to realise such a system.

21

Chapter 4

System-Level Design

In the previous chapters, the use of Code-Division Multiplexing (CDM) to share a number of

channels was deemed to be the best choice from a qualitative point of view. As the most

important property required for the application is to minimise crosstalk, orthogonal codes are

best suited due to their zero cross-correlation. In this regard, Walsh-Hadamard Codes satisfy

the property of zero cross-correlation and are used as the coding scheme.

In this chapter, the system level design will be constructed and design specifications will be

quantified. Firstly, the signal characteristics are quantified based on available recordings, after

which the best possible system level configuration is described to extract the most optimal

performance with the simplest hardware possible.

4.1 Signal Properties

The AEG signals recorded have a signal amplitude ranging from 1-10mVpk-pk for each

recording channel. The recording bandwidth ranges from 0.5 – 400 Hz. In this thesis, as there

was no access to the actual recording data for the AEG signals, the following specifications are

devised using data from MIT-BIH arrhythmia and atrial fibrillation databases available at

physionet.org [15][16]. These are recordings from laboratories at Boston’s Beth Israel

Deaconess Medical Center that is available for basic research into cardiac dynamics. Both these

datasets contain ambulatory ECG recordings instead of atrial electrograms. For more accurate

results, these specifications may need to be revised by testing the system on actual recorded

data. However, AEG signals are quite similar to that of ECG signals in terms of their signal

characteristics such as amplitude range and peaks. Hence, the validation below is justified and

can be quite accurate for the intended application.

The signal amplitude for both these sets of data have a 10mV range. The arrhythmia database

is recorded at 360 samples per second and digitized with a 11-bit resolution per channel. On

the other hand, the fibrillation database was recorded at 250 samples per second and digitized

with a 12-bit resolution per channel. Fig. 14 plots the signals in the time and frequency domain.

22

From the frequency-domain plot, it can be devised that these signals have mostly low-

frequency components, as these frequencies are seen to have much larger magnitude in the

PSD plot. Thus, most of the important features to identify these arrhythmias are captured in the

low frequency region up to a few 10s of hertz. The low-frequency, low-bandwidth signals tie

directly into a choice for the modulation frequency at which the codes operate. This in turn

simplifies the design of the ADC as there is no need to operate at very high speeds to obtain

sufficient resolution.

Fig. 14: Arrhythmia (left) and atrial-fibrillation (right) ECG signals in the time (top) and

frequency (bottom) domain. Most of the features are captured in the lower frequencies as seen

from the higher PSD values in the low-frequency region.

4.2 Required Resolution

As this application targets low-resolution recording, the following experiment is done to

determine the minimum amount of SNR required to maintain signal integrity and keep a low

percentage root difference (PRD) between the original and reconstructed/corrupted signal. The

PRD is computed to ensure that essential features of the signal - especially the slopes and peaks

are not lost and are visible to the clinician to make a diagnosis. Although a PRD of less than

5% is usually an acceptable value, here, a slightly tighter constraint of 3% is designed for. This

is to keep some margins for other types of noise, interference and distortion that are not

modelled. However, as shown in Section 2.3, the spreading and de-spreading gets rid of most

of the noise, and hence, this model provides a suitable estimate of the required resolution.

23

The MIT-BIH signals mentioned above are recorded with a fairly high degree of resolution of

11 and 12 bits. These signals are extracted in MATLAB and white noise is added to these

signals incrementally. At each iteration of the addition of the noise level, the SNR of the noisy

signal is computed along with the PRD between the original signal and this noisy signal. From

Fig. 15 it is evident that for both the types of signals, there is a knee in the curve beyond which

there is minimal improvement. For a PRD of less than 3% an SNR in the range of 28-32dB is

sufficient. This corresponds to a resolution of 5-6 bits. Considering the non-idealities and non-

linearities in an ADC, a 6 bit ADC seems sufficient for the recording of the channels.

Fig. 15: SNR vs PRD for Arrhythmia (left) and Atrial Fibrillation (right) Signals.

Fig. 16: Overlay of Corrupted and Original Signal for the Arrhythmia (left) and atrial

fibrillation (right) corresponding to an SNR of 30dB.

Fig. 16 overlays the original signal with the noisy signal corresponding to the SNR of that in

Fig. 15 , i.e. ≈ 29 - 30dB for the arrhythmia and fibrillation signals respectively.

24

4.3 Number of Channels (NCH) vs Code Length(L)

The number of channels that can be shared using Walsh-Hadamard (WH) codes is

straightforward as it is proportional to the length of the code. A WH code of length 𝐿 gives

𝐿 unique codes that are orthogonal to each other. Since the first code is an all ‘1’ sequence, it

is not useful, as no modulation occurs. Hence, the total number of channels that can be used

for a sequence of length 𝐿 is equal to 𝐿 − 1. Since WH codes come in powers of 2, the total

useful number of sequences is 2𝑛 – 1, where 𝑛 is an integer greater than or equal to 2.

Alternatively, if the number of channels (NCH) is already known or determined by another

system parameter, the minimum length of the WH code required is the closest power of 2 that

is greater than NCH. Table 1 summarizes the minimum code length required depending on the

desired number of channels to be shared.

The fact that WH codes are in powers of 2 can sometimes be disadvantageous when the number

of channels is fixed. For instance, if 64 channels are required to be shared, a WH code of length

of 128 must be chosen even though the remaining 64 codes are not required. A WH code that

is much longer needs to either be generated or stored, taking up more computation power or

area on a chip. Additionally, the frequency of modulation also increases with increasing length,

so as to obtain a better performance. The frequency dependance on the code length is explained

in Section 4.4.

Table 1: Number of Channels vs Minimum Code Length

Number of channels to share (Nch) Minimum Required WH Code Length (L)

 2 ≤ 𝑁𝐶𝐻 ≤ 3 22 = 4

4 ≤ 𝑁𝐶𝐻 ≤ 7 23 = 8

8 ≤ 𝑁𝐶𝐻 ≤ 15 24 = 16

16 ≤ 𝑁𝐶𝐻 ≤ 31 25 = 32

32 ≤ 𝑁𝐶𝐻 ≤ 63 26 = 64

64 ≤ 𝑁𝐶𝐻 ≤ 127 27 = 128

25

4.4 Modulation Frequency

The choice of frequency at which the codes run is determined by the bandwidth of the signals,

and the number of channels being shared or the code length. Fig. 17 plots the SNR versus the

modulation frequency for 3, 7 and 15 channels that are multiplexed with code lengths of 4, 8

and 16 respectively. It can be seen that for fewer number of channels, the modulation frequency

required to achieve a certain SNR is much lower than those that multiplex more channels. This

is because as the number channels increases, the length of the code required increases. This in

turn increases the modulation frequency to achieve a similar SNR.

As the modulation frequency for a given length increases, the SNR improves up to a certain

point after which the curve flattens out and the improvement in SNR is minimal. This stems

from the fact that spreading the spectrum indefinitely is of no use as the fundamental limit to

the achievable SNR is thermal noise. Spreading the spectrum does not eliminate thermal noise

as it is white noise. During the modulation phase, the thermal noise present is up-modulated

along with the signal and it is then down-modulated during the demodulation phase. Hence, an

improvement in SNR can only be achieved by lowering the thermal noise in-band.

Fig. 17: SNR vs Modulation Frequency for Different Number of Channels

From the above plot, to achieve a resolution of about 5 bits or more, the modulation frequency

for 3 channels should be greater than 2kHz, for 7 channels should greater than 4kHz, and for

15 channels should be greater than 16kHz.

26

4.5 System Block Diagram

Having quantitatively derived the required resolution, type of code and length required along

with the corresponding modulation frequency, the system level design can now be constructed.

The design is split into 2 blocks – the On-Chip recording circuitry and the Off-Chip recovery

and processing unit that uses digital signal processing.

The On-Chip recording circuit consists of 3 main circuit blocks. The first block consists of a

switching modulator for each channel. Each channel is modulated with a unique sequence that

is generated by the code generator circuit on chip. The WH Code Generator, shown in Fig. 18,

generates the codes that are fed into a non-overlapping clock generator. These non-overlapping

signals drive the switches of the modulator. The second block is a summing amplifier that sums

up all the channels. Finally, the summed output is digitized using a 6-bit Nyquist rate ramp

ADC before being transmitted off-chip for processing and recovery. A ramp ADC is used due

to its simplicity of implementation given the low resolution and frequency of operation.

Fig. 18: On-Chip System Level Block Diagram

On-Chip

27

Fig. 19: Off-Chip Signal Recovery using Digital Signal Processing

The entire off-chip digital processing and signal recovery is done using MATLAB. The

transmitted digital bits are converted back to an analog signal using an ideal DAC. The

reconstructed analog signal is demodulated by multiplying this single output analog signal with

all the N sequences running at the same modulation frequency that was used at the transmission

end. The channels that are not synchronised cannot be recovered and look like noise as

explained in Chapter 3. Thus, each channel only correctly recovers its own channel’s data given

that the synchronisation is fairly accurate. At this stage, the signal from each channel can be

filtered to remove all the unwanted signals and noise. A digital LPF in MATLAB with a 6th

order roll-off is used. A moving average is also used for additional noise reduction and

smoothening of the signal. The moving average filter allows for another 2-3dB improvement

in SNR, thereby allowing for an additional half a bit of resolution without the requirement for

additional bits or oversampling on-chip.

