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ABSTRACT

The use of second order closure turbulence model in predicting

turbulent flows is known to be more successful than the classical mixing

length model. However, it is found that if the turbulence constants are

not altered or modified, the second order closure turbulence model is

unable to predict satisfactorily for some flows such as round jet and

wake flows. In order to improve the predictability of the second order

closure model, the present work proposes to consider two turbulent

scales in the modelling of turbulent flows. One of these scales is based

on using the turbulent kinetic energy, k, and its dissipation rate, E,

to characterize the large energy containing eddies. The other scale is

based on the dissipation rate, E, and the kinematic viscosity, v, to

characterize the small energy dissipating eddies. The second scale is

based on the weIl known Kolmogorov hypothesis that dissipation of

turbulent kinetic energy occurs primarily at small eddies. The

turbulence model derived based on the concept of two different scales is

called the two-scale turbulence model. The existing turbulence model

which is model led based on the one-scale concept of k and t is called

the one-scale turbulence model.

The two-scale turbulence model is then applied to predict

turbulent free shear flows and recirculating flows. The calculations

were done in three parts. The first test case was nonbuoyant free shear

iii



flows which included round and plane jets in stagnant and moving

streams, plane wakes and mixing layer. In the second part, the model was

tested for plane and round buoyant jets having different Froude numbers.

Finally, some results were obtained for recirculating flows, namely,

backward facing step and flow past an obstruction.

It is shown in the present study that the tlwo-scale turbulence

model performs significantly better than the one-scale turbulence model

in all the cases concerned. The prediction capability of the ~wo-scale

turbulence model is ghown since one does not nead te alter or medify th~

turbulence constants as in the case of the one-scale turbulence model.
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CHAPTER I

INTRODUCTION

1.1 ~lotivation of Research

Many fluid motions that occur in nature are turbulent, e.g. flow over

aeroplanes, ships and cars, flow in jet engines and turbines, flow

through pipes and ducts, weather patterns and ocean waves. Turbulent

flow is a complex phenomena that plays an important role in many

engineering designs. Therefore, it is important for engineers to study

and understand this complex flow and be able to predict it. Equations

for describing the fluid motions, known as the Navier-Stokes equations,

have been postulated and derived for over a century. However, it is

difficult to solve these equations for both laminar and turbulent flows

mainly due to the nonlinearity of the equations. For turbulent flows,

the problem is even more formidable because the turbulent fluid mot ion

is irregular, random, time dependent and three dimensional. However, in

most engineering applications, the detailed analysis of instantaneous

turbulent mot ion is not necessary and the gross parameters~like mean

velocity, average pressure, mean temperature, wall shear stress and wall

heat flux are often sufficient for engineering design.

In 1895, O. Reynolds [1] proposed an averaging technique by assuming

*that the variabIe ~ at any instant consists of the mean quantity ~ and

a fluctuating part ~'. Hence,



*~ = ~ + ~'

The time averaging process when applied to the Navier-Stokes equations.

creates sIx additional unknowns. These unknowns, alehough called

Reynolds stress, are created from the convective or non-linear terms of

the Navier-Stokes equations. In ordar to solve the turbulent flow

pr.oblem from the time averaged Navier-Stokes equations more equations or­

empirical relations are needed for Reynolds st:ress. Methads for

deriving equations which specify arelation between t:heReynolds stress

and the mean flow quant:itiesare called turbulence models. In other

words, a turbulence model is needed to recover the information of

turbulent motion that is lost in the averaging process. There are many

turbulence models proposed to date. However, these models can predict

accurately time averaged turbulent flows only for a certain class of

problem. A more general model is needed if one expects a turbulence

model to have a better prediction capability and a practical value for

engineering applications.

!he purpose of this research work is to introduce a new physical

concept into the modelling of turbulent flows and to improve

predictability of the model. The new model is developed for the second

order turbulence correlation based on the concept of two turbulent

scales, one for large or energy containing eddies and the other for

small or energy dissipating eddies. The two-scale turbulence model is

first tested and verified for a class of turbulent flows called 'Free

2



3

Turbulent Shear Flows'. In free turbulent shear flows, shear stress,

heat flux and diffusion are significant in the directions perpendicular

to the direction of flow and there is no solid wall in the flow domain.

Some examples, shown in figure 1.1, are mixing layer, coaxial and plane

jets, plumes, buoyant jets and wakes. The two-scale turbulence model is

then used to predict some turbulent separation phenomena such as flow

separation behind a step as shown in figure 1.2.

There are several reasons for selecting free turbulent shear flows to

test the turbulence model. First, free shear flows, as shown in figure

1.1, have a weak pressure gradient so that the flow characteristic is

largely controlled by turbulent shear motion which affects diffusion,

production and dissipation of turbulent mot ion and not by pressure

force. Therefore, the prediction of turbulent free shear flow is more

sensitive to the turbulence model than flows with large pressure

gradient. Secondly, abundant expèrimental data are available and

comparison between predicted and experimental results can be made in

detail. Thirdly, the complication of near wall turbulence is not

present in free shear flows 50 that the accuracy of the two-scale

turbulence model can be carefully examined without the interference of

wall turbulence. Fourthly, turbulent shear flows have a number of

practical applications and play an important role in various engineering

design. Jet engines, chimney plumes, jet streams in atmosphere, wakes

behind aeroplanes and ships and cooling water disposal in rivers are

some of the examples. Though some of these flows have walls in their
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vicinity, the study of free shear flows is, nevertheless, a first step

in unders~anding problems and phenomena involved.

1.2 Historical Oevelopment of Turbulence Hodels

In this section, a brief historical review of turbulence modelling is

made leading to a discussion of the problems in some of the modeis. In

order to resolve the difficulties in the existing models, a new model is

presented.

As mentioned earlier, the need of turbulence modelling arose when

Reynolds [1] proposed the averaging process to obtain governing

equations for turbulent flows. To faciltate the discussion, the.Navier-

Stokes equations and the energy equation for incompressible flow are

written here as

= 0 (1.1)

*alu.v_ _.;;;1._
aX.ax.
J J

(1. 2)

pc
*OT

Ot

** au.__ t .. 1.
l.J­ax.

J

(1.3)

The instantaneous quantities for velocity, pressure, stress and

* * * *temperature U. , P , t .. , T are denoted byl. 1.J

* * * , *U. = U. + u. i P = P + Pi t .. = tij + t .. and T = T + e1. l. l. 1.J 1.J
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where the quantities on the right are the mean, U., P, t .. , T , and
~ ~J

fluctuation, u., p, t .. I, SJ of velocity, pressure, stress and~ ~J

temperature. These are substituted in the Navier-Stokes equations and

averaged by a short time average or ensemble average to give

*au.~
ax .~

= 0 (1. 4)

DU. ap a-u. aü":ü.~ + i. _!.....J.= - -- v -Dt pax. ax.ax. ax.~ J J J

DT au. alT aü.ä t .. I au.pc__ t .. ~ + K ~ + ...1:..l. __!= ~J-- - --Dt 3x. 3x.ax. ax. pc ax.J J J 1. J

(l.5)

(1.6)

These set of equations introduce additional unknowns ü:iï., t .. ' cau./ax.)
1. J ~J 1. J

and u.e. Models proposed so far to evaluate these unknowns have them
1.

coup led to the mean quantities through either algebraic or differential

equations. Some are based on empirical relation and others on

postulations.

In 1877, Boussinesq [2] proposed the concept of eddy viscosity which

assumes that, in analogy to the viscous stresses in laminar flows,

turbulent stresses are proportional to the mean velocity gradients. For

genera 1 flow situations, it is expressed as

-u.u.
~ J (1. 7)

2
-3kc5 ..

1.J
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Vt is the turbulent or eddy viscosity which, unlike molecular viscosity,

is not a fluid property but depends on the state of turbulence. k

represents the kinetic energy of the fluctuating motion or u.u./2. The
1 1

above expression, however, does not close the problem of turbulent flows

as vt and k are still unknowns. In 1925, Prandtl [3] proposed a

turbulence model called the 'mixing length' model. This model provides a

relation between the eddy viscosity, a length scale L characterizing the

size of turbulent eddies and a suitable velocity scale, V. Thus

v • V*Lt

Both the turbulent velocity scale, V, and the mixing length scale, L,

could be reasonably approximated for many flows. However, for such

flows, empirical constants were needed to prescribe a length scale. In

most of these flows, the constants were obtained by fitting the

calculated results to experimental data of a particular flow under

study. These mixing length model constants were found [4] to vary often

from one flow to another. Consequently, the mixing length turbulence

model is successful only in predicting turbulent f10ws in similar

geometry and flow conditions but lacks the universality and

predictability wherithe turbulent flow and geometry conditions are

conditions and con~iguration changed.

different. Other models [5,6], similar to the mixing length model, were

shown to have success in a given flow but lacked generality when flow
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To overcome the lack of predictability and generality, several more

complex models [7,8] were developed during the 1940's and 1950's which

employed differential transport equations for the turbulent quantities.

However, these equations could not be solved directly as there were

mathematical difficulties involved and numerical techniques and fast

computers were not available. Alternatively, the governing partial

differential equations for turbulent flows were often integrated and

reduced to ordinary differential equations. These integral methods

assumed some shape of mean profile and used some empirical relations for

global behavior of turbulence. They lacked flexibility since the assumed

profile must be approximately the same in the flow field and could not

be applied for different flows.

Advances in computational facilities and numerical methods during the

late 1960's and 1970's led to the use of more advanced models which

solve complete partial differential equations for both mean flow and

turbulent quantities. Dne of these models which solves the differential

equation for k, the kinetic energy, is called the one-equation model as

opposed to the zero-equation model where no differential equations are

solved for turbulent quantities. With the kinetic energy known, the

eddy viscosity can be written as

(1.8)

where kt represents a velocity scale, L the length scale and C
p an

empirical constant. The equation for k is
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- u.u.
~ J

au. 1·5

~ - c ~ax. D L
J

(1. 9)

which is derived from the governing equation of fluctuating turbulent

motion. Details of the derivation are given later. Here, CD and o~ ~re

empirical constants. Tbis one-equation model is not complete unless the

1ength scale L is specified. In most cases, L is a variab1e and is

obtained from simp1e empirical relations similar to those for the mixing

1ayer.

Since one-equation models [9,10] account for the convective and

diffusive transport of the turbulent kinetic energy, they al;'esuperior

to the mixing length models in flows where the transport mechanism is

important. Some examp1es are non-equi1ibri~ boundary 1ayers with

rapidly changing free-stream conditions, boundary 1ayers with free-

stream turbulence and recirculating flows. However, in many flows it is

difficult to specify the length scale empirica1ly. Tbe logical extension

of the turbulence mode1ling is that the length scale be obtained from a

differential transport equation.

