
 
 

Delft University of Technology

Predictive maintenance for multi-component systems of repairables with Remaining-
Useful-Life prognostics and a limited stock of spare components

de Pater, I.I.; Mitici, M.A.

DOI
10.1016/j.ress.2021.107761
Publication date
2021
Document Version
Final published version
Published in
Reliability Engineering & System Safety

Citation (APA)
de Pater, I. I., & Mitici, M. A. (2021). Predictive maintenance for multi-component systems of repairables
with Remaining-Useful-Life prognostics and a limited stock of spare components. Reliability Engineering &
System Safety, 214, Article 107761. https://doi.org/10.1016/j.ress.2021.107761

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.ress.2021.107761
https://doi.org/10.1016/j.ress.2021.107761


Reliability Engineering and System Safety 214 (2021) 107761

A
0
(

Contents lists available at ScienceDirect

Reliability Engineering and System Safety

journal homepage: www.elsevier.com/locate/ress

Predictive maintenance for multi-component systems of repairables with
Remaining-Useful-Life prognostics and a limited stock of spare components
Ingeborg de Pater ∗, Mihaela Mitici
Faculty of Aerospace Engineering, Delft University of Technology, HS 2926, Delft, The Netherlands

A R T I C L E I N F O

Keywords:
Aircraft predictive maintenance of repairables
RUL prognostics
Aircraft Cooling Units
Management of spare components
Multiple multi-component systems

A B S T R A C T

Aircraft maintenance is undergoing a paradigm shift towards predictive maintenance, where the use of
sensor data and Remaining-Useful-Life prognostics are central. This paper proposes an integrated approach
for predictive aircraft maintenance planning for multiple multi-component systems, where the components
are repairables. First, model-based Remaining-Useful-Life prognostics are developed. These prognostics are
updated over time, as more sensor data become available. Then, a rolling horizon integer linear program
is developed for the maintenance planning of multiple multi-component systems. This model integrates the
Remaining-Useful-Life prognostics with the management of a limited stock of spare repairable components.
The maintenance of the multiple systems is linked through the availability of spare components and shared
maintenance time slots. Our approach is illustrated for a fleet of aircraft, each equipped with a Cooling
System consisting of four Cooling Units. For an aircraft to be operational, a minimum of two Cooling Units
out of the four need to be operational. The maintenance planning results show that our integrated approach
reduces the costs with maintenance by 48% relative to a corrective maintenance strategy and by 30% relative
to a preventive maintenance strategy. Moreover, using predictive maintenance, components are replaced
in anticipation of failure without wasting their useful life. In general, our approach provides a roadmap
from Remaining-Useful-Life prognostics to maintenance planning for multiple multi-component systems of
repairables with a limited stock of spares.
1. Introduction

Aircraft maintenance is key for safe and efficient airline operations,
with airlines spending approximately 9% of their total operation costs
on Maintenance, Repair and Overhaul, which, in 2018, was estimated
to be 69 billion dollars [1]. Striving for cost savings, aircraft mainte-
nance is currently shifting from corrective or preventive maintenance
towards predictive maintenance. For predictive maintenance, sensors
are continuously monitoring the health of components and systems, al-
gorithms are generating Remaining-Useful-Life (RUL) prognostics, and
maintenance is performed based on these prognostics in anticipation
of failures [2]. One of the main challenges of predictive maintenance
is to obtain Remaining-Useful-Life (RUL) prognostics for systems and
components. RUL prognostics support a high exploitation time of the
systems and components, while limiting Aircraft-On-Ground events
due to unexpected failures. Equally challenging is to integrate RUL
prognostics into the aircraft maintenance planning, while the entire
complexity of this process is taken into account: the management of
spare components, the availability of maintenance slots during which
the aircraft can be maintained, and system reliability requirements.

∗ Corresponding author.
E-mail address: i.i.depater@tudelft.nl (I. de Pater).

Most studies focus solely on developing RUL prognostics using
either a model-based, a data-driven or a hybrid approach [3]. Model-
based approaches are proposed in, for instance, [4,5]. In [4] a two-
factor state-space model of the degradation is used to develop RUL
prognostics, with an application to rolling element bearings. In [5],
particle filtering is combined with a support vector data description
to obtain RUL predictions for engines. In this paper, we also propose
a model-based approach to obtain RUL prognostics for Cooling Units
(CUs) of wide-body aircraft. However, our focus does not lie on de-
veloping RUL prognostics only, but also on proposing a maintenance
planning model that integrates such prognostics.

For predictive maintenance planning, threshold-based maintenance
policies are frequently used [6], i.e., as soon as the degradation of a
component exceeds a threshold, a maintenance action is planned [7–
13]. Optimal moments for such maintenance actions and degrada-
tion thresholds are determined using Monte Carlo simulation [8,13,
14], semi-regenerative processes [7,11], Bayesian networks [9], or
heuristics [10,12].
vailable online 12 May 2021
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Other frequently used maintenance planning approaches focus on
a non-restrictive policy search space using Markov Decision Processes
(MDPs) [15,16] and Partially Observable Markov Decision Processes
(POMDPs) [6,17–19]. In [16] an MDP is formulated for the mainte-
nance optimization of a system subject to both failures due to gradual
deterioration and to abrupt, sudden failures. In [17] POMDPs are
proposed to model predictive maintenance planning, with a focus on
civil engineering structures. This methodology is further applied to
obtain an optimal maintenance planning for concrete structures in [18].
Also in [19] a continuous-state POMDP formulation is proposed for the
maintenance of civil structures. One of the challenges for (PO)MDPs
is the large computational time needed [15,17]. To address this is-
sue, [17] propose a point-based algorithm, while [6] develop a deep
reinforcement learning algorithm with applications to the maintenance
of steel bridge structures.

Only a few studies, however, develop prognostics models and inte-
grate them in the maintenance planning. In [20], the RUL of a rolling
element bearing is predicted with a feedforward Neural Network. Based
on these prognostics, maintenance is planned using a search algorithm.
In [21], an exponential model is developed to predict the RUL of a
rolling element bearing, and maintenance is planned just before the
predicted failure time. In [22], an exponential model is also used
to predict the RUL of a rolling element bearing. With this, optimal
maintenance moments and ordering times of spare components are
determined. In [23], the RUL of an aircraft component is predicted
using a Short Long-Term Neural Network. This is used to determine
optimal times to order new spare parts and plan maintenance as well.
In [24], an extended Kalman filter is developed to predict the crack
growth in an airframe of an aircraft. Using these predictions, mainte-
nance for the airframe is planned. However, all these studies consider
the maintenance planning of only one component, while in this study
we consider multiple multi-component systems.

In [25], RUL prognostics for an aircraft hydraulic system, consisting
of multiple sub-systems, are developed using a Kalman filter. With
this, a maintenance planning for a single aircraft is proposed using an
exhaustive search strategy. In contrast, we plan maintenance for mul-
tiple aircraft, i.e., multiple multi-component systems, that are linked
through the availability of spare components and shared maintenance
opportunities.

Last, but not least, the consideration of spare parts for predictive and
condition-based maintenance (with or without integrated RUL prognos-
tics) is crucial. One cannot execute a maintenance replacement without
having a spare component to perform the replacement with. Many stud-
ies determine an optimal component replacement time and assume that
a spare component is always available at these times [20,21,26]. Other
studies determine optimal times to order one-time-use, non-repairable
components [10,22,23]. For aircraft, however, many components are
repairables, i.e., a failed component is sent to a repair shop to be
repaired (overhauling [27]). Ordering repairable components is either
expensive and/or it takes a long time to receive these components from
the manufacturer. In general, the airlines repair and reuse components
or, if really necessary, lease a new component. The lease is ended as
soon as an own spare component is repaired. Our approach proposes
a predictive maintenance planning model for repairables. To the best
of our knowledge, this is the first study that considers predictive
maintenance planning for repairable components of multi-component
systems [27]. While this is relevant for aircraft maintenance, a similar
approach can also be used for the maintenance planning of repairable
components for other systems and domains.

