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SUMMARY

The number of wind turbines in offshore wind farms is increasing rapidly over
the past decades. However, there are still many challenges ahead for mak-
ing the costs of generating energy from wind competitive with other energy
sources. One method for making the cost of energy from wind market com-
petitive, especially for offshore wind farms, is to reduce the operational and
maintenance costs of wind turbines. The operational and maintenance costs
of wind turbines may be reduced by eliminating the rotating components,
which are prone to wear and tear, as much as possible. The control mecha-
nism for regulating power is among the rotating components and it would be
cost effective if it is replaced with stall control scheme. Furthermore, with re-
cent advances in composite technology for tailoring the structural response
of composite structures, it may be possible to apply the composite tailoring
to the conventional passive stall control scheme to improve its performance.
Particularly, the use of twist coupling for power regulation shows a promise to
design adaptive blades for stall regulated wind turbines.

The objective of this research is to develop a variable stiffness composite
optimization method for wind turbines and investigate the benefits of using
composite materials to design twist coupled blades for large scale stall regu-
lated wind turbines. The optimization strategy consists of separating the op-
timization problem in three consecutive parts, allowing the use of a suitable
optimization tool at each stage. For the first step, stiffness-based optimization
is carried out on the composite structure of wind turbine rotor blades using
continuous laminate design variables while satisfying structural and aeroelas-
tic constraints. For the second step, a stacking sequence optimization is car-
ried out using the optimized stiffness solution from the previous step as the
objective, while satisfying constraints related to stacking sequence. For the
third step, a fiber path optimization is performed while satisfying constraints
related to manufacturability, that depends on the selected type of manufac-
turing technique, e.g. fiber placement. The second and third steps do not de-
pend significantly on the underlying physical problem and are not considered
in the current work.

The composite optimization strategy consists first of an NURBS-based
framework that unifies the parametrization of a wind turbine rotor blade and
wind turbine aeroelastic analysis, in an isogeometric fashion. The blade ge-
ometry, including its finite element model, is generated based on the isogeo-
metric principle. Afterwards, a static wind turbine aeroelastic analysis is per-
formed using isogeometric based module comprised of Blade Element Mo-
mentum theory for the aerodynamic loads and non-linear Timoshenko beam
model for the structural deformation. Furthermore, a detailed structural anal-
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iv SUMMARY

ysis is carried out using the finite element solver NASTRAN by applying the
aeroelastic loads onto a (shell) finite element model of the rotor blade. The
optimization framework uses a response approximation formulation that is
based on a linear and reciprocal approximation of the responses in terms of
the design variables, i.e. elements of the membrane and bending stiffness ma-
trix of a laminate together with the laminate thickness. Accordingly in the sec-
ond step, an approximation model is formulated using both the responses and
their sensitivities, while satisfying the essential properties of convexity, sepa-
rability, and conservativeness. The response approximations are then passed
to the optimizer which iterates on the approximated model until the mini-
mum that satisfies the constraints is found.

Both structural and aeroelastic constraints are considered in the present
optimization study. The structural constraints are strength and buckling. A
failure criterion, based on lamination parameter space, is adopted for the
strength constraints. The aeroelastic constraints are maximum tip deflection,
maximum power, and the cost of energy. The cost of energy is based on the
NREL cost model for pitch regulated wind turbines, which is modified to cal-
culate the cost of energy of stall regulated wind turbines with similar rated
power.

The performance of the proposed optimization framework is demon-
strated by investigating the benefit of variable stiffness design of composite
blades to tailor the twist coupling of rotor blades for improved performance
of stall regulated wind turbines. The advantage of unbalanced laminates over
balanced laminates to design twist coupled blades is investigated using the
cost of energy as the objective function while complying with structural and
aeroelastic constraints. A complete stiffness variation along the blade span
is considered during the optimization. Furthermore, two operation config-
urations of the wind turbine are considered, i.e. up-wind and down-wind
configuration, where for the down-wind configuration, the constraint on the
maximum tip displacement is relaxed. Finally, the capability of twist coupled
blades to limit the aerodynamic power of stall regulated wind turbine is inves-
tigated by adding an additional constraint on the maximum power during the
optimization.



SAMENVATTING

Het aantal windturbines in windmolenparken op zee neemt snel toe in de af-
gelopen decennia. Echter, er zijn nog veel uitdagingen om de kosten van het
opwekken van energie uit wind goedkoper te maken. Een methode om de
kosten van windenergie, in het bijzonder bij offshore-wind parken, concurre-
rend te maken op de energiemarkt, is de onderhoudskosten van windturbines
te reduceren. De onderhoudskosten kunnen verminderd worden door zoveel
mogelijk bewegende onderdelen die gevoelig zijn aan slijtage te reduceren.
Het mechanisme om het vermogen te reguleren is een van de onderdelen die
gevoelig zijn aan slijtage en het vervangen van dit system zal de onderhouds-
kosten van windturbines verminderen. Dit is mogelijk door op overtrekme-
thode over te gaan om het vermogen en de belasting op de rotorbladen te
regelen. Bovendien, door recente vooruitgang op het gebied van composie-
ten, is het nu mogelijk om vezel sturing methode van een composiet laminaat
te gebruiken bij een conventionele overtrekmethode voor betere prestaties.
Met name het gebruik van twist koppeling in rotorbladen, in combinatie met
overtrekmethode, toont betere prestatie om het vermogen van windturbines
te reguleren.

Het doel van dit onderzoek is het ontwikkelen van een raamwerk voor vari-
abele stijfheid composiet optimalisatie voor windturbine-bladen en het voor-
deel nagaan van composiet laminaten in twist-gekoppelde bladen bij over-
trekgeregelde windturbines op grote schaal. De optimalisatie-strategie be-
staat uit het opdelen van het optimalisatie probleem in drie delen, zodat een
geschikte methode gebruikt kan worden in elke fase van optimaliseren van
de composiet structuren. Voor het eerste deel word stijfheid gebaseerde op-
timalisatie uitgevoerd op de windturbine-rotorbladen door gebruik te maken
van doorlopende laminaat variabelen, terwijl de structurele en aeroelastische
beperkingen zijn inbegrepen tijdens de optimalisatie. Voor het tweede deel
wordt een optimalisatie in stapelvolgorde van de composiet laminaat uitge-
voerd door gebruik te maken van de optimale stijfheid ontwerp uit de voor-
gaande deel, terwijl beperkingen met betrekking tot stapelvolgorde van de
compositie laminaat zijn gehandhaafd tijdens het optimalisatie proces. Voor
de derde deel wordt het optimale pad van een composiet vezel bepaald, terwijl
beperkingen met betrekking tot productie, die afhankelijk zijn van het geko-
zen type van de productietechniek (bijvoorbeeld fiber placement) zijn inbe-
grepen tijdens de optimalisatie. Het tweede en derde deel van het composiet
optimalisatie proces zijn niet afhankelijk van de onderliggende fysieke pro-
bleem en zijn niet beschouwd in het huidige werk.

De samengestelde optimalisatie strategie bestaat in de eerste plaats uit
een NURBS-gebaseerd raamwerk dat de parametrisatie van een windturbine
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rotor-blad en windturbine aeroelastische analyse integreert in een isogeome-
trische wijze. De geometrie van het rotor-blad, inclusief zijn eindige element-
model, wordt gegenereerd door gebruik te maken van het isogeometrische
principe. Daarna wordt aeroelastische analyse van de windturbine uitge-
voerd door gebruikt te maken van een isogeometrische module bestaande uit
Blad Element Impuls theorie (voor de aerodynamische belastingen) en niet-
lineaire Timoshenko beam model (voor de structurele vervormingen). Verder
wordt een gedetailleerde structurele analyse uitgevoerd met behulp van de
eindige elementen software NASTRAN waarbij de aeroelastische belasting op
de eindige elementen model van het rotorblad worden toegepast. Het opti-
malisatie raamwerk gebruikt lokale benadering van de functie, gebaseerd op
een lineaire en inverse benadering van de functie ten opzichte van de ont-
werp variables, d.w.z. elementen van axiale en buigstijfheid matrixen van het
laminaat plus de laminaat dikte. In de tweede stap wordt een benaderingsmo-
del opgesteld met zowel de functies en hun gevoeligheden, terwijl de essenti-
ële eigenschappen van convexiteit, scheidbaarheid en conservatisme worden
voldaan. De functie benaderingen worden vervolgens doorgegeven aan de
optimizer die op de functie-benadering itereert totdat het minimum dat aan
de beperkingen voldoet wordt gevonden.

Zowel structurele als aeroelastische beperkingen worden beschouwd in de
huidige optimalisatie studie. De structurele beperkingen zijn sterkte en knik.
Een bezwijkingscriterium, gebaseerd op laminaat parameter ruimte, is ge-
bruikt voor de sterkte beperkingen. De aeroelastische beperkingen zijn maxi-
male tip doorbuiging, maximaal vermogen, en de kosten van energie. De kos-
ten van energie zijn gebaseerd op het NREL kostenmodel voor pitch-geregelde
windturbines, die aangepast is om de kosten van de energie voor overtrek-
geregelde windturbines met vergelijkbaar nominaal vermogen te berekenen.

De prestatie van het voorgestelde optimalisatie raamwerk wordt gede-
monstreerd door het onderzoeken van het voordeel van variabele stijfheid
ontwerp van composieten rotorbladen om de twist koppeling van de rotorbla-
den te optimaliseren voor verbeterde prestaties van overtrek-geregelde wind-
turbines. Het voordeel van ongebalanceerde laminaten boven gebalanceerde
laminaten om twist gekoppelde bladen te ontwerpen wordt onderzocht door
het minimaliseren van de kosten van energie en door inachtneming van de
structurele en aeroelastische beperkingen tijdens de optimalisatie. Een volle-
dige stijfheid variatie over de blad lengte wordt geacht tijdens de optimalisa-
tie. Bovendien, twee configuraties van de windturbine worden beschouwd,
up-wind en down-wind configuratie, waarbij voor de down-wind configu-
ratie, de beperking van de maximale tip verplaatsing is verwijderd uit het
optimalisatie-proces. Tot slot wordt de capaciteit van twist gekoppelde bladen
om de aerodynamische kracht van overtrek geregeld windturbine te beperken
onderzocht door het toevoegen een beperking op het maximale vermogen van
de windturbine.
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1
INTRODUCTION

THERE is a growth in the energy consumption of the world, leading to rapid
depletion of natural resources, such as fossil fuels. Added to that, the en-

vironmental impact of fossil fuels (e.g. global warming) makes a renewable
source of energy a better alternative for power generation. Among renewable
energy sources, generating energy from wind is becoming more popular.

Wind turbines are designed with increasing efficiency, making the cost of
generating energy from wind, market competitive. So far, the vast majority of
wind turbines has been built on land, but recently the number offshore wind
farms has also increased over the past decade and is projected to increase fur-
ther in the future; at the same time a steady increase in the size of Horizontal
Axis Wind Turbines (HAWTs) is observed [129]. Offshore wind farms are be-
coming more popular since the wind conditions in offshore sites are stronger
and more stable than onshore sites. Moreover, the amount of available on-
shore area for wind farms, especially in US and Europe, is decreasing due to
population growth. The move towards fewer and larger wind turbines in off-
shore wind farms is motivated by the fact that: (I) larger wind turbines are able
to capture more of the energy from wind; (II) most of the cost components of
a wind turbine, e.g. infrastructure and operation and maintenance cost, de-
crease for wind farms with fewer and larger turbines compared to wind farms
with smaller and more turbines, having the same capacity.

Although the number of, installed, wind turbines in offshore wind farms is
increasing rapidly, there are still many challenges ahead for making the cost of
generating energy from offshore wind competitive with other energy sources.
One method for making the cost of energy from wind competitive is to reduce
the operational and maintenance cost of wind turbines, which is more sub-
stantial for offshore wind farms compared to their onshore counterparts [67].
The operational and maintenance cost of wind turbines may be reduced by
eliminating, as much as possible, rotating components of the turbine which
are prone to wear and tear. Among the rotating components of a wind tur-

1
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bine, the blade pitch system, the control mechanism for regulating power and
load is of interest in this thesis.

1.1. WIND TURBINE CONTROL STRATEGY

WIND conditions on any sites are not constant but vary stochastically. Con-
sequently, wind turbines must be able to extract the kinetic energy from

wind efficiently for low wind speeds, while ensuring no structural failure for
high wind speeds. This is accomplished by means of wind turbine control
methods, which are categorized into two groups: passive and active con-
trol methods; see figure 1.1 for a representative of active and passive control
strategies for power regulation.

Figure 1.1: Representative power curves for pitch and stall controlled wind turbines

PASSIVE CONTROL

For a passive control method, the aerodynamic characteristics of the wind tur-
bine blades are designed to control the aerodynamic loads on wind turbine
blades, without using active mechanism for changing the configuration of the
wind turbine. It is the first control method for regulating the extracted power,
where much of early wind turbines use passive stall control method for power
regulation [94].

These early wind turbines, employing stall control, operate with a fixed
pitch angle and at constant rotational speed [56]. Power control is realized by
passively increasing the angle of attack for increasing wind speed. As the angle
of attack increases, the outer board of the wind turbine blade goes into stall,
reducing the lift and increasing the drag. This will level of the trust on the wind
turbine rotor while decreasing the torque, hence regulating aerodynamic load
and power.
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ACTIVE CONTROL

For an active control scheme, the pitch mechanism is used to actively change
the blade pitch and hence the angle of attack throughout the blade length, in
order to regulate lift and drag distribution along the blade span. This enables
to actively keep the trust, torque, and power within the design envelope. The
pitch mechanism can be used to increase the angle of attack, referred to as
active stall regulation or decrease the angle of attack, referred to as pitch regu-
lation.

As the size and capacity of wind turbines increase, slender blades are de-
signed in order to save weight. Consequently, the blades on large scale stall
control wind turbines experience larger thrust, leading to increase blade loads
and larger tip deflection of the blades. Therefore, stall regulation is no longer
economically viable solution for load and power regulation on large scale
wind turbines. Alternatively, most modern wind turbines employ pitch regu-
lation, where the pitch mechanism is used to manage the angle of attack along
the length of the turbine blade and hence the blade load. For low wind speeds,
the pitch mechanism rotates the blade for maximum power extraction, while
for higher wind speeds the blade is rotated towards feather, reducing the angle
of attack, to keep the aerodynamic loading within the design envelop.

MOVE TOWARDS PASSIVE CONTROL FOR LARGE WIND TURBINES

In order to reduce the cost of generating power from wind, different cost com-
ponents of modern, pitch regulated, wind turbines are examined. Among
the cost components, the pitch mechanism has a noticeable share of the ini-
tial capital cost and of the operation and maintenance cost of wind turbines.
Quite often the pitch system is not able to provide an operational life time of 20
years, and needs to be replaced once or twice over the lifetime of the wind tur-
bine. These cost components can reduce if the task of the pitch mechanism,
to regulate power, is replaced by passive stall control scheme for large-scale
wind turbines because passive control methods are less complex, robust and
more reliable than active control method.

Earlier concepts for adjusting, passively, the angle of attack in order for
the blade to adapt to the incoming wind include: regulation of the extracted
power using centrifugally loaded mass on elastic arm [34], load balancing by
cyclically adjusting the blade pitch [19], passively adjusting the blade pitch,
both for power and load control [41], and mitigation of yaw loads using cyclic
adjustments of blade pitch [62]. All these methods are using some sort of
mechanism to adjust the angle of attack in response to the aerodynamic or
inertial loads.

With recent advances in composite technology for tailoring the structural
response of composite structures, it may be possible to apply the composite
tailoring to the conventional passive stall control scheme. Particularly, the
use of twist coupling for regulating, passively the angle of attack, thus also the
torque and power of the wind turbine, shows a promise to design adaptive
blades for stall regulated wind turbines, with improved performance in terms
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of power and load control, as well as in terms of cost reduction.

1.2. TWIST COUPLING IN WIND TURBINE BLADES FOR

POWER AND LOAD REGULATION

CHANGE in twist distribution along the blade span, has a direct influence
on the angle of attack, thereby altering the aerodynamic loading on the

blade as well as the extracted power. The following deformation coupling is
possible for a twist coupled blade; (I) the blade undergoes twist deformation
due to bending load, or (II) due to an extension load such as centrifugal force
on the wind turbine blade. The angle of attack is altered by the induced twist,
causing a different aerodynamic load distribution along the blade span. The
change in aerodynamic load has again an effect on the ’induced’ twist and the
aero-structural interaction continues until an equilibrium is achieved. Here,
the term induced refers to the change in the blade twist by the structural defor-
mation of the wind turbine blade. This enables twist coupled blades to have
an increased capability in regulating the aerodynamic load on wind turbine
blades and an increased efficiency to extract energy from wind. Twist coupled
blades can be tailored to reduce the angle of attack for higher wind speeds
(pitch to feather) or increase the angle of attack (pitch to stall).

Twist coupled blades are designed by means of aeroelastic tailoring. Two
approaches are investigated that cause twist coupling in wind turbine blades:
(I) material twist coupling, where biased fiber angles (with respect to the blade
axis) are used to cause bend-twist and/or extension-twist coupling, (II) geo-
metric twist coupling, where swept blades (in the plane of rotation) induce
twist coupling. See figure 1.2a and 1.2b for schematic representation of the
two methods for creating twist coupling in wind turbine blades.

(a) (b)

Figure 1.2: The two methods for causing twist coupling: (1.2a) material twist coupling, (left)
bend-twist coupling due to symmetric lay-up, (right) extension-twist coupling due to

asymmetric lay-up (from [73]), (1.2b) geometric twist coupling using swept blade design (from
[81])

Earlier investigations towards incorporating twist coupling in wind tur-
bines blades, where mainly focused on the, theoretically, maximum twist cou-
pling that can be achieved using biased (fibers that are angled with respect
to the blade axis) lay-ups. A review on twist coupled blades for enhancing
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the performance of HAWTs is provided in [87], which includes all the research
conducted in this field, prior to 2001.

Among others, the seminal work of Karaolis et al. [73] investigates the po-
tential gain of twist coupling to control the aerodynamic loading on wind tur-
bines. Different coupling schemes were investigated that include bend-twist
and extension-twist coupling. Furthermore, the amount of twist coupling
gained by pressurizing the interior of the wind turbine blade is also investi-
gated. However, the aerodynamic performance of the blade models was not
assessed using wind turbine aeroelastic simulations, which makes the con-
clusions from this work on the possible twist coupling that can be achieved in
wind turbine blades purely theoretical.

Similarly, several research papers [78, 101, 43] are dedicated to finding the
optimal fiber angle that maximizes the amount of twist coupling in compos-
ite blades. The research papers come to the same conclusion that fibers at
20%, with respect to the blade axis, result in maximum twist coupling. These
research papers, however, do not assess, simultaneously, the effect of twist
coupled blades on the aerodynamic performance of the wind turbine blades.

A few research papers are published that evaluate the aerodynamic per-
formance of twist coupled blades by prescribing the amount of twist coupling
during the aerodynamic simulation. For example, the work of Lobitz et al.
[88, 87] shows the potential of bend-twist coupled blades in enhancing energy
extraction and reducing fatigue loads, while assuming a prescribed bend-twist
coupling during the analysis.

Recent investigations towards twist coupled blades looks into the benefit
of twist coupling using more reliable methods for calculating the aeroelastic
response of the blades. Maheri et al. [92] uses analytical/FEA coupled aeroe-
lastic simulation to design adaptive blades, with improved energy capture ca-
pability of a stall regulated wind turbine having adaptive blades. However, the
method lacks in a detailed parameterization of the design variables and also
uses limited constraints during the optimization process. Especially, struc-
tural constraints such as stress distribution across the blade skin, buckling,
and maximum tip deflection are not considered.

Alternatively, Maheri et al. [93] proposed another method to design adap-
tive blades, were the structural and aerodynamic designs are carried out sep-
arately. The method incorporates the induced twist during the aerodynamic
design, as part of the design parameters, while during the structural design,
the material, and structural parameters are optimized that meet the induced
twist requirement from the aerodynamic design. However, this method suffers
from simplifications that are assumed for decoupling the structural and aero-
dynamic design. Furthermore, detailed structural constraints (stress buckling,
tip deflection) were not considered during the optimization.

The works of Capuzzi et al. [23, 24, 25], follow a similar approach as in [93],
where the aerodynamic and structural design of adaptive blades is performed
separately. First, the ’target’ twist curves for optimum power production is
determined during the aerodynamic design [23]. The ’target’ twist curves are
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parametrized in terms of the radial position and wind speed. Subsequently,
a structural design is carried out that achieves the ’target’ twist curves [24].
Furthermore, starting from the structural design of the adaptive blade in [24],
a detailed structural design, including strength and buckling constraints, is
performed in [25].

Bottasso et al. [18] present a parametric design of bend-twist coupled
blades for passive and a combination of passive-active method for load al-
leviation. To evaluate the level of bend-twist coupling, different blade designs
are studied consisting of a single biased fiber angle (with respect to the blade
axis), placed partially or fully along the blade span. A multidisciplinary opti-
mization (MDO) procedure is then used to design the different blades, sub-
jected to multilevel constraints.

A parametric study for load mitigation, using aeroelastic tailoring for max-
imum bend-twist coupling, is carried out in [58]. However, the method does
not include any structural constraints (stress, buckling and tip deflection) dur-
ing the parametric study.

Another method for inducing twist coupling in wind turbine blades is
through geometric design. By designing a swept blade planform, the addi-
tional moment caused by the blade sweep twists the blade to stall or to feather
depending on the direction of the blade sweep [142]. A swept blade design by
Sandia [6] demonstrates the benefit of swept blades for enhancing power cap-
ture, without increasing the trust load.

Most of the research conducted so far is to investigate the benefit of twist
coupled blades for power and/or load regulation; either based on a parametric
study using few design variables or using simplified models for analyzing the
aeroelastic response of adaptive blades. The next step would be to perform a
detailed optimization study using variable stiffness laminates, to evaluate the
potential of twist coupled blades to enhance the aerodynamic performance of
stall controlled wind turbines. Furthermore, detailed structural and aerody-
namic constraints need to be included in the optimization study, while using
an analysis tool with sufficient complexity to accurately capture the aeroelas-
tic response of twist coupled blades.

1.3. AEROELASTIC OPTIMIZATION OF COMPOSITE

STRUCTURES

WITH the potential benefit of fiber reinforced plastics for controlling their
properties in any direction, a significant amount of research has been

carried out for formulating optimization methods that capitalize the addi-
tional benefit of composite materials. Gürdal et al. [54] and Haftka et al.
[55] provide a detailed description on composite optimization. Variable stiff-
ness design has the advantage of finding the minimum of the required objec-
tive (e.g. mass or cost of energy) while fulfilling all required constraints (e.g.
strength, buckling, tip deflection, etc..). For variables stiffness designs, the
laminate thickness and the direction of the fibers vary across the structural
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component. Two methods can be identified for stiffness parametrization in
optimization study using variable stiffness: (I) based on stacking sequence,
(II) based on laminate parameters.

For parametrization based on stacking sequence, the laminate stiffness is
defined based on ply/layer angles and thickness (see section 2.3.1). This sug-
gests that for a laminate composed of m layers, there are a maximum of 2m
design variables to be considered during optimization. Most of the optimiza-
tion methods used for tailoring the twist coupling of wind turbine blades are
based on some variation of stacking sequence parametrization.

For parametrization based on lamination parameters, the laminate stiff-
ness is parametrized with a maximum of 12 laminate variables, while a set
of constraints imposed on the variables guarantee that the stiffness design,
based on lamination parameters, can be converted into feasible stacking se-
quence (see section 2.3.2). This gives optimization based on lamination pa-
rameters a clear advantage over stacking sequence scheme, for complex op-
timization cases with variable stiffness across the structure and composite
laminates with multiple layers. Additionally, there is a linear and continuous
relationship between lamination parameters and laminate stiffness matrices;
while parametrization based on stacking sequence introduces non-linearity
and discontinuity to achieve feasible designs. The facts that smaller set of de-
sign variables are used in lamination parameters, together with the advantage
of having linear and continuous relationship between the laminate parame-
ters and stiffness matrices, makes lamination parameters a preferable choice
for detailed composite optimization.

However, lamination parameters have a drawback in that an additional
step is required for converting the lamination parameters into feasible de-
signs. To this end, many research papers have been published, among others:
[66, 15, 132, 86].

1.4. RESEARCH GOALS

THE objective of the thesis is to develop a variable stiffness composite opti-
mization method for wind turbine rotor blades and investigate the benefit

of using composite materials to design twist coupled blades for large scale,
stall regulated, wind turbines. To achieve the objective, the task is divided into
the following stages. For the first stage:

Develop a general framework capable of efficiently parametrizing a wind
turbine rotor blade in terms of its geometry and material; afterwards, perform
a static aeroelastic analysis on the wind turbine rotor blade, together with the
analysis of response sensitivities, for use in a gradient based composite opti-
mizer.

The framework should be capable of efficiently parametrizing a wind turbine
rotor blade in terms of the blade planform, beam axis (e.g. curved blades),
laminate thickness together with the fiber angles of a composite material. The
framework should be capable of analysing the wind turbine performance us-
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ing a multi-fidelity approach; where a low-fidelity model is used for static
aeroelastic analysis and a high-fidelity model is used for detailed structural
analysis, applying the aeroelastic loads (from the low-fidelity model) as static
loads on a detailed finite element model of the wind turbine blade.

For the second stage of the thesis, an optimization model based on lami-
nation parameters, formulated by IJsselmuiden [66], should be used to inves-
tigate the potential of twist coupled blades to regulate the power on stall reg-
ulated wind turbines, while taking into account both structural (e.g. strength,
buckling, maximum blade deflection) and aerodynamic constraints. The sec-
ond stage of the thesis is comprised of:

Perform an optimization study, based on minimization of the cost of energy
(COE), to evaluate the additional benefit of adaptive blades on the performance
of large stall regulated wind turbines.

A cost function for calculating the cost of energy of 5MW stall regulated ma-
chines needs to be formulated, and used to evaluate the performance of the
new blade designs. The cost of energy will follow a similar approach to the
cost model of [49], used to estimate the COE of pitch controlled machines of
different size. Since the preferred optimization model of IJsselmuiden [66]
uses response approximates during optimization, a general approximation
method of the aeroelastic responses and the objective functions needs to be
formulated, based on a linear and reciprocal approximation of the responses
in terms of the design variables (elements of the membrane and bending stiff-
ness matrix of a laminate).

1.5. THESIS LAYOUT

THE organization of the thesis is as follows. Chapter 2 introduces the differ-
ent disciplines implemented in this thesis, including a brief description of

the aerodynamic model, specifically on the blade element theory; the theory
of isogeometric formulation, implemented in the proposed framework; an ac-
count of different methods to parametrize the stiffness matrices of composite
laminates.

In chapter 3, an overview of the major steps in the framework for wind
turbine blade optimization is presented; including a brief overview of the iso-
geometric framework for evaluating the aeroelastic responses; a method for
passing design dependent loads onto a finite element model of the wind tur-
bine blade, for detailed structural analysis; formulation of response approxi-
mations, suitable for the considered optimization tool. The framework is in-
tended for stiffness-based optimization of composite structures of wind tur-
bine blades.

Chapter 4 describes a method, based on the isogeometric framework, for
parametrizing a wind turbine rotor blade. The generation of the geomet-
ric model, using NURBS functions, is explained in detail; containing a de-
scription of the finite element model, used in a detailed structural analysis.
Furthermore, an interface model is developed for passing design dependent
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loads from the low-fidelity model unto the high-fidelity structural model. This
chapter also elucidates on the approach for parametrizing the composite lam-
inates and the definition of the design variables, together with a way to link
the design variables to the material properties of the blade model (both low-
fidelity and high-fidelity models).

Chapter 5 contains a formulation for calculating the sectional properties of
thin-walled, multi-cell, and prismatic beams with anisotropic material prop-
erties and arbitrary cross-sectional shape. The sectional stiffness properties
are part of a beam model, used for calculating the deformation of a wind tur-
bine blade, which is part of the low-fidelity aeroelastic model. The formula-
tion, for analyzing the sectional stiffness properties, is based on the classical
laminate theory, making it suitable for use in composite optimization.

The (low-fidelity) aeroelastic module is composed of an IGA based struc-
tural and aerodynamic models. Chapter 6 contains the description of the
structural model for calculating the large deflection of the wind turbine blade.
The model is based on an isogeometric formulation of geometrically exact 3D
beam theory. Chapter 7 presents the aerodynamic model that is based on
BEM theory, for calculating the aerodynamic loads on a turbine blade. Fur-
thermore, the aerodynamic model contains a method for modifying the aero-
dynamic loads to account for a change in the blade shape due to the blade
deformation. This allows, among others, to include the induced twist in the
aerodynamic model.

Chapter 8 elucidates on the responses of the high-fidelity model, obtained
from structural analysis using, the finite element solver, NASTRAN. Moreover,
a description of modifications (Alters) on the default run of NASTRAN is pro-
vided. These modifications serve to extract the relevant responses (stream-
lined for optimization), and correct the sensitivity results from the NASTRAN
analysis.

Chapter 9 provides a description of the final piece of optimization frame-
work, introduced in chapter 3. In this chapter, the derivation of the response
approximations in terms of the laminate design variables is presented. The
different responses that are part of the optimization are described in this
chapter; starting with the introduction of a general form of the response ap-
proximations that is tailored for composite optimization, followed by a de-
scription of the two methods of sensitivity analysis, employed in the current
optimization framework, then a description of the response approximation
for the various aeroelastic and structural responses.

Chapter 10 contains the optimization study into performance enhance-
ment of twist coupled wind turbine blades for stall regulated wind turbines.
First a baseline design for stall regulated 5MW wind turbine is adapted from
the blade design of the NREL5MW pitch regulated wind turbine, followed by
successive optimization studies to evaluate the potential gain of twist cou-
pling and the resulting aerodynamic performance of the new blades, opti-
mized under structural and aeroelastic constraints, using the COE as an ob-
jective during the optimization.
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Finally, conclusions and recommendation for further research are given in
chapter 11.



2
OVERVIEW ON DIFFERENT

DISCIPLINES USED IN THE

DISSERTATION

This chapter is dedicated to briefly introduce the different disciplines used in
this dissertation. Section 2.1 presents a brief description of the aerodynamic
model used for calculating the aerodynamic loads, followed by section 2.2 that
addresses the implementation of isogeometric analysis in the framework pre-
sented in chapter 3. Finally, section 2.3 provides an insight into the different
methods to parametrize the stiffness properties of composite laminates.

11
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2.1. WIND TURBINE AERODYNAMICS
There are various methods to calculate the aerodynamic loads on horizon-
tal axis wind turbine blade [57], with varying accuracy, computational time
and complexity. Computational Fluid Dynamic (CFD) is the most accurate
method, but it is also computationally expensive. Other methods that are
computationally less expensive than CFD are vortex line and panel methods.
The most common methods used in industry to calculate the aeroelastic loads
of HAWT’S are based on Blade Element Momentum (BEM) theory. BEM is
popular, especially in aeroelastic simulation of HAWT’S, because of its rela-
tively simple and fast implementation in aeroelastic codes with generally good
performance, provided that accurate 2D airfoil characteristics are available at
the appropriate Reynolds number. There is extensive literature on BEM theory
[94]. Therefore, this section introduces the subject briefly.

2.1.1. BLADE ELEMENT MOMENTUM THEORY
Blade Element Momentum theory is a combining two distinct methods. The
momentum balance of an annular stream tube passing through a plane of
a turbine is equated with blade element theory that calculates the sectional
aerodynamic properties of a turbine blade. This will give a set of equations
that need to be solved iteratively. The advantage of this method is the fact
that the 3D characteristic of the airflow is decomposed into 1D momentum
balance and 2D sectional aerodynamics.

MOMENTUM THEORY

The forces and flow conditions on wind turbine blades may be derived from
conservation of momentum, since forces are the rate of change of momen-
tum. Consider a stream tube around an actuator disc normal to the plane of
rotation, as shown in figure 2.1. The four stations are: ’1’ upstream the disc ,
’2’ right before the disc, ’3’ right after the disc and ’4’ downstream of the actua-
tor disc. The thrust on the rotor disc is calculated by considering conservation
of linear momentum to an annular control volume at radius r and thickness
dr , see figure 2.1. The differential trust, dT , on the rotor disc, at radius r and
thickness dr , is given as,

dT = ρU 24a(1−a)πr dr, (2.1)

where ρ is the air density, U is the undisturbed wind speed and a is axial in-
duction factor, which is a function of the radius r . The differential torque, dQ,
on the rotor disc is calculated by applying the conservation of angular mo-
mentum to an annular control volume at radius r and thickness dr , resulting
in the expression for dQ as,

dQ = 4a′(1−a)ρUπr 3Ωdr, (2.2)

whereΩ is the rotation of the rotor disc, and a′ is the angular induction factor,
which is also a function of the radius. Hence, the momentum theory provides
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expressions for the thrust and torque on the rotor disc as a function of the axial
and angular induction factors which represent the flow condition.

Figure 2.1: The geometry of the rotor, for the definition of variables that are used in BEM theory
(adapted from [94]).

BLADE ELEMENT THEORY

The forces on the blades may be determined solely from the airfoil character-
istics and the angle of attack. The airfoil characteristics refers to the lift and
drag of the airfoil for varying angle of attack. The aerodynamic loads are cal-
culated by dividing the blade in N sections, which are also referred to as ele-
ments. The following assumptions are employed for the blade element theory:

• There is no aerodynamic interaction between different blade segments.

• The forces on the blades are determined exclusively from the 2D aero-
dynamic characteristics of the local airfoil shapes.

Figure 2.2 shows a schematic representation of the airfoil section, seen from
the blade tip. The lift and drag, denoted respectively by dFL and dFD , are per-
pendicular and parallel, respectively, to the local relative wind velocity Ur el .
The relative wind velocity Ur el is a vector sum of the wind velocity at the blade,
U (1− a), and the local angular velocity, Ωr (1+ a′). The angle of attack is de-
noted by α, while ϕ represents the local inflow angle. The local pitch, θ, is
composed of global pitch of the blade and local twist angle. The local thrust
and torque are denoted respectively by dFN , and r dFT , where r is the radial
distance of the airfoil section, from the center. Based on the geometric rela-
tions shown in figure 2.2, two expressions for the inflow angle ϕ are obtained,

ϕ= θ+α, and tan(ϕ) = 1−a

λr (1+a′)
, (2.3)
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where θ and α are respectively, the local twist and angle of attack; the local tip
speed ratio is defined as,

λr = Ωr

U
. (2.4)

The local lift and drag forces are expressed as,

dFL = 1

2
ρU 2

r el Cl cdr , and dFD = 1

2
ρU 2

r el Cd cdr, (2.5)

where Cl and Cd are respectively, the lift and drag coefficients of the local air-
foil section. Assuming the rotor has B number of blades, the normal force on
the section, at a distance of r from the center, is calculated as,

dFN = B
1

2
ρU 2

r el (Cl cosϕ+Cd si nϕ)cdr. (2.6)

Similarly, the torque due to the tangential force,at a distance of r from the
center, is calculated as,

dQ = B
1

2
ρU 2

r el (Cl si nϕ−Cd cosϕ)cr dr. (2.7)

Increasing the drag tends to increase the thrust of the blade while decreasing
the torque. By equating the thrust and torque expressions from the two theo-

Figure 2.2: Schematic representation of airfoil geometry and the definition of various variables,
used in Blade Element theory.

ries, a residual equation is derived as,

Rr es =C t −4a(1−a) = 0, (2.8)
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where,

C t = 1

2π

c

r

√
f
(
Cd (1−a)+Clλr (1+a′)

)
, for

a′ =λ−1
r a(1−a) and f = (1−a)2 +λ2

r (1+a′)2.
(2.9)

From equation 2.8, C t is the trust coefficient calculated from the blade ele-
ment theory, while the remaining term is the trust coefficient from the mo-
mentum theory. Since the angular induction factor is determined from the
axial induction factor (see equation 2.9), the residual equation, Rr es , is only
a function of the axial induction factor and the airfoil characteristics. There-
fore, equation 2.8 is solved iteratively for the axial induction factor a. After
solving for the axial induction factor, the forces on the turbine blade are cal-
culated based on the converged solution for a, at each radial position r . The
measured performance of wind turbine blades matches closely with BEM re-
sults at low axial induction factors. However, for large values of axial induction
factor (a > 0.5), the momentum theory is no longer valid and empirical data
between the thrust coefficient and the axial induction factor is used to predict
the wind turbine performance. Figure 2.3, shows, from the momentum the-
ory, the relationship between the thrust coefficient and axial induction factor.
For low axial induction factor (a ≤ 0.4), the standard C t − a relationship de-
rived from the momentum theory is used, while for higher values of a, mod-
ified Glauert correction from [98] is applied. Based on figure 2.3, the residual
of equation 2.8 is modified as,

Rr es =C t −
{

4a(1−a), if a ≤ 0.4

c0 + c1a + c2a2, otherwise
(2.10)

where c0 = 8/9, c1 =−4/9, and c2 = 14/9.

a
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
t

0

2

BEM
BEM & Glauert correction

Figure 2.3: Relationship between thrust coefficient and axial induction factor with Glauert
correction.
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2.1.2. TIP AND ROOT CORRECTIONS TO BEM THEORY
Due to the finite blade length, the pressure difference, between the upper and
lower surface of the blade, induces a vortex at the blade tip. This tip vortex
results in the reduction of the lift towards the blade tip, which needs to be
taken into account during BEM calculation of the aerodynamic forces on the
blade. The tip loss correction factor of Shen et al. [121] is used to correct the
thrust coefficient, derived from the blade element theory, i.e.,

C t = Ft i p
1

2π

c

r

√
f
(
Cd (1−a)+Clλr (1+a′)

)
, (2.11)

where the tip loss correction factor, Ft i p , is given by,

Ft i p = 2

π
cos−1

{
exp

(
−R − r

2R

g B

sinϕt i p

)}
, where g = exp

(
1

8
(21−Bλ)+ 1

10

)
,

(2.12)

and R is the rotor radius, while ϕt i p and λ refer respectively, the inflow angle
at the blade tip and the tip speed ratio. Furthermore, the lift and drag forces
of equation 2.5 are scaled by the tip loss correction factor Ft i p .