Mode1s which solve differential equations for both turbulent velocity

scale or turbulent kinetic energy and length scale are known as two-

equation models. Several different models [4,ll.]have been proposed

which, in addition to the equation for k, sQ1ve an equation of the form

k~n instead of L. The most popu1ar one is the one suggested by Jones

and Launder [11] which has m=1.5 and n=-l. Tbe term k1.5L-1 which
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appears in the las~ ~erm of equa~ion (1.9), has a physical significance

as i~ has the same dimension as e, ~he dissipa~ion of turbulent energy.

The dissipation function of turbulent kinetic energy, e or

v(au./ax.)(au./ax.) can be derived and modelled as
l. J l. J

(1. 10)

Details of the derivation of equation (1.10) are given la~er. Here, Ce'

Cel and Ce2 are empirical cons~ants. The k-e model with eddy viscosity

from equation (1.7) now requires six emipirical constants C~, Ok' CD'

Ce' Cel and Cez'

This k-e model has been used in the calculation of boundary layer

type of flows as well as recirculating flows. The model now can predict

large number of different flow configurations and conditions and is

certainly more general than the mixing length turbulence model. Though

this model has a wider range of application in the past fifteen years,

it still lacks universality as the coefficients need to be adjusted from

one flow to another. As an example, the constant Ce2 in the e-equation

has a value between 1.90 and 1.92. Using this value of Cez' a reasonably

good prediction of plane jet flow can be made. However, if the value of

this constant is slightly outside this range, the solution becomes

sensitive to the constant and does not converge. Furthermore, the value

of Ce2 between 1.90 and 1.92 which gives good prediction of plane jet

flow cannot be used for a round jet since it produces a 30% error in the
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spread of ~urbulent round jet. For a round jet, the value of Ct2 is

found not to be a constarrt and is changed [4] to 1.92~':(1-0.035G)where

o • 1

(1. 11)

Another problem is that, if these modified k-€ model equations (1.7),

(1.8), (1.9), (1.10) and (1.11) were used for the calcula'tion of plane

wake flow, there is a 30% under-prediction in the grow'th or spread of

'thewake. This difficu1ty is further 'taken care of by making the

constant C in equation (1.7) a function of Pit [4] where P is the
'IJ.

production of turbulent kinetic energy ~caU./ax.) and & is the
~:l ~ J

dissipation of this energy, v(au.fax.)(au.fax.).~ J ~ J

It should be remarked here that these difficulties are mainly dealing

with the generality or universality of the model. In general, the k-&

model has achieved a level of predictability which mixing length or one-

equation turbulence models could not. In order to advance the

1.3 Scope of the Present Work

predictability of turbulent flow mot ion further improvement in

turbulence modelling must be made. This motivates the present

investigation.

In this invest igation , a fundamental change in turbulence modelling

is made, that is, to introduce the two scale concept, one based on Ck,t)

scale and the other (t,v) scale. In the present investigation, k and t
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are used to scale the turbulent phenomenon dominated by large scale

motion such as diffusion term while the physical process associated with

the dissipation of turbulent kinetic energy is modelled using tand v as

the basic parameters, which is known as Kolmogorov scale. The Kolmogorov

scale which is known since 1925 is more closely related to small eddy

motion and has not been incorporated in the turbulence modelling 50 faro

However, in the present investigation, this scale is used. The new

turbulence model based on both (k,t) and Ct,v) scale is called the two­

scale turbulence model.

In Chapter 11, a description of the physics of turbulence and the

theory behind the use of the two-scale model is given. Then , the

detailed derivation of the two-scale turbulence model is shown. Chapter

111 gives the governing equations for buoyant flows. Chapter IV contains

a review and collection of experimental data for free shear flows. In

Chapters V and VI the prediction of several free shear flows is shown.

Chapter VII shows the calculations for separated flows. Finally, chapter

VIn contains several important observations about the model and

possible areas of further work regarding multiple scale modelling.
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CHAPTER 11

TWO-SCALE SECOND ORDER TURBULENCE
MODEL FOR INCOMPRESSIBLE FLOWS

!his chapter gives a detailed derivation of the two-scale k-g model

for incompressible turbulent flows. The complete set of governing

equations are presented which are then modelled based on a set of

turbulent postu1ations.

2.1 Governing equations

The governing equations for incompressible turbulent flow are the

averaged Navier-Stokes equations, namely, the continuity equation, the

momentum equation and the energy equation. They are a1so known as the

Reynolds equations since it was Reynolds [1] who first used the

averaging technique. For a short time or ensemble average, the average

*value of an instantaneous quantity ~ at a time t can be defined as

au.
1.

ax.
1.

= 0 (2. 1)

; = 1 N *I ~(t,n)N n=1

thwhere n denotes the n measurement of a total of N experiments. In

cartesian tensor notat.Lcns, the continuity equation is
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The momentum equation is

DU.
p___! =
Dt -pG.~

tar ..
_2:.l
ax.

J
(2.2)

t
where t .. and t .. are the laminar and turbulent stresses, G. is the~J ~J ~

tbody force and P is the pressure. The stresses or •• and L •• are given by
~J ~J

the relations

au. au. t
= [ ~ + --1] d'1.1 ax. ax, an r . = -pu,U,

J ~ ~J ~ J

The term -pu.u., known as Reynolds stress, is a result of averaging the~ J

convective acceleration. It is generally regarded as a turbulent stress

in analogy with viscous stress, and is unknown. The energy equation,

which too has additional unknown quantities, is given by

DT
PCfit

au.
t.. ~= ~J-­ax.

J

taq.
~ + ;ax.~

(2.3)

where the laminar heat flux q. and the turbulent heat flux q,t are given~ ~
by the relations

q = _KaT and
i 3x.~

t
q. = -pcu.e~ ~

~ is the viscous dissipation due to the velocity fluctuation and is

expressed as
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au. au. au.
~ = ( l. + .-1)_l.

II ax. ax. ax .
J l. J

In the above five equations there are fifteen unknowns, namely, U., P,
l.

T, U.U.,~and~. Hence, it is necessary to obtain equations fo~
l. J 1.

~., üL.1r and ~ to complete the turbulence clbsure problem.
l. J l.

Equations for fluctuating velocity, u., and fluctuating
l.

temperature,9, are obtained by subtracting the above averaged equations

from the original Navier-Stokes equations. This gives the momentum

equation denoted by (mi) for the fluctuating velocity component, ui'

(m.)(2.4)
1.

and the energy equation denoted by (e) for fluctuating temperature, 9,

(9)(2.5)

where

au. au. au. au. au. au. au.
Á' = l. + [l. 1.] 1. [1. --1] 1.." tooa ll-a-+-a--a-+ll-a-+a -a-l.J X. x. x. x. x. x. x.

J J 1. J J 1. J

From equation (2.4), the equation foru.u. is obtained using the
1. J

relation [(m.)u.+(m.)u.]. This results in
1. J J 1.

•
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Dü:iï.
_1:._l
Dt

a all.ü.
= a--[-u.u.uI - E(ö ..u. + Ö.lu.) + v__!_la ~ 1

Xl ~ J p ~J ~ ~ J Xl

au. au. au.au. au. au.
[- __l + - ~] _ 2v ~ ~ + E(~ + ~)- u. UI a u .Ul-a- a a a ax .~ Xl J Xl Xl Xl P xj ~

(2.6)

In the above equation, the first term on the right hand side represents

both the molecular and turbulent diffusion of the stress ~ .. The next
~ J

term is the product of the Reynolds stress and the strain rate which

represents the interaction between fluctuating component and mean flow.

It is often called the production. The third term is the dissipation.

The last term in this equation represents the correlation between

pressure and fluctuating velocity gradients. It is also called the

pressure-strain term or the redistribution term. The above equation can

be contracted to get the equation for turbulent kinetic energy k or

~./2 by summing i=j and dividing it by 2. This gives with t =~ ~

(2.7)

where the term on the left side represents the time rate change of

turbulent kinetic energy following the mean convection U .. The first
~

term on the right side is the diffusion of k. The second and third terms

are the product ion and dissipation of the turbulent kinetic energy. The

dissipation term, t, represents the rate of dissipation of turbulent

kinetic energy and is an unknown in the above equation. It should be
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remarked that the dissipation term E appears naturally in the k-

equation. The variation of E in the flow field has an important bearing

of the distribution of the turbulent kinetic energy. Thus E is an

important turbulent transport property. The differential equation for t

is derived from the (m.) equation by using the relation~

Dt
Dt

~ au. au.
<:I 1. ~= - [-vu --'~_;;;;;
3x" 1I.3x.3x.

x. J J

(2.8)

It should be noted that although the above equation is exact but every

term on the right side other than the viscous diffusion V(3t/3x1), is an

additional unknown quantity. The first term on the right side is the

diffusion of t while the second and third terms represent the production

of t. The last two terms are often called the destruction of t. !he

modelling of these terms will be done in the next section.

Finally, the ~-equation is obtained from equations (2.4) and (2.5)
1.

by using the relation [SCm.)+u.CS)] which results in
1. l.

Duia a PS as ~-- = - [-u u 9 - 6 - + au + v ]Dt aX1 11. i i1 p lI.axll. axll.

au.aa -
( +V) 1. +pae+l.4.'U
a a 3 pax . pc'jl ixII. xII. ~

(2.9)

where
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au. au. au. au. au. au. au.
rf> I = _1 + [ 1 + ---1:] _1 + [ 1 + ___.l]---1:

tij êx . II ax. êx . ax. IIax. êx , ax.
J J 1 J J 1 J

In this equation, the terms on the right side are diffusion of~, the
l. .

production of ~ the dissipation, the pressure-temperature correlation
1

and the frictional heating terms respectively. The unknown~. in the
1

ti13-equation represents the frictional oheating generated by the
1

fluctuating component and is usually considered to be smaller than the

frictional heating generated by the mean flow motion t ..(au./ax.).
1J 1 J

Hence, it is often omitted in the mean energy equation. It should also

be noted here that a part of the mean energy equation (1.6) 1l[au.j3x. +
l. J

3u.j3x.]tau./ax.] is equal to t which is derived in equation (2.8).J 1. 1. J

The four transport equations (2.6) to (2.8) derived above have

several unknown terms on the right side most of which need to be

modelled. This is discussed in the following section.