In this paper we propose a rolling horizon maintenance planning
model for multiple multi-component systems of repairable components.
This rolling horizon maintenance planning model integrates (i) model-
based RUL prognostics for the components, (ii) the availability of
spare components and, (iii) available maintenance time slots when an
aircraft could be maintained (see Fig. 1). Moreover, the planning model
incorporates a reliability constraint for each multi-component system.
2

Fig. 1. An integrated maintenance planning approach with Remaining-Useful-Life prog-
nostics for components, the management of spare components and fixed maintenance
opportunities..

The RUL prognostics are generated using a model-based approach with
a particle filtering algorithm. Over time, as more sensor data becomes
available, these prognostics are updated. The updated RUL prognostics
are then used in each time window of the rolling horizon maintenance
planning model to decide which components to replace. A linear integer
program is proposed to solve the maintenance planning problem.

To illustrate our approach, a case study with a fleet of 13 wide-
body aircraft, each equipped with a multi-component system of Cool-
ing Units (CUs), is considered. An optimal maintenance planning for
CU replacements for the fleet of aircraft is obtained using a rolling
horizon approach. The performance of this planning in terms of main-
tenance costs, number of replacements and number of system failures
is analyzed. Lastly, the long-term performance of our prognostic-based
maintenance planning model is compared against a corrective and
a preventive maintenance strategy. The results show that our model
outperforms these two strategies with respect to maintenance costs and
the number of Aircraft-On-Ground events.

The main contributions of this paper are as follows:

• An integrated, rolling horizon maintenance planning model for
a fleet of aircraft, each equipped with a system of multiple re-
pairable components, is developed. This maintenance planning
integrates model-based Remaining-Useful-Life prognostics with
the management of a limited stock of spare repairable components.

• A realistic maintenance setting is considered, where aircraft main-
tenance can only be performed during pre-defined time slots,
during which the aircraft is on ground and can undergo main-
tenance.

• The overhauling of repairable components is considered, i.e. a
limited total number of spare components is assumed to be avail-
able. Upon failure, a component is sent to a repair-shop. Once
repaired, the component is returned to the pool of spares com-
ponents. The overhauling of repairable components has been
identified as a research gap in [27].

• A predictive maintenance planning model is developed for multi-
ple multi-component systems. The maintenance of multiple systems
is linked through the availability of spare repairable components
and shared maintenance opportunities.

The remainder of this paper is structured as follows. In Section 2 we
provide the problem description and introduce the main notations. We
then develop model-based RUL prognostics for aircraft Cooling Units in
Section 3. In Section 4 we develop an integrated maintenance planning
model for a fleet of aircraft, each equipped with a multi-component
system of repairable components. This model integrates the RUL prog-
nostics, the management of a limited stock of spare components, and
the available maintenance slots. In Section 5 we illustrate our model for
a fleet of wide-body aircraft, each equipped with a multi-component
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system of Cooling Units. The performance of our prognostics-based
maintenance planning model is compared against a corrective and a
preventive maintenance strategy in Section 6. Lastly, Section 7 provides
conclusions and recommendations for future research.

2. Problem description

We consider a discrete time model, where every day 𝑑 there are
decisions made regarding the maintenance planning of the aircraft.
These decisions are based on the Remaining-Useful-Life prognostics
of the aircraft components, the available spare components and the
available time slots in which maintenance can be performed.

2.1. Multi-component aircraft system

Let 𝐴 denote a fleet of aircraft. Each aircraft has a system of
multiple, identical repairable components. Let 𝐶𝑎, 𝑎 ∈ 𝐴, denote the
set of components of this system in aircraft 𝑎 ∈ 𝐴. Each component is
assumed to fail independently of the other components. When a com-
ponent fails, it is replaced with an as-good-as-new one. A replacement
can also be triggered by the Remaining-Useful-Life prognostic of this
component, in anticipation of a failure. The installation day of the as-
good-as-new component is denoted by 𝑑install

𝑎𝑐 , 𝑎 ∈ 𝐴, 𝑐 ∈ 𝐶𝑎. At the
same time, the removed component is sent for repair.

The aircraft is said to be in an Aircraft-On-Ground (AOG) condition
and, thus, can no longer fly, if this multi-component system fails. A
system is considered to be failed when the number of failed compo-
nents exceeds the number of minimum allowed component failures, as
specified by the Minimum Equipment List (MEL) [28].

2.2. Maintenance slots

A maintenance slot is a time interval during which maintenance on
an aircraft can be performed [24,25]. Over time, there is a sequence
of slots 𝑆. Each slot 𝑠 ∈ 𝑆 has a capacity 𝑚𝑠 specifying the number of
aircraft that can be simultaneously maintained during this slot. There is
no limit on the number of components that can be replaced per aircraft
within a maintenance slot. For a specific aircraft 𝑎 ∈ 𝐴, the set 𝑆𝑎 ⊆ 𝑆
specifies the slots in which aircraft 𝑎 can be maintained. A slot 𝑠 starts
during day 𝑑𝑠. The cost of maintaining an aircraft in slot 𝑠 is 𝑐𝑠.

2.3. Repairable components

We plan maintenance for repairable components, i.e., after removal
the component undergoes a repair process such that it can be used
again instead of being discarded [27,29]. When a component fails, it
is removed from the aircraft while a spare, as-good-as-new component
from the stock is installed instead. The faulty component is repaired.
This repair takes 𝛥 days. Once repaired, the component is added to the
stock. We assume that a component is in an as-good-as-new condition
once repaired. There is a limited amount of spare components (limited
stock). A component is leased from an external supplier if there are no
spares in stock when a component is replaced. We assume that a leased
component is immediately available for installment. For the prognostics
and the case study, we consider the repairable aircraft Cooling Units.

There is a fixed cost 𝑐Lf for leasing a component. Additionally, a
cost 𝑐Ld is incurred for every day the component is leased. Lastly, 𝑐fix

denotes the cost of repairing a component that is not failed but for
which the RUL prognostic indicates a failure in the near-future. If,
however, the component is already failed at the time of replacement,
then a cost 𝑐fix+𝑐ex is incurred to repair the component. It is thus more
costly to replace a failed component than a non-failed component with
a predicted failure in the near-future.
3

b

2.4. Remaining-Useful-Life (RUL) prognostics

Each component 𝑐 ∈ 𝐶𝑎 of aircraft 𝑎 is monitored by sensors.
ased on the available sensor measurements, at current day 𝑑0, a
UL prognostic for each component is made. Based on these RUL
rognostics, we determine 𝑃 fail

𝑎𝑐𝑑 , the probability that component 𝑐 of
ircraft 𝑎 fails by the beginning of day 𝑑 > 𝑑0. The RUL prognostic
odel and 𝑃 fail

𝑎𝑐𝑑 are discussed in detail in Section 3.
Based on 𝑃 fail

𝑎𝑐𝑑 , the probability of a system failure at the beginning
f day 𝑑 > 𝑑0, or equivalently, the probability of the aircraft being
n an AOG-condition at the beginning of day 𝑑, denoted by 𝑃AOG

𝑎𝑑 , is
etermined.

.5. Maintenance planning objective

Taking into account i) the maintenance slots available for each
ircraft to undergo maintenance, ii) the RUL prognostic of each aircraft
omponent and iii) the available spare components, we are interested
n assigning the aircraft to maintenance slots, such that the total cost of
he maintenance planning is minimized. Furthermore, for each aircraft
ssigned to a maintenance slot it is determined which components of
his aircraft are replaced.

