
Master of Science Thesis

Coupling of a Finite Volume solver to a
Hybrid Lagrangian-Eulerian Vortex Particle

Code

Jorge Mario Tamayo-Avendaño

8 of May, 2017

Faculty of Aerospace Engineering · Delft University of Technology

Coupling of a Finite Volume solver to a
Hybrid Lagrangian-Eulerian Vortex Particle

Code

Master of Science Thesis

For obtaining the degree of Master of Science in Aerospace
Engineering at Delft University of Technology

Jorge Mario Tamayo-Avendaño

8 of May, 2017

Faculty of Aerospace Engineering · Delft University of Technology

Copyright c© Jorge Mario Tamayo-Avendaño
All rights reserved.

Delft University Of Technology
Department Of

Aerodynamics, Wind Energy, Flight Performance and Propulsion

The undersigned hereby certify that they have read and recommend to the Faculty of
Aerospace Engineering for acceptance a thesis entitled “Coupling of a Finite Volume
solver to a Hybrid Lagrangian-Eulerian Vortex Particle Code” by Jorge Mario
Tamayo-Avendaño in partial fulfillment of the requirements for the degree of Master
of Science.

Dated: 8 of May, 2017

Supervisor:
dr. ir. Carlos Simão Ferreira

Reader:
prof. Niels Sørensen

Reader:
dr. ir. Alexander van Zuijlen

Reader:
dr. ir. Artur Palha da Silva Clérigo

Acknowledgements

After completing this work I could not be more thankful to my supervisors Carlos and
Niels for their confidence in my work and their constant and unconditional support
throughout my project. Both their expertise in the field of computational mechanics and
wind energy as well as their human and professional quality have contributed enormously
to my education even before knowing the outcome of this thesis.

I am also very glad to have the support of the researchers Artur, Carlos Baptista, Mikko
and Ye from the Aerodynamics and Wind Energy departments; their insight widened
my horizon and helped me to get curious about the world of scientific computing and
programming. I am now eager to learn more about it and for that I will always be
thankful to them.

Being a student in Europe gave me the chance to experience many cultures and ways
of thinking, I had the chance to meet a big group of brothers, who were born in a far
away continent but that still gave me more than I would have expected; Piyush, Sohil
and Faisal have been a constant source support; likewise I must thank my fellow Senior
Ashok for his guidance through the completion of my thesis and Bhai Raunak, who in
the most genuine way has introduced me to Indian culture, making me feel part of it.

Finally I need to say that without my mother, Amanda, I would not have had the chance
of even dreaming with being part of the TU Delft family. She has given me all the values
I have and will continue to be the main reason to carry on.

Delft, The Netherlands Jorge Mario Tamayo-Avendaño
8 of May, 2017

v

Contents

Acknowledgements v

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Research question, aims and objectives . 2

2 Literature Review 5
2.1 Preamble . 5
2.2 Survey . 6

2.2.1 Vortex methods in fluid mechanics 6
2.2.2 Coupling algorithm between Lagrangian and Eulerian components 8

2.2.3 Finite Volume Methods in Hybrid Solvers 11

2.3 Analysis of the current literature state . 12

2.4 Concluding remarks on the literature survey 13

3 The Finite Volume Method 15
3.1 Governing equations . 15

3.2 The FVM inside the Hybrid Framework 17

3.3 Boundary Conditions . 18

3.4 Finite Volume Discretisation . 20
3.4.1 Approximation of surface integrals 20

3.4.2 Approximation of volume integrals 21

3.4.3 Approximation of derivatives . 21

3.4.4 Scheme specification in the Eulerian Solver 22

3.5 Pressure-Velocity Coupling . 28

3.5.1 Derivation of the Pressure equation 29

3.5.2 Solution algorithm and advancing the solution in time 30

3.6 Solution of linear systems for velocity and pressure 33

vii

viii Contents

4 Vortex Particle Method 39

4.1 Vorticity-Velocity formulation of the Navier-Stokes equations 39

4.2 Biot-Savart Law . 40

4.3 Discrete form of vorticity and velocity fields 41

4.4 Boundary conditions . 41

4.5 Initialization and Remeshing . 42

4.6 Time Evolution Algorithm . 42

5 Coupling Strategy 45

5.1 Flow adjustment in OpenFOAM . 45

5.2 Enforcement of continuity at interface . 46

5.3 Implementation of a Stand-Alone Eulerian Solver in OpenFOAM 48

5.3.1 Default method for flux correction in the baseline solver. 50

5.3.2 Flux correction in the custom solver. 50

6 Benchmarking Simulation Cases 53

6.1 Point vortex flow with Dirichlet velocity BC 53

6.2 Flow around the DU 00-W-212 airfoil . 58

6.2.1 Simulation approach and parameters 59

6.2.2 Solver set up . 59

6.2.3 Influence of boundary-wall proximity 61

6.3 Discussion . 63

6.3.1 The research questions in perspective 65

Conclusions 71

Recommendations 73

References 75

List of Figures

3.1 Domain and boundary layout for the full Eulerian Domain simulation. . . 19

3.2 Domain and boundary layout for the Eulerian sub-domain simulation. . . 20

3.3 Basic differentiation schemes for Finite Volume spatial discretization. . . . 21

3.4 Flow diagram for the algorithm behind the PISO approach for p−V coupling. 31

3.5 Detailed algorithms for conjugate gradient methods. 37

4.1 Flow diagram for the solution of the Vortex Particle Method. 43

5.1 Flow chart for the adjustPhi.C original source file and the proposed mod-
ification enclosed in the dashed, ‘- -’, rectangle. 52

6.1 Potential flow field of a point vortex at (x, y) = (0.1,−0.5) for n = 10. . . 54

6.2 Consistency analysis on the FVM spatial discretisation set up. 56

6.3 Contour plots for velocity components. The Filled contours represent the
exact solution of the potential field; black contour levels represent the nu-
meric solution. 57

6.4 Contour plots for p with offset of pmin. The Filled contours represent
the exact solution of the potential field; black contour levels represent the
numeric solution. 58

6.5 Structured ‘target’ mesh around a DU 00 W-212 airfoil. 60

6.6 Structured ‘Source’ mesh around a DU 00 W-212 airfoil. 60
6.7 Comparison of Cp field for δ/c = 0.1 with respect to the reference case. . . 62

6.8 Comparison of Cp field for δ/c = 0.2 with respect to the reference case. . . 63

6.9 Comparison of Cp field for δ/c = 0.3 with respect to the reference case. . . 64

6.10 Comparison of Cp field for δ/c = 0.4 with respect to the reference case. . . 65

6.11 Comparison of Cp field for δ/c = 0.5 with respect to the reference case. . . 66

6.12 Surface Cp distribution variation with δ/c for source and target case results. 68

6.13 Plots of the absolute error in the Cp distribution across the airfoil surface. 69

6.14 Comparative time history of force coefficients Dirichlet BC for pressure. . 69

6.15 Comparative time history of force coefficients. 70

ix

x List of Figures

List of Tables

3.1 Classification of mathematical behaviour for second order PDE’s. 17

3.2 Boundary condition specification for external flow with far-field conditions. 19

3.3 Boundary condition specification for external flow. 19

4.1 Detail of the viscous splitting strategy in Vortex Particle Methods. 40

6.1 Solver specifications for velocity and pressure. 60

xi

xii List of Tables

Chapter 1

Introduction

The current status of the wind energy industry has opened new research opportunities in
the field of aerodynamics, addressing problems that usually require an intensive amount
of resources and time to be analysed. The increasing level of detail in the study of wind
turbines is reaching instances, in which turbulence and wake analysis are of great impor-
tance for the development of reliable studies in interdisciplinary areas of wind turbine
technology. As this refining process moves forward, two essential requirements hold for
any simulation tool: accuracy and efficiency. This means that suitable mechanisms of
computation constitute an important demand and, most likely will continue to do so in
the long term for the wind energy industry.

The aerodynamic behaviour of wind turbines has many levels of complexity and therefore
can be analysed with different approaches, each with a particular degree of sophistication
and accuracy. One important example is the study of wake shedding and interaction with
solid bodies. Some times, this cases can be studied experimentally, as in the aviation
industry or small wind turbine applications where scaling and availability of test facilities
enable such methodologies. In other cases, involving subjects of larger scales, as in the
analysis of large wind turbines or even wind farms, experimentation starts to offer its
advantages and numerical analysis become the most convenient choice if not the only
available.

Among the set of numerical tools that are often used to simulate the flow around airfoils,
the Eulerian solvers based on the solution of the Navier-Stokes equations (NS) on meshed
domains and Lagrangian solvers such as Vortex-Particle methods are prominent examples;
in fact these two are the main components of the hybrid solver under consideration in this
work. The Eulerian solvers, implemented with several techniques such as Finite Element
Method, FEM, or the Finite Volume Method, FVM, have the advantage of being popular
and robust; and usually give very good results in the prediction of boundary layer flows,
an attractive characteristic for the purpose of this work. On the other hand, Lagrangian
analysis, specifically with a Vortex Particle Method, represents a different alternative
inside the spectrum of CFD, where the problem is formulated in terms of vorticity allowing
an optimum prediction of flow structures with much larger dimensions than those found

1

2 Introduction

in a boundary layer [14] and, with comparative advantages in terms efficiency and absence
of recurrent drawbacks of standard Eulerian solvers, such as numerical diffusion [10].

The mentioned flow cases of large wind turbines and wind farms are of special interest
because the simulation of the wake is a vital part of it. In the simulation of the generation,
convection and interaction of a wake, many characteristic length scales are involved.
When a case of this nature is analysed with a fully Eulerian or a fully Lagrangian solver,
several drawbacks arise, due for example to the numerical diffusion or due to the lack of
accuracy in simulating solid walls respectively. In response, solution techniques based on
a combination of the two types of solvers have been proposed; these segregate the Eulerian
solver to the near-wall region and the Lagrangian solver to the remaining portion of the
domain.

In the present this methodology has already been studied and a substantial role inside
the analysis is given not only to the Eulerian or Lagrangian components alone, but also
to the component specifically addressing the process of information transfer between the
domains of the main solvers during the simulation process.

The improvement on the implementation of the different solvers as well as the transfer of
information between them both constitutes the framework in which this project has been
defined. Taking as a starting point an existing hybrid solver, the tasks proposed here
aim to expand the range of applicability of the solver, by implementing a more robust
Eulerian solver and by ensuring that such a solver is correctly integrated in the evolution
algorithm employed by the hybrid flow solver.

1.1 Research question, aims and objectives

Objective

The objective of the present research project is to determine an improved implementation
of the hybrid flow solver pHyFlow, aiming to extend the applicability range of the software
by substituting the current Eulerian component, used since early development stages,
with a Finite Volume Method based solver and by testing the implementation of this
component with simulations of typical flow cases.

Research Questions

At this preliminary stage the research project has been structured in a way that three
central questions have been proposed:

• What are the main implications of coupling a FVM solver inside pHyFlow?

– What modifications are required in the existing interpolation scheme and/or
any other module that interacts directly with the Eulerian solver module?

– To what size can the Eulerian sub-domain be reduced without degrading the
quality of the solution?

1.1 Research question, aims and objectives 3

– Are there any reported or expected changes with respect to the quality of the
solution or solution time?

• After verifying the modified version of pHyFlow (i.e. that with the FVM solver)
How does the new solver performs?

– Does the FVM solver works properly through the new interface (implementa-
tion in Python of OpenFOAM)?

– Does the FVM performs as expected with respect to the FEM solver?

– Does pHyFlow with the new Eulerian solver performs as expected with respect
to the original framework?

– What is the result after benchmarking the new version of pHyFlow with respect
to selected flow cases?

• What can be concluded from the final version of pHyFlow?

– What are the limitations of the new framework?

– What final advantages are identified?

4 Introduction

Chapter 2

Literature Review

2.1 Preamble

One of the most challenging applications of CFD in the present day is the prediction of
a flow field with vortical structures and turbulence, two flow conditions that can exist
separately or simultaneously depending on the approach of analysis to a specific case.
The available simulation techniques vary in accuracy and execution time depending on
the nature of the subject under study. Wind energy applications are interesting examples
in terms of the diverse flow scenarios that can arise, such is the case of the study of a
boundary layer in a wind turbine blade on one end of the spectrum of complexity and,
the analysis of large scale wind turbine wakes on the other.

The study of viscous, turbulent flow around solid bodies is a complex task because on
one hand, many length scales are involved and, on the other hand, the level of accuracy
of a numerical method is often tailored to predict more accurately the flow field at the
most fine scales, i.e. turbulent flow structures. In wind energy related flow cases, such
as blade-vortex interactions, dynamic stall or the flow over a wind farm, a compromise
is an essential goal, in order to allow an efficient and yet accurate prediction of the flow
properties. The relevance of this key criteria is best illustrated by considering that the
flow characteristics in the mentioned cases cover a relatively wide range of length scales
and that all of them correspond, in the practice, to turbulent flow situations with different
characteristics.

One of the approaches for analysing flows with multiple length-scales consists of setting a
hybrid solution strategy that blends two different methods for the simulation of different
flow regions of a same flow case, a Lagrangian method for the flow in the far-field of
the domain and, an Eulerian method for the flow in the near-wall region. These regions
are different from a phenomenological point of view and are solved by numerical tools,
designed to work with best accuracy for the locally predominant flow conditions. This
approach receives the name of Lagrangian-Eulerian domain decomposition, as reviewed
in basic texts [7] and is the central research object of both the project and therefore the
review presented here.

5

6 Literature Review

The domain decomposition technique has secondary subjects of interest that have been
identified from the early stages of the project conception and planing. Both the La-
grangian and the Eulerian solver constitute each a subject of review as their detailed
structure determines the way in which the coupling, the third relevant subject, is to be
executed in pursue of a successful simulation tool in terms of the previously mentioned
criteria. Many of the sources explored in this review present mostly knowledge on Vortex
Particle Methods, VPM, the Lagrangian component of the hybrid solver. Other sources
present information on the Eulerian component, for which a popular choice is the Finite
Element Method, FEM. This project however considers a Finite Volume Method, FVM,
solver, as the Eulerian component. Finally the most relevant topic is the coupling strategy
between both solvers, and is at the centre of the present review.

One indicator of quality for a domain decomposition technique lies in the smoothness
of any flow property across the boundary between the Lagrangian and Eulerian sub-
domain; ensuring this condition is one key aspect during the execution of the project as
more than one approach for its enforcement has been identified in the existing works. The
correct matching of the flow solution between sub-domains, depends on the mechanism
for information transfer and the evolution algorithm. This two aspects are of special care
since the present review aims to shed enough light in the coupling of a FVM code to a
PVM code in a framework for hybrid solution of the flow field around an airfoil and a
cylinder at moderate to high Reynolds numbers.

The content of this chapter is structured mainly inside section 2.2, which contains the
bulk of the survey distributed into subsection 2.2.1 with most of the information on the
use of vortex methods and techniques for efficient computations. Subsequently the most
relevant information on the coupling methods is contained in subsection 2.2.2 followed by
a review on a couple of Finite Volume Methods applications in multiple domain cases in
subsection 2.2.3. The final sections contain the review summary, in section 2.3 and the
concluding remarks in section 2.4.

2.2 Survey

2.2.1 Vortex methods in fluid mechanics

The basis for the VPM model is the formulation of the Navier-Stokes equations in terms
of the flow velocity and vorticity, u − ω, according to Chorin [3], whose work is one of
the earliest in the subject. The model proposed in [3] is composed, in simple words, of
a transport equation for vorticity 2.1, and a second relation 2.2, known as the Poisson
equation, linking ω and the stream function, ψ, which is inherently related to the flow
velocity.

∂ω

∂t
+ (~u · ∇)ω = Re−1∇2ω (2.1)

∇2ψ = −ω (2.2)

2.2 Survey 7

On the side of the Eulerian problem, viscosity dominated flows are considered following
what can be described as a standard setting; the Navier-Stokes equations are formulated
in terms of the flow velocity and pressure u−p, to be discretized in a meshed domain, with
the wall boundary condition on the solid surface and the external boundary condition set
from the coupled computations, see for example the work of Papadakis & Voutsinas [22].

With the existing basis for the vortex based methods, further work has been done, with
adaptations in both the modelling and hardware resources that aim to increase the ef-
ficiency of computations and also their accuracy to describe a particular flow case of
interest. Vortex methods have a relatively wide range of applications and are constituted
from diverse conceptual elements as will be elaborated next.

The use of discrete particles as the base for modeling inviscid flows with vortical motion
structures constitutes an approach for solving flows in a simple way but in cases for
which detailed a discretization is required, i.e. a large number of particles, it becomes
impossible to obtain smooth solutions. As pointed by Leonard [18], a way of dealing
with the problems caused by the singular nature of particle vortices is the use of finite
size elements, or blobs; elements with that are assigned a certain amount of vorticity
distributed in a surrounding region. This conceptual approach to vortex methods allows
to obtain vorticity fields that resemble closely the physical reality of the flow under study,
as no singularities are included, and with induced velocities that, unlike with conventional
particle vortices, remains bounded.

A recent work made by Yokota and Obi [28] presents a general review on the functionality
of vortex methods including the aspects of accuracy, efficiency, application cases and
existing acceleration techniques. A brief introduction to the ω − u formulation of the
Navier-Stokes equations is made, similar to that in [3], and is followed by an analysis on
the efficiency of the solution. The presented review offers interesting results regarding the
computational effort of this model with different implementation and solution techniques.
The use of Fast Multipole Methods, FMM, proposed in [11] as an alternative for the
speeding of the computations in VPM is set to test in the computation of the Biot-Savart
equation, that is implicitly contained in the governing equations of the VPM model. The
findings of this comparison shows a reduction in the order of the computational cost from
O(N2) to O(N), for a problem with N particle elements.