Off-Chip

28

4.6 System Level Verification for 7 Shared Channels

Using the above derived specifications, the system is modelled using MATLAB and Simulink

for 7 shared channels to verify the idea and specification derived above. Simulink is used as it

allows for quick characterization due to the availability of in-built signal processing as well as

circuit blocks that can be interfaced with ease.

The setup of the system in Simulink is shown in Fig. 20. The input channels contain single tone

signals of different frequencies. The in-built Walsh-Hadamard Code Generator Block

generates the WH code with parameters such as frequency and code length set by the user. In

this case, the code operates at 4kHz with a code length of 8, as obtained from Sections 4.3 and

4.4. These modulated signals are summed and amplified using a summation and gain block. A

low pass-filter with a tunable bandwidth is inserted to model the finite bandwidth of the

amplifier. The amplified analog output is then digitized by using a simple quantizer and the

digital output data is exported to MATLAB for signal recovery.

Fig. 20: Simulink Model of System for 7 Shared Channels

29

The seven inputs are single tone test signals - each with a unique frequency and an amplitude

of 10mVpk-pk. The test signals are chosen as prime numbers to avoid any of its harmonics falling

into the signal bin of another signal tone. This is to avoid any exaggeration or degradation of

the SNR, thereby giving a wrong enhancement or degradation of the system level performance.

The 7 signal frequencies are 13Hz, 17Hz, 23Hz, 29Hz, 37Hz, 41Hz and 47Hz, labelled CH1 to

CH7 respectively as shown in the time domain plot in Fig. 21. Fig. 22 plots the frequency

spectrum of the input signals.

Fig. 21: Time Domain Waveforms of the 7 input signals, each with a unique frequency.

The transmitted output data bit stream is converted back to an analog signal using an ideal

DAC, multiplied once again with the WH codes at the same frequency and then low pass

filtered. The demodulated signals are shown in Fig. 23. It can be seen that there is some high

frequency content that sits on top of the lower tone signals despite a 6th order LPF being used.

30

Fig. 22: Frequency Spectrum of Input Signals

Fig. 23: Demodulated signals without moving average.

The higher order frequency content can be smoothened out by applying a moving average. On

performing the moving average, an improvement of SNR of about 2-3dB is noticed. Comparing

the time domain waveforms of Fig. 23 and Fig. 24, it can be seen that the higher frequency

31

ripples have been reduced. It must be noted that the window of averaging must also be chosen

carefully so that critical information is not lost by aggressive filtering. Table 2 provides a

comparison of each channel and its SNR after demodulation with and without a moving

average for the 7 channel system.

Fig. 24: Demodulated Signal with Moving Average of 16 Samples each.

Fig. 25: Frequency Spectrum of Demodulated Signals

32

Table 2: Comparison of SNR with and without a moving average for 7 channels at FMOD = 4kHz.

Channel Frequency

(Hz)

SNR without averaging

(dB)

SNR with averaging

 (dB)

1 13 31.045 34.351

2 17 31.509 34.368

3 23 30.870 34.260

4 29 31.392 34.202

5 37 31.492 34.506

6 41 31.448 34.493

7 47 31.376 34.177

In Fig. 24, Fig. 25 and Table 2 we observe that the system level specification derived in

Sections 4.2, 4.3 and 4.4 have been verified by the successful recovery of each of the signal

tones with sufficient resolution.

4.7 System Level Specifications

From the system level parameters that were derived in the above sections, the required circuit

level specifications can be deduced. Table 3 summarizes the required specifications.

Table 3: Design Specifications

Parameter Description Value

Number of Channels (NCH) - 7

Input Voltage Range (1-10mVpk-pk) * 7 7-70mVpk-pk

Output Voltage Swing - 150mV

Modulation Frequency (FMOD) Optimum for 7 channels 4kHz

Resolution (N) 6 bits 6 bits

Sampling Frequency (FS) > FMOD 16kHz

Channel Gain 4 Gain Settings (3,6,12,24) 9.5 – 27.6dB

33

Parameter Description Value

THD < 5% < 26dB

Gain of Amplifier > THD + Channel Gain > 53dB

In the next chapter, a novel method for generating the WH codes on-chip using simple digital

logic is proposed and elaborated upon. Using the code generator and the system level

parameters verified in this chapter, a 7 channel multiplexed system is realised and the circuits

implemented are explained in Chapter 6.

34

Chapter 5

Walsh-Hadamard Code Generator using

Digital Logic

5.1 Proposed Walsh-Hadamard Code Generator Circuit

One of the concerns/limitations with orthogonal codes such as Walsh-Hadamard codes is that

they are typically either stored on chip using some memory [6], or implemented by computing

the matrices on-chip, which then requires a processor. Storage of large sets of Walsh-Hadamard

codes poses a constraint on area as the look-up table scales exponentially with the length of the

sequence. Implementing a processor requires large power consumption while at the same time

occupying more area with a higher implementation complexity to embed the processor on chip.

This stems from the way in which these codes are constructed mathematically by taking the

Kronecker products as was explained in Section 3.2. However, looking at the sequences in

terms of frequency and time-shifts, these codes can be constructed using extremely simple

digital logic accurately, as they can all be derived from a single clock signal. This novel method

of mapping the WH sequence onto silicon using digital circuits is elaborated with an example

below.

Prior to explaining the WH code generation methodology, two fundamental logic functions

from digital circuits are explained to better understand how the pattern was devised and came

about. The two logic functionalities are the XNOR logic gate and a Frequency Divider using a

flip-flop. The former is a combinational logic circuit whereas the latter is a sequential logic

circuit. The combination of these two principles will allow an accurate generation of the WH

codes that is derived from the clock signal.

The first useful logic gate is the XNOR. Table 4 shows the truth table for a 2-input XNOR gate

along with its schematic symbol. The key point to notice from this table is that when one of the

inputs is a logic ‘0’ (In1), the output is an inverted or flipped version of the other input (In2) .

On the other hand, when one of the inputs is a logic ‘1’ (In1), the output follows or copies the

other input (In2).

35

Table 4: XNOR Logic Function and Symbol

In1 In2 OUT Operation

0 0 1

Invert In2

0 1 0

1 0 0

Copy In2

1 1 1

The second useful digital logic circuit is the Frequency-Divider circuit using a simple D Flip-

Flop (DFF). The idea stems from the fact that a D Flip-Flop is a clocked device whose output

follows the input only on transition of one of the clock edges. Hence, if the input of the DFF is

a complementary version of the original clock, the output frequency will be half of the input

clock frequency. This can be achieved by feeding back the complementary output of the DFF

to the input, which is best visualized from Fig. 26. Using these two concepts, a WH code of

any length can generated using solely digital logic.

Fig. 26: Frequency Division by 2 using a D Flip-Flop

36

In Section 3.2, the mathematical construction of WH matrices was derived. It was seen that by

computing the recursive Kronecker product of 2 matrices, a matrix of size N is achieved.

The algorithm proposed here works on the premise of constructing a sequence of length 2N

given an existing sequence of length 𝑁. This has just 1 implication – an initial condition or

sequence is required to start the computation. This is fairly easy to achieve, as can be seen from

the 4x4 matrix below. The first row is just a logic ‘1’ which can be tied to the power supply.

This sequence is also not useful as there is essentially no modulation performed by this

sequence. The second row is an alternating sequence between ‘1’ and ‘0’. This sequence

resembles a clock signal, and since a clock is anyway required, one of the system clocks or a

fraction of it can be directly used for this sequence.

𝐻41,0
= (

1 1
1 0

 1 1
 1 0

1 1
1 0

 0 0
 0 1

)

Starting from a base matrix where the first row is just ‘1’ and the second row is a clock

sequence, the remaining rows can be constructed using the following algorithm. The base

matrix is of length 𝑁 and the matrix to be constructed is of length 2𝑁.

Construction of 2𝑁 Length Sequence from 𝑁 Length Sequence:

1) Row 1 to 𝑁 → Sequence Repeats

2) Frequency of Row 𝑁 + 1 →
Frequency of Row (

𝑁

2
)+1

2

3) Row 𝑁 + 𝑥 → Row (𝑁 + 1) 𝐗𝐍𝐎𝐑 Row 𝑥 𝑤ℎ𝑒𝑟𝑒 2 ≤ 𝑥 ≤ 𝑁

An example to depict the working of this algorithm is given below. A WH code of length 8 is

constructed from a WH code of length 4. Here, 𝑁 = 4,
𝑁

2
+ 1 = 3,𝑁 + 1 = 5, 2𝑁 = 8 and

2 ≤ 𝑥 ≤ 4.

Table 5 shows how the first 5 sequences are derived and Table 6 computes the remaining 3

sequences. The corresponding colour codes depict the operation performed. Following the

algorithm, it can be seen that from Rule 1, the first 4 rows simply repeat and do not require any

further computation. Following Rule 2, the 5th row is half the frequency of the 3rd row. The

37

halving of the frequency can be implemented using the frequency-divider circuit explained

above.

Table 5: WH Code Pattern of First N+1 Sequences

Seq No.