2.2 Concept of Two Turbulent Scales

Before attempting to model these equations, a brief discussion of

turbulent flow structure is done and the concept of the two turbulent

scales is introduced. In order to visualize the existence of two

significantly different turbulent scales in a turbulent flow, it is

instructive to consider a turbulent correlation function R ..(x;r) for
l.J

velocity fluctuation, which is defined as

R ..(x;r) = u.ex) u.(x+r)
1J 1 J
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where ui(x) is the ins~antaneous value of the ith componen~ of the

fluctua~ing velocity at the poin~ of the position vec~or x and u.(x+r)
J

h .th f h fl . Loci ( +r) Tht e J component 0 t e uctuat~ng ve oc~ty at x r. e average,

with a bar over u.u. may be considered either a time average or ah
1. J

ensemble average. If r=O and i=j, the one point correlation R ..(x,O) is~~

h R ld 1 . h' .th di .t e eyno s norma stress ~n t e ~ ~rect~on. The correlation

R ..(x,O) includes all possible turbulent eddy sizes at the position x.~J . .

It is difficult to differentiate the scale that is significan~ in

carrying out a turbulen~ process. One way to examine the behaviour of

each ~urbulent eddy is to consider a spec~ral analysis of the

correlation R ..(x,O), i.e.
~J

-_ ~ ....
where (k.r) is the wave number vector, k dot the position vector at r

distance from x. The wave number vector may be written as

~
k=ki+kj+kkx y z

The component wavenumber, k., is related to the fluctuating frequency n.
~ 1

ki = 2'11'
~ï

2m.= __ l.

U.
l.

and the wavelength ~i of an eddy in the xi direction by

In fact 1/1 .. (k) is the Fourier transformation of R ..(!;r). The inverse
~J ~J

Fourier transformation for recovering R ..(x;r) thus becomes
~J
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at

J ---R ..ex;r) = cf; .• (k) exp(ik. r)dk
~J' _at ~J

The reason for examining the spectra 1 distribution ~ .. is that the
~J

transform is simply a method of representing the complex random wave

form of turbulent eddy motion associated with R .. by what is equivalent
~J

to a sum of sine or eosine waves of various amplitude or frequencies.

The total sum of all sine and eosine waves is equivalent to the original

intensity of

R .. (x;'r). Thus, one rnay
~J ........

R .. (x;r)
1J

think of et> .. (k) as a fluctuating
1J

at a wave number, k., or freauency n .. If the
1 . 1

wave form of

fluctuating intensity is large at a particular range of wave numbers, it

means that the physical process of the turbulent phenomenon is

intimately related to this range of wave number.

For the present analysis, the energy spectrum of a steady isotropie

flow behind a wind tunnel grid at r=O is considered. Then

...... f .. -R ..(x;0) = ; ..(k)dk
1J _.. 1J

- -The energy spectra 1 ; ..ek) is a function of the wave vector k or of a
11'_given point at k in wave space. An integrated energy spectrum E ..ek)

~1

which is a function of a scalar variabie k can be obtained by

integrating the energy spectrum ~ ..(k) over a spherical surface of
1J-radius k=lkl or

E ..Ck) = Jet> .. (k)ds(k)
1J S1J
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Here, ds(k) is an element on ehe surface of ehe spnere of radius k.

E ..(k) thus may be taken as the energy contribution from ehe eddy size
~J

with wave number k to the ü":'ii"': correlation. The energy spectrum funr.t Lon
~ J

of turbulent kinetic energy in the wave space is

E(k) 1= -ZE .. (k)~~

The total kinetic energy of the turbulent flow is then

1-ZR ..~~
- f~= uiui = E(k)dk

2 0

In particular, for isotropic flow the relation is

ol)

fE(k)dk=
o

3-ulZ

The spectrum equation of turbulent kinetic energy equation for isotropie

turbulence can be written [12] as

aE (k) =
at T(k) - D(k)

where TCk) is associated with the transfer of energy between wave

numbers or eddy sizes. lts integral over all wave numbers is zero. It

can thus be defined by a different transfer function

k.
SCk) = - J T(k)dk

o
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which is the total energy transf~red from eddies in the range from 0 to

k to those in the range greater than k. In other words, SCk) is the flux

of turbulent kinetic energy from a spherical volume of radius equal to

wave number k. Dek) is the rate of dissipation of turbulent kinetic

energy at the wave number k and is equal to

Figure 2.1 shows the schematic energy spectrum E(k,t) and the

dissipation spectrum D(k,t) for an isoptropic flow. The solid line shows

a typical energy spectrum and the dashed line the dissipation of

turbulent kinetic energy. Figure 2.2 gives the measured energy spectrum

and the dissipation [ 12-14 ] in log-log sca1e for a steady flow behind

a square grid screen with spacing of M in a wind tunnel. Here, the

dimension1ess wavenumber k is defined as 2~nn/U with n the frequency of

a f1uctuating component in turbulent flow, U the mean flow velocity and

n is the Kolmogorov 1ength scale or (v'/t);. t is a dimensionless time

or the real time normalized by a characteristic time M/U. In figure 2.2,

the Reynolds number Re, is UÀ /v where À is Taylor's microsca1e [12].
A g g

The wavenumber, k, may be considered to be inversely proportiona1 to the

size of the eddies. In other words, the larger the size of the eddy, the

smaller is its wavenumber. From figure 2.2, it can be seen that the

measured energy and dissipation spectra are quite different and can be

associated with different wavenumbers. For instanee, a wavenumber

characterized by kd, in the order of 10-1 at Reynolds number ReÀ of 540
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may be considered ~o be associated with the size of the small eddies

that provide the main contribution ~o the dissipation of turbulent

kinetic energy. This value kd roughly corresponds to the maximum value

of the dissipation curve. Similarly, there is a range of spectrum which

corresponds to the energy containing large eddies. A wavenumber

-4
characterized by ke' in the order of 10 at ReÀ of 540 may be

considered to associate with this range which corresponds ~o ~he peak of

the energy curve.

It has been shown bo~h experimentally by Frieche et al. [13] and

theoretically by Driscoll and Kennedy [14] that these energy and

dissipation spectra change with Reynolds number. As given in figure

2.2, an increase in the Reynolds number causes the peaks of the energy

and dissipation curves to separate further away.

In most of the spectral analysis, a turbulent Reynolds number is

associated with the wavenumber, k . It has been shown [12] thate

where A is a constant and r. is the length of the eddy corresponding toe
the wavenumber, ke. ReÀ is the Reynolds number based on Taylor

microscale, À or UÀ Iv.g g
associated with the curvature of the spatial velocity autocorrelations

The Taylor microscale is a length scale

[15] and is related to the dissipation t by the expression [12]

u' 2
E = 15vrz

g
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where UI is a velocity fluctuation.

Driscoll and Kennedy [14] obtained the energy and dissipation spec~ra

for ReÀ ranging from 13 to 540 as shown in figure 2.2 The dimensionless

wavenumber, k, is defined as 2nnn/U where n is the Kolmogorov length

scale or CV3/E)!. The energy spectra shows that when ReA increases ken

decreases. For a value of ReÀ=13, the peak wave number ke is about 0.01

whereas for ReÀ=540, it is 0.0001. Hence, it can be said that the

struc~ure of turbulence is dependent on Reynolds number, whether it is

the turbulent Reynolds number or the mean Reynolds number.

The quantity Eek) [12], used in rigures 2.1 and 2.2, is defined as

Eek) = 2nk2E ..ek)
11

where E ..ek) is the Fourier Transformation of the correlation tensor11

ii":'ü.' or
1 1

E ..ek) = C21)3 (u.u.expc-ik.~) dr
11 11' J 1 1

Thus, the total energy contained by all the eddies is 1.5~,i.e.

ECk)dk

Therefore, figure 2.1 shows, conceptually, two distinguishing features

of turbulence when one examines the turbulent spectra or turbulent

eddies. The solid line gives the energy spec~ra from which it can be
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seen that the range of eddies containing most of the energy are large in

size (or lower in wavenumber range) and is comparable to the width of

the flow. They transfer their energy to smaller eddies. It is in this

range of smaller eddies where most of the dissipation of turbulent

energy occurs. The larger the Reynolds number, the smaller is the eddy

size. These properties of turbulent flows are obtained by experimental

measurements and not by any postulation. Hence, it seems natural to

consider different scales for the modelling of the k and & equations

C2.7) and (2.8). The measurements of Frieche et al. [13] reveal that

large eddies possess most of the turbulent kinetic energy in the flow

and do not play any significant role in the dissipation of turbulent

kinetic energy. On the other hand, Kolmogorov [12] found that small eddy

characteristics are functions of (t,v). In the medium range of eddy

size, a process described as the transfer function T(k,t) derived from

convection terms of the k-equation (2.7) provides a mechanism to

transfer the turbulent kinetic energy possessed by large eddies to small

eddies before it is consumed by the viscous dissipation and turned into

thermal energy. This distinct difference in the behavior of turbulence

at different wave number was known for sometime. However, it has not yet

been incorporated in most of the turbulence models. The existing models

characterize the velocity, length and time scales for turbulent flows

based on k and t. However, in any turbulent flow, it is the larger

eddies which cascade to become smaller eddies through inertial

interaction, thereby transferring energy to the smaller eddies. At the

same time, viscosity effects and, with them, dissipation become more and
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more important for the smaller eddies as shown in figure '2.1. For a

certain range of these small eddies, it can be shown that turbulence is

in statistical equilibrium. This is the range in which viscosity can be

effective in smoothing out velocity fluctuations. The generation of

these small scale fluctuations is made possible due to the nonlinear

terms in the equations of motion. On the other hand the viscous action

prevents the generation of infinitely small scales of fluctuating motion

by dissipating turbulent kinetic energy into heat. One may consider that

at large Reynolds numbers, the relative magnitude of viscous force

compared to inertia force is sa small that viscous effects in a flow

tend to become vanishingly small. However, Townsend [15] reasoned that

the nonlinear terms in the Navier-Stokes equations counteract this

effect by generating motion at scales small enough to be affected by

viscosity. In other words, as soon as the scale of the flow field

becomes so large that viscosity effects could be neglected, the flow

creates small scale motion thereby keeping viscosity effects and, in

particular, dissipation rates at a finite level.

At these small scales, turbulent motions are statistically

independent of the relatively slow large scale turbulence and of the

mean flow. Hence, as Kolmogorov reasoned, the character of turbulence in

this range is determined by t, the rate of dissipation of k and the

viscosity v. These considerations led Kolmogorov to make the following

hypothesis:
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, At suffficient1y high Reyno1ds numbers there is a range oi high wave

number where the turbu1ence is statistica11y in equilibrium and uniquely

determined by the parameters E and v. This state of equilibrium is

universal' .