In addition, the flow on a rotating blade experiences pressure difference in
radial direction, resulting in radial velocity component. This induces a Corio-
lis force in the direction of the trailing edge, acting as a positive pressure gradi-
ent in chord direction that delays flow separation. This Coriolis force has the
same effect as blowing air in chord wise direction of an airfoil, which is used
to prevent flow separation. Therefore, a root correction is included to account
for rotational stall delay [21], applied directly to the 2D airfoil characteristics.
The lift and drag coefficients of the airfoils are corrected for rotational stall
delay using the Selig and Eggars method [72].

2.2. ISOGEOMETRIC ANALYSIS
Isogeometric analysis (IGA) is a numerical method proposed in [64, 36], that
bridges the gap between Computer Aided Design (CAD) and Finite Element
Analysis (FEA). The main idea behind IGA is to use the basis functions (B-
splines or NURBS) both to represent the geometry in CAD and for approxima-
tion of the field variables, in a isoparametric fashion. This reduces the com-
putation time, associated with mesh generation and refinement process in FE
analysis, which was the main motivation behind IGA. Furthermore, due to the
high-regularity properties of its basis functions, IGA shows, for a number of
problems, better accuracy per degree of freedom and increased robustness.
Among others, IGA has been successfully implemented in fluid mechanics
[10, 3, 11, 22], Solids and structures [38, 37, 8, 85, 27, 65], including plate and
shell elements [76, 130, 46, 100].

The use of IGA in the current framework allows to easily vary the different
parameters of the turbine blade, such as the blade planform, beam axis and
material distribution, while easily analysing the effect of these parameters on
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the wind turbine blade performance in an isoparametric fashion. The imple-
mentation of NURBS in isogeometric formulation is popular, since NURBS is
a well-developed concept in CAD technology with widespread use.

This section presents a brief description on NURBS and its relevant prop-
erties for the current framework. Furthermore, the parametrization of curves
using one dimensional NURBS is discussed, together with an elucidation
on the geometric algorithm that facilitates the formulation of multilevel dis-
cretization scheme, presented in chapter 4. A detailed explanation on NURBS
and its implementation within the isogeometric precept can be found in [36].

2.2.1. FUNDAMENTALS OF NON-UNIFORM RATIONAL B-SPLINES

B-SPLINE

Starting with the description on B-splines, one-dimensional B-splines are de-
fined over an interval on the real axis described by a knot vector Ξ,

Ξ= {
ξ1 = ... = ξp+1 = 0,ξp+2, ...,ξn ,ξn+1 = ... = ξn+p+1 = 1,

}
,ξ1 ≤ ξ2 ≤ . . . ≤ ξn+1,

(2.13)
consisting of non-decreasing entries referred to as knots ξi , for i = 1. . .n+p+1,
where p, and n represent respectively, the polynomial degree, and the number
of univariate spline basis functions defined on the knot vector. The present
framework employs open knot vectors, ensuring the end point interpolation
of the defined curve, which is a desired property in CAD. Based on Ξ, the B-
splines are defined recursively as,

Ni ,0(ξ) =
{

1 if ξi ≤ ξ< ξi+1

0 otherwise
and,

Ni ,p (ξ) = ξ−ξi

ξi+p −ξi
Ni ,p−1(ξ)+ ξi+p+1 −ξ

ξi+p+1 −ξi+1
Ni+1,p−1(ξ).

(2.14)

Detailed description on B-spline functions can be found in [108].

NURBS

The p th degree Non-Uniform Rational B-Spline(NURBS) is a piecewise ratio-
nal function defined by the projective transformation,

Ri ,p (ξ) = Ni ,p (ξ)wi

w(ξ)
, (2.15)

where wi is a positive weight factor of the B-spline function Ni ,p (ξ). The de-
nominator of equation 2.15 is referred to as weighting function, i.e.

w(ξ) =
n∑

j=1
N j ,p (ξ)w j . (2.16)

The continuity properties of the B-spline functions carry over to NURBS
functions. B-spline may be recovered from NURBS by assigning uniform
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weights to all basis functions. The additional freedom in choice of weights
make NURBS representations more versatile than B-splines. Moreover, com-
mon geometric shapes such as conic sections are exactly representable using
NURBS. Some of the characteristic features of B-splines and NURBS is illus-
trated in figure 2.4, where the basis functions of B-splines and NURBS are plot-
ted for p = 3 and n = 7.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1
R
1,3

R
3,3R

2,3

R
5,3
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4,3

R
6,3

R
7,3

R
8,3

R
9,3

R
10,3

Figure 2.4: Cubic basis functions of B-splines and NURBS. The solid lines represent the B-spline
basis Ni ,3, with i = 1, . . . ,n, whereas modifying a single weight(w7 = 2) results in p +1 rational
basis functions Ri ,3 with i = 4, . . . ,7, represented by dashed lines. All other basis functions are

unaffected by the modified weight w7.

A d-dimensional NURBS curve is obtained by projecting a d + 1 dimen-
sional homogeneous B-spline curve[108]. A homogeneous B-spline curve is
a linear combination of B-spline functions and homogeneous control points,
P w

i ∈Rd+1. The position vector of a point on the homogeneous curve is given
by,

r w (ξ) =
n∑

i=1
Ni ,p (ξ)P w

i , (2.17)

where the homogeneous control point, written as,

P w
i =

(
P i wi

wi

)
, (2.18)

form the so-called control polygon, with the non-homogeneous control
points denoted by P i ∈ Rd . The d + 1 component of P w

i is the control point
weight. A d-dimensional NURBS curve, r (ξ), is the projected image of r w (ξ),
i.e.

r (ξ) = r w
l (ξ)

w
, (2.19)

where l = 1, . . . ,d and w refer respectively, the component of a vector and
the weighting function defined in equation 2.16. Alternatively, the same
NURBS curve may be written directly in terms of NURBS function and non-
homogeneous control points as,

r (ξ) =
n∑

i=1
Ri ,p (ξ)P i . (2.20)

A NURBS curve generated by an open knot vector is tangent to the control
polygon at either end. Because the NURBS shape functions have local sup-
port, change of a control point P i or its weight wi results only in local change
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of the NURBS curve. Because the NURBS shape functions have local support,
change of a control point P i or its weight wi results only in local change of the
NURBS curve, as illustrated in figure 2.5.
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Figure 2.5: Local change of NURBS curve resulting from local change of a single control point
co-ordinate(a) or the associated weight(b)

2.2.2. GEOMETRIC ALGORITHM: KNOT REFINEMENT
Knot refinement gives flexibility for the proposed framework to have different
level of parametrization while preserving the geometry. The coarse knot vec-
tor for instance is used to define the geometric properties of the structure and,
the refined knot vector is used for analysis.

Knot refinement is the application of multiple knot insertion simultane-
ously, while for knot insertion, a single knot ξ̄ ∈ [ξk ,ξk+1) is added to the knot
vectorΞ, resulting in the extended knot vectorΞ⊂ Ξ̂ [108].

Assuming that the old knot vectorΞ is extended with r new knots, the knot
refinement may be expressed in matrix form as

P̄ w =L P w , (2.21)

where P w and P̄ w
are matrix representation of the coarse and refined homo-

geneous control points, respectively. The columns of P w and P̄ w
are the com-

ponents of a single control point. The symbol L is a banded matrix of size
(n+r×n) containing information on the knot refinement. An efficient method
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of performing knot refinement is discussed extensively in [51]. An example of
a knot refinement is given in figure 2.6, where the control polygon, which is
a linear approximation of the curve (black line), moves closer to the interpo-
lated curve (red line), for increasing number of knot spans.

(a) cubic curve for N = 2 (b) cubic curve for N = 4 (c) cubic curve for N = 7
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Figure 2.6: Multi level discretization for increasing number of knot-spans(N ): (2.6a) original

curve, and (2.6d) corresponding basis function,while (2.6b)-(2.6c) represent increasing number
of knot-spans together with corresponding basis function shown in (2.6e)-(2.6f).

The refined non-homogeneous control points P̄ j are related to the coarse
non-homogeneous control points P i as,

P̄ =L w P , (2.22)

where

L w = W̄ −1
L W , (2.23)

and P and P̄ are matrix representation of the coarse and refined non-
homogeneous control points, respectively. The diagonal matrix W contains
the weights wi , with i = 1, . . . ,n, for control points P , whereas W̄ contains the
weights w j , with j = 1, . . . ,n + r , for control points P̄ .

2.3. COMPOSITE LAMINATES
Fiber reinforced composite laminate consists of two components: the fiber
providing the strength and stiffness of the laminates, while the matrix holds
the fibers in the desired location and maintains their shape. This section de-
scribes two analytical methods for parametrizing the stiffness properties of
fiber reinforced composite laminates, which are based on classical lamination
theory. The first method is based on stacking sequence, were the layer/ply an-
gle and thickness are used for parametrization of the laminate stiffness (sec-
tion 2.3.1). The second method is based on lamination parameters (section
2.3.2). Finally, a method for visualizing the in-plane stiffness distribution of
the composite laminate is presented in section 2.3.3.
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2.3.1. STACKING SEQUENCE
Consider figure 2.7, where a schematic representation of a single composite
layer, also referred to as a ply, is given. The fibers, for each ply, are all aligned
in the same direction. The axis x1 is aligned with the fibers, while the axis
x2 is perpendicular to the fibers. The X , and Y axis form the global coordi-
nate system of the laminate, spanning the plane of a laminate. Starting from
the general 3D stress-strain relationship, and assuming plain stress assump-
tion (σ3 = τ13 = τ23 = 0), the stress-strain relationship in the principal (x1, x2)
direction of a single ply is reduced to,

σ1

σ2

τ12

=
Q11 Q12 0

Q12 Q22 0
0 0 Q66


ε1

ε2

γ12

→σ=Qε, (2.24)

where the non-zero elements of the Q matrix, referred to as reduced stiffness,
are written as,

Q11 = E1

1−ν12ν21
, Q11 = E2

1−ν12ν21
, (2.25)

Q12 = ν21E1

1−ν12ν21
= ν12E2

1−ν12ν21
, Q66 =G12. (2.26)

The stresses and strains of equation 2.24 are transformed from the

Figure 2.7: Coordinate system on ply level.

x1, x2−coordinate system to the x, y− coordinate system using the transfor-
mation matrix that is a function of the ply angle θ, shown in figure 2.7. The
transformation matrix is given by,

T =
 cos2θ si n2θ 2cosθsi nθ

si n2θ cos2θ −2cosθsi nθ
−cosθsi nθ cosθsi nθ cos2θ− si n2θ

 . (2.27)

Using the transformation matrix, given in equation 2.27, the stress-strain re-
lationship in x, y− coordinate system is defined as,

σx

σy

τx y

= Q̃


εx

εy

γx y

 , (2.28)
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where
Q̃ = T −1QRT R−1, (2.29)

and

R =
1 0 0

0 1 0
0 0 2

 (2.30)

is a matrix that accounts for the difference between the engineering shear
strain γ12 and the tensorial shear strain ε12. The matrix R is added in equation
2.29 to take into account the fact that the transformation matrix T is applied
between the tensorial strains, defined in different coordinate systems. The
derivation of the stiffness of a laminate is based on the assumption of classi-
cal lamination theory, stating:

• Each layer is assumed to bond perfectly with adjacent layers, having in-
finitely thin adhesive layers between them.

• The layers are assumed to undergo similar shear deformation, for in-
plane loads, and for bending loads, linearly varying shear deformation
in thickness direction.

Furthermore, no assumption is made on the symmetric nature of the layers
about the mid-plane, see figure 2.8. The variation of strains across the lami-
nate thickness (z direction) is linearised in-terms of the mid-plane strains and
curvatures, i.e., 

εx

εy

γx y

=

ε0

x
ε0

y

γ0
x y

+ z


κx

κy

κx y

 , (2.31)

where the superscript 0 denotes mid-plane strains and κ is the change in mid-
plane curvature. Substituting equation 2.31 into the stress-strain relationship

Figure 2.8: Laminate cross-section made up of multiple plies or layers.

of equation 2.28, results a strain-stress relationship of ply j , in-terms of the
mid-plain strains, as follows,

σx

σy

τx y


j

= Q̃ j


ε0

x
ε0

y

γ0
x y

+ zQ̃ j


κx

κy

κx y

 , (2.32)
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where Q̃ j is the transformed reduced stiffness matrix of the j th ply/layer. The
stress resultants, across the laminate thickness, are obtained by integrating
equation 2.32 in thickness direction, i.e.,

Nx

Ny

Nx y

=
n∑

j=1

h j∫
h j−1

Q̃ j


ε0

x
ε0

y

γ0
x y

+ zQ̃ j


κx

κy

κx y


d z


Mx

My

Mx y

=
n∑

j=1

h j∫
h j−1

zQ̃ j


ε0

x
ε0

y

γ0
x y

+ z2Q̃ j


κx

κy

κx y


d z,

(2.33)

where n is the number of layers of the laminate. It is observed from equation
2.33 that the stresses across a single layer are integrated, and subsequently
summer over the laminate. The stress resultant-strain relationship may be
written in compact form as,

Nx

Ny

Nx y

= A


ε0

x
ε0

y

γ0
x y

+B


κx

κy

κx y

 ,


Mx

My

Mx y

= B


ε0

x
ε0

y

γ0
x y

+D


κx

κy

κx y

 ,

(2.34)

where

A =
n∑

j=1
Q̃ j

(
h j −h j−1

)
,

B = 1

2

n∑
j=1

Q̃ j

(
h2

j −h2
j−1

)
,

D = 1

3

n∑
j=1

Q̃ j

(
h3

j −h3
j−1

)
,

(2.35)

represent the laminate membrane, coupling, and bending stiffness matrix, all
of which are symmetric matrices. The coupling matrix B denotes the mutual
influence of in-plane and out-of-plane loadings and deformations, which re-
duces to zero for symmetric layup of a laminate with respect to mid-plane
(see figure 2.8). Furthermore, the A13, and A23 elements of the membrane
stiffness matrix A are coupling terms between the two in-plane strains (εx ,εy )
and the shear strain (γx y ). For non zero values of these coupling coefficients,
the laminate experiences shear strains when it is loaded in tension, which is
a desired property in aeroelastic tailoring. This tension-shear strain coupling
coefficients are zero for balanced laminates. Balanced laminates refer to lami-
nates that have for each ply with positive ply angle (θ) a ply with negative angle
(−θ). This makes unbalanced laminates better suited for aeroelastic tailoring.
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In addition, the elements D13, and D23 of the bending stiffness matrix D
refer to the (laminate) bend-twist coupling. These elements of the bending
matrix cause the laminate to twist under pure bending load. These coeffi-
cients are zero for weaved ply, meaning a single ply has two fiber angles with
the same magnificent but opposite direction.

2.3.2. LAMINATION PARAMETERS

Besides the use of a staking sequence for parametrizing the laminate stiffness
matrices (A,B ,D), lamination parameters may also be used to parametrize
the stiffness properties of a laminate. Lamination parameters, initially intro-
duced in [131], express the layer angles in an integrated form across the lami-
nate thickness, expressed mathematically as,

(V1A ,V2A ,V3A ,V4A) = 1

h

−h/2∫
h/2

(cos2θ, si n2θ,cos4θ, si n4θ)d z,

(V1B ,V2B ,V3B ,V4B ) = 4

h2

−h/2∫
h/2

z (cos2θ, si n2θ,cos4θ, si n4θ)d z,

(V1D ,V2D ,V3D ,V4D ) = 12

h3

−h/2∫
h/2

z2 (cos2θ, si n2θ,cos4θ, si n4θ)d z,

(2.36)

The laminate stiffness matrices are defined using the lamination parameters,
together with the material invariant matrices Γi , as shown in equation 2.37:

A = h (Γ0 +Γ1V1A +Γ2V2A +Γ3V3A +Γ4V4A) ,

B = h2

4
(Γ1V1B +Γ2V2B +Γ3V3B +Γ4V4B ) ,

D = h3

12
(Γ1V1D +Γ2V2D +Γ3V3D +Γ4V4D ) ,

(2.37)

where h is the laminate thickness. Furthermore, the laminate stiffness matri-
ces may be defined as the product of thickness normalized stiffness compo-
nents and the laminate thickness, i.e.,

Â = 1

h
A, B̂ = 4

h2 B , D̂ = 12

h3 D , (2.38)

where the parameters in hat, (̂), represent thickness normalized stiffness ma-
trices. The material invariant matrices Γi are derived from the material in-
variants Ui , which depend only on material properties. The material invariant
matrices Ui may be obtained from elements of the reduced stiffness matrix Q ,
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as follows,

U1 = 1

8
(3Q11 +3Q22 +2Q12 +4Q66) ,

U2 = 1

2
(Q11 −Q22) ,

U3 = 1

8
(Q11 +Q22 −2Q12 −4Q66) ,

U4 = 1

8
(Q11 +Q22 +6Q12 −4Q66) ,

U5 = 1

8
(Q11 +Q22 −2Q12 +4Q66) .

(2.39)

Finally, the material invariant matrices Γi , which do not depend on the fibre
direction, are expressed in-terms of the material invariants Ui as,

Γ0 =
U1 U2 0

U4 U1 0
0 0 U5

 ,Γ1 =
U2 0 0

0 −U2 0
0 0 0

 ,

Γ2 =
 0 0 U2/2

0 0 U2/2
U2/2 U2/2 0

 ,Γ3 =
 U3 −U3 0
−U3 U3 0

0 0 −U3

 ,

Γ4 =
 0 0 U3

0 0 −U3

U3 −U3 0

 .

(2.40)

Equation 2.37 and 2.40 provide an insight on the effect of the lamination pa-
rameters and the stiffness matrices. An arbitrary stacking sequence can be
successfully parametrized with the full set of the lamination parameters. For
symmetric layup, B = 0, the lamination parameters, V i B , are set to zero; the
remaining eight parameters define a symmetric and unbalanced laminate.
For balanced laminates, the lamination parameters multiplied with Γ2 and
Γ4 are equal to zeros, leaving only four lamination parameters to define sym-
metric and balanced laminates.

2.3.3. MEMBRANE STIFFNESS VISUALIZATION
In order to visualize the distribution of the in plane stiffness matrix, A,
the thickness-normalized engineering modulus of elasticity, Ê11(θ), for θ =
0 to 360 deg, may be calculated using,

Ê11(θ) = 1

Â
−1
11 (θ)

, (2.41)

where
Â
−1

(θ) = T T Â
−1

T . (2.42)

The matrix, T , is similar to the transformation matrix of equation 2.27, used
in the strain-stress relationship. Figure 2.9, contains the polar plot of char-
acteristic laminate sequence, where the normalized engineering modulus of
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elasticity is calculated using equation 2.41. In figure 2.9, the x axis refers to
the 0◦ fiber angle, while the y axis refers to the 90◦ fiber angle. The laminate
stiffness matrix of the different laminates is generated using the ply proper-
ties of table 2.1. The engineering modulus of elasticity, Ê11, of all laminates is

Table 2.1: Material properties of a single ply

E11 E22 G12 ν ρ

35.0e9 8.33e9 4.12e9 0.33 1920

normalized with the largest value of the modulus of elasticity of a single ply
(E11).

Figure 2.9a shows Ê11 of laminate where the fibers are all aligned in x di-
rection, while figure 2.9c shows the engineering modulus of elasticity of a lam-
inate with all the fibers aligned along the y axis. Figure 2.9b shows that all
the fibers of the laminate are all aligned 60◦ with respect to the x axis. The
membrane stiffness distribution of a quasi-isotropic laminate is depicted in
figure 2.9e, where the membrane stiffness is equally distributed in all direc-
tion. Finally, figure 2.9d and 2.9f show a polar plot of Ê11 for ±45◦ layup and a
semi quasi-isotropic layup, having the majority of the fibers aligned along the
x axis.
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Figure 2.9: Ê11(θ) stiffness distribution for various stacking sequence.
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Composite optimization of large structures such as wind turbine blades is
quite complex and thus a challenging task to perform . This stems from
the existence of contradictory constraints ranging from material failure and
buckling constraints to aeroelastic constraints. In addition, manufacturing
constraints that include constraints relating to the laminate layup technique
make the optimization process even more difficult. It would therefore be ad-
vantageous to simplify the optimization process by decomposition into sev-
eral steps. The decomposition of the optimization process allows the use of
suitable optimization method for each step.

The optimization strategy employed in this work is such that the com-
posite optimization of a wind turbine blade is decomposed into three steps.
For the first step, stiffness-based optimization is carried-out on the composite
structure of wind turbine blades. In the first step, continuous laminate design
variables are used in gradient based optimization while satisfying material,
buckling and aeroelastic constraints. For the second step, a stacking sequence
optimization is carried out using the optimized stiffness solution from step
one as the objective, while satisfying constraints related to stacking sequence.
For the third step, a fibre path optimization is performed while satisfying con-
straints related to manufacturability, that depend on the selected type of man-
ufacturing technique, e.g. fibre placement. General overview of the three opti-
mization steps is given in [66]. An optimization framework is presented in [44]
that is based on the first step of the current optimization strategy, to optimize
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the stiffness distribution of composite aircraft wings. This thesis follows the
same strategy as in [44], where a framework for stiffness-based optimization
of composite wind turbine blades is presented.

This chapter presents an overview of the developed framework for
stiffness-based optimization of composite wind turbine blades. Detailed de-
scription of the modules that constitute the framework is given in the follow-
ing chapters. An overview of the optimization process and a brief description
of the major components of the framework is presented in section 3.1. Af-
terwards, a short account of the design variables is given in section 3.2, fol-
lowed by section 3.3 where a concise description of the various responses im-
plemented in the current optimization framework is given.

3.1. OPTIMIZATION FRAMEWORK
The optimization framework presented in this thesis is intended for optimiz-
ing the stiffness of composite laminates used in the design of the structural
components of wind turbine blades. A framework, in the context of this thesis,
is the interaction of different software modules created to perform a desired
task, where in this case the task is the stiffness-based optimization of compos-
ite structures of wind turbine blades. The optimization process employed in
this thesis corresponds to a successive optimization of convex local approx-
imations of the responses, using a gradient based optimizer. A schematic
overview of the optimization framework is given in figure 3.1, where each
component is described briefly in this section, while detailed elaboration of
the components is presented in subsequent chapters. Examining figure 3.1,

Figure 3.1: Schematic overview of the optimization methodology

the optimization process follows two basic steps. For the first step, starting
from the initial design point and user supplied turbine specifications (Rotor
diameter, blade planform, etc..), the sequence of generating the required re-
sponses and their sensitivities is divided in three tasks. First, the blade ge-
ometry, including its FE model, is generated based on the IGA principle. Sec-
ond, based on the user supplied operational parameters (range of operational
wind speeds, turbines rotational speed, etc..), the aeroelastic loads are cal-
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culated using a low-fidelity model, generating the aeroelastic responses and
their sensitivities with respect to the design variables. The (low-fidelity) aeroe-
lastic module is a one dimensional model, based on the IGA precept, to pre-
dict both the aerodynamic loads and the structural deformations. Third, the
aeroelastic loads are applied, together with their sensitivity with respect to the
design variables, as design dependent loads in an FE model. This is followed
by detailed structural analysis, together with the sensitivity of the structural
responses, using the FE solver NASTRAN, referred in this thesis as high-fidelity
model.

In the second step, after generating the responses and their sensitivities,
an approximation model, suitable for the chosen optimization tool, is for-
mulated using both the responses and their sensitivities, while satisfying the
essential properties of convexity, separability, and conservativeness. The re-
sponse approximations are then passed to the optimizer which iterates on the
approximated model till the minimum that satisfies the constraints is found,
resulting in new design variables. The new design variables are then passed
to the analysis module and the whole process is repeated till the difference
between successive optimum values of the objective function is below a given
tolerance.

In the remaining part of this section, a brief elucidation is given on the
different modules of the optimization framework.

TURBINE SPECIFICATIONS & OPERATIONAL PARAMETERS
This framework gets as input general turbine specifications, which are then
used to model the geometry of the blade and define the turbine’s configura-
tion. The user supplied turbine specifications are: rotor radius, blade radius,
hub radius, hub height, number of blades and blade planform data. The blade
planform data consists of the chord and twist distribution along the blade ra-
dius. The hub height together with the wind speed at hub height is employed
to calculate the wind shear profile, using the power law relationship. The wind
shear profile is then used as input to analyse the average aerodynamic load on
the blade, per blade rotation.

In addition to the turbine specifications, operational parameters such as:
cut-in, rated and cut-out wind speeds, together with the rated rotational speed
and optimum tip speed ratio are used to determine the aeroelastic loads on
the wind turbine blade. Since the framework takes into account the effect of
wind shear, discrete sampling points of the azimuth angle are initially sup-
plied to calculate the average aerodynamic loads on the rotor disc, see section
4.1. Furthermore, the Weibull’s probability density function for hub height
wind speeds is supplied by the user to evaluate the annual energy production,
see section 9.2.3.

OPTIMIZATION MODEL
The optimization model defines the type of design variables passed to the op-
timizer. The design variables considered in this thesis are elements of the
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membrane A and bending D stiffness matrix together with the laminate thick-
ness h. See section 2.3.2 for further details on parametrization of composite
laminates. The method of parametrizing the material distribution along the
blade span and along the chord, together with the linking of the design vari-
ables to the blade model, is given in section 4.3.

MODEL GENERATION
A parametric approach used to model wind turbine blades, with generic
shapes and materials, forms the starting point of the current optimization
process. The present method makes use of the 1D NURBS functions to
parametrize the blade shape and material properties.

The geometry of a wind turbine blade is defined as a series of oriented
cross-sections connected by a beam axis. The beam axis is described as a
3D NURBS curve with the corresponding control points locations. The cross-
section variation, along the blade span, is parametrized by associating an air-
foil geometry with each control point and interpolating using NURBS func-
tions. The airfoil geometry associated with each control point is generated by
a linear combination of pre-defined airfoil shapes. The orientation of each
airfoil is defined by the local twist which is also represented by a NURBS func-
tion.

For the FE model of the blade, the outer shape of the blade and the spars
are modelled by shell elements. The properties of the shell elements are de-
fined using laminate membrane and bending stiffness matrix and thickness.

The geometry of the model and its Finite Element discretization remains
unchanged during the optimization, except the material properties, which are
altered by the optimizer. For detailed description on parametric modelling of
wind turbine blades, the reader is directed to chapter 4.

AEROELASTIC MODULE
The aeroelastic module is used to calculate the loads on a wind turbine blade.
This module consists of three components. The first module calculates the
sectional stiffness constants of thin-walled blade sections with an arbitrary
composite layup. In the second module, the blade deformations are modelled
using isogeometric formulation of geometrically exact 3D beam theory, where
the sectional stiffness constants, calculated in the first module, are used as
input. Additionally, the second module also calculates the gravitational and
centrifugal loads on a rotating blade. The aerodynamic loads are calculated
in the third module using Blade Element Momentum theory, while account-
ing for the effect of large blade deformations on the aerodynamic loads. The
aeroelastic equilibrium is evaluated by iterating, for all given wind speeds, be-
tween the aerodynamic and structural modules until equilibrium condition is
reached.

In chapter 5, the method to calculate the sectional stiffness constants is
explained in detail, whereas chapter 6 describes the module for calculating
the deformations of the wind turbine blade. The module that calculates the
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aerodynamic loads and the method for finding the aeroelastic equilibrium, is
discussed in chapter 7.

FINITE ELEMENT MODULE

The aeroelastic loads are passed to a structural solver in order to perform de-
tailed structural analysis. The finite element solver NASTRAN is used to cal-
culate the stress and buckling responses using the FE model of the blade. The
aeroelastic loads, including the centrifugal and gravitational loads from the
aeroelastic module, are applied as design dependent loads to the FE model.
The stress and buckling responses are then extracted from the NASTRAN anal-
ysis, together with their sensitivities with respect to the design variables. De-
tails on passing aeroelastic loads to NASTRAN and extracting relevant re-
sponses is given in chapter 8

RESPONSE APPROXIMATION

This model defines a procedure to approximate the responses before passing
the response approximations to the optimizer. First, the type of responses,
passed to the optimizer are defined. Different kind of responses may be re-
quested, for example the tip deflection from the aeroelastic module or the
buckling load factor from the Finite Element module, depending on the type
of objective to be minimized and the corresponding constraints that need to
be met.

Second, the sensitivities of the requested responses with respect to the de-
sign variables are calculated to formulate the response approximations, which
are then passed to the optimizer. The sensitivities are calculated both in the
aeroelastic module and in the finite element module. The sensitivities of the
aeroelastic loads are calculated using the adjoint method, while the sensitiv-
ities of the NASTRAN responses are solved using the direct method. Further-
more, a method is developed to pass the sensitivities of the aeroelastic loads,
calculated outside NASTRAN, into the NASTRAN analysis. This results in cor-
rect application of design dependent loads into the FE model, resulting in cor-
rect sensitivity results from the NASTRAN analysis.

Once the response vector and the sensitivity matrix are generated, the re-
sponse approximation can be formulated. The required responses are approx-
imated based on their sensitivities with respect to the design variables. The
sensitivities are extracted from NASTRAN or the aeroelastic analysis, depend-
ing of the type of response considered. The response approximation need
to comply with three characteristics: convex, separable, and conservative.
Therefore, a physical insight of each type of response is necessary for choosing
the appropriate approximation strategy that satisfies the above requirements.
Details on defining the responses, their sensitivity and approximation strategy
is given in chapter 9.
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3.2. DESIGN VARIABLES
The material properties of a wind turbine rotor blade are made from Compos-
ite laminates. The number of design variables and the number of responses in
stiffness-based optimization of detailed structural entities can be in the range
of thousands. The size of a sensitivity matrix is a product of the number of
responses and the number of design variables, leading to a sensitivities matrix
with tens of thousands entries. It is therefore necessary to develop a method
where limited design variables are used while providing detailed description
of the material destitution along the wind turbine blade, leading to a reduc-
tion of the computational time during the optimization process.

Symmetric laminates are used in the current optimization studies; there-
fore, components of the laminate stiffness matrix describing the coupling be-
tween membrane and bending B is zero for all considered laminates. The
laminate properties are comprised of the laminate thickness h, membrane
stiffness matrix A, and bending stiffness matrix D . Thirteen design variables
per laminate are used: one variable for the laminate thickness, six variables
for the membrane stiffness matrix and six variables for the bending stiffness
matrix, exploiting the symmetric nature of the matrices. See section 2.3 for
further details on optimization of composite structures.

DESIGN VARIABLE DEFINITION IN IGA
Based on the precepts of IGA, the design variables for the beam model are de-
fined at the control points of the L3 level, from the multilevel parametrization
scheme of a wind turbine blade, shown in figure 4.2. before assigning lami-
nate properties over the blade section, a generic discretization of the cross-
section is carried out. This determines, among others, the region of a cross-
section that the properties of each laminate, per cross-section, is applied to.
The method of defining the design variables within the context of isogeomet-
ric analysis, to calculate the sectional stiffness constants (chapter 5), is given
in section 4.3.1.

DESIGN VARIABLE DEFINITION IN FEM
The material properties of the blade model are defined in the finite element
solver NASTRAN using a combination of the PHSELL and MAT2 property
cards. The shell thickness are defined using the PHSELL card, while the MAT2
card is used to define the thickness normalized membrane Â and bending D̂
stiffness matrix. The method of passing material design variables and con-
verting the sensitivities from the finite element analysis to the IGA framework
is given in section 4.3.2.

3.3. RESPONSE DEFINITION
This thesis focuses on static aeroelastic optimization of wind turbine blades.
Particularly, the use of twist coupling to enhance the performance of stall reg-
ulated wind turbines is investigated. With this in mind, the current optimiza-
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tion work contains two types of responses; responses derived from the aeroe-
lastic analysis and responses from the finite element analysis. The definition
of the responses and their response approximations is outlined in chapter 9.

AEROELASTIC RESPONSES
The responses for the aeroelastic analysis are used in two folds. First, the
aeroelastic loads calculated using the aeroelastic model are passed as design
dependent loads for detailed finite element analysis using NASTRAN. Second,
several responses from the aeroelastic module are used to calculate the cost
of energy and are also used directly as design constraints in the optimization
process (for example the maximum blade deflection is constrained). A de-
tailed description of the aeroelastic responses is given in section 9.2.1.

STRUCTURAL RESPONSES
The responses from the detailed finite element analysis are essential in the
current optimization framework to size the wind turbine blade. The struc-
tural responses consist of stresses of all shell elements, from the finite element
model, and the buckling load factors. Based on the stress responses together
with their sensitivities with respect to the design variables, the strain failure
constraints are calculated using the method proposed in [66]. Additionally,
the buckling load factors are used to construct the buckling failure constraints.
A detailed description of the structural responses is given in section 9.2.2.

BLADE MASS & COST OF ENERGY

Both the blade mass and the cost of energy are used as objectives in the cur-
rent optimization work. A baseline for stall regulated 5MW wind turbine
blade is designed using the blade mass as the objective to be minimized. The
cost of energy is used as an objective to investigate the benefit of using com-
posite materials to enhance the performance of large stall regulated wind tur-
bine machines. The reader is directed to section 9.2.3 for detailed description
on the cost model.

3.4. SUMMARY
An overview of the major steps of the optimization process is presented, which
includes a brief overview of the Isogeometric framework for calculating the
aeroelastic responses, a method of passing design dependent loads for de-
tailed structural analysis, and setting up response approximations suitable for
the considered optimization process. The reader will find, in the subsequent
chapters, detailed information of the topics mentioned in this chapter.
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BLADE GENERATION

This chapter presents a method for parametrically describing the geome-
try and material properties of a wind turbine blade. The blade geometry is
parametrized in-terms of its chord, twist and the position vector of the beam
axis. The cross-section variation along the blade axis is parametrized in-terms
of pre-defined airfoil geometries. The material properties for all the structural
entities of the blade are defined from a set of laminates. The parametric mod-
elling, proposed in this chapter, allows to efficiently investigate the effect of
changing different parameters of the rotor blade on the wind turbine rotor
performance.

NURBS representations are commonly used to construct Computer Aided
Design descriptions of engineering products. More recently NURBS represen-
tations are applied to model physical response quantities both in structural
analysis [36], where they are used to describe the variation of displacements
and/or stresses, and in aerodynamic analysis where they are used to describe
the variation of flow velocities and pressures [63]. The use of the same de-
scription for both geometry and physics is termed isogeometric analysis. In
this chapter, an IGA based framework is created to model both the geometric
and material properties of a wind turbine blade.