.6. Rolling horizon maintenance planning

We determine a maintenance planning using a rolling horizon ap-
roach [12,30,31]. In each iteration of the rolling horizon approach,
e optimize the maintenance planning for a time window of 𝑃𝐻 days,

hat starts at day 𝑑0. At the beginning of this time window, we have: i)
ll the maintenance slots available during this time window, given by
he set 𝑆, ii) the RUL prognostics for each component and for each day
∈ [𝑑0, 𝑑0 + 𝑃𝐻) (i.e., 𝑃 fail

𝑎𝑐𝑑 is specified for each day 𝑑 within the time
indow, and for each component 𝑐 ∈ 𝐶𝑎 of each aircraft 𝑎 ∈ 𝐴), and

iii) the number of spare components initially available at the beginning
f each day 𝑑 ∈ [𝑑0, 𝑑0+𝑃𝐻], denoted by 𝑆begin

𝑑 . If initially, components
re leased at the beginning of day 𝑑, then 𝑆begin

𝑑 is negative. For the
irst time window, a maintenance planning is created. The decisions of
he first 𝜏 days of this maintenance planning are then fixed, and the
ime window is moved forward 𝜏 days. Here, 𝜏 ≤ 𝑃𝐻 . Next, a new
aintenance planning is created for this slided time window. This is

terated for several successive time windows.
An example of the rolling horizon approach is given in Fig. 2.

ere, there are three iterations of the rolling horizon procedure, with
time window of 𝑃𝐻 = 15 days that moves forward 𝜏 = 5 days

ach iteration. The first iteration (Fig. 2(a)) starts at day 𝑑0 = 120.
ll decisions regarding the maintenance planning before day 𝑑0 = 120
re fixed, while the maintenance planning between day 𝑑0 = 120 and
ay 𝑑0 + 𝑃𝐻 = 135 is under optimization. Then, the decisions of the
irst 𝜏 = 5 days of this maintenance planning are fixed and the time
indow is moved 𝜏 = 5 days forwards. In the next iteration (Fig. 2(b)),

he maintenance planning is optimized between day 𝑑0 = 125 and day
0+𝑃𝐻 = 140. This is repeated for the last iteration as well (Fig. 2(c)).
lso, at the beginning of each iteration the RUL prognostics of the
omponents are updated. This is illustrated for a component 𝑐 ∈ 𝐶𝑎
f an aircraft 𝑎 ∈ 𝐴.

. Remaining-Useful-Life prognostics for aircraft Cooling Units

In this section, using sensor measurements, we determine model-

ased Remaining-Useful-Life prognostics for aircraft Cooling Units .
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Fig. 2. Illustration of the rolling horizon approach and the update of the prognostic
information, 𝜏 = 5 days, 𝑃𝐻 = 15 days.

3.1. Aircraft Cooling Units (CUs)

All considered aircraft are equipped with 4 identical Cooling Units
(CUs). The CUs are part of the Cooling System, which cools the air of
the aircraft’s galleys. Fig. 4 shows a schematic overview of one CU,
consisting of a condenser, a flash tank, an evaporator and a compressor.
Fig. 5 shows a schematic overview of the Cooling System in an aircraft,
where there are 4 CUs that are integrated with a Pump, Galley Cooling
Units and Air Heat Exchangers.

3.2. Health indicator for CUs

As the CU (the aircraft) is increasingly used over time, the filter gets
clogged, accelerating the compressor wear, which ultimately leads to a
failure. We consider nine sensors monitoring the CUs. Fig. 3 shows the
4

mean and maximum sensor measurement per day until failure for one
CU and for each of the nine available sensors. For the purpose of our
analysis, the data sets are anonymized.

Let 𝛿𝑑 denote the flight time during the 𝑑th day when this CU is
in use, i.e., 𝛿𝑑 is the number of valid sensor measurements larger than
a threshold 𝜑 = 0. Let 𝑦𝑠𝑑,𝑏 denote the 𝑏th valid sensor measurement
during day 𝑑 for this CU, generated by a sensor 𝑠. We normalize the
measurements during day 𝑑 as follows:

�̃�𝑠𝑑,𝑏 =
𝑦𝑠𝑑,𝑏

max𝑠 − max𝑏∈1,…,𝛿𝑑 (𝑦
𝑠
𝑑,𝑏)

, (1)

with max𝑠 the overall maximum measurement generated by sensor 𝑠.
We then define the health indicator 𝑚𝑖

𝑑 of CU 𝑖 at day 𝑑 as follows:

𝑚𝑑 = 1
𝑛

𝑑
∑

𝑗=𝑑−𝑛

1
𝛿𝑗

𝛿𝑗
∑

𝑏=1
�̃�𝑠𝑗,𝑏, 𝑛 > 1. (2)

Our health indicator combines the increasing maximum sensor mea-
surement towards failure (see Fig. 3) and the increasing mean sensor
measurement towards failure (see again Fig. 3), while it is at the same
time independent of the length of the flights during a day 𝑑. For our
analysis, we select for the health indicator the sensor with the largest
correlation coefficient with the time to failure [32,33], which in our
case is sensor 8 with a correlation coefficient of 0.77. Fig. 6 shows the
health indicator obtained 30 days before failure for 5 CUs. For all CUs,
the increase in the health indicator accelerates towards failure.

3.3. RUL prognostics for CUs

Based on the health indicator 𝑚𝑑 , we now determine the RUL
prognostics for each of these components. There are two phases for the
health indicator. In the first phase, this component is only monitored
and the health indicator 𝑚𝑑 is recorded every day 𝑑.

As soon as the health indicator reaches a prognostics threshold 𝑇 𝑃 ,
i.e., as soon as 𝑚𝑑 > 𝑇 𝑃 , a second phase begins where a prognostic
for the RUL of this component is determined. In this second phase, we
consider the true degradation level of this component, denoted by 𝑥𝑑 ,
and the health indicator 𝑚𝑑 at day 𝑑 as follows:

𝑥𝑑 = 𝑥𝑑−1 + 𝛼𝑑𝜆𝑑𝑒
𝜆𝑑𝑑 , (3)

𝑚𝑑 = 𝑥𝑑 + 𝜈𝑑 , (4)

where 𝛼𝑑 ∼ 𝑁(𝜇𝛼 , 𝜎2𝛼), 𝜆𝑑 ∼ 𝑁(𝜇𝜆, 𝜎2𝜆), and 𝜈𝑑 ∼ 𝑁(0, 𝜎2𝜈 ) are model
parameters.

The exponential functional form in Eq. (3) is assumed since the cu-
mulative damage in a component has an effect on the degradation rate
of the component [34]. An exponential degradation model is a good
approximation for non-linear degradation processes such as corrosion,
bearing degradation and the deterioration of LED lighting [35–39]. The
CU can also be seen as subject to accelerated wear due to increasing
filter clogging.

Next, we estimate the RUL of this component using a particle fil-
tering algorithm (see, for instance, [40]). We consider recorded health
indices 𝑚𝑑 for this component up to the current day 𝑑. Based on these
indices, we estimate the RUL of this component as follows. We initialize
𝑥0 with the measured health levels prior to the second phase. We
consider 𝑛 initial particles (𝑥(𝑖)0 , 𝛼(𝑖)0 , 𝜆(𝑖)0 ), 𝑖 ∈ {1, 2,…, 𝑛}, each with initial
weight 1∕𝑛. Then, new particles (𝑥(𝑖)𝑑 , 𝛼(𝑖)𝑑 , 𝜆(𝑖)𝑑 ) are obtained as follows:

𝑥(𝑖)𝑑 = 𝑥(𝑖)𝑑−1 + 𝛼(𝑖)𝑑 𝜆(𝑖)𝑑 exp(𝜆(𝑖)𝑑 𝑑), (5)

where 𝛼(𝑖)𝑑 and 𝜆(𝑖)𝑑 are realizations of the random variables 𝛼𝑑 and 𝜆𝑑 ,
respectively.