Using these two parameters, E and v, veloèity, 1ength and time sca1es

for small eddy motion can be characterized by

which can be obtained by dimensional analysis of v and E. On the other

hand, in the large turbulent eddies, the turbulent kinetic energy, k, is

important since these large eddies are responsible for carrying

turbulent energy and extract energy from the flow motion to sustain

turbulence. Therefore, the character of turbulence in the large eddy

range is determined by c, the rate of dissipation of k, and the

turbulent kinetic energy, k, itself. Using these two parameters, E and

k, the velocity, length and time scales for large eddy motion can be

characterized as

r

Though the above analysis was done for isotropie flow, which is not

the case in many practical situations,·it has been shown [12]

experimentally that the fine structure of nonisotropie turbulent f10ws

is almost isotropie (local isotropy). This is, however, not true for all

experimental results. Nevertheless, many qualitative features of
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iso~ropic ~urbulence, par~icularly the dis~ribu~ion of two turbulence

scales, apply to phenomena in actual ~urbulence. Measurements of

Kolmogorov fine-scale ~urbulence structure in various flows shows ~hat

differences between results are of ten sufficiently small to be

negligible in the first approximation.

Several investigators [16,17] have mentioned in the past that it is

the E-equation [equation (2.8)] which needs to be carefully studied.

This is because of the complexity and difficulty in modelling the t­

equation. The physical meaning of the different correlations among all

sizes of eddies and fluctuating quantities is sometimes difficult to

understand. As an example, the product ion term containing the second

derivative of the mean velocity U in equation (2.8) for t is neglected

invariably by most investigators. The reason for this is that this term

is assumed to be much smaller than some of the other terms in this

equation. However, the physical significanee of this term is still not

clear. Therefore, due to lack of information about such terms the t­

equation needs to be further investigated in order to improve the

accuracy and prediction capability of the model as weIl as making it

more general.

The concept of using different time scales was first proposed by

Lumley [17] in 1975. He suggested that each term in both the k and t

equations be modelled either by using the (k,t) scales or the (k,t,v)

scales. However, in the final form of the modelled t-equation suggested

by Lumley, the scale containing v was neglected. Another approach
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two different time scales by dividing the whole energy spect:rum into t:wo

parts -- the energy containing eddies and the dissipating eddies. For

eaeh region, a separate time scale is used to model the lç. and t

equations. Results were obtained for several thin shear flows which SR0w

an improvement in the level of agreement with experiments over that

obtained with models employing only one t:imescale. The authors

suggested that by dividing the spect:ruminto more number of parts and

solving the two equations in each region, a further improvement in the

result could be obtained though the computational time would

considerably increase. However, the authors did not present the

results.

In the present investigation of turbulence modelling, the two-scale

concept is employed. The two scales are the large eddy or energy

containing seale based on k and E and the small eddy or energy

dissipating scale based on v and t. The two-scale concept is applied to

all turbulent transport equations whenever it applies.

2.3 Turbulence modellina

Before modelling the transport equations, the postulations of

turbulent flow are listed below. These postulations are made by various

models and summarized by Chen [18].

1. Navier-Stokes equations are valid in describing turbulent motion.
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2. Turbulent diffusion of a turbulent transport quantity (~., k,
1 J

E, ~ is proportional to its gradient.
1

3. Small eddies are isotropic.

4. All turbulent quantities are functions of 'll.U., k , E, 'ü":'S, U., P,
1 J ~ ~

T, p, 'J and Cl.

5. The model equations should be consistent with respect to

symmetry, invariance, permutation and physical conservation laws

imposed on the original equations.

6. Turbulent scales are functions of k, E and 'J. Large eddy scales

based on (k,E) are [u] = kt, [1] = kl'S/t, [tl = k/t and small

* [1] (v1/t)*, [tl =eddy scale based on (v,t) are [u] = (ve ), J =
(v/t)'.

7. Turbulent constants in the model are determined from experiments.

The two-scale turbulent flow model is now derived in the following

section. Both (k,t) and (v,t) scales are used in the modelling of the t-

equation. As for the modelling of the u.u. and k equations, the large
~ J

eddy scale (k,t) is used for the reason that the large eddies which

contain most of the turbulent kinetic energy are also responsible for

turbulent diffusion and pressure-strain interaction. Further details

are presented below.

2.3.1 Modelling of Ü:Ü. and k equations
~ J

The turbulent diffusion term of equation (2.6) is modelled based on

postulate 2 that the diffusion of~ is proportional to its gradient
~ J

or
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u.u.un+ -(Ö.nu. + Ö·nU.)
1 J" P J .. 1 1.. J

= C [~2]auiUj
k t aX~

In order ~o keep the dimensions consis~ent, a quantity with a scale of

[12/t] is needed to complete the model. From dimensiona1 analysis bas ëd

on large eddy scale (k,E), it follows that

The (k,E) scale is chosen here instead of the small eddy scale (v,e)

based on the physical ground that diffusion of any quantity by turbulent

f1uctuation is largely controlled by large eddy motion. Thus

Here, Ck is a proportionality coefficient. It should be remarked here

that the modelobserves the symmetry of the original form between i and

j as stated in postulate 5. The dissipation term in equation (2.6) is

modelled based on postu1ate 3 as

!his is based on the understanding that the 1arger the Reynolds number

the smaller the turbulent eddies are and that the smaller these eddies

become the more isotropie they will beo Thus, the dissipation of

turbulent stress""ü':iï.by the small eddies is mainly in the iSotropie
1 J
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range. It should be noted here tha~ under postula~e 3 and ~he model

presen~ed, ~he dissipa~ion of ~ can occur only in the normal stress
1 J

~. for i=j and not the shear stress when i#~ However, when i=j the
1 J . ..

model term reduces to the exact expression.

The pressure-strain term is model led based on postulates 4 and 5 as

[19]

dU. du.
E(_l + __l) =
pax. ax.

J 1

where Cl and C2 are model coefficien~s determined from experimen~s and

au. au.
Pij = - (uiul ~ + ujul ax~) and

Further details of the modelling of~. equation can be found in
1 J

[18,19]. The modelled ~ equation, thus, has the form
1 J

2-36 .. e1J

(2.10)

From this equation, the k-equation is obtained by summing i=j for

i=1,2,3 and dividing the result by two. This gives

(2.11)



It should be remembered here that in equation (2.11), where i=j, the

pressure-strain term (pjp)[du.7dX. + dU.jaX.] is identically equal to
~ J J 1.

zero due to incompressibility requirement. Therefore, in equation

(2.11), only the first term on the right hand side is modelled and the

rest of the equation is exact as derived in equation (2.7). It Should

also be noted that equation (2.11) portrays the interaction of all

turbulent eddies. The last term in equation (2.11), E, is dominant1y

associated with the small eddies and is responsible for dissipation of

turbulent energy that is produced, first, by -uiuj(au/oxl) through the

stress exerted by the f1uctuating motion on the mean flow motion and

secondly, by turbulent and viscous diffusion shown in the first term on

the right side. The diffusion term can be reasoned to be more

intimately correlated with the large eddy mot ion. This is why the length

and time scale of large eddies [1] = kl'S/E and [tl = k/E is adopted in

modelling the diffusion term. Although two scale concept is evident in

the k-equation, there is no need to invoke the second and small scale

(E,V) in this equation as the last term, E, is exact. The situation,

however, is different when one attempts to model the t.-equation. !bis is

considered in the following section.

2.3.2 Hodelling of t-equation

The modelling of t-equation is important because it governs the way

in which the turbulent kinetic energy is dissipated. As mentioned

earlier, the performance of the modelled t-equation based on a single

turbulent scale of large eddies is not as satisfactory as the other

36
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modelled equa~ions. First, the model cons~ant, C which appears in ~he
II

equation for eddy viscosity and Cel' which appears in the e-equation,

are found not to be constants. Second1y, the prediction of turbulent

flow is quite sensitive to the values of the constants Ctl and Ce2.

In mode1ling the e-equation, equation (2.8), it should also be

remarked that all eddy motions contribute in the equation. The

dissipative action is dominant at the small eddy level while the

convective and diffusive actions are predominant a~ ~he large eddy

level.

The scale at which the small eddy is manifesting its dissipating

function in a given flow, is intimately related to the large scale

structure and the ratio of inertia force and viscous force or the

Reynolds number as already discussed in section 2.2. The effect of

large scale motion on the small eddy sca1e is transmitted through the

transfer mechanism created by the nonlinear term of the transport

equation. Each term in the e-equation contributes different1y in a

different range of eddy size. Thus, it is important to model each term

in e-equation individua1ly according ~o the eddy size that charac~erizes

the physical process of the term. Proceeding in this way, the e-

equation is modelled below. The first product ion term in equation (2.8)

is modelled as
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This is because, for i=j, the mean strain is zero from conserva~ion of

mass for incompressible flow and for i~j, ~he quantity in the

parenthesis is zero from the isotropie nature of small eddies a~ large

Reynolds number which is mentioned in postulate 3.

The second production term,

au.
1

'\)u~ '".. <:IX,
J

is also neglected, based on Lumley's [17] proposal that the correlation

coefficients between ~wo quantities, each from a different range, are of

the order of the time scale ratio Re-'i. In this case, "i is cons'Ldered

to be in one range characterized by the large eddy scale and 3u.f3x. in
1 J

another range by the small eddy scale and consequently the value of

correlation coefficient is considered smallor weak compared with the

>

other terms in the t-equation. For example,

au. au. au.1 1 ,2'\)-- -- .-L
3Xj 3x2,ax2,

has astrong correlation as the terms 3uif3xj, 3ui/3x1 and aujfax1 are

in the same range. Therefore,

So the second production term is dropped f:z;oomthe t-equation.
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The modelling of the two destruction terms is done based on postulate

4 that they are function of the quantity Pk/E and other transport

variables in accordance with Lumley's argument [17]. Here P [=, k

-~.(au./ax.)] is the product ion of turbulent kinetic energy. Thusl.J l. J

Pk
= fn(--' kj E, v)

&

Lumley assumed that these two terms should vanish when the turbulent

flow approaches equilibrium. Thus, for small deviations from turbulent

equilibrium, this function may be approximately expanded to obtain

& Pk
= [-][ 1 - -] =t &

1[-][& - P ]t k

Here [E/t] is the dimension needed so that the overall dimension of the

E-equation and that of the two destructive terms are consistent. t is

the time scale that characterizes the physical action for destruction of

&. Since the dissipation or destruction of E physically is dominated in

the small eddy range, the time scale, t=(V/E)', based on Kolmogorov

hypothesis, is used in the present work. Hence, the modelled

destruction term is

This model differs from the existing turbulence model [19] in that the

Kolmogorov scale (&,v) is used for the scaling of time [tl instead of
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the conventional scale based on (k,E) which leads ~o the conventional E-

equation given in equation (1.10).

The diffusion term in E-equation is modelled according to postulate 2

that it is proportional to the gradient of E, or

-.-
- E u.

l.

2v aUi ap- -p ax. ax .
J J

Here the length and time scales are modelled based on the large eddy or

as shown before. Thus the modelled E-equation based on the two-scale

concept and Lumley's suggestion for destruction term is

(2.12)

Here CE' CEl and CE2 are model proportionality coefficients. In

general, they can be a function of fluid or flow properties such as

2.3.3 Modelling of ~-equation
l.

Prandtl number or Reynolds number.

