
 

A 7-Channel Code-Multiplexed Analog 

CMOS Front-End using an On-Chip 

Orthogonal Walsh-Hadamard Sequence 

Generator 

 

by  

 

Dion Gavin Mascarenhas 

 

in partial fulfilment of the Masters Degree 

at 

the Delft University of Technology, 

Faculty of Electrical Engineering, Mathematics and Computer Science 

Under the supervision of Prof. Dr. Ir. Wouter Serdijn 

 

 

Defended publicly on 22nd August, 2024 

 

 

 

Student Number  5154731  

Thesis Committee Prof. Dr. Ir. W.A. Serdijn,  TU Delft Supervisor 

 Prof. Dr. Ir. K. Bult, TU Delft  

 Dr. Ir. Samprajani Rout, External 



i 

 

Abstract 

 

The recording of biosignals, such as atrial electrograms (AEG), electrocardiograms (ECG), and 

electroencephalograms (EEG), is progressing towards the adoption of more dense electrode 

arrays in order to improve spatial and temporal resolution. The proliferation of channels 

necessitates some form of channel sharing technique so that efficient low power and area 

recording can be achieved. 

In this thesis, a code-division multiplexed analog front-end is designed due to its efficient use 

of bandwidth in comparison to time and frequency multiplexing. Orthogonal coding schemes 

such as Walsh-Hadamard sequences are best suited for minimising cross-talk. These codes are 

typically implemented using an LUT or processor which becomes a significant overhead when 

a large number of channels are to be multiplexed. However, by investigating the sequences 

closely, a novel method of generating these codes from a clock signal using digital logic was 

devised. The proposed algorithm to generate these sequences on-chip provides significant area 

savings for sequences of length greater than 8, which makes the design scalable for a large 

number of channels,. The reduction in area ranges from a factor of 10 for a code length of 8 up 

to a factor as large as 200 for a code length of 128.  

As orthogonal sequences require a low bandwidth, a low bandwidth low-noise amplifier and 

ADC were used for amplification and digitisation of the signal. By using digitally inspired 

analog blocks, such as an inverter-based amplifier, lower power consumption could be 

achieved.  

The entire design was implemented to share 7 channels. The code generator, low-noise 

amplifier and ADC consume a total of 78.4µW, which corresponds to 11.2µW per channel. 

This is a 3.3x improvement to the design in [5] where pseudo-random sequences were used as 

the coding scheme. However, the design consumes more power than a state-of-the-art design 

reported in [6] which uses 1.97µW per channel. While the design is currently not optimized 

with respect to power consumption in comparison to the design in [6], the novel code 

generation technique reported in this thesis makes the design scalable for larger number of 

channels. This is because the area constraint of the LUT is no more the limiting factor in terms 

of area. 
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Chapter 1  

Introduction 

 

1.1 Background of Medical Condition 

Atrial Fibrillation (AFib) is one of the most prevalent types of arrhythmia that occurs in the 

heart. The heart is divided into four chambers – the top two called atria, and the bottom two 

called ventricles. AFib is characterized by an irregular heartbeat that is caused when the upper 

chambers of the heart, the atria, beat chaotically and out of sync with the lower chambers of 

the heart, the ventricles. 

 

 

Fig. 1: Functioning of Normal Sinus Rhythm (Left) and 

Atrial Fibrillation (Right) [1]. 

 

Fig. 2: Typical ECG signal 

[17]. 

 

In a normal heart rhythm, the sinoatrial node (SA node), present in the right atrium shown in 

Fig. 1, initiates electrical impulses that propagate through the electrical conduction system of 

the heart. This pulse regulates a normal heartbeat consisting of contraction and relaxation. The 

SA node is thus termed as the natural pacemaker of the heart. The activation of the SA node is 

characterized by P waves in an electro-cardiac signal, as shown in Fig. 2. In atrial fibrillation, 

however, there are sites in and around the atria, called ectopic sites, that initiate random 

electrical impulses. These random impulses cause the atria to quiver or fibrillate instead of 

contract. As most of these impulses do not pass the atrioventricular node (Fig. 1) into the 
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ventricle, there is a lack of synchronisation between the top and bottom chambers that leads to 

an irregular heartbeat. There are multiple stages in the occurrence of atrial fibrillation. The first 

stage is called paroxysmal which is the earliest stage. During this stage the quivers typically 

occur for less than a week and vary in frequency and intensity. The paroxysmal stage can either 

be severe that it leads to an attack, or mild enough that it resolves itself. The second stage is 

persistent AFib which usually lasts for more than a week and does not resolve itself. This stage 

develops after months or years of paroxysmal AFib. The last stage is long standing persistent 

AFib which is considered to be resistant to treatment, wherein complete elimination is highly 

unlikely. It is the most advanced stage in which the quivers are continuous for more than a 

year. 

Due to the irregular heartbeat, the heart pumps out less blood which leads to some residue that 

can form clots.  The most common implication is that these blood clots in the atria may then 

pass into the bloodstream and block small arteries which can be fatal. For instance, if the blood 

clot travels to arteries in the brain, it can result in a stroke. 

 

 

Fig. 3: Normal Sinus Rhythm (Top) and Atrial Fibrillation (Bottom) Waveforms [2]. 

 

The waveforms of a normal sinus rhythm (SR) and that of atrial fibrillation (AFib) are shown 

in Fig. 3. From the waveforms, it can be seen that in AFib, P waves are absent and there is a 

presence of irregular narrow QRS complexes. The P waves are absent because they are clouded 

by the activity of ectopic sites firing random impulses. The presence of larger ectopic sites 

results in flatter baselines between two spikes in the waveform. 



3 

 

1.2 Requirements & Challenges of Bio-Signal Acquisition 

As is the case with all medical anomalies and diseases, mitigation can be done only when the 

root cause can be identified and mapped accurately. In the case of bio-signal recording, 

methods such as electrocardiography (ECG) and electroencephalography (EEG) are widely 

adopted. These methods of signal acquisition are popular due to their convenience and non-

intrusiveness. However, since the electrodes are much further away from the site of activity to 

be recorded, they typically have low temporal and spatial resolution. This is because as the site 

of recording gets further away from the actual site that is being recorded, the signal undergoes 

filtering, and what is seen on the surface of the body is a vector summation of the signals over 

a distance. The spreading and refraction of the signals as they conduct through various layers 

of the body is termed as volume conduction which causes a drop in resolution. Reference 

electrodes also play a role in distorting the potentials due to contamination or electrolyte 

depletion that introduces low-frequency noise or baseline wander [3]. In situations where more 

detailed information is required for better accuracy, implantable chips with a multitude of 

electrodes close to the recording site are desired due to the high temporal and spatial resolution 

they offer. In AFib for instance, ECGs can provide sufficient information to detect its presence. 

However, they do not provide enough resolution to precisely map the sources of the substrate 

that perpetuate AFib. While an implantable with multiple electrodes does provide superior 

resolution, these devices come with their own set of challenges that need to be addressed. Some 

of these challenges are described below. 

         

 

Fig. 4: Block diagram of typical multi-channel acquisition systems. On the left, each channel 

uses an LNA and an ADC of its own. On the right, the ADC is shared but each channel has its 

own LNA [4]. 
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As an implantable device aims to be as minimally invasive as possible, the proliferation in the 

number of channels that are used in recording pose 3 main hurdles, [5]. 

i. Firstly - the circuit overhead scales proportionally to the number of channels. A typical 

recording system requires an LNA and ADC for each channel or only shares an ADC, 

as shown in Fig. 4. The increase in the front-end circuitry required for each channel 

causes large power and area consumption. This is highly undesirable for a minimally 

invasive SoC.  

ii. Secondly - the long cable that reads out the data can cause significant degradation in 

the signal quality due to interference. The interferers could be from neighbouring 

channels, the power supply, or any external electromagnetic interference (EMI).  

iii. Lastly - the number of wires going out restricts movement and can cause motion 

artifacts which once again will degrade the quality of the signal. The diameter of the 

catheter further restricts the number of wires that can be used for the readout. 

 

1.3 Problem Statement 

The recording of atrial electrogram (AEG) signals from multiple locations concurrently, 

through an invasive setup allows for identifying the trigger or substrate perpetuating AFib [7]. 

In the acquisition process, a low- or high-resolution recording may be required as per the 

doctor's/medical practitioner’s preference. A low-resolution recording can be performed when 

a mere activation map of the site is desired to be looked at. This low-resolution recording allows 

the doctor to “zoom out” and look at the overall features or propagation of the wavefronts in a 

larger region of interest. On the other hand, a high-resolution recording can be done when the 

doctor/medical practitioner desires to “zoom in” and look at more distinctive, clear features of 

the cardiac signals.  

Minimizing the overhead of the readout circuitry and number of outgoing wires due to the large 

number of recording electrodes (channels) necessitates some form of circuit-sharing technique. 

The three forms of multiplexing to share the readout circuitry among the different channels are: 

Time-Division Multiplexing (TDM), Frequency-Division Multiplexing (FDM) and Code-

Division Multiplexing (CDM). Chapter 2 describes the merits and flaws of each of the three 

techniques and justifies the use of CDM for this application. CDM is chosen, as it is the most 
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efficient in terms of bandwidth, which in turn allows for a huge reduction in chip area and 

power. 

Thus, in the context of a multi-channel CDM system that makes use of a shared analog CMOS 

front-end, this thesis tries to answer/address the following: 

i. How do various multiplexing coding schemes contrast in their capability to minimize 

cross-talk between channels while utilizing an optimal bandwidth? 

ii. How can generation of these multiplexing codes be achieved on-chip with minimal 

form factors that show a significant improvement from existing techniques? 

iii. To what degree can digital signal processing (DSP) off-chip help alleviate the recording 

constraints so that an area and power efficient chip can be realised? 

iv. What circuit architectures can be deployed for higher efficiencies to reduce power and 

area that are also suitable for advanced technology nodes with shrinking voltages? 

 

 

1.4 Thesis Organization 

This thesis is organized in the following manner. In Chapter 2, the three channel-sharing 

techniques are evaluated qualitatively to make a choice for the system. As CDM is chosen as 

the multiplexing technique, Chapter 3 delves into spread-spectrum modulation and some of the 

various kinds of codes: its properties, efficiency in terms of bandwidth usage, cross-talk and 

ease of generation. Chapter 4 describes the system-level design and derives the specifications 

of the individual blocks. Chapter 5 describes how a new and efficient method of generating 

Walsh-Hadamard sequences using simple digital logic was devised and the systematic 

approach that allows a WH code of any length to be constructed using a simple algorithm. In 

Chapter 6, the circuit-level implementation of the code generator, low-noise amplifier, and 

analog to digital converter is provided. The circuit schematics, design methodology and 

simulation results are extensively explained in this chapter. Finally, Chapter 7 concludes the 

thesis with the key results and future recommendations. Additionally, some of the 

computations and design of certain circuit blocks have automation routines that are written in 

MATLAB and are available in the appendices.  
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Chapter 2  

Channel-Sharing Techniques & Prior 

Work in Shared Analog Front Ends 

 

To tackle the challenges and limitations imposed by a multi-channel recording system, as stated 

in Section 1.2, sharing of the front-end resources among a certain number of channels must be 

performed. By using a single LNA and/or ADC for multiple channels, significant strides can 

be made in reducing the power and area consumption. The three available multiplexing 

schemes are Time-Division Multiplexing (TDM), Frequency-Division Multiplexing (FDM), 

and Code-Division Multiplexing (CDM). Each of these schemes have different implications on 

the system such as complexity of implementation, efficient use of bandwidth, as well as 

determining which blocks can be shared. In this chapter, a qualitative analysis is carried out for 

each of these schemes in the context of analog front-ends. After evaluating the various benefits 

and drawbacks of each technique, CDM is ultimately chosen.  

 

2.1 Time-Division Multiplexing (TDM) 

Time-Division Multiplexing/ Time-Interleaving is a technique in which multiple channels can 

share circuit resources by allocating a fixed time slot for each channel to be readout. In the case 

of analog front-end designs that involve an LNA and ADC, either the ADC or both the LNA 

and ADC can be shared. The most obvious choice would be to share both the blocks (Fig. 5) 

so that the power of one amplifier and one ADC can be used to process multiple channels. The 

implications of time multiplexing N channels on the SNR, bandwidth and settling time is 

briefly explained below. 
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Fig. 5: N input channels are time-multiplexed and summed to share one amplifier and ADC 

 

As explained in [8], for N channels without an anti-alias filter, the SNR is proportional to 
1

𝑁
. 