A second and relatively newer acceleration technique, the use of Graphical Processing
Units, GPU, is also set to test by solving the same Biot-Savart calculation for several
number of particles and, with a default VPM and a FMM solver. As expected, the
computational effort reduction between the default and FMM implementations hold the
same as mentioned previously, however, the use of the GPU reduces the computation time,
according to the results presented by the authors, by almost two orders of magnitude.
Further application of pure VPM by [28] in the simulation of turbulent flows, allows to
demonstrate a level of accuracy that compares to a cell-based DNS method; however a
large number of particles is required, approximately three orders of magnitude above the
typical number of cells required by a FVM solver when predicting flows with moderate
Re, i.e Re ≈ 1× 106.

Both the application of GPU and FMM acceleration techniques seem to be at the centre
of contemporary advances in the field as reflected now, in the work of Hu et al. [15]; who
present a study of vortex rings in mutual interaction. A detailed analysis is done over the

8 Literature Review

algorithms that make the FMM implementation and their influence on the error of the
method. A demonstration in the reduction of cost of the FMM accelerated VPM with
respect to the baseline model is shown, arriving to conclusions that confirm those in [28],
i.e. the FMM acceleration results in a cost reduction from second order to first order.
Similarly the authors conclude that the approximated computation of particle interaction
in the far-field, opposed to the exact computations in the exact near-field interaction, do
not have a significant impact in the accuracy of the overall solution.

It is worth to mention here, that the use of hardware acceleration techniques other than
GPU, have been explored by Sheel et al. [23] who compares the performance of a specif-
ically tailored computer against a common parallel computation for the solution of an
N-body problem. The results over the use of such specifically dedicated machines is
favourable as explored also in [24]; however these computational resources are less avail-
able than the more recent GPU technique.

2.2.2 Coupling algorithm between Lagrangian and Eulerian components

The present object of study contemplates two modular solvers working simultaneously,
the Lagrangian component, constituted by the vortex method, has been discussed already,
and now a survey on different concepts for the coupling with the Eulerian component is
presented; covering the relevant characteristics of each one.

One vortex based solution approach is the Vortex-in-Cell method, VIC, in which the
solution of the Poisson equation takes place on a meshed domain in what is therefore
an Eulerian solution step. This is a kind of classical hybrid approach in the sense that
the Eulerian solution takes place in a domain that overlaps completely the Lagrangian
domain, with the second being a region where the vorticity is concentrated and solved.
The essence of this model proposed in [4] and employed in [18] consists on a different
solution approach for each one of the governing equations.

The VIC has also been object of improvement by implementation along with a fast multi-
pole method as is the case of Cocle et al. [5] who have used this improved method for
the study of instabilities of vortex rings. Besides giving a glimpse on the capability of
this particular method to account for infinity boundary conditions, good capabilities in
the simulation of turbulence are also demonstrated. Nevertheless, the applications for
which the VIC method has been used, in this review, deal with unbounded or partially
unbounded flows. This somehow reflects a weakness since no demonstrated advantage
seems to exist for the simulation of near wall flows.

The VIC model offers an interesting characteristic because when the Eulerian mesh covers
the Lagrangian region completely, no boundary or interface exists, eliminating the need
for matching properties at any interface, nevertheless it seems that such method is not
popular in the prediction of flows with near wall boundaries. This situation puts in the
spotlight a second kind of Lagrangian-Eulerian solvers, in which equations 2.1 along with
the Poisson equation is solved in a fully Lagrangian discretisation while the Eulerian
solution is applied strictly to the u− p formulation of the Navier-Stokes equations.

The approach taken by Guermond et al. [14] has the characteristic of solving the Eulerian
and Lagrangian problems over sub-domains that do not overlap mutually but instead share

2.2 Survey 9

a common interface, namely a line for a 2-D case. Similarly, the way in which information
is transferred from one sub-domain to the other is distinctive. In order to model the flow
in the Lagrangian domain, equations 2.1 and 2.2 take as boundary condition the vorticity
values in the Eulerian domain, determined by a transmission condition that has the role
of ensuring continuity of the values on each side of the interface. In the Eulerian sub-
domain, the Navier-Stokes equations are formulated in terms of the stream function and
the vorticity, ψ−u, and the boundary conditions are set differently for each variable since
each one is modelled by a different kind of equation. The stream function is solved with
a Dirichlet type boundary condition determined from a transmission condition of integral
type. The boundary condition for the vorticity is set in a similar way as for the Lagrangian
domain; with one expression determining the boundary and transmission conditions for
each portion of the Eulerian domain through which the flow is entering or leaving; this is
due to the kind of PDE modelling the vorticity and the specific requirements associated
to it.

The fact that the information transmission happens at the same time that the boundary
conditions are defined, is the relevant aspect in this case and marks one of the alternatives
in terms of coupling of the two systems. Similarly, the approximation of the problem
via hyperbolic PDEs makes that the definition of the boundary condition is linked to the
direction in which the flow is crossing the interface between sub-domains; this might seem
simple at a first glance, but when considering the case of flow with vortical structures
external to the body under analysis, new questions can be formulated, specifically because
vortical structures would imply a nonuniform boundary condition for the portion of the
Eulerian sub-domain where the fluid is flowing outwards.

The use of hybrid solvers with overlapping domains, a different coupling concept, has been
done in different works, Gao et al. [10] for example use it to analyse several flow cases,
with the generation and reflection of shock waves being one of them. Another prominent
example is that of Stock et al. [25] with a work that gives a good view on the interpolation
of data during the hybrid simulation. The solutions in each sub-domain are consistent by
means of suitable interpolation techniques and with certain restrictions. The importance
of avoiding interpolation from points that are too close to either of the boundaries of
the Eulerian domain is highlighted in this study; as reasons, the authors point different
assumptions between the Lagrangian and Eulerian models for the outer boundary and
the high gradients that exist in the near wall flow in the case of the wall boundary. The
coupling algorithm in the referred work is defined in a way that the Lagrangian solution
provides the essential information for the Eulerian boundary conditions; once the Eulerian
solution is obtained, the vorticity in its own domain is updated and subsequently the
Lagrangian solution moves forward to the next time step.

The work of Stock et al. [25] has a wide validation campaign that includes the analysis of
a flow over a low-Re sphere, a wing tip vortex and a full four-bladed rotor. The analysis
of the sphere with Re = 100, revealed that the flow field is not affected at the overlapping
region, even in the recirculation bubble that exists immediately downstream the body of
the sphere. In the case of the rotor analysis, the authors point a good solution behavior
as convected vortices enter the Eulerian sub-domain after being transported along the
Lagrangian wake region.

A coupling between a finite difference and a VPM has been performed by Papadakis
and Voutsinas [22], in order to analyse the computational cost reduction that can be

10 Literature Review

obtained from a hybrid approach and the implementation of a Particle Mesh, PM, method
in the Lagrangian solution procedure. Besides modifying the Lagrangian formulation
which in principle considers incompressible flow, in order to comply with the compressible
formulation of the Eulerian system, the authors have established a coupling procedure
that aims to guaranty smoothness of the solution when moving to particle locations just
outside the Eulerian sub-domain. Such a coupling has two fundamental parts, on one
side, the Eulerian solution is used to correct the particle mesh solutions placed inside the
Eulerian domain and, on the other side, the particle mesh solution is used to determine
the boundary conditions for the solution of the Eulerian sub-domain. At the end of each
time step, the latest available information is used to determine the Eulerian boundary
condition, ensuring that the computation is strongly conservative. The analysis includes a
comparative simulation of a symmetrical airfoil from which the authors have determined
that when the Eulerian domain extends away from the wall to a distance between 1
and 1.5 times the chord, a good agreement is reached between hybrid and full Eulerian
simulations.

• From Papadakis and Voutsinas [22] the implementation of matching sub-domains,
in which the continuity of properties across the boundary is enforced by means of
transmission conditions of integral type, can lead to a severe penalty in computation
time when used to predict 3D flows.

• From the solution technique over the Lagrangian model, an approach is taken to re-
solve both the stream function and the velocity potential; instead of using the Green
theorem, known in similar works, these quantities are obtained with Poisson solvers
applied to structured grids, but later an interpolation takes place in order to assign
the computed properties back to the particles on which the Lagrangian approach
is centred. This approach is relevant to the present work because, a cost reduc-
tion alternative is presented by solving the core of the particle-based Lagrangian
problem via a structured grid and, also because this methodology includes the in-
terpolation between a structured grid and a set of unstructured particles by means
of appropriate interpolation functions such as the M ′4.

• The consideration of viscous effects by Papadakis and Voutsinas is done via the
Particle Strength Exchange, PSE, which according to their work, is a convenient
choice for problems with constant viscosity. In their work, turbulence is included,
this means that the existence of ’mechanical’ dissipation due to turbulent viscosity
could complicate the modelling of this phenomena, however, the Lagrangian sub-
domain describes convection dominated flows, for which the viscosity of molecular
nature can be considered as constant.

• The analysis presented in terms of computational cost leads to the conclusion that,
it is difficult to see any improvement for the study of 2D cases. The efforts made
by Papadakis and Voutsinas in solving the particle problem with a grid setting
does not show a bigger improvement as does the reduction of the Eulerian domain
size, under the argument that when reducing the size of the Eulerian domain, the
errors inherent to the boundary regions propagate more rapidly throughout the
sub-domain thus favouring convergence.

2.2 Survey 11

One popular coupling methodology between the Lagrangian and Eulerian sub-domains is
the Schwartz iterative method, for which a comprehensive explanation regarding its use
in hybrid computations can be found in [7]. This iterative method allows to solve the
Poisson equation for ψ in each sub-domain boundary, setting as the boundary condition
the computed value at the adjacent sub-domain at the immediately preceding time step.
This procedure iterates until the solution for ψ converges and the velocity field derived
from the stream function is found everywhere.

In the spirit of performing the same transfer of information between sub-domains, a
method is proposed by Daenink [8] which uses no iterative procedure. Instead a simple
interpolation of values is proposed to obtain the boundary conditions of the Eulerian
sub-domain from the Lagrangian solution. This alternative constitutes a simpler choice
than the Schwartz iterative method introduced earlier.

The use of finite difference methods along with VPM has been explored in multiple ways by
Ould-Salihi et al. [20] in a study of two solution methods, the VIC, and the ”Particle-grid”
domain decomposition method, an approach in which the Eulerian solution is applied to
the pressure-velocity formulation of the Navier-Stokes equations and that is proposed in
[6, 7].The nature of this particular work, allows to observe the differences between VIC
methods and the traditional Lagrangian-Eulerian domain decomposition, showing the
broad extent to which Eulerian computation can be blended over the whole domain.

2.2.3 Finite Volume Methods in Hybrid Solvers

One interesting work is presented by Zang and Street [30] who develop and test a com-
posite numerical method for the solution of the N-S equations in multi-grid domains. The
particularity of their research is the use of an Eulerian solver for the entire domain which
brings a rather important difference with respect to the present project: the transmis-
sion of information and the treatment it receives in order to ensure the mathematical
consistency of the method happens as an integrated part of the algorithm in which the
governing equations are solved. Contrasting with this, it has been already pointed that
the present method executes the Lagrangian and Eulerian solutions as separate stages,
with the transmission of information as a modular step between them. Another Important
aspect is the need of a correction on the velocities at the boundaries between sub-grids,
which despite being overlapped, have the same requirement of conservativeness inherent
to the finite volume method.

The need for a correction for ensuring conservativeness of the method raises from the
interpolation that is carried out in order to determine the boundary condition at the
internal boundaries. The convergence and consistency of this method is thus determined
by the accuracy of the interpolation scheme that takes care of projecting the information
from the internal domain to the required boundary regions.

The imbalance in the mass flow rate through the boundaries is managed by correcting
the values of the velocity by an amount which is proportional to the volume flux at each
cell face. The particular development and application in [30] shows how the mass flux
correction becomes part of the method as it is performed inside the predictor-corrector
algorithm. More precisely during the solution of the Poisson equation for the pressure.

12 Literature Review

A relatively recent work by Burton and Eaton [2] presents a finite volume method im-
plemented around an overlapping grid approach. In their study, the authors consider a
fractional step method to solve the incompressible NS equations with a staggered grid for
the arrangement of the flow variables and an implicit/explicit hybrid time scheme. These
are contrasting items with respect to OpenFOAM [27], the Eulerian solver to work with
in this project, in which the flow variables are arranged in a collocated grid and where
an implicit time advancement scheme is used. The authors explore the time and spatial
accuracy of the method paying attention to the size of the overlapping domain. The most
relevant findings point to an unchanged time accuracy with respect to the size change
of the overlapping region; this conclusion is not the same for the spatial accuracy which
seems to be inconsistent when the the overlapping is reduced.

2.3 Analysis of the current literature state

The improvement process suffered by vortex based methods for the prediction of com-
plicated flow cases includes several refinement stages, covering improvements in both
accuracy and efficiency of computation. The application of hybrid solvers to the analysis
of unbounded flows around solid bodies of arbitrary shape has proven to be a not so
trivial objective. When a study case involves regions with convection dominated flow and
regions with diffusion dominated flow in the same domain, the use of vortex methods
alone is not an ideal alternative.

The basic VPM approach that was the central piece in early researches [3, 18, 7] has been
extended by the use of hybrid approaches with the goal of reducing the computational
cost. This is done in a first approach by solving the Poisson equation, part of the vorticity
based model, in an Eulerian mesh [18, 5]. Further improvements are done in a second
kind of treatment in which the Eulerian solution can include the Poisson equation as well
but also and most importantly, the solution of the Navier-Stokes equations in the u − p
formulation, [22, 25], for a more appropriate description of the near-wall flow.

The use of the VIC method by Ould-Salihi et al. [20] has an interesting contrast with
the first application case selected by Cocle et al. [5], an unbounded vortex ring. The
contrast lies in the fact that the first author performs simulations of confined flows,
namely a lid-driven cavity flow and several cases of vortex-wall collisions; the second
author instead, simulates the instabilities around an unbounded vortex ring in which
the far-field condition can be satisfied by setting a grid much larger than the region of
discretised particles, this does not happen in the case of bounded flows, as the Eulerian
domain for this kind of situation does not exceed the size of the Lagrangian domain.
The difference in approaches for the application of the same model denotes its flexibility,
highlighting the appropriateness depending on the nature of the flow being simulated.

The application of Finite Volume Methods to the analysis of problems with decomposed
domains seems to be a rather unexplored topic when it comes to integration of FVM as
the Eulerian component to vortex particle-based methods as the Lagrangian complement.
In spite of what could be interpreted as a demarcation line of the current developments,
study cases such as the prediction of flows around moving bodies and complex geometries
have made possible to implement FVM for the solution of the N-S equations, making use

2.4 Concluding remarks on the literature survey 13

of individual sub-domains that are connected, similar to those in a hybrid vortex particle
method.

The present survey on the current state of implementation of VPM along with CFD meth-
ods leads to identify one important situation: in general, the techniques that segregate
domains into far and near-body meshes, and that use FVM formulations usually take this
approach for the flow prediction everywhere [29, 30, 2]. No use of vortex particle method
along with FVM has been identified, and the concept of ‘overset’ or overlapping meshes
along with FVM aims generally to simplify the problem by enabling the use of structured
meshes and by simplifying the mesh discretisation in problems involving the motion of
one or more bodies inside the fluid.

The coupling strategies consist basically on three different approaches: the integral trans-
mission conditions for matching sub-domains used in [14]; the coupling of overlapping
sub-domains via the Schwartz iterative method, which presumably imposes some degree
of extra computation effort but that at the same time has been analysed in more depth.
Finally, the non-iterative method for overlapping domains, proposed in [8] seems to be the
most simple approach of all, since no iterations are required, the interpolation performed
by this method is expected to be an efficient and fast procedure.

2.4 Concluding remarks on the literature survey

A general review has been performed over the most important aspects of hybrid Lagrangian-
Eulerian flow simulations via vortex particle methods; from a review that has given an
insight into the standard vortex models and coupling methods to Eulerian modules.

It can be stated that the domain decomposition technique does not necessarily restricts
to using traditional CFD solvers in the proximity of solid bodies; since methods such as
the Finite Differences can be used to compute particle velocities as is the case of the VIC
method; nevertheless the traditional CFD solutions, namely FVM, offers a much more
valuable resource for the prediction of near-wall flows.

A general survey on hybrid Lagrangian-Eulerian solution methods has been done allow-
ing to identify common methods for the increase in accuracy of the solution and for the
increase in efficiency. Similarly it has been observed that up to some extent, the chrono-
logical order of the reviewed works point in their development to the application of more
practical flow cases in both 2D and 3D.

Since the use of vortex methods has been dedicated to the prediction of flow far from
solid walls, it can be said that the use of an Eulerian solution in the vicinity of this kind
of boundary contributes to the hybrid model by offering a more adequate formulation.
The Lagrangian model on the other hand, has been object of relatively recent improve-
ments such as the use of vortex blobs, the combination with FMM and the solution with
GPU hardware resources; aspects that increase the accuracy and efficiency of the solver
respectively. Regarding hardware acceleration techniques, the present project must be
restricted to the use of parallel computation and the use GPU power, since these are

14 Literature Review

available alternatives for which favourable reviews have been made.

From the varied coupling methods, the non-iterative coupling seems to be a good choice
as a starting point. The reduction of time by avoiding iterative calculations may result
in an advantage for the development of a new solver as is the case of the present project.
Improvements by testing more advanced coupling techniques can be done upon this initial
work.