Finally the modelling of the ~-equation [equation (2.9)] is done to
l.

complete the turbulence closure problem. Using the same postulates as

those for modelling the lï.1i. equation, the diffusion term of this
l. J

equation is modelled as
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and for a = v,

-aa -aü:
+ "a-~=au. a " a~ xi, xi,

The dissipation term vanishes due ~o the assumption of iso~ropic nature

of small eddies or pos~ulate 3, i.e.,

The pressure strain term cp-a) is modelled according to Launder [20] as

P as
pax.

1

The frictional term in~-equation is neglected as it is an order of
1

magnitude smaller than the other terms. Hence the model led li1r-equation
1

takes the form

(2.13)

Again, CT' CT1 and CT2 are model coefficients.
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Summar i.zLng the two-scale se cond order turbulence model, we have the

following equations

au.
1 0ax. ::
1

(2.1)

D\)i at .. at. .:t
p_ = -pG. - !f.._ + _!l + _!l
Dt 1 ax. ax. ax .

1 J J

au. 3q. t
DT 3q.

t .. 1 1 1 + cfJpCDt = 1J-ax. ax. ax.
J 1 1

(2.2)

(2.3)

2-36 .. t1J

(2.10)

.(2.11)

(2.12)

(2.13)

ar aUi
[u.u" -a - + u"e-a-]
1 ~ Xl ~ x!
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2.4 Determination of Turbulent Coefficients

The above 11 equations for turbulent quantities have 9 dimensionless

coefficients or constants, namely, Ck, Cl' C2, Ct' Ctl' Ct2, CT' CT1 and

CT2 to be determined from experiments. The determination of the value of

turbulent coefficients in principle is similar to the one for laminar

flow where an experiment has to be performed to obtain the values of

viscosity and thermal diffusivity of the fluid. The laminar coefficients

which are dimensional such as kinematic viscosity v and thermal

diffusivity a turned out to be dependent on fluid and thermodynamic

variables, temperature T and pressure P. The turbulent coefficients are

dimensionless and can, in general, be functions of fluid and flow

properties such as Prandlt number or Reynolds number. If the turbulent

flow equations are properly modelled, the model coefficients should

remain universal and Can be evaluated once for all from the chosen

experiments. Thus, the process of determining the constants is not a

case of experimental data fitting. It should be remarked that although

these coefficients may depend on fluid properties like laminar flow

coefficients v and a, they are determined mainly from experiments

performed in air and water. Many investigators consider that these

coefficients remain the same for both fluids. Whether these

coefficients are valid for turbulent flows in other fluids such as oil

or liquid metal is not known. The following subsections highlight the

method of obtaining these constants.
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2.4.1 C 1 and C 2E: e

The coefficients Ce:1and Ce:2are obtained from experimenta.1data of

homogeneous shear flow and turbulence behind a grid [21]. Consider a

uniform flow of velocity U passing a square grid with spacing M. !boo

flow behind the grid can be made isotropic by contracting·the area of

cross section by a factor of 1.27. The k and e equations for isotropic

turbulent flow behind a grid (figure 2.3) are

U -:I.k= -e:
od.x

and

Here x is the coordinate along the flow direction. It should be

kk ' = {j""'l';
o

e' t= U l/M;
.0

Re =
U Mo
v

remarked here that the diffusion 'termsof k and e equations in their

exact form are zero for isotropic flow. Nondimensionalizing these

equ~tions using the variables

the following equaeLons are obtained, i.e.,

dk'
dx' = _el

and
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C R -t '1' 5- e EE2

From figure 2.4, the relation between k and x is found to be

approximately for air [18]

k' 450 ,-1= 40000 x

between 10 < x/M < 200 for the approximately isotropic range and for ReM

ranging from 103 to 104. Substituting this in the k -equatLon gi.ves a

relation between E and x, which is

dk'
E' = =- d,x'

450 ,-2
40000x

This is now substituted in the t-equation to give

- ~ x,-3* 2
40000

= _ C R t( 450 )1'5 ,-3
E2 e 40000 x

Hence, CE2 is calculated to be

It should be mentioned that the flow behind uniform grid is not truly an

isotropic flow since U~/V2 is always greater than one. U2/V2 starts with

about 1 immediately behind the screen for ReÀ > 103 and increases to

1.55 downstream [18]. Therefore, decay data for turbulent kinetic energy

k' versus x' beyond x/M > 200 should not be considered as an isotropic

data and used in determination of turbulent coefficients. The value of
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Ctl is next obtained from homogeneous shear flow as shown in figure 2.5.

For such a flow, the k and E equations are

auo = -uv- - t3y

and

Substituting the k-equation into the t-equation gives

Therefore,

The diffusion terms in k and t equations are assumed to.be approximately

zero here. Strictly speaking they are nonzero. Consequently the

4etermination of CEl should be considered only an approximat~ one. The

coefficients CEl and Ct2 for the destruction term in the t-equation were

found to be function of Reynolds number based on a characteristic mean

flow velocity Uo and a characteristic length M. The appearance of

Reynolds number in CEl and CE2 reflects that the s~all eddies

responsible for destruction for t are indeed a function of me~ Reynolds

characterizes the destruction of t changes when R~ynolds number changes.

number. In other words, the size of sma11 eddy and the time scale that
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It should be remarked here that in the one-scale ~urbulence model ~he

coefficients CEl and CE2 in equation (1.10) are found to be independent

of Reynolds number. Their values are not universal and require

modification in some flow configurations such as between plane jet and

round jet. To compensate the contribution of diffusion C
tl in the

study is taken to be approximately -t The fact that Cpresent 17.5 Re .
tl

and Ct2 required modification weakens the predictability of the one

scale turbulence model and motivates the present investigation of the

two scale turbulence model to improve the predictability of the model.

The constants Cl and Cz in equation (2.10) are obtained in a way

similar to Ctl and CtZ [18]. Experimental result of anisotropic

turbulence behind a grid by Uberoi [21] are used. For such a flow,

U=U =constant and V=W=O. By passing this flow through a 4:1 contractiono

of flow cross-section area, the turbulence becomes strongly anisotropic.

With U = constant, the exact equation for ~ [equation (2.6)] where ~o ~ J
>7 ='7 becomes

when i=j and the modelled equation is

2= - -t3
t - 2- C _(Ul - -k)1 k 3
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X/M

Figure 2.3. Iso~ropic flow behind a grid
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x

Figure 2.4. k-distribution in an isotropie flow
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Dividing the second term on RHS of each equation by the firs~ term on

the RHS gives

2p au
p ax

2-t
3

In order to accurately de~ermine Clone needs ~o avoid da~a of 1.5(~/k)

which is close to one since it will make the right hand side of the

above expression zero. In other words, one should consider the data in

the strongly anisotropic range, ? j;r > 1, or between xjM equal to 0 and

40. From figure 2.6, c?jüY) =1. 83 for xjr-l=25 where7=VT. Thus

3 ~ _ 3;rjl.83 =
2 k - ~(ljl.83 + 2) 0.644

From figure 2.7, at xjM = 25,

2P au--p ax

2 au au
'01--
axl. ax"

= 1.0

Rence

and

If data at xjM = 12.5 is used, ~l = 2.88.
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Figure 2.5. Homogeneous shear flow
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Figure 2.6. Experimental da~a of Uberoi.
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Next, C2 is obtained from experimental data of homogeneous snear

flow. Figure 2.5 shows the values of k, ~, vY and WT for sucn a flow.

The modelled Reynolds stress equation (2.10) for~ becomes

o = 0 - 2üVau - -32t - C !(? - ~k) - C (2 - ~)uvauay 1 k 3 2 3 ay

The k-equation (2.11) becomes

_auo = 0 - uv- - tay

From figure 2.5, at xjH=10,

(~ - ~k)jk = 0.22

Substituting the above value and'e in the UI equation gives

For C1=2.8, C2 is found to be approximately 0.54. The commonly used

values of Cl and C2 are 2.3 and 0.4.

2.4.3 CTl and CT2

For these coefficients, the experimental data of homogeneous shear

flow with a temperature gradient obtained by Webster [22] is used. The

model led equation for ~ is~



•1.5 •
• • 2P 4U / 2Y... ll!.ïö ax 2'Jaxr ax.

o ~ / 2V:!:!.. ~
1 0 • pax aXL aXt

0 •
0 • •0.5 0 ••• ••0 000 DO 0

0
0 20 40 60 80

X/t.1

2~----------------------------------~

Figure 2.7. Experimental data of Uberoi.
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Du.-r
l.

Dt

To determine CTl, i is set to 2. For the homogeneous shear flow, this

gives

o = 0 - (?aT - 0) - C !.vBay Tl k

and the k-equation gives

-auo = 0 - uv-- - Eay

Therefore,

= _ V2~ (aT/ay) v2 k (aT/ay)
E VU = üV Vtr (au/ay)

From experimental data of Webster as shown in figure 2.8 the magnitude

of üV, ~, k and vB are found to be about 0.5, 1.9, 3.23. and 0.38,

respectively. These values are for Richardson number, Ri, of 0 as

indicated by the dashed lines, which represent the averaged value of the

experimental data. Further, the ratio of the temperature gradient to

the velocity gradient is obtained from experimental date to be 0.1.

Substituting these values in the above relation, CT1 is calculated to be

3.2. Similarly, CT2 is found by letting i=l in the modelled uia

equation. This gives



o = 0 - [üVaT + veau] - CT1 ~ue + C veauay ay k T2 ay

Again, from experimen~al da~a of figure 2.8, Ü] is 0.47 a~ Ri = O.

Rence, CT2 is calculated to be 0.5.

The coefficients Ck' CE and CT are ob~ained by computer optimization to

be 0.9, 2.00 and 0.13 respectively. Several investiga~ors [18] have

obtained these cons~ants from experimen~al data of near wall ~urbulence.

Their va lues are not used in the presen~ model. Ins~ead, the medified

va lues that give best results are used. Rowever, once the values are

determined they are kept constants for all calculations in the present

study.

2.5 Concluding remarks

From the above discussian, the 9 turbulent coefficients or constants

are determined to be as follows:

Ck=0.9; C =2.00; CT=0.13t

C1=2.8; Ct1=17.S/CRe)'; CT1=3.2

C2=O.4; Ct2=18.9/CRe)'; CT2=O.5

I
where Re is the Reynolds number based on the problem characteristic

velocity and length. These coefficients are determined from different

experiments. However, if the ~urbulence model is te have predictability,
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the coefficients should remain the same in other turbulent flows. This

will be examined in Chapter V.