Section 4.1 describes the parametrization of a wind turbine blade geome-
try. Followed by a description on generating finite element model for detailed
structural analysis, in section 4.2. Finally, the optimization model used in the
current thesis is described in section 4.3.

This chapter is based on a paper titled Isogeometric based framework for aeroe-
lastic wind turbine blade analysis by E.A. Ferede, M.M. Abdalla, and G.J.W. van
Bussel, Wind Energy, 2016. Note: symbols may have been changed to ensure
consistency throughout the thesis.
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4.1. GEOMETRY MODEL
A parametric approach is set-up to model wind turbine blades with generic
shapes including general planform shapes, sweep or curvature of the centre-
line. The parametrization is intended to be used for performing parametric
design studies and preliminary optimisation of the blade planform, blade axis,
and material properties.

The blade geometry is modelled in the rotating, X Y Z frame, as shown in
figure 4.1. The base vector e3 is orthogonal to the rotor plane, while e1, e2

span the rotor plane. Moreover, a fixed frame is formed by the orthonormal
triad a1, a2, and a3, with the origin at the bottom of the tower. The posi-
tion of the blade in global coordinates is specified by the azimuth position φ,
which is important in the calculation of the gravity load and wind shear ef-
fects. The present method makes use of the NURBS functions, described in

Figure 4.1: Definition of moving reference frame and wind shear for wind turbine aeroelastic
analysis

section 2.2, to parametrise the blade shape and material properties. A multi-
level discretization scheme is used to parametrize the beam axis geometry,
blade planform shape, material distribution, and response using successively
finer control point nets as shown in figure 4.2. The mapping between different
levels of refinement is performed according to the Knot refinement method
described in section 2.2.2.

The geometry of a wind turbine blade may be defined as a series of ori-
ented cross-sections connected by a beam axis. The beam axis is described
as a 3D NURBS curve with the corresponding control points locations P r

i , i =
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Figure 4.2: Multi level parametrization of a wind turbine blade

1, . . . ,nr . The cross-section variation is parametrized by associating an airfoil
geometry with each control point and interpolating using NURBS functions.
The airfoil geometry associated with each control point is generated by a lin-
ear combination of pre-defined airfoil shapes. The orientation of each airfoil
is defined by the local twist which is also represented by a NURBS function.

4.1.1. BEAM AXIS
The position of an arbitrary point on the beam axis is interpolated as,

r b(ξ) =
nr∑

i=1
Ri ,p (ξ)P r

i , (4.1)

where P r
i are control point locations.

The arc-length,measured from the root of the blade, is given by,

s(ξ) =
ξ∫

0

J (ξ)dξ, (4.2)

where J (ξ) is the Jacobian,

J (ξ) =
∥∥∥∥dr b

dξ

∥∥∥∥ . (4.3)

The cross-sections are orthogonal to the beam axis. Consequently, the
body attached base vector normal to the cross-section is tangent to the beam
axis,

g 1 =
1

J

dr b

dξ
. (4.4)
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The reference chord direction, i.e. for untwisted blade, is defined as the pro-
jection of e2 onto the plane of the cross section, viz.,

g̃ 2(ξ) = e3 ×g 1(ξ)

‖e3 ×g 1(ξ)‖ , (4.5)

The vector g̃ 3 is calculated to complete the orthogonal triad as,

g̃ 3(ξ) = g̃ 1(ξ)× g̃ 2(ξ), (4.6)

In the case of a twisted blade, the base vectors g 2 and g 3 are rotated by the
structural twist,

g 2(ξ) = cos(θ)g̃ 2 − si n(θ)g̃ 3 and g 3(ξ) = si n(θ)g̃ 2 + cos(θ)g̃ 3, (4.7)

where θ(ξ) is the structural twist calculated using the control point value Pθ
i

and the NURBS function as,

θ(ξ) =
nc∑

i=1
Ri ,p (ξ)Pθ

i . (4.8)

Note that the twist angle is defined at the second discretization level together
with airfoil shapes.

The base vectors spanning a cross-section at ξ define an orientation ma-
trix,Λ0(ξ) = [

g 1, g 2, g 3

]
.

4.1.2. CROSS-SECTION
The cross-sectional shape of a turbine blade at a parametric point ξ is mod-
elled using a set of user supplied airfoil shapes, also referred as base airfoils.
The user supplies the desired number of elements in chord direction(Nc ) and
the chord-wise position of the spars(V sp ), which is then used to discretize
the base airfoils(with unit chord) with the same number of elements while
preserving the connectivity between the nodes of the base airfoils. The dis-
cretized position vectors of the base airfoils, denoted by P ba f , together with
the parameter C , are used to calculate the position vectors of an airfoil shape
at a control point. The parameter C is an nc ×m matrix, where m refers to
the number of base airfoils and nc refers to the number of control points at
the L2 discretization level(see figure 4.2). The column wise summation of C
results in the chord length per control point, while row wise elements of C
refer to chord coefficients of the base airfoils for a particular control point.
This method of parametrizing the cross-section enables to smoothly vary the
cross-sectional shape along the span, for example by continuously morphing
one airfoil shape from the root to another airfoil shape at the tip. The position
vector of an airfoil shape at a control point i is calculated as,

P a f
i =

m∑
j=1

Ci , j P ba f
j . (4.9)
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Figure 4.3: A linear combination of three base airfoils P
ba f
j with their respective chord

coefficients Ci , j

An example of equation 4.9 is shown in figure 4.3, where three base airfoils,
with their respective chord coefficients, are summed together to get an air-
foil shape at a single control point. The shape of a cross-section, in a plane
spanned by g 2 and g 3, is given as,

R2D (ξ) = r 0
2D +

nc∑
i=1

Ri ,p (ξ)P a f
i , (4.10)

where,

r 0
2D =

nc∑
i=1

m∑
j=1

Ci , j P 2D
i , (4.11)

and P 2D
i is a non-dimensional vector, at control point i , defining the inter-

section of the beam axis with the cross-sectional plane(see figure 4.4). The
position vector of a cross-section, with respect to the moving frame, at ξ is
given by,

R(ξ) = r b(ξ)+Λ0(ξ)R2D (ξ), (4.12)

Figure 4.4: Example of airfoil discretization, where the local airfoil coordinates are denoted by
X 1 and X 2, while g 2 and g 3 are the base vectors of the beam axis that span the cross-section.
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4.2. FINITE ELEMENT MODEL
Based on the geometry of the wind turbine blade described in section 4.1, the
finite element model is generated. The blade geometry is discretized using
quadrilateral elements. The nodal position of these elements are generated
using the discretized cross-sections discussed in section 4.1.2. The parametric
point ξ, at which the intermediate cross-sections are calculated, is determined
by the, user supplied, aspect ratio(ar ) between the element size in chord di-
rection and span wise direction, as can be seen in figure 4.5.

Figure 4.5: Discretization of the geometry in span wise direction and representation of RBE3
connection

The finite element solver NASTRAN is used to calculate the structural re-
sponse of a wind turbine rotor. The elements used to discretize the outer skin
of the wind turbine blade, including the spars, are the NASTRAN CQUAD4 el-
ements. The laminate properties may be defined in NASTRAN using a combi-
nation of PSHELL and MAT2 input options, which are referred in NASTRAN
as card. The PSHELL card is used to assign the laminate thickness, while
the MAT2 card is used to assign the, thickness normalized, membrane Â and
bending D̂ stiffness properties. The laminate properties, for elements be-
tween the cross-sections at ξi and ξi+1, are calculated using equation 4.13, for
ξ= 1

2

(
ξi +ξi+1

)
. The method to define the material properties of the NASTRAN

model is covered in section 4.3.2.

4.2.1. INTERFACE MODEL
The interface model is used to apply the aeroelastic loads, calculated outside
NASTRAN, unto the finite element model for detailed structural analysis. To
this end, additional grid points are created where the aeroelastic loads are
applied. The grid points, where the aeroelastic loads are applied, are con-
nected to the existing grid points of the finite element model using multi point
weighted connection. This type of connection averages the displacement of
the new grid point, where the loads are applied, from the displacement of the
existing grid points of the finite element model. This leads to a smooth intro-
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duction of the external loads to the finite element model. The corresponding
NASTRAN element is called RBE3. An example of the multipoint connections,
per cross-section, using the RBE3 cards is shown in figure 4.5.

4.3. OPTIMIZATION MODEL

The material properties of the wind turbine blades, proposed in this thesis,
are composed of Composite materials. The number of design variables and
the number of responses, in stiffness-based optimization of detailed struc-
tural entities, can be in the range of thousands. The size of a sensitivity matrix
is a product of the number of responses and the number of design variables,
leading to a sensitivity matrix with tens of thousands entries. It is therefore
necessary to develop a method where limited design variables are used while
providing detailed description of the material destitution along the wind tur-
bine blade, leading to a reduction of the computational time during the opti-
mization process.

Symmetric laminates are used in the current optimization studies. There-
fore, the laminate properties are comprised of the laminate thickness h, mem-
brane stiffness matrix A, and bending stiffness matrix D . There are thirteen
design variables per laminate: one variable for the laminate thickness, six vari-
ables for the membrane stiffness matrix, and six variables for the bending stiff-
ness matrix, exploiting the symmetric nature of the matrices. See section 2.3
for further details on optimization of composite structures. First the method
of defining the design variables within the context of isogeometric analysis is
presented in section 4.3.1. Followed by section 4.3.2, where the definition of
the design variables employed in detailed structural analysis using the finite
element solver NASTRAN is described.

4.3.1. DESIGN VARIABLE DEFINITION IN IGA

Following the precepts of IGA, the laminate properties are defined at the con-
trol points. First, the number of laminates per control point are determined
by dividing the cross-section in Npr sections, where the contour of the cross-
section is defined by Npr − 1 laminates, while the shear webs with a single
laminate (see figure 4.6). The, user supplied, vector V pr determines the dis-
cretization of the (non-dimensional)chord for material assignment. This vec-
tor is used to determine the elements, per cross-section, having the same ma-
terial properties, linking the property of the laminates per cross-section with
the property of the elements. The laminate properties at a parametric point
ξ(along the blade span) are calculated using the laminate properties at the



4

42 4. PARAMETRIC WIND TURBINE BLADE GENERATION

Figure 4.6: Example of property assignment on cross-section level, where each colour represents
a single laminate.

control points and the NURBS function as:

hk (ξ) =
m∑

i=1
Ri ,p (ξ)P k

h,i ,

Ak (ξ) =
m∑

i=1
Ri ,p (ξ)P k

A,i ,

Dk (ξ) =
m∑

i=1
Ri ,p (ξ)P k

D,i ,

(4.13)

where k = 1, . . . , Npr , is an index running over the laminates per control point
and m is the number of control points to parametrize the material properties,
defined at the L2 parametrization level shown in figure 4.2. The control point
laminate properties are denoted by P k

h , P k
A , and P k

D . Hence, the design vari-
ables x are comprised of the laminate variables defined at the control points,
where the size of x is 13Npr m.

4.3.2. DESIGN VARIABLE DEFINITION IN FEM
The material characteristics of a blade model are defined in the finite element
solver NASTRAN using the property cards. Material properties of shell ele-
ments are defined using the PSHELL cards. This card is used to define the
shell thickness and identification numbers of the cards that contain the mate-
rial properties of the shell elements. The material properties, for orthotropic
laminates, are defined using the MAT2 card, which contains, for symmetric
laminates, the thickness normalized membrane Â and bending D̂ stiffness
matrix.

Design variables are defined in NASTRAN using a combination of three
cards. The DESVAR card contains the labels and the initial values of the design
variables. The DVPREL1 or DVMREL1 cards are used respectively, to link the
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design variables, defined in the DESVAR card, to the PSHELL or MAT2 cards. A
schematic representation of the links described above is shown in figure 4.7.

Figure 4.7: Schematic representation of design variable definition in Nastran

Increasing the number of design variables has the disadvantage of increas-
ing the computational time for solving the design optimum of the approxi-
mated model. In addition, larger design variables constitute in an increased
local minima of the real non-convex design space. Furthermore, the manu-
facturing process also poses a constraint on the maximum number of design
variables used for optimization. To this end, based on the precepts of IGA, the
laminate properties passed to the finite element model are calculated using
the laminate properties at the control points, see equation 4.13. A schematic
example of interpolating the laminate properties from control points to the
fem model is given in figure 4.8, for the top skin. According to this example,
twelve laminates are defined at the control points while three laminates are
associated to each control point. The laminates at the control points serve
as design variables. The material properties of the shell elements, constitut-
ing the top skin, are obtained by interpolating the laminate properties at the
control points and the NURBS shape functions, according to equation 4.13.

Figure 4.8: Design fields for the top skin
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The laminates passed to NASTRAN as design variables are the interpolated
laminates (see figure 4.8). This means that the sensitivities of the responses
from NASTRAN are with respect to the interpolated laminate properties. The
sensitivity of the NASTRAN response f with respect to the control point lami-
nate variables (hcp , Acp ,Dcp ) are calculated from the sensitivities of the NAS-
TRAN responses as:

∂ f

∂hcp
= ∂ f

∂ĥi

∂ĥi

∂hi

∂hi

∂hcp
+ ∂ f

∂Âi

∂Âi

∂hi

∂hi

∂hcp
+ ∂ f

∂D̂ i

∂D̂ i

∂hi

∂hi

∂hcp
,

∂ f

∂Acp
= ∂ f

∂Âi

∂Âi

∂Ai

∂Ai

∂Acp
,

∂ f

∂Dcp
= ∂ f

∂D̂ i

∂D̂ i

∂D i

∂D i

∂Dcp
,

(4.14)

where the coefficients with the subscripts i are summed over the number of
interpolated laminates. The subscripts cp and i indicate the laminate vari-
ables at the control points and the interpolated laminate variables respec-
tively. The relation between normalized laminate variables and the full lam-
inate variables: (ĥ, Â,D̂) 7→ (h, A,D), is given in section 2.3.2. Finally, the
derivatives of the interpolated laminate variables with respect to the laminates
at control points: ∂hi

∂hcp
, ∂Ai
∂Acp

, and ∂D i
∂Dcp

, are derived from equation 4.13.

4.4. SUMMARY
An isogeometric framework is presented for parametrizing a wind turbine ro-
tor blade, where the geometric model generation, using NURBS function, is
described in detail. The generation of the finite element model is described
afterwards, together with a description on the interface model to connect the
aeroelastic loads, calculated using low-fidelity model, with the high-fidelity
structural model using NASTRAN. Finally, detailed description on the opti-
mization model for defining the material design variables is given. The first
component of the low-fidelity model is the analysis of the sectional stiffness
constants, used to determine the blade deformation. A detailed description
on the method to calculate the sectional stiffness properties of thin-walled
composite beams with generic cross-sectional shape is given in the following
chapter.



5
STIFFNESS CONSTANTS OF

THIN WALLED COMPOSITE

CROSS-SECTIONS

This chapter presents a computationally efficient finite element method to
calculate the sectional properties of thin-walled composite beams with arbi-
trary open and closed cross-sections. The formulation is based on the classical
laminate theory, making it suitable for use in composite optimisation. Finite
element method is then employed to evaluate the sectional stiffness constants
of composite blades, which are then implemented in a beam model that is
based on an isogeometric formulation of a geometrically exact 3D beam the-
ory.

First, the motivation for proposing a novel method to calculate the sec-
tional constants is presented in section 5.1, followed by a formulation of
the generalized shell strains in terms of the beam strain resultants (Euler-
Bernoulli for extension and bending while Saint-Venant for torsion) and the
unknown cross-sectional warping in section 5.2. A finite element procedure
is presented in sections 5.3.1 (Euler model) and 5.3.2 (Timoshenko model),
where the warping displacements are solved using the principle of minimum
strain energy and recast back into the strain energy expression, from which
the sectional stiffness constants are determined. In section 5.4, the sectional
stiffness constants, calculated using the present method, are compared with
literature results for a family of closed and open cross-sections.

This chapter is based on a paper titled Cross-sectional modelling of thin-walled
composite beams by E.A. Ferede and M.M. Abdalla, submitted to journal of
thin-walled structures. Note: symbols may have been changed to ensure con-
sistency throughout the thesis.
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5.1. INTRODUCTION

The 3D non-linear elastic problem of slender structures can be decoupled into
2D linear sectional analysis to calculate the elastic constants and 1D non-
linear analysis to calculate the global deformation. A review on modelling
composite beam cross-sections is given in [33], where the methods in calcu-
lating the sectional stiffness constants can be classified in analytical or finite
element method. Analytical solutions for the elastic constants of composite
beams are available [102, 103, 114, 14, 69, 89, 125, 126, 112, 135, 77, 2], but are
limited to special cases, making them unsuitable for optimization.

In contrast, numerous finite element methods are developed to calculate
the sectional properties of composite beams, which may be subdivided into
three categories. (1) a semi discretization method, where finite element repre-
sentation of a bi-dimensional problem is solved using spectral decomposition
of the eigenvalue problem of the equilibrium equations. The central solutions,
corresponding to null eigenvalues, are asymptotic to the Saint-Venant solu-
tions for extension,bending,torsion, and flexure [50]. A finite element code
NABSA is developed based on this formulation. (2) Finite element methods
are available for constructing the Saint-Venant solutions for extension, bend-
ing, torsion, and flexure, either using the semi inverse method [79] or the
Iesan’s rational scheme [118, 80, 83]. (3) The variational asymptotic beam sec-
tional analysis (VABS) [60, 139, 138, 137, 109, 111, 110, 61, 29, 30, 31, 32] is a
finite element code, based on the variational asymptotic method (VAM) [12],
to calculate the sectional stiffness properties of composite beams. Although
all the finite element methods mentioned here are in general generic and thus
capable of accounting complexity in terms of material and geometry, detailed
discretization of the cross-section is necessary, requiring detailed information
of the ply properties across the thickness (thin-walled beams). However, de-
tailed information on composite ply properties is in general unknown at the
preliminary design stage and more importantly one wants to reduce the num-
ber of design variables during the optimization process.

5.2. KINEMATICS

This paper considers only thin-walled beams where the structure is modelled
as a thin shell and the beam length is much larger than the cross-sectional di-
mensions. The shell is also assumed to be cylindrical, representing a straight
and prismatic beam (see figure 5.1). Figure 5.1 shows the cartesian coordi-
nates denoted by: x, y , and z. The x axis of the cartesian coordinate system
is parallel to the curvilinear coordinate which is also denoted by x. The curvi-
linear coordinate s is the arc-length along the contour of the cross-section. n
is the curvilinear coordinate normal to the shell mid plane. Components of
the beam displacement in x, y , and z axis are denoted by ux0,uy0, and uz0, re-
spectively. Components of the beam rotations in x, y , and z axis are denoted
by θx0,θy0, and θ0, respectively. The displacement components along x, and
s are denoted by u, and v . The displacement component normal to the shell
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Figure 5.1: Shell kinematics

mid plane is denoted by w . Changes in shell normal are denoted by φs , and
φx . The skin thickness, which is not constant along the cross-section, is de-
noted by h.

Starting from the work of [122] and assuming small displacements and ro-
tations, the mid-plane strains and change in curvature, are expressed in terms
of the mid-plane displacements of the shell and change in shell normal, i.e.

εα,β =
1

2

(
uα,β+uβ,α

)+καβw and ρα,β =
1

2

(
φα,β+φβ,α

)
, (5.1)

where ε is the (mid-plane)shell strain, and ρ is the change in curvature. The
Greek indices α,β run from 1 to 2 over shell surface coordinates, and καβis
the initial curvature of the shell. uα are the components of in-plane displace-
ment in the curvilinear coordinate system

(
in this case u, and v

)
, and w is the

displacement normal to the mid-plane.

The change in shell normal has components φα, which are φs , and φx .
For thin shells the Kirchhoff assumption is valid and φα = −w,α. A comma
subscript indicates derivatives with respect to a surface coordinate.

For the cylindrical shell under consideration, the surface is parametrized
in terms of two coordinates x, and s (see figure 5.1). A prime and a dot are used
to indicate derivatives with respect to x and s respectively. The displacements

in curvilinear coordinate are grouped in the vector u = {
u v w φs φx

}t
,

while mid-plane strains and change in shell curvature are grouped in a gener-
alised strain vector Γ. The strain-displacement relationship may now be cast
in the form,

Γ= B 0u +B 1u′, (5.2)
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where

B 0 =



0 0 0 0 0
0 ∂

∂s
1
R 0 0

∂
∂s 0 0 0 0
0 0 0 0 0
0 0 0 ∂

∂s 0
0 0 0 0 ∂

∂s

 and B 1 =



1 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 1

R 1 0

 . (5.3)

The shell displacements are decomposed into beam displacements, where
the cross-section translate and rotate rigidly, and warping displacements, i.e.

u = Ru0 +w , (5.4)

where w is the warping displacement. The beam displacements and ro-
tations, in Cartesian coordinate system, are grouped in a vector u0 ={
ux0 uy0 uz0 θx0 θy0 θz0

}t
. The rigid translations and rotations of the

cross-section, in curvilinear coordinate system, are represented by the matrix
R , written as

R = R0
(
s
)(

I +xẼ
)
, (5.5)

where

R0 =
[
r 1 r 2 r 3 r 4 r 5 r 6

]
and Ẽ = [

0 0 0 0 −e3 e2
]

.
(5.6)

The columns of R0, and Ẽ are expressed in curvilinear coordinate system as,

r 1 =
{
1 0 0 0 0

}t

r 2 =
{
0 ẏ −ż 0 0

}t

r 3 =
{
0 ż ẏ 0 0

}t

r 4 =
{
0 y ż − z ẏ zż + y ẏ −1 0

}t

r 5 =
{

z 0 0 0 ẏ
}t

r 6 =
{−y 0 0 0 ż

}t

e2 =
{
0 1 0 0 0 0

}t

e3 =
{
0 0 1 0 0 0

}t

(5.7)

r 1 to r 3 are rigid translations of the cross-section in x, y , and z directions re-
spectively, whereas r 4 to r 6 are rotations in x, y , and z directions respectively.
I is a six by six identity matrix.

There is no strain due to rigid body displacements or rotations. There-
fore, setting the warping displacement

(
w

)
to zero and substituting u = R into

equation 5.2 while using equation 5.5 yields relationships between B0 and B1

at each cross-section, defined as

B 0R0 +B 1R0Ẽ = 0. (5.8)
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Analysing equation 5.8, it is found that B 0r i = 0, for i 1. . .4, which shows that
B 0 is rigid-body invariant. In addition, a relationship between the two bend-
ing modes with the two transverse shear modes is obtained, such that

B 0r 5 = B 1r 3 and B 0r 6 =−B 1r 2. (5.9)

The Euler-Bernoulli assumption stipulates that

θy0 =−u′
z0 and θz0 = u′

y0. (5.10)

Substituting equation 5.4 into 5.2, and using the relations between B 0, and
B 1 (given in equation 5.8) together with the relations given in equation 5.10,
the strain-displacement relationship is defined explicitly in-terms the beam
displacements and the unknown warping functions, i.e.

Γ=Gε+B 0w +B 1w ′, (5.11)

where ε is the Euler beam strain, defined as

ε=
{

u′
x0,θ′x0,θ′y0,θ′z0

}t
, (5.12)

and the matrix G is given by
G = B 1Re (5.13)

with

Re =
[
r 1 r 4 r 5 r 6

]
(5.14)

containing the four Euler rigid body modes: extension, torsion and bending
in two directions.

From classical lamination theory [70], the stress resultants N are related to
the generalized shell strains through the laminate stiffness matrix, i.e.

N =CΓ (5.15)

where C is the stiffness matrix of a laminate. The total strain energy of a beam
is defined as

U = 1

2

∫
L

(∫
s

N tΓd s
)
dL =

∫
L

Û dL, (5.16)

where

Û = 1

2

∫
s

Γt CΓd s (5.17)

is the strain energy per unit length. The beam model is the outer solution of
the 3D non-linear elasticity problem of a slender structure. The beam model
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is valid away from boundaries and points of load introduction. The outer so-
lutions are known as St. Venant solutions and can be decomposed into two
hierarichal sets: Euler-Bernoulli and Timoshenko. The strain energy per unit
length (Û ) may be expressed using the Euler-Bernoulli model or the Timo-
shenko model as

Û = 1

2
εt Seε or Û = 1

2
f t S−1 f , (5.18)

where f is the sectional force resultant, Se is the Euler stiffness matrix, and S
is the Timoshenko stiffness matrix.

5.3. SECTIONAL STIFFNESS CONSTANTS
This section describes the Euler and Timoshenko stiffness matrices, derived
for a thin walled beam with generic cross-sectional shape and anisotropic ma-
terial. First the strain energy per unit length (Û ) is minimized with respect
to the approximation of the warping displacement w , which is then used to
re-write Û in terms of the beam strains (Euler model) or sectional force resul-
tant (Timoshenko model), together with the sectional stiffness matrix (Euler
or Timoshenko).

5.3.1. EULER MODEL
For the Euler-Bernoulli model, the stresses and strains are independent of x.
If warping is independent of x, the first approximation of the generalized shell
strain, given in equation 5.11, reduces to

Γ0 =Gε0 +B 0w 0. (5.19)

The first approximation of Û is then written in terms of the first approxi-
mation of the Euler beam strains and warping displacements as,

Û0 = 1

2

∫
s

(
Gε0 +B 0w 0

)t C
(
Gε0 +B 0w 0

)
d s

= 1

2

∫
s

(
εt

0G t CGε0 +w t
0B t

0C B 0w 0 +w t
0B t

0CGε0 +εt
0G t C B 0w 0

)
d s. (5.20)

The cross-section is discretized using finite element method. Linear shape
function are used to describe the shell’s in-plane displacements (u and v),
whereas quadratic shape functions are used to describe the displacement nor-
mal to shell’s mid-plane and change in normals. Detailed description on the
finite element implementation is given in the appendix.

The integral coefficients of equation 5.20, for a single element, are

F e = le

1∫
0

G t CGdζ H 0e = le

1∫
0

B t
0CGdζ K 00e = le

1∫
0

B t
0C B 0dζ, (5.21)
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where le is the length of a single element. The strain energy of the discretized
model is expressed as

Û0 = 1

2

(
εt

0Fε0 +w t
0K 00w 0 +w t

0H 0ε0 +εt
0H t

0w 0
)
, (5.22)

where F , K 00, and H 0 are assembled using their element properties given in
equation 5.21. The unknown warping displacement (w 0) is solved by mini-
mizing the strain energy, with respect to w 0, using the Euler-Lagrange equa-
tion. Applying the Euler-Lagrange on the strain energy expression given in
equation 5.22 gives a relationship between the Euler strains and the warping
displacements, expressed as

K 00w 0 =−H 0ε0. (5.23)

Note that K 00r i = 0, for i 1. . .4, which suggest that the solution matrix K 00

is four times singular. Because of this property, the way the cross-section is
constrained, to make K 00 non-singular, does not affect the strain energy, thus
also the sectional stiffness coefficients.

The warping displacement is the sum of the solution from equation 5.23
and linear combination of r i , i 1. . .4, i.e.

w 0 =
(
V 0 +RnQ

)
ε0, (5.24)

where

Rn = [
r 1 r 2 r 3 r 4

]
, (5.25)

and Q is an arbitrary four by four matrix. Substituting equation 5.24 into 5.23
gives the first approximation of the warping displacements, defined as

K 00V 0 =−H 0. (5.26)

Substituting equation 5.24 into equation 5.19, and noting that B 0Rn = 0, gives
an expression for the first approximation of the generalized shell strains in
terms of only the Euler strains (see equation 5.27).

Γ0 =
(
G +B 0V 0

)
ε0. (5.27)

Substituting the first order warping solution from equation 5.24 into the
strain energy expression given in equation 5.22, and after collecting terms, the
strain energy per unit length is expressed as

Û0 = 1

2
εt

0Seε0, (5.28)

where the Euler stiffness matrix is given as

Se = F +H t
0V 0. (5.29)
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In order to verify the expression for the Euler stiffness matrix given in
equation 5.29, the Euler forces (extension, bending in two directions and tor-
sion) calculated using 5.29 as

F e = Seε0, (5.30)

are compared with integral of the stress resultants over the cross-section,
given by

F e =
∫

s
R t

e B t
1C

(
G +B 0V 0

)
ε0d s = R t

e

(
H 1 +K 10V 0

)
ε0, (5.31)

where R t
e B t

1 selects components of the stress resultant (normal and in plane of
the cross-section), and H 1, and K 10 are assembled from their element prop-
erties, defined as

H 1e = L

1∫
0

B t
1CGdζ K 10e = L

1∫
0

B t
1C B 0dζ. (5.32)

Noting that G = B 1Re , and the expressions given in equation 5.32, equation
5.31 reduces to

F e =
(
F +H t

0V 0
)
ε0 = Seε0 (5.33)

verifying that the Euler stiffness given in equation 5.29 is derived correctly.
Put text here.

5.3.2. TIMOSHENKO MODEL
The Timoshenko model is an extension to the Euler-Bernoulli model by tak-
ing the transverse shear into account. For the Timoshenko model, higher or-
der approximations of the generalized strain expression is added to the first
approximation Γ0.

Γ1 =Γ0 +Gε1 +B 0w 1 +B 1w ′
1, (5.34)

where ε1 and w 1 are the second approximation of the beam strains and warp-
ing displacements, respectively. The second approximation of the strain en-
ergy is then given by

Û1 = 1

2

∫
s

(
Gε0 +B 0w 0 +Gε1 +B 0w 1 +B 1w ′

1

)t C(
Gε0 +B 0w 0 +Gε1 +B 0w 1 +B 1w ′

1

)
d s. (5.35)

After substituting the solution for w0 from equation 5.24 into equation 5.35,
the second approximation of Û is given in terms of the second approximation
of warping displacements (w 1), as shown here

2Û1 = 2Û0 +εt
0

(
Seε1 +

(
H 1 +K 10V 0

)t w ′
1

)
+

(
εt

1Se +
(
w ′

1

)t (H 1 +K 10V 0
))
εt

0

+εt
1Fε1 +w t

1K 00w 1 +
(
w ′

1

)t K 11w ′
1 +εt

1H t
0w 1 +w t

1H 0ε1 +εt
1H t

1w ′
1

+ (
w ′

1

)t H 1ε1 +w t
1K t

10w ′
1 +

(
w ′

1

)t K 10w 1. (5.36)
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The strain energy given in equation 5.36 is minimized with respect to w 1

using the Euler-Lagrange equation. After applying the Euler-Lagrange equa-
tion on the strain energy expression, terms coming from the underlined and
double underlined terms of equation 5.36 are neglected due to St. Venant as-
sumption (underlined), and the fact that ε′ is neglected to this level of approx-
imation (double underlined). This results in the following relation between
w 1,ε0, and ε1

K 00w 1 =
(

H 1 +K 10V 0
)
ε′0 −H 0ε1, (5.37)

so that the solution for the second approximation of the warping displace-
ment is given by

w 1 =V 1ε
′
0 +V 0ε1, (5.38)

where

K 00V 1 =
(

H 1 +K 10V 0
)
. (5.39)

In order to prove that the second approximation of the strain expression
gives the correct shear forces, components of the second approximation of
the stress resultants that contribute to the shear forces are integrated over the
cross-section (see equation 5.40).

v =
∫

s
R t

v B t
1C

(
Gε1 +B 0w 1

)
d s = [r 2,r 3]t

(
H 1ε1 +K 10w 1

)
, (5.40)

where v is a vector containing the two shear forces, and Rn contains the two
transverse rigid body modes. Using the relation between B 0 and B 1 given in
equation 5.8, the shear force resultants are expressed in terms of the two bend-
ing modes, as shown here

v = [−r 6,r 5]t
(

H 0ε1 +K 00w 1

)
. (5.41)

Substituting the expression for K 00w 1 from equation 5.37 into 5.41 and using
the fact that [−r 6,r 5]t = E t R t

e , the shear forces are given as a function of ε′0
only, i.e.

v = E t R t
e

(
H 1 +K 10V 0

)
ε′0, (5.42)

where

E t =
[

0 0 −1 0
0 1 0 0

]
. (5.43)

Multiplying the Euler forces given in equation 5.31 with E t and taking the
derivative with respect to x yields the same expression for the shear forces as
in equation 5.42, proving that the second approximation of the warping func-
tion does indeed give the correct expression for the shear forces.
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Now that it is proven that the second approximation of the warping func-
tion indeed gives the correct shear forces, a relation between ε1 and ε′0 is ob-
tained using the fact that Euler forces calculated from the second approxima-
tion of the generalized shell strains (Γ1 −Γ0) are zero.

F 1
e =

∫
s

R t
e B t

1C
(
Gε1 +B 0w 1

)
d s = R t

e

(
H 1 +K 10V 0

)
ε1 +R t

e K 10V 1ε
′
0 = 0.

(5.44)

By comparing the expression for the Euler stiffness matrix (Se ) in equation
5.29 to the expression for the Euler force resultant (F e ) in equation 5.31, it can
be shown that

Se = R t
e

(
H 1 +K 10V 0

)
and H t

0 = R t
e K 10. (5.45)

Substituting the relations given in 5.45 into equation 5.44 gives the following
relation between ε1 and ε′0

Seε1 +H t
0V1ε

′
0 = 0. (5.46)

The strain energy is formulated in terms of the force resultants rather than
the strains. Therefore, the following three compatibility equations are needed

that relate the cross-sectional force vector: f = {
f1 f2 f3 m1 m2 m3

}t

to ε0 and ε′0
Seε0 = f e Seε

′
0 = E t v Seε1 +Pε′0 = 0, (5.47)

where

f e =
{

f1 m1 m2 m3
}t

v = {
f2 f2

}t
P = H t

0V 1. (5.48)

Substituting equation 5.47 together with the warping solutions (w 0, w 1) into
the expression for the total shell strain of equation 5.34, yields the following
expression for the shell strains in terms of the force resultants

Γ1 =
((

G +B 0V 0
)
S−1

e I e +
(
B 0V 1 −

(
G +B 0V 0

)
S−1

e P
)
S−1

e E t I s

)
f . (5.49)

The definitions of I e and I s are shown in figure 5.2. Finally, substituting equa-
tion 5.49 into equation 5.36, the strain energy per unit length is written in
terms of the cross-sectional force vector f and the Timoshenko compliance
matrix. Subsequently, taking the inverse of the compliance yields an expres-
sion for the Timoshenko stiffness matrix as shown in equation 5.50.

S =
(

I t
e S−1

e I e + I t
s S−1

s I s − I t
e S−t

es I s − I t
s S−1

es I e

)−1
, (5.50)

where

S−1
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(
F +H t

0V 0

)−1
,

S−1
s = E S−1

e

(
V t

1K 00V +P t S−1
e P

)
S−1

e E t ,

and S−1
es = S−1

e P S−1
e E t (5.51)
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Figure 5.2: Components of the compliance matrix

5.4. VALIDATION OF SECTIONAL STIFFNESS CON-
STANTS

This section presents a comparison of numerical results between the present
method and available literature. First the stiffness properties, for a family
of closed cross-sections, is compared with the results from [110]. Followed
by comparison of the stiffness properties of open cross-sections, with results
from [80]. Finally a comparison with experimental data [47] is performed for
a set of box beams.

5.4.1. CLOSED CROSS-SECTION
A convergence test is first performed to determine the minimum number
of elements required to obtain converged solution for the present method.
The convergence error (ε) is calculated using the Richardson extrapolation
method described in [28] as,

ε=
Si j −Si jextr ap

Si jextr ap

, (5.52)

where Si j is a component of the Timoshenko stiffness matrix calculated using
the present method. The error estimation is performed on the Timoshenko
stiffness matrix of a rectangular cross-section (figure 5.3b), with stacking se-
quence of layup 1 and corresponding ply properties given in table 5.1. Fig-
ure 5.3a shows the relative error (ε) against t

h , where t and h are respectively,
the minimum skin thickness of the cross-section and element size. The figure
contains the relative error for a number of components of the Timoshenko
stiffness matrix. From figure 5.3a, it can be concluded that converged so-
lution is achieved (ε < 1e−2%) for t

h = 0.8. This amounts roughly to 80 ele-
ments for the rectangular cross-section shown in figure 5.3b, and skin thick-
ness of 0.03mm. Therefore, for all comparison studies performed in this pa-
per, t

h = 0.8, is used to determine the amount of elements needed for con-
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verged results.