The primary reason for this limitation is the difference between the signal and noise bandwidths 

and the different sampling frequency as well. In TDM, the signal is sampled at 
𝐹𝑆

𝑁
 , whereas the 

noise is sampled at FS. Since the amplifier is shared, its bandwidth must be N times larger than 

that of a single channel. This is required to be able to process all the channels, i.e. it must have 

a large enough bandwidth to be able to settle to a particular accuracy before the next sample is 

taken. A consequence of this is that even though each signal uses only 
1

𝑁
 of the total available 

bandwidth, the noise is integrated across the entire bandwidth.  Hence, the noise across the 

entire bandwidth is N times larger than that of a single channel bandwidth. This causes a 

decrease in the SNR for an increasing number of channels. Apart from noise, the high 

bandwidth required by the amplifier for each channel to settle in time is not fully utilized by 

each channel. This is essentially a waste of the total available bandwidth. 

As a result of this limitation, typically in many time-division multiplexed designs, each pair of 

electrode (channel) uses a dedicated amplifier to ease the noise and settling requirements. 

However, for recording systems that have 100s of channels, this cannot be easily scaled, as 

area and power constraints once again come into play. This concludes the fact that TDM is not 

the most efficient channel sharing technique, as it either requires large bandwidth that is not 

optimally used or requires a dedicated amplifier per input channel. 
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2.2 Frequency-Division Multiplexing (FDM) 

Frequency-Division Multiplexing is another method that can be used to share the analog front 

end by allocating a different frequency band to each channel. Traditional modulation/chopping, 

as shown on top of Fig. 6, uses a single frequency to modulate each channel in parallel. This 

method requires an amplifier and low pass filter for each channel. This is of little to no interest 

in this application as the number of amplifiers and filters scale proportionally with the number 

of channels, eating up into the power and area overhead.  

 

Fig. 6: Traditional Chopping (Top) and Orthogonal Frequency Chopping (Bottom) [6]. 

 

An alternative solution is to use orthogonal frequency chopping (OFC). In this technique,  each 

channel is allocated a different frequency. For this to be effective however, the modulation 

frequencies are chosen in multiples of 2. This is done to reduce the intermodulation products 

between neighbouring channels and maintain orthogonality [9]. After passing through the 

shared amplifier, the signals are demodulated back into baseband. In both the above techniques, 

modulating the input signal makes it easier to get rid of flicker (1/f) noise as well as other noise 

sources that get added in the signal path. The noise sources such as external interference, flicker 

and EMI are upmodulated at the demodulation side, which are then filtered out through a low-

pass filter. However, it must be noted that the thermal noise still remains but is relatively easy 

to suppress by increasing gm, although that means a higher current and power consumption. 
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While OFC makes use of the shared analog front end, the issues and challenges it brings about 

do not make it a suitable choice. Firstly, the chopping frequency for N channels grows 

exponentially as the frequency for each channel is double the frequency of the previous 

channel. Thus, the highest frequency to be generated is 2(N-1)*fc, where fc is the chopping 

frequency of the first channel. This implies that the shared amplifier requires a bandwidth equal 

to that of the fastest chopper, thereby using a massive amount of power [6]. Additionally, each 

of these frequencies to be generated requires either a dedicated oscillator [10] or can be done 

using frequency division circuits in the digital domain. On-chip oscillators occupy a lot of area 

and consume huge amounts of power. While the frequency division circuits are area efficient, 

the power overhead for higher frequencies is still significant. All these factors do not satisfy 

the constraints on area and power for this particular implantable SoC. Thus, it is concluded that 

the increase in implementation complexity for OFC comes without much benefit.   

 

2.3 Code-Division Multiplexing (CDM) 

In code-division multiplexing, the same frequency band is used for multiple channels by 

assigning a different code/sequence to each of the channels. CDM makes use of the concept of 

spread spectrum, wherein a narrow band signal is purposely spread into a wideband signal. 

This is achieved by modulating the input with a code sequence that has a much higher 

bandwidth in comparison to the bandwidth of the original signal. The reason for spreading the 

signal across a larger bandwidth is its immunity to interference and band-limited noise sources 

[11]. A more elaborate explanation of spread spectrum and its benefits are in Chapter 3. 

 

Fig. 7: Conventional Code Division Multiplexed Systems. On the left, the digital output is 

multiplexed before transmission and there is no sharing of the amplifier or ADC. On the right, 

the amplifier output is multiplexed to share the ADC. 
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Fig. 8: Direct Coding of Input Channels in the Analog Domain [5]. 

 

CDM can be applied either in the digital or analog domain. Conventional designs code the 

channels either after digitization or amplification as shown in Fig. 7. Modulating the signal 

after digitization still requires an LNA and ADC per channel, hence is of no interest. 

Modulation after amplification has two distinct disadvantages. Firstly, the number of amplifiers 

scales with the number of channels. Secondly, the noise sources such as flicker noise and any 

external interference or EMI can fall in band and become inseparable. Removing the interferes 

would require filtering whereas flicker noise cannot be removed since it falls exactly in the 

signal band. Since the objective is a shared channel, the inputs are coded directly in the analog 

domain (Fig. 8). This allows us to reap the benefits of the flicker noise being modulated out of 

band as well as makes use of a shared LNA as well as ADC. 

Since CDM uses the same frequency for all the channels, the bandwidth of the amplifier can 

be optimally used as all the channels are stacked by adding up the signals on top of each other. 

Therefore, each signal makes use of the entire available bandwidth without wasting any 

resource. By digitizing the signals prior to demodulation, the overhead that comes with 

encoding for the transmitter can be avoided. Furthermore, the demodulation can be performed 

off chip, relieving the power and area constraints [6]. At the receiver end, the signals are 

multiplied with the same codes they were modulated with. It is important to synchronise the 

demodulation for the accurate recovery of the signal. If the signals are multiplied without 

synchronisation, the output signal will just look like noise. This is one of the properties of a 

spread-spectrum signal as explained in Chapter 3. At the demodulation side, the unwanted 

noise and interference is upmodulated by the code at the receiver end and can be filtered out 

easily.  
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Mathematically, the transmitted and received signal can be expressed as in [5]: 

The sum of the incoming signal u(t), modulated with the codes c(t) is: 

𝑚(𝑡) =  ∑𝑢𝑖(𝑡) ∗ 𝑐𝑖(𝑡)

𝑁

𝑖=1

 

( 2.3.1 ) 

The transmitted signal after addition of noise sources, interference and subsequent 

amplification and digitization is: 

𝑠(𝑡) = 𝐴[ 𝑚(𝑡) + 𝑛1/𝑓(𝑡) + 𝑛th(𝑡) + 𝑛emi(𝑡)] + 𝑛q(𝑡) 

 ( 2.3.2 ) 

Finally, on the receiver end the received signal s(t) is multiplied with the code again to give: 

𝑟𝑖(𝑡) = 𝑠(𝑡) ∗ 𝑐𝑖(𝑡) 

𝑟𝑖(𝑡) = 𝐴𝑢𝑖(𝑡) + 𝑐𝑖(𝑡) ∗ [ 𝐴𝑛1
𝑓

(𝑡) + 𝐴𝑛𝑒mi(𝑡) + 𝑛q(𝑡)] 

 ( 2.3.3 ) 

 

From this analysis, we observe that CDM allows for the efficient use of bandwidth as the signal 

uses the entire available bandwidth of the amplifier. If the input signal is directly modulated, 

CDM has the nice property of OFC modulation wherein it modulates most of the unwanted 

noise sources and interference out of band. This removes the need for steep filters. With these 

benefits of code-division multiplexing, it is deemed as a perfect option for the sharing of analog 

front-end circuitry in a multi-channel signal-acquisition system. The main consideration to be 

taken into account for CDM is the choice of codes and the frequency at which they operate. 

These two parameters must be chosen appropriately as they are key to minimizing the cross 

talk between channels and keep the unwanted tones out of band. Chapter 3 describes the 

different type of codes, their properties and their ease of generation in detail. 
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Chapter 3  

Spread-Spectrum Modulation – Pseudo 

Random and Orthogonal Sequences 

 

As Code-Division Multiplexing is chosen as the channel-sharing technique, in this chapter the 

concept of spread spectrum is discussed as CDM essentially spreads the spectrum to a larger 

bandwidth. Additionally, the different types of codes, their properties and ease of generation 

are discussed. This is done to choose the appropriate codes for modulation to maximise 

performance by minimising cross-talk between channels.  

Spread-spectrum modulation is a technique in which a signal at baseband with a particular 

bandwidth is purposely spread to a much larger bandwidth by modulating it with a higher 

frequency signal. The modulation is performed by multiplying the signal with a code or 

sequence running at a higher frequency. Fig. 9 depicts this operation wherein a narrow band 

signal (green) is spread to a wideband signal (blue). The higher the frequency of the code signal, 

the wider the baseband signal is spread. The resulting signal is a noise-like looking signal which 

provides the basis of many benefits of this technique [11].  

 

Fig. 9: Narrow band signal spread to a wideband signal by multiplying it with a code sequence 

of a much higher frequency [18]. 
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Typically in communication systems, spreading the spectrum is done for reasons such as anti-

jamming, anti-interference, multi-user random access communications and low interception 

probability. The reason for this is best visualized from Fig. 10 below. Since the desired signal 

has been spread, it is at a much lower power spectral density spanning across a larger frequency 

range. At the receiver or demodulation side, the incoming signal contains the desired signal 

along with all the jammers, interferers and noise. This signal is now multiplied with an identical 

copy of the sequence with which the first spreading operation was carried out. This has two 

consequences. Firstly, the desired signal is now de-spread and its bandwidth collapses to that 

of its original narrow bandwidth. However, the interferers and jammers (if they are 

bandlimited) are now spread over a large bandwidth as they haven’t been modulated before. 

The undesired signals now have a much lower power spectral density and are spread over a 

much larger bandwidth.  Hence, the portion of the interferers falling in-band is greatly reduced 

and a better SNR can be achieved. In a multiple-access application, all the codes operate at the 

same frequency and hence make use of the entire available spectrum. Despite occupying a 

larger bandwidth than the original signal, it is compensated by the fact that multiple channels 

or users occupy the spectrum.  

 

Fig. 10: De-spreading of the signal at the receiver/demodulating end causes the original signal to 

collapse into a narrow band signal. However, now the interfering signals (if bandlimited) are 

spread and their effect on the signal quality is reduced as a much smaller power density of the 

interferer falls in band of the signal. 
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There are several techniques by which this spreading of the spectrum can be performed. The 

first is time-hopping spread spectrum (THSS). In this technique, the signal is transmitted in 

brief spurts at random intervals of time. The time spurts are initiated by a pseudorandom 

sequence. The second is frequency-hopping spread spectrum (FHSS), wherein a carrier is used 

to shift the frequency of the signal in a pseudorandom way. The third is direct-sequence spread 

spectrum (DSSS). DSSS directly multiplies the code with the signal by causing phase 

transitions in the original signal itself [11]. In all cases the sequences are not truly random as a 

copy of the sequence is needed at the demodulation side to precisely recover the signal. In the 

domain of Analog IC Design, DSSS is the same as the chopping technique and can be directly 

applied to the input with only two pairs of switches which makes its implementation extremely 

easy. FHSS needs a frequency synthesiser for the sequence to translate into different 

frequencies. Hence, its complexity is increased. Finally, THSS applies the sequence to the 

transmission and is applied to the amplifier. This involves switching the amplifier on or off 

which requires careful design to ensure that the amplifier can operate accurately while being 

switched. Considering the implementation complexity of the three schemes, DSSS is the easiest 

to implement while at the same time providing benefits such as reducing the effect of 1/f noise 

and offset. Hence, in this project, DSSS was implemented. 

 

Fig. 11: The 3 different spreading techniques. The top figure depicts Direct Sequence Spread 

Spectrum (DSSS). The bottom left depicts Frequency Hopping Spread Spectrum (FHSS) and 

the  bottom right is Time Hopping Spread Spectrum (THSS). 
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While in theory, a truly random sequence can modulate the signal, in practice it cannot be 

random as a copy of the code is required for demodulation. Hence, pseudorandom codes are 

typically used for modulation. There are various types of codes that are available, each with 

their own properties depending on the application. In the sections below, the properties and 

generation of two classes of codes and how they are generated is discussed keeping in line with 

the properties desired for a shared analog front end. The two classes are pseudorandom bit 

sequences (PRBS) and orthogonal Walsh-Hadamard (WH) sequences. 

In this thesis, DSSS is of main interest as code-division multiplexing is essentially a direct-

sequence modulation scheme that spreads the bandwidth. As the signals read out from the 

electrode array in this project are done by a wire, aspects such as anti-jamming and security 

are not of primary concern. The main aspects that need to be taken into consideration are the 

cross-talk between channels and the ease of generation or storage of these sequences on chip. 

Cross-talk between channels can occur if there is non-zero cross-correlation between the 

various code sequences. This will affect the recovery of the signal as the spillover of other 

channels will degrade the SNR. Since there will be capacitive coupling on chip between 

channels that already degrades the SNR, it is important to use code sequences that do not 

exacerbate this problem. Choosing orthogonal codes gives a zero cross-correlation in theory, 

although in practice it will be some non-zero value. The non-zero cross correlation in practice 

comes from non-idealities in real systems such as synchronisation errors, system noise and 

jitter that do hamper the perfect alignment of the sequences in the time domain. The small time 

shifts present from one sequence to another will deteriorate its cross-correlation property. 