(4x4)

WH Code 4x4 Pattern WH Code 8x8 Seq No.

(8x8)

𝑆𝑒𝑞 1 1 1 1 1
Repeats

1 1 1 1 1 1 1 1 𝑆𝑒𝑞 1

𝑆𝑒𝑞 2 1 0 1 0
Repeats

1 0 1 0 1 0 1 0 𝑆𝑒𝑞 2

𝑆𝑒𝑞 3 1 1 0 0
Repeats

1 1 0 0 1 1 0 0 𝑆𝑒𝑞 3

𝑆𝑒𝑞 4 1 0 0 1
Repeats

1 0 0 1 1 0 0 1 𝑆𝑒𝑞 4

𝑆𝑒𝑞 3 1 1 0 0
Half the Frequency

1 1 1 1 0 0 0 0 𝑆𝑒𝑞 5

(
𝑁

2
+ 1)

(𝑁 + 1)

Table 6: WH Code Patterns of Remaining Sequences from N+2 to 2N

Seq No.

(8x8)

WH Code 8x8 Pattern WH Code 8x8 Seq No.

(8x8)
Repeat Flip Repeated Flipped

𝑆𝑒𝑞 2 1 0 1 0 1 0 1 0
𝑆𝑒𝑞 2 𝐗𝐍𝐎𝐑 𝑆𝑒𝑞 5 1 0 1 0 0 1 0 1 𝑆𝑒𝑞 6

(𝑁 + 2) 𝑆𝑒𝑞 5 1 1 1 1 0 0 0 0

𝑆𝑒𝑞 3 1 1 0 0 1 1 0 0
𝑆𝑒𝑞 3 𝐗𝐍𝐎𝐑 𝑆𝑒𝑞 5 1 1 0 0 0 0 1 1

𝑆𝑒𝑞 7

(𝑁 + 3) 𝑆𝑒𝑞 5 1 1 1 1 0 0 0 0

𝑆𝑒𝑞 4 1 0 0 1 1 0 0 1
𝑆𝑒𝑞 4 𝐗𝐍𝐎𝐑 𝑆𝑒𝑞 5 1 0 0 1 0 1 1 0

𝑆𝑒𝑞 8

(𝑁 + 4) 𝑆𝑒𝑞 5 1 1 1 1 0 0 0 0

Finally, the remaining 𝑁 − 1 rows follow Rule 3. By observing the two halves of the code, it

can be seen that the first half of the sequence is repeated from Sequence 𝑁 + 𝑥 and the second

half is flipped. This property can be implemented using the XNOR function as described above,

since Sequence 5 has a sequence of ‘1’s followed by a sequence of ‘0’s. The 6th row is XNOR

of Sequence 2 and Sequence 5, 7th row the XNOR of Sequence 3 and Sequence 5 and 8th row

38

is the XNOR of Sequence 4 and Sequence 5. Fig. 27 shows the waveforms of the sequences

built using the proposed algorithm for a 8x8 WH Sequence using ideal digital logic gates in

LTSpice. The first signal on top of the figure is the clock signal followed by the 7 different

sequences. Each symbol of the sequence corresponds to one period of the clock signal.

Fig. 27: WH8 Code Waveforms using the proposed circuit that solely uses digital logic.

This methodology or algorithm extends to all the powers of 2. In this thesis, the algorithm was

verified for sequence lengths ranging from 2 to 128 in powers of 2. Since building and verifying

the circuit for lengths greater than 16 is tedious, an automation script in MATLAB is written

to write a netlist into LTSpice and extract the simulation results into MATLAB for comparison.

The automation script that does this operation is provided in Appendix A.1.3.

5.2 Area Savings of Proposed WH Code Generator

The main benefit of using this methodology to generate a WH sequence on-chip is that it uses

very few gates, which results in enormous savings in area. The area savings on-chip with the

newly proposed circuit is quantified in this sub-section. Apart from the proposed algorithmic

circuit being extremely simple and functional, the circuitry used to realise the code generator

is orders of magnitude less in terms of number of gates used and the area occupied when

39

compared to a look-up table (LUT), which is typically how WH codes are used on chip. A LUT

uses a D flip-flop cell to store each bit of the code [6]. Thus, an N bit code requires N flip-flops

for each code sequence of the entire set. Given that 𝑁 − 1 codes of the WH sequence are used,

this corresponds to a total array size of 𝑁 ∗ (𝑁 − 1) for the LUT.

On the other hand, for a sequence of length 𝑁, using the proposed algorithmic circuit:

i. Number of Flip-Flops Required = log2(𝑁)

ii. Number of XNORs required = [𝑁 − log2(𝑁)] − 1

The area used by the LUT and proposed circuit area are calculated using the cell size of a flip-

flop and XNOR gate. In the technology process used in this project, a single D Flip-Flop

occupies roughly 70µm2, while a single XNOR gate occupies about 43µm2. These

measurements from the layout are used to make a rough estimate of the area occupied by the

circuit itself, not accounting for aspects such as placement and routing on an actual chip. The

calculation solely uses the area of the respective cells layout as provided by the foundry.

Area LUT = Area D flip-flop ∗ [𝑁 ∗ (𝑁 − 1)]

Area Proposed Circuit = [Area D flip-flop ∗ log2(𝑁)] + [Area XNOR ∗ {𝑁 − log2(𝑁) − 1}]

Fig. 28: Area Comparison between LUT and Proposed Circuit

40

Fig. 28 plots the area of the LUT and proposed circuit across different code lengths from 2 to

256. For shorter code lengths of 2 and 4 the area savings are minimal and there is no significant

difference between a LUT and the proposed circuit. However, from a code length of 8 or

greater, the area reduction begins to show sufficient improvement. For instance for a code

length of 8 the proposed circuit is about 10 times smaller than using a LUT. The improvement

is even more staggering for much longer code lengths where the area savings is exponential.

For instance, for a code length of 128, the area is 200 times smaller as shown in Fig. 29.

Fig. 29: Factor of reduction in area for different code lengths.

The enormous reduction in area for longer sequences, makes the WH code generator circuit

comparable in area to that of LFSRs that are used to generate PRBS sequences as explained in

Section 3.1. In fact, the circuit is simpler and uses fewer gates when compared to an LFSR.

The reduction comes from the fact that a single flip-flop or XNOR gate generates each of the

different sequences in a set. In contrast, LFSRs require a few flip-flops along with some

combinational logic gates in feedback to generate each pseudo-random sequence as shown in

Fig. 12. Since the area of the WH code generator is now in the same order of magnitude of an

LFSR, it is more beneficial to use a WH code with the proposed circuit when the main

41

requirement of the multiplexing is to reduce the cross-correlation between channels. Further,

WH codes use a much smaller bandwidth when compared to PRBS codes [5]. This is because

for good cross-correlation properties, PRBS codes of much longer periods must be used. A

code with a longer period requires a longer modulation frequency as explained in Section 4.4.

Thus, when cross-correlation and efficient use of bandwidth is a key requirement for

multiplexing, and the area is constrained, a WH on-chip code generator is a much better choice.

Table 7: Area Comparison between LUT and WH Code Generator

Sequence

Length

WH Code LUT Area

(µm2)

WH Code Generator Area

(µm2)

Area Reduction

Factor

2 140 70 2

4 840 183 4.59

8 3920 382 10.26

16 16800 753 22.31

32 69440 1468 47.30

64 582240 2871 98.31

128 1137920 5650 201.40

256 4569600 11181 408.69

42

Chapter 6

Circuit Implementation

The Walsh-Hadamard coded multiple channel system described in the previous chapters is

designed and implemented using the 180nm BCD process by TSMC. Each circuit block with

their properties and relevant specifications is described in the sub-sections below.

6.1 8 bit Walsh-Hadamard Sequence Generator

6.1.1 Schematic and Description

The Walsh Hadamard sequence generator proposed in Chapter 5, is constructed using the

digital gates available in the standard logic cells library provided by TSMC. The schematic of

the circuit is shown in Fig. 30. For the generation of 7 sequences, only 4 gates and 3 flip-flops

are required.

Fig. 30: Circuit Schematic of WH Code Generator

A test clock signal of 500kHz (period = 2µs) is used to validate the performance and check for

correctness of the sequence generated. The frequency of the test clock is much higher than the

43

intended clock signal used to prove its robustness for higher frequencies as well. As the

sequence of all ‘1’s is not used, it is neglected. Fig. 31 plots the waveforms of the sequences

generated which match the waveforms from Fig. 27, where the algorithm was built using ideal

blocks. However, there are certain spikes in Sequences 4, 6, 7 and 8 at certain instances of time

which are undesirable. These spikes are a result of the XNOR operation performed when both

the inputs are in transition from one logic state to another. For instance, in Sequence 4 at 4µs

Sequence 2 is transitioning from ‘0’ to ‘1’ while Sequence 3 is transitioning from ‘1’ to ‘0’.

The finite rise and fall times of the gates cause these glitches to occur. To fix the glitches, a

negative-edge triggered flip-flop is connected to these outputs. This is done because the

negative edge of the clock occurs during a steady-state output of the sequence as can be seen

from Fig. 32. The resultant outputs match the outputs of the waveforms from Fig. 27 exactly

without any glitches. This verifies the validity of the proposed approach on the circuit level.