As 𝑑 increases, and new measurements are available, the weights of
the particles are updated and normalized with

𝑝(𝑚𝑑 |𝑥
(𝑖)
𝑑 ) = 1

√
𝑒𝑥𝑝

⎛

⎜

⎜

−1
2

(

𝑚𝑑 − 𝑥(𝑖)𝑑
𝜎𝜈

)2
⎞

⎟

⎟

.

2𝜋𝜎𝜈 ⎝ ⎠
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Fig. 3. Mean and maximum sensor measurement per day for one CU for all nine available sensors. This CU fails at day 48.
Now, given the weights of the particles, these particles are re-
sampled [14] and, again, their weights are updated as 1∕𝑛. Lastly, the
RUL 𝑧𝑑 of this component is predicted at the current day 𝑑 based on
the re-sampled particles and the measurements up to and including day
𝑑, where the RUL 𝑧𝑑 is defined as:

𝑅𝑈𝐿 = inf{𝑧𝑑 ∶ 𝑥(𝑑 + 𝑧𝑑 ) ≥ 𝐷|𝑥0, 𝑥1,… , 𝑥𝑑}, (6)

where 𝐷 is a pre-defined failure threshold, 𝑥0, 𝑥1,… , 𝑥𝑑 are the esti-
mated degradation levels of this component at days 0, 1,… , 𝑑, respec-
tively, and 𝑥(𝑑 + 𝑧𝑑 ) is the predicted degradation level at time 𝑑 + 𝑧𝑑 .
We use Eq. (6) to predict the RUL 𝑧𝑖𝑑 of each individual particle 𝑖 in the
particle filtering algorithm as follows:

𝑧𝑖𝑑 = inf{𝑧𝑖𝑑 ∶ 𝑥(𝑖)
𝑑+𝑧𝑖𝑑

≥ 𝐷|𝑥(𝑖)0 , 𝑥(𝑖)1 ,… , 𝑥(𝑖)𝑑 }. (7)

Here, 𝑥(𝑖)0 , 𝑥(𝑖)1 ,… , 𝑥(𝑖)𝑑 are the estimated degradation levels of particle 𝑖
at days 0, 1,… , 𝑑, respectively, and 𝑥(𝑖)𝑑+𝑧𝑑 is the predicted degradation
level of particle 𝑖 at time 𝑑 + 𝑧𝑑 .

Lastly, the probability that the RUL equals 𝑧𝑑 at current day 𝑑 is
approximated by:

𝑝(𝑅𝑈𝐿 = 𝑧𝑑 |𝑚0, 𝑚1,… , 𝑚𝑑 ) =
𝑛
∑

𝑖=1
𝑤(𝑖)

𝑑 (𝑧𝑑 − 𝑧𝑖𝑑 ), (8)

where 𝑤𝑖
𝑑 is the weight of the 𝑖th particle, and (.) is a Dirac function:

(𝑦) =

{

1 𝑦 = 0,
0 𝑦 ≠ 0.

(9)

From Eq. (8), which provides the pdf of the RUL obtained at current
day 𝑑 for a component 𝑐 ∈ 𝐶𝑎 of aircraft 𝑎 ∈ 𝐴, we obtain the
probability 𝑃 fail

𝑎𝑐𝑑∗ that this component 𝑐 of aircraft 𝑎 fails before some
future day 𝑑∗ > 𝑑 as follows:

𝑃 fail = 𝑃 (𝑅𝑈𝐿 ≤ (𝑑∗ − 𝑑)). (10)
5

𝑎𝑐𝑑∗
Fig. 4. Schematic overview of a Cooling Unit.

Thus, given a current day 𝑑, Eq. (10) determines the probability of
failure before a day 𝑑∗ > 𝑑 for a specific CU. If, however, the CU is in
the first, monitoring-only phase, than we assume that 𝑃 fail

𝑎𝑐𝑑∗ = 0.001.

3.4. Results — prognostics for CU

Following the methodology in Section 3.3, we determine the RUL
prognostics for CUs using 1000 particles, 𝜎𝜈 = 0.01, 𝑛 = 10 days,
 = 22 and 𝑇 𝑃 = 11. Furthermore, we determine 𝜇𝛼 , 𝜇𝜆, 𝜎2𝛼 and 𝜎2𝜆 using
Maximum Likelihood Estimation of 𝛼 and 𝜆 on the log transformation
of Eq. (3) on the available data [41]. Fig. 7 shows the pdf of the RUL
and the distribution of 𝑃 fail

𝑎𝑐𝑑 of a CU 𝑐 of an aircraft 𝑎 estimated at day
339 (15 days before failure), day 344 (10 days before failure) and at
day 349 (5 days before failure) since the start of the monitoring phase.
The RUL estimation is precise, i.e., the actual RUL always falls within
the probability distribution of the predicted RUL, while the uncertainty
in the prediction is low. For all prediction horizons, the actual RUL
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Fig. 5. Schematic overview of the Cooling System.
Fig. 6. The health indicator 𝑚𝑖
𝑑 for 5 CUs 𝑖 30 days before failure.

is slightly underestimated. For this CU, it takes on average 14.4 s to
estimate the RUL distribution using a computer with an Intel Core i7
processor at 2.11 GHz and 8Gb RAM.

4. Predictive maintenance planning model for a fleet of aircraft

Using the prognostics obtained in Section 3, as well as information
about the availability of maintenance slots and spare components,
we now introduce a linear integer program to plan the maintenance
of multiple aircraft systems of repairable components. This model is
applied, using a rolling horizon approach, for a planning time window
of 𝑃𝐻 days [𝑑0,… , 𝑑0+𝑃𝐻) (see Section 2.6 and Fig. 2), and for a fleet
of aircraft.

We first introduce some additional notation and definitions.

Definition 1. An aircraft is said to be critical when the probability that
this aircraft is in an AOG-condition at the end of the planning time win-
dow [𝑑0,… , 𝑑0 +𝑃𝐻) exceeds a reliability threshold 𝑟, i.e., 𝑃AOG

𝑎(𝑑0+𝑃𝐻) ≥
𝑟.

Let 𝐴𝑟 ⊆ 𝐴 denote the set of critical aircraft at the beginning of the
planning time window [𝑑0,… , 𝑑0 + 𝑃𝐻).

Let 𝐺𝑎 denote the set of all possible subsets of the components of
aircraft 𝑎 ∈ 𝐴 that can be replaced in the planning time window
6

𝑟

[𝑑0,… , 𝑑0 + 𝑃𝐻), such that 𝑃AOG
𝑎(𝑑0+𝑃𝐻) < 𝑟. We assume that once a

component is replaced in a planning time window, then this component
cannot fail anymore in the same time window. The set 𝐺𝑎 depends on
the configuration of the multi-component system. To illustrate 𝐺𝑎, we
discuss an example of a system where the components are linked in
series, i.e., if one component fails, the whole system fails. Let critical
aircraft 𝑎 have a system consisting of 4 components in series, 𝐶𝑎 =
{1, 2, 3, 4}. Let the probability of failure for component 𝑘 ∈ {1, 2} by day
𝑑0 +𝑃𝐻 be 𝑃 fail

𝑎𝑘(𝑑0+𝑃𝐻) > 𝑟. Let the probability of failure for component
𝑘 ∈ {3, 4} by day 𝑑0 + 𝑃𝐻 be 𝑃 fail

𝑎𝑘(𝑑0+𝑃𝐻) ≪ 𝑟. Then, at least component
1 and 2 must be replaced to ensure that 𝑃AOG

𝑎(𝑑0+𝑃𝐻) < 𝑟. The set 𝐺𝑎 of
component subsets that can be replaced to avoid the aircraft being in
an AOG-condition is thus:

𝐺𝑎 = {{1, 2}, {1, 2, 3}, {1, 2, 4}, {1, 2, 3, 4}}

We now introduce the decision variables, objective function and
constraints of the predictive maintenance planning model with RUL
prognostics and limited spare components.