However, as seen from [6], the cross-talk is sufficiently low to not have an adverse effect on 

performance.  

In the following two subsections, PRBS and WH codes are explained in greater detail. Since 

this thesis makes use of WH codes due to their orthogonality, there is more emphasis placed 

on this type of code. However, PRBS codes and their generation is briefly discussed too in 

Section 3.1 and more information can be found in Appendix A. Section 3.2 gives an 

explanation of how the WH matrices come about in the mathematical domain and why 

computation or memory seems necessary. Following this, a novel simplified method of 

generating the codes is proposed with an example in Chapter 5.  

 



16 

 

3.1 Pseudo-Random Bit Sequences (PRBS) 

Introduction, Types and Properties of PRBS Codes 

Pseudo-Random or Pseudo-Noise (PN) Sequences are a type of sequence that spread a 

spectrum and can be used for CDM. They possess good randomness properties, have long 

periods and are easy to generate [11]. The two main pseudo-random codes that are explored in 

this thesis are the Maximum Length (ML) and Gold Sequences. While there are other types of 

sequences such as Kasami, Gold-like and Dual-BCH sequences, they were not explored as a 

much better code in terms of performance was achieved and is explained in Section 3.2. In this 

section, the properties and generation of ML and Gold sequences are briefly discussed as some 

of the work carried out in this thesis went into exploring them as possible implementations for 

CDM in shared analog front-ends.  

In terms of circuit implementation, these PN sequences can be easily realized using linear 

feedback shift-registers (LFSR). LFSRs are digital circuits that use a shift register whose input 

is a linear function of two or more states of the intermediate shift registers [14]. Fig. 12 shows 

how an LFSR is realized. The input is a feedback connection of the XOR function of the taps 

at positions 3 and 5. The output sequence of these LFSRs is determined by the initial state 

loaded onto the shift-registers and the feedback connections. The feedback coefficients are 

determined by a certain type of polynomials. More information about the generation of the 

polynomials is available as a MATLAB automation script in Appendix A.1. The script was 

used to generate polynomials up to the 13th degree. Larger degrees are possible but will take a 

much longer time to generate due to the sheer number of polynomials that exist. 

 

Fig. 12: Linear Feedback Shift Register (LFSR) formed by feeding back the XOR of tap 3 and 5 
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Maximum-Length Sequences: This is a type of sequence in which the period of the sequence is 

2𝑁 − 1, where N is the degree. For instance a 4 state register has a maximum period of 15 

(24 − 1), since the all-zeros case is not included. The choice of the feedback taps determine 

whether a maximal length sequence is produced or not.  

The determination of these polynomials stems from field theory, and more specifically belong 

to a small finite field termed GF(2). Within this field, the polynomials of a given degree must 

be irreducible and primitive polynomials. A maximum-length sequence is only generated by 

primitive polynomials. The MATLAB scripts in Appendix A.1 generate these primitive 

polynomials. The feedback taps are the coefficients in the polynomials. For instance, Fig. 12 

is a circuit that generates an ML Sequence, that incorporates the polynomial 𝑥5 + 𝑥3 + 1. The 

feedback taps are 3 and 5 and 1 is the input. The actual output sequence also depends on the 

initial states that the registers are set to. 

The auto-correlation of ML sequences are two-valued: 

   𝑁,      𝑎𝑡 0 𝑠ℎ𝑖𝑓𝑡𝑠 

−1,      𝑎𝑡 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑠ℎ𝑖𝑓𝑡𝑠 

                                                                                                                                                         (3.1.1) 

 

The cross-correlation is much more complicated. In this case we focus on special class called 

the preferred pairs of polynomials. These are pairs of ML polynomials that either have a 3- or 

4-valued spectra. The 4-valued spectra is if 𝑛 is a multiple of 4 and the 3-valued spectra for 

other cases. The different cross correlation values in the spectra are given by the formulae: 

−1,  −𝑡(𝑛) & 𝑡(𝑛) − 2   

} 
𝑡(𝑛) = 1 + 2

𝑛+2
2  

n is the degree of the sequence −1,−1 + 2
𝑛
2 , −𝑡(𝑛) 𝑎𝑛𝑑 𝑡(𝑛) − 2 

                                                                                                                                                         (3.1.2) 

    

If, for a given application, a single ML sequence is required, using any of the primitive 

polynomials is acceptable. However, if there are multiple required, it is better to use these pairs 

of preferred polynomials for better cross-correlation properties. A more detailed mathematical 

description can be found in [12]. 
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Gold Sequences: These are a class of sequences with much better cross-correlation properties 

in comparison to ML sequences. As seen from the cross-correlation formula for a preferred 

pair of polynomials, as 𝑛 increases, the peak cross-correlation also increases. Gold codes solve 

this problem by performing the XOR operation between two preferred pairs of polynomials. 

The auto-correlation remains good while the cross-correlation is reduced.  

The auto-correlation of a Gold sequence = 2𝑁 − 1 

The cross-correlation between 2 sequences is −1,−1 + 2
𝑛+1

2  & 1 + 2
𝑛+1

2  

As these codes still have non-zero cross-correlation, it affects the cross-talk between channels 

and hence the following section addresses a set of orthogonal sequences which are favourable 

for channel sharing. 

 

 

3.2 Walsh-Hadamard Sequences 

Introduction and Properties of Walsh-Hadamard Codes 

 

The Walsh-Hadamard transform belongs to a class of Fourier transforms from which 

orthogonal matrices are generated. The starting point is a base matrix of size 1, defined as: 

𝐻1 = [1] 

The consecutive matrices of size 2𝑁 are computed from a base matrix of size 𝑁 by the recursive 

Kronecker product that can be expressed as [13]: 

𝐻2𝑁 = [
𝐻𝑁 𝐻𝑁

𝐻𝑁 −𝐻𝑁
] 

For a 2x2 matrix this is defined below. From the following sections, the -1 coefficients will be 

replaced by a 0 for ease of visualization and resemblance to binary signals in the electrical 

domain. 

𝐻21,−1
= [

1    1
1 −1

] ↔ 𝐻21,0
= [

1    1
1 0

] 
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Similarly a 4x4 and 8x8 matrix can be formulated as: 

𝐻41,0
= [

𝐻21,0
𝐻21,0

𝐻21,0
−𝐻21,0

]  =  

[
 
 
 
 
1    1
1    0

    1        1
    1        0

1    1
1    0

    0        0
    0        1]

 
 
 
 

 

 

𝐻81,0
 =

[
 
 
 
 
 
 
 
 
 
 

1    1

1 0

    1        1

    1        0

1     1

1     0

    0        0

    0        1

1    1

1 0

    1        1

    1        0

1     1

1     0

    0        0

    0        1

1    1

1 0

    1        1

    1        0

1     1

1     0

    0        0

    0        1

0    0

0 1

    0        0

    0        1

0     0

0     1

    1        1

    1        0]
 
 
 
 
 
 
 
 
 
 

 

 

As these codes are orthogonal, the cross correlation between each of them is 0. This is one of 

the key properties that makes this type of code useful for CDM. Fig. 13 shows the proof of this 

in the plot below. 

 

Fig. 13: Zero cross-correlation between all sequences for a 4x4 WH Matrix 
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By evaluating the correlation between all the possible sequence combinations for a 4x4 matrix, 

it can be seen that the cross-correlation between any two sequences in a set is equal to 0. On 

the vertical axis of the plots, the cross-correlation value is depicted and along the horizontal 

axis is the shifts by each bit. 

From the above analysis and comparison of PRBS codes and WH codes, it can be concluded 

that WH codes, being orthogonal, are best suited for code multiplexing since the main 

limitation is reducing cross-talk in this application. In the following chapter, by making use of 

the WH codes, the system level design will be built up to quantify the optimal parameters 

required to realise such a system. 
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Chapter 4  

System-Level Design 

 

In the previous chapters, the use of Code-Division Multiplexing (CDM) to share a number of 

channels was deemed to be the best choice from a qualitative point of view. As the most 

important property required for the application is to minimise crosstalk, orthogonal codes are 

best suited due to their zero cross-correlation. In this regard, Walsh-Hadamard Codes satisfy 

the property of zero cross-correlation and are used as the coding scheme. 

In this chapter, the system level design will be constructed and design specifications will be 

quantified. Firstly, the signal characteristics are quantified based on available recordings, after 

which the best possible system level configuration is described to extract the most optimal 

performance with the simplest hardware possible. 

 

4.1 Signal Properties 

The AEG signals recorded have a signal amplitude ranging from 1-10mVpk-pk for each 

recording channel. The recording bandwidth ranges from 0.5 – 400 Hz. In this thesis, as there 

was no access to the actual recording data for the AEG signals, the following specifications are 

devised using data from MIT-BIH arrhythmia and atrial fibrillation databases available at 

physionet.org [15][16]. These are recordings from laboratories at Boston’s Beth Israel 

Deaconess Medical Center that is available for basic research into cardiac dynamics. Both these 

datasets contain ambulatory ECG recordings instead of atrial electrograms. For more accurate 

results, these specifications may need to be revised by testing the system on actual recorded 

data. However, AEG signals are quite similar to that of ECG signals in terms of their signal 

characteristics such as amplitude range and peaks. Hence, the validation below is justified and 

can be quite accurate for the intended application. 

The signal amplitude for both these sets of data have a 10mV range. The arrhythmia database 

is recorded at 360 samples per second and digitized with a 11-bit resolution per channel. On 

the other hand, the fibrillation database was recorded at 250 samples per second and digitized 

with a 12-bit resolution per channel. Fig. 14 plots the signals in the time and frequency domain. 
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From the frequency-domain plot, it can be devised that these signals have mostly low-

frequency components, as these frequencies are seen to have much larger magnitude in the 

PSD plot. Thus, most of the important features to identify these arrhythmias are captured in the 

low frequency region up to a few 10s of hertz. The low-frequency, low-bandwidth signals tie 

directly into a choice for the modulation frequency at which the codes operate. This in turn 

simplifies the design of the ADC as there is no need to operate at very high speeds to obtain 

sufficient resolution.  

   

Fig. 14: Arrhythmia (left) and atrial-fibrillation (right) ECG signals in the time (top) and 

frequency (bottom) domain. Most of the features are captured in the lower frequencies as seen 

from the higher PSD values in the low-frequency region. 

 

4.2 Required Resolution  

As this application targets low-resolution recording, the following experiment is done to 

determine the minimum amount of SNR required to maintain signal integrity and keep a low 

percentage root difference (PRD) between the original and reconstructed/corrupted signal. The 

PRD is computed to ensure that essential features of the signal - especially the slopes and peaks 

are not lost and are visible to the clinician to make a diagnosis. Although a PRD of less than 

5% is usually an acceptable value, here, a slightly tighter constraint of 3% is designed for. This 

is to keep some margins for other types of noise, interference and distortion that are not 

modelled. However, as shown in Section 2.3, the spreading and de-spreading gets rid of most 

of the noise, and hence, this model provides a suitable estimate of the required resolution. 
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The MIT-BIH signals mentioned above are recorded with a fairly high degree of resolution of 

11 and 12 bits. These signals are extracted in MATLAB and white noise is added to these 

signals incrementally. At each iteration of the addition of the noise level, the SNR of the noisy 

signal is computed along with the PRD between the original signal and this noisy signal. From 

Fig. 15 it is evident that for both the types of signals, there is a knee in the curve beyond which 

there is minimal improvement. For a PRD of less than 3% an SNR in the range of 28-32dB is 

sufficient. This corresponds to a resolution of 5-6 bits. Considering the non-idealities and non-

linearities in an ADC, a 6 bit ADC seems sufficient for the recording of the channels. 

     

Fig. 15: SNR vs PRD for Arrhythmia (left)  and Atrial Fibrillation (right) Signals. 

 

    

Fig. 16: Overlay of Corrupted and Original Signal for the Arrhythmia (left) and atrial 

fibrillation (right) corresponding to an SNR of 30dB.  

Fig. 16 overlays the original signal with the noisy signal corresponding to the SNR of that in 

Fig. 15 , i.e. ≈ 29 - 30dB for the arrhythmia and fibrillation signals respectively. 
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4.3 Number of Channels (NCH) vs Code Length(L) 

The number of channels that can be shared using Walsh-Hadamard (WH) codes is 

straightforward as it is proportional to the length of the code. A WH code of length 𝐿 gives 

𝐿 unique codes that are orthogonal to each other. Since the first code is an all ‘1’ sequence, it 

is not useful, as no modulation occurs. Hence, the total number of channels that can be used 

for a sequence of length 𝐿 is equal to 𝐿 − 1. Since WH codes come in powers of 2, the total 

useful number of sequences is 2𝑛 –  1, where 𝑛 is an integer greater than or equal to 2. 