Chapter 3

The Finite Volume Method

All flow properties in the domain surrounding the boundaries of solid bodies are predicted
with an Eulerian solver. The present project makes use of OpenFOAM as the base imple-
mentation of the Finite Volume Method (FVM) and this chapter is dedicated to outline
the components of such an approach. The chapter introduces in first place the governing
equations for the prediction of incompressible and laminar flow in 2-D. Subsequently a
presentation of the discretisation schemes and boundary conditions is done. In the latter
aspect a key differentiation is made between the boundary conditions used in conventional
external flow applications and the use inside the Hybrid solution approach presented in
this project. The end of this chapter is dedicated to the description of the p−V coupling
and the solvers for each one of these flow variables.

3.1 Governing equations

The governing equations presented in this chapter describe the incompressible flow in
the proximity of solid boundaries, the flow condition being targeted by the Eulerian
component. The set of equations about to be presented can be derived by performing a
Taylor series representation of the conserved quantities along with a subsequent balance
over a differential volume of fluid. Such a procedure is omitted for the sake of brevity.

The first of the equations that model the viscous flow in 2-D is the equation of conservation
of mass which is nothing but the representation of the continuity law: the rate of change
of mass in a volume of fluid equals the net flow of mass through the boundaries of such
a volume, the differential form of this equation is as follows:

∂ρ

∂t
+
∂ (ρui)

∂xi
= 0 (3.1)

15

16 The Finite Volume Method

The second set of equations, central to the model, describe the conservation of the linear
momentum of the fluid volume, by relating the rate of change of linear momentum to
the sum of the external forces acting on the fluid volume. Once more, the equation is
presented in differential form as:

∂ (ρui)

∂t
+
∂ (ρuiuj)

∂xj
=
∂Tij
∂xj

+ Si (3.2)

Note that the right-hand side in equation (3.6) represents the forces acting on the volume
of fluid, with a source term represented by Si and, the stress tensor represented by Tij
and defined as:

Tij = −
(
p+

2

3
µ
∂uk
∂xk

)
δij + 2µDij (3.3)

The tensor Dij accounts for the strain rates in the volume of fluid and is defined in the
following way:

Dij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(3.4)

For applications of interest in the wind energy context, and, in general, low speed aero-
dynamics, the consideration of flow speeds no greater than 0.3 times the local speed of
sound allow to assume that the change of ρ is negligible. In this case the form of the
equation of conservation of mass changes to:

∂ui
∂xi

= 0 (3.5)

The simplification of the equation for the conservation of momentum follows a similar
path since ρ can be simplified from the transient and convective terms in the left-hand
side of equation (3.6) and be set to divide the diffusive terms, i.e. those in the right-
hand side of the same equation. Besides, the new form of the continuity equation can
be used to cancel the second term in the definition of Tij and one of the terms resulting
from the differentiation of Dij . After these simplifications the resulting equation for the
conservation of momentum can be written again as:

∂ui
∂t

+
∂ (uiuj)

∂xj
= ν

∂2ui
∂x2

j

− 1

ρ

(
∂p

∂xi
− Si

)
(3.6)

The correct solution of equation 3.6 depends on the setting of appropriate boundary and
initial conditions, a topic that is further addressed in section 3.3 after analysing the math-
ematical nature of the equations for the conservation of momentum in x and y directions.
The canonical form of a second order partial differential equation (PDE) (3.7) is the

3.2 The FVM inside the Hybrid Framework 17

basis for the classification of the governing equations according to the behaviour of the
solution in relationship to the boundary conditions. This classification follows standard
texts on the subject (see [26, 9]) and consists in judging the value of the discriminant of
the equations, determined from the coefficients of the higher order terms that arise when
arranging the terms of the momentum conservation equation in the same way as those in
equation 3.7.

a
∂2φ

∂x2
+ b

∂2φ

∂x∂y
+ c

∂2φ

∂y2
+ d

∂φ

∂x
+ e

∂φ

∂y
+ fφ+ g = 0 (3.7)

Discriminant value Type of Equation

b2 − 4ac < 0 Elliptic

b2 − 4ac = 0 Parabolic

b2 − 4ac > 0 Hyperbolic

Table 3.1: Classification of mathematical behaviour for second order PDE’s.

Despite being a widely used technique for the analysis of the behaviour of the PDE’s, the
method of the “characteristics” has been conceived for an equation with two independent
variables, nevertheless, the conservation of momentum represented in equation 3.6 has
actually three independent variables, with the third one being the time, t as the model
describes a marching problem. Although this discrepancy does not limit the similarity
between the behaviour of the governing equation and that of the canonical equation from
which the classification is done [9], it is worth to highlight since a single equation can
exhibit different behaviours depending on which variables are considered.

One can take for example the equation 3.6 which is seen to have an elliptic behaviour
with respect to the spatial coordinates x and y, typical of a steady-state problem and on
the other hand, it can exhibit a parabolic behaviour with respect to t, corresponding to
one of the time-marching flow problems.

3.2 The FVM inside the Hybrid Framework

The introduction of the hybrid framework in the earlier chapters describes a set of modular
components dedicated to solve the flow properties, each one in a specific region of the
domain. In the present case the Eulerian solver is designated to solve flows closer to solid
walls. In a hybrid method the Eulerian and Lagrangian solvers work together in an cycle
that has been outlined by Palha et al. [21] in the following way:

1. Evolve Lagrangian solution.

2. Determine BC for Eulerian solver.

3. Evolve Eulerian solution.

18 The Finite Volume Method

4. Correct Lagrangian solution.

In this algorithm the Lagrangian solution is carried with a vortex particle method and
is carried in the first step in a domain that extends all the way to the surface of solid
bodies, modelled with boundary elements; the Lagrangian solution in the area of influence
of the Eulerian domain is corrected as indicated in the last step. Now, the Eulerian solver
implemented here with OpenFOAM, is addressed along this work in what concerns to the
second step, the determination of the boundary conditions which is presented in the next
sections. The Evolution of the Eulerian solution is finally covered by the remainder of
the work.

3.3 Boundary Conditions

A significant number of CFD cases related to external incompressible and viscous flow
share a common boundary condition selection that provides both stability and accuracy;
in fact it is advised as a standard setting in both basic textbooks [26, 9] and code doc-
umentation [13]. The configuration that is considered throughout the work is already
determined by the baseline Eulerian solver, PisoFoam, which is itself constructed on a
collocated mesh arrangement for the velocity field. This formulation makes necessary to
have a specification of boundary conditions for both p and u.

In the surroundings of solid walls it is common to set no-slip boundary condition for
velocity and a zero gradient boundary condition for the pressure. In flow regions located
away from walls a reversed situation occurs, the pressure in that region is set as a fixed
gradient value and the velocity as a fixed value; which directly implies that the distance
from the body or for this case, disturbance, is so large that the diffusivity in the flow
has dissipated any transient feature. The previous configuration is summarized clearly in
table 3.2.

A representation of a domain layout for the typical case of an airfoil is included in 3.1,
with a far-field boundary condition comprised of inlet and outlet regions, one of the most
popular set of BC in simulation of external flow around solid bodies. Both the wall
boundary, and the internal boundary, ∂ΩE , are shown in detail in figure 3.2; this is the
boundary region for the Eulerian grid. Again it is necessary to bear in mind that this
configuration is specific to the collocated arrangement of the flow variables on which
pisoFoam is constructed.

Since the Eulerian grid is clearly smaller in relationship with the airfoil, the values of
u and p are set under different assumptions in comparison with a far-field boundary
condition. Two particular aspects draw the attention at this point:

• The flow field at the Eulerian boundary becomes relatively irregular when such
boundary is placed closer to the airfoil or any other disturbance in the flow.

• The values of u on every segment of the Eulerian boundary should be defined with
Dirichlet boundary conditions in order to simplify the flux correction associated to
the pressure-velocity coupling and also to avoid introducing a new source of error
during the information transfer from the Lagrangian solution field.

3.3 Boundary Conditions 19

Boundary Velocity BC Pressure BC

Inlet Dirichlet, (u, v) Neumann, ∂p
∂n = 0

Outlet Neumann, ∂u
∂n = 0 Dirichlet, p

Wall Dirichlet, (0, 0) Neumann, ∂p
∂n = 0

Table 3.2: Boundary condition specification for external flow with far-field conditions.

Boundary Velocity BC Pressure BC

Inlet Dirichlet, (u, v) Neumann, ∂p
∂n = H • n

Outlet Dirichlet, (u, v) Neumann, ∂p
∂n = H • n

Wall Dirichlet, (0, 0) Neumann, ∂p
∂n = 0

Table 3.3: Boundary condition specification for external flow.

Inlet:
u = u∞
∂p
∂xn

= 0

Outlet:
p = 0
∂u
∂xn

= 0

Wall:
u = 0
∂p
∂xn

= 0

∂ΩE

Figure 3.1: Domain and boundary layout for the full Eulerian Domain simulation.

20 The Finite Volume Method

Wall:
u = 0
∂p
∂xn

= 0∂ΩE :
u = ub
∂p
∂xn

= H • n

Figure 3.2: Domain and boundary layout for the Eulerian sub-domain simulation.

3.4 Finite Volume Discretisation

The Finite Volume discretisation of the NS equations is based on the use of the Gauss
theorem of divergence for the integration of the momentum equation 3.6 over a control
volume. The volume integral is then expressed in terms of an associated surface integral
over the faces of a volume cell. This section presents then a description of the final
result of this integration procedure for each term and a subsequent approximation for
the derivatives or values of the transported variables. As will become clear, the spatial
discretisation is treated first, followed by the time integration of the momentum equation.
The implementation of the boundary conditions is also covered; this gives an integral
overview of the process by which the linear system is assembled.

3.4.1 Approximation of surface integrals

A surface integral over a control volume with k faces can be defined as the summation of
the integrals over the individual faces:∫

S
f ds =

∑
k

∫
Sk

f dS (3.8)

Where the integrand f represents the face-normal flux vector which can be either convec-
tive, f = ρφU •n or, diffusive, f = Γ∇φ •n. Since this integral is performed on the surface
of the control volume, the integral must be evaluated everywhere at the cell faces. The
availability of this value depends on the variable arrangement on the mesh. For the case
of OpenFOAM the collocated mesh provides the solved values directly at the cell centres,
rather than at the faces.

In the most simple of the cases the integral, which equals the product of the area of the
face and the mean of the value being integrated, can be approximated as the product of
the area and the face centre value, fk this is:∫

Sk

f dS = fkSk ≈ fkSk (3.9)

3.4 Finite Volume Discretisation 21

According to Ferziger and Peric [9], this approximation provides second order accuracy
and it can only be maintained if the method for computing the face-centre flux, fk, is at
least second order accurate as well.

3.4.2 Approximation of volume integrals

Volume integrals are computed via a second order accurate approximation as well, which
is based on the approximation of the integral as a product between the volume of the cell
and the value of the variable at the cell centre node:

Qp =

∫
Ω
q dV = q∆Ω ≈ qp∆Ω (3.10)

3.4.3 Approximation of derivatives

The approximation of derivatives have a fundamental role in the implementation of a
Finite Volume method; solution properties such as the accuracy and convergence be-
haviour are directly influenced by the choices regarding this particular aspect. With the
most elementary example being illustrated with the help of a familiar technique known
as the Finite Difference Method in a one dimensional general case. Among the options
for approximating a first order derivative of a function, f , at the location xi, the use of
Taylor series provides with a group of schemes whose simplest form is obtained from a
three-point stencil and, identified by the indexes i − 1, i and i + 1. The variation of a
flow property in space, is depicted by figure 3.3 along with the graphical representation
of the exact first derivative at the point (xi, fi) and the approximations according to the
different schemes.

x

f(x)

Exact

Central

Forward

Backward

xi−1 xi xi+1

Figure 3.3: Basic differentiation schemes for Finite Volume spatial discretization.

22 The Finite Volume Method

The backward differencing scheme consists on a linear approximation to the first derivative
in terms of the value of the flow property at the points i and i− 1:

(
∂f

∂x

)
i

=
fi−1 − fi
xi−1 − xi

+ b (3.11)

With b representing the higher order terms, originated from the Taylor series representa-
tion of fi. Now the second scheme to be introduced is the Forward Differencing scheme,
in which in a similar way, the derivative is approximated by taking an adjacent point,
this time being xi+1, which results in the following approximation:

(
∂f

∂x

)
i

=
fi+1 − fi
xi+1 − xi

+ b (3.12)

The third possible way for the simple case shown here, is known as the centred differen-
tiation scheme, in which both of the adjacent points to (xi, fi) are taken to construct the
Taylor series expansion and finally to approximate the value of the derivative.

(
∂f

∂x

)
i

=
fi+1 − fi−i
xi+1 − xi−1

+ b (3.13)

The truncation of the Taylor series expansions for each one of the above equations, gives
rise to the approximations for the Backward, Forward and Centred schemes.

(
∂f

∂x

)
i

≈ fi+1 − fi
xi+1 − xi

(3.14)(
∂f

∂x

)
i

≈ fi−1 − fi
xi−1 − xi

(3.15)(
∂f

∂x

)
i

≈ fi+1 − fi−i
xi+1 − xi−1

(3.16)

With this approximations a truncation error is introduced and its magnitude and be-
haviour depends on the mesh size primarily. The behaviour of this error for each partic-
ular scheme will determine its rate of convergence and will affect the rate of convergence
of the overall method.

3.4.4 Scheme specification in the Eulerian Solver

A dictionary for the specification of the discretization schemes is defined with the entries
for the different kind of terms and for the interpolation of quantities and flux-related
computations. This list of schemes has been specified as required in the OpenFOAM
dictionary format, which constitutes the file fvSchemes, as is done with the remaining
parameters.

3.4 Finite Volume Discretisation 23

• Time scheme Euler

• Gradient Schemes Gauss linear (Default), Gauss linear (Pressure gradient)

• Divergence scheme Gauss linear

• Laplacian scheme Gauss linear

• Interpolation scheme linear

• Surface-normal gradient schemes orthogonal

Time schemes

The transient flow phenomena considered here are accounted for with three possible tem-
poral discretisation schemes, which have been selected for discussion since these are the
main choices in OpenFOAM. These time schemes are all implicit and bounded. The
scheme denominated Euler is first order accurate in time; the Euler Backward and Crank-
Nicholson schemes are instead second order accurate in time.

When the flow field is solved in time, the momentum equations are integrated in time
between the instants m and m+ 1, with t = m∆t and with ∆t representing the time-step
size. A look into equation 3.17, which accounts for any scalar φ and also for varying ρ,
shows the approach for the time discretisation over a momentum equation that has been
integrated in a C.V., following the general approach of [17].

∫ t+∆t

t

[
∂

∂t

∫
VP

ρφdV +

∫
VP

∇ • (ρuφ)dV −
∫
VP

∇ • (ρΓφ∇φ)dV

]
dt =

∫ t+∆t

t

[∫
VP

Sφ(φ)dV

]
dt

(3.17)

Once all the terms have been integrated over the C.V, the procedure results the semi-
discrete equation in 3.18. Here that the time derivative of the transient term exchanges
order with the volume integral. The relevance of arranging the semi-discrete momentum
equation in the way it has been done in equation 3.18 lies in the physical meaning on
both sides. The right member contains the transient term whereas the left member, with
the rest of the terms, contains all of the spatial discretisation terms. From this point
the temporal discretisation requires an approach for approximating the time integration
of the spatial terms and an approach for approximating the time derivative in the right
member.

∫ t+∆t

t

(
∂ρφ

∂t

)
P

VPdt =

∫ t+∆t

t

∑
f

Fφf −
∑
f

(ρΓφ)fS • (∇φ)f + SuVP + SpVPφP

 dt
(3.18)

24 The Finite Volume Method

Under this purpose, equation 3.18 can be expressed in a simpler way, gathering all the
terms with spatial operators into one single term.

∫ t+∆t

t

(
∂ρφ

∂t

)
P

VPdt =

∫ t+∆t

t
A∗φ dt (3.19)

The transient term can be treated via the fundamental theorem of calculus, and con-
sidering that the cell volume, VP , remains constant in time, the term can be expressed
as:

∫ t+∆t

t

(
∂ρφ

∂t

)
dt = (ρφ)t+∆t

P − (ρφ)tP (3.20)

This is equivalent to the Euler Implicit approximation in which the derivative is approx-
imated with a scheme analogous to to a forward finite difference scheme:

∂

∂t

∫
V
ρφ dV ≈ (ρPφPV)t+∆t − (ρPφPV)t

∆t
(3.21)

This scheme employs information from both the solved instant t and the unknown time
instant t + ∆t and provides a first order accuracy in time. Alternatively a higher order
scheme can be used for the approximation, using now three different time levels, as the
solution at the time instant t −∆t is included in the stencil for temporal discretisation,
providing a second order accurate solution in time.

∂

∂t

∫
V
ρφ dV ≈ 3 (ρPφPV)t+∆t − 4 (ρPφPV)t + (ρPφPV)t−∆t

2∆t
(3.22)

Observing now the terms with spatial operators, on the right hand-side of equation 3.18,
a suitable discretisation for the time integrals is developed. Assuming that the integrand
remains constant during the time interval [17], the approximation of the whole integral
can be performed in terms of the integrand evaluated at one particular time instant that
is determined by the discretisation scheme being used. Such schemes include for this
project three basic options, which are part of the implementation in OpenFOAM and are
present in most of the basic texts dedicated to Finite Volume theory.