It should be remarked that Reynolds number appears in the turbulent

coefficients for the two-sca!e turbulence model. This was not thé ca"ie

for the one-scale turbulence model. The appearance of Reynolds number is

expected since, as discussed in section 2.2, turbulent flows are still

Reynolds number dependent and also because small scale (v,~) proposed by

Kolmogorov for dissipation of turbulent kinetic energy contains

kinematic viscosity. Physically, this implies that Reynolds number

changes the magnitude of the destruction of ~ and hence affect the

magnitude of E and range of eddy size that is responsible for the

dissipating the kinetic energy.
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CHAPTER III

'NO SCALE K- t -ë2 TURBULENGE ~1ODEL FOR
BUOYANT FREE SHEAR FLOWS

Flow patterns in nature are complicated due to change in density

caused either by a temperature or concentration difference. The force

produced by this variation is called buoyancy force. In this chapter,

the two-scale turbulence model derived in the previous chapter for

incompressible flow is extended to include turbulent buoyant flows.

3.1 Boussinesg's approximation
and governing eguations

For flows where the density gradient is not large, the buoyant force

can be incorporated into the .governing equations by making the

Boussinesq approximation. In this approximation [18], the density

variation is considered significant only in the gravitational term. In

other words, the effect of density difference in the conservation of

mass, in the time rate change of momentum and in the work done due to

density changes are considered negligible.

The governing equations for such flows are

*au.
1. = 0ax.
1.

(3.1)
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*DU.~
Ps Dt =

*apt ~':
+ P 0-ax. °i~

(3.2)

and

(3.3)

*~ is the heat souree due to dissipation by viseous force. c or c andp

K are the speeific heat and thermal eonduetivity. The sup~rseriptJ *,
represents an instantaneous quantity. If P: and p* at the statie state

*(U. =0) are P and p , then the momentum equation beeome~~ s s

aEo = - - + P g. + 0aXi s ~ (3.4)

Subtraeting the two momentum equations (3.2 and 3.4), we have

(3.5)

With the Boussinesq approximation, the pressur.e and density relatLens

are given by

*where P is the pressure above the statie state and T is the absolutes
temperature at the statie state. B is the volumetrie expansion

coeffieient or -l/Bcap/aT)p evaluated at Ts' Ps' The governing

equations, therefore, beeome
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'"I':au.
l.

ax.
l.

= 0 (3.6)

*DU.
l.

Dt =
*ap *azu

'V_-=i~
ax.ax.

J J
*eáT g. +

l.
(3.7)pax.s l.

and

* ** aZT* 't.. au.DT +21 l.= exDt ax.ax. pc 3x.
J J J

*'t.. is the instantaneous viscous stress and ex is the therma1l.J

(3.8)

diffusivity or Kip c. These equations are exactly the same as thes

equations for non-buoyant flows except that the momentum equation has an

*additional buoyancy term aáT g .. Letting
l.

*U.l.
*= U + u . Pi i) *=P+p;'t ..

l.J

and taking an ensemble average of these equations, the resulting

equations obtained are

(3.9)

DU.
l.

Dt

a Zu. aü"':ü.
- BáTg.+ 'V l. _ __!_l

l. ax . ax . axJ.
J J

(3.10)
ap

pa x.s l.
=

and
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DT a2T a~ t .. au. L1 + _u _1 + (3.11)= ex - --Dt ax. êx . ax. Psc ax. PscJ J 1 J

where

au. au. au.
~ =,,( 1 + --1) 1." .. ax. ax , 3x.

J 1 J

The term

au.
e l 1
t .. -,,-+;)
1J <lXj

may be considered as frictional heating due to the fluctuating and mean

flow motion. This is normally small in turbulent buoyant flows and can

be omitted in most of buoyant flow studies. The above equations have

terms u1'uJ. andU":ë which need to be modelled. The equations for u. u., k,
1 1 J

E and ~ are obtained in the same way as those in chapter II. The final
1

form of these equations is

au:u.
E-(6 ..u. + 6.ftu.)+ v~] - ~[g.~ + g.~]
Ps 1J l. l... J <lxi. 1 J J l.

a
-"-[-u.u'Uft
<IX" 1 J Ilo

(3.12)

au.aa -
( ..L....) l. + ~ + _1_~u.
a-,-v a a a ."Xft~ft p. x. pel.

..Ilo S 1 S
(3.13)
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(3.14)

D ~ au. au.
__E = _Q--[-vu __=1__ =1
Dt ax~ tax.ax.

.. J J

(3. 15)

where

and

au. au. au. au. au. au. au. au. aUi
<IJ' = u] (~X1. + __l)_1 + (~ + __l)_1 + (___1: + __l)_]

Q ax. ax , ax . ax. ax. ax , ax. ax,
J 1 J J 1 J J 1 J

In equations (3.12) and (3.14), each of the terms -~(g~ + g~) and
1 J J 1

-Bg:UT is called the buoyancy production and is a new souree term in1 1

the budget of Reynolds stress and turbulent kinetic energy. The

turbulent heat flux p~ now assumes an additional role, because it
1

participates in the product ion terms for both k andël. In the ü'T
1

equation above, the new term due to buoyancy is Bg7 which needs to be
1

modelled as it is an additional unknown. To model it, a transport

equation ior ëT is next derived. This equation is obtained by

multiplying the equation for 8 by 28 and taking the ensemble average.

This results in
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DP'
Dt

a - aäY= - [ - u. 62 + a,-" -]3x1 1. OX1
-aT
2U~eax1 (3.16)

The quantity ~ can be considered as the intensity of temperature

fluctuation. Thus, pc IëT represents the fluctuating thermal ener&y. Inp

other words, ~ is to the turbulent heat flux as k or ~/2 is to the
1. 1.

turbulent stress. In equation (3.16), the rate of change ofäï is

controlled by turbulent and molecular transport of ëY ( the first two

terms on the right hand side of the equation ), the gradient production

( which is like the production term of turbulent kinetic energy ), by

molecular dissipation ( a is the thermal diffusivity ) and the

frictional heating (the last term).

The molecular dissipation of temperature fluctuation (the fourth term

on RHS of equation (3.16)) is similar to the dissipation of turbulent

kinetic energy, t. This term, a(3e/3Xl)(ae/3xl), is denoted by E6' in

analogy with t, and represents the dissipation of the temperature

fluctuation ëT or the fluctuating thermal energy. te is an unknown and ,

therefore, an empirical relation or a transport equation similar to t-

equation is needed to solve it. Here, the transport equation for te is

derived by differentiating equation (2.5) with respect to X., then
l.

dUt ae ae
2a-3x. ax. ax"

l. l. ..

(3.17)

multiplying it by 2a(ae/axl) and taking the average. This gives

aT ae aUt
2a-- ----ax . ax. ax .

l. l. l.
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It should be noted th~t Ee appears only in the ëT-equation and hence

plays a less important role than t-equation in the determina~ion of the

mean flow quantities such as U., P and T. For this reason some~

researchers [23] employed a simpler, empirical relation to model the

behaviour of te to minimize the complexity in turbulence modelling. This

will be discussed in more detail later. For buoyant flows, the terms tï1f
1

appear in both~. and k equations and so the turbulent momentum
~ J

transfer and thermal energy transfer are now coupled.

All nonbouyant terms are modelled the same as before in chap~er 11

and 50 only the ~odelling of the buoyant terms is given in the next

section.

3.2 Turbulence model

In equation (3.12) for u.u., the only term that requires additional
~ J

modelling is the pressure strain term. To model this term, the

divergence of equation for fluctuating velocity, which is equation (3.7)

subtracted from equation (3.10), is taken to give

= - (3.18)

Using Green's theorem, pressure is obtained to be
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(3.19)

where the surface integral, the second term on the right side, is

negligible for flows far away from the solid wall. Thus, when the volume

of integration is sufficiently large, the pressure strain term in

equation (3.12) becomes

aUi au.
-E.(_ + --l)pax. ax.s J 1.

au. au
(~ + ..=l)dvolaXj aXi r

= ~ij,l + ~ij,2 + ~ij,3 (3.20)

The superscript * denotes the term involving the integration yariable.

Here ~ij,I' ~ij,2 and ~ij,3 correspond respectively to the first, second

and third terms in the volume integral. The reason for dividing it into

P ..
l.J

and
au.

- 1Pk = - uiul aXl

3 parts is that the pressure strain is caused by the fluctuating strain

rate, ~ .. l' the mean strain rate, ~ .. 2' and buoyancy, ~ .. 3· Thel.J , l.J , l.J ,

modelling of terms •.. 1 and •.. 2 is the same as before and islJ , l.J ,

where
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The third term, whieh is a new term related to the the buoyaney, is

modelled as (20)

1 f ae* äUi + ~)dVOl
~ij,3= 4~ ~gt aXt(axj aXi r

= C3[~g:ü':"r + ~g.ü":'"G- -32~g.ü:t"]
J 1. 1.J 1.1.

where

P .. b = - ~g.\ï.'9'" - ~g.u.a
1.J , J l. 1. J

and

Pb = - ~g:u-:-g
1. 1.

The RHS of this equation is the return-to-isotropy part due to buoyaney

and is similar to ~ .. l' whieh is the return-to-isotropy. due to veloeity
1.J ,

fluetuation. These models are obtained by eontraeting the volume to a

small value and ensuring that when the flow is approximately

ineompressible or i=j the pressure strain is zero. Henee the modelled

~.-equation is
1. J

Dü.'ü.
_LJ.
Dt

(3.21)



The model led k-equa~ion can be directly obtained from the above equation

by substituting i=j and summing to give

Dk a [e k2ak ak] _ aUi Q ~- = - - - + v- - u.;ua a - .",g.U. IJ - tDt axl. k taxI, axl, ...Ilo XI. ~ ~ (3.22 )

It should be remarked here that except the first term on the right side

of equation (3.22), which is modelled, every other t erm in the equation

is exact. In modelling the t-equation (3.15), the new gravitational

term 2~g.v(au./ax.) Cas/ax.) is set approximately equal to zero due tb
~ ~ J J

the postulation of isotropic dissipation for small eddie~. However, the

destruction terms, the last two terms in equation (3.15), are modelled

based on the two-scale concept to include the influence of buoyancy.

This is based on Lwniey's assumption that the destruction term is

aUi aUi aUj alUi
2 2[] 2. = Constant * [!. ] [Prod of k - 1]- v-a- -a- a - va at.,.Xj xI. xI, xI.xI, ~

Here the production of k comprises of both production dUe to shear

force, Pk' and buoyant force, Pb' in equation (3.22) and t is the time

scale of destruction. Thus, based on the two scale turbulence model

concept

au. aui au. Pu . 2.
-2V-a~ -a- _la - 2[v3 ~ ]

xj xI, xI, xI.xI.