Decision variables

We consider the following decision variable.

𝑋𝑎𝑐𝑠 =

⎧

⎪

⎨

⎪

⎩

1, component 𝑐 ∈ 𝐶𝑎 of aircraft 𝑎 ∈ 𝐴
is replaced in maintenance slot 𝑠 ∈ 𝑆𝑎,

0, otherwise.

We also consider the following three auxiliary variables which (i)
keep track of the maintenance planning for an entire aircraft, (ii) keep
track of the number of leased components at the end of a day, and (iii)
keep track of the number of newly leased components during a day.
First,

𝑌𝑎𝑠 =

{

1, aircraft 𝑎 ∈ 𝐴 is assigned to slot 𝑠 ∈ 𝑆𝑎,
0, otherwise.

Here, the auxiliary variable 𝑌𝑎𝑠 is defined by the decision variables 𝑋𝑎𝑐𝑠
as follows:

𝑌𝑎𝑠 ≥ 𝑋𝑎𝑐𝑠, ∀𝑎 ∈ 𝐴, ∀𝑐 ∈ 𝐶𝑎, ∀𝑠 ∈ 𝑆𝑎 (11)

𝑌𝑎𝑠 ≤
∑

𝑐∈𝐶𝑎

𝑋𝑎𝑐𝑠, ∀𝑎 ∈ 𝐴, ∀𝑠 ∈ 𝑆𝑎, (12)

where Eq. (11) ensures that when a component 𝑐 ∈ 𝐶𝑎 of aircraft 𝑎 ∈ 𝐴
is replaced in maintenance slot 𝑠 ∈ 𝑆 , the entire aircraft is assigned to
𝑎
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Fig. 7. The RUL prognostic results for three consecutive time windows.
maintenance slot 𝑠. Eq. (12) ensures that when an aircraft is assigned to
a maintenance slot, at least one component of this aircraft is replaced.

Second, we define the number of leased spare parts at the end of
day 𝑑 ∈ [𝑑0,… , 𝑑0 + 𝑃𝐻 + 𝛥) as:

𝐿𝑑 = max{0,
∑

𝑎∈𝐴

∑

𝑐∈𝐶𝑎

∑

𝑠∈𝑆𝑎∶
𝑑𝑠≤𝑑<𝑑𝑠+𝛥

𝑋𝑎𝑐𝑠 − 𝑆begin
𝑑 },

∀𝑑 ∈ [𝑑0,… , 𝑑0 + 𝑃𝐻 + 𝛥), (13)

where 𝑆begin
𝑑 is the number of spare components initially available at

the beginning of day 𝑑 (see Section 2.6). Eq. (13) defines the number
7

of leased spare components to be the number of components in repair
at the beginning of day 𝑑, minus the number of initially available spare
components. If a component is replaced on day 𝑑 ∈ [𝑑0,… , 𝑑0 + 𝑃𝐻),
then this component is in repair until day 𝑑 + 𝛥.

Third, we define 𝐿new
𝑑 to be the number of newly leased spare parts

during day 𝑑 ∈ [𝑑0,… , 𝑑0 + 𝑃𝐻 + 𝛥). The following two constraints
apply for 𝐿new

𝑑 :

𝐿new
𝑑 = max{0, 𝐿𝑑 − 𝐿𝑑−1} ∀𝑑 ∈ [𝑑0 + 1,… , 𝑑0 + 𝑃𝐻 + 𝛥) (14)

𝐿new
𝑑0

= max{0, 𝐿𝑑0 − max{0, 𝑆begin
𝑑0−1

}}. (15)
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Eqs. (13), (14) and (15) are linearized exactly with the use of binary
dummy variables, following [42, Chapter 4.5].

Objective function

We consider the following objective function that minimizes the
total costs with the maintenance of multiple aircraft systems.

𝑚𝑖𝑛
∑

𝑎∈𝐴

∑

𝑐∈𝐶𝑎

[

[
∑

𝑠∈𝑆𝑎

𝑋𝑎𝑐𝑠

𝑐fix + 𝑃 fail
𝑎𝑐𝑑𝑠

⋅ 𝑐ex

𝑑𝑠 − 𝑑install
𝑎𝑐

]

+
[

(1 −
∑

𝑠∈𝑆𝑎

𝑋𝑎𝑐𝑠)
𝑐fix + 𝑃 fail

𝑎𝑐(𝑑0+𝑃𝐻) ⋅ 𝑐
ex

𝑑0 + 𝑃𝐻 − 𝑑install
𝑎𝑐

]

]

+
∑

𝑎∈𝐴

∑

𝑠∈𝑆𝑎

𝑌𝑎𝑠 ⋅ 𝑐𝑠

+
𝑑0+𝑃𝐻+𝛥−1

∑

𝑑=𝑑0

(𝐿𝑑 ⋅ 𝑐Ld + 𝐿new
𝑑 ⋅ 𝑐Lf). (16)

The first term of Eq. (16) represents the expected cost of replacing
a component. This cost is incurred either when the replacement is
planned within the planning time window [𝑑0,… , 𝑑0 + 𝑃𝐻), or later
when the decision to replace is postponed to the beginning of the
next planning time window. In the first case, a fixed repair cost 𝑐fix

is incurred, plus a cost 𝑐ex when the component is actually failed at
the moment of replacement. This cost is normalized with the number
of days the component is in use 𝑑𝑠 − 𝑑install

𝑎𝑐 , i.e., it is preferred to use
the component as long as possible. In the second case, we consider
the cost of postponing the replacement, which contains the same costs
𝑐fix and 𝑐ex, relative to the earliest possible replacement time when
the decision is postponed. Overall, the first term of Eq. (16) trades-off
between replacing a component in the current time window (a lower
exploitation time of the component, but also a lower probability of
failure) or postponing the replacement to a later time window (a higher
exploitation time of the component, but also a higher probability of
failure).

The second term of Eq. (16) represents the costs of assigning an
entire aircraft to a maintenance slot.

The last term of Eq. (16) represents the cost of leasing spare com-
ponents for an entire fleet of aircraft.

Constraints

We consider the following constraints:
∑

𝑠∈𝑆𝑎

𝑌𝑎𝑠 ≤ 1, ∀𝑎 ∈ 𝐴 (17)

∑

𝑎∈𝐴
𝑌𝑎𝑠 ≤ 𝑚𝑠, ∀𝑠 ∈ 𝑆 (18)

∃𝑔 ∈ 𝐺𝑎 ∶
∑

𝑐∈𝑔

∑

𝑠∈𝑆𝑎∶
𝑑𝑠<𝑑𝑟𝑎

𝑋𝑎𝑐𝑠 ≥ |𝑔|, ∀𝑎 ∈ 𝐴𝑟

where 𝑑𝑟𝑎 = arg min
𝑑∈{𝑑0+1,….,𝑑0+𝑃𝐻}

{𝑃AOG
𝑎𝑑 |𝑃AOG

𝑎𝑑 ≥ 𝑟}, (19)

𝑋𝑎𝑐𝑠 ∈ {0, 1}, ∀𝑎 ∈ 𝐴, ∀𝑠 ∈ 𝑆𝑎, ∀𝑐 ∈ 𝐶𝑎 (20)

𝑎𝑐 ∈ {0, 1}, ∀𝑎 ∈ 𝐴, ∀𝑠 ∈ 𝑆𝑎 (21)