The first of these schemes is the Euler Explicit method in which the terms with spatial
operators are discretised explicitly, which means they are computed from the known
solution state at time t. The computation of the solution at time t+ ∆t is carried as:

∫ t+∆t

t
A∗φdt = A∗φt∆t (3.23)

3.4 Finite Volume Discretisation 25

When the Euler Implicit scheme is used, careful attention must be given to the Courant
number, Co, defined in terms of the reference velocity Uf , the minimum mesh spacing d
and ∆t, as:

Co =
Uf • d

|d|2∆t
(3.24)

According to the Courant-Friedrich-Levy (CFL) condition, the solution becomes unstable
when Co > 1, a situation in which, during the lapse of one time step the actual flow prop-
agates by a distance greater than the characteristic length of one cell. When geometric
discretisation or the magnitude of ∆t ensure a stable solution, the explicit Euler scheme
should provide first order accuracy.

Another method for approximating the time integral makes use of the solution values at
t+ ∆t as can be observed in equation 3.25. This approximation corresponds to the Euler
Implicit scheme which has first order accuracy in time.

∫ t+∆t

t
A∗φdt = A∗φt+∆t∆t (3.25)

For an improved solution accuracy the Crank-Nicholson scheme (see equation 3.26) can
be employed. This method proposes the discretisation as trapezoidal rule in which the
values of the integrand are taken as the mean of both the current and new time instants.

∫ t+∆t

t
A∗φdt = A∗

1

2

(
φt+∆t + φt

)
∆t (3.26)

Finally another second-order integration scheme with second-order accuracy in time is
introduced, complementing an already complete list of basic one-step methods for the
time integration of a transport equation of momentum or any arbitrary scalar. In this last
scheme denominated Backward Euler, three time levels are involved via the approximation
of the time derivative with second order accuracy from equation 3.22. The discretisation
of the terms with spatial operators alone remains as done for the Euler Implicit scheme,
this is, with the solution values of φ at the new or unknown time instant.

Note that the segregated solution of a coupled pressure-Velocity system implies explicit
terms inside the equations being solved, therefore guaranteeing that the CFL condition
is met is still necessary, even though the time-scheme being implemented is implicit on
its own.

Gradient schemes

The gradient terms are evaluated explicitly with three alternatives; the first one selected
here is the application of Gauss theorem over the integral of the gradient of interest on
a finite volume. The other two options evaluate the gradient by using a least-squares

26 The Finite Volume Method

method or by using the surface normal gradient scheme. The gradients are then obtained
as:

∫
V
∇φ dV =

∫
S
dS φ =

∑
f

Sfφf (3.27)

Divergence schemes

The implementation of the Eulerian solver PisoFoam based on OpenFOAM [12] has a
distcretisation scheme specifically dedicated to divergence terms different from the con-
vective terms, in which as can be seen, a divergence operator acts on a dependent variable
φ being convected by the flow velocity. The generic divergence term is then discretised
in an explicit way according to:

∫
V
∇ • φ =

∫
S
dS • φ =

∑
f

Sf • φf (3.28)

As might be inferred by this point, the values of φf can be provided either because they
are directly available, or via interpolation from cell centre values in case these are the
only available source of information. Both cases are accounted for in the “finite volume
calculus” set of functions, compiled in the statically-linked library object finiteVolume.

Laplacian schemes

Laplacian term in OpenFoam is discretised first by integration over a finite volume and
then by linearisation of the resulting form:

∫
V
∇•(Γ∇φ)dV =

∫
s
dS • (Γ∇φ) =

∑
ΓfSf • (∇φ)f (3.29)

The discretised form for the Laplacian scheme is explicit when the vector between the
cell central nodes, is parallel to the common face between the cells in question. When
the cells are not orthogonal, an explicit term is included in which cell centre gradients
obtained by central differences are used for the evaluation.

Sf • (∇φ)f = |Sf |
φN − φP
|d| (3.30)

Interpolation schemes

OpenFOAM offers several interpolation schemes for computing values at face centres
based on the available fields at cell centres. The relevance of interpolation schemes comes
to the foreground for implementations as the present, where a collocated grid arrangement

3.4 Finite Volume Discretisation 27

is a predefined choice. A set of generic schemes comprise a portion of all the available
methods; the rest are designed specifically for the discretisation of divergence terms via
the Gaussian scheme.

Surface-normal gradient schemes

A simple scheme using the centre values from the cell centre and the neighbouring centre
values is used to evaluate the normal surface gradients which in the case of an orthogonal
mesh consists in:

(∇φ)f =
φN − φP
|d| (3.31)

Similarly as done for the Laplacian discretisation schemes, the computation of surface
normal gradients on non-orthogonal meshes is done by adding an explicitly computed
term with the interpolated gradients from the cell centres via CDS.

Convective term

The integration and discretisation of the convective term in the model is as follows:

∫
V
∇ • (ρUφ)dV =

∫
S
dS • (ρUφ) =

∑
f

Sf • (ρU)fφf =
∑
f

Fφf (3.32)

Note that the mass normal flux at the face, F , is introduced and becomes an important
factor when an upwind differencing scheme is selected. When a central differencing scheme
is chosen, the face value of the scalar, φf , is computed by matching the gradient at the
cell face to that of the P− cell centre. Defining fx = fN/PN then:

φf = fxφP + (1− fx)φN (3.33)

Instead, when an upwind scheme is used, the value of φf is determined in a bounded
fashion depending on the direction of the mass flux:

φf =

 φP if F ≥ 0

φN if F < 0
(3.34)

By this, the discretisation scheme is always ensured to be backwards which means that
the flow properties propagate in the direction of the flow.

28 The Finite Volume Method

Discretisation of boundary conditions

Boundary conditions are subject of the discretisation procedure because they provide
information for the dependent variables at the faces of boundary cells that belong to the
boundary of the domain itself. The approximations that have been presented in the first
part of this section show how the discretised form of a particular term may require either
the value of the dependent variable or the value of its gradient. In that sense, the type
of boundary condition in a particular boundary region requires a specific treatment.

In the case of Dirichlet boundary conditions the value of the dependent variable, φb, is
specified at the boundary face. In consequence, for every term that requires the value of
φf at one boundary face, the implementation of the boundary condition reduces to simply
specifying φf = φg. Nevertheless, when the value of the gradient is required instead, as
happens to be the case for gradient boundary conditions, the value of the gradient in
question must be approximated, as:

Sf • (∇φ)f = |Sf |
φb − φP
|d| (3.35)

When a Neumann boundary condition is defined, the gradient of φb constitutes the
information provided for the cell faces at the boundary. For the very generic case where
the gradient is provided as a vector with three Cartesian components, the projection of
the specified gradient on the face normal vector for every boundary face is then used as
the boundary condition:

gb =

(
S

|S|
• ∇φ

)
f

(3.36)

In the situation that the terms require the values of φb to be specified at the boundary
face, instead of the normal gradient, the following interpolation is used:

φf = φP + d • (∇φ) (3.37)

When the discrete terms are function of the gradients specified at a boundary face instead,
the implementation of the boundary condition reduces to the substitution:

Sf • (∇φ)f = |Sf |gb (3.38)

3.5 Pressure-Velocity Coupling

What is perhaps one of the fundamental aspects of the numerical solution of the N-S
equations, the solution strategy for the pressure, is now outlined. The apparent need for

3.5 Pressure-Velocity Coupling 29

an equation to determine p, evident from equations (3.5) and (3.6), is treated with an
auxiliary relationship that results from the combination of mass and momentum conser-
vation equations as will be shown next. The relevance of pressure in an incompressible
NS system, lies in the fact that this flow variable plays the role of a Lagrange multiplier,
allowing for the mass conservation to be maintained. The details of this procedure follow
those described in [9] which is based on the PISO algorithm as proposed originally by
Issa [16].

3.5.1 Derivation of the Pressure equation

The computation of pressure in OpenFOAM is achieved by constructing a new equation
that results from taking the divergence of the momentum equations and remembering
the divergence-free nature of incompressible flow, resulting from the mass conservation
equation. The application of the divergence over the N-S equations would initially result
in:

∂

∂xi

[
∂ui
∂t

+
∂ (uiuj)

∂xj

]
=

∂

∂xi

[
ν
∂2ui
∂x2

j

− 1

ρ

(
∂p

∂xi
− Si

)]
(3.39)

Before proceeding further, the pressure is now normalized by the density as p∗ = p/ρ in
order to follow the same problem setting as the one used in OpenFOAM, the star super-
script is not used outside the context of the present section for practicality. Additionally,
no body forces are considered, this allows to drop the symbol for the source term in the
force contributions from the momentum equation. Now conservation of mass can be in-
voked once again to treat the transient term, having in mind that ui (t, xi) is presumed
to be continuous and in such case, the sequential order of differentiation in second order
derivatives becomes irrelevant. After this, the equation changes to:

∂

∂xi

[
∂p∗

∂xi

]
=

∂

∂xi

[
−∂ (uiuj)

∂xj
+ ν

∂2ui
∂x2

j

]
(3.40)

The convective and diffusive terms in the right hand side of equation (3.40) are grouped in
the Hi operator, clearly dependent only on ui and ν. The result is a Poisson equation for
p∗ which constitutes the auxiliary relationship for the coupling of velocity and pressure:

∂2p∗

∂x2
i

=
∂Hi

∂xi
(3.41)

The initial model is then casted once again as a group of three coupled equations consisting
of the 2-D momentum equation and the Poisson equation for p∗:

30 The Finite Volume Method

∂u

∂t
= H1 −

∂p∗

∂x
∂v

∂t
= H2 −

∂p∗

∂y

∂2p∗

∂x2
+
∂2p∗

∂y2
=
∂H1

∂x
+
∂H2

∂y
(3.42)

The coupled nature of the pressure and velocity in the resulting model can be treated
by means of two general methods, that are summarized by Jasak [17] in a compact
way. First a so called group of Simultaneous Algorithms that work solving the equations
simultaneously over the entire domain and that provide a convenient computational cost
provided that both the size of the mesh and the number of coupled equations is not very
large. The second group is formed by methods that adopting a Segregated Approach,
allow to solve the coupled equations by means of a sequential solution algorithm. One
common algorithm from this latter group consists of an implicit solver introduced at the
beginning of the section, precisely denominated Pressure-Implicit Split-Operator, PISO,
which is present in OpenFOAM’s transient solvers icoFoam and pisoFoam and, which will
be the centre of attention in the remainder of the section.

3.5.2 Solution algorithm and advancing the solution in time

The PISO solution algorithm consists of three basic steps summarized in the same way
as [17]:

1. Momentum predictor.

2. Pressure solution.

3. Explicit velocity corrector.

The PISO algorithm conformed of these three basic steps is shown schematically in figure
3.4, with a break down of each element in greater detail according to the illustration of
the procedure as done by Ferziger and Perić [9].

Take in the first place the equation of momentum, discretised for a volume with centre P
and neighbouring volumes centred in l, as:

AuiP u
n+1
i,P +

∑
l

Auil u
n+1
i,l = Qn+1

ui −
(
δpn+1

δxi

)
P

(3.43)

The implicitness reflected in equation (3.43) becomes clear when observing that both u
and p in the resulting Poisson equation are evaluated at the later time instant, t = tn+1.
Both variables are unknowns in terms of the new time instant, therefore an iterative

3.5 Pressure-Velocity Coupling 31

Set BC’s

Solve
discretised
momentum

equations for
uintermediate

Compute
mass fluxes
at cell faces

M
om

en
tu

m
P

re
d

ic
to

r
P

re
ss

u
re

S
ol

u
ti

on
E

x
p

li
ci

t
ve

lo
ci

ty
co

rr
ec

to
r

Solve
pressure
equation

Correct mass
fluxes at
cell faces

Correct
velocity

according
to new

pressure field

Update BC’s
Completed n
correctors?

Evolve to
t = tn+1

Do the
next cor-

rector step

Start

no

yes

Figure 3.4: Flow diagram for the algorithm behind the PISO approach for p− V coupling.

32 The Finite Volume Method

procedure is required for their computation and this begins by reformulating equation
(3.43) into a linear expression:

AuiP u
m∗
i,P +

∑
l

Auil u
m∗
i,l = Qm−1

ui −
(
δpm−1

δxi

)
P

(3.44)

A detail to observe in the expression above is the solution denoted with the new su-
perscript, m, reached by using a previous estimation for the pressure gradient and the
remaining terms represented by Qm−1

ui which can contain terms related to either uni , body

forces, the velocity um−1
i or any other variable at the time tn+1.

Up to this point the solution process can be continued by enforcing continuity or, taking
the divergence, over um

∗
i,P as solved from equation 3.44. This should result in a Poisson

equation from which to obtain an updated pressure estimate pm. Subsequently a velocity
that satisfies the conservation of mass is computed. Since no satisfaction of the momentum
equation is guaranteed for the two updated values of um and pm, the iteration process
continues further until the momentum equation is satisfied up to an established tolerance,
at that moment the estimate um∗ and the corresponding value of p are taken as the correct
estimations for the time tn+1. The PISO algorithm works in a slightly different way, as
the definition of pressure and velocity is done in the form of a correction:

umi = um∗i + u′ (3.45)

pm = pm−1 + p′ (3.46)

When the definitions for um∗i and pm−1 taken from (3.46) are used in the discretised form
of the momentum equation (see equation 3.43) a new relation is obtained:

u′i,P = ũ′i,P −
1

AuiP

(
δp′

δxi

)
P

(3.47)

With:

ũ′i,P = −
∑

lA
ui
l u
′
i,l

AuiP
(3.48)

Now that both the velocity and pressure corrections are related via equation 3.47 the
law of continuity is invoked over the definition for velocity from (3.47). After further
substitution of u′i by the expression shown in 3.48, a Poisson equation is obtained:

δ

δxi

[
1

AuiP

(
δp′

δxi

)
P

]
=
δ (um∗i)

δxi
+
δ(ũ′i,l)

δxi
(3.49)

The unknown velocity corrections open two possibilities at this point, one is continuing the
solution process by neglecting ũ′i,l, which leads to a slow convergence process as mentioned
by [9], the other option is to consider the approximation:

ũ′i,l =

∑
lA

ui
l u
′
i,l∑

lA
ui
l

(3.50)

3.6 Solution of linear systems for velocity and pressure 33

When this approximation is taken, equation (3.49) can be rewritten without the term
that involves the velocity correction but, without neglecting it either:

δ

δxi

[
1

AuiP +
∑

lA
Ui
l

(
δp′

δxi

)
P

]
=
δ (um∗i)

δxi
(3.51)

Inspecting carefully the term in which the pressure gradient is present, the factor involves
now the coefficients associated to neighbouring volumes in the denominator as a conse-
quence of the approximation for the velocity corrections. The next step in the solution
algorithm is yet another correction for velocity:

u′′i,P = ũ′i,P −
1

AuiP

(
δp′′

δxi

)
P

(3.52)

With:

ũ′i,P = −
∑

lA
ui
l u
′
i,l

AuiP
(3.53)

Note that u′i is needed for this last correction; and it can be computed neglecting the first
term in equation (3.47) as:

u′i,P = − 1

AuiP

(
δp′

δxi

)
P

(3.54)

Once again, a divergence free velocity correction derives in the Poisson equation for the
associated pressure correction:

δ

δxi

[
1

AuiP

(
δp′′

δxi

)
P

]
=
δũ′i,P
δxi

(3.55)

The second correction for the flow velocity that is finally computed according to equation
(3.52) is the final result of the solution algorithm known as SIMPLE, used for the predic-
tion of incompressible steady flow. Further velocity corrections can be performed in the
very same way for an arbitrary amount of times, being this the differencing factor of the
PISO algorithm.

3.6 Solution of linear systems for velocity and pressure

The discretisation of the N-S equations leave as a result a linear system of equations, in
incompressible FV problems as the one treated here, one for u and another for p. The
model linear system follows the shape presented in equation 3.56; where A is the matrix
of coefficients that is assembled from the discrete equation on every cell centre node, φ
represents in the same sense the vector of the variable being solved, with each element

34 The Finite Volume Method

representing the value at the centre of each cell and finally Q representing the vector in
which the constant term of every discrete equation is stored.

Aφ = Q (3.56)

The discrete set of equations for each node in the domain is reduced then to the system of
linear equations in 3.56 that can be solved in a variety of ways and for which, the approach
of discretisation determines the shape of A. This is a relevant aspect of the solution
of linearised equation systems because the shape of A, in terms of sparsity pattern or
algebraic properties, will have an influence on how easily can the system be solved or how
accurate or stable will the solution be for a particular solution method. The available
solution methods can be put in two basic categories, these are: Direct and Iterative. In
the first case, the system is solved in one single step, what seems not very troubling for a
small system of equations but that becomes very expensive in number of operations when
a mesh of realistic size is solved. Since the mesh sizes for which the discretisation error
is reduced to an acceptable value imply large computation times with direct methods,
the use of faster alternatives, which are, iterative methods, has become a predominant
approach in CFD. It turns out that iterative methods offer more efficient ways of solving
3.56; since this solution methods are part of OpenFOAM, their basic characteristics will
be covered in the discussions to follow.

Direct solution of linear systems

Despite being discarded from the Eulerian solution framework, the direct solution meth-
ods can be reviewed briefly so a reference can be set regarding what an undesired solution
efficiency is like. Taking as a starting point the extense review in [9] three representative
methods for direct solutions can be highlighted. One of them is the Gaussian Elimina-
tion algorithm, consisting of two parts, one ‘forward elimination’ stage and a ‘backward
substitution’ stage; requires a number of operations proportional to n3/3 for a system of
equations with n unknowns. The method known as LU factorization is another way of
solving the system and is part of one of the iterative techniques as well. The Tridiagonal
Matrix Algorithm is in a way a specialized method because it is applied to matrices with
three diagonals, a very specific pattern resulting from a specific discretisation scheme
and, because the computational work is now scalable with n while resembling to the more
general Gaussian elimination.