Table 5.1: Dimension and material properties of a box beam

Dimension
a 0.53 in
b 0.953 in
t 0.03 in

Ply properties
E11 20.59×106 psi
E22 1.42×106 psi
G12 0.87×106 psi
v12

+ 0.3/0.42 [-]

Layups
Layup Upper wall Lower wall Left wall Right wall

1 [15]6 [15]6 [15]6 [15]6

2 [(30,0)]3 [(30,0)]3 [(30,0)]3 [(30,0)]3

3 [15]6 [−15]6 [±15]6 [±15]6
+Poisson’s ratio is 0.3 for layup 1 and 0.42 for layup 2 and 3 in accordance with [32]

(a) (b)

Figure 5.3: 5.3a Plot of the Convergence error against t/h, for a rectangular cross section with
stacking sequence of layup 1; 5.3b Geometry of rectangular cross-section.

The Timoshenko stiffness matrix from the present method is compared
with the results of VABS [32] and NABSA [50]. The results from NABSA are
used as a benchmark in the present study. A rectangular box with dimen-
sions and material properties given in figure 5.3b and table 5.1 respectively, is
used for comparison. The present method uses 80 beam elements to generate
converged results compared to NABSA which uses 216 planar quadrilaterals
(8 nodes per element) and VABS 289 planar quadrilaterals (6 or 8 nodes per
elements). In addition to the results of the Timoshenko stiffness constants,
components of the Euler stiffness constants are calculated for the results from
the literature using static condensation on the two transverse shear rows and
columns, which is equivalent to the Euler stiffness constants given in equation
5.29.

The relative difference of the energy norm is a measure of how well the
strain energy is captured by the two methods (Present and VABS) compared to
NABSA, and is given by,

δe = |λ−1|max , (5.53)
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where λ is the generalized Eigen-value solution of the difference in the energy
norm with respect to NABSA, defined as,(

S −λSN ABS A
)
ε= 0, (5.54)

where S is the stiffness matrix calculated using the present method or VABS,
and SN ABS A is the stiffness matrix calculated using NABSA.

The relative difference for the Timoshenko stiffness matrix and it’s reduced
equivalent is given in table 5.2. From this table it is evident that the present
method captures the strain energy comparable to VABS in case the transverse
shears are taken into account (Timoshenko stiffness matrix). However, for the
reduced stiffness matrix (Euler stiffness), VABS performs better in general.

Table 5.2: Relative error(%) of the Timoshenko stiffness matrix and its reduced equivalent

Layup S6×6 Present S4×4 Present S6×6 VABS S4×4 VABS
1 5.03 2.44 45.80 5.30
2 5.04 3.98 12.03 0.20
3 8.24 4.00 80.40 1.80

Next, the stiffness constants of the Timoshenko stiffness matrix and its
reduced equivalent are shown in tables 5.3,5.4, and 5.5, for the three layups
given in table 5.1. The 3r d and 6th columns of each table contain the stiffness
coefficients calculated using VABS, whereas the 4th and 7th columns contain
the stiffness coefficients calculated using the present method. The stiffness
components of the reduced stiffness matrix are denoted as NABSAR , VABSR ,
and PresentR . The values in brackets are the relative errors of VABS and the
present method with respect to NABSA.

Table 5.3: Comparison of stiffness coefficients for layup 1

Stiffness Coefficients NABSA VABS(%) Present(%) NABSAR VABSR (%) PresentR (%)
S11×107 0.1438 0.1432(-0.42) 0.1437(-0.04) 0.1438 0.1432(0.4) 0.1437(-0.04)
S14×106 0.1075 0.1060(-1.40) 0.1073(-0.16) 0.1075 0.1060(1.4) 0.1073(-0.16)
S22×105 0.9018 0.5113(-43.10) 0.9293(3.04) - - -
S25×105 -0.5204 -0.2951(43.29) -0.5438(-4.50) - - -
S33×105 0.3932 0.2132(-45.8) 0.3838(-2.38) - - -
S36×105 -0.5637 -0.2989(47.0) -0.5662(-0.45) - - -
S44×105 0.1678 0.1689(0.60) 0.1656(-1.34) 0.1678 0.1689(-0.7) 0.1656(-1.34)
S55×105 0.6622 0.5513(-16.7) 0.6735(1.71) 0.3619 0.3810(-5.3) 0.3552(-1.84)
S66×106 0.1726 0.1365(-20.9) 0.1731(0.28) 0.09179 0.09460(-3.1) 0.08960(-2.44)

In table 5.3, the stiffness constants for layup 1 are shown. In the case of
the Timoshenko stiffness matrix, the present method overestimates the bend-
ing coefficients by 1.71% and 0.28% respectively, compared to the results from
NABSA. For the transverse shear coefficients and coupling between transverse
shear and bending, the difference between the present method and NABSA
are between -4.5% and 3%. For the reduced stiffness constants, the relative
error for the present method is less than three percent.

The stiffness constants for the second layup are given in table 5.4. For
this layup, results from VABS are almost identical to NABSA for the diagonal
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Table 5.4: Comparison of stiffness coefficients for layup 2

Stiffness Coefficients NABSA VABS(%) Present(%) NABSAR VABSR (%) PresentR (%)
S11×107 0.125 0.125(0.0) 0.124(-1.13) 0.125 0.125(0.0) 0.124(-1.13)
S14×105 0.521 0.521(0.0) 0.514(-1.40) 0.521 0.521(0.0) 0.514(-1.40)
S22×105 0.981 0.871(-11.2) 0.979(-0.24) - - -
S25×105 -0.264 -0.234(11.4) -0.263(0.28) - - -
S33×105 0.424 0.373(-12.0) 0.405(-4.44) - - -
S36×105 -0.278 -0.244(12.2) -0.276(0.84) - - -
S44×105 0.177 0.177(0.0) 0.171(-3.70) 0.177 0.177(0.0) 0.171(-3.70)
S55×105 0.614 0.606(-1.30) 0.593(-3.37) 0.543 0.543(0.0) 0.523(-3.77)
S66×106 0.152 0.150(-1.32) 0.150(-1.48) 0.134 0.134(0.0) 0.131(-2.08)

Table 5.5: Comparison of stiffness coefficients for layup 3

Stiffness Coefficients NABSA VABS(%) Present(%) NABSAR VABSR (%) PresentR (%)
S11×107 0.137 0.137(0.0) 0.138(0.84) 0.099 0.099(0.0) 0.098(-0.42)
S12×106 -0.184 -0.184(0.0) -0.190(-3.17) - - -
S13×103 0.144 1.730(1122.2) 0.009(-93.49) - - -
S22×105 0.884 0.883(-0.1) 0.904(2.26) - - -
S23×102 -0.821 -8.420(-925.6) -0.045(94.56) - - -
S33×105 0.395 0.775(80.4) 0.428(8.24) - - -
S44×105 0.173 0.174(0.6) 0.167(-3.38) 0.173 0.173(0.0) 0.167(-3.38)
S45×105 0.180 0.180(0.0) 0.175(-2.59) 0.180 0.180(0.0) 0.175(-2.59)
S46×103 0.358 -0.362(-201.12) 0.000(-100) 0.358 -0.362(201.1) 0(-100)
S55×105 0.608 0.608(0.0) 0.591(-2.88) 0.608 0.608(0.0) 0.591(-2.88)
S56×103 0.377 -0.372(-198.67) 0.000(-100) 0.377 -0.372(198.7) 0(-100)
S66×106 0.143 0.143(0.0) 0.141(-1.43) 0.143 0.143(0.0) 0.141(-1.43)

components of the Euler stiffness matrix (extension,bending, and torsion). Al-
though the stiffness constants from the present method are not identical with
NABSA, for the aforementioned stiffness constants, the error is still less than
four percent. The transverse shear coefficients and the coupling terms be-
tween transverse shear and bending are less than 4.5% for the present method.
The fact that rotation of the shell normal is taken into account for the present
method, it influenced the results for transverse shear coefficients beneficially.
This is reflected back in the relative error of the energy norm shown in table
5.2. The same trend is also observed for the third layup (see table 5.5).

From the results shown in tables 5.3 to 5.5, it can be concluded that the
present method performs well in calculating the stiffness constants (Euler
or Timoshenko). The relative error of the diagonal stiffness constants is less
than ten percent, which is sufficient for a tool intended for preliminary de-
sign phase. In addition, the various coupling terms are also calculated with
reasonable accuracy. However, the present method does not have the same
level of detail in retrieving the stress distribution across the cross section, as
compared to VABS and NABSA.

5.4.2. OPEN CROSS-SECTION

For open cross-sections, the work of [80] is used to asses the performance of
the present method. The method considers Saint-Venant’s solutions for pris-
matic beams; which uses semi-analytical finite element analysis of a 3D struc-
ture to determine the stiffness constants of anisotropic, and heterogeneous
beams, making it suitable for use as a benchmark. Two open cross-sections
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are considered: L-shaped, and C-shaped sections. The L-shaped section has
a width of 1 and a height of 1.5. The C-shaped section has a height of 1, and a
width of 0.75 at the top, and 1.5 at the bottom. Figures 5.4a and 5.4b show the
dimensions and the way the sections are modelled for the present analysis.
Both sections have a skin thickness of 0.1. The origin in taken at the bottom

(a) (b)

Figure 5.4: 5.4a L-shaped geometry; 5.4b C-shaped geometry.

left corner for both cases. Both sections are composed of two ply sheets with
±30 ply angles, and 0.05 ply thickness. The material properties used for com-
parison are variation of graphite epoxy composite, i.e.

E22
E11

= 10; G12
E11

= 0.4; ν12 = 0.3 .

Based on the results from the convergence study, both cross-sections are dis-
cretized using 40 beam elements. The comparison of results is limited to Eu-
ler stiffness constants, because [80] contains only Euler stiffness results for
both cases. The stiffness constants for the L-shaped section are given in table
5.6. The columns contain the results of Kosmatka and the present method
respectively. The last column contains the relative difference between the
present method and Kosmatka. The diagonal terms are predicted fairly close
to the results from [80]. The off diagonal terms have a maximum difference
less that 15 percent which is not that bad for a tool intended for initial de-
sign/optimization of slender structures. Table 5.7 contains the stiffness con-
stants of the C-shaped section. The results for this cross-section are not as
good as the previous one; especially, the stiffness constants for the two bend-
ing moments are over predicted by 30% to 36%, and the coupling terms have
relative error between 7% to 78%. On the other hand, the stiffness constant
for torsion (K 22) has a relative difference of only 6.6% (which is consistent for
both sections). One explanation for the decrease in performance for the chan-
nel section (C-section) is that the cross-section is not completely thin-walled.
The thickness to width ratio for the top wall is more than 13%. This means that
thin walled assumption is not totally accurate in this case. This might explain
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the difference in results, since the present method is based on shell theory. An-
other explanation might be that the results from [80] are not converged results
for the C-section; because the stiffness matrix shown in [80] for the C-section
is not symmetric. Furthermore, there is no mention of convergence test in
[80].

Table 5.6: Comparison of stiffness coefficients for L shaped cross-section

Stiffness Coefficients×E11
103 Kosmatka Present Difference(%)

S11 871.14 889.52 2.11
S22 399.34 422.35 5.76
S33 116.37 126.49 8.70
S44 1.20 1.28 6.67
S12 421.98 438.49 3.91
S13 202.58 213.87 5.57
S14 -19.17 -20.43 -6.57
S23 29.07 30.37 4.47
S24 -9.12 -9.97 -9.32
S34 -4.30 -4.86 -13.02

Table 5.7: Comparison of stiffness coefficients for C shaped cross-section

Stiffness Coefficients×E11
103 Kosmatka Present Difference(%)

S11 1014,44 1141,9 12,56
S22 686,17 932,8 35,94
S33 137,55 179,2 30,28
S44 1,52 1,62 6,58
S12 624,75 790,9 26,59
S13 253,92 317,8 25,16
S14 -28,25 -26 7,96
S23 101,33 181 78,62
S24 -22,41 -18 19,68
S34 -7,75 -7,2 7,10

5.4.3. COMPARISON WITH EXPERIMENTAL RESULT
A comparison of the sectional stiffness constants is performed between the
present method and experimental data, for a family of boxed beams [47]. A
composite beam of length 0.77m with an open rectangular cross-section is
clamped at the root and loaded at the tip with pure bending of 0.4K N m or
pure torsion of 0.2K N m. The cross-section is composed of two flanges of
uni-directional (UD) ply with 3.5mm thickness and two shear webs with C-
profile made of biaxial (±45o) ply. The flanges and shear webs are bonded
together with epoxy of 1.5mm thickness (see figure 5.5a). The cross-sectional
dimensions are given in table 5.8, whereas the (nominal) material properties
are given in table 5.9. For the present analysis, the cross-section is discretized
using 90 elements for converged results based on the convergence analysis of
section 5.4.1. Three laminates are used to define the material properties of
the cross section (see figure 5.5b), namely: a laminate for the shear webs, and
two laminates for the outer and mid section of the flanges. The laminate for
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(a)
(b)

Figure 5.5: 5.5a Dimension of a rectangular cross-section used in [47]; 5.5b Discretization of the
rectangular cross-section used in the present analysis(each colour represents a laminate).

Table 5.8: Dimension of the box beam from figure 5.5a.

Dimension
W 100 mm
H 40 mm

Wsw 30 mm
T f l 3.5 mm
Tsw 2.5 mm
Tad 1.5 mm

Dimension of Discretized cross-section
a 97.5 mm
b 36.3 mm

t f l1 3.5 mm
t f l2 7.5 mm
tsw 2.5 mm

Table 5.9: Material properties the box beam

Ply properties UD ply
E11 42.68 GPa
E22 8 GPa
G12 4.96 GPa
v12 0.26 [-]

Ply properties of the Biaxial ply
E11 9.22 GPa
E22 9.22 GPa
G12 10.55 GPa
v12 0.26 [-]

Material properties of the adhesive
E11 4.56 GPa
E22 - GPa
G12 - GPa
v12 0.3 [-]

the shear webs is composed of the biaxial ply, whereas the laminate for the
outer parts of the flanges is composed of the UD ply, adhesive, and the biax-
ial ply. The laminate for the mid section of the flanges is composed solely of
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the UD ply. Three beam configuration where manufactured by biasing the UD
ply of both flanges with respect to the beam axis with 0◦, 15◦ and 25◦. Two
specimens where manufactured for each configuration. In addition to the ex-
perimental results, [47] contains finite element analysis (FEA) of a cantilever
box beam loaded at the tip with pure bending or torsion, for all configura-
tions used in the experiment. The finite element model is discretized using
continuum-shell elements.

Since the present method solves the outer solution of the 3D elasticity
problem, the stiffness properties calculated from the experiments and FEA
are sampled at mid section of the beam, far away from the applied load and
boundary. Figure 5.6a and 5.6b show respectively, a bar chart of the stiffness
constants E I and G J for the experimental results of the two specimens (EXP1
& EXP2), FEA and the present method. Figure 5.6c shows a bar chart of the
bend-twist coupling coefficient (β).

The bending stiffness, calculated with the present method, matches well
with the experimental results and the FEA analysis, with a maximum differ-
ence less than 10%. The bend-twist coupling coefficient (β) matches quite
well with the reference values, having an average difference less than 5%. For
the torsional stiffness, the difference between the present method and exper-
imental results is roughly 17% for the 0o angle. This difference may be caused
because, for the 0o configuration the shear stiffness of the two flanges is ma-
trix dominated. As the box beam is loaded in torsion, the shear stiffness of the
matrix decreases due to non-linearity in the material properties of the matrix.
This results in the reduced shear stiffness calculated from the experiments,
whereas the numerical analysis uses the nominal material properties given in
table 5.9. The difference tends to decrease for increased bias of the UD lami-
nates with respect to the beam axis, as seen in figure 5.6b, which is expected
since the shear stiffness of the two flanges starts to be dominated by the prop-
erty of the fibre.
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(a) (b)

(c)

Figure 5.6: Comparison of: 5.6a EI, 5.6b GJ, and 5.6c bend-twist coupling coefficient(β) between
experiments(EXP1 and EXP2), FEA and present method, for three fibre angles of 0,15 and 25

degrees.

5.5. SUMMARY
A formulation for computationally efficient method of modelling the cross-
sectional properties is presented for thin-walled, multi cell, and prismatic
beams with anisotropic material properties. The formulation is based on clas-
sical laminate theory which makes it suitable for use in composite optimi-
sation. The finite element method is then employed to discretize the cross-
section using one-dimensional hermitian beam elements.

The proposed method requires significantly less elements (in the order of
a hundred) compared to solid models such as NABSA and VABS. The results
from the present method are compared with literature results for a family of
closed and open cross-section. Using NABSA stiffness results for closed cross-
sections as a benchmark, the energy norm error in the Euler-Bernoulli model
is less than 5% and for the Timoshenko model it is less than 10%. The method
does not perform as well for the relatively thick open cross-sections consid-
ered in [80]. Comparison with experimental data for a bending-torsion cou-
pled beam shows average relative errors less that 10% compared to both the
experimental measurements and detailed three-dimensional finite element
calculations. It may be concluded that the present method is suitable for use
during the preliminary design/optimization of slender structures with thin-
walled cross-sections and anisotropic material properties.





6
GEOMETRICALLY EXACT BEAM

MODEL

This chapter presents a structural model to evaluate the non-linear deforma-
tion of large wind turbine blades. The structural model is composed of a beam
model that is based on the isogeometric formulation of a geometrically exact
3D beam theory. The beam model uses quaternions to parametrize the ro-
tation variable together with the isoparametric interpolation of the rotation
parameters, defined at control points.

Section 6.1 presents a literature review on geometrically exact beam the-
ory and IGA formulation to calculate the non-linear deformation of composite
beams. A summary of Simo-Reissner non-linear 3D beam theory is elucidated
in section 6.2. In section 6.3, the isogeometric implementation of the Simo-
Reissner non-linear 3D beam theory is presented, followed by several numer-
ical examples, presented in section 6.4.
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6.1. INTRODUCTION

Among the earlier application of IGA in structural problems, [38] demon-
strates the use of Isogeometric analysis for solving structural vibrations. Sev-
eral examples are presented to demonstrate the performance of IGA in struc-
tural problems by using multiple models consisting of rods, beams, mem-
branes, plates, and three-dimensional solids. An approach based on IGA for
assessing the vibration of Timoshenko beam is presented in [82], while [136]
presented a vibration analysis of non-linear Euler-Bernoulli beam using iso-
geometric formulation. Furthermore, [20] proposes a shear-locking free iso-
geometric formulation of curved and planar Timoshenko beams.

Recently IGA collocation method is used in the formulation of initially
straight and planar Timoshenko beams [42], curved spatial rods [7], single-
parameter formulation of planar shear deformable beams [75], and plate
models [113] that describe thin-walled structures. Isogeometric collocation
approach, proposed in [8], consists of the discretization of the governing par-
tial differential equations in the strong form using the isoparametric paradigm
and the higher-continuity properties of the IGA shape functions.

All the beam models mentioned here are either limited to a planar case or
are based on the kinematic assumption of small displacements and rotations.
To the author’s best knowledge, there is no isogeometric beam formulation for
solving the geometrically exact 3D beam theory.

A three dimensional non-linear rod theory is first proposed by Simo [123]
together with its finite element implementation in [124]. The kinematic vari-
able of a non-linear beam theory consists of the displacements and rotations
at every point in the model, where the rotation variables belong to a non-
linear manifold. since the rotation variables are part of a non-linear manifold,
they require special attention when solving the geometrically exact 3D beam
theory. Consequently, several publications [4, 13, 17] are dedicated on this
subject. Several parametrization methods for the rotation manifold have been
proposed, where a review on the parametrization of rotations is given in [4].
One of the obstacles in a finite element or isogeometric analysis of geometri-
cally non-linear beams is that the standard interpolation of rotations results
in the loss of orthogonality of the rotation variables at the integration points,
which is a fundamental property of the non-linear 3D beam theory. An as-
sessment of the most common interpolation schemes for rotations and their
implementation in finite element models of geometrically exact 3D beams can
be found in [117].

This chapter presents a Galerkin-based isogeometric implementation of
geometrically exact 3D beam theory. Furthermore, quaternions are employed
to parametrize the rotation manifold together with the isoparametric interpo-
lation of the rotation parameters defined at the control points. The interpo-
lated quaternions are orthogonalized to represent rotations.
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6.2. GEOMETRICALLY EXACT 3D BEAM MODEL
This section gives a brief overview of geometrically exact 3D beam theory. The
reader is advised to see [68, 39] for a detailed description on the subject.

GEOMETRY DESCRIPTION
A 3D beam may be defined as a series of cross-sections connected by a beam
axis. Two beam configurations (initial and deformed) with arbitrary cross-
sections are shown in figure 6.1. The inertial reference frame denoted by
(X ,Y , Z ) is spanned by the right-handed orthonormal base vectors:

e1 =
{
1 0 0

}t
, e2 =

{
0 1 0

}t
, and e3 =

{
0 0 1

}t
. (6.1)

The initial configuration of the beam axis is defined as r 0
(
x
)
; x ∈ [0,L] ⊂

Figure 6.1: Kinematics of initial and deformed configuration of a curved beam

R,where x is the arc-length of the beam axis in the initial configuration, and L
is the beam length in the initial configuration. The cross-sections in the initial
configuration are assumed to be orthogonal to the beam axis. Consequently,
the body attached base vector normal to the cross-section

(
g 0,1

)
is tangent to

the beam axis, and the remaining two base vectors
(
g 0,2, g 0,3

)
are orthogonal

to the beam axis, i.e.:

g 0,1 =
r ′

0

‖r ′
0‖

, g 0,1 ·g 0,2 = 0, and g 0,3 = g 0,1 ×g 0,2, (6.2)

where the prime ()′ denotes derivative with respect to the arc-length x. Fur-
thermore, the orthonormal base vectors g 0,i , for i = 1. . .3, are related to the
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inertial base vectors e i through the linear transformation Λ0(s) ∈ SO(3) as
g 0,i = Λ0e i , i = 1. . .3. SO(3) is a Lie group of proper orthogonal transfor-
mations having the properties: detΛ = 1 and ΛΛt = I ∀x ∈ [0,L], where I
is a 3 by 3 identity matrix. The initial configuration of the beam axis, for
all values of x, is completely determined by the initial position vector of
the beam axis and the orthonormal frame attached to the cross-section, i.e.
x 7→C0 = (r 0,Λ0) ∈R3 ×SO(3).

The beam axis in the deformed configuration is defined by a curve x 7→
r
(
x
) ∈ R3. The cross-sections of the beam in the deformed configuration are

defined by the right-handed orthonormal base vectors g i , i = 1. . .3, where g 1
is not necessary tangent to the beam axis of the deformed configuration. The
orthonormal base vectors g i are related to the inertial base vectors e i through
the linear transformation Λ(s) ∈ SO(3) as g i = Λe i , for i = 1. . .3. The de-
formed configuration of the beam axis, for all values of x, is completely deter-
mined by the position vector of the beam axis r (s) and the orthogonal frame
attached to the cross-section, i.e. x 7→C = (r ,Λ) ∈R3 ×SO(3).

KINEMATIC EQUATIONS
The strain measures, defined with respect to the body-attached frame, at a
given cross-section are related to the beam configuration C0 through the fol-
lowing relations [39]:

γ=Λt r ′−e1 and κ̂=ΛtΛ′−Λt
0Λ

′
0, (6.3)

whereγ is the translational strain measure and κ̂ is the skew symmetric matrix
of the rotational strain measure κ. The position vector of the beam axis in the
deformed configuration is expressed as: r (s) = r 0(s)+u(s), where u(s) is the
displacement vector of the beam axis. Similarly, Λ(s) is expressed as: Λ(s) =
R(s)Λ0(s), where R(s) is a rotation matrix that maps the orthonormal base
vectors in the initial configuration (g 0,i ) unto the orthonormal base vectors in
the deformed configuration (g i ). Substituting the expressions for r and Λ, in
terms of u and R , into the expression for the strain measure of equation 6.3
yields:

γ=Λt
0

(
R t u′+ (

R t − I
)
r ′

0

)
and κ̂=Λt

0R t R ′Λ0. (6.4)

CONSTITUTIVE EQUATIONS
The strain measures (translation and rotation) are related to the stress and
stress-couple resultants N and M respectively, through the sectional stiffness
constants as: {

N
M

}
= S

{
γ

κ

}
, (6.5)

where S is a six by six matrix containing the sectional stiffness constants.
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EQUILIBRIUM EQUATIONS
Assuming an external distributed load comprised of forces ( f ) and torques (t ),
the strong form of the equilibrium equations, expressed in the material form,
are given as [39]:

(ΛN )′+ f = 0 and (ΛM)′+ r ′×ΛN + t = 0. (6.6)

The weak form of the equilibrium equations is derived from the variation of
the potential energy. The potential energy is the sum of the strain energy and
the work done by the external loads, expressed mathematically as:

Π=U +V , (6.7)

where V is the work done by external loads and U is the strain energy given
by:

U = 1

2

L∫
0

(
N tγ+M tκ

)
d x, (6.8)

and L is the beam length in initial configuration. The first and second varia-
tion of the strain energy is given in terms of the variation of the strain measures
as:

δU =
L∫

0

(
N tδγ+M tδκ

)
d x,

and

δ2U =
L∫

0

(
δN tδγ+δM tδκ+N tδ2γ+M tδ2κ

)
d x, (6.9)

where δγ and δκ are the first variation of the strain measures.

6.3. ISOGEOMETRIC FORMULATION
The weak form of the equilibrium equations are solved using the Galerkin-
based isogeometric analysis. Within the isogeometric formulation, the control
points represent the degrees of freedom and the knots spans are considered
as elements. For the present method, NURBS are used as basis functions. Nu-
merical integration is performed using the Gauss quadrature at the element
level. Further details on isogeometric analysis can be found in [36].

6.3.1. APPROXIMATION OF THE DISPLACEMENT AND ROTATION

VARIABLES
Before defining the expressions for the generalized load vector f and tangent
stiffness matrix K , the displacement vector u and the rotation matrix R need
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to be parametrized. The displacement vector u(ξ) is approximated by the
function uh(ξ) as:

uh(ξ) =
Ncp∑
i=1

Ni ,p (ξ)ūi , (6.10)

where Ncp are the number of control points, Ni ,p (ξ) is the basis function (B-
splines or NURBS), of polynomial order p, belonging to the ith control point,
and ūi is the control point value of the approximated function uh(ξ).

The rotation group is one of the configuration variables of the geometri-
cally exact 3D beam theory and its numerical implementation requires special
attention. A set of rotations in R3, denoted as SO(3), is the set of the second
order orthogonal tensors with positive determinant, defined mathematically
as:

SO(3) = {
Λ :ΛΛt = I ,detΛ= 1

}
. (6.11)

The SO(3) has a non-commutative Lie group structure under the matrix mul-
tiplication operation and its Lie algebra, denoted by so(3), is a linear space of
second order skew symmetric tensors. Every skew symmetric tensor θ̂ is asso-
ciated with a unique vector θ in R3, such that for all t in R3, θ̂t = θ× t , where
× is the cross-product in R3. The exponential map is a function that maps el-
ements of so(3) unto rotations in SO(3), with a closed form expression given
in [5].

Several methods are available to parametrize rotations in SO(3), see for
example [107] for a review of most of them. For the present method, quater-
nions are used to parametrize rotations. Quaternions are elements in the four
dimensional space R4 and each quaternion q is composed of a scalar part q0

and a vector part q v in R3, written as:

q = q0 +q v . (6.12)

The addition of two quaternions is defined as: q +p = qi +pi , for i = 0, . . . ,4.
Given two quaternions q and p , their (non-commutative) product results in a
quaternion r of the form:

r = q ◦p = (
q0p0 −q t

v p t
v

)+ (
q0p v +p0q v +q v ×p v

)
, (6.13)

where the first bracket contains the scalar component of r and the second
bracket contains the vector component of r . Another important property of a
quaternion q is its conjugate q∗, defined as:

q∗ = q0 −q v . (6.14)

The norm of a quaternion q ∈R4, denoted as ‖q‖, is calculated as:

‖q‖ = {
q2

0 +q t
v q v

} 1
2 . (6.15)
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A sub-set of the quaternions, S3 ⊂ R4, is a set of unit quaternions that are iso-
morphic to the rotation group SO(3), provided that two quaternions of the
form q and −q are identified. Furthermore, every quaternion that is part of S3

can be expressed as:

q = cos

(
θ

2

)
+ si n

(
θ

2

)
v , with ‖v‖ = 1. (6.16)

The previous expression for a unit quaternion corresponds to a rotation with
a magnitude θ about the axis v ∈ R3. Quaternion representation of rotation
has the advantage, among others, in reducing the computational and storage
cost because the rotation is stored using four parameters instead of using the
matrix form. A vector a ∈R3 is rotated into another vector b ∈R3, by a rotation
quaternion, q , or equivalently by rotational matrix, R , as:

b = q∗aq or b = R a, (6.17)

where the rotation matrix, R , may be expressed in terms of the quaternion q
as:

R = q v q t
v +

(
q0I + q̂ v

)(
q0I + q̂ v

)
, (6.18)

where I is a 3 by 3 identity matrix. The variables q0 and q̂ v are respectively, the
scalar part of q and a skew symmetric matrix of the vector part of q . Moreover,
for every non zero quaternion and not necessarily of a unit norm, a unique ro-
tation is obtained if the quaternion represents as before a rotation of an angle
θ about a unit vector v . For non unitary quaternions that represent rotation,
the rotation matrix is given in terms of a rotation quaternion as:

R = 1

‖q‖2

(
q v q t

v +
(
q0I + q̂ v

)(
q0I + q̂ v

))
. (6.19)

The approximated quaternion at the integration point is calculated from its
control point quantities using a standard isoparametric interpolation, as:

q h(ζ) =
Ncp∑
i=1

Ni (ζ)q̄ i , (6.20)

where q̄ are the control point values of q h(ζ), while Ncp and Ni (ζ) denote
respectively, the number of control points and the basis function used for in-
terpolating control point quantities. Since the quaternion of equation 6.20 is
not unitary, the rotation matrix R(ξ) is calculated using equation 6.19. This
method of interpolating rotations can be understood as isoparametric inter-
polation followed by a normalization.

6.3.2. LOAD VECTOR AND TANGENT STIFFNESS MATRIX
The load vector and tangent stiffness matrix are derived from the first and sec-
ond variation of the strain energy given in equation 6.9. First, the first variation
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of the strain measures is written as:

δγ=Λt
0R t {

RδR t (r ′
0 +u′)+δu′} and δκ=Λt

0

(
δR t R ′+R tδR ′)

v , (6.21)

where (·)v denotes the axial vector of a skew symmetric matrix. The variation
of the displacement, δu′, is parametrized using the NURBS function and the
control point quantities of the virtual displacement, δui , as:

δu′ = N ′
iδui , (6.22)

where Ni is the NURBS function and (·)′ = 1
J

d(·)
dξ , with J denoting the Jaco-

bian. The Einstein summation is employed here to sum over the subscript
i = 1. . . Ncp . The admissible variation of the rotation tensor, δR , is given in-
terms of the variation of the rotation quaternion, δq h , as:

δR = ∂R

∂q h
: δq h , (6.23)

where ∂R
∂qh : δq h is the operation of the vector δq h on the third order tensor

∂R
∂qh such that ∂R

∂qh : δq h = ∂R
∂qh

k

δqh
k , summing over the subscript k = 1. . .4. In

order to determine the first variation of rotation quaternion, δq h , the con-
trol point quaternion, q̄ , is linearised around the origin, q̄ 0, in terms of the
infinitesimal rotation, δθ, using the exponential map, i.e.:

q̄ = exp(δθ)q̄ 0, (6.24)

where the vector δθ is an element of the tangent space of the rotation group
SO(3) around the origin q̄ 0 such that δθ ∈ so(3), where so(3) is the Lie algebra
of the rotation group. The vector δθ, representing the magnitude and the axis
of a rotation, is mapped to the quaternion subspace S3 following the formu-
lation of the exponential map used in [52]. The derivative of the linearised
quaternion, given in equation 6.24, is evaluated at the origin, i.e. δθ = 0.
Therefore the exponential map is expanded up-to second order term in δθ,
using the Tylor series as:

exp(δθ)T yl or =
{(

1− 1
8‖δθ‖2

)
1
2δθ

}
. (6.25)

Substituting equation 6.25 into equation 6.24, the admissible variation δq h

is expressed as the first derivative of q̄ , with respect to δθ, and the NURBS
function, as:

δq h = Ni
∂exp(δθ)

∂δθ

∣∣∣∣
δθ=0

δθi q̄ i =
1

2
Ni Q iδθi , (6.26)

where

Q i =
[ −q̄ t

v,i
q̄0,i I − ˆ̄qv,i

]
, (6.27)
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and I is a 3 by 3 identity matrix while ˆ̄qv,i is a skew symmetric matrix of q̄v,i ,
for the i th control point.

The second variation of the strain energy, defined in equation 6.9, is a
function of the second variation of the strain measures. The second variation
of the strain measures is defined as:

δ2γ=Λt
0

{
δ2R t (

r ′
0 +u′)+2δR tδu′}

and

δ2κ=Λt
0

(
δ2R t R ′+R tδ2R ′+2δR tδR ′)

v . (6.28)

The second variation of the rotation tensor, δ2R , is defined in-terms of the
variation of the rotation quaternion, q h , such that:

δ2R = δq h :
∂2R

∂2q h
: δq h + ∂R

∂q h
: δ2q h , (6.29)

where:

δq h :
∂2R

∂2q
: δq h =

4∑
j=1

4∑
i=1

∂2R

∂qh
j ∂qh

i

δqh
i δqh

j . (6.30)

Substituting equation 6.25 into equation 6.24, the second variation of the
quaternion, δ2q h , is expressed as the second derivative of q̄ , with respect to
δθ, and the NURBS function, i.e.:

δ2q h = Ni
∂2exp(δθ)

∂2δθ

∣∣∣∣
δθ=0

: δ2θq̄ =−1

4
Ni q̄ iδθ

t
iδθi (6.31)

The admissible variations for the displacement-based formulation consist
of the displacement (δu), and rotation (δθ) variables defined at the control
points. The displacements and rotations are collected in a single vector: δp ={{
δu,δθ

}
1 . . .

{
δu,δθ

}
i . . .

{
δu,δθ

}
Ncp

}t
, where i refers to the i th control point.

Based on the principle of minimum potential energy, the load vector is
defined as the first derivative of the first variation of the strain energy, defined
in equation 6.9, with respect to the generalized coordinate δp as:

f =
1∫

0

(
N t ∂δγ

∂δp
+M t ∂δκ

∂δp

)
J (ξ)dξ, (6.32)

where J (ξ) =
∣∣∣ ∂r 0(ξ)

∂ξ

∣∣∣ is the Jacobian, representing the mapping between the

ξ−parameter space and the physical space. Similarly, the tangent stiffness
matrix is the second derivative of the second variation of the strain energy,
defined in equation 6.9, with respect to the generalized coordinate δp , i.e.:

K =
1∫

0

{(
∂δN

∂δp

)t ∂δγ

∂δp
+

(
∂δM

∂δp

)t ∂δκ

∂δp
+N t ∂2δγ

∂δp∂δp
+M t ∂2δκ

∂δp∂δp

}
J (ξ)dξ.

(6.33)



6

74 6. GEOMETRICALLY EXACT BEAM MODEL

The non-linear equilibrium equations are solved using the Newton-
Raphson iteration scheme for finding the root of the residual between the gen-
eralized external load f ext and the generalized internal load vector f :

R = f −λ f ext = 0, (6.34)

where λ is the load stepping parameter. The solution to 6.34 requires the lin-
earisation of the residual around a solution δp0, such that:

R(δp0)+K∆δp − f ext∆λ= 0, (6.35)

where ∆λ is the load increment. The increment in the generalized coordinate
∆δP is calculated in two steps. For the first step, when advancing between
two load steps, ∆δp is calculated solely from the change in load, i.e. f ext∆λ.
In the second step, when the load is kept constant,∆δp is calculated using the
standard Newton-Raphson scheme. Equilibrium is achieved when the norm
of ∆δp or R converges to zero.

6.4. STRUCTURAL VALIDATION
In order to demonstrate the performance of the present method, results from
several numerical examples are compared with available literature. The nu-
merical implementation of the model is carried out in Matlab computing en-
vironment. NURBS shape functions with a different polynomial degree and
inter-element continuity are used as basis functions. Isogeometric mesh with
a multiple number of knot spans, henceforth named elements(N ), are used
for discretization.