Alternatively, if the number of channels (NCH) is already known or determined by another 

system parameter, the minimum length of the WH code required is the closest power of 2 that 

is greater than NCH. Table 1 summarizes the minimum code length required depending on the 

desired number of channels to be shared.  

The fact that WH codes are in powers of 2 can sometimes be disadvantageous when the number 

of channels is fixed. For instance, if 64 channels are required to be shared, a WH code of length 

of 128 must be chosen even though the remaining 64 codes are not required. A WH code that 

is much longer needs to either be generated or stored, taking up more computation power or 

area on a chip. Additionally, the frequency of modulation also increases with increasing length, 

so as to obtain a better performance. The frequency dependance on the code length  is explained 

in Section 4.4. 

 

Table 1: Number of Channels vs Minimum Code Length 

Number of channels to share (Nch) Minimum Required WH Code Length (L) 

 2 ≤ 𝑁𝐶𝐻 ≤ 3 22  =   4 

4 ≤ 𝑁𝐶𝐻 ≤ 7 23  =   8 

8 ≤ 𝑁𝐶𝐻 ≤ 15 24  =  16 

16 ≤ 𝑁𝐶𝐻 ≤ 31 25  =  32 

32 ≤ 𝑁𝐶𝐻 ≤ 63 26  =  64 

64 ≤ 𝑁𝐶𝐻 ≤ 127 27  = 128 
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4.4 Modulation Frequency 

The choice of frequency at which the codes run is determined by the bandwidth of the signals, 

and the number of channels being shared or the code length. Fig. 17 plots the SNR versus the 

modulation frequency for 3, 7 and 15 channels that are multiplexed with code lengths of  4, 8 

and 16 respectively. It can be seen that for fewer number of channels, the modulation frequency 

required to achieve a certain SNR is much lower than those that multiplex more channels. This 

is because as the number channels increases, the length of the code required increases. This in 

turn increases the modulation frequency to achieve a similar SNR. 

As the modulation frequency for a given length increases, the SNR improves up to a certain 

point after which the curve flattens out and the improvement in SNR is minimal. This stems 

from the fact that spreading the spectrum indefinitely is of no use as the fundamental limit to 

the achievable SNR is thermal noise. Spreading the spectrum does not eliminate thermal noise 

as it is white noise. During the modulation phase, the thermal noise present is up-modulated 

along with the signal and it is then down-modulated during the demodulation phase. Hence, an 

improvement in SNR can only be achieved by lowering the thermal noise in-band.  

 

Fig. 17: SNR vs Modulation Frequency for Different Number of Channels 

From the above plot, to achieve a resolution of about 5 bits or more, the modulation frequency 

for 3 channels should be greater than 2kHz, for 7 channels should greater than 4kHz, and for 

15 channels should be greater than 16kHz.   
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4.5 System Block Diagram 

Having quantitatively derived the required resolution, type of code and length required along 

with the corresponding modulation frequency, the system level design can now be constructed. 

The design is split into 2 blocks – the On-Chip recording circuitry and the Off-Chip recovery 

and processing unit that uses digital signal processing.  

The On-Chip recording circuit consists of 3 main circuit blocks. The first block consists of a 

switching modulator for each channel. Each channel is modulated with a unique sequence that 

is generated by the code generator circuit on chip. The WH Code Generator, shown in Fig. 18, 

generates the codes that are fed into a non-overlapping clock generator. These non-overlapping 

signals drive the switches of the modulator. The second block is a summing amplifier that sums 

up all the channels. Finally, the summed output is digitized using a 6-bit Nyquist rate ramp 

ADC before being transmitted off-chip for processing and recovery. A ramp ADC is used due 

to its simplicity of implementation given the low resolution and frequency of operation. 

 

 

 

Fig. 18: On-Chip System Level Block Diagram 

 

                 

        

On-Chip 
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Fig. 19: Off-Chip Signal Recovery using Digital Signal Processing 

 

The entire off-chip digital processing and signal recovery is done using MATLAB. The 

transmitted digital bits are converted back to an analog signal using an ideal DAC. The 

reconstructed analog signal is demodulated by multiplying this single output analog signal with 

all the N sequences running at the same modulation frequency that was used at the transmission 

end. The channels that are not synchronised cannot be recovered and look like noise as 

explained in Chapter 3. Thus, each channel only correctly recovers its own channel’s data given 

that the synchronisation is fairly accurate. At this stage, the signal from each channel can be 

filtered to remove all the unwanted signals and noise. A digital LPF in MATLAB with a 6th 

order roll-off is used. A moving average is also used for additional noise reduction and 

smoothening of the signal. The moving average filter allows for another 2-3dB improvement 

in SNR, thereby allowing for an additional half a bit of resolution without the requirement for 

additional bits or oversampling on-chip. 

 

 

 

 

Off-Chip 
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4.6 System Level Verification for 7 Shared Channels 

Using the above derived specifications, the system is modelled using MATLAB and Simulink 

for 7 shared channels to verify the idea and specification derived above. Simulink is used as it 

allows for quick characterization due to the availability of in-built signal processing as well as 

circuit blocks that can be interfaced with ease.  

The setup of the system in Simulink is shown in Fig. 20. The input channels contain single tone 

signals of different frequencies. The in-built Walsh-Hadamard Code Generator Block 

generates the WH code with parameters such as frequency and code length set by the user. In 

this case, the code operates at 4kHz with a code length of 8, as obtained from Sections 4.3 and 

4.4. These modulated signals are summed and amplified using a summation and gain block. A 

low pass-filter with a tunable bandwidth is inserted to model the finite bandwidth of the 

amplifier. The amplified analog output is then digitized by using a simple quantizer and the 

digital output data is exported to MATLAB for signal recovery. 

 

Fig. 20: Simulink Model of System for 7 Shared Channels 

 



29 

 

The seven inputs are single tone test signals - each with a unique frequency and an amplitude 

of 10mVpk-pk. The test signals are chosen as prime numbers to avoid any of its harmonics falling 

into the signal bin of another signal tone. This is to avoid any exaggeration or degradation of 

the SNR, thereby giving a wrong enhancement or degradation of the system level performance. 

The 7 signal frequencies are 13Hz, 17Hz, 23Hz, 29Hz, 37Hz, 41Hz and 47Hz, labelled CH1 to 

CH7 respectively as shown in the time domain plot in Fig. 21. Fig. 22 plots the frequency 

spectrum of the input signals. 

 

 

Fig. 21: Time Domain Waveforms of the 7 input signals, each with a unique frequency. 

 

The transmitted output data bit stream is converted back to an analog signal using an ideal 

DAC, multiplied once again with the WH codes at the same frequency and then low pass 

filtered. The demodulated signals are shown in Fig. 23. It can be seen that there is some high 

frequency content that sits on top of the lower tone signals despite a 6th order LPF being used.  
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Fig. 22: Frequency Spectrum of Input Signals 

 

 

Fig. 23: Demodulated signals without moving average. 

 

The higher order frequency content can be smoothened out by applying a moving average. On 

performing the moving average, an improvement of SNR of about 2-3dB is noticed. Comparing 

the time domain waveforms of Fig. 23 and Fig. 24, it can be seen that the higher frequency 
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ripples have been reduced. It must be noted that the window of averaging must also be chosen 

carefully so that critical information is not lost by aggressive filtering. Table 2 provides a 

comparison of each channel and its SNR after demodulation with and without a moving 

average for the 7 channel system.  

 

Fig. 24: Demodulated Signal with Moving Average of 16 Samples each. 

 

 

Fig. 25: Frequency Spectrum of Demodulated Signals 
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Table 2: Comparison of SNR with and without a moving average for 7 channels at FMOD = 4kHz. 

Channel Frequency 

(Hz) 

SNR without averaging  

(dB) 

SNR with averaging 

 (dB) 

1 13 31.045 34.351 

2 17 31.509 34.368 

3 23 30.870 34.260 

4 29 31.392 34.202 

5 37 31.492 34.506 

6 41 31.448 34.493 

7 47 31.376 34.177 

 

In Fig. 24, Fig. 25 and Table 2 we observe that the system level specification derived in 

Sections 4.2, 4.3 and 4.4 have been verified by the successful recovery of each of the signal 

tones with sufficient resolution. 

 

4.7 System Level Specifications 

From the system level parameters that were derived in the above sections, the required circuit 

level specifications can be deduced. Table 3 summarizes the required specifications. 

Table 3: Design Specifications 

Parameter Description Value 

Number of Channels (NCH) - 7 

Input Voltage Range (1-10mVpk-pk) * 7 7-70mVpk-pk 

Output Voltage Swing - 150mV 

Modulation Frequency (FMOD) Optimum for 7 channels 4kHz 

Resolution (N) 6 bits 6 bits 

Sampling Frequency (FS) > FMOD 16kHz 

Channel Gain 4 Gain Settings (3,6,12,24) 9.5 – 27.6dB 
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Parameter Description Value 

THD < 5% < 26dB 

Gain of Amplifier > THD + Channel Gain > 53dB 

   

 

In the next chapter, a novel method for generating the WH codes on-chip using simple digital 

logic is proposed and elaborated upon. Using the code generator and the system level 

parameters verified in this chapter, a 7 channel multiplexed system is realised and the circuits 

implemented are explained in Chapter 6. 
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Chapter 5  

Walsh-Hadamard Code Generator using 

Digital Logic 

 

5.1 Proposed Walsh-Hadamard Code Generator Circuit 

One of the concerns/limitations with orthogonal codes such as Walsh-Hadamard codes is that 

they are typically either stored on chip using some memory [6], or implemented by computing 

the matrices on-chip, which then requires a processor. Storage of large sets of Walsh-Hadamard 

codes poses a constraint on area as the look-up table scales exponentially with the length of the 

sequence. Implementing a processor requires large power consumption while at the same time 

occupying more area with a higher implementation complexity to embed the processor on chip. 

This stems from the way in which these codes are constructed mathematically by taking the 

Kronecker products as was explained in Section 3.2. However, looking at the sequences in 

terms of frequency and time-shifts, these codes can be constructed using extremely simple 

digital logic accurately, as they can all be derived from a single clock signal. This novel method 

of mapping the WH sequence onto silicon using digital circuits is elaborated with an example 

below. 

Prior to explaining the WH code generation methodology, two fundamental logic functions 

from digital circuits are explained to better understand how the pattern was devised and came 

about. The two logic functionalities are the XNOR logic gate and a Frequency Divider using a  

flip-flop. The former is a combinational logic circuit whereas the latter is a sequential logic 

circuit. The combination of these two principles will allow an accurate generation of the WH 

codes that is derived from the clock signal.  

The first useful logic gate is the XNOR. Table 4 shows the truth table for a 2-input XNOR gate 

along with its schematic symbol. The key point to notice from this table is that when one of the 

inputs is a logic ‘0’ (In1), the output is an inverted or flipped version of the other input (In2) . 

On the other hand, when one of the inputs is a logic ‘1’ (In1), the output follows or copies the 

other input (In2).  
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Table 4: XNOR Logic Function and Symbol 

In1 In2 OUT Operation  

0 0 1 

Invert In2 

 

0 1 0 

    

1 0 0 

Copy In2 

1 1 1 

 

The second useful digital logic circuit is the Frequency-Divider circuit using a simple D Flip-

Flop (DFF). The idea stems from the fact that a D Flip-Flop is a clocked device whose output 

follows the input only on transition of one of the clock edges. Hence, if the input of the DFF is 

a complementary version of the original clock, the output frequency will be half of the input 

clock frequency. This can be achieved by feeding back the complementary output of the DFF 

to the input, which is best visualized from Fig. 26. Using these two concepts, a WH code of 

any length can generated using solely digital logic. 

 

 
 

Fig. 26: Frequency Division by 2 using a D Flip-Flop 
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In Section 3.2, the mathematical construction of WH matrices was derived. It was seen that by 

computing the recursive  Kronecker product of 2 matrices, a matrix of size N is achieved. 

The algorithm proposed here works on the premise of constructing a sequence of length 2N 

given an existing sequence of length 𝑁. This has just 1 implication – an initial condition or 

sequence is required to start the computation. This is fairly easy to achieve, as can be seen from 

the 4x4 matrix below. The first row is just a logic ‘1’ which can be tied to the power supply. 

This sequence is also not useful as there is essentially no modulation performed by this 

sequence. The second row is an alternating sequence between ‘1’ and ‘0’. This sequence 

resembles a clock signal, and since a clock is anyway required, one of the system clocks or a 

fraction of it can be directly used for this sequence. 

𝐻41,0
= (

1    1
1    0

    1        1
    1        0

1    1
1    0

    0        0
    0        1

) 

Starting from a base matrix where the first row is just ‘1’ and the second row is a clock 

sequence, the remaining rows can be constructed using the following algorithm. The base 

matrix is of length 𝑁 and the matrix to be constructed is of length 2𝑁. 