After covering some characteristics of standard direct solvers, their limitations for ap-
plications in problems with a large mesh become evident, therefore the use of iterative
methods constitutes a very convenient alternative that covers all the solvers that are cur-
rently implemented in the Eulerian solver used here. The advantages of these iterative
solvers is the improvement of the solution efficiency with relatively less constraints when
compared to the direct methods.

Iterative solution of linear systems

In an iterative solution the value of φ is approximated by the value φn a number of times
until convergence is reached. The estimation of the solution at an iteration n which is

3.6 Solution of linear systems for velocity and pressure 35

carefully identified by a superscript with this symbol, satisfies the original equation only to
a limited extent, such that a finite residual ρn exists as shown in equation 3.57, reflecting
the difference between both members of equation 3.56 when the estimated solution is
evaluated in equation 3.56.

Aφn = Q + ρn (3.57)

The residual for iteration n is inherent to the iteration error εn, which is defined as:

εn = φ− φn (3.58)

And is linked to ρn through the coefficient matrix A:

Aεn = ρn (3.59)

The estimation of the solution for a new iteration n + 1 is computed by splitting the
matrix A into two different matrices, M and N on which the discussion of the chapter
will be centred during in the following sections. For now, the iterative estimate is obtained
according to:

Mφn+1 = Nφn +B (3.60)

At this point it is important to keep in mind that for the solution to be converged, the
residual, ρn, must come to be zero, the same as εn and on the light of equation 3.60 it is not
difficult to observe that when finally φn+1 = φn = φ, the role of the matrix decomposition
becomes more clear because under these conditions A = M −N and B = Q. Under this
methodology the decomposition of A is crucial to the convergence characteristics of the
whole solver; it has been shown that the higher is the similarity between M and A the
faster the iterative solution converges. A very illustrative analysis is done in [9], precisely
by showing how the iteration matrix, M−1N , determines how fast the iteration error is
reduced from iteration n to iteration n+ 1.

For an iterative solution method to be successful under the mentioned criteria, two con-
ditions must be met during the application, these are:

• The system represented by equation 3.56 should be relatively simple to solve, which
implicitly means that both A and N should be sparse matrices and the amount
Nφn should be easy to compute.

• The iterative estimate φn should converge fast enough to φ; for which M should be
easily inverted, and its sparsity pattern should be diagonal, tridiagonal triangular,
block tridiagonal or block triangular.

36 The Finite Volume Method

Some of the basic iterative methods and their characteristics are:

• Jacobi. Iterations proportional to n2
x or n2

y. Higher work than Direct methods.

• Gauss-Seidel. Convergence is twice as fast than Jacobi but the improvement is not
so convenient after all.

• Successive Over-Relaxation, SOR. When the key parameter of the method, ω, is op-
timized, the convergence of the solution can be reached after a number of iterations
proportional to nxi .

On top of the advantages of this basic solvers, there are advanced methods that allow for
an improved solution efficiency and robustness, these are:

• Incomplete LU decomposition and Stone’s method.

• ADI and other splitting methods. Alternating Direction Implicit Method, methods
for the solution of elliptic problems. Such elliptic problems, arise for example when
a Laplace equation is added a transient term before being solved as a steady-state
problem. The particular discretization of this type of equation results in tridiagonal
matrix systems, this information is presented from Ferziger and Perić [9] who also
point out that this method is particularly well suited for CFD applications were not
only pressure correction equations but also equations involving convection can be
treated successfully. The overall method efficiency can be such that the cost of the
solution can be proportional to as low as nxi and even

√
nxi .

• Congugate gradient methods. An interesting picture of this category of solvers is
outlined by Ferziger and Perić [9] by classifying two other groups of solvers that
are often used together as part of a conjugate gradient method. These two types of
methods are the so called, ‘Newton-like’ methods and the ‘general’ methods, with
many of the former kind consisting in general terms of an optimization problem.
For the conjugate gradient method a minimization of the function in question takes
place by searching for minima over multiple search directions at the same time.
Under favourable circumstances, which are: a non-singular coefficient matrix and
the absence of round-off errors, the number of iterations until the convergence of
the method would be equal, instead of proportional, to the size of the matrix.

The rate of convergence of this kind of methods is dependent on the condition-
ing number of A, which can be described as its degree of singularity and which
is defined as the ratio between the maximum and the minimum Eigenvalues of A:
κ = λmax/λmin. Since a matrix with a bad condition number will be more difficult
to invert, the solution method might turn time consuming instead of providing any
advantage. Systems with unfavourable condition numbers are not the exemption
in CFD problems, so in order to take advantage of conjugate gradient methods, an
improvement over the algebraic properties of the solution matrix is taken. The pro-
cedure of preconditioning consists of improving the method by solving the problem
for a matrix with a more convenient condition number than the original. This is off
course achieved by modifying the problem in a way that preserves the symmetry of
the original matrix.

3.6 Solution of linear systems for velocity and pressure 37

Figure 3.5: Detailed algorithms for conjugate gradient methods.

C−1AC−1Cφ = C−1Q (3.61)

A new matrix C−1AC−1, is considered as the system to be solved; furthermore,
the matrix responsible of improving the conditioning number of the problem is C.
In the algorithm for solution, the preconditioning matrix is obtained indirectly and
its inverse, C−1, is computed instead for direct use. This last task can be done by
using incomplete Cholesky factorization of A, the original matrix.

So far the conjugate gradient method has a restricted range of applicability because
it requires the coefficient matrix to be symmetric, a condition that is not impossible
but that does not happen for all the equations that are commonly solved in CFD.
The Poisson equation is a good example of an equation that yields a symmetric
matrix after discretisation and this is the case for the pressure correction approach
as noted by [9], an equation that has already been explored in section 3.5.

A modified version of the conjugate gradient method allows to use the same solution
concept in linear systems with non-symmetric matrices. This modification receives
the name of Bi-conjugate Gradients and consists on using the Pre-Conditioned Con-
jugate Gradient method on a symmetric system that is artificially assembled from

38 The Finite Volume Method

the coefficient matrix and its transpose in the following way:

 0 A

AT 0

 •

 ψ

φ

 =

 0

Q

 (3.62)

As a remark on the previous two solution methods, it must be kept in mind that
both give converged solutions after a similar number of iterations, however the Bi-
Conjugate Gradient method is more computationally demanding than the simpler
Conjugate Gradient method.

• Multi-grid methods.

The concept behind this method lies in the treatment of two different meshes al-
lowing to use a mesh with coarser cells to iterate a solution estimate that will in
principle yield a good approximation for a subsequent solution in the finer, original
mesh. The solution procedure in the coarse mesh has two special characteristics, in
the first place, it reduces considerably the computational consumption, in second
place it provides a smooth estimation of the error.

Since the solution on the coarser mesh can be gradually simplified by reducing
the number of cells, via an operation of clustering or agglomeration, the saving in
computational resource for this stage can be extended up to a point in which the
mesh is no longer a determining factor of the work scaling. This important saving
makes possible to obtain a work scaling proportional to the number of cells when
the multi-grid method is assessed as a whole, which is the sequential solution on
both the coarse and fine mesh levels.

Chapter 4

Vortex Particle Method

An introduction to the basic concepts of vortex based models and the key elements for
using vortex blobs in the modelling of flow field interactions is now presented. The chapter
is comprised of an introduction to a different formulation of the Governing equations
discussed along the chapter on Finite Volume Methods and the strategy used to model
different flow phenomena. Subsequently the discrete forms of vorticity and velocity fields
are introduced after giving a look to the role of the Biot-Savart Law and the Gaussian
distribution in the constitution of the model.

4.1 Vorticity-Velocity formulation of the Navier-Stokes equa-
tions

One of the main pillars in a vortex particle method is the set of Navier-Stokes equations as
they describe the convective and diffusive mechanisms governing the flow of fluid, pretty
much in the same way as was covered in the FVM chapter. In the context of vortex
methods however the Velocity-Vorticity formulation is considered, as the the vorticity, ω
defined in equation 4.2 plays a key role in the definition of the Lagrangian flow field; for
example it is central to the auxiliary Poisson equation from which the velocity field is
constructed when mesh based solutions are considered.

∂ω

∂t
+ (u • ∇)ω − ν∇2ω = 0 (4.1)

ω = ∇× u (4.2)

∇2u = −∇× ω (4.3)

39

40 Vortex Particle Method

The boundary conditions for this problem lie in the assumption of a uniform velocity
field far enough from the perturbation: u(xb, t) → U∞ and in consequence a decay of
vorticity to zero: ω(xb, t) → 0. When solid boundaries exist, boundary elements are
required to model its influence on the flow field; on the other hand, when no solid walls
are present, all of the vorticity in the flow field must be directly represented. Furthermore,
the context in which the equations are solved allow to make an additional simplification,
as the segregation of the vortex particle model to flow regions with a relatively small
molecular diffusion, allow to attribute a predominantly convective nature. It is by splitting
the evolution of the flow into two successive stages that the convective and diffusive
phenomena are handled. The aim is now to satisfy the convective term of equation 4.1
in the first step and subsequently, the diffusive term of the momentum equation in the
second step. Both stages are shown in detail in table 4.1 which reflects the Eulerian and
Lagrangian formulation of the Viscous Splitting algorithm originally proposed by Chorin
[3].

Stage Eulerian Formulation Lagrangian Formulation

1. Convection ∂ω
∂t = −u • ∇ω

dxp

dt = u (xp)

dωp

dt = 0

2. Diffusion ∂ω
∂t = ν∇2ω

dxp

dt = 0

dωp

dt = ν∇2ω (xp)

Table 4.1: Detail of the viscous splitting strategy in Vortex Particle Methods.

4.2 Biot-Savart Law

A continuous velocity field can be constructed in terms of the convolution between the
Biot-Savart kernel, K and the vorticity field. This corresponds to the Biot-Savart Law:.

u(x, t) =

∫
(∇×G)(x− x′)ω(x′, t)dx′ =

∫
K(x− x′)ω(x′, t)dx′ = (K ∗ ω)(x, t) (4.4)

Close inspection of equation 4.4, reveals a definition for K in terms of the Green’s Func-
tion, G applied to the Laplacian operator, following the introduction to the model in
several works already mentioned in the literature review. For a two dimensional prob-
lem as happens to be the case here, K takes the form shown in equation 4.5, carrying
along a singular behaviour when |x| → 0. This is an undesired situation as the values for
velocity can become unbounded depending on the proximity among the particles. The
standard solution to this problematic consists of employing a vorticity distribution in
order to smooth the field. This is precisely done with a cutoff function in order to arrive
to a mollified or regularised kernel, Kσ, using again a convolution according to equation

4.3 Discrete form of vorticity and velocity fields 41

4.6.

K =
1

2π|x|2 (−x2, x1) (4.5)

Kσ = K ∗ ζσ (4.6)

In the present context as happens to be a common choice, the cutoff function, denominated
ζσ, is a Gaussian distribution whose shape depends on the parameter σi, the core size of
the particle or blob, and the constant k, which determines extent or scope radius of the
cut-off function itself.

ζσ(x) =
1

kπσ2
exp

(−|x|2
kσ2

)
(4.7)

Until this point, many of the elements pertaining the discretisation in the vortex particle
method have been introduced, besides the parameters σi and ζi each blob element has
a particular vorticity strength or circulation, Γi which denotes the amount of vorticity
assigned to it.

4.3 Discrete form of vorticity and velocity fields

A discrete form of the vorticity field is built upon the contributions from each element
and takes the form of a summation that has the form:

ω(x, t) ≈ ωh(x, t) =
N∑
i=1

Γi(t)ζσi(x− xi(t)) (4.8)

Furthermore, the velocity field is constructed in a similar way, making use of the mollified
kernel from equation 4.6. The final form of the discrete velocity field is then:

uh(x, t) =
N∑
i=1

Γi(t)Kσ(x− xi(t)) (4.9)

4.4 Boundary conditions

The interaction of the flow field with solid walls requires a new model to allow predicting
the flow field in the near wall region. The approach in the pHyFlow framework works by
using a panel method formulation in the surface of the body in question, then a vortex

42 Vortex Particle Method

sheet is considered over its surface and, the associated vorticity distribution applied over
the Lagrangian field. From this construct, the no-slip velocity boundary condition is
enforced in the Lagrangian component of the Hybrid framework, acting as an estimate
since the latter Eulerian component is used in a correction step.

4.5 Initialization and Remeshing

The relative position of the blobs has a relevant effect on the quality of the predicted
properties of a flow field, therefore the discretization faces a constraint known as the
overlap ratio, λ = h/σ, the ratio between h, the distance between two blobs, and σ,
the size of the blob core. The location of each blob at a particular instant is known to
be determined by the convective action of the velocity field. Since there is no way to
ensure an optimum overlap ratio at every time, the vortex particle method makes use of
a remeshing stage; by which, with the help of an interpolation function, the blobs are
periodically relocated and their vortex strengths reassigned to match their new position.

4.6 Time Evolution Algorithm

A solution algorithm for the VPM solver module is set by Manickathan’s work [19], shown
here in figure 4.1. For a given time step a solution is performed by solving for the panels
set in the surface of the body, ensuring no-slip condition with respect to the existing
flow field. Once a new velocity field is evaluated from the free-stream velocity and the
total induced velocities from the vortex blobs and the panels, the blobs are convected
for the current time step. Just after convection is evaluated, the final position of each
vortex element must be checked in order to avoid breaking the overlapping margin; this
is taken care of during the re-meshing stage with the required redistribution of vorticity.
The diffusion step takes care of redistributing the vorticity strength, according to the
transport of momentum being modelled and completes the solution for a time step.

4.6 Time Evolution Algorithm 43

Start

Solve for panel strengths to
enforce no-slip condition

Evaluate total velocity field

Convect vortex blobs

Remesh blob locations

Diffuse vortex blobs

end

Figure 4.1: Flow diagram for the solution of the Vortex Particle Method.

44 Vortex Particle Method

Chapter 5

Coupling Strategy

The coupling strategy in a hybrid solver handles the most delicate operation of the global
solution procedure: interpolating the flow field properties between the Lagrangian and
Eulerian domains. Interpolation of flow field data in the context of hybrid vortex particle
methods has several roles. One can list for example the correction of Lagrangian solu-
tions in near body regions taking as a source a more accurate Eulerian prediction or the
remeshing routines used to deal with the critical aspect of inter particle spacing in VPM.
Given that the current project has been scoped to the implementation of a stand-alone
FVM solver, under a modular approach so as to ensure the compatibility inside an hybrid
framework, the current chapter is dedicated a third and equally essential role for inter-
polation: using Lagrangian far-field data for determining the boundary conditions in the
near-body Eulerian solver.

In order to reproduce the hybrid framework, a far field simulation, predicted also with
FVM is considered as the source case, since the integration of an OpenFOAM solver
Eulerian component to the Lagrangian VPM solver has not been done in the current
work. The direct coupling method is adopted, for setting the boundary condition in
the Eulerian portion of the solver, following the work of [8, 21], this means that the
determination of the boundary condition for the Eulerian sub-domain occurs directly
as opposed to any iterative procedure. Since basic interpolation methods have been
considered for this section, the core issue in the determination of the boundary conditions
is ensuring the continuity of the flow field in the boundary. Such a requirement is the
centre of the implemented solver and is set to test in two flow cases which are introduced
in chapter 6.

5.1 Flow adjustment in OpenFOAM

For problems with ‘adjustable’ boundary conditions in at least one segment of the outer
boundary, denominated boundary patches in the OpenFOAM context, the solution of the
pressure equation includes an adjustment of the boundary face mass flux φ, as included

45

46 Coupling Strategy

in the adjustPhi.C source file, included in the finiteVolume library. The construction
of the finiteVolume library is performed with the wmake compiler using the -libso

option, whereas the construction of the customPisoFoam solver is performed using the
same compiler with no option specified.

The way in which OpenFOAM corrects flux imbalances is depicted in Figure 5.1, which
contains a detailed schematic of the implementation of the function adjustPhi; invoked
at the moment of solving for the pressure correction in the PISO loop.

One should consider that the natural way of guaranteeing continuity with a PISO-based
solver lies in the correction of velocity in boundary patches where the velocity field is
specified with a gradient instead of a fixed value. This is why the algorithm in figure
5.1 works with two definitions for the fluxes exiting the boundary or, where u • dS > 0.
One is ΦA

out, an adjustable mass outflow and the other is ΦF
out which on the contrary is

associated to a fixed velocity boundary field.

In a problem where the entire boundary field for velocity is specified with a fixed value,
the adjustPhi function will have the role of checking continuity in the boundary condi-
tions instead of performing a velocity correction; since no adjustable mass is found, the
algorithm outputs an error whenever the relative mass imbalance is higher than 1×10−8.

If the flux can be corrected at any existing patch with adjustable flux, the function returns
a boolean value determined by:

||Φin||
ΦT

< ε2 ∧
||ΦF

out||
ΦT

< ε2 ∧
||ΦA

out||
ΦT

< ε2

In the OpenFOAM implementation, the values of ε2 and ε1 are finite constants dependent
on the precision level with which the solver and the library are compiled.

5.2 Enforcement of continuity at interface

The region enclosing the Eulerian domain is formed by a set of external faces, one for each
peripheral control volume. For a collocated mesh arrangement the boundary conditions
for u and p must be determined in the cell centres of all the faces comprised in ∂ΩE .
Determining the required fields at those locations is a task that might introduce an error,
specially in the context of hybrid solvers where the information is supposed to move from
one sub-grid to the other during the solution algorithm. Such error is usually originated
from non-conservative methods for determining the velocity fields at the boundaries and,
as consequence, results in a boundary velocity field that violates the continuity law.