6.4.1. A CANTILEVER BEAM SUBJECT TO A FREE-END MOMENT
A straight cantilever beam with the material and geometric properties:

E = 2.1e4 G = 1.05e4 L = 100

A1 = 20 A1 = A2 = 16

J = 6.4566 I1 = 1.6667 I2 = 666.66

is subjected to a bending moment MY = 1000 (see figure 6.2a). This results in
large displacement and rotation in the X-Z plane. The in-plane rotation of the
beam is compared with the analytical solution given in [127]. The structural
deformation under the bending moment is calculated for increasing number
of elements and for two polynomial orders (p). Figure 6.2b shows the in-plane
rotation versus the number of control points. In addition, figure 6.2b also con-
tains the analytical solution given in [127]. From figure 6.2b, it can be observed
that a converged result is achieved for 100 control points, which amounts to
97 elements for a polynomial order p = 3.

6.4.2. THE MACNEAL AND HARDER TEST PROBLEMS
A standard set of problems is presented in [91] to test the finite element accu-
racy of beam, shell, and solid elements. The problem sets used in this paper
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Figure 6.2: 6.2a Cantilever beam under bending moment; 6.2b In-plane rotation for increasing
number of elements.

are a straight and curved cantilever beams, as shown in figures 6.3a and 6.3b
respectively. The geometric and material data of the straight beam are:

E = 1e7 G = 3.84615e6 L = 6

A1 = 0.02 A1 = A2 = 0.016

J = 4.8630e −5 I1 = 6.6667e −5 I2 = 1.66667e −5,

where L is the beam length. Four load cases are considered: three unit forces
in the three coordinate directions, and a unit twist moment. For the curved
beam with a shape of a quarter circle with a radius R = 4.22, only G = 4e6 and
J = 4.4050e −5 are different from the material properties of the straight beam.
Only two load cases are considered in this case: two unit loads in X and Y di-
rection. The results for both the straight and curved beams are shown in table

(a)

(b)

Figure 6.3: 6.3a Cantilever beam under various tip loads; 6.3b Curved beam under different
loading.

6.1. The results of the present method are obtained using C 2 continuous cubic
polynomial (p = 3) and a different number of elements. In table 6.1, the dis-
placement results are in the direction of the applied load. In addition, results
from [91], and the analytical result of the linearised Reissner beam theory [141]
are also included for comparison. For the straight beam, the results from the
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Table 6.1: Comparison of results for the MacNeal and Harder test problems

Initial beam type Type of solution
Displacement in the direction of the applied load

Extension (F1) Deflection in Z (F2) Deflection in Y (F3) Twist (M1)

Straight

N = 10 3.0e-5 0.1049 0.4012 0.0323
N = 50 3.0e-5 0.1082 0.4294 0.0321

N = 100 3.0e-5 0.1082 0.4301 0.0321
Theoretical[91] 3.0e-5 0.1081 0.4321 0.0321
Analytical[141] 3.0e-5 0.1081 0.4321 0.0321

Curved

N = 10 - 0.0838 0.4849 -
N = 50 - 0.0871 0.5027 -

N = 100 - 0.0871 0.5030 -
Theoretical[91] - 0.0873 0.5022 -
Analytical[141] - 0.0886 0.5062 -

present method (using 100 elements) match with literature up-to three sig-
nificant digits for an extension (deflection in Z direction) and twist. For the
deflection in Y direction, the results match up-to two significant digits. For
the curved beam, a difference in results between the theoretical and analytical
formulation is observed, which may be caused due to the different theoretical
assumption of the two beam theories. The result from the present method, for
N = 100, matches with the theoretical results up-to two significant digits.

6.4.3. A CANTILEVER BEAM SUBJECT TO TWO TRANSVERSAL

LOADS

A cantilever beam loaded by two transversal loads, one at the tip and the other
close to the mid-span (see figure 6.4) is used for comparison. The beam has
a cross-sectional area A = 0.2, bending stiffness E I = 5e6 and shear modulus
G = 1.153846e7. Several authors [26, 40] have considered this problem and
analytical solution for this problem is also available [45]. The results of the
present method are obtained using C 2 continuous cubic polynomials (p = 3)
and for a different number of elements. Moreover, the load is applied in 10
equally spaced increments, with an average of 5 iterations per increment. Ta-

Figure 6.4: Cantilever beam under two vertical loads.

ble 6.2 contains the tip displacement and rotation obtained from different for-
mulations and for different mesh density. The results obtained by the present
method are compared with [26, 40] and the analytical results from [45].
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Table 6.2: Comparison of results for cantilever beam with two transversal load

Formulation Number of elements
Displacement

Longitudinal Transversal Rotation

Present
10 -19.24 -51.20 -0.87
50 -29.22 -65.04 -1.02

100 -30.33 -66.40 -1.04

Cardona [26]
2 -28.99 -65.85 -1.1
4 -30.26 -66.63 -1.06
8 -30.62 -66.87 -1.05

Crivelli [40]
2 -28.99 -65.86 -1.10
4 -30.26 -66.63 -1.06
8 -30.62 -66.87 -1.05

Analytical - -30.75 -66.96 -

6.4.4. CURVED CANTILEVER BEAM UNDER TRANSVERSAL TIP

LOAD
The curved cantilever beam under transversal tip load is one of the classical
finite element tests because it includes all natural mode of deformation of a
beam: extension, bending, torsion, and shear. A curved beam, located in the
X −Y plane, with a radius R = 100, is shown in figure 6.5. The beam has a unit
cross-sectional area A, elastic and shear moduli of E = 1e7, and G = 0.5e7, re-
spectively. The beam is loaded with a concentrated vertical tip load P = 600.
The present method employs 100 elements to descritize the beam. The ba-
sis functions consists of NURBS of C 2 continuous cubic polynomials. In table

Figure 6.5: In-plane curved beam under tip loading.

6.3, the position vector of the tip of the curved beam, in the deformed con-
figuration, is tabulated for different intermediate load levels and for different
formulations. The results from [9] are taken as a reference since they are ob-
tained with more refined elements compared to the other formulations.

6.4.5. COMPOSITE I BEAM
A cantilever beam, made of composite material of length L = 2.5m, is loaded
with a concentrated vertical tip load of P = 250N . The cross-section of the
beam is in the shape of I , with equal width and height of 50mm (see figure 6.6).
The walls of the beam consist of symmetric laminates with the lay-up [±θ]4s ,
where θ is varied between 0 and 90 degree. Each layer is 0.13mm thick with the
following material properties: E1 = 53.78GPa, E2 = 17.93GPa, G12 = 8.96GPa,
and ν12 = 0.25. The present method employs 100 elements to discretize the
beam. The basis functions consists of NURBS of C 2 continuous cubic polyno-
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Table 6.3: Comparison of results for the 45-degree cantilever beam with transversal tip load

Formulation Component
Load level

300 450 600

Present
rx 22.11 18.37 15.56
ry 58.53 51.97 46.89
rz 40.49 48.71 53.61

Bathe [9]
rx 22.33 18.62 15.79
ry 58.84 53.32 47.23
rz 40.08 48.39 53.37

Simo [124]
rx 22.50 - 15.90
ry 59.20 - 47.23
rz 39.50 - 53.37

Cardona [26]
rx 22.14 18.38 15.55
ry 58.64 52.11 47.04
rz 40.35 48.59 53.50

Crivelli [40]
rx 22.31 18.59 15.75
ry 58.85 53.34 47.25
rz 40.08 48.39 53.37

mials. The sectional stiffness constants of the beam are calculated using an
in-house tool [48], which calculates the sectional stiffness constants of a pris-
matic and thin-walled composite beam with arbitrary cross-sectional shape
(open or closed). The axial (X-direction) and vertical (Z-direction) displace-

Figure 6.6: Composite I beam

ments at the tip of the beam are considered for comparison. Table 6.6, con-
tains a comparison of the tip displacement of a cantilever I-beam under a ver-
tical tip load P = 250 and for different Lay-ups. For comparison purpose, the
results from Lee et al. [134], and Abaqus is included in table 6.6. The Abaqus
results are obtained from a non-linear analysis of a cantilever beam using 600
nine-noded shell elements (S9R5). The results from the present method agree
quite well with the results obtained by the other formulations, for all consid-
ered Lay-ups.

6.4.6. COMPOSITE BOX BEAM

For a final example, a composite box beam with the dimensions: length L =
100i n, width W = 4i n, height H = 2i n, and wall thickness t = 0.1008i n, is
loaded by a concentrated vertical tip load P = 400lb (see figure 6.7). The walls
are made of eight ply laminates with the layup: top flange [0/θ2/90]s , bottom
flange [0/−θ2/90]s , and both shear webs [(0/90)2]s . The parameter θ is the
off-axis angle of a single ply (see figure 6.7). A T 300/5208 graphite/epoxy with
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Table 6.4: Comparison of results for the composite I beam of different lay-ups and under a
vertical tip load of P = 250N .

Lay-ups Formulation
Displacement

Axial(cm) Vertical(cm)

[0]s

Abaqus -0.6124 15.9760
Lee -0.6075 15.9113

Present -0.6123 15.9810

[15/-15]s

Abaqus -0.7474 17.6434
Lee -0.7432 17.6002

Present -0.7476 17.6520

[30/-30]s

Abaqus -1.3416 23.6133
Lee -1.3404 23.6384

Present -1.3430 23.6364

[45/-45]s

Abaqus -2.7501 33.7463
Lee -2.7600 33.9294

Present -2.7537 33.7867

[60/-60]s

Abaqus -4.3164 42.2037
Lee -4.3443 42.5798

Present -4.3177 42.2301

[75/-75]s

Abaqus -5.0482 45.6077
Lee -5.0838 46.0678

Present -5.0460 45.6168

[90/-90]s

Abaqus -5.1983 46.2755
Lee -5.2341 46.0678

Present -5.1960 46.2841

[0/90]s

Abaqus -1.3488 23.6829
Lee -1.3569 23.7830

Present -1.3481 23.6855

the properties:

E1 = 21.3e6psi E2 = 1.6e6psi

G12 = 0.9e6psi ν= 0.28,

is used as ply properties. The beam is analysed for θ ranging between 0 and
90 degrees. The results from the present method are obtained using 100 el-
ements, and basis functions comprised of C 2 continuous cubic NURBS. The
sectional stiffness constants of the beam are calculated using an in-house tool
[48], which calculates the sectional stiffness constants of a prismatic and thin-
walled composite beam with arbitrary cross-sectional shape (open or closed).
The tip displacements (u, v, w) and twist angle of the box beam under a verti-

Figure 6.7: Composite box beam

cal load of P = 400l b and for different off-axis ply angle θ are shown in figures
6.8a and 6.8d. Furthermore, the results from [128] are also included for com-
parison. From figure 6.8c, it is observed that the tip deflection doubles when
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θ is varied from 0 to 90, which is expected since most of the beam stiffness
in the direction of the beam axis is reduced for θ = 90. The same is also ob-
served from the displacement in the axial direction (see figure 6.8a). The effect
of bend-twist coupling is observed from figure 6.8d, where the twist angle is
plotted against θ. There is zero twist for θ = 0 and 90, which correspond to zero
bend-twist coupling coefficient. Figure 6.8b shows the tip displacement in the
chord direction, caused by the coupling between the vertical load and the hor-
izontal displacement. From figures 6.8a to 6.8d it is evident that the present
method agrees well with the results from [128]. The present method is, there-
fore, capable of capturing the geometric non-linear response of a composite
beam.
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Figure 6.8: Tip displacement components of a box beam loaded by vertical tip load and for
different off axis ply angles.

Since only static aeroelastic analysis is performed in this work, only the
centrifugal load is considered in this thesis.

6.5. CENTRIFUGAL & GRAVITATIONAL LOAD

CENTRIFUGAL LOAD

Rotating bodies experience centrifugal effects. These forces are non existent
in inertial frame of reference, however in rotating frame, the centrifugal ef-
fects are seen as inertial force. This inertial force can be decomposed into
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centrifugal force and Coriolis force. The centrifugal force is solely dependent
on the displacement whereas the Coriolis force is also dependent on the ve-
locity. Only centrifugal load is considered in this thesis. The centrifugal load
is derived from the kinetic energy of a rotating body as:

T = 1

2

∫
M
|v l |2 dm (6.36)

where v l is the velocity of the differential mass dm with respect to the rotating
frame. Assuming only static blade deformations, v l =ωêωr l , where ω and êω
are respectively, the magnitude and direction (in skew symmetric notation)
of the angular velocity of the rotor blade. Since dm = ρd Ad s, where d A and
d s are the differential area and arc-length respectively, the kinetic energy is
expressed as double integral along the cross-section and the arch-length as:

T = 1

2

L∫
0

∫
A
|v l |2ρd Ad s, (6.37)

where ρ is the material density. Assuming thin-walled structures (see figure
6.9), the position vector r l is discretized in terms of the position vector of the
beam axis and rigid-body rotation of the cross-section as:

r l (s,η) = r (s)+Λ(s)r η(η), (6.38)

where η is a parameter running over the cross-section, and r η is local position
vector of a material point (see figure 6.9). Substituting equation6.38 into the

Figure 6.9: Schematic representation of a differential mass on the cross-section of a wind turbine
blade

relation for v l , the kinetic energy is re-written as:

T =−1

2
ω2

L∫
0

∮
η

(
r t êωr +e t

ωΛr̂ 2
ηΛ

t eω−2r t êωΛr̂ ηΛ
t eω

)
h(η)ρ(η)dηd s, (6.39)

where h(η) is the wall thickness of the cross-section. The position vector of the
beam axis r and the rigid body rotation tensor of the cross-section Λ, in the
deformed configuration, are approximated linearly in-terms of the displace-
ment u(s) and rotation θ(s) of the beam axis as:

r (s) = r 0(s)+u(s) and Λ(s) =
(

I + θ̂(s)
)
Λ0(s). (6.40)
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Substituting equation 6.40 into equation 6.39, the generalized centrifugal load
vector is defined as the first derivative of the kinetic energy with respect to the
generalized coordinates p , i.e.:

f ct =−ω2

1∫
0

{
∂u

∂p

}t (
ê2
ωr 0m0 − êωΛ0m1Λ

t
0eω

)
Jdξ

+ω2

1∫
0

{
∂θ

∂p

}t ({
êωr 0

}
skΛ0m1Λ

t
0eω+ êωΛ0m1Λ

t
0r̂ 0eω+ êωΛ0m2Λ

t
0eω

)
Jdξ,

(6.41)

where:

m0 =
∮
η

hρdη, m1 =
∮
η

r̂ ηhρdη, m2 =
∮
η

r̂ 2
ηhρdη, (6.42)

and
{

êωr 0
}

sk is a skew symmetric matrix of êωr 0. The Jacobian J relates the
parametric space to the geometric space. Similarly, the centrifugal stiffness
matrix is defined as the second derivative of the kinetic energy with respect to
the generalized coordinates p as:

K ct =−ω2

1∫
0

({
∂u

∂p

}t

ê2
ωm0

∂u

∂p

)
Jdξ

+ω2

1∫
0

({
∂θ

∂p

}t (
êωΛ0m2Λ

t
0êω+2

{
êωr 0

}
skΛ0m1Λ

t
0êω

) ∂θ
∂p

)
Jdξ

−ω2

1∫
0

{
∂u

∂p

}t (
êω

{
Λ0m1Λ

t
0eω

}
sk − êωΛ0m1Λ

t
0êω

) ∂θ
∂p

Jdξ, (6.43)

where
{
Λ0m1Λ

t
0eω

}
sk is the skew symmetric matrix ofΛ0m1Λ

t
0eω.

The derivation for the centrifugal load is validated using NASTRAN by
evaluating the stress response of rotating blade shown in figure 6.10. The
blade consist of two spars at 30% and 50% of chord location having a cross-
section in the shape of 40% thick DU airfoil. The blade is 61m long with a con-
stant chord of 4m. For material property, a carbon fiber quasi-isotropic lam-
inate is used, with a thickness and material density of 2cm and 1220K g /m3

respectively. The finite element solver NASTRAN is used twice to calculate
the stress distribution caused by centrifugal load. First, static analysis is per-
formed using NASTRAN for a rotational speed of ω = 12.1r pm, while includ-
ing the effect of rotation using the RFORC E card[90]. Second, static analy-
sis is performed using NASTRAN by applying the centrifugal load, calculated
using the present method for ω = 12.1r pm, unto the NASTRAN model as a
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Figure 6.10: FEM of a blade having a cross-section in the shape of 40% thick DU airfoil

static load. The centrifugal load is applied unto the NASTRAN model using the
method described in chapter 8. In both cases, the average membrane stress

resultant N = {
Nx , Ny , Nx y

}t
per element i is calculated as:

N i = 1

2
ĥi

(
σu

i +σl
i

)
, (6.44)

where ĥi is the shell thickness of element i , while σu
i and σl

i are the stress re-
sponses at the upper and lower side of element i . The stress responses due
to centrifugal load, for all the elements of the model shown in figure 6.10,
are presented in figure 6.11, both for NASTRAN results and the results using
the present method. Detailed description on how to extract the stress reposes
from NASTRAN can be found in chapter 8.

Figure 6.11 shows that the two methods match quite well in general. There
is a small difference in the results of the stress component N x y towards the
blade tip. However, the order of magnitude of N x y is much smaller than N x .
Therefore, the results for the stress component N x are used for comparison
and the results from the two methods are practically on top of each other for
N x .

GRAVITATIONAL LOAD

Wind turbine blades also experience a large variation of the gravitational load
during operation and is also included in the current framework. The general-
ized gravitational load vector is determined from the first variation of the work
done by gravity on a single blade as:

f g = g

L∫
0

{(
∂u

∂p

)t

eg m0 +
(
∂θ

∂p

)t

Λ0m1Λ
t
0eg

}
d s, (6.45)

where g is the gravitational acceleration and eg = −{
sinφ,cosφ,0

}t
, with φ

the azimuth position of the blade (see figure 4.1). Finally, u and θ are respec-
tively, the virtual displacement of the beam axis and rotation of the body at-
tached coordinates.
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Figure 6.11: Element stress resultant due to centrifugal effect

6.6. SUMMARY
An isogeometric formulation of geometrically exact 3D beam theory is pre-
sented. Quaternions are employed to parametrize the rotation variable to-
gether with the isoparametric interpolation of the rotation parameters defined
at the control points. Using NURBS with appropriate inter-element continuity
for discretization, an isogeometric Galerkin approach is established based on
the weak form of the equilibrium equations. Several numerical examples are
provided to demonstrate the accuracy, stability, and robustness of the present
formulation. The present method requires large number of elements to get
converged results, which may be caused by shear locking. However, within the
aeroelastic analysis of the present framework, the number of control points
used to descritize the beam are determined by the level of detail needed to re-
solve the aerodynamic loads on the rotor blade (see chapter 7 where the aeroe-
lastic model is discussed). Furthermore, as part of the optimization model,
detailed structural analysis is carried out using a finite element model of the
rotor blade consisting of shell elements. Therefore the cost of the aeroelastic
beam model is a fraction of the total computation cost of the analysis. The
numerical results show that the present method agrees well with other formu-
lations mentioned in this chapter.
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AEROELASTIC MODEL

This chapter describes the method for calculating the aerodynamic loads and
for finding the aero-structural equilibrium point. Several aeroelastic codes for
wind turbine analysis have been developed. Most approaches[120, 133, 104,
1, 84] use Blade Element Momentum theory for calculating the aerodynamic
loads, while the structural models are based either on FEM, modal approach
or Multi-body dynamics. A detailed review on wind turbine aeroelasticity can
be found in [140].

The trend in wind energy shows that the size of the rotor blades increases
in order to capture more energy from wind. Furthermore, novel designs of
the rotor blade shapes are investigated that result in enhanced performance,
such as the design of curved rotor blades that induce bend-twist coupling for
increased power extraction or load mitigation. Therefore, when calculating
the aerodynamic loads using BEM theory, corrections need to be applied to
account for the effect of blade flexibility and/or unconventional blade geom-
etry (e.g. curved blade axis). To this end, this chapter presents a first order
correction method to BEM theory, together with a method for the aeroelastic
analysis.

This chapter is organised as follows. In section 7.1, corrections to the Blade
Element Momentum theory is described, that include the effects of blade flex-
ibility and/or non conventional blade shape on the aerodynamic blade loads.
Subsequently, the method to calculate the aeroelastic loads is given in section
7.2. Finally, the validation and verification of the aeroelastic module is given
in section 7.3.

This chapter is based on a paper titled Isogeometric based framework for aeroe-
lastic wind turbine blade analysis by E.A. Ferede, M.M. Abdalla, and G.J.W. van
Bussel, Wind Energy, 2016. Note: symbols may have been changed to ensure
consistency throughout the thesis.
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7.1. AERODYNAMICS
The Blade Element Momentum theory with tip loss correction, described in
section 2.1, is used to calculate, at the integration point ξ, the aerodynamic
force and moment vector per unit length. The BEM model requires as input
among others: the blade radius r (ξ), chord ca(ξ), twist θa(ξ) and the polar data
of the airfoil Aa f (ξ). Starting from the expression for the deformed beam axis:

r (ξ) =
n∑

i=1
Ri ,p (ξ)(P r i +ui ), (7.1)

the radius along the blade span is calculated as:

r (ξ) = rh +‖r (ξ)×e3‖ , (7.2)

where P r i and ui are respectively control point values of the initial position
vector of the beam axis and its displacement. The parameter rh is the hub
radius and e3 is a component of the rotating frame shown in figure 4.1.

Figure 7.1: 3D and top view of a curved and twisted blade where ai are base vectors of the
aerodynamic frame and t i are base vectors of the structural frame

For flexible blades or blades with initially curved beam axis, the undis-
turbed airflow sees a different airfoil shape than the structural airfoil shape
(see figure 7.1), where the aerodynamic plane is tangent to the stream tube
(used in BEM theory for calculating the local aerodynamic load on the blade)
at the intersection point with the beam axis, while the structural plane is nor-
mal to the beam axis. This requires airfoil analysis within the aeroelastic anal-
ysis, increasing the computational time, which is not suitable for fast analy-
sis or optimization. Furthermore, since this framework is intended for use in
gradient based design optimization, it is not possible to determine the gradi-
ent of the polar data of the projected airfoil shapes. Alternatively, the present
method uses correction only on the chord and twist by projecting the airfoil
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shape defined in the structural frame unto the aerodynamic frame and cal-
culating the chord and twist of the projected airfoil shape, as shown in figure
7.2. To apply this correction, it is assumed that the chord and twist vary slowly
along the blade span. The chord cs and twist θs at the parametric point ξ are

Figure 7.2: Projection of a cross-section from the structural plane unto the aerodynamic plane
along a1

define as:

cs (ξ) =
m∑

j=1

n∑
i=1

Ri ,p (ξ)C i , j and θs (ξ) =
n∑

i=1
Ri ,p (ξ)Pθ,i . (7.3)

As mentioned earlier, the chord and twist, given in equation 7.3, are corrected
for the flexibility of the rotor blade, first by projecting the airfoil shape defined
in the structural plane to the aerodynamic plane (see figure 7.2). The cross-
sectional shape of a blade at ξ may be expressed with respect to the body-
attached structural frameΛs (ξ) or the aerodynamic frameΛa(ξ) as:

Λs (ξ)r s =Λa(ξ)r a , (7.4)

where t i = R g i , for i = 1, . . . ,3, are the base vectors of the structural frame.
The vectors ai ,for i = 1, . . . ,3, are the base vectors of the aerodynamic frame
Λa , defined as:

a1 = 1

‖r (ξ)×e3‖
I t

1r (ξ), a2 = 1

‖r (ξ)×e3‖
I t

2r (ξ), and a3 = e3, (7.5)

where I 1 =
[
e1,e2,0

]
and I 1 =

[
e2,e1,0

]
. The vectors r s and r a are the position

vectors of the cross-section with respect to the structural and aerodynamic
frame, respectively. Since e t

1r s = 0, r a,1 is expressed as:

r a,1 =− t t
1a2

t t
1a1

r a,2 −
t t

1a3

t t
1a1

r a,3, (7.6)
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where r a,i , for i = 1, . . . ,3, is the i th component of r a . The cross-section, de-
fined in the structural plane, is projected unto the aerodynamic plane along
a1, such that:

r̄ a = P r̄ s , (7.7)

where:
P = Ī t

Λt
sΛ̄a , (7.8)

and Ī = [
e2,e3

]
. r̄ s is the position vector of the airfoil shape in the structural

plane, whereas r̄ a is the position vector of the projected airfoil shape in the
aerodynamic plane. Components of Λ̄a = [

ā2, ā3
]

are determined by substi-
tuting equation 7.6 intoΛa(ξ)r a and collecting terms with respect to r a,2 and
r a,3, such that:

ā2 = a2 −
t t

1a2

t t
1a1

a1 and ā3 = a3 −
t t

1a3

t t
1a1

a1. (7.9)

The chord, corrected for blade flexibility and/or initially curved beam axis, is
calculated using the projection matrix P as:

ca = cs

√
ē t

1P t P ē1, (7.10)

where ē1 = {1,0}t and cs is the structural chord. The corrected twist θa is cal-
culated as:

θa = sin−1
(

cs
ca

ē t
2P ē1

) 180

π
, (7.11)

where ē2 =
{
0,1

}t
.

The polar data of the airfoil shapes along the blade span are interpolated
from the polar data of the base airfoils. This is sufficiently accurate, assuming
that the interpolation is performed only for airfoils of the same family. The
polar data of the airfoil shape at the parametric point ξ is calculated from the
polar data of the base airfoils as:

Aa f (ξ) = 1

cs (ξ)

m∑
j=1

nc∑
i=1

Ri ,p (ξ)C i , j Aba f
j , (7.12)

where Aba f
j (ξ) is a matrix containing the polar data of the j th base airfoil,

where the columns contain the values of Cl ,Cd , and Cm ,for a range of angle
of attack(α). The coefficient C i , j ensures that the interpolation of the polar
data is performed only between family airfoils.

Wind shear is taken into account when calculating the aerodynamic loads
on a single blade(see figure 4.1). The wind speed, of all blades, at r (ξ) is sam-
pled for a range of, user supplied, azimuth angle and hub height wind speed
U , using the power law defined in the IEC guidelines. The average aerody-
namic force and moment at ξ are given by:

f̄ (ξ) =
Nw∑
i=1

wi f i (ξ), and m̄(ξ) =
Nw∑
i=1

wi mi (ξ), (7.13)
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where Nw are the number of azimuth positions, wi is the weight of the aero-

dynamic load calculated at the azimuth position φi ,such that
Nw∑
i=1

wi = 1.

7.2. AERO-STRUCTURAL COUPLING
In most cases of structural design or optimization of wind turbine blades, the
aerodynamic loads are applied as fixed loads, meaning the aerodynamic loads
are not dependent on the structural deformation. This assumption is only
valid for stiff structures. For flexible structures, the aerodynamic loads are de-
pendent on the structural deformation and vice-versa. The aeroelastic solu-
tion is obtained by equating the internal loads with external loads, expressed
mathematically as,

R = f i nt

(
q ,u

)− f ext

(
q ,u

)= 0, (7.14)

where R is the residual vector, p is the generalized displacement and rotation
vector, and u is the mean wind speed. The generalized internal and external
load vectors( f i nt , and f ext ) are defined as,

f i nt = f s −ω2K cs p , and f ext = f a + f g +ω2 f cs , (7.15)

where ω is the rotational speed, and f s and f cs are the generalized structural
and centrifugal load vectors. The generalized load vector for the aerodynamic
loads( f a) is calculated using the principle of virtual work,

f a =
1∫

0

(
∂ut

∂p Λa f̄ + ∂θt

∂p Λa m̄
)

Jdξ, (7.16)

where J is the Jacobian, given in equation 4.3, that relates the ξ−parameter
space to the S−parameter geometrical space.

Aeroelastic equilibrium is achieved when the residual converges to zero.
To simulate the operation of pitch regulated wind turbine rotors, an additional
equilibrium equation is added, namely the power after the rated wind speed
is equal to the rated power. An additional variable,the pitch angle, is added to
the generalized displacement and rotation vector p as, pθ =

{
p t ,θ

}t . There-
fore, the augmented equilibrium equations are,

Rθ =
{

f i nt

(
pθ ,u

)− f ext

(
pθ,u

)
P

(
pθ,u

)−Pr ated

}
= 0, (7.17)

where Pr ated and P are the rated power and the power calculated at wind
speed u.

The non-linear aeroelastic equilibrium is calculated by dividing the wind
speed u into a given number of steps, controlled by the parameter λ, running
from 0 to 1. At a given wind speed λu, a prediction of the equilibrium point
for the next wind speed is made by linearising the equilibrium equation 7.17
around the current equilibrium point. Followed by a correction phase, keep-
ing λ constant and varying the generalized coordinates pθ until the equilib-
rium equations in 7.17 are satisfied.
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7.3. AEROELASTIC VERIFICATION

AERODYNAMIC VERIFICATION
The aerodynamic module of the present method is validated using the exper-
imental results of the EU-sponsored project MEXICO. For this project, a three
bladed wind turbine rotor with a diameter of 4.5m is tested in a wind tunnel
with dimensions:9.5×9.5m2. The rotor blade consists of the following airfoils:
circular from 0 to 20% span, DU91-W2-250 from 20 to 45% span, RISO-A1-21
from 55 to 65% span, NACA 64418 from 70 to 100% span. Detailed description
of the experimental campaign and the dimensions of the wind turbine rotor
can be found in [119]. The normal and tangential force distribution, calcu-
lated using the present method, are compared with experimental data of the
MEXICO project, for tip speed ratio λ= 6.7, wind speed U = 15m/s and rota-
tional speed ω= 44.5r ad/s. The current method calculates the aerodynamic
loads at 54 integration points. Figures 7.3a and 7.3b show the comparison of
the normal and tangential force distribution for the pitch angles θ =−2.3◦ and
0.7◦ respectively.

(a) (b)

Figure 7.3: Comparison of the axial force Fn and tangential force Ft distribution with the
MEXICO experimental results at wind speed of 15m/s and pitch angles: (7.3a) −2.3◦ and (7.3b)

0.7◦.

From figures 7.3a and 7.3b, the present method predicts the normal and
tangential forces quite well towards the root of the blade. The tip loads are
predicted quite well with the current model, for both the pitch angles of −2.3◦
and 0.7◦. There is a difference in the tangential force between the experimen-
tal data and the present method for the −2.3◦ pitch angle. The experimental
data for the tangential force is not accurate, since pressure data is used to cal-
culate the force distribution, which doesn’t account for viscous forces. The
tangential force distribution is dependent on the viscous force, thus is less ac-
curately accounted by the experimental data. It is therefore concluded that
the present model predicts the aerodynamic loads with sufficient accuracy.

AEROELASTIC VERIFICATION
The aeroelastic module is verified against FAST [71] and the commercially
available aeroelastic code GH Bladed [16]. A quasi-steady analysis is per-
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formed on the NREL 5MW reference turbine [72]. The blade geometry is gen-
erated using B-spline basis functions of degree 3 and knot spans of 20. The
aerodynamic loads are calculated at 60 integration points. Detailed descrip-
tion of the turbine and blade properties can be found in [72].

The parameters used as representative of aeroelastic behaviour of the tur-
bine are: power, thrust, (flap-wise) root bending moment, and the (flap-wise)
tip deflection. The comparison of the parameters mentioned above, is shown
in figures 7.4a to 7.5b for wind speeds 5m/s till 18m/s. The power curve,
shown in figure 7.4a, agrees quite well between the three methods. The thrust
calculated by the present method and GH Bladed agree(see figure 7.4b), while
there is a noticeable difference between the results obtained by FAST and the
present method. This is also observed for the (flap-wise) root bending mo-
ment 7.5a and tip deflection 7.5b.

(a) (b)

Figure 7.4: Comparison of: power(7.4a) and thrust(7.4b), between three methods, for the NREL
5MW machine.

(a) (b)

Figure 7.5: Comparison of: (flap-wise) root bending moment (7.5a) and (flap-wise) tip
deflection, between three methods, for the NREL 5MW machine.
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7.4. SUMMARY
An isogeometric based aero-structural model is presented for analysing the
static aeroelastic loads on wind turbine rotor blade. The aerodynamic loads
are calculated using a standard BEM theory. Moreover, the aerodynamic
loads calculated using BEM theory are modified to account for change in the
blade shape due to blade deformation. The aerodynamic module is validated
against the experimental data of the EU-sponsored MEXICO project, show-
ing a good match between experiment and the present method. Finally, the
aeroelastic module is verified using the NREL 61.5m rotor blade as a baseline
for comparison, showing a good agreement with results from GH GH Bladed
and a small difference between the results from FAST. In the next chapter, the
method of applying the aeroelastic loads unto the finite element model to cal-
culate both the stress and buckling responses are elucidated, together with
the description on the method of extraction the required responses from NAS-
TRAN.



8
FINITE ELEMENT ANALYSIS

After generating the aeroelastic loads using the low-fidelity model, detailed
structural analysis is carried out on the finite element model, described in
chapter 4, using NASTRAN. The finite element solver NASTRAN is chosen for
performing detailed structural analysis due to its wide acceptance in industry,
particularly the aerospace branch. Furthermore, NASTRAN is capable of cal-
culating the responses, together with the response sensitivities, of large struc-
tural entities with thousands of responses in computationally efficient man-
ner [95].

This chapter is organized as follows. First the method to apply design de-
pendent loads unto an FE model is described in section 8.1, followed by sec-
tion 8.2, where the type of responses and how they are requested from NAS-
TRAN analysis is elaborated. Finally, section 8.3 describes the method of effi-
ciently exporting NASTRAN outputs.
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8.1. APPLY DESIGN DEPENDENT LOADS
The finite element solver NASTRAN is used to perform detailed structural
analysis, where the responses from NASTRAN are used to formulate the struc-
tural constraints that are passed to the optimizer, see chapter 9 on the type
of responses used in the optimization framework. Both static and buckling
analysis are carried out by applying the aeroelastic loads, calculated using the
aeroelastic module, as design dependent loads in NASTRAN. The aeroelastic
loads, consisting of: the aerodynamic, centrifugal and gravitational loads, are
applied unto the NASTRAN model using the RBE3 card described in section
4.2.1. The aeroelastic force and moment resultants per unit length are inter-
polated on the RBE3 elements using the principle of virtual work as:

f RBE3 =
1∫

0

N t (ξ) f i nter p (ξ)J (ξ)dξ and mRBE3 =
1∫

0

N t (ξ)mi nter p (ξ)J (ξ)dξ,

(8.1)

where,

N (ξ) =
n1(ξ) 0 0 n2(ξ) 0 0

0 n1(ξ) 0 0 n2(ξ) 0
0 0 n1(ξ) 0 0 n2(ξ)

 , (8.2)

and n1 and n2 are linear shape functions of the two grid points connected
to the RBE3 element. The definition of the Jacobian J (ξ) is given in equation
4.3. The force and moment vectors, f i nter p (ξ) and mi nter p (ξ) respectively, are
linear interpolation of the aeroelastic loads, i.e.

f i nter p (ξ) =Ψ( f (ξae ),ξ) and mi nter p (ξ) =Ψ(m(ξae ),ξ), (8.3)

whereΨ is the Matlab interp1 function, used to interpolate the aeroelastic
loads sampled at discrete parametric points ξae . The aeroelastic force f and
moment m resultants are the sum of the aerodynamic, centrifugal and gravita-
tional loads at the converged aeroelastic equilibrium, defined mathematically
as:

f = f a + f g −ω2 f ct and m = ma +mg −ω2mct , (8.4)

where the subscripts a, g and ct indicate the aerodynamic, gravitational and
centrifugal loads respectively. Figure 8.1 shows a representation of apply-
ing the aeroelastic loads onto the finite element model for detailed structural
analysis, where the red and blue arrows indicate the distributed force and mo-
ment resultants respectively.

After applying the aeroelastic loads unto the FE model, a static and buck-
ling analysis are run using NASTRAN, together with the sensitivity analysis of
the stress and buckling responses. The the design optimization solution se-
quence is evoked with the execution control statement SOL 200, while setting
the parameter END=SENS of the NASTRAN DSAPRT card to halt NASTRAN
analysis after generating the responses with their sensitivities.
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Figure 8.1: Application of aeroelastic loads unto a finite element model

8.2. RESPONSE DEFINITION
Detailed structural responses are key components in the aeroelastic optimiza-
tion framework for wind turbine blades, proposed in the current thesis. The
finite element solver NASTRAN is suitable to generate the relevant structural
responses together with their sensitivities, making it useful in the current opti-
mization framework. There are to possibilities available in NASTRAN to spec-
ify the responses. The direct specification of the structural responses calcu-
lated by NASTRAN is done using the DRESP1 card while the DRESP2 card
allows the combination of the NASTRAN responses into new ones. In the cur-
rent framework, only the DRESP1 is used to specify the various responses
from NASTRAN. For further details on how to extract responses from NAS-
TRAN can be found in [99].