6.1.2 Verification and Waveforms

Fig. 31: WH8 Code Waveforms with glitches

44

Fig. 32: WH8 Code Waveforms without any glitches.

The outputs of the sequence generator are fed as an input to a non-overlapping clock generator

circuit as shown in Fig. 33, to drive the switches of the modulator.

Fig. 33: Non-Overlapping Clock Generator

45

6.2 Amplifier

The top level schematic of the summing amplifier is depicted in Fig. 34. The sub-sections

that follow explain the design strategy of the OTA and capacitors.

Fig. 34: Summing Amplifier Schematic

6.2.1 Schematic and Description of OTA

The operational transconductance amplifier implemented is a fully-differential inverter-based

amplifier as shown in Fig. 35. It is alternatively called a current reuse topology as the input

signal is fed into the PMOS and NMOS input terminals. This topology is used due to its high

gain and gm efficiency. Given the threshold of the transistors in this technology, by using a

supply voltage of 1.2V, the concept of self-biasing can be used. This eliminates the requirement

for external biasing circuitry as well as an additional common mode feedback circuit. Thus, it

helps to reduce the power and area consumption while also simplifying the design.

46

Fig. 35: Self-Biased Inverter based OTA

The voltage gain of the amplifier is given by:

𝐴𝑉 = −(𝑔𝑀𝑛 + 𝑔𝑀𝑝)(𝑟𝑜𝑛 || 𝑟𝑜𝑝)

 (6.2.1)

The thermal input referred noise is:

𝑉𝑖𝑛
2 =

8 𝐾 𝑇 𝛾

𝑔𝑀𝑛 + 𝑔𝑀𝑝

 (6.2.2)

Thus, the integrated input noise is:

𝑉𝐼𝑛,𝑇𝑜𝑡𝑎𝑙 = √
8 𝐾 𝑇 𝛾 .

𝜋
2 . 𝐵𝑊

𝑔𝑀𝑛 + 𝑔𝑀𝑝

 (6.2.3)

47

From the above equations, it can be seen that the total gain and noise see an improvement

because the effective gm is increased as both the NMOS and PMOS pair contribute to the total

gm. Thus for the same noise specification, a lower current can be used leading to a better power

efficiency. For proper output common mode control, the topology makes use of self-biasing

where the output node is directly connected to the gates of the tail current sources to implement

the common-mode feedback. While a single PMOS or NMOS tail current source can also be

implemented, in this case since the total required output voltage swing is low, two tail current

sources are used. The two tail current sources once again reuse the same current for a stronger

negative feedback loop as the effective gm in the feedback loop is the sum of the gm of the

PMOS and NMOS current source. Hence, for a given current using both the gms the common

mode loop gain is larger which is beneficial in stabilizing the output common mode.

6.2.2 Design Strategy and Sizing

Before sizing the transistors, since the concept of self-biasing is employed, the constraints on

the bias voltages must be noted. The desired output common mode is at 0.6V, which is half the

supply voltage. As the input pair is biased through feedback using a resistor, the input common

mode is set to 0.6V as well. Additionally, since the common mode feedback is performed by

directly connecting the output nodes to the tail current sources, the gates of the tail current

sources are at 0.6V too. Thus, the VGS of the two tail current sources = 0.6V.

First, the size the signal transistors is chosen. Since a higher intrinsic gain requires a large

output impedance longer transistors must be chosen to achieve sufficient gain. The design does

not use cascodes to eliminate any external biasing. From Fig. 36 and Fig. 37 a length of 3µm

is chosen for the NMOST and PMOST to achieve a gain of greater than 50dB. Putting the

signal transistors in moderate or closer to weak inversion ensures a high gm efficiency.

Additionally, since the signal transistors and the current sources have the same gate bias, it is

necessary for the signal transistors to be in weak inversion so that the bottom current sources

can remain in saturation to achieve a good CMRR. As annotated in Fig. 36 and Fig. 37, for the

NMOST a Gm/Id of 20 was chosen as going further causes a dip in the intrinsic gain. For the

PMOST, a Gm/Id of 23 is chosen as it is the maximum point on the plot. From the current (Id)

set by the tail sources, the lengths and the Gm/Id value, the widths of the transistor can be

computed. Table 8, summarizes the widths and lengths of all the transistors of the amplifier.

48

Fig. 36: Gm/Gds vs Gm/Id of NMOS transistor for different channel lengths

Fig. 37: Gm/Gds vs Gm/Id of PMOS transistor for different channel lengths

The next step is to size the two tail current sources. Once again, since the output impedance of

the tail current sources determine the common mode rejection ratio, its length is chosen based

on the output impedance. Longer transistors provide a larger output impedance but at the same

49

time using longer transistors also increases the VD,SAT that will eat into the headroom. A low

Gm/Id of 10 is chosen, as it is desirable for a current source for better noise efficiency. From

Fig. 34 and Fig. 35 for a Gm/Id of 10, a length of 0.5µm for the NMOST and 0.6µm for the

PMOST is chosen to have sufficient output impedance with a VD,SAT of less than 150mV. The

width of the NMOS tail current source is set to the minimum and the width of the PMOST is 5

times bigger to match the current set by the NMOS transistor.

Table 8: OTA Transistor Sizes

Transistor Gm/Id Size (µm)

Mn1 (Current Source) 9.2 0.24 / 0.5

Mp1(Current Source) 9.2 1.15 / 0.6

Mn2 (Signal Transistor) 20 32.5 / 3.0

Mp2 (Signal Transistor) 23.2 160 / 3.0

The feedback resistor Rfb is used to set the bias of the input pair. A resistor of 1GΩ is used so

that the output impedance of the amplifier is not affected and does not kill the gain. For

moderate accuracy the feedback capacitor (CFB) is chosen to be 200fF. The input capacitors

(CIN) are implemented by a capacitor bank, so that a variable gain can be used for the varying

input voltage that ranges from 1-10mV per channel. The input capacitors are 600fF, 1.2pF,

2.4pF and 4.8pF for gains of 3,6,12 and 24 respectively.

Smaller capacitors can be used, but they were significantly affected by the loading of the

amplifier itself. For an accurate gain ratio, increasing the capacitor value helps as the loading

of the amplifier itself becomes less dominant. However, making them excessively big in the

order of a few picofarads has two effects. Firstly, the area increases significantly. Secondly, a

bigger input capacitor reduces the input impedance which is an undesired effect.

Although the capacitor values chosen experience much less loading in comparison to using

minimum size capacitors, there is still some effect which leads to a gain error. However, as the

input signal itself is highly varying, the variable gain array allows for larger amplifications to

make use of the full scale range of the ADC. In the next sub-section, the simulation results of

the amplifier are given to verify the sizing procedure followed above.

50

6.2.3 Verification and Waveforms

Fig. 38 and Fig. 39 show the gain and phase margin of the amplifier. As expected from the

above sizing a DC gain of 52dB was achieved with a sufficient phase margin of 83.4°.

Fig. 38: Differential Open Loop Gain

Fig. 39: Phase Margin

51

The common mode rejection ratio (CMRR) of the amplifier is a critical part and the limiting

factor of a multi-channel system that uses a shared electrode. As explained in Section 6.2.2,

the amplifier designed used longer length transistors for the current sources for better output

impedance to achieve a good CMRR. Fig. 40 and Fig. 41 plot the common mode gain and

CMRR respectively. It can be seen that a sufficiently high CMRR of 77dB is achieved [19].

Fig. 40: Common Mode Gain

Fig. 41: Common Mode Rejection Ratio

52

6.3 Analog to Digital Converter

6.3.1 Description and Specification

The analog to digital converter implemented is a ramp or counter type converter. This type of

ADC is chosen since the application runs at very low frequencies (10s of kHz) and requires a

low resolution of 6 bits.

The input signal is compared to a ramp signal that increments by one LSB for each comparison.

As long as the input voltage is greater than the reference ramp voltage the output of the

comparator is ‘1’ and the counter keeps running. When the ramp voltage crosses the input

voltage the output of the comparator outputs a logic ‘0’ and the counter stops running. The

counters value at this point is the digital output and it is read out using a register. Fig. 42 is a

top level schematic of the ramp ADC followed by the specifications in Table 9.

Fig. 42: Top Level Schematic of Ramp/Counter ADC

The sampling clock and modulation clock signals are shown in Fig. 43. The sampling

frequency is 4 times the bandwidth of the signal and the sampling edges do not overlap with

the transitions of the modulating clock. The comparator is clocked at 2.24MHz where 64 clock

cycles are for comparison, 4 clock cycles for resetting the counter and 2 for reading out the

digital output at the end of the conversion.

53

Table 9: ADC Specifications

Specification Value

Signal Bandwidth (fB) 4kHz

Sampling Frequency (fS) 16kHz

Comparator Clock (fclk) 2.24MHz

Number of Bits (N) 6 bits

Full Scale Range (VREF) 150mVpk-pk

LSB 2.34mV

Fig. 43: Modulation and Sampling Clock Signals

Fig. 44: ADC Control Signals for one cycle

54

6.3.2 Comparator

A dynamic StrongArm Latch comparator is used due to its low power consumption as a current

is drawn only during the regeneration phase. The comparator is sized to minimize the input

referred offset to less than half an LSB value.