Knowing that the enforcement of mass conservation across ∂ΩE is crucial for the FVM
computations, an artificial correction is proposed, assuming that the error in the boundary
mass flux is small in relation to the absolute mass flux permeating ∂ΩE . It is important
to note that in the present context the term ‘small’ is rather subjective, since the size of
the flux imbalance might depend on several aspects of the solution method, specially the
kind of interpolation used to transfer the information from one domain to the other. This

5.2 Enforcement of continuity at interface 47

flux error is in fact a mass imbalance, denominated here Φnet and defined according to
equation 5.1.

Φnet =

∫
ΩE

∇ • u dV =

∫
∂ΩE

u • n ds ≈
Nb∑
k=1

(u • n)kdsk (5.1)

The approach for correcting the velocity boundary condition in the Eulerian sub-domain
began by proposing a modification in the velocity field at the boundary, by an amount
on each face such that Φnet ≈ 0 at least to machine precision; this is nothing but the
continuity law over the boundary condition. The correction that must take place discretely
on each local mass flux is outlined in equation 5.2.

Φnew
k = Φold

k −
Φnet

Sn
|Φold
k | (5.2)

From equation 5.2 one can observe that the correction is proportional to Φnet normalized
by a weighing factor, Sn; this amount, determines how the flux imbalance is redistributed
to a discrete level and its definition is an arbitrary choice. A first correction can be
assembled according to equation 5.3 which results in a cell-area weighted correction.

Sn =

∫
∂ΩE

ds (5.3)

A second correction scheme can be set if Sn is defined as a flux-based weight, as specified
now in equation 5.4. Once the model for distributing the magnitude of φnet on a local
level across the boundary. The modification on the velocity field is shown in equation
5.5. This velocity is essentially the correction on u2, the face-normal component of the
velocity vector.

Sn =

∫
∂ΩE

|u • n| ds (5.4)

u′2 = u2 −
∫
∂ΩE

u • n ds∫
∂ΩE
|u • n| ds |u2| (5.5)

The correction term is now the ratio of the local normal velocity to the absolute flux
passing across; the improvement with respect to the initial correction makes it a more
appropriate way of dealing with the non-conservativeness of the velocities. Works in the
same field performed by Zang and Street [30] and Zahle [29] proposed this very same
correction. Observing the correction as a way of keeping the proportionality between
the global flux imbalance and the local flux correction gives an interesting glance to the
concept behind it:

Φnet

Φabs
=

∫
∂ΩE

u • n ds∫
∂ΩE
|u • n| ds =

u2 − u′2
|u2|

(5.6)

48 Coupling Strategy

After comparing both approaches in a simulation of the flow past an aerofoil with a curvi-
linear boundary with Dirichlet boundary conditions for the velocity it can be observed
that the first introduces velocity changes in segments of the boundary where the velocity
is predominantly tangential to the boundary surface; it makes sense to assume that in
such regions, the normal flux is relatively small and in consequence the velocity correc-
tion should have a small effect. The second correction results in velocity fields with better
appearance in those areas where the velocity vector is tangential to the boundary surface
as no irregularities are evidenced after inspecting the results. It can be said that the
area-weighted correction is not wrong but is inappropriate for regions where the velocity
is tangential to the boundary face. Only when the velocity permeates a face orthogonally,
the correction would yield a fair result. For this reason the second approach is retained
in the subsequent part of the project.

5.3 Implementation of a Stand-Alone Eulerian Solver in
OpenFOAM

The implementation described here is the central element of the project and consists of
an Eulerian solver, customPisoFoam built upon the pisoFoam solver as a baseline, with
its functionality extended by:

• Enabling the formulation of a pure Dirichlet problem for velocity via a non conserva-
tive interpolation method with a flux correction for guaranteeing mass conservation
across the boundary.

• Enabling the formulation of the FVM with a pure Neumann problem for pressure.

The structure of the baseline solver can be described in terms of the momentum predictor-
corrector three-step diagram that has been introduced in figure 3.4, using now the cor-
responding sections of the pisoFoam.C source file, written in OpenFOAM’s C++ based
high level syntax. Beginning by the momentum predictor as specified in listing 5.1 the
linear system matrix for velocity is instantiated separately in the variable UEqn so it can
be reused in a later step, the first velocity prediction is then carried by solving for UEqn

equated to the negative of the pressure gradient which is computed explicitly from the
available internal field as an initial guess.

Listing 5.1: Code segment for the momentum predictor step.

fvVectorMatrix UEqn

(

fvm::ddt(U) + fvm::div(phi , U)

+ MRF.DDt(U)

+ turbulence ->divDevReff(U)

==

fvOptions(U)

);

solve(UEqn == -fvc::grad(p));

5.3 Implementation of a Stand-Alone Eulerian Solver in OpenFOAM 49

Once the momentum predictor is executed the solution continues in the pressure solver
step as shown in listing 5.2 which begins by defining the auxiliary mass flux phiHbyA and
velocity HbyA, checks for any mass imbalance in the flux field in order to correct it when
required and finally solves the Poisson pressure equation instantiated in the pEqn linear
matrix system.

Listing 5.2: Code segment for the pressure solution step.

// Define the mass flux

volScalarField rAU (1.0/ UEqn.A());

volVectorField HbyA("HbyA", U);

HbyA = rAU*UEqn.H();

surfaceScalarField phiHbyA

(

"phiHbyA",

(fvc:: interpolate(HbyA) & mesh.Sf())

+ fvc:: interpolate(rAU)*fvc:: ddtCorr(U, phi)

);

// Mass flux correction to ensure continuity before solving for p

adjustPhi(phiHbyA , U, p);

while (piso.correctNonOrthogonal ())

{

// Pressure corrector

fvScalarMatrix pEqn

(

fvm:: laplacian(rAU , p) == fvc::div(phiHbyA)

);

pEqn.setReference(pRefCell , pRefValue);

pEqn.solve(mesh.solver(p.select(piso.finalInnerIter ())));

if (piso.finalNonOrthogonalIter ())

{

phi = phiHbyA - pEqn.flux();

}

}

The last step in the PISO algorithm is the explicit velocity corrector which as shown in
listing 5.3 consist in the subtraction of the pressure contribution from the guess of the
velocity field.

Listing 5.3: Code segment for the velocity corrector step.

U = HbyA - rAU*fvc::grad(p);

U.correctBoundaryConditions ();

Before going into details of the modifications that lead to the customized version of the
solver, it is important to note that the mass flux taking part in the pressure solution step is
denominated phiHbyA, representing a newly defined mass flux in terms of the H operator
which just as the one introduced earlier in equation 3.41 represents in the OpenFoam
context, the off-diagonal terms involving known velocities and additional terms other than
∇p. the term rAU represents the inverted diagonal coefficients of the velocity matrix UEqn

defined in the momentum predictor; as a consequence, phiHbyA and also HbyA represent

50 Coupling Strategy

the mass flux and the velocities respectively, without the force contribution associated to
∇p. This is reflected in the first statement of the velocity corrector, where the effect of
pressure is included in order to obtain a divergence-free flow field.

5.3.1 Default method for flux correction in the baseline solver.

When a given velocity field results in a mass flux imbalance, mass continuity is ensured
with a correction proportional to the imbalance itself, this operation is already included
in the PISO-based OpenFOAM solvers, but requires at least one boundary patch to
be specified with a Neumann boundary condition for u. The flux correction is carried
according to figure 5.1 and, as one can see in the previous description of the baseline
solver, it is an indispensable requisite prior to the computation of the pressure gradient
that allows for a divergence free velocity field after the corrector step is executed.

In a simulation with either the pisoFoam or icoFoam solvers, if no boundary patches
with Neumann BC for u exist, the default implementation of the adjustPhi function
will halt the computation with an error prompt, as no means of correcting the flux for
zero-divergence exists for that scenario.

5.3.2 Flux correction in the custom solver.

The implementation of the customPisoFoam solver preserves all of the structure of the
baseline solvers but contains two modifications for the boundary velocity field and the
mass fluxes, that correct the mass conservation error introduced to the flow field when
the boundary conditions are interpolated from an existing solution on the large scale
domain. A code section has been included to extract mesh information and the pressure
boundary field as shown in listing 5.4. The customPisoFoam solver contains a code section
introduced in listing 5.5 that modifies the boundary condition for velocity to make it
divergence free right after the time loop begins.

Listing 5.4: Determination of boundary conditions from customPisoFoam solution for a
far-field sized domain.

label eulerianPatchID = mesh.boundaryMesh ().findPatchID("omegaE");

if(eulerianPatchID != -1)

{

Info << "Eulerian boundary exists! ..." << endl;

Create polyPatches for the boundaries:

const polyPatch& nbPatch= mesh.boundaryMesh ()[eulerianPatchID];

Info << "\n\nExtracted Face centre coordinates Vectors: \n"<<endl;

const Field <vector >& fcs = nbPatch.faceCentres ();

Info << "Face Centres:" << fcs << endl;

Info << "\n\nExtracted Face Normal Vectors: \n" << endl;

const Field <vector >& fns = nbPatch.faceNormals ();

Info << "Face Normals:" << fns << endl;

Info << "Pressure BC field: " << p.boundaryField ()[eulerianPatchID

] << endl;

}

5.3 Implementation of a Stand-Alone Eulerian Solver in OpenFOAM 51

Listing 5.5: Correction for u in the frame of reference of each boundary face.

const scalar totalBoundaryFlux = VSMALL + sum(mag(bphi));

const scalar netBoundaryFlux = sum(bphi);

// Flux correction

forAll(bphi , patchi)

{

fvsPatchScalarField& phip = bphi[patchi];

forAll(phip , i)

{

phip[i] -= netBoundaryFlux*mag(phip[i])/totalBoundaryFlux;

}

}

// Velocity correction at the boundary

Field <scalar > sPhi(fn.size());

Field <scalar > cPhi(fn.size());

for(int k = 0; k<fn.size();k++)

{

sPhi[k] = -fn[k][0]/ mag(fn[k]);

cPhi[k] = fn[k][1]/ mag(fn[k]);

}

float Qnet = 0; float Qtotal = 0; float tmp = 0.0;

for(int k = 0; k < U.boundaryField ()[numBound].size(); k++)

{

tmp = fa[k]&U.boundaryField ()[numBound][k];

Qnet += tmp;

Qtotal += mag(tmp);

}

Tensor <scalar > R(1, 0, 0, 0, 1, 0, 0, 0, 1);

// Rotate velocity vectors to the cell -face reference frame

for(int k = 0; k < fn.size(); k++)

{

R.xx() = cPhi[k];

R.xy() = sPhi[k];

R.yx() = -sPhi[k];

R.yy() = cPhi[k];

U.boundaryField ()[numBound][k] = transform(R,U.boundaryField ()[

numBound][k]);

U.boundaryField ()[numBound][k][1] -= Qnet/Qtotal*mag(U.

boundaryField ()[numBound][k][1]);

U.boundaryField ()[numBound][k] = transform(R.T(),U.boundaryField ()

[numBound][k]);

}

The flux correction occurs later, as part of the modified version of the adjustPhi function.
This flux correction has the purpose of supplying a divergence free flux, computed without
the action of the pressure gradient for the subsequent solution of the pressure equation in
the PISO algorithm. The implementation of the flux correction just before the solution
of the pressure equation allows to ensure a divergence free flow either for a time-fixed
boundary condition or for a time-varying boundary condition.

52 Coupling Strategy

Define U and Φ
boundary fields

Iterate boundary patches

Reference
level required

for
p−solution?

Return False
Is U−patch
fixedValue

And Not
InletOulet?

Φi < 0 : Φin− = Φi

Φi ≥ 0 : ΦF
out+ = Φi

Φi < 0 : Φin− = Φi

Φi ≥ 0 : ΦA
out+ = Φi

ΦT = ε1 +
∑ |φi|

|ΦA
out| > ε1
And

ΦA
out/ΦT > ε2

κ =
Φin − ΦF

out

ΦA
out

|ΦF
out−Φin|

ΦT
>

1× 10−8

Error

Φi+ = −
(

Φnet

ΦT

)
Φi

Iterate boundary patches

U−Patch is Not
fixedValue Or
inletOutlet

if Φi > 0:
ΦNew
i = κΦOld

i

Start

End

Y

N

Y

N

Y

N

Y

N

Figure 5.1: Flow chart for the adjustPhi.C original source file and the proposed modifica-
tion enclosed in the dashed, ‘- -’, rectangle.

Chapter 6

Benchmarking Simulation Cases

The simulation cases for the benchmarking of the customized pisoFoam solver application
in OpenFOAM are presented next. The details of basic solution convergence with respect
to the spatial discretisation as well as the boundary condition for pressure are discussed
as part of the analysis of the uniform flow induced by a point vortex. The analysis on
the proximity between flow and wall boundary conditions is developed in the context of
FV simulations of a DU00-W-212 airfoil; this time working on a series of cases where the
mesh is set to different sizes with respect to the airfoil chord length.

6.1 Point vortex flow with Dirichlet velocity BC

The modified version of the pisoFoam solver is set to test with the simulation of a 2-D
and steady flow field in a squared domain, induced by the action of a point vortex located
externally to the domain. The consideration of a point vortex is conceived in this section
as a convenient way of testing a flow field with an exact solution for velocity and pressure;
this facilitates the comparison with flow field variables as predicted by the Eulerian solver.
For a point vortex of strength Γ the induced flow field components are computed as:

u =
Γ

2π

y − y′
(x− x′)2 + (y − y′)2

v = − Γ

2π

x− x′
(x− x′)2 + (y − y′)2

(6.1)

An expression for the pressure field p can be deduced from the Bernoulli equation which for
steady flow is a function of the freestream pressure and the velocity magnitude. Assuming
now that the reference pressure is p∞ = 0, the resulting equation is:

p = −|u|
2

2
(6.2)

53

54 Benchmarking Simulation Cases

Since the velocity components are explicitly determined for any point in space, except the
location of the vortex itself, both u and p can be computed everywhere for comparison.
The methodology for the analysis of the computations with the Eulerian solver consist
of recreating a solution scenario as it would happen in the hybrid framework. With this
purpose a velocity field is computed at random locations around the domain as the base
flow field for latter computation of the boundary conditions and sampling regions for
error analysis. The velocity field is illustrated in figure 6.1; the sampling region and the
location of the boundary points are shown as well. The set up of the simulation cases

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Figure 6.1: Potential flow field of a point vortex at (x, y) = (0.1,−0.5) for n = 10.

is done with base in several parameters, with the location of the vortex element among
them. A convenient choice is to place the vortex element outside the flow domain because,
unlike a mollified vortex, the velocity becomes unbounded in the proximity of the vortex
centre for the simple case considered here. Other parameters are:

Γ = −3

(x′, y′) = (0.1,−0.5)

L = 1 m

p/ρ = 1 m2/s2

∆t = 1× 10−3

The simulations are organized in three main groups with each one corresponding to a
method for determining the u boundary condition over ∂ΩE , given a set of values from an
imaginary flow field which in the context of the hybrid solver corresponds to ΩL. Following
the approach from the hybrid solver framework, the boundary condition for velocity is
set with fixed values in all the four boundaries of the squared domain in figure 6.1, using

6.1 Point vortex flow with Dirichlet velocity BC 55

an exact computation following equations 6.1 and using three interpolation methods for
benchmarking: nearest neighbour, linear and cubic.

The comparison between the different set of boundary conditions is reflected in the con-
vergence analysis of the solution method which is carried out by, taking a sample of the
velocity field along the sampling region shown in figure 6.1 and, computing the absolute
error with respect to the exact solution for the flow field at the corresponding locations.
The computation of the absolute error for a set of four meshes with refinement levels of
10, 60, 100 and 600 cells in x and y directions alike. The error, computed as the l∞− norm
of the absolute error for each grid appears in figure 6.2.

For both u and v velocity components, the slope of the fitted linear polynomials is close
to -1. This is verified in the postprocessing and represented graphically in figure 6.2. The
most immediate indication of this results is that the spatial discretisation of the Eulerian
solver has an order of convergence close to first order and above for the best case. This
statement holds valid for the simulations with exact velocity BCs and for linear and
cubic interpolated BCs; not only because the slopes of the fitted polynomials have values
between 1.1 and 1.3 but because for the most refined cases, where the FV approximation
is valid, the variation of the error has a much better tendency. On the other hand, the
simulation cases with nearest neighbour interpolated BC’s shows a slower convergence
in the solution of both velocity components. At this point it is also interesting to note
that the behaviour of the error for the v component is not so defined as that of the
u component. Additional simulation cases in which the vortex is located in the same y
coordinate as the sampling region show that the behaviour of the error in the v component
is even more irregular than the u component. Based on this, it makes sense to assume
that when the velocities get close to zero, as is the case for the v component in the latter
case and, to a lesser degree in the original one, it is difficult to avoid loosing accuracy
when the postprocessing requires the data to be handled in multiple platforms, such as
paraFoam with the vtk format and python, with the latter being the platform in which
the postprocessing is ultimately performed.

The discretisation schemes that are specified in the fvSchemes dictionary in each sim-
ulation are first order accurate, therefore the most important outcome of this exercise,
as reflected by figure 6.2, indicate that the determination of the boundary conditions via
interpolation from a known velocity field is not an impediment for preserving the order of
convergence of the Eulerian solver as long as the interpolation method is accurate enough.
In this case a linear and cubic interpolation method are taken as test methods that behave
relatively well.