= Constant * Ct/V)![Pk + Pb - t]

where

66
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= - 'irU.~ ~ and Pb = - ~g:u:tJ~ ~

Here, again the time scale, t, is based on Kolmogorov scale and not the

convective scale (k,t) for large eddies. Therefore, the final modelled

t-equation is

Dt
Dt

a c k2at at t aUi= -a-[ - -a- + v-a-] - c let/v) ü':"U:' -a-
xI. t e xI. xI. t 1. J xI.

- ct2Ct/v)tt + Ct3(t/V)tPb (3.23)

The exactïï1r-equation is
.1.

Dü.'1" a
Dt1. = - [-u u.a

axl. I.1.

aT au. au.aa
- -.1. 1. + paa + ..!-:r-u.-(u.u"-a + u.,a-a-) - (a+v)a a a ."
1. ~ xI. ~ xI. xI.x" p. Xi pc .1.

(3.24)

The last term in equation (3.24) is the frictional contribution to ~
.1.

which is normally small and will be omitted in the study. The only term

that requires additional modelling when buoyancy prevails in equation

(3.24) is the pressure strain term which is obtained by multiplying

equation (3.19) by aa/ax. and taking an average, or
J

*aUm aUm aa
2--­
ax ax.,ax.m ~ 1.

(3.25)
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Shrinking the integral to a small volume, this term may be approximately

set equal to

Hence, the modelled ~-equation is
1 .

(3.26)

The ëT-equation in exact form is

(3.27)

The diffusion term is modelled according to postulate 2 in the principle

DëT a . k2 aë'! -aT
-' _, -[ (C + v)-", -] - 2u""e",x - 2teDt _ 3x 9 t gX ~ gt t t

(3.28)

of modelling outlined in chapter 11 to be

k2aêi- u,,92 = Ce _ -~ t 3x .
f.

Le-eting the friction term, 'Ta'", to be negligible, the mode 11ed·--e2-equation is
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It should be remarked that the Ee term in the above" equation is an

unknown and can be model led by an empirical relation such as equation

(3.28a) based on Launder's suggestion [20] or by solving a transport

equation. For most practical cases, it is sufficient to use such a

simple empirical relation by assuming that Ee is a function of E or

(3.28.a)

where Celis a dimensionless constant and Ër/k is required to ma~e the

dimension consistent. For more rigorous modelling, the exact equation

for Ee can be derived as

DES a --.- ate aui,ae ae 2aaT !L aui,
= ax [ - Ee ui,+ a-] 2a- -- -- -Dt axi, ax . ax. axi, ax. ax , ax .t ~ ~ ~ ~ ~

aUt as ae a2e 2

+ 2aa.'
as2a--

aXi aXt 2[aa a 1 ax. (3.29)ax. Xt xi ax.~ ~ ~

The diffusion term is modelled as

The.production term is small due to isotropic dissipation and

incompressibility. Hence,

aui,as as
a-- = 0
ax. ax. aXI)~ ~ ..

The terms
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ae aU2_
a-­
ax, ax .

1. 1.

and 3!1l' aea-ax . 3x.
1. 1.

are also smal! due to isotropic dissipation. The deet ruct.Lon term is

modelled based on Lumley's assumption. Thus

aUt ae ae
2a-ax. ax . aXn

1. 1. ..

In the present inves~iga~ion of ~he two-scale turbulence model, the ~ime

scale in the above equation is taken ~o be that of the des~ruc~ion term

in the t-equation namely that of Kolmogorov scale [tl = (v/t)!.

Oestruction of te is modelled as

i~aT i- C Ct/v) u_,,- - c Ct./v) eel t aXt e2 a

Therefore, the modelled te equation is

Ouiu j = _3_ [C k2. auiuj + vauiu j ] 2
Ot aXt k t aXt aXt - Pij - Pij,b - 3Öijt.

- Cl ~[UiUj - ~Öijkl - C2[Pij - ~,6ijPk]- C3[Pij,b - ~ÖijPb]

(3.21)

(3.30)

Summarizing the complete two-scale turbulence model for buoyant flows,

the equations for the turbulent quantities are
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(3.22)

D a k 2 a a _ ~ au;
D& = -a -[C - -at + v-a&] C l(&/v)~u.u. a ...
t xL t e xL xL t ~ J xL

- Ct2(t/v)tt + Ct3(t/V)tPb (3.23)

(3.26)

(3.28)

(3.30)

In addition to incompressible turbulent flow equation forïr1l., k, t
~ J

and uia, two additional equations for ~ and te are needed in the

buoyant flows. Also, in addition to 9 turbulent coeffecients Ck, Cl' C2,

Ct' Ctl' CtZ' CT' CTl and CTZ needed for nonbuoyant flows, 6 more

coefficients are needed in the turbulent buoyant flow prediction,
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3.3 Governing Equations for turbulent
free shear flows with buovancv

FQr two-dimensional turbulent free shear flows, the above governing

equations can be simplified considerably. The assumptions made in

obtaining turbulent free shear flow equations are

1. Diffusion in the direction normal (y coordinate) the flow is much

larger than the diffusion in the direction parall~l (x

coordinate) to the flow.

2. Pressure gradient is small in the flow.

3. Laminar shear stress is much smaller than the turbulent shear

stress.

4. Boussinesq approximation applies.

5. Frictional heating is negligible.

With th~se assumptions, the mean equations (3.9), (3.10) ~d (3.11)

for turbulent Shear flows under Boussinesq approximation are

au + av 0=ax ay

Uau Vau
1 a . T - Ta+ = - -[rüV] + gax ay j ay Ty a

and

uaT VaT 1 a .
+ = -[yJvr]ax 3y yj ay

(3.31)

(3.32)

(3.33)



75

where T is the ambient temperature. j=O for plane flows and j=.lfora

axisymmetric flows. Equations for the turbulent quantities reduced from

equations (3.21), (3.22), (3.23) and (3.26) with the x-direct ion aligned

to the gravitational vector.

uaüV + VdUV 1 L[ .,je k? auv] -au eg~= - uv- -ax ay yj ay)1 k e ay ay

Cl
t_ C_au + C3guBB- -uv + ?uvak - y

Uak + vak L L[ jc kVZak] -au uS= - uv- + (y- - tax ay j ay y k t ay ay oory a

(3.34)

(3.35)

(3.36)

ua~ + Vaü'9" = L L[ je k;tauB]
ax ay j ay y T t ay

y

(3.37)

uae2 + va81 =ax ay (3.38)

It should be remarked that since the term ~ appears in equation (3.37),

a transport equation for ëY is used. In equation (3.38) an

approximation for te' as suggested by Launder in equation (3.28a), is

made so that an equation for te is not required.
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Tt is necessary ~o solve all the above equa~ions to complete the

prediction of turbulent buoyant shear flows. However, a considerable

amount of compu~ational effort would be required to solve the whole set

of equations. Therefore, some simplifying assumptions are further made

to reduce the number of differential equations to be solved. One such

assumption is to neglect the convective and diffusive transport ~erms of

ü:'ü. and ü"':"9' equations. This leads to the following app.roximated~ J ~

algebraic relations for the üV, ~, ;ë, ~ and ë2 terms.

--uv =
1 - C2 2'

Y [1 +
Cl k

(3.39)

(3.40)

(3.41)

- k -aT au Cl - CT3)
uê= --[-uv-:- - veel - CT2)ay - g T if]CTl!: ay a (3.42)

(3.43)

In the present investigation, these algebraic equations are solved with

two-scale k and e equations in differential equation form'.This

simplified turbulence model is known as the two-scale k-E model and is

perhaps most practical model for predicting details of mean motion and

turbulent transport properties.



77

3.4 De~ermination of coefficien~s

Most of the coefficients in the above equations have been derived in

chapter II and so only the two additional coefficients CT3 and Cel

required in solving buoyant free shear flows are di.scuased here.

3.4.1 Coefficient Cel

This coefficient is obtained from experimental data of tempera~ure

fluctuations behind a grid. Figure 3.1 shows the decay of e2 measured by

Gibson and Schwarz [24]. From this figure, e2 is round to vary inversely

as the three-halves power of distanee behind the grid.

For such a flow, the ëi-equation [equation (3.38)] becomes

(3.44)

Non-dimensionalizing this equation with the variables

•
X' =~.

M'
k' k= ij'"2;

o
E

= U 2jM;
o

the following equation is obtained.

(3.45)

In section 2.4.1, k and E were found to be

k' = 450 1-1
40000x and E

450 ,-2
= 40000x

Further, from figure 3.1, the relation between ~ and x' is found to be



2~,~----------------------------~--~~

1.5 ~ •
." •0 •...... •*.., 1- •~
I •,"""" I,..
~ I'.0.5-

••
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X/M

Figure 3.1. Decay of ii me.asuzed
by Gibson et al.
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Substituting these in equa~ion (3.45) gives

-~2*3.l*x,-2.5 = - 2C (~) ,-2(40000) '(3 1* ,-1.5)
el 40000 x 450 x . x

This results in

3= 4 = 0.75

the commonly used value of Cel is 0.62. This is, however, obtained from

Launder's assump~ion in equation (3.28a). In the present investigation,

a value of 0.75 will be used.

3.4.2 Coefficient CT3

This coefficient is generally set equal to CT2 [20] which has been

obtained earlier in chapter 11 to be 0.5. Hence, a value of 0.5 is·used

3.5 Concluding remarks

In section 3.3, it was mentioned that due to Launder's argument, the

equa~ion for te was replaced by an algebraic relation. Hence, the

structure of the turbulent heat flux ë2 is represented by only the (k,t)

scale only. In flow situations, where te mi&ht be an important

parameter, the need for solving the complete te-equation [equation

(3.30)] would be important. This would bring in the influence of the



two-scale concept or the effect of viscous dissipation in the thermal

dissipation or destruction ES in the turbulence model.
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CHAPTER IV

REVIEW OF EXPERIMENTAL WORK

4.1 General remark

This chapter briefly reviews various experimental data for free shear

flows. The ~ypes of flows considered are je~s, wakes, mixing layers,

coaxial jets and buoyant jets. Reliable experimental da~a are selected

for comparison with the predicted solution obtained from the proposed

two-scale turbulence model. Table 4.1 shows the definition of the

spreading rate, S, for different flows which will be used for comparison

later. This rate of spread is a gross parameter independent of the

distanee x. The symbols used in the definition of S are shown in figure

4.1. In addition to the rate of spread, detail of velocity and other

profiles are given in the following section.