𝑑 , 𝐿
new
𝑑 ∈ N+. ∀𝑑 ∈ {𝑑0,… , 𝑑0 + 𝑃𝐻 + 𝛥} (22)

Constraint (17) ensures that each aircraft is assigned to at most one
aintenance slot within the planning time window. Constraint (18)

nsures that the number of aircraft assigned to a maintenance slot 𝑠
oes not exceed the slot’s capacity 𝑚𝑠. Constraint (19) ensures that the
robability that an aircraft is in an AOG-condition does not exceed a
eliability threshold 𝑟 within the planning time window. To prevent that
n aircraft 𝑎 ∈ 𝐴𝑟 is in an AOG-condition, a subset of the components
ust be replaced before 𝑑𝑟, where 𝑑𝑟 is the first day 𝑑 within the
8

𝑎 𝑎 𝑃
ime window [𝑑0 + 1,… , 𝑑0 + 𝑃𝐻) when 𝑃AOG
𝑎𝑑𝑟𝑎

≥ 𝑟. To ensure that
AOG
𝑎(𝑑0+𝑃𝐻) < 𝑟, i.e., that the probability of an AOG-condition for aircraft
∈ 𝐴𝑟 does not exceed the reliability threshold, all the components in
t least one subset 𝑔 ∈ 𝐺𝑎 have to be replaced, i.e., all |𝑔| components of
he subset 𝑔 are replaced. This constraint is linearized exactly with the
se of binary dummy variables, following [42, Chapter 3.6]. Finally,
onstraints (20), (21) and (22) define the domains of the decision
ariables.

. Results — Predictive maintenance planning of Cooling Units for
fleet of aircraft

In this section, we illustrate the maintenance planning model (see
ection 4) for a fleet of |𝐴| = 13 homogeneous, wide-body aircraft. Each
ircraft is equipped with 𝑁 = 4 identical Cooling Units (CUs) in the
ooling System, as introduced in Section 3. First, we discuss the Cooling
nits system and its 𝑘-out-of-𝑁 system’s configuration in Section 5.1. In
ection 5.2 we illustrate the maintenance planning model for this multi-
omponent, 𝑘-out-of-𝑁 system. Lastly, in Section 5.3 the computational
ime of the model is discussed for different sizes of aircraft fleet.

.1. 𝑘-Out-of-𝑁 system of Cooling Units

Each aircraft is equipped with 𝑁 = 4 Cooling Units (CUs), which
re linked in a 𝑘-out-of-𝑁 system. Here, the Minimum Equipment List
MEL) requires that 𝑘 = 2 [28]. An aircraft is thus allowed to fly
i.e., not in an AOG-condition) if at least 𝑘 + 1 = 3 or more CUs are
perational. However, if exactly 𝑘 = 2 CUs are operational, then the
ircraft is still allowed to fly for a maximum of 𝑉 = 10 days [28].
therwise, the aircraft is in an Aircraft-On-Ground condition, which is
efined as follows:

efinition 2. An aircraft is in an Aircraft-On-Ground (AOG) condition
s soon as i) (𝑁 − 𝑘) + 1 or more components fail, or ii) (𝑁 − 𝑘)
omponents have been failed for more than 𝑉 days.

The probability 𝑃AOG
𝑎𝑑 that an aircraft 𝑎 ∈ 𝐴 with a 𝑘-out-of-𝑁

ystem is in an AOG-condition at the beginning of day 𝑑, is as follows:
AOG
𝑎𝑑 =𝑃

(

𝑖 ∈ {(𝑁 − 𝑘) + 1,… , 𝑁} components fail before
the beginning of day 𝑑, or exactly (𝑁 − 𝑘)

components fail before the beginning of day 𝑑 − 𝑉
)

For the case of the Cooling System with 𝑁 = 4, 𝑘 = 2 and 𝑉 = 10,
he probability of an aircraft being in an AOG-condition at day 𝑑 is:

AOG
𝑎𝑑 =

4
∏

𝑖=1
𝑃 fail
𝑎𝑖𝑑 +

4
∑

𝑖=1
(1 − 𝑃 fail

𝑎𝑖𝑑 )
4
∏

𝑙=1
𝑙≠𝑖

𝑃 fail
𝑎𝑙𝑑 +

3
∑

𝑖=1

4
∑

𝑗=𝑖+1
𝑃 fail
𝑎𝑖(𝑑−10)𝑃

fail
𝑎𝑗(𝑑−10)

4
∏

𝑙=1
𝑙∉{𝑖,𝑗}

(1 − 𝑃 fail
𝑎𝑙𝑑 ). (23)

In Section 4, we define that the set 𝐺𝑎 contains all subsets of 𝐶𝑎
hat could be replaced to ensure that 𝑃AOG

𝑎(𝑑0+𝑃𝐻) < 𝑟, i.e., the set of
omponents that could be replaced to avoid having the aircraft in an
OG-condition. To illustrate 𝐺𝑎 for the Cooling System, we discuss the

ollowing example. Let a critical aircraft 𝑎 ∈ 𝐴𝑟 (see Definition 1)
ave 𝑁 = 4 CUs, i.e., 𝐶𝑎 = {1, 2, 3, 4}. Furthermore, let 𝑟 = 0.01 and
𝐻 = 15 days. Then 𝑃AOG

𝑎(𝑑0+15)
is the sum of i) the probability that three

f four components fail by day 𝑑0+15, and (ii) the probability that two
omponents fail by day 𝑑0+15−10 and no components fail between day
0+15−10 and day 𝑑0+15 (see Eq. (23)). Moreover, let the probabilities
hat components 1, 2 3 and 4 fail by day 𝑑0 + 15 be 𝑃 fail

𝑎1(𝑑0+15)
= 1,

fail
𝑎2(𝑑0+15)

= 0.05, 𝑃 fail
𝑎3(𝑑0+15)

= 0.05 and 𝑃 fail
𝑎4(𝑑0+15)

= 0.001. Lastly, let the
robabilities that components 1, 2, 3 and 4 fail by day 𝑑0 + 15 − 10 be
fail fail fail fail

𝑎1(𝑑0+5)

= 1, 𝑃𝑎2(𝑑0+5)
= 0.02, 𝑃𝑎3(𝑑0+5)

= 0.02 and 𝑃𝑎3(𝑑0+5)
= 0.001.
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Fig. 8. Maintenance planning for 50 days, from day 1465 to 1515 for a fleet of 13 wide-body aircraft..
Table 1
Parameter values for the maintenance planning model in Section 4.
Costs
𝐶 fix 104

𝐶ex 5 ⋅ 103

𝐶Lf 4 ⋅ 104

𝐶Ld 103

Rolling horizon parameters
𝑃𝐻 15 days
𝜏 5 days

CU-related parameters
𝑁 4 CUs
𝑘 2 CUs
𝛥 4 weeks
𝑉 10 days
𝑆begin
0 3 CUs

Reliability-related parameters
𝑟 0.01

In this example, the set of replaced components must include at least
component {1}, or components {2, 3} to ensure that 𝑃AOG

𝑎(𝑑0+15)
< 0.01.

Thus, the set of component subsets that can be replaced to solve the
aircraft criticality (see Definition 1) is:

𝐺𝑎 ={{1}, {2, 3}, {1, 2}, {1, 3}, {1, 4}, {1, 2, 3}, {1, 2, 4},

{1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}}.

5.2. Maintenance planning

In this section, we illustrate the maintenance planning model (see
Section 4) for a fleet of |𝐴| = 13 homogeneous, wide-body aircraft.
The initial stock of spare CUs for this fleet of 13 aircraft at day 0
is 𝑆begin

0 = 3. Moreover, the first 𝜏 = 5 days of each maintenance
planning in the rolling horizon approach are fixed. In general, various
planning horizons 𝜏 can be considered. The other parameter values for
our proposed maintenance planning model are given in Table 1.