8.2.1. STRESS

The stress responses from the finite element analysis are used to calculate the
element membrane stress resultants, defined in section 9.2.2, which are then
used to formulate the strain failure index, in section 9.4.2. The first type of re-
sponses requested from NASTRAN, using the DRESP1 card, are the element
stresses. For each element of the FE model, six different stress responses are
requested using six DRESP1 card, each card having the string ST RESS as re-
sponse type identifier. The type of stress responses requested in the current
framework, for a single element, is shown in table 8.1. As can be seen in table

Table 8.1: Stress responses per element with DRESP1

Type Distance from center Item code

σx z1 3
σy z1 4
τx y z1 5
σx z2 11
σy z2 12
τx y z2 13
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8.1, the three components of the stress σ at the top(z1) and the three compo-
nents at the bottom(z2), in the direction of the shell thickness, are requested
using the NASTRAN item code, required in DRESP1. By default NASTRAN
outputs the stresses with respect in the element coordinate system. However,
the stress outputs need to be in the material coordinate system, needed for the
evaluation of the stress failure indices discussed in section 9.4.2. The stress
outputs from NASTRAN are provided in the material coordinate system by
specifying the ′PARAM OMID yes′ in the NASTRAN input file. Finally, each
stress response has a unique ID.

8.2.2. BUCKLING

The buckling responses are used to formulate the buckling failure indices that
are passed to the optimizer, defined in section 9.4.2. The buckling responses
may be requested from the NASTRAN analysis using the DRESP1 card. Each
buckling load factor, requested from the NASTRAN analysis using the E IGRL
card, is specified with the DRESP1 card, each card having the string L AM A as
response type identifier, the identification number of the buckling load factor,
a unique ID and a label.

8.3. OUTPUT DEFINITION
The default method for retrieving the various responses from NASTRAN is the
f06 output format. The f06 format contains the user specified vectors and ma-
trices generated during the NASTRAN analysis and saves them in ASCII for-
mat. The the size of the FE model increases and the number of response also
increase accordingly, the file size of the f06 increases substantially, making it
time consuming and inefficient to extract the data contained in the f06 us-
ing another software such as Matlab. This of course will increase the compu-
tational time of the optimization process and an efficient method for saving
data from the NASTRAN analysis is desired. Additionally, not all the responses
calculate in NASTRAN can be retrieved using this method.

Fortunately, NASTRAN provides a possibility to change with its internal so-
lution sequence by a means of a so-called Alters. The programming language
of NASTRAN, referred to as DMAP, offers the possibility to write the DMAP
Alters [116]. This language provides the possibility to insert additional com-
mands to the various solution sequences of NASTRAN to get the desired result
of the user. Amongst others, the DMAP programming language offers possi-
bility to evoke the export of vectors, matrices and tables during the execution
of a NASTRAN module. The user however needs to find out the proper SUB-
DMAP module and the right position to insert the required DMAP commands
to perform the desired action.

Handful Alters were written to export various vectors, matrices and tables
to external files, where the content of these external files is described in the fol-
lowing subsection. The external files are provided in NASTRAN-specific out-
put formats op2 and op4, where op2 is used to store tables and op4 is used to
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store vectors and matrices. The definition of the output format to extract vec-
tors, matrices, and tables from any SUBDMAP module can be found in [116].

8.3.1. RESPONSES & SENSITIVITIES
The FE model used in the current optimization set-up, with m responses and
n design variables, has a sensitivity matrix comprised of n ×m elements. The
current optimization set-up has structural responses in the order of 20000 and
design fields in the order of 100, which amounts to 13×100×20000 = 26e6 el-
ements of the sensitivity matrix. This is a large set of responses and sensitivity
matrix that requires an efficient method of importing vectors and matrices
from the NASTRAN analysis to speed up the optimization process.

This is achieved by extracting the design sensitivity matrix DSCM2 and the
response vector R1VALRG, requested using the DRESP1 card. The Alter com-
mands added to the NASTRAN file management section and the executive
control section for requesting DSCM2 and R1VALRG can be found in appendix
A.1. The module where the code modifications are added is named EXITOPT.

In addition, the alter given in appendix A.1 is also capable of extracting a
table called DSCMCOL which supplies a list, correlating each response in the
R1VALRG vector to the columns of the sensitivity matrix DSCM2. This table is
particularly important when different types of responses are requested from
different load cases during a NASTRAN analysis. This table is written in binary
op2 format, where detailed description on this table can be found in [95].

8.3.2. ADDITIONAL ALTERS
As the FE model size increased together with the increase of different type of
responses, some NASTRAN errors occurred, which are solved using the Alter
command, listed in appendix A.2. This Alter corrects the error in the DSCM2
sensitivity matrix sequence, such that the correlation table DSCMCOL refers,
for each element of R1VALRG, the right column of the DSCM2matrix.

Furthermore, an additional Alter command, listed in appendix A.3, is pro-
vided to import the sensitivities of the aeroelastic force and moment resul-
tants, discussed in section 8.1, into the NASTRAN PSLGDV module, which
calculates the response sensitivities. Detailed elaboration on how the sensi-
tivities of the NASTRAN responses are corrected, can be found in section 9.3.

8.4. SUMMARY
This wraps up the description of defining the NASTAN responses and the var-
ious Alters used to export NASTAN outputs and the Alters that correct the sen-
sitivitiy results of the NASTRAN analysis. Now that all the responses and their
sensitivities are calculated, it is time to formulate the response approxima-
tions that are suitable for the type of optimization method under considera-
tion, as discussed in the next chapter.
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RESPONSE APPROXIMATION

Gradient based optimizations are preferred over direct search methods for
stiffness-based optimization. This is due to the fact that for responses that
depend on large number of design variables, such as stiffness-based optimiza-
tion, evaluating the responses using subsequent analysis is time consuming.
Furthermore, replacing the analysis model with a method that approximates
actual responses as a function of the design variables reduces further the com-
putational costs significantly.

For stiffness-based optimization, the design variables consist of the thick-
ness normalized membrane and bending stiffness matrices, Â and D̂ , together
with the laminate thickness h. After explaining the different analysis models of
the optimization framework, introduced in chapter 3, the method of approx-
imating the structural and aeroelastic responses needs to be defined. A gen-
eral description of the approximation method employed in this thesis and the
method of processing the sensitivities is given in section9.2. Next, the descrip-
tion of the sensitivity analysis used in the current optimization framework is
given in section 9.3. Finally, detailed description of the response approxima-
tions for the aeroelastic and structural responses is given in section 9.4.
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9.1. METHODS IN DESIGN OPTIMIZATION
After deciding on the blade design and establishing the methodology for
analysing the structural and aeroelastic responses, the design needs to be
modified such that the predefined design criteria is met. This is accomplished
by selecting an objective function, which is then used to evaluate the opti-
mality of the design while satisfying the constraints that ensure the feasibility
of the design. The optimization of the aeroelastic problem can be defined as
the search for the global minimization of the objective function, subjected to
various constraints, expressed mathematically as:

minimize
x

f0(x)

subject to fi (x) ≤ 0; i = 1, . . . ,n,

and x l
j ≤ x j ≤ xu

j ; j = 1, . . . ,m,

(9.1)

where n and m represents respectively, the number of constrains and design
variables. The objective function is represented by f0 while fi represent the
constraints, indicating the feasible domain of the design space, constrained
by the lower x l

j and upper xu
j bound of the design variable x . There is in gen-

eral no explicit expression connecting the design variables to the responses.
Therefore, numerical techniques are used to solve the minimization problem
of equation 9.1.

There are different optimization strategies available, which can be classi-
fied in two categories: the direct search methods and gradient based methods.
The direct search methods are only dependent on the function values and as
such a large functional analysis is needed to find the optimum solution. The
composite optimization under consideration is composed of large number
of design variables. As a consequence, the number of function evaluations
needed for direct search methods is very large, rendering this type of opti-
mization scheme unsuited for practical applications. The second type of op-
timization strategies make use of the derivatives of the objective function and
constraints, with respect to the design variables, in-order to find the descend
direction. In this case, the number of constraints and the number of design
variables influence substantially the computational time. However, the com-
putational expense is compensated by the fast convergence rates achieved
by this type of methods. In-order to mitigate the computational expense of
gradient based methods, due to large number of design variables and con-
strains, approximation methods are used to replace the objective and con-
straints shown in equation 9.1. Two types of approximation methods exist;
global approximation methods, such as response surface methods, and local
approximation methods. The local approximation method refers to approx-
imating the objective and constraints in the vicinity of current design point,
making the response approximation valid only near the current design point.

The optimization method employed in this thesis is part of the local ap-
proximation methods. Using the local approximation method, the minimiza-
tion problem of equation 9.1 is replaced by a local minimization of a subprob-



9.1. METHODS IN DESIGN OPTIMIZATION

9

101

lem, of the form:

minimize
x

f̄0(x)

subject to f̄i (x) ≤ 0; i = 1, . . . ,n,

and x l
j ≤ x j ≤ xu

j ; j = 1, . . . ,m,

(9.2)

where f̄0 and f̄i are the approximate functions of the objective function and
the constraints, around the local design point x . The design values are up-
dated based on equation 9.2, and the whole process is iterated until the con-
vergence criteria, given in equation 9.3, is met.∣∣∣∣ f0|k+1− f0|k

f0|k

∣∣∣∣≤ δconv , (9.3)

where k and δconv are respectively, the iteration number and the stopping
criteria for the optimization formulation of equation 9.2. Detailed informa-
tion on gradient based optimization using local approximation of the objec-
tive function and the constraints can be found in [55].

9.1.1. APPROXIMATION METHOD FOR COMPOSITE OPTIMIZA-
TION

Considering the optimization scheme proposed in the previous section, lin-
ear approximation of the objective function and the constraints is formulated
using Taylor series expansion of the responses in terms of the laminate mem-
brane A and bending D stiffness matrix, together with the laminate thickness
h. In addition, the responses are also approximated in terms of the reciprocals
of the membrane and bending stiffness matrix A general approximation form
for a response f is written as:

f̃ =
n∑

i=1

(
Ψ̂

m
i |0: Âi + Ψ̂b

i |0: D̂ i +Φm
i |0: A−1

i +Φb
i |0: D−1

i +αi |0hi

)
+ C0, (9.4)

where n represents the number of laminates used for response approximation
while the superscripts m and b denote respectively, sensitivities with respect to
the membrane and bending stiffness matrix. The approximation constant C0

is calculated based on the response values at current design point. The oper-
ationΨ : D = tr ace(ΨD), is known as matrix contraction, which is composed
of matrix multiplication followed by the summation of the diagonal elements.
Although the response approximation in equation 9.5 is expressed in terms of
the thickness normalized membrane and bending stiffness matrices, the sen-
sitivity matrices (Ψ,Φ) are given to the optimizer. The linear and reciprocal
sensitivities of a function f with respect to: membrane and bending stiffness
matrix and laminate thickness, are defined as:

Ψm = ∂ f

∂A
, Ψb = ∂ f

∂D
, Φm = ∂ f

∂A−1 , Φb = ∂ f

∂D−1 , α= ∂ f

∂h
. (9.5)
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The accuracy of the response approximation is increased by expressing the
approximation a combination of the linear and reciprocal terms. This how-
ever is not possible for all responses, since not all approximations will have
the contributions of the linear and reciprocal terms at once, only the terms
that provide the most accurate representation of the original response will be
considered. Therefore, physical insight is necessary for all type of responses
before formulating their approximate functions. The three important charac-
teristics of the response approximation of equation 9.5 are: Convexity, Sepa-
rability and Conservativeness.

CONVEXITY

Convexity of the approximated functions must be enforced to guarantee the
existence of a global optimum in the approximated model. The linear terms
in the approximated function are convex by default. However, the reciprocal
terms are not necessary convex. One way of ensuring the convexity of the
approximation is by simply omitting the reciprocal part from equation 9.5 if
the response under consideration is not dependent on the reciprocal terms of
the laminate stiffness. Another method would be to convexify the reciprocal
part using the method described in [44].

SEPARABILITY

The separability of the design variables is inherent for the approximated func-
tion, since the function of equation 9.5 is composed as linear combination of
laminate design variables. This feature facilitates separate consideration per
laminate i in equation 9.5, allowing for efficient and parallel optimization pro-
cess.

CONSERVATIVENESS

The conservativeness of the approximated response is enforced, which guar-
antees that the approximated response is always larger than the original re-
sponse at the new design optimum of the approximation model. The opti-
mization algorithm takes care of the conservativeness of the approximated
model by adding damping coefficients to increase the conservativeness of
the approximated function. The more damping is added to the response ap-
proximate, the closer the approximation minimum shifts towards the design
point where the response is approximated, increasing the optimization itera-
tion steps needed to reach the design optimum. The optimizer implemented
in this work is able to vary, for each iteration, the conservativeness of the re-
sponse approximation by changing, for each response, the level damping, see
[66] for further details.

In the next section, description on sensitivity preprocessing steps is pro-
vided, which are then used to set-up the response approximation.

9.1.2. SENSITIVITY PROCESSING
The response sensitivities in equation 9.5 are provided in matrix form. There-
fore the first step in formulating response approximation is grouping, for each
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response, the sensitivities with respect to the laminate stiffness matrices into
a matrix form as:

∂ f

∂A
=


∂ f
∂A11

∂ f
2∂A12

∂ f
2∂A13

∂ f
2∂A12

∂ f
∂A22

∂ f
2∂A23

∂ f
2∂A13

∂ f
2∂A23

∂ f
∂A33

 ,
∂ f

∂D
=


∂ f
∂D11

∂ f
2∂D12

∂ f
2∂D13

∂ f
2∂D12

∂ f
∂D22

∂ f
2∂D23

∂ f
2∂D13

∂ f
2∂D23

∂ f
∂D33

 . (9.6)

The linear components of the approximation function shown in equation 9.4
are in terms of the thickness normalized membrane Â and bending D̂ stiffness
matrices. However, the optimizer requires the sensitivity matrices with re-
spect to the non-normalized laminate stiffness components. Hence, the sen-
sitivity matrices from NASTRAN, which are with respect to the thickness nor-
malized laminate stiffness components, are transformed to the regular lami-
nate stiffness components using:

∂ f

∂A
= 1

ĥ

∂ f

∂Â
,

∂ f

∂D
= 12

ĥ3

∂ f

∂D̂
,

∂ f

∂h
= ∂ f

∂ĥ
− 1

ĥ2

∂ f

∂Â
: A − 36

ĥ4

∂ f

∂D̂
: D ,

(9.7)

where ĥ = h. Furthermore, the response sensitivities with respect to the recip-
rocal terms of the membrane and bending stiffness matrix are obtained from
the linear sensitivity matrices

(
Ψm ,Ψb

)
using the following conversion:

Φm =−ATΨm A, Φb =−DTΨb D , (9.8)

where the superscript T denotes matrix transpose.
Before proceeding to the formulation of response approximations, the re-

sponses used in current optimization campaign, either as objective or con-
straints, are described in the next section.

9.2. RESPONSE
The current optimization work contains two types of responses; responses de-
rived from the aeroelastic analysis and responses from the finite element anal-
ysis. Section 9.2.1 describes the responses from aeroelastic analysis, which are
used to formulate the aeroelastic constraints. In section 9.2.2, the responses
from the finite element analysis that are used to formulate the structural con-
straints are described. Additionally, the aeroelastic responses are used to for-
mulate the cost of energy, which is one of the responses used as objective dur-
ing the optimization process, see section 9.2.3.

9.2.1. AEROELASTIC RESPONSES
This section describes the aeroelastic responses used to formulate the aeroe-
lastic constraints and for calculating the cost of energy. The aeroelastic re-
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sponses considered in current work are: torque, thrust, power and tip deflec-
tion. The first three aeroelastic responses are calculated based on the total
aerodynamic force resultant ( f r ) and the moment resultant (mr ) calculated
at the blade root. The total aerodynamic force and moment resultants are cal-
culated for a hub-height wind speed u as:

f r (u) =
L∫

0

f (u, s)d s, and mr (u) =
L∫

0

(
m(u, s)+ r (u, s)× f (u, s)

)
d s, (9.9)

where L is the blade length. The aerodynamic force and moment along the
blade length are given by f and m respectively. Further details on the aero-
dynamic loads is given in chapter 7. The the position vector of the deformed
beam axis with respect to the origin of the rotating frame is denoted as r , see
chapter 4.

Since the aeroelastic analysis is performed for finite (hub-height) wind
speeds, the maximum for each aeroelastic response, given in equations 9.10 to
9.13, is calculated using the bracketing method. Figure 9.1 shows a schematic
representation of the bracketing scheme to find the maximum of each re-
sponse. The bracketing scheme finds the maximum of each response in two

Figure 9.1: Bracketing method to find the maximum values of the aeroelastic responses

steps. First, for a given list of response values, calculated at sampled wind
speeds, the wind speed range

(
ul ,uu

)
containing the response maximum is

determined. Second, assuming the response curve is convex between
(
ul ,uu

)
,

the line search method is used to find the wind speed ũ ∈ [ul ,uu] for which the
response has reached its maximum value.

TORQUE

The aeroelastic torque response affects the initial capital cost of the wind tur-
bine cost model, see section 9.2.3. The cost of the generator, high and low
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speed shafts, and the cost of the gear box are all dependent on the torque re-
sponse. The total torque on the low speed shaft is calculated as:

rto(u) = Be t
3mr (u) (9.10)

where B refers to the number of blades and e3 =
{
0,0,1

}t
.

THRUST

Again from the wind turbine cost model, the costs of the tower and the support
structure are affected primarily by the total thrust on the wind turbine rotor.
The total thrust is the sum of the thrusts on all the blades, calculated as:

rth(u) = Be t
3 f r (u), (9.11)

where f r is the total aerodynamic force on an single blade.

POWER

The aerodynamic power is used to calculate the annual energy production,
which is a component of the cost of energy. Furthermore, the maximum aero-
dynamic power is used to calculate the cost of power electronics (see section
9.2.3). The aerodynamic power is calculates as:

P (u) =ω(u)Be t
3mr (u), (9.12)

where ω is the rotational speed.

MAXIMUM BLADE DEFLECTION

For upwind turbines, a constraint on the maximum blade deflection is im-
posed so that the blades do not hit the tower during operation. Since the de-
formation of the blade resembles the deformation of a cantilever beam, the
maximum blade deflection is at the blade tip. The tip deflection of the blade
is calculated as:

δt i p (u) =
n∑

i=1
Ri ,p (ξ= 1)ui (u), (9.13)

where ui (u) is the displacement vector of the beam axis at control point i .

9.2.2. STRUCTURAL RESPONSES
The structural responses are essential in the current optimization framework
to size the wind turbine blade. The structural responses consist of stresses of
all shell elements (of the finite element model), and the buckling load factors.

STRESS

Using the stress responses obtained from the static analysis solution by NAS-

TRAN, the membrane stress resultants N = {
Nx , Ny , Nx y

}t
of element i are

given by:

N i = 1

2
ĥi

(
σu

i +σl
i

)
, (9.14)
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where ĥi is the shell thickness of element i and σu
i and σl

i are the stresses at
the upper and lower end of element i . The method of extracting the stress
responses σu

i and σl
i is covered in chapter 8.

BUCKLING

In addition to the stress responses, NASTRAN is also used to calculate the
buckling load factor λn . NASTRAN calculates the buckling load factor based
on the equation:

{K +λn K d }φn = 0, (9.15)

where φn is the mode shape of the buckling load λn , whereas K , and K d are
respectively, the stiffness matrix and differential stiffness of the finite element
model. The differential stiffness is a function of the geometry and the dis-
placement, where the displacement is a solution of a particular static solution
used in the buckling analysis. Again, in chapter 8 the method of extracting the
buckling loads together with their sensitivities is explained.

9.2.3. MASS & COST OF ENERGY

MASS

The blade mass is also part of the optimization process. It is used to calculate
the cost of energy. Furthermore, the blade mass can also be used as an ob-
jective function. The blade mass depends on the laminate thickness and its
density. The density of all elements is not necessarily the same, because some
parts of the blade are made up of sandwich structures (to prevent buckling).
The blade mass is calculated as:

M =
L∫

0

m0d s, (9.16)

where L is the blade length and m0 is the mass per unit length, calculated in
section 6.5.

COST OF ENERGY

The cost model described in this section is based on the NREL cost model for
pitch regulated wind turbines and modified in [106] to calculate the Cost Of
Energy (COE) of stall regulated wind turbines. The COE is used to evaluate the
optimality of each design iteration that meets the desired criteria.

The COE is calculated from the expected annual energy production and
the cost of each HAWT component as:

COE = FC R × ICC

AEPNet
+ AOE , (9.17)

where FCR is the fixed charge rate and ICC is the initial capital cost. The net
annual energy production AEPNet is defined as:

AEPNet = availability×
uco∫

uci

P (u) fp (u)du, (9.18)
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where uci and uco are the cut-in and cut-out wind speeds respectively, P (u) is
the power production as a function of the mean wind speed, and fp (u) is the
probability of occurrence, calculated with the Weibull distribution [59]. The
shape and scale parameters for the Weibull distribution are chosen to match
an off-shore wind climate[97].

The annual operation expenses, AOE, are expressed as:

AOE = OM +LRC

AEPNet
+LLC , (9.19)

where OM are the levelized operation and maintenance costs, LRC is the lev-
elized replacement and overhaul cost, and LCC is the land lease cost. It is
assumed that for stall regulated machines, the pitch mechanism is not used
for power regulation, while the component is still used during emergency or
parked state of the turbine. Furthermore, the LLC is assumed unaffected in
current optimization while the remaining components of the COE are either
dependent on the design variables or on the pith factor. The pitch factor de-
termines the fraction of OM and LRC compared to the respective cost com-
ponents of the NREL 5MW pitch machine, assuming that the pitch system is
not used for power regulation, such that:

OM =βOMr e f and LRC =βLRCr e f (9.20)

where OMr e f and LRCr e f are respectively, the levelized operation and main-
tenance costs and the levelized replacement and overhaul costs of the
NREL5MW pitch machine, while β ∈ [0,1] is the pitch factor.

During the optimization process, the change in initial capital cost, ICC, is
calculated from the load overshoots: power, torque and thrust together with
the blade mass. The overshoots in power, torque, and thrust are defined as
the maximum power, torque, or thrust of the new design divided by its rated
equivalent of the NREL 5MW pitch machine, i.e.:

ψi = ri

r r e f
i

, for i = 1. . .4, (9.21)

where i refers to the type of overshoot. The aeroelastic response of the new

design is denoted by ri , while r r e f
i refers, for the same response, the (rated)

aeroelastic response of the NREL 5MW pitch regulated machine. The ICC of
each HAWT component of the NREL 5MW pitch regulated machine is mul-
tiplied by the appropriate ψi to determine the ICC of the new design. Table
9.1 contains component-wise breakdown of the ICC and the design driving
load types for the relevant HAWT component, which is consistent with the
cost model of [49]. The electrical interface cost is calculated assuming a 7 by 7
array spacing [106]. Furthermore, it is noted that the initial capital costs of the
blades and hub are affected by the blade mass while the blade mass is sized
by the structural load types: stress, buckling and Maximum Blade Deflection
(MBD). The effect of the structural load types on the ICC components is also
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Table 9.1: Design driving load types for each HAWT component and breakdown of ICC per
component

Load Type HAWT components(% of ICC)

Stress, Buckling & MBD Blades(8), Hub(1)
Low Speed Shaft(< 1), Gearbox(7),

Maximum Torque
Main Brakes(< 1), Generator(3)

Power Electronics(4), Electrical Connections(2), Nacelle(< 1),
Maximum Power

Hydraulics and Cooling(< 1), Electrical Interface(13)
Maximum Thrust Tower(7), Support Structures(16)

shown in table 9.1. The present cost model assumes a fixed rotor radius, re-
sulting in fixed cost for the main bearings, yaw drive and bearings, nose cone,
control hardware and marinization.

Figure 9.2 illustrates the sensitivity of relative ICC to the overshoots, i.e.:
power, torque, thrust, and blade mass, where ICCr e f refers to the ICC of NREL
5MW pitch regulated machine. The ICC is most sensitive to thrust overshoot
and least sensitive to the change in blade mass. Furthermore, figure 9.2 shows
that large load overshoots result only in relatively small increase in ICC, which
is expected since the turbine components contribute only a fraction of the
total ICC.

This cost model is only a first order approximation of the COE for stall reg-
ulated machines, provided that the load overshoots for the new design are not
large (≤ 1.5). For large load overshoots, the linearisation of the ICC in-terms
of the load overshoots is not accurate and a different cost model need to be
formulated. Therefore, the present cost model serves only to show the trend
in COE reduction during stiffness optimization of stall regulated wind turbine
blades.

Load overshoot
1.0 1.1 1.2 1.3 1.4 1.5

IC
C

/IC
C

re
f

1

1.02

1.04

1.06

1.08
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Thrust
Blade mass

Figure 9.2: Sensitivity of ICC to different overshoots [106]

.
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9.3. SENSITIVITY ANALYSIS
Design sensitivity analysis is the calculation of the quantitative information
on how a system is affected by changing an arbitrary design variable, provid-
ing essential information to connect mathematical optimization formulations
and structural/aeroelastic analysis. Isogeometric concept provides the ability
for analytic sensitivity calculations, not only enhancing the accuracy of the
design sensitivities but also reducing the computational time resulting in sig-
nificant performance enhancement of the optimization process [35]. In ac-
cordance with IGA paradigm, the design sensitivities are also evaluated with
respect to control point properties.

The responses used for optimization may be categorized in two set: re-
sponses from the aeroelastic module and responses from the FE module. For
responses from the aeroelastic module, the adjoint method is used to eval-
uate the sensitivities, since there are in general more design variables than
responses. For the responses from the FE module, NASTRAN uses the direct
method to calculate the sensitivities of the responses. A brief description of
both methods is presented in the following sub-sections.

9.3.1. AEROELASTIC
The first derivative of a single response from the aeroelastic module with re-
spect to a single design variable x is written as:

dr

d x
= ∂r

∂x
+λT ∂R

∂x
, (9.22)

where ∂R
∂x is the first derivative of the residual with respect to x and λ repre-

sents the adjoint vector obtained by solving the linear system:

K T
e f f λ=− ∂r

∂δp
, (9.23)

where K e f f is the effective stiffness, which is the first derivative of the residual
vector with respect to the generalized coordinates δp . The residual, which is
the difference between the internal and external loads, depends explicitly on
the design variables.

9.3.2. FINITE ELEMENT
NASTRAN is capable of calculating the sensitivity of the structural responses
with respect to the design variables. The design optimization solution se-
quence SOL 200 is employed to generate the responses and their sensitivities
with respect to the design variables. The analysis is set-up such that NASTRAN
is terminated after computing the requested responses together with the sen-
sitivity results. NASTRAN employs, depending on the type of responses, two
methods of sensitivity analysis, i.e direct or adjoint method [95]. However, for
the responses requested in the present method, NASTRAN employs solely the
direct method. The total derivative of a response r with respect to a design
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variable x is defined as:
∂r

∂x
= ∂r

∂u

∂u

∂x
, (9.24)

where u is the solution of the static equilibrium equation:

K u = f , (9.25)

where K and f are respectively, the structural stiffness matrix and external
load vector. The partial derivative of u with respect to x is given as:

K
∂u

∂x
= ∂ f

∂x
− ∂K

∂x
u, (9.26)

where the right hand side of equation 9.26 is denoted as a pseudo load vec-
tor. The pseudo load vector is composed of two terms, one of which is the
derivative of the applied load f with respect to the design variable x. If static
analysis is carried out, NASTRAN does not calculate the derivative of the ap-
plied load f with respect to the design variable x. Therefore, the sensitivity of

the applied load (design dependent load), ∂ f
∂x , needs to be supplied explicitly

to NASTRAN.
NASTRAN calculates, for a change in a single design variable ∆x, the

change in the displacement vector ∆u, using finite difference:

K∆u =−
(
∆K u − ∂ f

∂x ∆x
)

, (9.27)

where ∆x is calculated inside NASTRAN as ∆x = DELBx0, for DELB = 0.001,
where x0 is the current design point. The first term on the right hand side of
equation 9.27 is calculated by NASTRAN, whereas the second term is provided
explicitly to NASTRAN using the DMAP programming language [116], see sec-
tion 8.3.2 for further details. Detailed description on sensitivity analysis of
NASTRAN responses can be found in [96].

9.4. RESPONSE APPROXIMATION
This section describes the approximation of the responses used in the present
optimization framework. In general the response approximations are either
in terms of the laminate membrane and bending stiffness matrices or their re-
ciprocal part, together with the laminate thickness. Due to the necessity of the
approximation to be convex to ensure a global minimum of the approximate
function, reciprocal approximations that are not convex are convexified using
the method presented in [66]. The convexification process introduces a linear
term that replaces the non-definite part of the reciprocal term.

It is noted that the sensitivities in the approximation formulation are de-
noted asΨ, Φ, and α, irrespective of the response type. Furthermore, the su-
perscripts m and b onΨ andΦ represent respectively, sensitivities with respect
to laminate membrane and bending stiffness matrix.
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9.4.1. AEROELASTIC RESPONSES

POWER

It may be necessary to set a limit on the power overshoot in order to guarantee
the validity of the cost model presented in section 9.2.3. The failure index for
the power overshoot is given by:

r p = 1

γp

P

Pr e f
, (9.28)

where P and Pr e f are respectively, the maximum power and the rated power
of the NREL 5MW machine, with the safety factor for the power overshoot
denoted by γδ. It is not certain that the reciprocal approximation is convex.
Therefore, a linear approximation is employed for this failure index, of the
form:

r̃ p '∑
j

(
Ψm

j : A j +Ψb
j : D j +α j h j

)
, (9.29)

where Ψm
j ,Ψb

j and α j are the derived from the sensitivities of the power P

with respect to a laminate membrane and bending stiffness together with the
laminate thickness.

TIP DEFLECTION

For upwind wind turbine configuration, the maximum blade deflection is con-
strained so that the blades do not hit the tower. The failure index for the max-
imum blade deflection is defined as:

r δ = 1

γδ

δt i p

δr e f
, (9.30)

where δt i p and δr e f are respectively, the tip displacement and the reference

value for the tip displacement. The parameter γδ defines the safety factor for
failure index of maximum blade deflection. This ensures that failure index
larger than one indicates that the blade deflection is larger than the allowed
clearance. The tip deflection is dependent on the inverse of the membrane
and bending stiffness, indicating that reciprocal approximation of this failure
index is appropriate. However the derivative of the tip displacement with re-
spect to the membrane and bending stiffness is in general not positive defi-
nite. A linear approximation to the reciprocal part is added by convexifying
the reciprocal part. The approximate function of the failure index is then in
the form of:

r̃ δ '∑
j

(
Φm

j : A−1
j +Ψm

j : A j +Φb
j : D−1

j +Ψb
j : D j +α j h j

)
. (9.31)

9.4.2. STRUCTURAL RESPONSES

STRENGTH

The strength is evaluated based on strain-based failure index that is calcu-
lated using the strain failure envelope. The strain failure envelope is based on



9

112 9. RESPONSE APPROXIMATION

the lamination parameters[66], accounting for all possible ply angles, which
ensures a conservative boundary. The failure index is a ratio between the cal-
culated strains and the corresponding strains on the failure envelope. This
means the failure strains should remain less than or equal to one, r ≤ 1, to
avoid material failure. The laminate strain is given as a function of the lami-
nate membrane stiffness A and the stress resultant N as:

ε=

εx

εy

γx y

= A−1N . (9.32)

The failure index is expressed in terms of the membrane stiffness and stress
resultants, such that:

r s = N T A−1g , (9.33)

where g = ∂r s

∂ε is the gradient of the failure index with respect to the strain
vector. From equation 9.33, it is evident that a reciprocal approximation of
the failure index with respect to the membrane stiffness of the element under
consideration is preferable. Consequently, the strain failure index of element
i depends on the inverse of the local membrane strain stiffness and the stress
resultant. The approximation of the strain failure index then becomes:

r̃ s
i ' ∂r s

i

∂A−1
i

: A−1
i + s t

i∆N i , (9.34)

where si = ∂r s
i

∂N i
. The term Φm

i = ∂r s
i

∂A−1
i

is in general not positive definite [74].

Therefore, a local linear approximation Ψm
i is a added to replace the non-

definite part in Φm
i . The resulting approximation of the strain-failure index

is then given as:

r̃ s
i 'Φm

i : A−1
i +Ψm

i : Ai + s t
i∆N i (9.35)

In general, the change in load N i of element i is dependent on the stiffness
changes of all other elements j . Therefore, change in the local stress resultant
∆N i is approximated linearly in terms of the membrane and bending stiffness
matrices together with the laminate thickness as:

∆N i '
∑

j

∂N i

∂A j
: A j + ∂N i

∂D j
: D j + ∂N i

∂h j
h j . (9.36)

The failure index and its local sensitivities, i.e. r s
i , Φm

i , Ψm
i , and si , are gen-

erated based on the strain envelope, which is a function of Ai and N i . The
sensitivities in equation (9.36) are derived from the sensitivities of the stress
responses generated by NASTRAN, where the sensitivities are with respect to
the thickness normalized membrane Â and bending D̂ stiffness matrix, and
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the laminate thickness ĥ, i.e.:

∂N i

∂Â j
= 1

2
ĥi

(
∂σu

i

∂Â j
+ ∂σl

i

∂Â j

)
∂N i

∂D̂ j
= 1

2
ĥi

(
∂σu

i

∂D̂ j
+ ∂σl

i

∂D̂ j

)
∂N i

∂ĥ j
= 1

2
ĥi

(
∂σu

i

∂ĥ j
+ ∂σl

i

∂ĥ j

)
+ 1

2

(
σu

i +σl
i

)
δi j ,

(9.37)

where δi j is equal to one for i = j , and zero otherwise. Sensitivities with re-

spect to the thickness normalized variables
(
ĥ j , Â j ,D̂ j

)
are transformed to the

sensitivities with respect to
(
h j , A j ,D j

)
using equation 9.7. Finally, the sen-

sitivity of the membrane stress resultant, N , with respect to the control point
laminate variables is calculated using equation 4.14.

BUCKLING

Buckling analysis is performed using the FE model of the wind turbine blade.
For each mean wind speed, the aeroelastic load distribution, along the blade
span, is applied to the FE model, followed by static and buckling analysis. The
buckling failure index is calculated as:

r b = 1

γb

1

λ
, (9.38)

where, γb is a buckling safety factor. Equation 9.38 indicates that the buckling
failure index should remain less than or equal to one to avoid failure under
buckling. The derivative of the buckling failure index r b

i with respect to an
arbitrary design variable x is given by:

∂r b
i

∂x
=− 1

γb

1

λ2
i

∂λi

∂x
. (9.39)

Based on the equation for the buckling load factor, given in equation 9.15, the
derivative of λi with respect to x may be defined as:

∂λi

∂x
= (
φt

i K dφi

)−1
{
φt

i
∂K

∂x
φi +λiφ

t
i
∂K d

∂x
φi

}
. (9.40)

Substituting equation 9.40 into 9.39 and collecting terms together yields:

∂r b
i

∂x
=− 1

γb

1

λ2
i

(
φt

i K dφi

)−1
{
φt

i
∂K

∂x
φi +λiφ

t
i
∂K d

∂x
φi

}
. (9.41)

Similar to the sensitivity of the stressesσi , NASTRAN calculates the sensitivity
of the buckling load with respect to the thickness normalized membrane and
bending stiffness matrix and the laminate thickness. The sensitivities are then



9

114 9. RESPONSE APPROXIMATION

converted to the sensitivities with respect to laminate membrane and bending
stiffness using equation 9.7. Finally, the sensitivity of a buckling response with
respect to the control point laminate variables is calculated using equation
4.14.