Fig. 45: Strong Arm Latch Comparator

The four reset switches M7 need to be able to pull up either of the nodes from ground to VDD

within half a clock cycle before the next comparison is to be done. As the comparator is clocked

at a relatively low speed, setting them to the minimum size achieves the target. Similarly, the

PMOS cross-coupled pair is set to minimum size as the offset contribution to the input is

minimal as it is attenuated by the gain of M3,4 and M1,2.

The input pair M1,2 and the NMOS cross-coupled pair M3,4 are sized to minimise offset. For

the input pair an initial length of 2µm and a width of 4µm is chosen. The length of M3,4 is set

to minimum size and its width is scaled in each iteration in proportion to the input pair. After

running a few Monte Carlo iterations, the input pair width is determined to be 8µm and the

width of M3,4 is 2.5µm.

55

To determine the input referred offset, first the comparator is given a 0mV input difference and

a Monte Carlo is run to check if the decisions are equally balanced. The comparator’s first

decision is sampled at the same instant for every run to ensure that the effect of hysteresis does

not affect the calculation. Fig. 46 plots the distribution and it can be seen that there are an equal

number of 1s and 0s which indicates the mean is centered around 0.

Fig. 46: Number of 1s and 0s for a balanced input (0mV input difference)

Fig. 47: Distribution of 1s and 0s with a +1mV skewed input

56

Consequently, the comparator is skewed by feeding in a 1mV difference. From the distribution

in Fig. 47, it can be seen that 78% of the decisions are a ‘1’ and 22% of the decisions are a ‘0’.

From this data, the standard deviation can be calculated which gives an indication of the input

referred offset. The assumption made here is that the offset is a gaussian distribution. This is

validated by skewing the comparator with 1mV and 2mV differences in both directions. From

all the distributions, the standard deviation was computed and it turned out to be around the

same value. The distributions and calculations for the other inputs are given in Appendix B.2.

Fig. 48: Calculation of Offset from the probability distribution at a 1mV difference.

By plotting the distribution as shown in Fig. 48, the standard deviation is computed by using

the Z table available in Appendix B. For a probability distribution of 22% up to -0.001 (1mV),

the z score is -0.77. The z score is given by:

𝑧 =
(𝑥 − 𝜇)

𝜎

 (6.3.1)

57

Using equation 6.3.1, σ can be calculated

𝜎 =
(−.001 − 0)

−0.77

𝜎 = 0.00129 = 1.29𝑚𝑉

Thus, the input offset of the comparator meets the requirement as it is around half an LSB.

The sizes of all the transistors of the comparator based on the design strategy above are

summarized in Table 10.

Table 10: Comparator Transistor Sizes

Transistor Size (µm)

M1,2 (Input Pair) 8.00 / 2.00

M3,4 (NMOS XCP) 2.50 / 0.18

M5,6 (PMOS XCP) 0.25 / 0.18

M7 (RST Switches) 0.25 / 0.18

M0 (Current Source) 0.25 / 2.00

6.3.3 Track and Hold

The track and hold circuit used is a simple NMOS switch with a sampling capacitor as shown

in Fig. 49. The input signal is tracked for half the clock period when the clock signal is high,

and a sample is taken on the falling edge of the clock. A 0.5pF sampling capacitor is used with

a switch of width 1µm and length 0.18µm.

Fig. 49: Track and Hold Circuit

58

6.3.4 6-bit Register

At the end of the counting during each conversion phase, the value stored in the counter is

readout using a shift register as shown in Fig. 50.

Fig. 50: 6-bit Register to save the counters output value

6.3.5 6-bit Counter

During the conversion phase, the counter runs till the reference voltage crosses the input

voltage. The counter implemented is an asynchronous counter as shown in Fig. 51, that is built

using the standard digital logic cells from the TSMC library.

Fig. 51: 6 bit Counter

59

6.3.6 Verification and Waveforms

The performance of the ADC was characterized by simulating it with an input sine wave of

150mVpk-pk at 4kHz, as this is the optimum bandwidth for a 7 channel system as derived in

Section 4.4.

Fig. 52: 150mVpk-pk 4kHz input signal sampled at 16kHz. The dots represent the samples taken.

Fig. 53: Reconstructed analog signal from the digital output.

The input signal with the samples taken at the sampling instants are shown in Fig. 52. The

quantized samples are digitized for 256 cycles and the digital data is exported to MATLAB for

60

reconstruction. Fig. 53 is the reconstructed signal from the digitized points. From these data

points a smooth analog signal is reconstructed by using the resampling function in MATLAB

with an up sampling factor of 4.

An FFT is performed on the reconstructed analog signal with 4096 points which is plotted in

Fig. 54. The main signal tone is present at 4kHz with distortion component at 12kHz which is

an odd multiple of the input signal. The even order harmonics are supressed. From the FFT

data, the SNR, SNDR and SFDR are extracted. The ADC performance parameters are

summarised in Table 11.

Fig. 54: FFT of Reconstructed Signal

Table 11: ADC Performance Metrics

Parameter Value

Sampling Rate 16 kS/s

SNR 34.17 dB

SNDR 32.77 dB

SFDR 38.46 dB

THD -19.18 dB

ENOB 5.15 bits

61

For a 6 bit ADC oversampled at twice the Nyquist rate, the Ramp ADC that was realised

achieves an SNDR of 32.77dB which corresponds to an ENOB of 5.15 bits. In Section 4.2, the

required resolution was determined to be 5 bits for the atrial electrogram signals to be

reconstructed with a PRD of less than 3%. Operating at an optimal bandwidth of 4kHz for a 7

channel system, the ADC provides a sufficient resolution to reconstruct the signal with

sufficient accuracy.

62

Chapter 7

Conclusion and Discussion

7.1 Conclusions

With the ever increasing number of electrodes for recording signals invasively, multiplexing

of channels to share the front-end recording circuits becomes crucial to realize a power and

area efficient chip. Time, frequency, and code multiplexing are the available techniques

available to do so. Among the three techniques, code multiplexing makes efficient use of the

total bandwidth of the front-end, provided that the coding scheme used has the capability to

minimize cross-talk to a great degree. The aim of this thesis was to investigate the limitations

in a code-multiplexed system and design a power and area efficient system by reducing the

complexity and addressing bottlenecks at the system level. In this regard, the following

questions as mentioned in the problem statement are answered:

1) How do various multiplexing coding schemes contrast in their capability to minimize cross-

talk between channels while utilizing an optimal bandwidth?

Pseudo-random and orthogonal Walsh-Hadamard sequences were contrasted by considering

the properties of the codes themselves such as cross-correlation and their ease of generation on

chip. WH codes have better cross-correlation properties and require lower modulation rates,

thus reducing the overall bandwidth requirements of the analog front end.

2) How can generation of these multiplexing codes be achieved on-chip with minimal form

factors that show a significant improvement from existing techniques?

While pseudo-random codes have poor cross-correlation properties, they can be realized

relatively easily using LFSRs on chip. This makes them useful when area is a concern. Walsh-

Hadamard codes on the other hand have good cross-correlation properties but have the

limitation of storage or computation on chip. However, in this thesis, a novel method of

deriving WH sequences from a clock signal was proposed and implemented using elementary

digital logic. The algorithm proposed has considerable area savings in comparison to an LUT

especially for codes that have a length of 8 or greater.

63

3) To what degree can digital signal processing (DSP) off-chip help alleviate the recording

constraints so that an area and power efficient chip can be realised?

As the entire demodulation happens in the digital domain, standard signal processing

techniques can be deployed to recover the signal. In this thesis, an ideal digital to analog

conversion was performed to recover the signal followed by the de-spreading of the individual

channels with the code sequences. Once the different channels are separated, applying a

moving average and low pass filter help remove any higher order frequencies present in the

signal. By deriving the optimum parameters of each step in the signal chain, as explained in

Chapter 4, the on-chip recording can use the minimal required bandwidth. A smaller signal

bandwidth helps save power and area as the front-end amplifier and ADC can operate at a low

bandwidth and conversion rate respectively.

4) What circuit architectures can be deployed for higher efficiencies to reduce power and area

that are also suitable for advanced technology nodes with shrinking voltages?

One of the focuses of this thesis is to design circuits that can easily be adapted to newer

technology nodes with shrinking supply voltages. In that aspect, digitally inspired analog

blocks were investigated, as they are more power efficient and compatible with smaller nodes

with smaller supply voltages. For front-end amplifiers inverter based architectures can provide

higher noise and power efficiencies due to their current reuse. The challenge with smaller nodes

and lower voltages is that achieving high gains is difficult due to the lower intrinsic gains and

the use of cascodes being difficult or impossible. Hence, for higher gain requirements, multiple

stage amplifiers will be required. Additionally, depending on the supply and threshold voltages

of the transistors, self-biasing maybe a viable option to reduce power consumption and area as

biasing circuits can be eliminated.

64

7.2 Performance Comparison

The Walsh-Hadamard code generator, low-noise amplifier and ramp ADC designed consume

a total power of 78.4µW for 7 channels. This corresponds to 11.2 µW per channel. Table 12

summarizes the current and power consumption of each of the circuit blocks. The supply

voltage used for the analog as well as digital blocks is 1.2V.