Construction of 2𝑁 Length Sequence from 𝑁 Length Sequence: 

1)  Row 1 to 𝑁 → Sequence Repeats     

2) Frequency of Row 𝑁 +  1 →
Frequency of  Row (

𝑁

2
)+1

2
  

3) Row 𝑁 +  𝑥 → Row (𝑁 + 1)   𝐗𝐍𝐎𝐑  Row 𝑥                        𝑤ℎ𝑒𝑟𝑒     2 ≤ 𝑥 ≤ 𝑁   

An example to depict the working of this algorithm is given below. A WH code of length 8 is 

constructed from a WH code of length 4. Here, 𝑁 = 4, 
𝑁

2
+ 1 = 3,𝑁 + 1 = 5, 2𝑁 = 8 and 

2 ≤ 𝑥 ≤ 4. 

Table 5 shows how the first 5 sequences are derived and Table 6 computes the remaining 3 

sequences. The corresponding colour codes depict the operation performed. Following the 

algorithm, it can be seen that from Rule 1, the first 4 rows simply repeat and do not require any 

further computation. Following Rule 2, the 5th row is half the frequency of the 3rd row. The 
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halving of the frequency can be implemented using the frequency-divider circuit explained 

above. 

Table 5: WH Code Pattern of First N+1 Sequences 

Seq No.  

(4x4) 

WH Code 4x4 Pattern WH Code 8x8 Seq No. 

(8x8) 

𝑆𝑒𝑞 1 1 1  1 1 
Repeats 

1 1 1 1  1 1 1 1 𝑆𝑒𝑞 1 

𝑆𝑒𝑞 2 1 0  1 0 
Repeats 

1 0 1 0  1 0 1 0 𝑆𝑒𝑞 2 

𝑆𝑒𝑞 3 1 1  0 0 
Repeats 

1 1 0 0  1 1 0 0 𝑆𝑒𝑞 3 

𝑆𝑒𝑞 4 1 0  0 1 
Repeats 

1 0 0 1  1 0 0 1 𝑆𝑒𝑞 4 

                 

                 

𝑆𝑒𝑞 3 1 1  0 0 
Half the Frequency 

1 1 1 1  0 0 0 0 𝑆𝑒𝑞 5 

(
𝑁

2
+ 1) 

     
 

         
(𝑁 + 1) 

 

Table 6: WH Code Patterns of Remaining Sequences from N+2 to 2N  

Seq No. 

(8x8) 

WH Code 8x8  Pattern WH Code 8x8 Seq No. 

(8x8) 
Repeat Flip Repeated Flipped 

𝑆𝑒𝑞 2 1 0 1 0  1 0 1 0 
𝑆𝑒𝑞 2 𝐗𝐍𝐎𝐑 𝑆𝑒𝑞 5 1 0 1 0  0 1 0 1 𝑆𝑒𝑞 6 

(𝑁 + 2) 𝑆𝑒𝑞 5 1 1 1 1  0 0 0 0 

                     

𝑆𝑒𝑞 3 1 1 0 0  1 1 0 0 
𝑆𝑒𝑞 3 𝐗𝐍𝐎𝐑 𝑆𝑒𝑞 5 1 1 0 0  0 0 1 1 

𝑆𝑒𝑞 7 

(𝑁 + 3) 𝑆𝑒𝑞 5 1 1 1 1  0 0 0 0 

                     

𝑆𝑒𝑞 4 1 0 0 1  1 0 0 1 
𝑆𝑒𝑞 4 𝐗𝐍𝐎𝐑 𝑆𝑒𝑞 5 1 0 0 1  0 1 1 0 

𝑆𝑒𝑞 8 

(𝑁 + 4) 𝑆𝑒𝑞 5 1 1 1 1  0 0 0 0 

                     

                                                      

Finally, the remaining 𝑁 − 1 rows follow Rule 3. By observing the two halves of the code, it 

can be seen that the first half  of the sequence is repeated from Sequence 𝑁 + 𝑥 and the second 

half is flipped. This property can be implemented using the XNOR function as described above, 

since Sequence 5 has a sequence of ‘1’s followed by a sequence of ‘0’s. The 6th row is XNOR 

of Sequence 2 and Sequence 5, 7th row the XNOR of Sequence 3 and Sequence 5 and 8th row 
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is the XNOR of Sequence 4 and Sequence 5. Fig. 27 shows the waveforms of the sequences 

built using the proposed algorithm for a 8x8 WH Sequence using ideal digital logic gates in 

LTSpice. The first signal on top of the figure is the clock signal followed by the 7 different 

sequences. Each symbol of the sequence corresponds to one period of the clock signal.  

 

Fig. 27: WH8 Code Waveforms using the proposed circuit that solely uses digital logic. 

 

This methodology or algorithm extends to all the powers of 2. In this thesis, the algorithm was 

verified for sequence lengths ranging from 2 to 128 in powers of 2. Since building and verifying 

the circuit for lengths greater than 16 is tedious, an automation script in MATLAB is written 

to write a netlist into LTSpice and extract the simulation results into MATLAB for comparison. 

The automation script that does this operation is provided in Appendix A.1.3.  

 

5.2 Area Savings of Proposed WH Code Generator 

The main benefit of using this methodology to generate a WH sequence on-chip is that it uses 

very few gates, which results in enormous savings in area. The area savings on-chip with the 

newly proposed circuit is quantified in this sub-section.  Apart from the proposed algorithmic 

circuit being extremely simple and functional, the circuitry used to realise the code generator 

is orders of magnitude less in terms of number of gates used and the area occupied when 
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compared to a look-up table (LUT), which is typically how WH codes are used on chip. A LUT 

uses a D flip-flop cell to store each bit of the code [6]. Thus, an N bit code requires N flip-flops 

for each code sequence of the entire set. Given that 𝑁 − 1 codes of the WH sequence are used, 

this corresponds to a total array size of 𝑁 ∗ (𝑁 − 1) for the LUT. 

On the other hand, for a sequence of length 𝑁, using the proposed algorithmic circuit: 

i. Number of Flip-Flops Required = log2(𝑁) 

ii. Number of XNORs required = [𝑁 − log2(𝑁)]  −  1 

The area used by the LUT and proposed circuit area are calculated using the cell size of a flip-

flop and XNOR gate. In the technology process used in this project, a single D Flip-Flop 

occupies roughly 70µm2, while a single XNOR gate occupies about 43µm2. These 

measurements from the layout are used to make a rough estimate of the area occupied by the 

circuit itself, not accounting for aspects such as placement and routing on an actual chip. The 

calculation solely uses the area of the respective cells layout as provided by the foundry.  

Area LUT = Area D flip-flop ∗  [𝑁 ∗ (𝑁 − 1) ] 

Area Proposed Circuit = [ Area D flip-flop ∗ log2(𝑁) ]  +  [ Area XNOR ∗ {𝑁 − log2(𝑁)  −  1} ] 

 

Fig. 28: Area Comparison between LUT and Proposed Circuit 
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Fig. 28 plots the area of the LUT and proposed circuit across different code lengths from 2 to 

256. For shorter code lengths of 2 and 4 the area savings are minimal and there is no significant 

difference between a LUT and the proposed circuit. However, from a code length of 8 or 

greater, the area reduction begins to show sufficient improvement. For instance for a code 

length of 8 the proposed circuit is about 10 times smaller than using a LUT. The improvement 

is even more staggering for much longer code lengths where the area savings is exponential. 

For instance, for a code length of 128, the area is 200 times smaller as shown in Fig. 29. 

 

 

Fig. 29: Factor of reduction in area for different code lengths. 

 

The enormous reduction in area for longer sequences, makes the WH code generator circuit 

comparable in area to that of LFSRs that are used to generate PRBS sequences as explained in 

Section 3.1. In fact, the circuit is simpler and uses fewer gates when compared to an LFSR. 

The reduction comes from the fact that a single flip-flop or XNOR gate generates each of the 

different sequences in a set. In contrast, LFSRs require a few flip-flops along with some 

combinational logic gates in feedback to generate each pseudo-random sequence as shown in 

Fig. 12. Since the area of the WH code generator is now in the same order of magnitude of an 

LFSR, it is more beneficial to use a WH code with the proposed circuit when the main 
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requirement of the multiplexing is to reduce the cross-correlation between channels. Further, 

WH codes use a much smaller bandwidth when compared to PRBS codes [5]. This is because 

for good cross-correlation properties, PRBS codes of much longer periods must be used. A 

code with a longer period requires a longer modulation frequency as explained in Section 4.4. 

Thus, when cross-correlation and efficient use of bandwidth is a key requirement for 

multiplexing, and the area is constrained, a WH on-chip code generator is a much better choice. 

 

Table 7: Area Comparison between LUT and WH Code Generator 

Sequence 

Length 

WH Code LUT Area 

(µm2) 

WH Code Generator Area 

(µm2) 

Area Reduction 

Factor  

2 140 70 2 

4 840 183 4.59 

8 3920 382 10.26 

16 16800 753 22.31 

32 69440 1468 47.30 

64 582240 2871 98.31 

128 1137920 5650 201.40 

256 4569600 11181 408.69 
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Chapter 6  

Circuit Implementation 

 

The Walsh-Hadamard coded multiple channel system described in the previous chapters is 

designed and implemented using the 180nm BCD process by TSMC. Each circuit block with 

their properties and relevant specifications is described in the sub-sections below. 

 

6.1 8 bit Walsh-Hadamard Sequence Generator 

6.1.1 Schematic and Description 

The Walsh Hadamard sequence generator proposed in Chapter 5, is constructed using the 

digital gates available in the standard logic cells library provided by TSMC. The schematic of 

the circuit is shown in Fig. 30. For the generation of 7 sequences, only 4 gates and 3 flip-flops 

are required.  

 

 

Fig. 30: Circuit Schematic of WH Code Generator 

 

A test clock signal of 500kHz (period = 2µs)  is used to validate the performance and check for 

correctness of the sequence generated. The frequency of the test clock is much higher than the 
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intended clock signal used to prove its robustness for higher frequencies as well. As the 

sequence of all ‘1’s is not used, it is neglected. Fig. 31 plots the waveforms of the sequences 

generated which match the waveforms from Fig. 27, where the algorithm was built using ideal 

blocks. However, there are certain spikes in Sequences 4, 6, 7 and 8 at certain instances of time 

which are undesirable. These spikes are a result of the XNOR operation performed when both 

the inputs are in transition from one logic state to another. For instance, in Sequence 4 at 4µs 

Sequence 2 is transitioning from ‘0’ to ‘1’ while Sequence 3 is transitioning from ‘1’ to ‘0’. 

The finite rise and fall times of the gates cause these glitches to occur. To fix the glitches, a 

negative-edge triggered flip-flop is connected to these outputs. This is done because the 

negative edge of the clock occurs during a steady-state output of the sequence as can be seen 

from Fig. 32. The resultant outputs match the outputs of the waveforms from Fig. 27 exactly 

without any glitches. This verifies the validity of the proposed approach on the circuit level. 

 

6.1.2 Verification and Waveforms 

 

Fig. 31: WH8 Code Waveforms with glitches 
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Fig. 32: WH8 Code Waveforms without any glitches. 

 

The outputs of the sequence generator are fed as an input to a non-overlapping clock generator 

circuit as shown in Fig. 33, to drive the switches of the modulator. 

 

 

Fig. 33: Non-Overlapping Clock Generator 
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6.2 Amplifier 

The top level schematic of the summing amplifier is depicted in Fig. 34. The sub-sections 

that follow explain the design strategy of the OTA and capacitors. 

 

Fig. 34: Summing Amplifier Schematic 

 

 

6.2.1 Schematic and Description of OTA 

The operational transconductance amplifier implemented is a fully-differential inverter-based 

amplifier as shown in Fig. 35. It is alternatively called a current reuse topology as the input 

signal is fed into the PMOS and NMOS input terminals. This topology is used due to its high 

gain and gm efficiency. Given the threshold of the transistors in this technology, by using a 

supply voltage of 1.2V, the concept of self-biasing can be used. This eliminates the requirement 

for external biasing circuitry as well as an additional common mode feedback circuit. Thus, it 

helps to reduce the power and area consumption while also simplifying the design. 
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Fig. 35: Self-Biased Inverter based OTA 

 

The voltage gain of the amplifier is given by: 

𝐴𝑉 = −(𝑔𝑀𝑛 + 𝑔𝑀𝑝)(𝑟𝑜𝑛 || 𝑟𝑜𝑝) 

 (6.2.1) 

The thermal input referred noise is: 

𝑉𝑖𝑛
2 =

8 𝐾 𝑇 𝛾

𝑔𝑀𝑛 + 𝑔𝑀𝑝
 

 (6.2.2) 

Thus, the integrated input noise is: 

𝑉𝐼𝑛,𝑇𝑜𝑡𝑎𝑙 = √
8 𝐾 𝑇 𝛾 .