Examining equation 9.41, the term that depends on the global stiffness
matrix, K , is approximated with respect to the reciprocal membrane and
bending stiffness matrices, since this term depends solely on the stiffness of
the model. However, the reciprocal approximation of this term is in general
not positive definite, which requires the addition of linear approximation to
replace the non definite part by convexifying this term [66]. Again from equa-
tion 9.41, the term that depends on the differential stiffness K d is approxi-
mated with respect to the linear membrane and bending stiffness matrices,
since this term is dependent on the load redistribution. In addition, the buck-
ling failure index is also approximated in terms of the laminate thickness. The
approximate function of the buckling failure index then reads as:

r̃ b
i '∑

j

(
Φm

i j : A−1
j +Ψm

i j : A j +Φb
i j : D−1

j +Ψb
i j : D j +αi j h j

)
, (9.42)

where i refers to the buckling load factor and j refers to the laminate that ap-
proximates the buckling response. The sensitivity coefficients Φm

i j , Φb
i j , Ψm

i j ,

Ψb
i j , and αi j are extracted from 9.41.

9.4.3. OBJECTIVE FUNCTIONS

MASS

Since the mass depends solely on the laminate thickness, its approximation
reduces to:

r̃ m '∑
j
α j h j , (9.43)

where α j = 1
Mr e f

∂M
∂h j

, M is the blade mass for the new design, and Mr e f is the

blade mass of the NREL 5MW machine.

COST OF ENERGY

The relative COE is used as an objective function during the optimization pro-
cess. The relative Cost Of Energy is defined as:

r c = COE

COEr e f
, (9.44)

where COEr e f is the cost of energy of the NREL 5MW machine. Since it not
evident whether the cost of energy has reciprocal dependencies on the lami-
nate stiffness matrices, a linear approximation is adopted to ensure convexity
of the approximate function. The approximation for the objective function
then becomes:

r̃ c '∑
j

(
Ψm

j : A j +Ψb
j : D j +α j h j

)
, (9.45)
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whereΨm
j ,Ψb

j and α j are derived from the sensitivities of COE with respect to

a laminate membrane and bending stiffness matrix together with the laminate
thickness.

9.5. SUMMARY
In this chapter, the derivation of the response approximations in-terms of the
laminate design variables is presented. The output of this chapter plays a key
role in the optimization framework, introduced in chapter 3. Starting with
the introduction of a general form of the response approximation, tailored
for composite optimization, the different responses used in the optimization
study where elucidated. Afterwards, the description of the two methods of
sensitivity analysis, used in the current optimization framework, is presented.
Finally, detailed description of the response approximations for the aeroelas-
tic and structural responses is given. The response approximations developed
in this chapter are summarized in table 9.2.

Table 9.2: Response approximations

Power r̃ p '∑
j Ψ

m
j : A j +Ψb

j : D j +α j h j

Tip deflection r̃ δ '∑
j Φ

m
j : A−1

j +Ψm
j : A j +Φb

j : D−1
j +Ψb

j : D j +α j h j

Strength r̃ s
i ' ∂r s

i

∂A−1
i

: A−1
i + s t

i∆N i

Buckling r̃ b
i '∑

j Φ
m
i j : A−1

j +Ψm
i j : A j +Φb

i j : D−1
j +Ψb

i j : D j +αi j h j

Mass r̃ m '∑
j α j h j

Relative COE r̃ c '∑
j Ψ

m
j : A j +Ψb

j : D j +α j h j





10
AEROELASTIC OPTIMIZATION

OF WIND TURBINE BLADE

The objective of the optimization campaign is to investigate the added benefit
of adaptive blades to improve the performance of large scale variable speed
stall controlled wind turbines (in the order of megawatts). The term ‘adaptive
blade’ refers to twist coupled composite blade that adjusts it’s aerodynamic
characteristics thereby affecting the wind turbine performance [92]. The twist
coupling of the adaptive blade is optimized to improve the performance of
variable speed stall controlled machines. To this end, an optimization study
based on the cost of energy is performed on 5MW stall regulated wind turbine.
The cost function is based on the NREL cost model for pitch regulated 5MW
wind turbine, that has been modified for stall regulated 5MW machine. A vari-
able stiffness optimization is carried out employing lamination parameters as
design variables.

A general model description is presented in section 10.1. The material
properties used in current optimization and the finite element model are dis-
cussed in section 10.2 and 10.3 respectively, followed by detailed description
of the optimization model in section 10.4. The initial stiffness distribution and
the corresponding aeroelastic and structural responses are given in section
10.5. A mass minimization is presented in section 10.6, which serves as a base-
line design for subsequent optimization cases. Finally, section 10.7 presents
the advantage of unbalanced laminates over balanced laminates using several
optimization cases, where the COE is used as objective function together with
structural and aeroelastic constraints.
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10.1. MODEL DESCRIPTION
A baseline blade design for variable speed stall controlled 5MW wind turbine
is based on the NREL 5MW blade design [72]. However, the NREL 5MW ma-
chine is a pitch regulated machine, thus the choice of airfoils and twist distri-
bution are modified such that the blade is suitable for use in stall controlled
machine. The gross properties of the current machine are given in table 10.1.

Table 10.1: Gross properties for the 5MW baseline wind turbine

Rating 5MW
Rotor orientation, Configuration Upwind, 3 Blades
Control Variable Speed, Stall controlled
Rotor, Hub diameter 126 m, 3 m
Hub height 90 m
Cut-in,Rated,Cut-out wind speed 3 m/s, 9 m/s, 25 m/s
Cut-in,Rated rotor speed 6.9 rpm, 10.4 rpm

The chord distribution for the current baseline design is based on the
chord distribution of the NREL 5MW blade design. The airfoil shapes, at the
blade root and inner region of the blade, are taken from the NREL 5MW blade
design. The airfoils for the outer region of the blade are obtained from an
airfoil design study, geared towards airfoil designs with improved stall charac-
teristics at high Reynolds number (Re = 9×106) [105]. Two airfoils are selected
for the outer blade region: 21% thick airfoil (WAP-W-21) and 18% thick airfoil
(WAP-W-18). The new 21% thick airfoil is employed between 38% and 69% of
the blade span, with a maximum of 96% of the 21% airfoil shape realized at
53% of the blade span. The new 18% thick airfoil is employed between 53% of
the blade span till the blade tip, where the blade cross-section consists solely
of the 18% thick airfoil starting 70% of the blade span. The polar properties of
these two airfoils are shown in figures 10.1a and 10.1b.

The twist distribution for the baseline model is calculated using:

θ = 1

r /R

1−a

λ
−α, (10.1)

where r /R is the normalized span wise coordinate, while a, α, and λ are
respectively, the axial induction factor, angle of attack and tip speed ratio.
The twist distribution should be designed for optimum operation below rated
wind speed while inducing sufficient stall for high wind speed, specially at the
outboard blade region. Consequently, the twist distribution is calculated for a
tip speed ratio of λ= 7.55, a = 1/3, and design angle of attack α= 10deg. The
design angle of attack is close to the angle of attack for which Cl

Cd
is the high-

est, for maximum power extraction below the rated wind speed. Two spars
are modelled at 0.3 and 0.7 chord point. The blade planform is generated us-
ing NURBS basis functions of cubic polynomials and 17 control points with
which the blade geometry is defined. Table 10.2 contains the planform data
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Figure 10.1: Aerodynamic characteristics on the outboard blade region, calculated for
Re = 9×106.

for the current blade design, including among others: twist, chord, and selec-
tion of airfoils along the blade span. Furthermore, a 3D representation of the

Figure 10.2: Blade shape together with the base airfoils and their aerodynamic characteristics.
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Table 10.2: Blade planform properties defined at Control Points (CP)

CP Twist(deg) Chord(m) R(m) Airfoil
1 8.8 3.5 0.0 Circular
2 8.8 3.8 3.8 Circular
3 8.8 4.2 7.7 Circular
4 8.8 4.6 11.5 DU99-W-405
5 5.6 4.7 15.4 DU99-W-350
6 3.3 4.5 19.2 DU97-W-350
7 1.6 4.2 23.1 DU97-W-300
8 0.2 4.0 26.9 DU97-W-250
9 -0.8 3.7 30.8 WAP-W-21

10 -1.7 3.5 34.6 WAP-W-21
11 -2.4 3.3 38.4 WAP-W-18
12 -3.0 3.0 42.3 WAP-W-18
13 -3.5 2.8 46.1 WAP-W-18
14 -3.9 2.5 50.0 WAP-W-18
15 -4.3 2.3 53.8 WAP-W-18
16 -4.6 2.1 57.7 WAP-W-18
17 -4.9 1.4 61.5 WAP-W-18

turbine blade and the airfoil distribution together with their 2D aerodynamic
characteristics is given in figure 10.2.

10.2. MATERIAL PROPERTIES
The spar-caps of the rotor blade are made of laminates, while the remaining
structural component of the rotor blade are composed of sandwich laminates.
Glass fiber laminates are used for the face-sheets of the sandwich laminates
and for the spar-cap laminates. The material properties of the glass fiber lam-
inate, including the strain allowable, are given in table 10.3. The strain allow-
ables in table 10.3 already include a safety factor of 2.977, which is a combina-
tion of loads and material safety factor [53].

Table 10.3: Material properties selected from [53].

Allowable
Component (material) E11,GPa E22,GPa G12,GPa ν ρ,Kg/m3 εt % εc % γx y %

Face-sheet (Glass) 35 8.33 4.12 0.33 1920 0.95 0.75 0.91
Core (Foam) 0.256 0.256 0.022 0.3 200 - - -

The material properties across the blade cross-section are assigned by par-
titioning the cross-section in three sections along the chord. Three laminates
define the material properties of the skin on pressure side and three laminates
on the suction side. Furthermore, a single laminate is used to define the ma-
terial properties of the shear webs. A schematic representation of laminate
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assignment per cross-section is shown in figure 10.3.

Figure 10.3: Material property assignment over a cross-section, where each colour represents a
single laminate.

The initial layup consists of a quasi-isotropic laminate with the layup
[±45,90,0], in which the 0deg is aligned with the blade axis. Finally, table 10.4
shows the ratio of core to face sheet thickness, which is based on the rotor
blade design of [115]. The core of the sandwich laminate is made up of a foam
material with the properties given in table 10.4.

Table 10.4: Sandwich laminate: ratio of core to face sheet thickness

R(m) leading edge trailing edge shear web
0 2 2 25

1.4 2 2 25
1.5 2 2 25
6.8 21 21 25
9.0 27 27 25

43.1 7 7 25
45.0 7 7 25
61.5 7 7 25

10.3. FINITE ELEMENT MODEL
The finite element model of the blade is generated using the method de-
scribed in section 4.2, where blade model is composed of quadrilateral shell
elements. The blade cross-sections are discretized with 10 elements in chord-
wise direction, while an aspect ratio, ar = 2, is used to calculate the element
size in span-wise direction. This results in 2700 elements to model the whole
blade. The large number of elements for the finite element model is moti-
vated by the nature of (shell) buckling mode under compressive stress state.
As can be seen from figure 10.4, the buckling of the blade skin is localized to
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a small region, resulting in short buckling wavelength. This requires a model
with fairly fine discretization to capture the buckling loads with sufficient ac-
curacy.

Figure 10.4: Example of buckling mode for current optimization campaign.

10.4. OPTIMIZATION MODEL
The material properties are defined using 7 laminates per cross-section (see
section 10.2). Furthermore, the laminate properties are defined using 15 con-
trol points along the blade span, which amounts to 105 laminates and 1365
design variables.

The aeroelastic loads are calculated for sampled wind speeds between the
cut-in and cut-out wind speed, i.e. usample = 5, . . . ,25m/s, with a sampling
interval of 1m/s. However, the aeroelastic loads calculated at wind speeds
above rated wind speed, are used as load cases for the stress and buckling
analysis using the finite element solver NASTRAN. The aeroelastic loads for
lower wind speeds and for certain wind speeds above rated are not considered
since they do not affect the structural blade design. Therefore, the aeroelastic
loads for wind speeds, usample =

{
11,12,13,15,25

}
m/s, are the load cases for

the structural analysis using NASTRAN.
The responses considered in following optimization studies are: stress,

buckling, tip deflection, rated power, blade mass, and COE. The finite ele-
ment solver NASTRAN provides stress responses on the upper and lower side
of an element. For a finite element model comprised of 2700 elements and five
load cases, this amounts to 81000 stress responses. Additionally, 33 buckling
loads are considered per load case, amounting to 165 buckling responses. Us-
ing the aeroelastic module, both the maximum tip deflection and rated power
are analysed. Furthermore, the aeroelastic module calculates the blade mass
and cost of energy, which are used as objective functions. The number of re-
sponses from the NASTRAN analysis and the aeroelastic module are summa-
rized in table 10.5. The failure indices, based on the stress responses, are for-
mulated using the response approximation method described in section9.4.
The strain failure indices, using the stress responses of the FE model, are for-
mulated based on a conservative failure envelope [66]. The strain failure enve-
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Table 10.5: Responses and failure indices.

Response types Number of responses Number of failure indices/design limits
COE & Blade mass 2 2
Stress responses 81000 1300
Buckling 165 165
Tip deflection & Rated power 2 2

lope is constructed using the strain allowable of glass fiber, listed in table 10.3.
The strain failure indices of the whole model and for all load cases amount
to 13000. However, due to constraint on computational time, only the high-
est ten percent of the strain failure indices are included during optimization.
Two optimization runs are carried out for each optimization case. The first
run lasts only a few iterations and afterwards the elements with the highest
ten percent of the strain failure indices are determined. For the second case, a
complete optimization run is carried out with the strain constraints calculated
for the elements with the highest ten percent failure indices, determined from
the last iteration of the first optimization run. This method ensures that the
(active) strain failure indices of the final design do not exceed the strain failure
envelope, allowing the use of a smaller set of failure indices during optimiza-
tion to limit computational time. This results in 1300 strain failure responses
passed to the optimizer. The failure indices for the buckling loads are calcu-
lated using the method describes in section 9.4.2.

The design limits for the tip deflection and rated power together with the
normalized values of the COE and blade mass are calculated using the method
described in sections 9.4.1 and 9.4.3, where the normalization coefficients are
obtained from the machine rating data of the NREL 5MW pitch controlled
wind turbine, listed in table 10.6. A list of the failure indices and their amounts
used in the current optimization campaign is given in table 10.5.

Furthermore, the major components of the COE are also normalized with
the corresponding values of the NREL 5MW pitch controlled machine and are
used to illustrate the performance of the blade designs. In addition, the same
OM and LRC (cost components of the COE, described in section 9.2.3) value
as for the reference NREL 5MW pitch regulated machine is assumed in the
current optimization, resulting in conservative estimation of the COE for all
designs.

Table 10.6: Performance of the NREL 5MW pitch regulated machine

COE AEP ICC Mass Powerr ated Torquer ated Thrustr ated Tip displacement
$/K wh K wh $ K g MW N m N m

0.082 2.4×107 1.1×107 17.7×103 5.3 4.2×106 7.1×105 6.2

For all optimization cases, both the aeroelastic loads and the data ex-
change routines are implemented in MATLABr. The computational cost for
the current optimization campaign is roughly 2 hours per iteration step, com-
posed of 1.45 hours for generating the responses and sensitivities and 15 min-
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utes to carry-out the optimization. The entire optimization takes roughly 1
week, depending on the amount of iteration steps needed to achieve con-
verged runs (usually in the order of 20 to 40 iteration steps). During subse-
quent optimization, the design space is explored by starting from different
initial points in-terms of the initial thickness and stiffness distribution. The
results presented in this chapter correspond always with runs having the low-
est value for the considered objective function.

10.5. INITIAL DESIGN

The initial thickness distribution for starting design is shown in figure 10.5.
In order to present the stiffness distribution of a blade design, a polar plot is
used to visualize the in-plane stiffness distribution of the laminates along the
blade span by applying the method described in section 2.3.3. The polar plot
of the thickness-normalized engineering modulus of elasticity, on the suction
side of the blade skin and shear webs, is given in figure 10.6. The x direction
of the material coordinate system (0deg) is indicated by the black line, which
for a straight blade is along the beam axis. It is evident from the figure that the
major stiffness for the starting design is the same in every direction, suggesting
a quasi-isotropic laminates. The same stiffness distribution is also the case for
the blade skin on the pressure side. The design load cases and the strain and

Figure 10.5: Skin thickness distribution for the initial design.

buckling failure indices for the critical wind speed of 15m/s are given in figure
10.7. From figure 10.7c, element numbers 1 to 900 belong to the blade skin
on the suction side, element numbers 901 to 1800 belong to the blade skin
on the pressure side, and the remaining element numbers belong to the two
shear webs, from blade root to blade tip, respectively. Furthermore, the red
data points with the label strainacti ve are the strain failure responses that are
passed to the optimizer. The buckling failure indices for the design wind speed
of 15m/s are shown in figure 10.7d. It is evident from figures 10.7c and 10.7d
that all the failure indices are well below the failure limit of one, indicating a
great potential to reduce the blade mass while complying with structural and
aeroelastic constraints.
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(a) Blade skin on suction side

(b) shear webs

Figure 10.6: Stiffness distribution for the initial design.
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Figure 10.7: Initial design: failure indices and design wind speed/load cases.

10.6. BASELINE DESIGN: MASS MINIMIZATION
The first optimization case is intended as a baseline design, which is then
used as starting point in the subsequent optimization studies of twist cou-
pled blades for variable stall controlled wind turbines. The objective of the
current optimization is blade mass minimization while complying with strain,
buckling, and maximum tip displacement constraints. The evolution of mass
minimization is shown in figure 10.8. The optimization starts with an initial
blade mass of 41 ton and ends with a mass of 23 ton after 27 iterations. The
largest mass reduction occurs within the first thirteen iterations, afterwards, a
minimum mass reduction steps are observed till convergence.

The thickness distribution for the final design is given in figure 10.9 pro-
viding 3D and 2D representation of the laminate thickness distribution along
the blade span. The legends in figure 10.9 represent laminate thickness distri-
bution over the: (le) leading edge, (te) trailing edge, (Cap) spar cap and (web)
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Figure 10.8: Mass evolution using balanced laminates.

shear web. The subscripts top and bot represent respectively, the blade skin
on the suction and pressure side. There is a general thickness reduction for
all sections of the turbine blade compared to the initial thickness distribution
shown in figure 10.5 . Particularly, there is a significant thickness reduction
for the spar caps, while the remaining parts of the blade also exhibit moder-
ate thickness reduction. Furthermore, the spar caps on the suction side have
the largest laminate thickness, specially between 15m and 30m of the blade
length. This is due to the presence of compression stress on the suction side,
resulting in buckling critical regions along the spar caps on the suction side.
This is evident in figure 10.10 where the first buckling mode, calculated for the
highest aeroelastic load at the wind speed of 15m/s, is shown. It is evident
from the figure that the first buckling mode lies on the suction side, roughly
between 10m and 40m of the blade span and confined within the spar caps.
This corresponds with the observed thickness distribution for the spar caps
on the suction side. Furthermore, there is also a relative increase of spar caps

Figure 10.9: Skin thickness distribution for the final design: mass minimization using balanced
laminates.
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thickness on the pressure side, around the same region as for the spar caps
on the suction side. The laminates thickness of the remaining parts (leading
edge, trailing edge, and shear webs) is reduced in general, compared to the
initial design, resulting in decreased blade mass. The structural failure indices

Figure 10.10: final design, 1st buckling mode for aeroelastic load calculated at wind speed =
15m/s.

of figures 10.7c and 10.7d, for the initial design, indicate a great potential for
mass reduction without exceeding the failure limit of one. The design wind
speed for the final design is given in figure 10.11a and 10.11a for the blade
skin on the suction side and pressure side respectively, which indicates that
the wind speed of 15m/s is the design load case for the structural constraints
(strain and buckling). It is evident from figure 10.11d that buckling is the de-
sign driver, while the strain failure indices (figure 10.7c) do not reach the fail-
ure limit of one, thus are not design drivers. Although the buckling failure is
a design driver, it applies only to the blade skin on the suction side; the strain
failure indices should be active (reach the failure limit of one) for the blade
skin on the pressure side, i.e. for elements between 901 to 1800. This is not
the case here because there is an additional constraint on the maximum tip
displacement. Figure 10.12 shows the (normalized) maximum tip displace-
ment and power. The maximum tip displacement for the final design reaches
the failure limit of one, indicating that stiffness and buckling are the design
drivers. The advantage of using composite laminates is their directional de-
pendence of the stiffness properties that allows for tailoring the composite
stiffness according to the design specifications. Figure 10.13 shows, for the fi-
nal design, a polar plot of the thickness normalized engineering modulus. The
stiffness distribution is symmetric with respect to the blade axis (denoted by
black line in the polar plots), which is an indication that balanced laminates
are used during optimization. The major stiffness direction for the spar caps
is aligned along the blade axis throughout the blade length, as a consequence
of largely stiffness dominated optimization. Due to constrained tip deflection,
most of the stiffness distribution are aligned along the blade axis, rather than
the quasi-isotropic layup of the initial design. Furthermore, the buckling con-
straints also play a role on the final stiffness distribution along the spar caps.
Therefore, the optimizer aligns the stiffness distribution, of the laminates be-
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Figure 10.11: Optimized design: design wind speed/load case for mass minimization using
balanced laminates together with failure indices for wind speed = 15m/s.
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Figure 10.12: Aeroelastic response evolution from mass minimization using balanced laminates.

longing to the spar caps, parallel to the beam axis, preventing buckling failure
without excessive increase in laminate thickness. The stiffness distribution
of the shear webs did not change from the initial design, remaining a quasi-
isotropic layup, since the strain failures of the shear webs, elements starting
from 1801 and onwards of figure 10.11c, are not active (don’t reach the failure
limit of one). Additionally, no buckling of the shear webs is observed for the
final design. Furthermore, the shear webs do not contribute, significantly, to
the cross-sectional flap-wise bending stiffness of the blade, which affects tip
displacement.

The stiffness distribution along the trailing edge, both on suction and pres-
sure side of the skin, remain unchanged from the initial design, specially to-
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(a) Blade skin on suction side

(b) Blade skin on pressure side

(c) shear webs

Figure 10.13: Optimized design, stiffness distribution from mass minimization using balanced
laminates.

wards the outer-board region of the blade. On the other hand, the major
stiffness direction along the leading edge are primarily aligned parallel to the
blade axis, providing additional bending stiffness required to comply with the
buckling and stiffness constraint, i.e. maximum tip displacement.

10.7. DESIGN STUDIES OF TWIST COUPLED TURBINE

BLADE: COE MINIMIZATION
The following sections investigate the benefit of unbalanced laminates over
balanced laminates to design adaptive blades with improved performance.
The performance of different blade designs is assessed using optimization
scheme that minimizes the COE of stall regulated wind turbines while com-
plying with structural and aeroelastic constraints. A complete stiffness vari-
ation along the blade span is considered during the optimization. Both bal-
anced and unbalanced composite laminates are investigated during the op-
timization, while ensuring no structural and aeroelastic failure (strain, buck-
ling, and tip displacement). Furthermore, two operational configurations of
the wind turbine are considered, i.e. up-wind and down-wind configuration.
The constraint on the maximum tip displacement is removed for a simulation
with a down-wind configuration. Finally, a minimization of COE using unbal-
anced laminates is carried out with an additional constraint on the maximum
power, demonstrating the extended capability of twist coupled blades to reg-
ulate power on stall controlled wind turbines.

The results are verified using different starting designs for the optimiza-
tion cases, comprised of different laminate thickness and stiffness distribu-
tion. Most of the optimization cases that start from different initial points
showed little difference in objective function. Furthermore, the final designs
are not all that different from each other.
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10.7.1. UP-WIND TURBINE CONFIGURATION:BALANCED LAMI-
NATES

For the first optimization study, balanced laminates are used to minimize the
COE of stall regulated 5MW machine, where up-wind turbine configuration
is simulated during the optimization process. The optimization starts from
the final design of the baseline design (see section 10.6). The optimization
run includes both structural and aeroelastic constraints, i.e, strain, buckling
and tip displacement constraints. The evolution of COE and its main compo-
nents is given in figure 10.14, where the reference values of the NREL 5MW
pitch regulated machine (given in table 10.6) is used for to normalize the cost
components. Only a small reduction for the COE, from 1.1 to 1.09 of the ref-
erence COE, is observed after 18 iteration. The blade mass is reduced from
1.45 to 1.39 of the reference blade mass, resulting in a reduction of six percent
in blade mass. The ICC is reduced by five percent, mainly due to lower blade
mass. However, the AEP is also reduced from the starting design by roughly
one percent. The corresponding final skin thickness distribution along the
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Figure 10.14: Evolution of COE and it’s components, for the optimization using balanced
laminates.

blade span is shown in figure 10.15. The top plot depicts a 3D representa-
tion of the thickness distribution while the bottom plot presents a 2D curve of
the laminate thickness distribution along the blades span for different blade
segments. Compared to the baseline design of figure 10.9, two changes are ob-
served. First, an increased skin thickness of the bottom spar caps is observed,
with a maximum of roughly 20mm around 35m of blade span. Second, the
laminate thickness along the top and bottom side of the trailing edge skins
increases towards the blade tip.

Figures 10.16a and 10.11a show respectively, the design wind speed for the
structural elements at the suction and pressure side of the final rotor blade
design. According to figures 10.16a and 10.11a, the design wind speed for the
structural constraints (strain and buckling) is 15m/s.

Consequently, the strain and buckling failure indices of figures 10.11c and
10.11d are for the design wind speed of 15m/s. Figure 10.16 indicates that
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Figure 10.15: Optimized design, skin thickness distribution for COE minimization using
balanced laminates.

buckling is still the design driver. The buckling failure indices drive only the
design variables on the suction side of the blade since buckling occurs only
on the side of the blade with compressive stress, i.e. on the suction side. The
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Figure 10.16: Final design from COE minimization using balanced laminates; sizing wind speeds
and failure indices for the design wind speed of 15m/s.

other design driver is the constraint on the tip displacement, as shown in fig-
ure 10.17 where several (normalized) aerodynamic responses for all iteration
are presented. The reference values for the normalization can be found in ta-
ble 10.6. The green line represents the normalized tip displacement, which is
active after the seventh iteration. Furthermore, a reduction in the maximum
power (black line) and maximum torque (red line) of roughly ten percent is
observed. The maximum thrust, however, is not reduced significantly com-



10

132 10. AEROELASTIC OPTIMIZATION OF WIND TURBINE BLADE

Iteration
2 4 6 8 10 12 14 16 18

N
or

m
al

iz
ed

 (M
ax

) a
er

od
yn

am
ic

 re
sp

on
se

0.8

1

1.2

1.4

1.6

1.8

2

Power
Torque
Thrust
Tip

defl

Figure 10.17: Aeroelastic response evolution from COE minimization using balanced laminates.

pared to the baseline design.
The reduction in torque and power is due to a different induced twist dis-

tribution for the final design compared to the initial design (see figure 10.20).
The term induced refers to the twist distribution due to the aeroelastic re-
sponse of the blade, which can be controlled by changing the extension-twist
or bend-twist coupling of the blade or the location of the shear center. From
the figure, it is observed that the induced twist for the initial design (dashed
red line) moves slightly towards feather (decreased angle of attack) compared
to the structural twist (solid black line), especially towards the outboard re-
gion of the blade. For the final design (solid red line), the induced twist moves
slightly towards stall (increased angle of attack) for the outboard blade region,
with a maximum difference of 0.5deg compared to the structural twist. The
induced twist has a clear influence on the angle of attack (see the top right
window of figure 10.20). For the final design, an increased angle of attack for
the outboard blade region is observed (solid line), compared to the initial de-
sign (dashed line). However, the change in induced twist is not due to bend-
twist or extension-twist coupling. The middle window of figure 10.18 shows
that both the bend-twist and extension-twist couplings are zero for the ini-
tial and final design. The legend of the middle plot of figure 10.18 represent:
(ext) extension-twist coupling, (bend-flap) flap-wise bend-twist coupling and
(bend-lag) lag-wise bend-twist coupling. The different twist coupling coeffi-
cients of figure 10.18 are calculated according to,

ext = S14p
S11S44

, bend f l ap = S54p
S55S44

, and bendl ag = S64p
S66S44

, (10.2)

where the Si j are the coefficients of a sectional stiffness constant of a beam
model. The change in induced twist for the final design is due to a shift in the
location of the shear center, as shown in the bottom window of figure 10.18.
The shear center is a point on a cross-sectional plane, through which the ap-
plication of a transverse load does not cause twist moment (see figure 10.19).
The location of the shear center is calculated from the sectional stiffness con-
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Figure 10.18: Initial and final value for: induced twist, angle of attack, twist coupling, and
location of shear center, for COE minimization using balanced laminates.

Figure 10.19: Schematic representation of shear center and aerodynamic center on a
cross-sectional plane

stants as,

e =−S34

S44
. (10.3)

According to figure 10.19, moving the shear center back towards the trailing
edge increases the induced twist towards stall, while moving it towards the
leading edge shifts the induced twist towards feather.

It is observed from the bottom plot of figure 10.18 that for the final de-
sign, the location of the shear center has increased (especially towards the
outboard blade region) compared to the initial design. The shift of the shear
center towards the trailing edge causes the induced twist to reduce towards
stall (see the top left window of figure 10.18). The location of the shear center
is changed by the redistribution of the laminate thickness across the cross-
section, as shown in figure 10.15 where the trailing edge laminates have larger
thickness compared to the leading edge laminates, shifting the location of the
shear center towards the trailing edge. Since balanced laminates can’t induce
bend-twist or extension-twist coupling, the optimizer shifts the induced twist
towards stall by moving the location of the shear center towards the trailing
edge.
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Figure 10.20: Initial and final value for: power, torque, thrust, tip displacement, and root bending
moment, for COE minimization using balanced laminates.

Increased angle of attack reduces the maximum power, as shown in figure
10.20. The top left window of figure 10.20 presents the power curves for the
initial and final design together with the power curve of the NREL 5MW pitch
controlled machine. The same reduction in rated torque is also observed for
the final design, see the top right window of figure 10.20. The rated thrust
is at the cut-out wind speed, while the maximum tip displacement is around
15m/s, see the bottom left window of figure 10.20. Finally, the root bending
moments (flap and lag) are presented in the bottom right window of figure
10.20.

Finally, the major stiffness direction is visualized in figure 10.21, where a
polar plot of the thickness normalized engineering modulus (Ê11) is presented
for the blade skin on the suction side, the pressure side and the shear webs.
The black line inside the polar plots represents the material x direction, which
is aligned with the beam axis. The stiffness distribution of all the laminates is
symmetric with respect to the black line, suggesting that balanced laminates
are used during the optimization. Most of the laminate stiffness for the in-
board blade region, especially towards the blade root, are all aligned along the
material direction, providing structural strength (mainly buckling). For the
outboard region, the stiffness direction for the leading edge laminates (green
curves) is around the angle ±45◦, while for the trailing edge laminates (blue
curves), the stiffness direction for the same span-wise location is towards the
90◦. A slight shift towards the 90◦ in stiffness direction of the shear web lami-
nates is also observed, mostly around the mid-span. The stiffness direction of
the spar cap laminates (red curves) is aligned with the blade axis for the inner
blade region and rotates roughly to ±45◦ close to the blade tip.
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(a) Blade skin on the suction side

(b) Blade skin on the pressure side

(c) Shear webs

Figure 10.21: Optimized design: stiffness distribution from COE minimization using balanced
laminates.

10.7.2. UP-WIND TURBINE CONFIGURATION: UNBALANCED

LAMINATES

Unbalanced laminates provide additional coupling among the in-plane and
out-of-plane (laminate) degrees of freedom. Furthermore, it allows further
steering of the major stiffness direction, while the major stiffness direction for
balanced laminates is symmetric with the (chosen) material coordinate sys-
tem, as explained in the previous section. The use of unbalanced laminates
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Figure 10.22: Evolution of COE and it’s components, for the optimization using unbalanced
laminates.
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increases the number of lamination parameters (design variables) by a factor
of two. As discussed in section 2.3.2, the material invariants Γ2 and Γ4 con-
tribute, on the laminate level, to the in-plane strain-shear coupling and out-
of-plane bend-twist coupling. The starting point of the current optimization
case is the final design using balanced laminates (see section 10.7.1). Accord-
ing to figure 10.22, minimizing the COE using unbalanced laminates resulted
in a relative reduction of COE of one percent. The blade mass is reduced ap-
proximately by three percent, with the ICC also showing the same trend as the
blade mass. However, the AEP is also reduced, which is due to the lower rated
power of the final design.

Figure 10.23: Optimized design, skin thickness distribution for COE minimization using
unbalanced laminates.

The optimized laminate thickness distributions (both 2D and 3D repre-
sentation) are given in figure 10.23. Again, it is observed from figure 10.23 that
the largest skin thickness is located at the suction side of the wind turbine ro-
tor blade, mainly due to the active buckling constraint. The maximum skin
thickness, on the pressure side of the blade, is located towards the middle of
the blade, mainly to comply with the stiffness constraint, i.e. maximum tip
displacement. Furthermore, for the laminates distributed along the trailing
edge, there is a slight skin thickness increase towards the blade tip.

The design wind speeds for the final design are given in figure 10.25a for
the blade skin on the suction side and figure 10.25b for the blade skin on
the pressure side. Accordingly, the design wind speed for the structural con-
straints (strain and buckling) is 13m/s.

Consequently, the strain and buckling failure indices of figures 10.11c and
10.11d respectively are for the design wind speed of 13m/s. Buckling is still
a design driver (see figure 10.25). While the strain failure indices have moved
closer to the failure limit of one, strain failure is still not a design driver. In-
stead, the constraint on maximum tip displacement drives, along with the
buckling constraints, the design as can be seen in figure 10.24. Figure 10.24
shows that the tip displacement hits the design limit of one at the seventh it-
eration. The figure also shows that for the final design, both the rated torque
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Figure 10.24: Aeroelastic response evolution from COE minimization using unbalanced
laminates.
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Figure 10.25: Optimized design, sizing wind speed/load case for COE minimization using
unbalanced laminates and failure indices for wind speed = 13m/s.

The top left window in figure 10.26 shows the induced twist distribution for
the initial (dashed red line) and final design (solid red line) of the current opti-
mization, together with the structural twist (black line). From figure 10.26, the
induced twist for the final design is reduced significantly towards stall, with a
maximum difference of 1.5 degree with respect to the structural twist. How-
ever, for the inboard blade region between 20% to 35% of blade radius, the
induced twist of the final design shifts slightly towards feather. The change in
induced twist is attributed to the twist coupling of the final design, as shown
in the middle window of figure 10.26. The dashed lines represent the twist



10

138 10. AEROELASTIC OPTIMIZATION OF WIND TURBINE BLADE

Blade radius(m)
0 10 20 30 40 50 60

T
w

is
t 

an
g

le
(d

eg
)

-10

-5

0

5

10
Structural twist
Induced twist

initial, u = 13m/s

Induced twist
final, u = 13m/s

Blade radius(m)
0 10 20 30 40 50 60

A
o

A
(d

eg
)

10

20

30

40
initial, u = 8m/s
initial, u = 13m/s
final, u = 8m/s
final, u = 13m/s

0 10 20 30 40 50 60 70

T
w

is
t 

co
u

p
lin

g
(-

)

-0,5

-0,25

0

0,25

0.5
ext,initial
bend flap,initial
bend lag,initial
ext,final
bend flap,final
bend lag,final

Blade radius(m)
0 10 20 30 40 50 60 70

C
h

o
rd

 n
o

rm
al

iz
ed

S
h

ea
r 

ce
n

te
r 

(-
)

-0,5

-0,25

0

0,25

0.5
initial
final

Figure 10.26: Initial and final value for: induced twist, angle of attack, twist coupling, and
location of shear center, for COE minimization using unbalanced laminates.

coupling for the initial design (which are all zero), while the solid lines rep-
resent the twist coupling for the final design. The legends ext, bend flap, and
bend lag represent respectively, the extension-twist coupling, flap-wise bend-
twist coupling and lag-wise bend-twist coupling. The flap-wise bend-twist
coupling starts with negative coupling coefficient and changes sign roughly at
the blade midspan, almost the same location where the induced twist changes
direction, i.e. changes from twisting towards feather to twisting towards stall.
Furthermore, the negative value for flap-wise bend-twist coupling is observed
for the inboard blade region, probably causing the observed induced twist to-
wards feather, for the inboard blade region. However, there is almost no ex-
tension twist coupling both for the initial and final design.