Table 12: Power Consumption Summary

Circuit Block Current Power

WH Code Generator 3.49 nA 4.20 nW

Amplifier 3.94 µA 4.73 µW

ADC 61.39 µA 73.67 µW

Total 65.33 µA 78.40 µW

Table 13 compares the performance of this work with state of the art designs that use code-

division multiplexing to share a number of channels. In comparison to the work down in [5],

the power consumption has significantly improved by a factor of 3.3. However, the power

consumption per channel is considerably higher than that reported in [6]. The limiting factor in

terms of power consumption is the ADC. This is due to the large number of comparisons made

in a counter ADC in comparison to that of a SAR ADC.

Table 13: Performance Comparison

 JSSC’20 [6] BioCAS’23 [5] This Work

Modulation/Multiplexing WH/CDM PRBS/CDM WH/CDM

Reference Electrode Dedicated Shared Shared

Power/Channel (µW) 1.97 37.26 11.2

Shared Blocks LNA, ADC LNA, ADC LNA, ADC

ADC Architecture Async. SAR ∑ ∆ Ramp

Look-Up Table Yes No No

On-Chip Code Generator No Yes Yes

Number of Channels (N) 15 4 7

Supply (V) 1.2 Analog/1.8 Digital 1.8 1.2

Channel Gain(dB) 40 - 56 12 - 30.1 9.5 - 27.6

Process(µm) 0.18 0.18 0.18 BCD

65

7.3 Future Work and Recommendations

1) In this thesis, for the code-division multiplexing only Pseudo-Random and Walsh-

Hadamard codes were explored. The use of Walsh-Hadamard codes proved to be better due

to the orthogonality of each code in the set. However, there are many other sets of codes

that exist that could possibly have better properties and allow for lower modulation rates

and lower bandwidths or even allow for more channels. Exploring other types of codes

might lead to a more optimized efficient design.

2) Some of the system level parameters in this design were derived from the MIT-BIH

database of atrial electrograms. These are ambulatory recordings from only two channels.

By testing the system on actual recorded data, the system level parameters may vary to a

certain degree and the optimum values could be different. Hence, these design parameters

can be revised depending on the type of signal recorded and its characteristics.

3) The front-end amplifier designed consisted of a single stage with a relatively low open loop

gain of about 54dB. Due to the low open-loop gain the gain error was higher and larger

capacitor ratios (closed-loop gain) had to be used to make use of the full scale range of the

ADC. A straightforward method of increasing the open-loop gain of the amplifier can make

the ratios more accurate and reduce the capacitor values thereby reducing the area.

4) To reduce the total area due to the input capacitor bank for each channel, a better solution

is to split the amplifier into 2 closed-loop stages with a variable capacitor bank after the

first stage. Doing so will reduce the input capacitance which will increase the input

impedance that the channels see. Additionally, since the channels are already summed in

the first amplifier, the capacitor bank of the second amplifiers input can only be a single

bank of capacitors as opposed to the current design wherein each channel consists of a

separate capacitor bank. This leads to massive area savings but will consume more power

as two amplifier stages are used. For larger number of channels, this solution will be more

viable as opposed to using a capacitor bank for each channel.

5) The limiting factor in terms of power consumption is the ADC. By deploying a SAR ADC

in contrast to a Ramp ADC the power consumption can be reduced. This is because the

number of conversion steps performed in a SAR is much less than that of a ramp.

66

Appendices

A.1 MATLAB Codes for Generation of Polynomials

A.1.1 Generation of Primitive Polynomials

%% Generation of primitive polynomials 1

% This program finds the primitive polynomials for a given order. 2

% The primitive polynomials are a maximum length sequence PRBS generators. 3

% The terms present are the taps of the LFSR. 4

 5

clear; 6

clc; 7

close all; 8

 9

%% Input from user: 10

deg = input('Enter the degree of the polynomial '); % The degree of the polynomial. 11

N = (2^deg)-1; % The maximum length of the sequence that will be generated. 12

Possiblities = (2^(deg-1)); % Number of polynomials to test. 13

 14

 15

%% Computation of polynomials 16

starting_point = (2^deg)+1; % The decimal starting point for the polynomial. Check 17

the odd ones only. Skip every 2. 18

end_point = (2^(deg+1))-1; % The decimal ending point for the polynomial. Last 19

polynomial to be checked. 20

 21

syms x; 22

poly_max = x^N + 1; % The maximum degree polynomial. Find the prime factors of this 23

to get ML sequences; 24

 25

polys_to_check = [starting_point:2:end_point]'; % The polynomials to be checked. 26

primitive_polys = isprimitive(polys_to_check); % The primitive polynomials (need to 27

convert this to a symbolic polynomial). 28

num_of_polys = sum(primitive_polys == 1); % The total number of primitive 29

polynomials in the set. 30

 31

primitive_polys_bin = decimalToBinaryVector(polys_to_check(primitive_polys==1)); 32

% Polynomial converted to tap positions 33

 34

 35

%% Conversion to symbolic representation (Just for visual appeal and ease of use) 36

poly_symbolic = cell(size(primitive_polys_bin, 1), 1); % Symbolic Polynomials array 37

initialised. 38

 39

for i = 1:num_of_polys 40

 poly_symbolic{i} = poly2sym(primitive_polys_bin(i,:), x); % Convert each co-41

efficient polynomial to symbolic expression. This is a cell array. 42

end 43

poly_symbolic = cell2sym(poly_symbolic); % Symbolic expression in normal array. 44

Converted from cell to normal array. 45

67

A.1.2 Finding the Preferred Pairs of Polynomial

%% Finding Preferred Pairs of polynomials 1

% This code finds the preferred polynomials for a given degree by calculating the 2

correlation between them. 3

% Preferred polynomials are those which have certain values of correlation. 4

% Correlation values: t(n) = 1 + 2^[(n+2)/2]. Values taken are -1, -t(n) and t(n)-2. 5

 6

%% Call "Generation of Primitive Polynomials" Script and calculate 3 valued 7

spectrum. 8

Generation_of_Primitve_Polynomials; % Call "Generation of Primitive Polynomials.m" 9

from A.1.1 to generate all the polynomials for a given order. 10

 11

t_n_odd = 1 + 2^(floor((deg+2)/2)); % Odd order correlation value 12

ideal_3_values = [-t_n_odd, -1, t_n_odd-2]; % The three correlation values that make 13

up a preferred pair. 14

 15

ideal_4_values = [-(1+2^((deg+2)/2)), -(1+2^((deg)/2)), -1, -(1-2^((deg)/2))]; % The 16

four correlation values that make up a preferred pair for polynomials mod(n,4)==0. 17

 18

 19

%% Use maximum length sequence in built function to generate a ML sequence. 20

initial_condition = [zeros(1,deg-1), 1]; % Defining an initial condition for LFSR. 21

 22

counter=1; 23

for i=1:num_of_polys-1 24

 for j =i+1:num_of_polys 25

 pnSequence1 = 26

comm.PNSequence(Polynomial=primitive_polys_bin(i,:),InitialConditions=initial_condit27

ion, SamplesPerFrame=N); 28

 pnSequence2 = 29

comm.PNSequence(Polynomial=primitive_polys_bin(j,:),InitialConditions=initial_condit30

ion, SamplesPerFrame=N); 31

 data1 = pnSequence1()'; 32

 data2 = pnSequence2()'; 33

 [correlation, lags] = gf_corr_improved(data1, data2,deg); 34

 %[correlation, lags] = gf_corr(data1, data2); 35

 if mod(deg,4)==0 36

 spectrum_4_values = unique(correlation); 37

 if isequal(ideal_4_values,spectrum_4_values) 38

 preferred_pairs(counter,:) = 39

[poly_symbolic(i,:),poly_symbolic(j,:)]; 40

 counter=counter+1; 41

 end 42

 else 43

 spectrum_3_values = unique(correlation); 44

 if isequal(ideal_3_values,spectrum_3_values) 45

 preferred_pairs(counter,:) = 46

[poly_symbolic(i,:),poly_symbolic(j,:)]; 47

 counter=counter+1; 48

 end 49

 end 50

 51

 end 52

end 53

 54

%% Export Data to Excel File. 55

pairs_export = arrayfun(@char,preferred_pairs, 'uniform', 0); 56

xlswrite('Degree 13 Polynomials.xlsx', pairs_export); 57

68

A.1.3 Cross Correlation Function Calculator.

This function is created to compute the correlation function between two sequences. The way a

correlation is calculated between two sequences is by taking the dot product of one sequence

with a shifted version of the other. The dot product of two binary sequences is defined as:

 Number of positions where bits match – Number of positions where bits mismatch.