In practice, it is assumed that there are two types of maintenance
slots for the aircraft: (i) aircraft-specific slots, which are dedicated to
one specific aircraft, and (ii) generic slots, which can be used by all
aircraft. We assume that at most two aircraft can be maintained at
the same time in a generic slot, i.e., 𝑚generic

𝑠 = 2. In extreme cases,
when there are very few aircraft-specific slots or a large number of
aircraft, this capacity could be increased. One generic slot is available
every day. Lastly, we assume that the cost 𝑐𝑠 of a maintenance slot 𝑠 is
𝑐generic
𝑠 = 104 for a generic slot and 𝑐specific

𝑠 = 1 for an aircraft-specific
slot. For our analysis, we use historical aircraft-specific slots that have
9

Table 2
The components that are replaced in the maintenance planning in Fig. 8.
𝑎 ∈ 𝐴 𝑐 ∈ 𝐶𝑎 Day of Failed at Actual

slot 𝑠𝑑 replacement? RUL

10 3 1465 No 9 days
8 2 1480 Yes –
8 3 1480 No 11 days
4 4 1484 No 6 days
2 3 1508 No 9 days
3 3 1508 Yes –

been used in practice by the fleet of 13 aircraft. On average, an aircraft
has 35 of these aircraft-specific maintenance slots per year.

Fig. 8 shows the final maintenance planning of the fleet of 13
aircraft for a period of 50 days, using a rolling horizon approach with
planning time windows of 𝑃𝐻 = 15 days, of which each time the
first 𝜏 = 5 days are fixed. In this period, 6 CUs are replaced, 1 CU
is leased and the total maintenance costs of the CUs is 137.203. These
results are obtained in 3.3 s with the Gurobi solver version 9.0.2 with
standard settings (branch-and-cut algorithm), implemented in Python,
using an Intel Core i7 processor at 2.11 GHz and 8Gb RAM. The model
is initialized with a random installation time for each CU, 𝑑install

𝑎𝑐 ∼
𝑈 (80, 200) days before the start of the maintenance planning.

In Fig. 8, the aircraft-specific maintenance slots available for each
aircraft during the 50 days period are depicted. There is also a generic
slot available every day. The planning results show that aircraft 𝑎 ∈
{3, 4, 10} are assigned to an aircraft-specific maintenance slot, while
aircraft 𝑎 ∈ {2, 8} are assigned to generic slots. Regarding the aircraft-
specific slots, aircraft 3 is planned to be maintained during day 1508,
aircraft 4 during day 1484 and aircraft 10 during day 1465. Regarding
the generic slots, aircraft 2 is assigned to a generic slot at day 1508 and
aircraft 8 during day 1480.

The components that are replaced in the maintenance planning of
50 days are given in Table 2. Aircraft 8 is assigned to a maintenance
slot at day 1480, during which two components, CU 2 and 3, are
replaced. For the other aircraft, only one component per maintenance
slot is replaced. Out of the 6 replacements, 4 components are replaced
before they fail (66%). On average 8.75 days of the RUL are wasted
when a component is replaced before its failure time. During the
50 days considered, there is one new component leased at day 1484
(i.e. 𝐿new

1484 = 1). This component is leased until day 1492 (i.e. 𝐿𝑑 = 1∀𝑑 ∈
[1484,… , 1492] while 𝐿𝑑 = 0 ∀𝑑 ∈ [1465,… , 1483]∪ [1493,… , 1515]).

To illustrate the dynamic character of our rolling horizon approach,
Figs. 9 and 10 show three rolling time windows, which correspond
to the last several days in Fig. 8. Fig. 9 shows the prognostics at the
beginning of each time window. Only the CUs that have not failed yet,
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Fig. 9. The prognostics at the beginning of planning time windows [1495, 1510),
[1500, 1515), [1505, 1520).

but that are in the second phase of the prognostics at the beginning of
the time window, are shown. These prognostics are used as input in the
maintenance planning model in Fig. 10.

At the beginning of time window [1495, 1510), two CUs are in the
second phase of the prognostics: CU 2 of aircraft 3 and CU 2 of aircraft 2
(see Fig. 9). CU 3 of aircraft 3 is already failed. This aircraft is therefore
critical, and some components have to be replaced before day 1508. In
contrast, all CUs of aircraft 2 are still functional, and this aircraft is
therefore not critical. For this time window [1495, 1510), there are no
spare CUs available until day 1508. Aircraft 2 has no generic slots after
or on day 1508, and the replacement of CU 2 of aircraft 2 is therefore
not scheduled. However, a replacement of a CU of aircraft 3 has to be
scheduled before day 1508, i.e., before a spare CU becomes available,
due to the required reliability of each aircraft. The replacement of CU
2, with a predicted near-future failure, is therefore scheduled in the
aircraft-specific slot at day 1500 (see Fig. 10), and it is planned to lease
a CU. The maintenance planning of the first five days, [1495, 1499], is
fixed. Since there is no maintenance planned in the first five days, no
maintenance is thus executed and no CUs are leased.

In the next time window, [1500, 1515), CU 2 of aircraft 3 and CU 2 of
aircraft 2 are not failed yet (see Fig. 9). With the updated prognostics
for CU 2 of aircraft 3, some components have to be replaced before
day 1511 in this time window, instead of before day 1508. Aircraft
3 is therefore scheduled to be repaired in the generic slot during day
1508, when a spare CU becomes available. Both CU 2 and CU 3 of
aircraft 3 are failed by this day, and one of them (CU 3) is selected
for replacement in a specific slot. As before, the first five days of this
maintenance planning, [1500, 1504], are now fixed.

In the third time window, [1505, 1520), both CU 2 of aircraft 2 and
CU 2 of aircraft 3 have failed. However, CU 3 of aircraft 2 is now in
the second phase of the prognostics (i.e., predicted to fail in the near-
future) as well. The aircraft is therefore critical; some components have
10
Table 3
Computation time — maintenance planning for various aircraft fleet sizes.

Size of fleet of aircraft

13 30 60 90 120

Total computation time [sec]
(60 months planning)

71 179 482 752 1239

Average computation time [sec]
(one time window — 15 days)

0.04 0.14 0.44 0.73 1.22

to be replaced before day 1517. An aircraft-specific slot for aircraft
2 is available on day 1507. However, no spare CU is available then.
Since using a generic slot is much cheaper than leasing a spare CU,
the replacement of CU 3 of aircraft 2 is scheduled in a generic slot at
day 1508. The maintenance actions planned from day 1505 to day 1509
are fixed, which means that the maintenance planned on day 1508 (see
Fig. 8) is now fixed.

5.3. Computation time vs size of aircraft fleet

Table 3 shows the total computational time required to obtain a
maintenance planning for 60 months for different aircraft fleet sizes.
Here, the number of spare CUs and the capacity of the generic slots is
proportional to the fleet size. We also include the average computation
time required to solve the maintenance planning problem for one
time window (15 days). These computation times are obtained using
a computer with an Intel Core i7 processor at 2.11 GHz and 8Gb RAM.
For an aircraft fleet as large as 140 aircraft, a total of 1239 s are needed
to obtain a maintenance planning for 60 months, with an average
computation time of 1.22 s to solve the problem for one time window
of 15 days.

6. Prognostic-based maintenance vs. corrective and preventive
maintenance

In this section, we compare our proposed prognostic-based main-
tenance model with limited spare components (see Section 4) with a
corrective and a preventive maintenance strategy (see [43,44]), for
the 𝑘-out-of-𝑁 systems. For these two maintenance strategies, we also
consider a limited amount of spare components and fixed maintenance
slots. Corrective and preventive maintenance strategies are often used
in the practice of aircraft maintenance [14,45,46].