A qualitative analysis of the flow field variables is done by comparing the contours of u, v
and p between the exact solution and two sets of numerically predicted fields in which two
different specifications for the Neumann boundary condition for the Poisson equation for
p are considered. The comparison of the individual velocity components is presented in
figure 6.3 whereas the comparison of the density-normalized pressure is presented in figure
6.4. The results from the exact solution are included in both figures in the form of solid-
colored contours and the results from numerical solutions are presented as superimposed
contour levels with their respective label. In the case of figure 6.4, the pressure is plotted
with the offset of the minimum pressure; with the intention of comparing the variation of
the field with the same reference.

56 Benchmarking Simulation Cases

101 102

n

10−3

10−2

10−1

A
bs

ol
ut

e
er

ro
r,
ǫ

ǫ ∝ n−1

u−velocity

101 102

n

v−velocity
exact
nearest
linear
cubic

Figure 6.2: Consistency analysis on the FVM spatial discretisation set up.

The results show that the velocity components are predicted in agreement with the ex-
act solution for most of the domain except the regions near the southern and eastern
boundaries for figures 6.3 (b) and (d). Besides this aspect, which depends largely on the
reconstruction of the pressure values at the boundaries and not on the solution of the
pressure equation, there is barely a difference in the p node values between the heteroge-
neous and homogeneous Neumann BC for p. A different situation occurs for the predicted
p field itself, since not only there is a clear difference between exact and numeric solutions
everywhere in the domain but there’s also a large discrepancy in the south-west cell pres-
sure value; the same cell at which the pressure is set to an arbitrary value as is usually
done.

Observing the current situation in perspective, it is important to recall that the hetero-
geneous Neumann BC for p is available as long as an estimate of the velocities exist; with
this, the estimation of the required pressure gradient on a boundary is computed from the
momentum equation. Despite having an explicit estimation for the boundary condition,
the pressure solution deviates from the exact solution, in contrast to the homogeneous
Poisson problem, for which the pressure is predicted in close resemblance to the reference
case. A solution to this discrepancy could be a reconstruction of the pressure values across
∂ΩE from the node solutions in ΩE as proposed by Zahle [29].

The solution of the Poisson equation for p is seen to be significantly affected by the
boundary condition specification. In the case of u on the other hand, the solution agrees
with the exact velocity field except for the near boundary solution, for both boundary
condition specifications for p. The fact that the pressure solution has a constant included
due to the nature of the resulting linear system has been considered before comparing

6.1 Point vortex flow with Dirichlet velocity BC 57

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.
25

0

0.250

0.300

0.350

0.400

0.4500.500

0.5500.600

0.650

0.700
0.7500.8000.850

0.900

u [m/s]

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) Boundary condition: ∂p/∂n = 0

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.
25

0

0.250

0.300

0.350

0.400

0.450

0.5000.550

0.600

0.650

0.7000.750

0.8000.8500.900

u [m/s]

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) Boundary condition: ∂p/∂n = H · n

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

-0.450
-0.400

-0.350

-0.300

-0.250

-0.200

-0.150

-0
.1

00

-0
.0

50

0.000

0.050
0.100

v [m/s]

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

(c) Boundary condition: ∂p/∂n = 0

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

-0.450-0.400

-0.350

-0.300

-0.250

-0.200

-0.150

-0
.1

00
-0

.0
50

0.000

0.050
0.100

v [m/s]

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

(d) Boundary condition: ∂p/∂n = H · n

Figure 6.3: Contour plots for velocity components. The Filled contours represent the ex-
act solution of the potential field; black contour levels represent the numeric
solution.

the pressure fields from the numerical solution to the exact values; in this sense, the
boundary condition setting is a key aspect for the prediction of the loads since the pressure
distribution over the boundaries will eventually be affected by the field on the whole
domain. The absence of viscous transport and the existence of a single region for ∂ΩE

gives a rather simplistic focus to the present exercise which aims to address aspects
inherent to the solver performance instead to the nature of the flow. It is necessary to
point that the simulations are performed with a point vortex instead of using the VPM
hybrid solver as the OpenFOAM Eulerian solver has been compiled as an individual
application. In order to continue with the benchmarking the analysis extends further to
the study of flow around an airfoil in analogous conditions to the ones considered in the
current section.

58 Benchmarking Simulation Cases

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.030 0.060
0.090 0.120

0.150
0.180

0.210

0.240

0.270
0.300

0.330

0.360

0.390

p/ρ [m2/s2]

0.00

0.06

0.12

0.18

0.24

0.30

0.36

0.42

(a) Boundary condition: ∂p/∂n = 0

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0600.090 0.120

0.150
0.180

0.210
0.240 0.270 0.300

0.330

0.360

0.390
0.420

p/ρ [m2/s2]

0.00

0.06

0.12

0.18

0.24

0.30

0.36

0.42

(b) Boundary condition: ∂p/∂n = H · n

0.00 0.02 0.04 0.06 0.08 0.10
x

0.00

0.02

0.04

0.06

0.08

0.10

y

0.030

0.090

0.150p/ρ [m2/s2]

0.00

0.06

0.12

0.18

0.24

0.30

0.36

0.42

(c) Boundary condition: ∂p/∂n = 0

0.00 0.02 0.04 0.06 0.08 0.10
x

0.00

0.02

0.04

0.06

0.08

0.10

y

0.090

0.150

p/ρ [m2/s2]

0.00

0.06

0.12

0.18

0.24

0.30

0.36

0.42

(d) Boundary condition: ∂p/∂n = H · n

Figure 6.4: Contour plots for p with offset of pmin. The Filled contours represent the
exact solution of the potential field; black contour levels represent the numeric
solution.

6.2 Flow around the DU 00-W-212 airfoil

In this section the solution of the N-S equations is performed in a flow domain around an
airfoil in a simulation campaign containing five cases denominated ‘target’ cases and one
more simulation denominated the ‘source’ case. According to the methodology defined
for this part of the project the source simulation works as a reference solution from which
boundary conditions for all the other ‘target’ cases, are obtained via linear interpolation;
additionally the solution from the source simulation is the reference for comparative anal-
ysis of the solutions in each one of the target cases. In this order of ideas it is clear that
the role of the source simulation the same as that of a Lagrangian solver, i.e. providing
the boundary conditions for the Eulerian simulations in the near-wall sub-domain. On the

6.2 Flow around the DU 00-W-212 airfoil 59

other hand, contrary to the ideal hybrid framework, both source and target solutions are
obtained from a pure Eulerian solver. The consideration of steady state flow is retained
for a clearer assessment of the solution on a domain with two boundary regions which are
ΩE and the airfoil wall, and with a variable domain size on each one of the five target
cases.

6.2.1 Simulation approach and parameters

The flow conditions correspond to an intermediate Reynolds around Re ≈ O(1 × 105)
which can provide an interesting case for analysis along with the selected angle of attack.
Additionally this flow condition allows for comparison with available data such as the
work of [1]. In the current simulation campaign the flow is assumed to be fully turbu-
lent, predicted with the Spalart-Allmaras turbulence model and with no wall treatment;
expecting a fair level of simplicity that enables to observe the behaviour of the steady
state solution without dropping the customized time-varying solver as the centre of the
analysis. The linear convection scheme specified for u in section 3.4 is retained for the
transport equation for the kinematic turbulent viscosity, ν̃. A more extensive review of
the main parameters can be listed as:

U∞ = 26 m/s

α = 8◦

c = 1 m

∆t = 1× 10−5

Re = 130000

The size of the Eulerian domain, ΩE , in each target simulation case is quantified by δ which
represents the distance between the airfoil ‘wall’ boundary and the outer flow boundary,
∂ΩE , in a direction normal to the airfoil surface. A detail of a target and source meshes
are shown in figures 6.6 and 6.5 respectively. From the five geometries which have been
used, the smallest domain has a boundary extension equivalent to δ/c = 0.1, the largest
domain on the other hand has an extension equivalent to δ/c = 0.5.

6.2.2 Solver set up

A solution set up for the study cases included in this section is composed of the solver,
tolerances and PISO control parameters. The solution details for the flow variables are
specified in the fVSolution dictionary with the corresponding entries listed here in Table
6.1.

The remaining entries in the solution dictionary for every pisoFoam based solver consist
in the solver settings for additional transported quantities, such as ν̃; finally the entries
for the PISO algorithm specify the number of correctors, set to 2 for sufficiently converged
p solutions and both the pressure level reference value and location.

60 Benchmarking Simulation Cases

Figure 6.5: Structured ‘target’ mesh around a DU 00 W-212 airfoil.

Figure 6.6: Structured ‘Source’ mesh around a DU 00 W-212 airfoil.

Variable p u ν̃

Solver PCG PBiCG Smooth Solver

Preconditioner/(Smoother) DIC DILU (Gauss-Sidel)

tolerance 1× 10−6 1× 10−5 1× 10−5

relTol 0 0 0

Table 6.1: Solver specifications for velocity and pressure.

6.2 Flow around the DU 00-W-212 airfoil 61

6.2.3 Influence of boundary-wall proximity

The analysis on the size of the Eulerian domain size for each one of the ‘target’ simulations
is divided into the qualitative analysis of the pressure coefficient in the flow field and the
quantitative analysis of the airfoil surface distribution for the pressure coefficients and
the time history of the force coefficients. A primary aim of this analysis is to observe how
does the pressure coefficient in the ‘Target’ simulations compares to the same results from
the ‘source’ simulation, paying extra attention to the boundary regions of ΩE where the
Eulerian subdomain ends and, to the airfoil wall boundary off course, since the pressure
distribution in this region is responsible for a portion of the resulting loads.

Several plots have been assembled between figures 6.7 and 6.11 showing how the Cp distri-
bution behaves across the flow field from both the ‘source’ and ‘target’ cases. Given that
the simulation has been performed with steady turbulent flow, using the Spalart-Allmaras
one equation turbulence model all of the plots represent the flow field after convergence
to steady state is reached. The main features in the source simulation, corresponding to
the solid-colour contours, are the high pressure region just in the stagnation point of the
airfoil, and the low pressure region in the upper surface, around the 25% of the chord
length. The empty contours representing all of the target cases, show that in general,
the pressure field near the stagnation point and the suction side of the airfoil follows the
pressure field from the source case since the low and high pressure regions are located in
the same areas. Nevertheless the similarity between the source and target simulations can
be appreciated clearly since the contour levels for the target pressure field are shifted by
an amount with respect to the source simulation. Under this results it can be pointed that
the resemblance between the target cases among themselves appears to be less defined
than the difference between any target case and the source case.

The analysis of the Cp over the surface of the airfoil stems from this initial comparison of
the overall flow fields; aiming to identify the general shape of the Cp distribution and its
resemblance to the reference distribution, taken once again from the Source simulation.
All the comparative plots have been gathered in figure 6.12. For this case as for any
analysis on the pressure solutions, it it known that for an independent target domain, the
pressure solution will differ by an arbitrary constant, therefore the solutions are compared
taking as a reference the minimum value of each field. The result from such a comparison
shows a Cp distribution that resembles in shape and, more or less amplitude, to that of
the reference simulation. The stagnation Cp for the reference case, which is set with the
boundary conditions from figure 3.2, is close to unity. The stagnation Cp in the target
simulations however does not, therefore the pressure values are displaced by an offset and
matched at a specific location in the chord-wise direction so a comparison can be done.

The discrepancy between the target case and the source case Cp distribution is probably
better reflected by computing the difference of the coefficient and visualizing it as a surface
distribution as well. This information is presented in figure 6.13 which reflects how the
pressure coefficient prediction for all of the target case keeps a close resemblance, which
is, an absolute difference on the same order of magnitude. The results as one observes
the error near the trailing or leading edge regions are not as good, since a pronounced
difference is present in those areas; this is in fact recognizable from the plots of figure
6.12 alone. The Cp distributions near the trailing edge for any of the target simulation is
shifted and with an apparent step change in the edge of the airfoil, at x/c = 1.

62 Benchmarking Simulation Cases

−1.0 −0.5 0.0 0.5 1.0

x/c

−1.0

−0.5

0.0

0.5

1.0

y
/
c

−1.317

−1.007

−0.697

−0.387

−0.077

0.232

0.542

0.852

1.162

1.472

C
p

Figure 6.7: Comparison of Cp field for δ/c = 0.1 with respect to the reference case.

The analysis on the force coefficient history has similarity with the pressure coefficient in
the sense that there is both a general resemblance and a steady value is reached after a
certain flow time. Both Cl and Cd values are presented in figure 6.14, and are the result
of a simulation campaign where the target simulation cases have a Dirichlet boundary
condition for p as well as for u. The results included in figure 6.15 are obtained instead
from a pure Neumann problem for the pressure, with fixed gradients specified for the wall
and outer boundaries (see figure 3.2). As can be seen this exercise differs from that of
section 6.1 because the flow field domain is delimited by two boundary regions instead of
only one. As long as at least one of the regions is set with Neumann boundary conditions,
in this case the wall with the zero gradient condition, a solution can be obtained.

The solutions for the first scenario, where the pressure is fixed at the outer boundary, show
an overestimated Cd for all of the target cases. In fact the predicted value of Cd = 0.065 for
the reference case, labeled as ‘base’ is considerably higher than the value reported in [1],
where a Cd = 0.015 is computed; this means that the best prediction in this case is about
4 times the value taken from the literature. The values for Cl show a similar degree of
variation among the target cases, but slightly greater than for the source simulation. The
target simulations for both simulation sets show a variable lift coefficient; the simulations
with larger domains present values closer to Cl = 1.15; which has a relative difference of
about 4% in comparison to the value reported in [1]. The prediction of the lift coefficient
seems to be then considerably better than the drag prediction, particularly for the target
simulation cases. The base Cl in the series from figure 6.14 and figure 6.15 is not that
close to the value reported in the literature, since both values differ by a relative error of

6.3 Discussion 63

−1.0 −0.5 0.0 0.5 1.0

x/c

−1.0

−0.5

0.0

0.5

1.0

y
/
c

-0.694-0.540

−1.312

−1.003

−0.694

−0.386

−0.077

0.231

0.540

0.849

1.157

1.466

C
p

Figure 6.8: Comparison of Cp field for δ/c = 0.2 with respect to the reference case.

about 16%.

6.3 Discussion

So far the consistency of the solver depends not only on the interpolation of the velocity
boundary condition from the Lagrangian field, represented in this work by the source
case, but it is also dependent on the interpolation or in a general sense, the computation
of the boundary condition for the pressure. The satisfaction of the momentum equation
when a Dirichlet velocity BC and a Neumann pressure BC are considered seems to be a
necessary condition for the problem to be consistent for the pressure equation as well. By
judging the convergence rates in the exercise of the point vortex flow, it is not difficult
to observe that the convergence rates from cases with interpolated boundary conditions
resulted in degraded convergence in relation to the case with computed BC’s from an exact
expression. Furthermore, the rate of convergence of the best case, corresponding precisely
to the simulation with exact boundary conditions, barely resulted in a convergence rate
of 1.3 approximately, even though the discretisation schemes in the case are second order
accurate.

For both the cases of the point vortex and airfoil benchmarking cases, linear interpo-
lation was specified, this means that a central differencing spatial discretisation is used
and should yield second order accurate solutions. The time stepping discretisation was
initially treated with an Euler implicit order, which brings the solution convergence to

64 Benchmarking Simulation Cases

−1.0 −0.5 0.0 0.5 1.0

x/c

−1.0

−0.5

0.0

0.5

1.0

y
/
c

-0.693
-0.539

-0.385

−1.464

−1.156

−0.848

−0.539

−0.231

0.077

0.385

0.693

1.002

1.310

C
p

Figure 6.9: Comparison of Cp field for δ/c = 0.3 with respect to the reference case.

first order and Subsequently a second order time stepping, the Crank-Nicholson scheme,
was considered for the point vortex flow case. According to Issa [16], at least 3 pressure
correction stages must be done so that the discretisation error introduced by the PISO
algorithm reaches second order accuracy. Second order convergence is not reached since
it was not possible to guarantee that the boundary conditions fulfilled the momentum
equation evaluated on the boundaries; it is not certain whether the corrected pressure
equation is yielding a consistent system for every PISO corrector step after the artificial
flux correction.

It has been known from other authors that the interpolation from the Eulerian solution
to the Lagrangian field, in the correction step of the hybrid solution algorithm, is done
avoiding the wall and the boundary of the Eulerian domain. The results on both the
consistency study and the simulations with DU00-W-212 airfoil show that the values in
the regions adjacent to the Eulerian domain boundary, should be excluded from the set
of interpolation values used in the hybrid Framework. This measure could counteract
the introduction of error when the flow field values near the boundaries do not fulfil the
boundary condition as happens to be the case in figure 6.3.

The error observed near the Eulerian domain boundary is however drastically reduced
when n → ∞; after paying closer attention to this situation it could be stated that the
extent to which the Eulerian region is segregated for the interpolation of the correction
step depends on the level of refinement of the Eulerian mesh and also how the velocity
field is reconstructed between adjacent cell centres and the boundary itself.

The analysis on the extent of the Eulerian domain normal to the airfoil wall, shows that

6.3 Discussion 65

−1.0 −0.5 0.0 0.5 1.0

x/c

−1.0

−0.5

0.0

0.5

1.0

y
/
c

-0.693
-0.539

-0.385

-0.231

−1.463

−1.155

−0.847

−0.539

−0.231

0.077

0.385

0.693

1.001

1.309

C
p

Figure 6.10: Comparison of Cp field for δ/c = 0.4 with respect to the reference case.

the difference between the Cp distributions is notable for most of the airfoil surface, un-
fortunately, the pressure field in the trailing edge and the stagnation point is clearly
sensitive to the boundary condition setting when this is interpolated between time steps.
The shape of the Cp distribution is similar for all of the domain sizes in the airfoil sim-
ulation campaign, but the difference that results in the force coefficients, particularly
drag, cannot be considered as reliable. Supposing that the boundary condition setting is
tuned to match the pressure distribution in the Eulerian domain to that of an equivalent
far-field simulation, the analysis could be extended considering that the size limit in the
Eulerian domain would be conditioned to the mesh refinement level and, also considering
how much of the solution field can then be selected for building the interpolation functions
in the correction step. This latter idea is rather speculative and would be conditioned to
further improvement of the accuracy in the prediction of aerodynamic loads via a reduced
domain simulation.