𝜋
2 . 𝐵𝑊

𝑔𝑀𝑛 + 𝑔𝑀𝑝
 

 (6.2.3) 
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From the above equations, it can be seen that the total gain and noise see an improvement 

because the effective gm is increased as both the NMOS and PMOS pair contribute to the total 

gm. Thus for the same noise specification, a lower current can be used leading to a better power 

efficiency. For proper output common mode control, the topology makes use of self-biasing 

where the output node is directly connected to the gates of the tail current sources to implement 

the common-mode feedback. While a single PMOS or NMOS tail current source can also be 

implemented, in this case since the total required output voltage swing is low, two tail current 

sources are used. The two tail current sources once again reuse the same current for a stronger 

negative feedback loop as the effective gm in the feedback loop is the sum of the gm of the 

PMOS and NMOS current source. Hence, for a given current using both the gms the common 

mode loop gain is larger which is beneficial in stabilizing the output common mode. 

 

6.2.2 Design Strategy and Sizing 

Before sizing the transistors, since the concept of self-biasing is employed, the constraints on 

the bias voltages must be noted. The desired output common mode is at 0.6V, which is half the 

supply voltage. As the input pair is biased through feedback using a resistor, the input common 

mode is set to 0.6V as well. Additionally, since the common mode feedback is performed by 

directly connecting the output nodes to the tail current sources, the gates of the tail current 

sources are at 0.6V too. Thus, the VGS of the two tail current sources = 0.6V. 

First, the size the signal transistors is chosen. Since a higher intrinsic gain requires a large 

output impedance longer transistors must be chosen to achieve sufficient gain. The design does 

not use cascodes to eliminate any external biasing. From Fig. 36 and Fig. 37 a length of 3µm 

is chosen for the NMOST and PMOST to achieve a gain of greater than 50dB. Putting the 

signal transistors in moderate or closer to weak inversion ensures a high gm efficiency. 

Additionally, since the signal transistors and the current sources have the same gate bias, it is 

necessary for the signal transistors to be in weak inversion so that the bottom current sources 

can remain in saturation to achieve a good CMRR. As annotated in Fig. 36 and Fig. 37, for the 

NMOST a Gm/Id of 20 was chosen as going further causes a dip in the intrinsic gain. For the 

PMOST, a Gm/Id of 23 is chosen as it is the maximum point on the plot. From the current (Id) 

set by the tail sources, the lengths and the Gm/Id value, the widths of the transistor can be 

computed. Table 8, summarizes the widths and lengths of all the transistors of the amplifier. 
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Fig. 36: Gm/Gds vs Gm/Id of NMOS transistor for different channel lengths 

 

 

Fig. 37: Gm/Gds vs Gm/Id of PMOS transistor for different channel lengths 

 

The next step is to size the two tail current sources. Once again, since the output impedance of 

the tail current sources determine the common mode rejection ratio, its length is chosen based 

on the output impedance. Longer transistors provide a larger output impedance but at the same 
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time using longer transistors also increases the VD,SAT that will eat into the headroom. A low 

Gm/Id of 10 is chosen, as it is desirable for a current source for better noise efficiency. From 

Fig. 34 and Fig. 35 for a Gm/Id of 10, a length of 0.5µm for the NMOST and 0.6µm for the 

PMOST is chosen to have sufficient output impedance with a VD,SAT of less than 150mV. The 

width of the NMOS tail current source is set to the minimum and the width of the PMOST is 5 

times bigger to match the current set by the NMOS transistor. 

 

Table 8: OTA Transistor Sizes 

Transistor Gm/Id Size (µm) 

Mn1 (Current Source) 9.2 0.24 / 0.5 

Mp1(Current Source) 9.2 1.15 / 0.6 

Mn2 (Signal Transistor) 20 32.5 / 3.0 

Mp2 (Signal Transistor) 23.2 160 / 3.0 

 

The feedback resistor Rfb is used to set the bias of the input pair. A resistor of 1GΩ is used so 

that the output impedance of the amplifier is not affected and does not kill the gain. For 

moderate accuracy the feedback capacitor (CFB) is chosen to be 200fF. The input capacitors 

(CIN) are implemented by a capacitor bank, so that a variable gain can be used for the varying 

input voltage that ranges from 1-10mV per channel. The input capacitors are 600fF, 1.2pF, 

2.4pF and 4.8pF for gains of 3,6,12 and 24 respectively.  

Smaller capacitors can be used, but they were significantly affected by the loading of the 

amplifier itself. For an accurate gain ratio, increasing the capacitor value helps as the loading 

of the amplifier itself becomes less dominant. However, making them excessively big in the 

order of a few picofarads has two effects. Firstly, the area increases significantly. Secondly, a 

bigger input capacitor reduces the input impedance which is an undesired effect. 

Although the capacitor values chosen experience much less loading in comparison to using 

minimum size capacitors, there is still some effect which leads to a gain error. However, as the 

input signal itself is highly varying, the variable gain array allows for larger amplifications to 

make use of the full scale range of the ADC. In the next sub-section, the simulation results of 

the amplifier are given to verify the sizing procedure followed above. 
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6.2.3 Verification and Waveforms 

Fig. 38 and Fig. 39 show the gain and phase margin of the amplifier. As expected from the 

above sizing a DC gain of 52dB was achieved with a sufficient phase margin of 83.4°. 

 

Fig. 38: Differential Open Loop Gain 

 

 

Fig. 39: Phase Margin 
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The common mode rejection ratio (CMRR) of the amplifier is a critical part and the limiting 

factor of a multi-channel system that uses a shared electrode. As explained in Section 6.2.2, 

the amplifier designed used longer length transistors for the current sources for better output 

impedance to achieve a good CMRR. Fig. 40 and Fig. 41 plot the common mode gain and 

CMRR respectively. It can be seen that a sufficiently high CMRR of 77dB is achieved [19]. 

 

Fig. 40: Common Mode Gain 

 

 

Fig. 41: Common Mode Rejection Ratio 
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6.3 Analog to Digital Converter 

6.3.1 Description and Specification 

The analog to digital converter implemented is a ramp or counter type converter. This type of 

ADC is chosen since the application runs at very low frequencies (10s of kHz) and requires a 

low resolution of 6 bits.   

The input signal is compared to a ramp signal that increments by one LSB for each comparison. 

As long as the input voltage is greater than the reference ramp voltage the output of the 

comparator is ‘1’ and the counter keeps running. When the ramp voltage crosses the input 

voltage the output of the comparator outputs a logic ‘0’ and the counter stops running. The 

counters value at this point is the digital output and it is read out using a register. Fig. 42 is a 

top level schematic of the ramp ADC followed by the specifications in Table 9. 

 

Fig. 42: Top Level Schematic of Ramp/Counter ADC 

The sampling clock and modulation clock signals are shown in Fig. 43. The sampling 

frequency is 4 times the bandwidth of the signal and the sampling edges do not overlap with 

the transitions of the modulating clock. The comparator is clocked at 2.24MHz where 64 clock 

cycles are for comparison, 4 clock cycles for resetting the counter and 2 for reading out the 

digital output at the end of the conversion. 
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Table 9: ADC Specifications 

Specification Value 

Signal Bandwidth (fB)   4kHz 

Sampling Frequency (fS) 16kHz 

Comparator Clock (fclk) 2.24MHz 

Number of Bits (N) 6 bits 

Full Scale Range (VREF) 150mVpk-pk 

LSB 2.34mV 

 

 

Fig. 43: Modulation and Sampling Clock Signals 

 

Fig. 44: ADC Control Signals for one cycle 
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6.3.2 Comparator 

A dynamic StrongArm Latch comparator is used due to its low power consumption as a current 

is drawn only during the regeneration phase. The comparator is sized to minimize the input 

referred offset to less than half an LSB value. 

 

Fig. 45: Strong Arm Latch Comparator 

 

The four reset switches M7 need to be able to pull up either of the nodes from ground to VDD 

within half a clock cycle before the next comparison is to be done. As the comparator is clocked 

at a relatively low speed, setting them to the minimum size achieves the target. Similarly, the 

PMOS cross-coupled pair is set to minimum size as the offset contribution to the input is 

minimal as it is attenuated by the gain of M3,4 and M1,2.   

The input pair M1,2 and the NMOS cross-coupled pair M3,4 are sized to minimise offset. For 

the input pair an initial length of 2µm and a width of 4µm is chosen. The length of M3,4 is set 

to minimum size and its width is scaled in each iteration in proportion to the input pair. After 

running a few Monte Carlo iterations, the input pair width is determined to be 8µm and the 

width of M3,4 is 2.5µm.  
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To determine the input referred offset, first the comparator is given a 0mV input difference and 

a Monte Carlo is run to check if the decisions are equally balanced. The comparator’s first 

decision is sampled at the same instant for every run to ensure that the effect of hysteresis does 

not affect the calculation. Fig. 46 plots the distribution and it can be seen that there are an equal 

number of 1s and 0s which indicates the mean is centered around 0. 

 

Fig. 46: Number of 1s and 0s for a balanced input (0mV input difference) 

 

 

Fig. 47: Distribution of 1s and 0s with a +1mV skewed input 
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Consequently, the comparator is skewed by feeding in a 1mV difference. From the distribution 

in Fig. 47, it can be seen that 78% of the decisions are a ‘1’ and 22% of the decisions are a ‘0’. 

From this data, the standard deviation can be calculated which gives an indication of the input 

referred offset. The assumption made here is that the offset is a gaussian distribution. This is 

validated by skewing the comparator with 1mV and 2mV differences in both directions. From 

all the distributions, the standard deviation was computed and it turned out to be around the 

same value. The distributions and calculations for the other inputs are given in Appendix B.2. 

 

 

Fig. 48: Calculation of Offset from the probability distribution at a 1mV difference. 

 

By plotting the distribution as shown in Fig. 48, the standard deviation is computed by using 

the Z table available in Appendix B. For a probability distribution of 22% up to -0.001 (1mV), 

the z score is -0.77. The z score is given by: 

𝑧 =
(𝑥 − 𝜇)

𝜎
 

  (6.3.1) 
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Using equation 6.3.1, σ can be calculated  

𝜎 =
(−.001 − 0)

−0.77
 

𝜎 = 0.00129 = 1.29𝑚𝑉 

Thus, the input offset of the comparator meets the requirement as it is around half an LSB.  

The sizes of all the transistors of the comparator based on the design strategy above are 

summarized in Table 10. 

Table 10: Comparator Transistor Sizes 

Transistor Size (µm) 

M1,2 (Input Pair) 8.00 / 2.00 

M3,4 (NMOS XCP) 2.50 / 0.18 

M5,6 (PMOS XCP) 0.25 / 0.18 

M7 (RST Switches) 0.25 / 0.18 

M0 (Current Source) 0.25 / 2.00 

 

 

6.3.3 Track and Hold 

The track and hold circuit used is a simple NMOS switch with a sampling capacitor as shown 

in Fig. 49. The input signal is tracked for half the clock period when the clock signal is high, 

and a sample is taken on the falling edge of the clock. A 0.5pF sampling capacitor is used with 

a switch of width 1µm and length 0.18µm.  

 

Fig. 49: Track and Hold Circuit 
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6.3.4 6-bit Register 

At the end of the counting during each conversion phase, the value stored in the counter is 

readout using a shift register as shown in Fig. 50. 

  

 

Fig. 50: 6-bit Register to save the counters output value 

 

 

6.3.5 6-bit Counter 

During the conversion phase, the counter runs till the reference voltage crosses the input 

voltage. The counter implemented is an asynchronous counter as shown in Fig. 51, that is built 

using the standard digital logic cells from the TSMC library. 

 

 

Fig. 51: 6 bit Counter 
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6.3.6 Verification and Waveforms 

The performance of the ADC was characterized by simulating it with an input sine wave of 

150mVpk-pk at 4kHz, as this is the optimum bandwidth for a 7 channel system as derived in 

Section 4.4.  

 

Fig. 52: 150mVpk-pk 4kHz input signal sampled at 16kHz. The dots represent the samples taken. 

 

 

Fig. 53: Reconstructed analog signal from the digital output. 

The input signal with the samples taken at the sampling instants are shown in Fig. 52. The 

quantized samples are digitized for 256 cycles and the digital data is exported to MATLAB for 
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reconstruction. Fig. 53 is the reconstructed signal from the digitized points. From these data 

points a smooth analog signal is reconstructed by using the resampling function in MATLAB 

with an up sampling factor of 4. 

An FFT is performed on the reconstructed analog signal with 4096 points which is plotted in 

Fig. 54. The main signal tone is present at 4kHz with distortion component at 12kHz which is 

an odd multiple of the input signal. The even order harmonics are supressed. From the FFT 

data, the SNR, SNDR and SFDR are extracted. The ADC performance parameters are 

summarised in Table 11. 