The optimizer did not change the location of the shear center to reduce
the induced twist, as shown in the bottom window of figure 10.26 where there
is no difference in the location of the shear center between the initial and final
design. The effect of induced twist on the angle of attack is shown in the top
right window of figure 10.26, where the angle of attack versus the blade axis
is plotted for the initial and final design at different wind speeds. It is evident
that the angle of attack of the final design is reduced for the inboard blade re-
gion, while the angle of attack increases for the outer blade region. Increased
angle of attack results in lower rated power (see figure 10.20). The top left win-
dow of figure 10.20 presents the power curves for the initial and final design
together with the power curve of the NREL 5MW pitch controlled machine.
The same reduction in rated torque is also observed for the final design (see
the top right window of figure 10.20). The rated thrust is at the cut-out wind
speed, while the maximum tip displacement is around 15m/s (see the bottom
left window of figure 10.20). Finally, the root bending moments (flap-wise and
lag-wise) are presented in the bottom right window of the same figure.

The induced twist of the final design results in a further decrease of the
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rated power, as shown in figure 10.27. Furthermore, figure 10.27 shows ad-
ditional performance indicators, including torque, thrust, displacement and
root bending moments (flap-wise and lag-wise), where the final design shows
a general decrease for all the performance indicators.
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Figure 10.27: Initial and final value for: power, torque, thrust, tip displacement, and root bending
moment, for COE minimization using unbalanced laminates.

The major stiffness direction of the optimized unbalanced laminates is
shown in figure 10.28. Most of the stiffness direction of the laminates towards
the blade tip, both on the suction and pressure side of the blade skin, are ro-
tated in the same direction with respect to the material x direction (black line),
inducing (flap-wise) bend-twist coupling. For the inner blade region, the ma-
jor stiffness direction is still along the beam axis, which is required to comply
with the structural constraints, i.e. strain, and buckling constraints. The lami-
nate stiffness distribution for the shear webs is mostly quasi-isotropic, except
roughly between 30% to 45% of the blade span, where the major stiffness di-
rection is rotated to 90◦ with respect to the beam axis.

10.7.3. DOWN-WIND TURBINE CONFIGURATION:UNBALANCED

LAMINATES
Another optimization case is carried out where down-wind turbine configura-
tion is adopted during the aeroelastic simulation. This removes the constraint
on the tip displacement for the current optimization. For the present opti-
mization, COE minimization is carried out using unbalanced laminates. The
current optimization starts from the final design of the COE minimization of
an up-wind turbine configuration using unbalanced laminates. Only struc-
tural constraints (buckling and strain) are considered during the current op-
timization. The optimization history of the different components of the COE
is shown in figure 10.29, where a converged design is achieved after 11 itera-
tions. The major reduction is for the blade mass, where the mass is reduced
more that 17%. However, the ICC is increased by one present suggesting an
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(a) Blade skin on the suction side

(b) Blade skin on the pressure side

(c) Shear webs

Figure 10.28: Optimized design, stiffness distribution from COE minimization using unbalanced
laminates.

increase in power, torque, and thrust. The increase in the rated power is also
observed from the increase in the AEP by more than 3%. This leads to the
reduction of 2% of the COE compared to the final design using unbalanced
laminates for the up-wind turbine configuration.
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Figure 10.29: Evolution of COE and it’s components, for the optimization using unbalanced
laminates and no constraint on tip deflection.

The corresponding skin thickness distribution is given in figure 10.30,
which includes 2D and 3D representation of the skin thickness variation along
the blade axis. The largest skin thickness is for the spar caps at the suction side
of the blade, having the same thickness distribution as for the starting design,
suggesting that buckling constraint is still an active constraint. The skin thick-
ness distribution of the spar caps on the pressure side are different compared



10.7. DESIGN STUDIES OF TWIST COUPLED TURBINE BLADE: COE
MINIMIZATION

10

141

Figure 10.30: Optimized design, skin thickness distribution for COE minimization using
unbalanced laminates and down-wind turbine configuration.

to the initial design of the current optimization, showing two local maximums
around 15m and 30m of the blade radius.

The design wind speeds for the structural constraints (strain and buckling)
are given in figures 10.31a for blade skin on the suction side, and 10.31b for
blade skin pressure side, indicating that the design wind speed is 13m/s. The
corresponding failure indices, both strain and buckling, are given in figures
10.31c and 10.31d respectively. Figures 10.31c and 10.31d show that the buck-
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Figure 10.31: Optimized design, sizing wind speed/load case for COE minimization using
unbalanced laminates and failure indices for wind speed = 13m/s, no constraint on power or tip

deflection.

ling and strain constraints are both design drivers since both types of con-
straints reach the failure/design limit of one. Furthermore, it is observed from



10

142 10. AEROELASTIC OPTIMIZATION OF WIND TURBINE BLADE

figure 10.31c that more of the strain failure indices move closer to one, which
suggests that the optimizer goes towards fully stressed design, however, with-
out much success due to the structural indeterminate nature of the problem
(aeroelastic loads) and the additional buckling constraint.

The history of the normalized aeroelastic responses is shown in figure
10.32, where the tip displacement of the blade is unconstrained, i.e. response
values above one. There is a slight increase in the maximum torque and power
(4% for torque and 3% for power), while the thrust decreases slightly (0.5%).
The increase in torque and power is attributed to the optimized induced twist
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Figure 10.32: Aeroelastic response evolution from COE minimization using unbalanced
laminates and no constraint on power or tip displacement.

distribution, as shown in figure 10.33. The top left plot of the figure contains
the induced twist distribution for the initial (solid red line) and final (dashed
red line) designs together with the structural twist (black line). For the final
design, the induced twist distribution increase further towards feather for the
inboard blade region, while slightly decreasing towards stall for the outboard
blade region, compared to the initial design. This results in the reduction of
the angle of attack (see the top right window of figure 10.33). The new induced
twist distribution can be attributed to the new twist coupling coefficients (see
the middle window of figure 10.33). The final twist coupling coefficients, cal-
culated using equation 10.2, have substantially increased compared to the ini-
tial design with the bend-twist coupling having the largest coefficient, mainly
due to the additional blade flexibility. Furthermore, the bend-twist coupling
changes sign approximately at the mid section of the blade. An increase in lag-
twist coupling is observed at the blade root, decreasing to zero at the midspan
of the rotor blade. Additionally, a non-zero extension-twist coupling is also
observed for the final design. The optimizer did not make use of the shear
center location to reduce the induced twist towards stall, as shown in the bot-
tom window of figure 10.33 where there is almost no difference in the location
of the shear center between the initial and final design.

Figure 10.34 presents the performance indicators, comprised of power,
torque, thrust, tip displacement, and root bending moment curves for differ-
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Figure 10.33: Initial and final value for: induced twist, angle of attack, twist coupling, and shear
center, for COE minimization using unbalanced laminates, no constraint on power or tip

displacement.

10 15 20 25

P
o

w
er

(M
W

)

0

2

4

6

8

Power
initial

Power
final

Power
NREL5MW

5 10 15 20 25

T
o

rq
u

e(
M

N
m

)

0

2

4

6

8

Torque
initial

Torque
final

D
is

p
la

ce
m

en
t(

m
)

0

2

4

6

8

10

Wind speed(m/s)
5 10 15 20 25

T
h

ru
st

(K
N

)

0

200

400

600

800

1000

Thrust
initial

Thrust
final

Tip
disp,initial

Tip
disp,final

R
B

M
 la

g
(M

N
m

)
0

0.5

1

1.5

2

2.5

Wind speed(m/s)
5 10 15 20 25

R
B

M
 f

la
p

(M
N

m
)

2

4

6

8

10

12

RBM
flap,initial

RBM
flap,final

RBM
lag,initial

RBM
lag,final

Figure 10.34: Initial and final value for: power, torque, thrust, tip displacement, and root bending
moment, for COE minimization using unbalanced laminates, max power constraint.

ent wind speeds and both for the initial and final designs. The top right win-
dow shows that the power curve for the final design slightly increases below
rated wind speeds and substantially increases above rated wind speed, com-
pared to the initial design. This explains the relative increase of the AEP from
figure 10.29. A large increase in tip displacement is observed for the final de-
sign (dashed lines in the bottom left window of figure 10.34). However, there is
no difference in the thrust curve compared to the initial design (solid lines in
the bottom left window of figure 10.34), which is also the case for the flap-wise
root bending moment (solid lines in the bottom right window of figure 10.34).

Figure 10.35 shows the span-wise distribution of the major stiffness direc-
tion of all the laminates. The lag-wise bend-twist coupling for the inboard
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(a) Blade skin on the suction side

(b) Blade skin on the pressure side

(c) Shear webs

Figure 10.35: Optimized design, stiffness distribution from COE minimization using unbalanced
laminates, no constraint on power or tip deflection.

blade region (see the bottom window of figure 10.33) results from the laminate
stiffness distribution on the suction side of the blade skin (see figure 10.35a).
From figure 10.35a it is observed that close to the blade root, the stiffness di-
rection of the leading edge laminates (blue curve) and trailing edge laminates
(brown curve) are symmetric with respect to the material x direction (black
line), inducing lag-wise bend-twist coupling. The flap-wise bend-twist cou-
pling is primarily caused by the stiffness distribution of the spar cap laminates,
both on the suction and pressure side of the blade skin. Looking at figures
10.35a and 10.35b, the major stiffness direction of the spar cap laminates, on
both side of the blade skin, are aligned in the same direction. For the inboard
blade region, the major stiffness direction of the spar cap laminates is to the
right of the beam axis while for the outboard blade region, it is to the left of the
beam axis, which explains the change in the sign of the flap-wise bend-twist
coupling coefficient (see the bottom window of figure 10.33). A larger flap-
wise bend-twist coupling is achieved towards the outer blade region because
of the additional biased stiffness distribution of the trailing edge laminates
(brown curves), on both sides of the blade skin. Furthermore, it is observed
from figure 10.35 that the stiffness distribution of the shear webs, especially
for the inner blade region, contribute to the lag-wise bend-twist coupling.

10.7.4. COE MINIMIZATION WITH CONSTRAINED POWER
Finally, an optimization study is conducted with an additional constraint on
maximum power. The constraint on maximum power is set to 110% and 120%
of the rated power of the NREL 5MW pitch machine. Besides the constraint
on maximum power, structural constraints (strain and buckling) together with
the constraint on tip displacement are included in the optimization runs. For
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both optimizations, the starting point is the baseline design from section 10.6.
Table 10.7 shows the cost components of the final design, where the listed
values are normalized with the corresponding value of the NREL 5MW pitch
controlled machine, given in table 10.6. From table 10.7, the COE seems to

Table 10.7: Cost components of the final design for different constraint on maximum power. The
results are normalized with the corresponding values of the NREL 5MW pitch regulated machine.

Load overshoots
Constrained Power COE AEP ICC Blade mass Power Torque Thrust

1.10 1.13 0.97 1.20 1.62 1.10 1.40 1.34
1.20 1.11 1.02 1.24 1.58 1.20 1.52 1.34

Unconstrained 1.09 1.06 1.25 1.30 1.30 1.65 1.35

increase the stringent the constraint on maximum power becomes. The same
trend is also observed for the AEP and blade mass, while the ICC decreases for
more stringent constraint on maximum power. Furthermore, it is observed
that the constraint on maximum power is active for power overshoots less
than 1.3 of the rated power of the NREL pitch controlled machine.

The twist coupling of the final designs is shown in figure 10.36, which con-
tains the distribution of the three twist coupling modes (extension, flap-wise
bend, and lag-wise bend) along the blade axis. The solid black curves are for
the design with a constraint on power equal to 110% of the NREL 5MW pitch
controlled machine. The dashed red lines correspond to the design with 120%
constraint on maximum power. Finally, the dotted blue lines are for the design
with no constraint on maximum power.

It is observed that a significant extension-twist coupling is present for the
final designs with a constraint on maximum power. However, the extension-
twist coupling for the design with no constraint on power is negligible com-
pared to the other designs. Significant flap-wise bend-twist coupling is
achieved for all the design cases, where positive coupling coefficient (through-
out the blade span) is obtained only for the design with the most stringent
constraint on maximum power. A positive lag-wise bend-twist coupling co-
efficient is observed only for designs that include a constraint on maximum
power, while for the unconstrained design (in-terms of power), the coupling
coefficient is mostly negative.

Furthermore, the top right window of figure 10.36 shows the radial vari-
ation of the induced twist coupling for the different designs. The black line
with the label design twist refers to the initial twist distribution listed in table
10.2. As expected, the lowest induced twist is for the design with power con-
straint of 110%, having a maximum reduction in twist of 3 deg (with respect
to the design twist). Furthermore, the design with power constraint of 120%, a
maximum difference of 2.5deg in twist is observed.

As a result of lower induced twist coupling, a lower power curve is obtained
(see figure 10.37). Figure 10.37 contains the power curve of the optimized de-
signs with a different level of constraints on maximum power. Furthermore,
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Figure 10.36: Twist coupling and induced twist, for different constrained maximum power.

figure 10.37 also contains the power curve of the NREL 5MW pitch controlled
machine. The maximum power tends to decrease for more stringent con-
straint on power. However, it comes at the cost of reduced power for lower
(below rated) wind speeds. This is also observed in lower annual energy pro-
duction (AEP), as shown in table 10.7.
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Figure 10.37: Power curve for different constrained maximum power.

Figure 10.38 shows the skin thickness distribution for the two designs with
different constraints on maximum power. The maximum skin thickness (for
both designs) is for the spar caps on the suction side, suggesting that the buck-
ling constraint is still active. For the blade skins along the trailing edge (on
both sides of the rotor blade), the laminate thickness increases suddenly for
the outer blade region. A slight increase in the shear web laminate thickness
is also observed for both designs. A general increase of the laminate thick-
ness along both sides of the blade skin is observed for the designs that include
constraint of maximum power; which is required since the major stiffness di-



10.8. SUMMARY

10

147

(a) 110% constraint (b) 120% constraint

Figure 10.38: Optimized design, skin thickness distribution for COE minimization using
balanced laminates, different constraint on maximum power.

rection of most laminates is not aligned along the blade axis (see figure 10.39).
Figure 10.39 shows the major stiffness direction of the laminates for both de-
signs having an additional constraint on maximum power. It is observed from
the figure that the major stiffness direction of most laminates is at an angle
with respect to the beam axis (black line), inducing the twist couplings shown
in figure 10.36.

(a) Blade skin on the suction side, 110%
constraint

(b) Blade skin on the suction side, 120%
constraint

(c) Blade skin on the pressure side, 110%
constraint

(d) Blade skin on the pressure side, 120%
constraint

(e) Shear webs, 110% constraint (f) Shear webs, 120% constraint

Figure 10.39: Optimized design, stiffness distribution from COE minimization using unbalanced
laminates, different constraint on maximum power.

10.8. SUMMARY
This chapter presents several composite stiffness optimization studies of stall
controlled wind turbines, that include both structural and aeroelastic con-
straints during the optimization process.

First, starting from the design of the NREL 5MW pitch controlled machine,
an optimization run is carried out to design baseline 5MW stall controlled ro-
tor blade. The objective is mass minimization using balanced laminates as
design variables, while satisfying strain, buckling, and maximum tip displace-
ment constraints. Starting from an initial rotor blade mass of 41×103 Kg and
quasi-isotropic layup for all the laminates, a final design with the blade mass
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of 23×103 Kg is achieved with the buckling and tip displacement constraints
being the design drivers. The major stiffness direction of the spar caps lami-
nates is aligned along the blade axis, which provides the required strength to
comply with the structural constraints (stress, buckling and maximum tip dis-
placement) thus resulting in a significant mass reduction of 56% compared to
the initial design.

The advantage of unbalanced laminates over balanced laminates is
demonstrated by a series of optimization cases, where the cost of energy
(COE) is used as an objective function while considering both strain and
buckling constraints. The COE for the design with balanced laminates is
1.11COEr el compared to 1.09COEr el for the design with unbalanced lami-
nates, where 1.00COEr el is the cost of energy for theNREL 5MW pitch regu-
lated machine. The maximum power is reduced from 7.4MW (for balanced
laminates) to 6.9MW (for unbalanced laminates). The reduction in power
is due to a shift of induced twist distribution, towards stall, for unbalanced
laminates compared to the induced twist distribution of balanced laminates.
Compared to the design twist, a maximum difference in twist angle of ≈ 1.5deg
is achieved for unbalanced laminates while for balanced laminates the differ-
ence is less than ≈ 0.5deg. The difference is mainly due to the twist coupling,
both extension-twist and bend-twist, which are zero for balanced laminates
while for unbalanced laminates a maximum (flap-wise) bend-twist coupling
coefficient of 0.14 is achieved. However, the final design with unbalanced
laminates showed no significant extension-twist coupling. The reduction of
≈ 0.5deg in twist angle for balanced laminates is caused by a shift in the lo-
cation of the shear center towards the trailing edge, caused by a redistribu-
tion of the laminate thickness across the cross-section, especially close to the
blade tip. The main stiffness direction for the design with balanced laminates
is symmetric with respect to the blade axis, while for the unbalanced lami-
nates, the major stiffness direction is rotated to the right (20 to 30deg) with
respect to the beam axis, providing the aforementioned bend-twist coupling
coefficient of 0.14.

Furthermore, both up-wind and down-wind turbine configuration are
simulated during the optimization. The constraint on the maximum tip dis-
placement is relaxed for the down-wind configuration. Another optimiza-
tion case is carried out for the down-wind turbine configuration . The COE
is minimized using unbalanced laminates subjected only to strain and buck-
ling constraints. The final design results in COE reduction of 1.07COEr el , with
1.00COEr el referring to the COE of the NREL 5MW pitch regulated machine.
Furthermore, the optimized design with down-wind configuration shows an
increase in AEP by more than 3% compared to the design for the up-wind
configuration. For the down-wind configuration, the increase in power is at-
tributed to the optimized induced twist distribution. Compared to the design
with up-wind configuration, the induced twist distribution increases further
towards feather for the inboard blade region while slightly decreasing towards
stall for the outboard blade region. The new induced twist distribution is at-
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tributed to the new twist coupling coefficients, where the final twist coupling
coefficients have substantially increased compared to the up-wind design,
mainly due to the additional blade flexibility. Furthermore for the down-wind
configuration, the bend-twist coupling changes sign approximately at the mid
section of the blade, which explains the observed induced twist distribution of
the current design. An increase in (lag-wise) bend-twist coupling is observed
at the blade root, decreasing to zero at the blade midspan. Additionally, a sig-
nificant extension-twist coupling is observed for the down-wind configura-
tion. The change in sign for (flap-wise) bend-twist coupling is attributed to
the change in major stiffness direction of the laminates, where for the inner
blade region, the stiffness direction of most laminates (primarily spar caps) is
rotated left with respect to the beam axis, while for the outer blade region the
stiffness direction is rotated right with respect to the blade axis.

Finally, an optimization study is carried out with an additional constraint
on maximum power. Two optimization cases are carried out to minimize the
COE with different level of constraint on the maximum power. The constraint
on maximum power is set to 110% and 120% of the rated power of the NREL
5MW pitch regulated machine. The results show that the COE and blade
mass increase for more stringent constraint on maximum power. On the other
hand, the AEP and ICC decrease as the constraint on maximum power become
more stringent. It is also observed that the constraint on maximum power is
active for power overshoots lower than 130% of the rated power of the NREL
5MW pitch controlled machine.





11
CONCLUSIONS AND

RECOMMENDATIONS

Recent advances in composite technology allow for controlling the aeroelas-
tic response of wind turbine blades. Particularly, the use of twist coupling for
passively regulating the loads and power of wind turbines show a promise to
design adaptive blades for stall regulated wind turbines with superior perfor-
mance. The application of variable stiffness design in combination with an
aeroelastically deforming structure, also referred to as aeroelastic tailoring,
shows additional promise to effectively exploit the advantage of composite
materials to design adaptive blades tailored to the desired specification. The
objective of the thesis is restated here as:

Perform an optimization study, based on minimization of the cost of energy
(COE), to evaluate the additional benefit of adaptive blades on the performance
of large stall regulated wind turbines.
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11.1. CONCLUSIONS
The research is divided into two main stages to achieve the objective. For the
first stage, an optimization methodology, based on isogeometric formulation,
is developed that is tailored towards the design of wind turbine blades. For
the second stage, several design studies are carried out for assessing the per-
formance of an adaptive blade to be applied in stall regulated wind turbines.
Conclusion of both stages is summarized in sections 11.1.1 and 11.1.2.

11.1.1. STIFFNESS OPTIMIZATION METHODOLOGY FOR WIND

TURBINE BLADES
First, the blade geometry including its finite element model is generated based
on the Isogeometric analysis (IGA) principle. Second, based on the user sup-
plied operational parameters (range of operational wind speeds, turbines ro-
tational speed, etc), the aeroelastic loads are calculated using a low-fidelity
model. This generates the aeroelastic responses and their sensitivities with
respect to the design variables. The (low-fidelity) aeroelastic module is a one-
dimensional model, based on the IGA precept, to predict both the aerody-
namic loads and the structural deformations. The low-fidelity module is com-
posed of isogeometric based aero-structural model for analysing the static
aeroelastic loads on wind turbine rotor blade. First, a computationally effi-
cient formulation is presented to model the cross-sectional properties of thin-
walled, multi-cell, and prismatic beams with anisotropic material properties.
The formulation is based on the classical laminate theory, making it suitable
for use in composite optimisation. Finite element method is then employed to
evaluate the sectional stiffness constants of composite blades, which are then
implemented in a beam model that is based on an isogeometric formulation
of a geometrically exact 3D beam theory. The beam model uses quaternions
to parametrize the rotation variable together with the isoparametric interpo-
lation of the rotation parameters, defined at control points. The aerodynamic
loads are calculated using a standard BEM theory, with an additional correc-
tion to account for a change in the blade shape due to blade deformation.
The aerodynamic module is validated against the experimental data of the
MEXICO rotor, showing a good match between experiment and the present
method. Finally, the aeroelastic module is verified using the NREL 61.5m ro-
tor blade as a baseline for comparison, showing a good agreement with the
rotor loads calculated from GH Bladed and a reasonable agreement with the
results from FAST. For the high-fidelity module, the aeroelastic loads are ap-
plied, together with their sensitivity, as design dependent loads onto a finite
element model, followed by detailed structural analysis, including the sensi-
tivity of the structural responses, using the finite element solver NASTRAN.

The optimization process uses the response approximation formulation of
IJsselmuiden [66], which is based on a linear and reciprocal approximation of
the responses in terms of the design variables, i.e. elements of the membrane
and bending stiffness matrix of a laminate together with the laminate thick-
ness. Accordingly in the second step, an approximation model is formulated
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using both the responses and their sensitivities, while satisfying the essential
properties of convexity, separability, and conservativeness. The response ap-
proximations are then passed to the optimizer which iterates on the approxi-
mated model till the minimum that satisfies the constraints is found, resulting
in new design variables. The new design variables are then passed to the anal-
ysis module and the whole process is repeated till the difference between suc-
cessive optimum values of the objective function is below a given tolerance.

11.1.2. TWIST COUPLED ROTOR BLADE DESIGN FOR STALL REGU-
LATED WIND TURBINES

In the second part of the thesis, several design studies are carried out to
demonstrate the functionality of the developed optimization framework. Par-
ticularly, the benefit of variable stiffness design in turbine blades for improved
performance of large scale stall regulated turbines is investigated with the
use of the stiffness optimization process that incorporates both structural and
aeroelastic responses.

First, a baseline design for a variable speed stall regulated 5MW wind tur-
bine is created, using theNREL 5MW blade design as a starting point. The
blade planform is generated using NURBS basis functions of cubic polynomi-
als and 17 control points with which the blade geometry is defined. Among the
design changes from the NREL 5MW blade design, two airfoils for the outer
blade region are selected from an airfoil design study that is geared towards
designing airfoils with improved stall characteristics at high Reynolds num-
bers (Re = 9×106). The new 21% thick airfoil is employed between 38% and
69% of the blade span, with a maximum of 96% of the 21% airfoil shape real-
ized at 53% of the blade span. The new 18% thick airfoil is employed between
53% of the blade span till the blade tip, where the blade cross-section consists
solely of the 18% thick airfoil starting 70% of the blade span.

Considering the new airfoils, a new twist distribution is calculated for op-
timum variable speed operation below rated wind speed while inducing suf-
ficient stall for high wind speeds, especially at the outboard blade regions.
The structural components of the turbine blade are all composed of sandwich
laminates, except the spar caps, where glass fiber laminates are used for the
face sheets of the sandwich laminates and for the spar cap laminates. Fur-
thermore, two spars are modelled at 0.3 and 0.7 of chord point.

The optimization model consists of 7 laminates per cross-section, defined
at 15 control points along the blade span. Per cross-section, 3 laminates are
used to define the material properties at the pressure side of the blade and
three laminates at the suction side, with the remaining laminate defining the
material properties of the shear webs. In total, the optimization model con-
sists of 105 laminates as design variables. The aeroelastic loads, from the low-
fidelity model, are calculated for sampled wind speeds between the cut-in
and cut-out wind speed, while the structural responses, from the high-fidelity
model, are evaluated for sampled wind speeds above rated wind speed.

Initial optimization case is conducted, where the optimal design serves as
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a starting point for subsequent optimization studies. The objective is mass
minimization using balanced laminates as design variables, while satisfying
strain, buckling, and maximum tip displacement constraints. Starting from
an initial rotor blade mass of 41×103 Kg and quasi-isotropic layup for all the
laminates, a final design with the blade mass of 23×103 Kg is achieved with
the buckling and tip displacement constraints being the design drivers. The
major stiffness direction of the spar caps laminates is aligned along the blade
axis, which provides the required strength to comply with the structural con-
straints (stress, buckling and maximum tip displacement) thus resulting in a
significant mass reduction of 56% compared to the initial design. The final de-
sign for the stall regulated machine is 31% higher than the blade mass of the
NREL 5MW pitch regulated machine. The difference in mass is mainly due to
the higher load on the variable speed stall regulated machine compared to the
pitch regulated machine where for stall regulated machine, there is an over-
shoot in the aeroelastic loads compared to the pitch regulated machine due
to the difference in the control strategy.

COST MODEL
The cost model is based on the NREL cost model for pitch controlled wind
turbines and modified in [106] to calculate the Cost Of Energy (COE) of stall
controlled wind turbines. As part of the COE modification, the change in ini-
tial capital cost (ICC) for variable speed stall controlled machines is calculated
by linearising the ICC of stall controlled machine around the ICC of the NREL
5MW pitch controlled machine in-terms of the load overshoots and blade
mass. The load overshoots are comprised of: power, torque and thrust. The
load overshoots are defined as the maximum power, torque, or thrust of the
new design divided by its rated equivalent of the NREL 5MW pitch machine.

It should be noted that the present cost model is only a simplified first or-
der approximation of the COE applied for stall regulated machines, provided
that the load overshoots for the new design are not large (≤ 1.5). For larger
load overshoots, the linearisation of the ICC in-terms of the load overshoots is
not accurate and a more elaborated cost model needs to be formulated. Also
nonlinear couplings need to be taken into account such as the coupling be-
tween (installed) power and AEP. In addition, the same OM and LRC value as
for the reference NREL 5MW pitch machine are assumed in the current opti-
mization, resulting in a conservative estimation of the COE for all designs.

Therefore, the present cost model serves only to provide a first order gues-
timate of the direction into which the COE might go during stiffness optimiza-
tion of stall regulated wind turbine blades. Hence, the cost of energy results
from the present optimization study should be treated with care.

BALANCED VS UNBALANCED LAMINATES
The objective of the present optimization is to investigate the benefit of vari-
able stiffness designs to tailor the twist coupling of composite blades to im-
prove the performance of variable speed stall regulated wind turbines. Ac-
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cordingly, the advantage of unbalanced laminates over balanced laminates
is investigated by minimizing the COE of variable speed stall regulated wind
turbines while complying with structural and aeroelastic constraints. A com-
plete stiffness variation along the blade span is considered during the opti-
mization. The objective is to minimize the COE using both balanced and un-
balanced composite laminates, while ensuring no structural and aeroelastic
failures (strain, buckling and tip displacement). The results are verified using
different starting designs for the optimization cases, where the different start-
ing designs are comprised of different thickness and stiffness distribution.

COE minimization subject to buckling, strain and tip displacement con-
straints showed an advantage of unbalanced laminates over balanced lam-
inates. The COE for the design with balanced laminates is 1.11COEr el

compared to 1.09COEr el for the design with unbalanced laminates, where
1.00COEr el is the cost of energy for theNREL 5MW pitch regulated machine.
The maximum power is reduced from 7.4MW (for balanced laminates) to
6.9MW (for unbalanced laminates). The reduction in power is due to a shift of
induced twist distribution, towards stall, for the unbalanced laminates com-
pared to the induced twist distribution of balanced laminates. Compared to
the design twist, a maximum difference in twist angle of ≈ 1.5deg is achieved
for unbalanced laminates while for balanced laminates the difference is less
than ≈ 0.5deg. The difference is mainly due to the twist coupling, both
extension-twist and bend-twist, which are zero for balanced laminates while
for unbalanced laminates a maximum (flap-wise) bend-twist coupling coeffi-
cient of 0.14 is achieved. However, the final design with unbalanced laminates
showed no significant extension-twist coupling. The reduction of ≈ 0.5deg in
twist angle for balanced laminates is caused by a shift in the location of the
shear center towards the trailing edge, caused by a redistribution of the lami-
nate thickness across the cross-section, specially close to the blade tip. How-
ever, the design using unbalanced laminates makes almost no use of the lo-
cation of the shear center to reduce the induced twist towards stall. The main
stiffness direction for the design with balanced laminates is symmetric with
respect to the blade axis, while for the unbalanced laminates, the major stiff-
ness direction is rotated to the right (20 to 30deg) with respect to the beam
axis, providing the aforementioned bend-twist coupling coefficient of 0.14.

UP-WIND VS DOWN-WIND CONFIGURATION

Furthermore, two operational configurations of a wind turbine are consid-
ered: up-wind and down-wind configuration. The constraint on the maxi-
mum tip displacement is relaxed for the down-wind configuration. Another
optimization case is carried out for the down-wind turbine configuration . The
COE is minimized using unbalanced laminates subjected only to strain and
buckling constraints. The final design results in COE reduction of 1.07COEr el ,
with 1.00COEr el referring to the COE of the NREL 5MW pitch regulated ma-
chine. Furthermore, the optimized design with down-wind configuration
shows an increase in AEP by more than 3% compared to the design for the up-



11

156 11. CONCLUSIONS AND RECOMMENDATIONS

wind configuration. For the down-wind configuration, the increase in power
is attributed to the optimized induced twist distribution. Compared to the
design with up-wind configuration, the induced twist distribution increases
further towards feather for the inboard blade region while slightly decreas-
ing towards stall for the outboard blade region. The new induced twist dis-
tribution is attributed to the new twist coupling coefficients, where the final
twist coupling coefficients have substantially increased compared to the up-
wind design, mainly due to the additional blade flexibility. Furthermore for
the down-wind configuration, the bend-twist coupling changes sign approxi-
mately at the mid section of the blade, which explains the observed induced
twist distribution of the current design . An increase in (lag-wise) bend-twist
coupling is observed at the blade root, decreasing to zero at the blade mid-
span. Additionally, a significant extension-twist coupling is observed for the
down-wind configuration. The change in sign for (flap-wise) bend-twist cou-
pling is attributed to the change in major stiffness direction of the laminates,
where for the inner blade region, the stiffness direction of most laminates (pri-
marily spar caps) is rotated left with respect to the beam axis, while for the
outer blade region the stiffness direction is rotated right with respect to the
blade axis.

CONSTRAINED POWER

Finally, an optimization study is carried out with additional constraint on
maximum power. Two optimization cases are carried out to minimize the COE
with different level of constraint on the maximum power. The constraint on
maximum power is set to 110% and 120% of the rated power of the NREL 5MW
pitch regulated machine. The results show that the COE and blade mass in-
crease for more stringent constraint on maximum power. On the other hand,
the AEP and ICC decreases as the constraint on maximum power becomes
more stringent. Furthermore, the AEP deceases steeper than the ICC as the
constraint on maximum power becomes more stringent. This is mainly due to
the accumulative effect of the load overshoots on the ICC, dominating the di-
rection in which the COE goes during the optimization. It is also observed that
the constraint on maximum power is active for power overshoots lower than
130% of the rated power of the NREL 5MW pitch regulated machine. This in-
dicates that a linear approximation of the ICC in-terms of the load overshoots
lowers the fidelity of the present cost model, and a higher order approximation
of the ICC in-terms of the load overshoots is needed.

11.2. RECOMMENDATIONS

It should be noted that the COE of the present optimization study are all larger
than the cost of energy for the NREL 5MW pitch regulated machine. This re-
sults from the simple cost model used to calculate the COE of stall regulated
wind turbines, the accuracy of which depends strongly on the extent of the
load overshoots (power, torque and thrust) of the new design compared to the



11.2. RECOMMENDATIONS 157

rated values of the NREL 5MW pitch machine. Furthermore, the same OM and
LRC value as for the NREL 5MW pitch machine is used in current optimization
study. This is a conservative assumptions since there are fewer rotating com-
ponents for stall controlled machines (no pitch mechanism), which reduces
the OM and LRC of stall controlled machines. Additionally, the rotor blade
used in the present optimization study is a retrofit of the rotor blade design
for the NREL 5MW pitch regulated machine.

In-order to perform a fair comparison between modern pitch regulated
and modern stall regulated machine: first, a new cost model needs to be for-
mulated tailored for calculating the COE of stall regulated wind turbines with
large rated power (≥ 5MW ); second, a holistic design approach needs to be
taken to design a new stall controlled wind turbine, where the complete lay-
out of the turbine needs to be adapted for stall regulation. This way, a fair
comparison can be performed between pitch and stall controlled machines
with similar power rating.

The proposed optimization framework, using variable stiffness laminates,
has generated encouraging results when designing adaptive blades while con-
sidering structural and aeroelastic constraints. This motivates to address sev-
eral points to improve the proposed framework, such that the full advantage
of composite materials is exploited during the design of adaptive blades and
actual realization of the designs in real word application.

The second step after finding an optimum stiffness distribution that meets
the objective and satisfies the constraints would be to determine the fiber an-
gles that represent the optimum stiffness distribution. In the second step,
point-wise laminate stacking sequence is determined that matches the ob-
tained stiffness distribution while considering manufacturing constraints,
such as thickness build up, draping, minimum curvature. Afterwards, the fiber
angle distribution is converted into continuous fiber paths, suitable for man-
ufacturing.

The optimization process could be expanded by including shape opti-
mization, in conjunction with stiffness optimization, in a staggered optimiza-
tion scheme. For the shape optimization part, the blade planform and the
blade axis may be used as design variables in addition to the optimum stiff-
ness design (from the stiffness optimization routine) resulting in further op-
timum design solutions. Currently, the optimization framework presented in
chapter 3 is capable of parametrizing a turbine blade in terms of its material
and geometric properties, tailored both for material and geometric optimiza-
tion studies.

Furthermore, the current framework should be expanded to include un-
steady aeroelastic responses in the optimization process. Design cases with
gust loads; instability analysis, such as conventional flutter and stall flutter;
yawed flow condition and tower shadow, could be incorporated to extend the
operation envelope of the optimization framework. However, this requires the
modelling of the complete wind turbine structure, including the foundation,
tower, nacelle, etc.., as part of the aeroelastic analysis module.
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ALTERS

A.1. RESPONSES AND SENSITIVITIES

FILE MANAGEMENT SECTION

ASSIGNOU T PU T 4 =′ Resp.op4′,uni t = 92,un f or mat ted ,del ete
ASSIGNOU T PU T 4 =′ Sens.op4′,uni t = 94,un f or mat ted ,del ete
ASSIGNOU T PU T 4 =′ d scmcol .op2′,uni t = 95,un f or mat ted ,del ete
ASSIGNOU T PU T 4 =′ dF.op4′,uni t = 223, f or mat ted

EXECUTIVE CONTROL STATEMENTS

COMPI LESU BDM AP = E X I T OPT
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A.2. ALTER: CORRECT ERROR IN DSCM2
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Alter to correct sensitivity from nastran
al ter ′bcdr ′(7),′′
BC DRC ASE au//0/′’/0//s,n,mbc f l g ////////−1
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A.3. ALTER: IMPORT SENSITIVITIES
COMPI LEPSLGDV
Alter to input load sensitivity (dF) into nastran sensitivity calculation
ALT ER495
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al ter ′bcdr ′(7),′′
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