%% GF2 Correlation Function 1

% It takes 2 inputs as vectors and computes the correlation between them. 2

% If you want autocorrelation, put both inputs as same vector. 3

 4

%% Function definition and statements 5

function [corr_spectra, lags] = gf_corr(input1,input2) 6

input1_len = length(input1); 7

input2_len = length(input2); 8

 9

if input1_len ~= input2_len 10

 error('Lengths of both vectors must be equal') 11

else 12

 lags = 0:input1_len-1; 13

 matching = zeros(1, input2_len); 14

 non_matching = zeros(1, input2_len); 15

 corr_spectra = zeros(1, input2_len); 16

 17

 for i = 1:input2_len 18

 data_shifted_i = circshift(input2, lags(i)); 19

 matching(i) = sum(input1 == data_shifted_i); 20

 non_matching(i) = sum(input1~= data_shifted_i); 21

 corr_spectra(i) = matching(i) - non_matching(i); 22

 end 23

end24

A.1.4 Cross Correlation Function Calculator for faster computation.

This function is an optimised calculator for a preferred pair of polynomials. It skips the

computations once a value is not the preferred values. This function can be strictly used for

computing the preferred pairs only and not to find a correlation in general.

%% GF2 Correlation Function Improved Version 1

% It takes 2 inputs as vectors and computes the correlation between them. 2

% If at any instant the correlation exceeds preferred values it terminates. This 3

is to speed up computation time. 4

% If you want autocorrelation, put both inputs as same vector. 5

% Output is [corr_spectra, lags]. The first argument is the correlation spectrum. 6

Second output is the shifts. 7

 8

%% Function definition and statements 9

function [corr_spectra, lags] = gf_corr_improved(input1,input2,deg) 10

input2_len = length(input2); 11

 12

t_n_odd = 1 + 2^(floor((deg+2)/2)); 13

69

 14

lags = 0:input2_len-1; 15

matching = zeros(1, input2_len); 16

corr_spectra = zeros(1, input2_len); 17

 18

for i = 1:input2_len 19

 data_shifted_i = circshift(input2, lags(i)); 20

 matching(i) = sum(input1 == data_shifted_i); 21

 22

 corr_spectra(i) = -input2_len + 2*matching(i); 23

 if ~((corr_spectra(i) == (-t_n_odd)) || (corr_spectra(i) == (t_n_odd-2)) || 24

(corr_spectra(i) == -1)) 25

 break; 26

 else 27

 continue; 28

 end 29

end 30

A.2 MATLAB-LTSpice Automation for WH Code Generation

This script interfaces MATLAB and LTSpice to build the Walsh Hadamard Code generator for

a given degree. It automates the writing of the netlist and then runs a transient simulation. The

transient simulation results for each of the outputs are then imported into MATLAB and

compared with the original WH matrix to see if the correct sequence has been generated.

For the script below to run, the LTSpice2Matlab toolbox that is available in the link:

https://github.com/PeterFeicht/ltspice2matlab

The instructions to setup the link between MATLAB and LTSpice to write netlists, open and

close them are available in the following link: https://medium.com/@amattmiller/running-

ltspice-from-matlab-630d551032cc

%% Generate LTSpice Netlist and Check for any N bit Walsh Hadmard Sequence 1

% Ask the user for size of WH sequence required. Store it in size. 2

% Generate a Hadamard matrix in matlab. 3

% Generate a netlist in LTSpice and do the necessary circuits to generate a WH code. 4

% Sample and import the data to matlab and check if they are equal. If yes, the 5

algorithm devised holds true. 6

 7

%% Useful Paths to Have 8

% Path to LTSpiceCall Batch File: @ W:\Documents_W\Matlab_Spice\LTSpiceCall.m 9

% Path to Netlist File: @ W:\Documents_W\TUD Masters PG\Thesis\Spice 10

Tries\WH\name.net 11

% x86 LTSpice1 @ C:\Program Files\LTC\LTspiceXVII\XVIIx86.exe 12

% x64 LTSpice2 @ C:\Program Files\LTC\LTspiceXVII\XVIIx64.exe 13

 14

%% Initial Clearing 15

clear; 16

clc; 17

close all; 18

 19

https://github.com/PeterFeicht/ltspice2matlab
https://medium.com/@amattmiller/running-ltspice-from-matlab-630d551032cc
https://medium.com/@amattmiller/running-ltspice-from-matlab-630d551032cc

70

%% Accept size & create N bit Walsh Hadmard Sequence in Matlab using 1s(1) & 0s(-1). 20

size = input('Enter the size of Walsh Hadamard Codes to be generated '); % Size of 21

WH Sequence required by user 22

 23

if(mod(log2(size),1)~=0) 24

 disp("Enter a power of 2"); 25

 return; 26

else 27

 H_mat = hadamard(size); % Walsh Hadmard where each row is a sequence. Matlab 28

generated array. 29

 H_mat(H_mat==-1) = 0; % Convert -1s to 0s for ease of comparison with 30

generated waveforms 31

 32

 %% Create LTSpice Netlist 33

 % Setup 34

 netlist = sprintf('C:\\Users\\Dion\\Documents\\Docs_Work\\TUD Masters 35

PG\\Thesis\\Spice Tries\\WH\\WH_automation\\WH_%d.net',size); % Create netlist file 36

 37

 sim = sprintf('.tran 0 %d 100m 100m\r\n',size); % simulation 38

duration set by size. Default frequency is 1Hz with 50% duty cycle. 39

 save_wav = sprintf('.wave WH%d.wav 16 1 V(Seq1) V(Seq2) ',size); % Sequence 40

waveforms to be saved. 41

 42

 A=strings(1,size);% Netlist code for each code sequence. Stored in array of size 43

N. 44

 A{1} = 'A1 Seq1 0 CLK 0 0 0 Seq1 0 DFLOP\r\n'; 45

 A{2} = 'A2 N2 0 CLK 0 0 N2 Seq2 0 DFLOP Vhigh=1.8 Vlow=0\r\n'; 46

 47

 Connections = strings(1,size+log2(size)); % TXT File with connections to 48

generate WH Code 49

 Connections{1} = 'Sequence 1 ==> Just DC 1'; 50

 Connections{2} = 'Sequence 2 ==> CLK / 2'; 51

 Connections{3} = '-------------------------------'; 52

 starting_point = 2; 53

 54

 55

 % Generator starts from 2x2 and then builds up 2x at a time. So from 2 to 4 to 8 56

etc. 57

 if (size>2) 58

 for i = 1:log2(size)-1 % Go from 2 to 4 to 8 etc all the way upto N. Sub 59

operations have to be done log2(size)-1 times 60

 61

 for j = starting_point+1:2*starting_point % Start from N+1 upto 2N. 62

 save_wav=[save_wav,sprintf('V(Seq%d) ',j)]; 63

 if (j==(starting_point+1)) % N+1 term = (N/2)+1 term/2 in frequency 64

 65

 A{j} = sprintf('A%d N%d 0 Seq%d 0 0 N%d Seq%d 0 DFLOP Vhigh=1.8 66

Vlow=0\r\n',j,j,floor((j/2)+1),j,j); 67

 Connections{j+i} = sprintf('Sequence %d ==> Half the frequency 68

of Sequence %d',j,floor((j/2)+1)); 69

 else % R(N+x) to R(2N) = R(N+1) XNOR R(x). 2<=x<=2N 70

 A{j} = sprintf('A%d Seq%d Seq%d 0 0 0 Seq%d 0 0 XOR Vhigh=1.8 71

Vlow=0\r\n',j,floor(j-starting_point),starting_point+1,j); 72

 Connections{j+i} = sprintf('Sequence %d ==> Sequence %d XNOR 73

Sequence %d',j,floor(j-starting_point),starting_point+1); 74

 end 75

 Connections{j+i+1} = '-------------------------------'; 76

 end 77

71

 starting_point = 2*starting_point; % Once 2N is created from N, shift N 78

to 2N to create next iteration of next 2N etc. 79

 end 80

 end 81

 82

 83

 % Netlist Writing 84

 code = strjoin(['This is WH code \r\n'... 85

 'VDD Seq1 0 1.8\r\n'... 86

 'V§CLK CLK 0 PULSE(0 1.8 0 100p 100p 0.5 1)\r\n'... 87

 A... 88

 sim... 89

 save_wav,'\r\n'... 90

 '.save V(CLK) V(Seq*)\r\n'... 91

 '.backanno\r\n'... 92

 '.end\r\n']); 93

 94

 % Create the new netlist 95

 fid = fopen(netlist,'w+'); 96

 fprintf(fid,code); 97

 fid=fclose(fid); 98

 99

 %% Call and close LTSpice 100

 fileID = fopen('LTSpice_call.bat', 'w+'); 101

 fprintf(fileID,'%s',sprintf('start "C:\\Program 102

Files\\LTC\\LTspiceXVII\\LTspice.exe -b" "C:\\Users\\Dion\\Documents\\Docs_Work\\TUD 103

Masters PG\\Thesis\\Spice Tries\\WH\\WH_automation\\WH_%d.net"',size)); 104

 fclose(fileID); 105

 106

 dos('LTSpice_call.bat'); % the dos command launches the .bat file 107

 pause(size); % Alllows LTSpice to finish simulating 108

 dos('LTSpice_end.bat'); % Closes LTSpic after the .raw file is created 109

 110

 %% Reading Data from LTSpice and checking if an actual WH is generated 111

 [WH_Generated, Fs] = audioread(sprintf('WH%d.wav',size)); % Read the waveform 112

from LTSpice 113

 WH_Generated=round(WH_Generated); % Convert the decimal values to whole numbers 114

for comparison 115

 truth = isequal(WH_Generated,H_mat); % Check if Circuit Generated Sequence and 116