 

Fig. 54: FFT of Reconstructed Signal 

 

Table 11: ADC Performance Metrics 

Parameter Value 

Sampling Rate 16 kS/s 

SNR 34.17 dB 

SNDR 32.77 dB 

SFDR 38.46 dB 

THD -19.18 dB 

ENOB     5.15 bits 
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For a 6 bit ADC oversampled at twice the Nyquist rate, the Ramp ADC that was realised 

achieves an SNDR of 32.77dB which corresponds to an ENOB of 5.15 bits. In Section 4.2, the 

required resolution was determined to be 5 bits for the atrial electrogram signals to be 

reconstructed with a PRD of less than 3%. Operating at an optimal bandwidth of 4kHz for a 7 

channel system, the ADC provides a sufficient resolution to reconstruct the signal with 

sufficient accuracy. 
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Chapter 7  

Conclusion and Discussion 

7.1 Conclusions 

With the ever increasing number of electrodes for recording signals invasively, multiplexing 

of channels to share the front-end recording circuits becomes crucial to realize a power and 

area efficient chip. Time, frequency, and code multiplexing are the available techniques 

available to do so. Among the three techniques, code multiplexing makes efficient use of the 

total bandwidth of the front-end, provided that the coding scheme used has the capability to 

minimize cross-talk to a great degree. The aim of this thesis was to investigate the limitations 

in a code-multiplexed system and design a power and area efficient system by reducing the 

complexity and addressing bottlenecks at the system level. In this regard, the following 

questions as mentioned in the problem statement are answered: 

1)  How do various multiplexing coding schemes contrast in their capability to minimize cross-

talk between channels while utilizing an optimal bandwidth? 

Pseudo-random and orthogonal Walsh-Hadamard sequences were contrasted by considering 

the properties of the codes themselves such as cross-correlation and their ease of generation on 

chip. WH codes have better cross-correlation properties and require lower modulation rates, 

thus reducing the overall bandwidth requirements of the analog front end.  

 

2) How can generation of these multiplexing codes be achieved on-chip with minimal form 

factors that show a significant improvement from existing techniques? 

While pseudo-random codes have poor cross-correlation properties, they can be realized 

relatively easily using LFSRs on chip. This makes them useful when area is a concern. Walsh-

Hadamard codes on the other hand have good cross-correlation properties but have the 

limitation of storage or computation on chip. However, in this thesis, a novel method of 

deriving WH sequences from a clock signal was proposed and implemented using elementary 

digital logic. The algorithm proposed has considerable area savings in comparison to an LUT 

especially for codes that have a length of 8 or greater. 
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3) To what degree can digital signal processing (DSP) off-chip help alleviate the recording 

constraints so that an area and power efficient chip can be realised?  

As the entire demodulation happens in the digital domain, standard signal processing 

techniques can be deployed to recover the signal. In this thesis, an ideal digital to analog 

conversion was performed to recover the signal followed by the de-spreading of the individual 

channels with the code sequences. Once the different channels are separated, applying a 

moving average and low pass filter help remove any higher order frequencies present in the 

signal. By deriving the optimum parameters of each step in the signal chain, as explained in 

Chapter 4, the on-chip recording can use the minimal required bandwidth. A smaller signal 

bandwidth helps save power and area as the front-end amplifier and ADC can operate at a low 

bandwidth and conversion rate respectively.  

 

4) What circuit architectures can be deployed for higher efficiencies to reduce power and area 

that are also suitable for advanced technology nodes with shrinking voltages?  

One of the focuses of this thesis is to design circuits that can easily be adapted to newer 

technology nodes with shrinking supply voltages. In that aspect, digitally inspired analog 

blocks were investigated, as they are more power efficient and compatible with smaller nodes 

with smaller supply voltages. For front-end amplifiers inverter based architectures can provide 

higher noise and power efficiencies due to their current reuse. The challenge with smaller nodes 

and lower voltages is that achieving high gains is difficult due to the lower intrinsic gains and 

the use of cascodes being difficult or impossible. Hence, for higher gain requirements, multiple 

stage amplifiers will be required. Additionally, depending on the supply and threshold voltages 

of the transistors, self-biasing maybe a viable option to reduce power consumption and area as 

biasing circuits can be eliminated. 
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7.2 Performance Comparison 

The Walsh-Hadamard code generator, low-noise amplifier and ramp ADC designed consume 

a total power of 78.4µW for 7 channels. This corresponds to 11.2 µW per channel. Table 12 

summarizes the current and power consumption of each of the circuit blocks. The supply 

voltage used for the analog as well as digital blocks is 1.2V. 

Table 12: Power Consumption Summary 

Circuit Block Current Power 

WH Code Generator   3.49 nA   4.20 nW 

Amplifier   3.94 µA   4.73 µW 

ADC 61.39 µA 73.67 µW 

Total 65.33 µA 78.40 µW 

 

Table 13 compares the performance of this work with state of the art designs that use code-

division multiplexing to share a number of channels. In comparison to the work down in [5],  

the power consumption has significantly improved by a factor of 3.3. However, the power 

consumption per channel is considerably higher than that reported in [6]. The limiting factor in 

terms of power consumption is the ADC. This is due to the large number of comparisons made 

in a counter ADC in comparison to that of a SAR ADC.  

Table 13: Performance Comparison 

 JSSC’20 [6] BioCAS’23 [5] This Work 

Modulation/Multiplexing WH/CDM PRBS/CDM WH/CDM 

Reference Electrode Dedicated Shared Shared 

Power/Channel (µW) 1.97 37.26 11.2 

Shared Blocks LNA, ADC LNA, ADC LNA, ADC 

ADC Architecture Async. SAR ∑ ∆ Ramp 

Look-Up Table Yes No No 

On-Chip Code Generator No Yes Yes 

Number of Channels (N) 15 4 7 

Supply (V) 1.2 Analog/1.8 Digital 1.8 1.2 

Channel Gain(dB) 40 - 56 12 - 30.1 9.5 - 27.6 

Process(µm) 0.18 0.18 0.18 BCD 
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7.3 Future Work and Recommendations 

1) In this thesis, for the code-division multiplexing only Pseudo-Random and Walsh-

Hadamard codes were explored. The use of Walsh-Hadamard codes proved to be better due 

to the orthogonality of each code in the set. However, there are many other sets of codes 

that exist that could possibly have better properties and allow for lower modulation rates 

and lower bandwidths or even allow for more channels. Exploring other types of codes 

might lead to a more optimized efficient design. 

2) Some of the system level parameters in this design were derived from the MIT-BIH 

database of atrial electrograms. These are ambulatory recordings from only two channels. 

By testing the system on actual recorded data, the system level parameters may vary to a 

certain degree and the optimum values could be different. Hence, these design parameters 

can be revised depending on the type of signal recorded and its characteristics. 

3) The front-end amplifier designed consisted of a single stage with a relatively low open loop 

gain of about 54dB. Due to the low open-loop gain the gain error was higher and larger 

capacitor ratios (closed-loop gain) had to be used to make use of the full scale range of the 

ADC. A straightforward method of increasing the open-loop gain of the amplifier can make 

the ratios more accurate and reduce the capacitor values thereby reducing the area.  

4) To reduce the total area due to the input capacitor bank for each channel, a better solution 

is to split the amplifier into 2 closed-loop stages with a variable capacitor bank after the 

first stage. Doing so will reduce the input capacitance which will increase the input 

impedance that the channels see. Additionally, since the channels are already summed in 

the first amplifier, the capacitor bank of the second amplifiers input can only be a single 

bank of capacitors as opposed to the current design wherein each channel consists of a 

separate capacitor bank. This leads to massive area savings but will consume more power 

as two amplifier stages are used. For larger number of channels, this solution will be more 

viable as opposed to using a capacitor bank for each channel. 

5) The limiting factor in terms of power consumption is the ADC. By deploying a SAR ADC 

in contrast to a Ramp ADC the power consumption can be reduced. This is because the 

number of conversion steps performed in a SAR is much less than that of a ramp.   
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Appendices 

A.1 MATLAB Codes for Generation of Polynomials 

 

A.1.1 Generation of Primitive Polynomials 

%% Generation of primitive polynomials 1 

% This program finds the primitive polynomials for  a given order. 2 

% The primitive polynomials are a maximum length sequence PRBS generators. 3 

% The terms present are the taps of the LFSR. 4 

 5 

clear; 6 

clc; 7 

close all; 8 

 9 

%% Input from user: 10 

deg = input('Enter the degree of the polynomial '); % The degree of the polynomial.                               11 

N = (2^deg)-1; % The maximum length of the sequence that will be generated.                                                                           12 

Possiblities = (2^(deg-1)); % Number of polynomials to test.                                                              13 

 14 

 15 

%% Computation of polynomials 16 

starting_point = (2^deg)+1; % The decimal starting point for the polynomial. Check 17 

the odd ones only. Skip every 2.                                                              18 

end_point = (2^(deg+1))-1; % The decimal ending point for the polynomial. Last 19 

polynomial to be checked. 20 

                                                               21 

syms x; 22 

poly_max = x^N + 1; % The maximum degree polynomial. Find the prime factors of this 23 

to get ML sequences; 24 

                                                                      25 

polys_to_check = [starting_point:2:end_point]'; % The polynomials to be checked.                                          26 

primitive_polys = isprimitive(polys_to_check); % The primitive polynomials ( need to 27 

convert this to a symbolic polynomial).                                          28 

num_of_polys = sum(primitive_polys == 1); % The total number of primitive 29 

polynomials in the set.                                                30 

 31 

primitive_polys_bin = decimalToBinaryVector(polys_to_check(primitive_polys==1));        32 

% Polynomial converted to tap positions 33 

 34 

 35 

%% Conversion to symbolic representation (Just for visual appeal and ease of use)  36 

poly_symbolic = cell(size(primitive_polys_bin, 1), 1); % Symbolic Polynomials array 37 

initialised.                                   38 

 39 

for i = 1:num_of_polys 40 

    poly_symbolic{i} = poly2sym(primitive_polys_bin(i,:), x); % Convert each co-41 

efficient polynomial to symbolic expression. This is a cell array.                            42 

end 43 

poly_symbolic = cell2sym(poly_symbolic); % Symbolic expression in normal array. 44 

Converted from cell to normal array.                                                 45 
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A.1.2 Finding the Preferred Pairs of Polynomial

%% Finding Preferred Pairs of polynomials  1 

% This code finds the preferred polynomials for a given degree by calculating the 2 

correlation between them.  3 

% Preferred polynomials are those which have certain values of correlation. 4 

% Correlation values: t(n) = 1 + 2^[(n+2)/2]. Values taken are -1, -t(n) and t(n)-2. 5 

 6 

%% Call "Generation of Primitive Polynomials" Script and calculate 3 valued 7 

spectrum. 8 

Generation_of_Primitve_Polynomials; % Call "Generation of Primitive Polynomials.m" 9 

from A.1.1 to generate all the polynomials for a given order. 10 

 11 

t_n_odd = 1 + 2^(floor((deg+2)/2)); % Odd order correlation value 12 

ideal_3_values = [-t_n_odd, -1, t_n_odd-2]; % The three correlation values that make 13 

up a preferred pair. 14 

 15 

ideal_4_values = [-(1+2^((deg+2)/2)), -(1+2^((deg)/2)), -1, -(1-2^((deg)/2))]; % The 16 

four correlation values that make up a preferred pair for polynomials mod(n,4)==0. 17 

 18 

 19 

%% Use maximum length sequence in built function to generate a ML sequence. 20 

initial_condition = [zeros(1,deg-1), 1]; % Defining an initial condition for LFSR. 21 

 22 

counter=1; 23 

for i=1:num_of_polys-1 24 

    for j =i+1:num_of_polys 25 

        pnSequence1 = 26 

comm.PNSequence(Polynomial=primitive_polys_bin(i,:),InitialConditions=initial_condit27 

ion, SamplesPerFrame=N); 28 

        pnSequence2 = 29 

comm.PNSequence(Polynomial=primitive_polys_bin(j,:),InitialConditions=initial_condit30 

ion, SamplesPerFrame=N); 31 

        data1 = pnSequence1()'; 32 

        data2 = pnSequence2()'; 33 

        [correlation, lags] = gf_corr_improved(data1, data2,deg); 34 

        %[correlation, lags] = gf_corr(data1, data2); 35 

        if mod(deg,4)==0 36 

            spectrum_4_values = unique(correlation); 37 

                if isequal(ideal_4_values,spectrum_4_values) 38 

                preferred_pairs(counter,:) = 39 

[poly_symbolic(i,:),poly_symbolic(j,:)]; 40 

                counter=counter+1; 41 

                end 42 

        else 43 

            spectrum_3_values = unique(correlation); 44 

                    if isequal(ideal_3_values,spectrum_3_values) 45 

                    preferred_pairs(counter,:) = 46 

[poly_symbolic(i,:),poly_symbolic(j,:)]; 47 

                    counter=counter+1; 48 

                    end 49 

        end 50 

         51 

    end 52 

end 53 

 54 

%% Export Data to Excel File. 55 

pairs_export = arrayfun(@char,preferred_pairs, 'uniform', 0); 56 

xlswrite('Degree 13 Polynomials.xlsx', pairs_export); 57 
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A.1.3 Cross Correlation Function Calculator. 