6.3.1 The research questions in perspective

The prediction of flow properties with FVM offers the advantage of accounting for mass
conservation when compared with other solution methods. In order to define the impli-
cations of integrating a FV solver to a hybrid solution framework, it is necessary to state
that the solution methodologies for the u − p system already rely on the correction of
mass flux to ensure continuity. As part of the hybrid solver an additional correction of
the mass flux is required in order to ensure continuity at the Eulerian boundary after the

66 Benchmarking Simulation Cases

−1.0 −0.5 0.0 0.5 1.0

x/c

−1.0

−0.5

0.0

0.5

1.0

y
/
c

-0.696-0.541
-0.387

-0.232

−1.470

−1.160

−0.851

−0.541

−0.232

0.077

0.387

0.696

1.006

1.315

C
p

Figure 6.11: Comparison of Cp field for δ/c = 0.5 with respect to the reference case.

u boundary condition is computed from the Lagrangian domain. This step takes place
directly and once per time step; in consequence a discrepancy between the Lagrangian
and Eulerian velocity fields at the interface ∂ΩE will remain at the end of the solution,
resulting in a non-conservative velocity field. The conservative nature of the FVM is
then compromised when the coupling of the velocity solutions takes place according to
the ‘direct’ approach for determining the velocity boundary condition at the sub-domain
interface ∂ΩE .

The overall balance on the performance of the hybrid solver is completely centred on the
performance of the stand-alone Eulerian solver implemented in OpenFOAM since no full
coupling with the vortex method software is done. The solution of the first benchmark-
ing exercise, concerning a flow field induced by a stationary point vortex, shows that
the prediction of velocities can be performed in an isolated domain matching the exact
velocity field; the prediction of the pressure field is less convincing as not only the mass
conservation for the velocity boundary condition is to be preserved but also the momen-
tum conservation for both the pressure and velocity boundary conditions simultaneously.
The benchmarking case of the DU00-W-212 airfoil resulted in similar discrepancies for
the solution of the pressure field. The prediction of the force coefficients also left several
doubts that must be addressed for ensuring full functionality of the stand-alone solver; the
correct solution of the flow in the boundary layer must be carefully guaranteed in order
to filter out the effect of turbulence from the effect that the mass flux correction alone
has on the reported differences between the force coefficients, particularly the coefficient
for the drag force.

6.3 Discussion 67

The final version of the openFOAM stand-alone solver has been used in the benchmarking
of two steady-state cases. Although the customized version has been developed on the
basis of a transient flow solver, the simulation of heavily transient flow structures resulted
in discontinuities of the flow field in the region near to the interface. This problem is also
triggered by the initial notion of implementing the custom solver with a boundary condi-
tion class in the OpenFOAM syntax that enables time variation. All these sophistications
were dropped in order to achieve the working solver which has been finally tested, with
stationary solution in time and consequentially, stationary boundary conditions.

68 Benchmarking Simulation Cases

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

C
p

δ/c = 0.1

Source
Target

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

C
p

δ/c = 0.2

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

C
p

δ/c = 0.3

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

C
p

δ/c = 0.4

0.0 0.2 0.4 0.6 0.8 1.0

x/c

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

C
p

δ/c = 0.5

Figure 6.12: Surface Cp distribution variation with δ/c for source and target case results.

6.3 Discussion 69

10−3

10−2

10−1

100

101
lo

g
C

p
−

E
rr

or
Upper surface

0.0 0.2 0.4 0.6 0.8 1.0
x/c

10−5

10−4

10−3

10−2

10−1

100

lo
g
C

p
−

E
rr

or

Lower surface

δ/c = 0.1

δ/c = 0.2

δ/c = 0.3

δ/c = 0.4

δ/c = 0.5

Figure 6.13: Plots of the absolute error in the Cp distribution across the airfoil surface.

0.060
0.065
0.070
0.075
0.080
0.085
0.090
0.095
0.100
0.105

C
d

base
δ/c = 0.1

δ/c = 0.2

δ/c = 0.3

δ/c = 0.4

δ/c = 0.5

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
t [s]

−1.0

−0.5

0.0

0.5

1.0

1.5

C
l

Figure 6.14: Comparative time history of force coefficients Dirichlet BC for pressure.

70 Benchmarking Simulation Cases

0.060
0.065
0.070
0.075
0.080
0.085
0.090
0.095
0.100
0.105

C
d

base
δ/c = 0.1

δ/c = 0.2

δ/c = 0.3

δ/c = 0.4

δ/c = 0.5

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
t [s]

0.6

0.7

0.8

0.9

1.0

1.1

1.2

C
l

Figure 6.15: Comparative time history of force coefficients.

Conclusions

A PISO solver has been implemented taking as a baseline the pisoFoam solver, with a
customized functionality for specifying non-conservative pure Dirichlet velocity boundary
conditions. Using this version as a stand-alone module it has been possible to explore
the consistency of the solver, analysing the accuracy of the velocity and pressure fields.
The solution for the velocity components was proven to have an accuracy above 1, with
some obstacles such as the possible inconsistency of the pressure equation, keeping the
system to reach higher solution accuracy due to an unfulfilled set of boundary conditions
for the central case, with pure Dirichlet velocity boundary conditions and pure Neumann
pressure boundary conditions.

With the solution of a stationary vortex-induced flow field, for which an exact solution
is available, it has been possible to judge the effect of the boundary conditions on the
solution procedure. The extraction of boundary conditions for the Dirichlet velocity
problem from an exact flow field computed at random locations was useful to observe
that the consistency of the velocity solution depends on the interpolation method used
to determine the boundary conditions, with base on the available data at the mentioned
random locations. In the present analysis, both linear and cubic interpolation showed
acceptable results while nearest-neighbour interpolation resulted in less accurate solutions.
The relevance of the exercise lies in the fact that the operation of a hybrid flow solver has
the same principle in which a Lagrangian flow field provides the boundary condition for
the Eulerian flow field solution. The determination of the pressure boundary condition
for the same case was explored by testing the solution quality of a homogeneous pressure
Poisson problem and contrasting it with the solution for an heterogeneous counterpart
which corresponds in fact to the expected solution.

From the behaviour of the pressure field in the point vortex exercise, it is inferred that
the flux correction, central to the custom solver for ensuring mass-conservativeness in the
velocity Dirichlet BC, is not necessarily being conservative in terms of the momentum
equation, which may result in an inconsistent linear system when the equation for the
corrected pressure at each PISO stage is solved.

Additional study of the flow field around an airfoil, shows that when the boundary con-
ditions for pressure and velocity are available exactly at the locations where the Eulerian

71

72 Conclusions

boundary is defined the solution preserves general features in the flow field and the gen-
eral shape of the pressure distribution. On the other hand, the comparison with reference
simulations, both implemented in this project and the literature, show that the force coef-
ficients are particularly sensitive. The drag coefficient prediction was found to be difficult
since the difference with both reference values is quite broad. The development of the flow
field around the trailing edge of the airfoil is an aspect to take into consideration since it
is a likely cause of error. The prediction of an inconsistent pressure field in the trailing
edge region may introduce artificial oscillations that affect the lift and drag predictions.

Recommendations

In addition to the modifications made to the u boundary condition, it is necessary to
implement an analogous modification to the code that takes care of the p boundary
condition using as a reference the conservation of momentum in the same way as mass
conservation is considered when the velocity correction at the boundary is ensured.

Implementing a fully transient solver has presented several challenges, the first of them is
the need for boundary condition of Neumann type that enables updating the p boundary
condition on a time-wise basis. Additionally the iteration procedure for each time step
must be carried such that the flow field at the end of each time step solution is converged
to the point that it matches the time dependent boundary condition. Initial tests on
this particular issue resulted in unbounded velocities due to an artificial increase in the
vortex strength for the smallest vortices that reached the boundary in simulations with
full Dirichlet u boundary conditions.

The possibility of changing the general boundary condition in openFOAM such that
the prescribed values are determined at the boundary face locations would be a major
improvement over the actual state of the project. The boundary condition class used for
specifying the velocity values uses a linear interpolation for mapping the values in space,
from an arbitrary set of locations specified via an auxiliary entry with point coordinates,
to the boundary face centre locations. Considering that the extractions of values from a
generic Lagrangian field is also done with interpolation, one could certainly assume that
reducing the number of times the values undergo interpolation would at least reduce the
computational effort if not also the accuracy degradation.

73

74 Recommendations

References

[1] C. Baptista, D. Baldacchino, C. Ferreira, A. van Zuijlen, G. van Bussel, and
N. Sørensen. Comparison of Spalart-Allmaras and k − ω SST for high Reynolds
steady airfoil simulations. 2016. 4th Symposium on OpenFOAM in Wind Energy,
May 2-4, Delft, the Netherlands.

[2] T. M. Burton and J. K. Eaton. Analysis of a fractional-step method on overset grids.
Journal of Computational Physics, 177(2):336–364, 2002.

[3] A. J. Chorin. Numerical study of slightly viscous flow. Journal of Fluid Mechanics,
57:785–796, 3 1973.

[4] I. P. Christiansen. Numerical simulation of hydrodynamics by the method of point
vortices. Journal of Computational Physics, 13(3):363 – 379, 1973.

[5] R. Cocle, G. Winckelmans, and G. Daeninck. Combining the vortex-in-cell and par-
allel fast multipole methods for efficient domain decomposition simulations. Journal
of Computational Physics, 227(21):9091 – 9120, 2008.

[6] G. H. Cottet. Particle-grid domain decomposition methods for the navier-stokes
equations in exterior domains. Lectures in Applied Mathematics, 28:103–117, 1991.

[7] G. H. Cottet and P. D. Koumoustakos. Vortex Methods: Theory and Practice. Cam-
bridge University Press, 2000.

[8] G. Daeninck. Developments in Hybrid Approaches. PhD thesis, Universit catholique
de Louvain, 2006.

[9] J. H. Ferziger and M. Perić. Computational Methods for Fluid Dynamics. Springer,
2002.

[10] B. Gao, S. S. Xu, and Z. N. Wu. A note on hybrid eulerian/lagrangian computation of
compressible inviscid and viscous flows. Journal of Computational Physics, 226(1):1–
16, 2007.

75

76 References

[11] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. Journal of
computational physics, 73(2):325–348, 1987.

[12] C. J. Greenshields. OpenFOAM, The Open Source CFD Toolbox - Programmer’s
Guide. OpenFOAM foundation Ltd., 2015.

[13] C. J. Greenshields. OpenFOAM, The Open Source CFD Toolbox - User Guide. Open-
FOAM foundation Ltd., 2015.

[14] J. L. Guermond, S. Huberson, and W. Z. Shen. Simulation of 2d external viscous flows
by means of a domain decomposition method. Journal of Computational Physics,
108(2):343 – 352, 1993.

[15] Q. Hu, N. A. Gumerov, and R. Duraiswami. GPU accelerated fast multipole methods
for vortex particle simulation. Computers & Fluids, 88:857 – 865, 2013.

[16] R. I. Issa. Solution of the implicitly discretised fluid flow equations by operator-
splitting. Journal of Computational Physics, 62(1):40 – 65, 1986.

[17] H. Jasak. Error Analysis and Estimation for the Finite Volume Method with Ap-
plications to Fluid Flows. PhD thesis, Imperial College of Science, Technology and
Medicine., 1996.

[18] A. Leonard. Vortex methods for flow simulation. Journal of Computational Physics,
37(3):289 – 335, 1980.

[19] L. Manickathan. Hybrid lagrangian-eulerian vortex particle method. http:

//www.lr.tudelft.nl/fileadmin/Faculteit/LR/Organisatie/Afdelingen_

en_Leerstoelen/Afdeling_AEWE/Wind_Energy/Education/Masters_Projects/

Finished_Master_projects/doc/LentoManickathan_r.pdf, December 2017.
Delft University of Technology.

[20] M. L. Ould-Salihi, G. H. Cottet, and M. El Hamraoui. Blending finite-difference and
vortex methods for incompressible flow computations. SIAM Journal on Scientific
Computing, 22(5):1655–1674, 2001.

[21] A. Palha, L. Manickathan, C. S. Ferreira, and G. van Bussel. A hybrid
eulerian-lagrangian flow solver. https://arxiv.org/abs/1505.03368v2, June 2015.
arXiv:1505.03368v2.

[22] G. Papadakis and S.G. Voutsinas. In view of accelerating CFD simulations through
coupling with vortex particle approximations. Journal of Physics: Conference Series,
524(1), 2014.

[23] T. K. Sheel and S. Obi. High-performance computing techniques for vortex method
calculations. Theoretical and Computational Fluid Dynamics, 24(1-4):175–179, 2010.

[24] T. K. Sheel, K. Yasuoka, and S. Obi. Fast vortex method calculation using a special-
purpose computer. Computers & fluids, 36(8):1319–1326, 2007.

[25] M. J. Stock, A. Gharakhani, and C. P. Stone. Modeling rotor wakes with a hybrid
overflow-vortex method on a GPU cluster. 2010. 28th AIAA Applied Aerodynamics
Conference.

http://www.lr.tudelft.nl/fileadmin/Faculteit/LR/Organisatie/Afdelingen_en_Leerstoelen/Afdeling_AEWE/Wind_Energy/Education/Masters_Projects/Finished_Master_projects/doc/LentoManickathan_r.pdf
http://www.lr.tudelft.nl/fileadmin/Faculteit/LR/Organisatie/Afdelingen_en_Leerstoelen/Afdeling_AEWE/Wind_Energy/Education/Masters_Projects/Finished_Master_projects/doc/LentoManickathan_r.pdf
http://www.lr.tudelft.nl/fileadmin/Faculteit/LR/Organisatie/Afdelingen_en_Leerstoelen/Afdeling_AEWE/Wind_Energy/Education/Masters_Projects/Finished_Master_projects/doc/LentoManickathan_r.pdf
http://www.lr.tudelft.nl/fileadmin/Faculteit/LR/Organisatie/Afdelingen_en_Leerstoelen/Afdeling_AEWE/Wind_Energy/Education/Masters_Projects/Finished_Master_projects/doc/LentoManickathan_r.pdf
https://arxiv.org/abs/1505.03368v2

References 77

[26] H. K. Versteeg and W. Malalasekera. An Introduction to Computational Fluid Dy-
namics. Longman Scientific & Technical, 1995.

[27] H. G. Weller, G. Tabor, H. Jasak, and C. Fureby. A tensorial approach to computa-
tional continuum mechanics using object-oriented techniques. Computers in physics,
12(6):620–631, 1998.

[28] R. Yokota and S. Obi. Vortex methods for the simulation of turbulent flows: Review.
Journal of Fluid Science and Technology, 6(1):14–29, 2011.

[29] F. Zahle. Wind Turbine Aerodynamics Using an Incompressible Overset Grid Method.
PhD thesis, Imperial College of Science, Technology and Medicine., 2006.

[30] Y. Zang and R.L. Street. A composite multigrid method for calculating unsteady
incompressible flows in geometrically complex domains. International Journal for
Numerical Methods in Fluids, 20(5):341–361, 1995.

78 References

	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Research question, aims and objectives

	2 Literature Review
	2.1 Preamble
	2.2 Survey
	2.2.1 Vortex methods in fluid mechanics
	2.2.2 Coupling algorithm between Lagrangian and Eulerian components
	2.2.3 Finite Volume Methods in Hybrid Solvers

	2.3 Analysis of the current literature state
	2.4 Concluding remarks on the literature survey

	3 The Finite Volume Method
	3.1 Governing equations
	3.2 The FVM inside the Hybrid Framework
	3.3 Boundary Conditions
	3.4 Finite Volume Discretisation
	3.4.1 Approximation of surface integrals
	3.4.2 Approximation of volume integrals
	3.4.3 Approximation of derivatives
	3.4.4 Scheme specification in the Eulerian Solver

	3.5 Pressure-Velocity Coupling
	3.5.1 Derivation of the Pressure equation
	3.5.2 Solution algorithm and advancing the solution in time

	3.6 Solution of linear systems for velocity and pressure

	4 Vortex Particle Method
	4.1 Vorticity-Velocity formulation of the Navier-Stokes equations
	4.2 Biot-Savart Law
	4.3 Discrete form of vorticity and velocity fields
	4.4 Boundary conditions
	4.5 Initialization and Remeshing
	4.6 Time Evolution Algorithm

	5 Coupling Strategy
	5.1 Flow adjustment in OpenFOAM
	5.2 Enforcement of continuity at interface
	5.3 Implementation of a Stand-Alone Eulerian Solver in OpenFOAM
	5.3.1 Default method for flux correction in the baseline solver.
	5.3.2 Flux correction in the custom solver.

	6 Benchmarking Simulation Cases
	6.1 Point vortex flow with Dirichlet velocity BC
	6.2 Flow around the DU 00-W-212 airfoil
	6.2.1 Simulation approach and parameters
	6.2.2 Solver set up
	6.2.3 Influence of boundary-wall proximity

	6.3 Discussion
	6.3.1 The research questions in perspective

	Conclusions
	Recommendations
	References