Matlab sequence are equal 117

 118

 raw_data=LTspice2Matlab(sprintf('WH_%d.raw',size)); 119

 %plot(raw_data.time_vect, raw_data.variable_mat(4,:)) 120

 121

 %% Writing Connection Instructions to txt file 122

 % Specify the file name 123

 fileName = fopen(sprintf('WH_%d_Connections.txt',size),'w+'); 124

 125

 % Write the string array to a text file 126

 fprintf(fileName, '%s\n',Connections); 127

 if truth 128

 fprintf(fileName,'Succesfully Generated WH Sequence :)'); 129

 else 130

 fprintf(fileName,'Unsuccesful :('); 131

 end 132

 133

 % Close the file 134

 fclose(fileName); 135

end136

72

B.1 Z-Score Table for Gaussian Distribution Calculations

73

B.2 Distribution of Comparator Output for various inputs

Fig. 55: Distribution of 1s and 0s with a +2mV skewed input

For a +2mV input difference, the distribution is such that 93% of the inputs are a ‘1’ and 7%

are a ‘0’. From this the standard deviation can be computed using 6.3.1:

𝜎 =
(.002)

1.48
 ➔ 𝜎 = 0.00135 = 1.35𝑚𝑉

Fig. 56: Distribution of 1s and 0s with a -1mV skewed input

The distribution is similar to that of Fig. 48 where 79% are ‘0’s and 21% are ‘1’s. Using 6.3.1:

𝜎 =
(.001−0)

0.81
 ➔ 𝜎 = 0.001235 = 1.235𝑚𝑉

74

Fig. 57: Distribution of 1s and 0s with a -2mV skewed input
For a -2mV input difference, the distribution is such that 95% of the inputs are a ‘0’ and 5%

are a ‘1’. The standard deviation is:

𝜎 =
(.002)

1.645
 ➔ 𝜎 = 0.001216 = 1.216𝑚𝑉

75

References

[1] L. Arbeloa-Gómez, J. Álvarez-Vidal, and J. L. Izquierdo-García, “Further Advances in

Atrial Fibrillation Research: A Metabolomic Perspective,” Applied Sciences, vol. 12, no.

6, p. 3201, Mar. 2022, doi: 10.3390/app12063201.

[2] R. Silva, A. Fred, and H. P. Da Silva, “Morphological autoencoders for Beat-by-Beat atrial

fibrillation detection using Single-Lead ECG,” Sensors, vol. 23, no. 5, p. 2854, Mar. 2023,

doi: 10.3390/s23052854.

[3] B. Burle, L. Spieser, C. Roger, L. Casini, T. Hasbroucq, and F. Vidal, “Spatial and temporal

resolutions of EEG: Is it really black and white? A scalp current density

view,” International Journal of Psychophysiology, vol. 97, no. 3, pp. 210–220, Sep. 2015,

doi: https://doi.org/10.1016/j.ijpsycho.2015.05.004.

[4] F. H. Noshahr, M. Nabavi, and M. Sawan, “Multi-Channel Neural Recording Implants: A

review,” Sensors, vol. 20, no. 3, p. 904, Feb. 2020, doi: 10.3390/s20030904.

[5] S. Rout, B. Monna, F. Pareschi, G. Setti, and W. A. Serdijn, “Spread-Spectrum modulated

Multi-Channel biosignal acquisition using a shared analog CMOS Front-End,” IEEE

Transactions on Biomedical Circuits and Systems, vol. 17, no. 4, pp. 872–884, Aug. 2023,

doi: 10.1109/tbcas.2023.3317188.

[6] J. H. Park et al., “A 15-Channel orthogonal code chopping instrumentation amplifier for

Area-Efficient, Low-Mismatch Bio-Signal acquisition,” IEEE Journal of Solid-state

Circuits, vol. 55, no. 10, pp. 2771–2780, Oct. 2020, doi: 10.1109/jssc.2020.2991542.

[7] A. Yaksh et al., “A novel intra-operative, high-resolution atrial mapping approach,”

Journal of Interventional Cardiac Electrophysiology, vol. 44, no. 3, pp. 221–225, Oct.

2015, doi: 10.1007/s10840-015-0061-x.

[8] H. Chandrakumar, “A 0.6 µW/channel, Frequency Division Multiplexed Amplifier for

Neural Recording Systems,” M.S. thesis, University of California, Los Angeles, 2012.

[Online].Available:https://escholarship.org/content/qt2ss944rw/qt2ss944rw_noSplash_49

984ecc8ca80e7719b9e6b12d688967.pdf?t=nru1mv

[9] L. Dong et al., "A Multi-Channel 1.52 µVrms Front End with Orthogonal Frequency

Chopping for Neural Recording Applications," 2019 IEEE Asia Pacific Conference on

Circuits and Systems (APCCAS), Bangkok, Thailand, 2019, pp. 389-392, doi:

10.1109/APCCAS47518.2019.8953173.

[10] J. Warchall, P. Theilmann, Y. Ouyang, H. Garudadri and P. P. Mercier, "Robust

Biopotential Acquisition via a Distributed Multi-Channel FM-ADC," in IEEE

Transactions on Biomedical Circuits and Systems, vol. 13, no. 6, pp. 1229-1242, Dec.

2019, doi: 10.1109/TBCAS.2019.2941846.

76

[11] R. L. Pickholtz, D. L. Schilling, and L. B. Milstein, “Theory of Spread-Spectrum

Communications - a tutorial,” IEEE Transactions on Communications, vol. 30, no. 5, pp.

855–884, May 1982, doi: 10.1109/tcom.1982.1095533.

[12] D. V. Sarwate and M. B. Pursley, “Crosscorrelation properties of pseudorandom and

related sequences,” Proceedings of the IEEE, vol. 68, no. 5, pp. 593–619, Jan. 1980, doi:

10.1109/proc.1980.11697.

[13] Vahid Majidzadeh, A. Schmid, and Yusuf Leblebici, “A 16-channel, 359 μW, parallel

neural recording system using Walsh-Hadamard coding,” Sep. 2013, doi:

https://doi.org/10.1109/cicc.2013.6658512.

[14] T. W. Cusick and Pantelimon Stanica, Cryptographic Boolean Functions and

Applications. Academic Press, 2009, pp. 5-24.

[15] A. L. Goldberger, “PhysioBank, PhysioToolkit, and PhysioNet”, Circulation, vol. 101,

no. 23, Jun. 2000, doi: 10.1161/01.cir.101.23.e215.

[16] Goldberger, A., Amaral, L., Glass, L., Hausdorff, J., Ivanov, P. C., Mark, R., ... &

Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: Components of a new

research resource for complex physiologic signals. Circulation [Online]. 101 (23), pp.

e215–e220.

[17] “The normal ECG,” The Student Physiologist, Aug. 14, 2016.

https://thephysiologist.org/study-materials/the-normal-ecg/

[18] M. Qian, K. Zhao, B. Li, H. Gong, and A. Seneviratne, “Survey of Collision Avoidance

Systems for Underground Mines: sensing protocols,” Sensors, vol. 22, no. 19, p. 7400,

Sep. 2022, doi: 10.3390/s22197400.

[19] Omid Malekzadeh-Arasteh, Ahmad Reza Danesh, A. H. Do, Zoran Nenadic, and P.

Heydari, “An Analysis of CMRR Degradation in Multi-Channel Biosignal Recording

Systems,” IEEE Transactions on Circuits and Systems Ii-express Briefs, vol. 68, no. 1,

pp. 151–155, Jan. 2021, doi: https://doi.org/10.1109/tcsii.2020.3011180.

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Contents
	Chapter 1 Introduction
	1.1 Background of Medical Condition
	1.2 Requirements & Challenges of Bio-Signal Acquisition
	1.3 Problem Statement
	1.4 Thesis Organization

	Chapter 2 Channel-Sharing Techniques & Prior Work in Shared Analog Front Ends
	2.1 Time-Division Multiplexing (TDM)
	2.2 Frequency-Division Multiplexing (FDM)
	2.3 Code-Division Multiplexing (CDM)

	Chapter 3 Spread-Spectrum Modulation – Pseudo Random and Orthogonal Sequences
	3.1 Pseudo-Random Bit Sequences (PRBS)
	3.2 Walsh-Hadamard Sequences

	Chapter 4 System-Level Design
	4.1 Signal Properties
	4.2 Required Resolution
	4.3 Number of Channels (NCH) vs Code Length(L)
	4.4 Modulation Frequency
	4.5 System Block Diagram
	4.6 System Level Verification for 7 Shared Channels
	4.7 System Level Specifications

	Chapter 5 Walsh-Hadamard Code Generator using Digital Logic
	5.1 Proposed Walsh-Hadamard Code Generator Circuit
	5.2 Area Savings of Proposed WH Code Generator

	Chapter 6 Circuit Implementation
	6.1 8 bit Walsh-Hadamard Sequence Generator
	6.2 Amplifier
	6.3 Analog to Digital Converter

	Chapter 7 Conclusion and Discussion
	7.1 Conclusions
	7.2 Performance Comparison
	7.3 Future Work and Recommendations

	Appendices
	References