Corrective maintenance (𝐶𝑀) for 𝑘-out-of-𝑁 systems of repairables with
limited spares

We consider a corrective maintenance (𝐶𝑀) strategy where the sys-
tem is maintained only when 𝑘 = 2 or more components of the system
are failed (see also Definition 2). We plan the aircraft maintenance in
the following order of priority: First, the maintenance for all aircraft
already in an AOG-condition (see Definition 2) is planned. An aircraft
in an AOG-condition is assigned to the earliest available maintenance
slot. When there are 𝑓 ≥ 𝑘 failed components in the aircraft, at least
𝑓 − 1 failed components are replaced in this maintenance slot. If there
are not enough spare components, then extra components are leased so
that all 𝑓 − 1 failed components can be replaced.

Second, all aircraft with 𝑘 = 2 failed components that are not yet in
an AOG-condition (see Definition 2), are assigned to maintenance slots.
Such an aircraft is maintained in the earliest available aircraft-specific
slot, as long as this does not lead to an AOG-condition. Otherwise,
the aircraft is maintained in the earliest available maintenance slot,
irrespective of the type of slot. At least 1 failed component is replaced.
If there are not enough spare components, then extra components are
leased.

Last, all remaining failed components in the two types of air-
craft above are replaced as well, as long as there are enough spare
components.
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.

Fig. 10. The maintenance planning of three iterations of the rolling horizon approach
for time windows [1495, 1510), [1500, 1515) and [1505, 1520).
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Table 4
95% CI — Long-term performance of PM, CM and Prog.M, with T — the total number
of replacements, and NF — the total number of replacements of non-failed components

95% CI
AOG events

95% CI
Leases

95% CI
Replacements

95% CI
Total costs (mil)

CM [0.71, 0.82] [21.6, 22.3] [112.2, 113.1] (T) [3.05, 3.10]
PM [0.08, 0.11] [4.43, 4.78] [134.7, 135.6] (T) [2.26, 2.29]
Prog.M 0.0 [3.90, 4.19] [105.1, 106.0] (T) [1.57, 1.60]

[87.2, 88.0] (NF)

Preventive maintenance (𝑃𝑀) for 𝑘-out-of-𝑁 systems of repairables with
limited spares

We consider a preventive maintenance (𝑃𝑀) strategy where the
system is maintained to prevent a system failure. To prevent that the
entire system fails, i.e., at least 𝑘 + 1 components are failed, or 𝑘
components are failed for more than 𝑉 days, we replace components
as soon as they fail, provided spare components are available. First,
the aircraft for which the system has 𝑘 = 2 or more failed components
are maintained as in the 𝐶𝑀 strategy. Then, the failed components in
the remaining aircraft are replaced as well. These aircraft can only be
assigned to aircraft-specific slots. Furthermore, no spare components
can be leased to replace these failed components.

We analyze 𝐶𝑀 , 𝑃𝑀 and the prognostics-based maintenance plan-
ning model for a fleet of 13 aircraft for a period of 60 months using
Monte Carlo simulation with a 1000 simulation runs. All parameters
and costs are the same as in Table 1. Fig. 11 shows the performance of
𝐶𝑀 , 𝑃𝑀 and our proposed prognostics-based maintenance planning
model. Table 4 gives 95% confidence intervals. Fig. 11(a) shows the
expected number of times an aircraft is in an AOG-condition (see
Definition 2) for the three strategies. This is called an AOG-event. The
results show that the 𝐶𝑀 strategy leads to the highest number of
expected AOG-events.

Fig. 11(b) shows the expected number of leased spare components
per strategy. The most spare components are leased for the 𝐶𝑀 strat-
egy. Both the 𝑃𝑀 strategy and the prognostic maintenance planning
model need relatively few spare components.

The total number of replacements 𝑇 , and the number of replace-
ments of non-failed components 𝑁𝐹 , is given in Fig. 11(c). For the 𝐶𝑀
and 𝑃𝑀 strategies, by definition, only failed components are replaced.
The number of total replacements is highest for the 𝑃𝑀 strategy,
because components are replaced as soon as they fail (provided that
there are enough spare components). In contrast, for the 𝐶𝑀 strategy,
failed components are replaced only when there are at least 𝑘 = 2
failed components in a system. For the prognostic-based maintenance
planning, the total number of replacements is the lowest because com-
ponents that fail are not necessarily immediately replaced. When the
probability of an AOG-condition for an aircraft exceeds the reliability
threshold 𝑟, it is often more beneficial to replace the component(s) that
have a failure predicted in the near-future, thus saving repair costs.
Here, for on average 88 out of the 106 replacements, the components
are not failed at the time of replacement.

Lastly, the total expected maintenance costs are given in Fig. 11(d).
For all strategies, the repair costs constitute the largest fraction of the
total costs, while the slot costs constitute the smallest fraction of the
total costs. The total costs are the highest for the 𝐶𝑀 strategy, while
the prognostic maintenance planning has the lowest total costs.

Overall, the results of our case study show that the prognostics-
based maintenance planning model is most beneficial, with the low-
est expected maintenance costs and the lowest expected number of
AOG-events.
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Fig. 11. The expected long-term performance of 𝑃𝑀 , 𝐶𝑀 and prognostics-based maintenance model (𝑃𝑟𝑜𝑔.𝑀) for a period of 60 months and a fleet of 13 wide-body aircraft,
including 95% confidence intervals (CI).
7. Conclusion

An integrated approach from sensor data to RUL prognostic algo-
rithms, to maintenance planning is proposed for a fleet of aircraft, each
equipped with a multi-component system of repairable components.
RUL prognostics are updated over time with new sensor measure-
ments. In turn, the maintenance planning takes the RUL prognostics
into account to schedule component replacements in a rolling horizon
fashion. As a case study, a fleet of wide-body aircraft, each equipped
with a system of Cooling Units, is considered. First, a model-based
RUL prognostic is developed for these aircraft Cooling Units. Second,
these prognostic models are integrated into a rolling horizon mainte-
nance planning model. Here, the planning also takes into account a
limited stock of spare components, as well as available maintenance
slots. Moreover, a reliability constraint is imposed on each considered
system. The results show that by integrating prognostics into the main-
tenance planning, components are replaced in anticipation of failure
without wasting their useful life. Specifically, in our numerical exam-
ple, 66% of the replaced components were not failed at the moment of
replacement. Also, the wasted useful life of the replaced components
is limited to an average of 8.75 days. When compared with other
maintenance strategies, the results show that our proposed prognostics-
based maintenance planning model reduces the costs by 48% relative to
a corrective maintenance strategy and by 30% relative to a preventive
maintenance strategy. Overall, our approach shows how RUL prognos-
tics could be integrated into a dynamic, rolling horizon maintenance
planning model and what the performance is to be expected.
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As future work, we plan to further develop and test prognostic
models for the Cooling Units. In particular, we will focus on the
quantification of the uncertainty of the prognostics, using (extended)
Kalman filters and other Bayesian inference sampling methods. We also
plan to further extend our maintenance planning model taking into
account dynamically changing repair costs, to illustrate the long-term
condition of the repairable components. Moreover, we plan to analyze
several other types of corrective and preventive maintenance strategies,
using a larger range of performance indicators. Here, we aim to also
contrast additional maintenance strategies such as predictive mainte-
nance combined with opportunistic maintenance. Also, we plan to con-
sider gradually decreasing planning time windows, based on the RUL
prognostics. Lastly, we plan to relax the assumption that a repaired CU
is ‘‘as-good-as-new’’, and instead consider imperfect repairs. With such
extensions, we aim to obtain an increasingly closer-to-implementation
prognostics-driven maintenance planning model.
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