This  function is created to compute the correlation function between two sequences. The way a 

correlation is calculated between two sequences  is  by taking the  dot product of one sequence 

with a shifted version of the other. The dot product of two  binary sequences is defined as: 

 Number of positions where bits match – Number of positions where bits mismatch. 

 

%% GF2 Correlation Function 1 

% It takes 2 inputs as vectors and computes the correlation between them. 2 

% If you want autocorrelation, put both inputs as same vector. 3 

 4 

%% Function definition and statements 5 

function [corr_spectra, lags] = gf_corr(input1,input2) 6 

input1_len = length(input1); 7 

input2_len = length(input2); 8 

 9 

if input1_len ~= input2_len 10 

    error('Lengths of both vectors must be equal') 11 

else 12 

    lags = 0:input1_len-1; 13 

    matching = zeros(1, input2_len); 14 

    non_matching = zeros(1, input2_len); 15 

    corr_spectra = zeros(1, input2_len); 16 

 17 

    for i = 1:input2_len 18 

        data_shifted_i = circshift(input2, lags(i)); 19 

        matching(i) = sum(input1 == data_shifted_i); 20 

        non_matching(i) = sum(input1~= data_shifted_i); 21 

        corr_spectra(i) = matching(i) - non_matching(i); 22 

    end 23 

end24 

 

 

A.1.4 Cross Correlation Function Calculator for faster computation. 

This function is an optimised calculator for a preferred pair of polynomials. It skips the 

computations once a value is not the preferred values. This function can be strictly used for 

computing the preferred pairs only and not to find a correlation in general.

%% GF2 Correlation Function Improved Version 1 

% It takes 2 inputs as vectors and computes the correlation between them.  2 

% If at any instant the correlation exceeds preferred values it terminates. This 3 

is to speed up computation time. 4 

% If you want autocorrelation, put both inputs as same vector. 5 

% Output is [corr_spectra, lags]. The first argument is the correlation spectrum. 6 

Second output is the shifts. 7 

 8 

%% Function definition and statements 9 

function [corr_spectra, lags] = gf_corr_improved(input1,input2,deg) 10 

input2_len = length(input2); 11 

 12 

t_n_odd = 1 + 2^(floor((deg+2)/2)); 13 
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 14 

lags = 0:input2_len-1; 15 

matching = zeros(1, input2_len); 16 

corr_spectra = zeros(1, input2_len); 17 

 18 

for i = 1:input2_len 19 

    data_shifted_i = circshift(input2, lags(i)); 20 

    matching(i) = sum(input1 == data_shifted_i); 21 

 22 

    corr_spectra(i) = -input2_len + 2*matching(i); 23 

    if ~((corr_spectra(i) == (-t_n_odd)) || (corr_spectra(i) == (t_n_odd-2)) || 24 

(corr_spectra(i) == -1)) 25 

        break; 26 

    else 27 

        continue; 28 

    end 29 

end 30 

 

A.2 MATLAB-LTSpice Automation for WH Code Generation 

This script interfaces MATLAB and LTSpice to build the Walsh Hadamard Code generator for 

a given degree. It automates the writing of the netlist and then runs a transient simulation. The 

transient simulation results for each of the outputs are then imported into MATLAB and 

compared with the original WH matrix to see if the correct sequence has been generated.  

For the script below to run,  the LTSpice2Matlab toolbox  that is available in the link: 

https://github.com/PeterFeicht/ltspice2matlab 

The instructions to setup the link between MATLAB and LTSpice to write netlists, open and 

close them are available in the following link: https://medium.com/@amattmiller/running-

ltspice-from-matlab-630d551032cc 

%% Generate LTSpice Netlist and Check for any N bit Walsh Hadmard Sequence 1 

% Ask the user for size of WH sequence required. Store it in size. 2 

% Generate a Hadamard matrix in matlab. 3 

% Generate a netlist in LTSpice and do the necessary circuits to generate a WH code. 4 

% Sample and import the data to matlab and check if they are equal. If yes, the 5 

algorithm devised holds true. 6 

 7 

%% Useful Paths to Have 8 

% Path to LTSpiceCall Batch File:  @    W:\Documents_W\Matlab_Spice\LTSpiceCall.m 9 

% Path to Netlist File:            @    W:\Documents_W\TUD Masters PG\Thesis\Spice 10 

Tries\WH\name.net 11 

% x86 LTSpice1                     @    C:\Program Files\LTC\LTspiceXVII\XVIIx86.exe 12 

% x64 LTSpice2                     @    C:\Program Files\LTC\LTspiceXVII\XVIIx64.exe 13 

 14 

%% Initial Clearing 15 

clear; 16 

clc; 17 

close all; 18 

 19 

https://github.com/PeterFeicht/ltspice2matlab
https://medium.com/@amattmiller/running-ltspice-from-matlab-630d551032cc
https://medium.com/@amattmiller/running-ltspice-from-matlab-630d551032cc
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%% Accept size & create N bit Walsh Hadmard Sequence in Matlab using 1s(1) & 0s(-1). 20 

size = input('Enter the size of Walsh Hadamard Codes to be generated '); % Size of 21 

WH Sequence required by user 22 

 23 

if(mod(log2(size),1)~=0) 24 

    disp("Enter a power of 2"); 25 

    return; 26 

else 27 

    H_mat = hadamard(size);   % Walsh Hadmard where each row is a sequence. Matlab 28 

generated array. 29 

    H_mat(H_mat==-1) = 0;     % Convert -1s to 0s for ease of comparison with 30 

generated waveforms 31 

 32 

    %% Create LTSpice Netlist 33 

    % Setup 34 

    netlist = sprintf('C:\\Users\\Dion\\Documents\\Docs_Work\\TUD Masters 35 

PG\\Thesis\\Spice Tries\\WH\\WH_automation\\WH_%d.net',size); % Create netlist file 36 

 37 

    sim = sprintf('.tran 0 %d 100m 100m\r\n',size);                  % simulation 38 

duration set by size. Default frequency is 1Hz with 50% duty cycle. 39 

    save_wav = sprintf('.wave WH%d.wav 16 1 V(Seq1) V(Seq2) ',size); % Sequence 40 

waveforms to be saved. 41 

     42 

    A=strings(1,size);% Netlist code for each code sequence. Stored in array of size 43 

N. 44 

    A{1} = 'A1 Seq1 0 CLK 0 0 0 Seq1 0 DFLOP\r\n'; 45 

    A{2} = 'A2 N2 0 CLK 0 0 N2 Seq2 0 DFLOP Vhigh=1.8 Vlow=0\r\n'; 46 

 47 

    Connections = strings(1,size+log2(size)); % TXT File with connections to 48 

generate WH Code 49 

    Connections{1} = 'Sequence 1 ==> Just DC 1'; 50 

    Connections{2} = 'Sequence 2 ==> CLK / 2'; 51 

    Connections{3} = '-------------------------------'; 52 

    starting_point = 2; 53 

 54 

 55 

    % Generator starts from 2x2 and then builds up 2x at a time. So from 2 to 4 to 8 56 

etc. 57 

    if (size>2) 58 

        for i = 1:log2(size)-1  % Go from 2 to 4 to 8 etc all the way upto N. Sub 59 

operations have to be done log2(size)-1 times 60 

 61 

            for j = starting_point+1:2*starting_point   % Start from N+1 upto 2N. 62 

                save_wav=[save_wav,sprintf('V(Seq%d) ',j)]; 63 

                if (j==(starting_point+1)) % N+1 term = (N/2)+1 term/2 in frequency 64 

 65 

                    A{j} = sprintf('A%d N%d 0 Seq%d 0 0 N%d Seq%d 0 DFLOP Vhigh=1.8 66 

Vlow=0\r\n',j,j,floor((j/2)+1),j,j); 67 

                    Connections{j+i} = sprintf('Sequence %d ==> Half the frequency 68 

of Sequence %d',j,floor((j/2)+1)); 69 

                else   % R(N+x) to R(2N) = R(N+1) XNOR R(x). 2<=x<=2N 70 

                    A{j} = sprintf('A%d Seq%d Seq%d 0 0 0 Seq%d 0 0 XOR Vhigh=1.8 71 

Vlow=0\r\n',j,floor(j-starting_point),starting_point+1,j); 72 

                    Connections{j+i} = sprintf('Sequence %d ==> Sequence %d XNOR 73 

Sequence %d',j,floor(j-starting_point),starting_point+1); 74 

                end 75 

                Connections{j+i+1} = '-------------------------------'; 76 

            end 77 
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            starting_point = 2*starting_point; % Once 2N is created from N, shift N 78 

to 2N to create next iteration of next 2N etc. 79 

        end 80 

    end 81 

 82 

 83 

    % Netlist Writing 84 

    code = strjoin(['This is WH code \r\n'... 85 

        'VDD Seq1 0 1.8\r\n'... 86 

        'V§CLK CLK 0 PULSE(0 1.8 0 100p 100p 0.5 1)\r\n'... 87 

        A... 88 

        sim... 89 

        save_wav,'\r\n'... 90 

        '.save V(CLK) V(Seq*)\r\n'... 91 

        '.backanno\r\n'... 92 

        '.end\r\n']); 93 

    94 

 % Create the new netlist 95 

    fid = fopen(netlist,'w+'); 96 

    fprintf(fid,code); 97 

    fid=fclose(fid); 98 

 99 

    %% Call and close LTSpice 100 

    fileID = fopen('LTSpice_call.bat', 'w+'); 101 

    fprintf(fileID,'%s',sprintf('start "C:\\Program 102 

Files\\LTC\\LTspiceXVII\\LTspice.exe -b" "C:\\Users\\Dion\\Documents\\Docs_Work\\TUD 103 

Masters PG\\Thesis\\Spice Tries\\WH\\WH_automation\\WH_%d.net"',size)); 104 

    fclose(fileID); 105 

 106 

    dos('LTSpice_call.bat');  % the dos command launches the .bat file 107 

    pause(size);              % Alllows LTSpice to finish simulating 108 

    dos('LTSpice_end.bat');   % Closes LTSpic after the .raw file is created 109 

 110 

    %% Reading Data from LTSpice and checking if an actual WH is generated 111 

    [WH_Generated, Fs] = audioread(sprintf('WH%d.wav',size)); % Read the waveform 112 

from LTSpice 113 

    WH_Generated=round(WH_Generated); % Convert the decimal values to whole numbers 114 

for comparison 115 

    truth = isequal(WH_Generated,H_mat); % Check if Circuit Generated Sequence and 116 

Matlab sequence are equal 117 

 118 

    raw_data=LTspice2Matlab(sprintf('WH_%d.raw',size)); 119 

    %plot(raw_data.time_vect, raw_data.variable_mat(4,:)) 120 

 121 

    %% Writing Connection Instructions to txt file 122 

    % Specify the file name 123 

    fileName = fopen(sprintf('WH_%d_Connections.txt',size),'w+'); 124 

 125 

    % Write the string array to a text file 126 

    fprintf(fileName, '%s\n',Connections); 127 

    if truth 128 

        fprintf(fileName,'Succesfully Generated WH Sequence :)'); 129 

    else 130 

        fprintf(fileName,'Unsuccesful :('); 131 

    end 132 

 133 

    % Close the file 134 

    fclose(fileName); 135 

end136 
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B.1 Z-Score Table for Gaussian Distribution Calculations 
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B.2 Distribution of Comparator Output for various inputs 

 

Fig. 55: Distribution of 1s and 0s with a +2mV skewed input 

For a +2mV input difference, the distribution is such that 93% of the inputs are a ‘1’ and 7% 

are a ‘0’. From this the standard deviation can be computed using 6.3.1: 

𝜎 =
(.002)

1.48
     ➔  𝜎 = 0.00135 = 1.35𝑚𝑉 

 

 

Fig. 56: Distribution of 1s and 0s with a -1mV skewed input 

The distribution is similar to that of Fig. 48 where 79% are ‘0’s and 21% are ‘1’s. Using 6.3.1: 

𝜎 =
(.001−0)

0.81
  ➔  𝜎 = 0.001235 = 1.235𝑚𝑉 
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Fig. 57: Distribution of 1s and 0s with a -2mV skewed input 
For a -2mV input difference, the distribution is such that 95% of the inputs are a ‘0’ and 5% 

are a ‘1’. The standard deviation is: 

𝜎 =
(.002)

1.645
  ➔  𝜎 = 0.001216 = 1.216𝑚𝑉 
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