4.2 Jets flowing into stagnant surrounding

The gross parameter of importance to the jet flows is the spreading

rate, S, which is defined as

= dYi
S dx



82

Plane or Round Jet

~-- ---
--

Plane Wake

_­---_
Plane

Mixing Layer

LJ1

Figure 4.1. Oefinition of symbols.
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Table 4.1

Definition of spreading rate S

Flow S

Jets dYt/dx

Wakes (UE/wo) [dYt/dx]

Mixing Layers d(YO.5 - YO.g)/dx

Here, Yt is the normal distance from the jet axis where the axial

component of the velocity is one-half the centerline velocity U . The
c

spreading rate S is found to be a constant when the flow becomes self-

similar in the far region. The definition of self-similarity or self-

preserving is that the profile or distribution of dependent variables

are similar from one station to another and become identical when they

are made dimensionless by the local reference quantities. It should be

remarked that experimentally it is found that although bath profiles of

the mean flow variables and turbulent transport quantities become

simi1ar the former usually occurs first. It is also found that the

initial condition at the nozzle exit affects only the near jet region.

Therefore, the rate of spread and various profiles far downstream are

the same regardless of the inlet conditions.

4.2.1 Plane jet

Table 4.2 summarizes the important flow parameters measured for plane



jet by scvcra l invcst Lgn tors [:!S-2C)j. Th e range of exper irnent a l data

11.·.15 bct wecn -)and ]:30times Uw IlO7.7.]p w id th . In each of the CiJSCS, self

preservation started at a different location dot.nstreamof the nozzle.

This could possib1y be due to the different initial conditions such é'.S

velocity rrofiles or turbulent intensity level. Nevertheless, the rate

of spread. center-line turbulent kinetic energy and the maximum shear

stres~ in the self preserving region obtained by various invcstigators

are about the same. The rcsults of BrEldbury [25], bowever. showed ehat

self-similarity was not reached and the rate of spread continued to

Licrease beyend i1 distance of 70 nozzle w i.dths . One reason for this was

that in Bradbury's experiment the surrounding air was not stagnant. Rodi

[4] also found that jets flowing into moving surroundings are only

approximately self-similar. However, Bradbury [25] indicated that by

reducing the velocity of the surrounding air the velocity and the

turbulent kinetic ellergydo not change ilppreciably.

Figure 4.2 sho~s the velocity prGfile in the self-similar region of a

"Lln(' j ot obt.uiuod hy ûr;lllbury[25]. lli'skt'stad 126]. Patel [Z7J, Gutmark

128] ~nd Robins [2q]. Except for a sma11 region near the edge of the

_j et bounda ry, there is close agreement between all measuremen ts. Hence,

it orovides a good test for a turbulence model. Figure 4.3 gives the

profile of turblilentkinetic energy k in the far region as obtained by

\-iH':OUS invest igators. There i~ a largo amount of scatter in these

resuJts. Gutmark's results seem to be inaccurate 5ince some

84
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Table 4.2

Parameters for plane je~s

Investigator Bradbur::l Heskestad Patel Gutmark Robins

Nozzle 46 * .95 150 * 1.25 80 * .7 50 * .13 --size(cm)

Range 14-70 47-155 12-152 10-150 5-100
xjD

Reynolds 30,000 4700- 35,000 30,000 10,000-
number 37,000 60,000

Self-pres. 30 65+ 30 120 60
xjD

5 --- 0.11 0.103 0.102 0.103

Maximum
Reynolds 0.026 0.021 0.021 0.024 0.02
stress

Max turb
kinetic 0.067 0.07 0.064 0.077 0.064

energy k

abnormalities were reported by him in his experiment that the velocity

decay had an abrupt change at xjD=65 and the dissipation rate was only

20 % of the product ion of turbulent kinetic energy. Heskestad's results

indicated an increase in the value of U-z/U 1 even beyond 160 nozz1e
c 0 ,,'

widths. A1so, Bradbury indicated that his measurements of ~ > ~ seem

physica1ly un1ike1y. Experimenta1 resu1ts of Patel and Robins are a1so

shown for comparison purpose. In general, their measurements are

smaller than that of Gutmark, Heskstad and Bradbury. In figure 4.4,

Bradbury's measurements of the Reyno1ds stress are shown at two



'86

different locations. The maximum value of Reynolds stress is 0.026 which

is slightly higher than that of other investigators quoteà in table 4.2.

A plot of the centerline velocity decay along the jet axis is given in

figure 4.5 as obtained by Bradbury et al. [30] and Van der Hegge [31].

From this figure, the potential core length or zone of development is

estimated to be about 6 times the exit Jet width. Bradbury's àata shows

a lower decay rate than that of Van der Hegge. This slight difference

in the two results could be due to different inlet and free stream

conditions as it is known that by changing the inlet turbulent kinetic

energy, the length of the core will vary.

4.2.2 Round jet

Table 4.3 shows some of the gross parameters obtained by Hetsroni [32],

Wygn~ski'and Fiedler [33], Rodi [4] and Sh~arer and Faeth .[34] for a

round jet. The measurements for mean quantities by Hetsroni and by

Wygnanski were done up to a distance of x/D=35 and 40 respectively.

Shearer measured the flow quantities up to a distanee x/D=510 and the

measurements were slightly different from the other two investigators.

It is, therefore, assumed that the initial condition still has a

significant influence on the measurements at x/D=40 and the flow profile

may not reach the self-similar condition. Hence, Shearer's results are

assumed to be more reasonable. For comparison purposes, the latter

result will be used.

The velocity profile is shown in figure 4.6 where there is a small

variation between the measurements of Wygnanski and Shearer. The
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Figure 4.2. Measured velocity
profiles in a stagnant plane jet
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Figure 4.4. Measured Reynolds stress in
a stagnant plane jet (Bradbury)
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difference could be explained by the lack of similarity at x/D=40. This

discrepency in the result is further amplified in the measurement of the

kinetic energy as shown in figure 4.7. Wygnanski and Fiedler obtained a

value of 0.1 for the center1ine kinetic energy at a distance xjD=40.

However, Shearer's measurements indicate a value of 0.08 at xjD=510.

This value seems to be more reliable and realistic because the

measurements were taken sufficiently far away where the jet is most

likely se1f similar and there is no influence of the inlet conditions.

The variation of Reynolds stress is shown in figure 4.8. Here, too, the

measurements of Shearer are slightly different from those of Wygnanski

whose data is for xjD=60 and 70. Some scatter of data is obvious from

the figure. The decay of center1ine velocity for a round jet is

presented in figurè 4.9. Along with the data of Shearer and Wygnanski,

the measurements of Corssin [35] are a1so provided. These data are more

agreeab1e, though the measurements of Shearer start from xjD=50.

4.3 P1ane wake

Dne of the important globa1 parameters for the wake flow is the

spreading rate of the wake. The spreading rate for the plane wake, S, is

defined as

S = UE dYj
w dxo

Here, y! is the normal distance from the symmetry line to the location

where the x-component velocity U is (Uc + UE)/2. Uc and UE are
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Table 4.3

Parameters for round jets

Investigator Hetsroni W:i8!!anski Rodi Shearer--
Nozzle 2.5 2.6 1.29 0.1194

size(cm)

Range 15-40 40-98 62-75 170-510
xjD .

Reynolds --- 100,000 87,000 ---
number

Self-pres 15 70 62 ----
x/D

S 0.0713 0.086 0.086 ---
Maximum

Reynolds --- 0.0165 0.0186 0.0195
stress

Max turb
kinetic --- 0.101 -- ... - 0.078

energy k

Extensive measurements have been made, over several decades, in the

respectively the velocity at the symmetry line and the free stream line.

Wo is the defect veloeity or (UE - Ue).

wakes of two-dimensional bodies. Data is available both in the near wake

and far wake r.egions. The earliest one was by Chevray and Kovasznay

[36], who measured the mean veloeity and turbulence quantities in the

near region of symmetrie wake of a flat plate. They measured the

spreading rate and obtained a value of 0.062 but this value was stil~

increasing with x. Their spreading rate measurement did not agree well
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with ~ha~ of others who obtained values ranging from 0.09 to 0.11. The

disagreemen~ is due to the fact that the wake was formed behind a

streamlined body which may influence the wake structure. Pa~el [37]

observed that it takes a distance of 3008 for a wake to become self­

similar. Therefore, a change in the initial condition at the trailing

edge before wake format ion could influence the mean and turbulence

quantities in the wake region for a considerable distance downstream. A

physical explanation for this behaviour is that unlike jet flows the

product ion of turbulent kinetic energy is lo~ in the wake flow and

dissipation is high. Therefore, the initialor the upstream conditions

for the wake must be accurately prescribed if one hopes for a meaningful

comparison between the prediction and measurement. In particular, the

turbulent kinetic energy level and the shear stress may be influenced by

the initial conditions far downstream.

Comparisons between prediction and measurements were limited to the

decay of center-line velocity dèficit. However, recent measurements by

Andreopoulos [38], Pot [39] and Ramaprian et al. [40] provided abundant

experimental data for comparison with the prediction based on turbulence

modeIs. The measurements of Andreopoulos and Ramaprian were done in the

near wake region while those of Pot were in the asymptotic region for

flow past a flat plate. Hence, their data provides a good test for the

performance of the two-scale k-t turbulence model in both the near wake

and far wake. Table 4.4 summarizes some of the work done in recent

years. Figure 4.10 shows the asymptotic velocity deficit profile
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obtained from the asymp~o~ic theory along with ~he resul~ of Po~. There

is a slight difference at the edge of ~he wake which is probably due to

the fact that the flow is not fully turbulent in tha~ region. In figure

4.11, the Reynolds stress profile is shown and compared with the

asymptotic solution. Except for a small region near the edge of the

boundary layer and around Y/Yt of 0.90 , the solution lies on the data

points. The measurement of the centerline veLocLty def Lci-t variation

with x/a is shown in figure 4.12. a is the momentum thickness based on

the velocity profile at the ~railing edge of the flat plate.

Table 4.4

Parameters for plane wake

Investigator ChevraI RamaErian Andreo Pot
KovasznI et al. Eolous--

Body flat flat flat flat
plate plate plate plate

Range 0-207 10-79 0-43 3-948
x/a

Rea 1580 5220 13600 2940

5 0.062 0.12

Max Rey 0.05 0.05
stress

Max Turb 0.07 0.18
kinetic :

energy
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4.4 Plane mixing layer

Table 4.5 summarizes the experimental data measured by various

investigators (41-46). !he spreading rate, S, is defined as

where YO.1 and YO.9 are respectively the normal distance from the

dividing plane to the location where the x-componen~ velocity is 0.1 and

0.9 of CUI - UE)· Both Reynolds stress and ~urbulent kinetic energy are

normalized with CUI - UE). It can be seen from the table that there is

a large variation in the spreading rate. !his is a major source of

concern in rec~nt years [46). However, recent data by Husain and Hussain

[47] indicatés that sn isolated mixing layer does reach a unique

asymptotic spreading rate.

Nevertheless, the developing region of a mixing layer is not very

weIl understood. This is due to complex interaction of the two wall

boundary layers and the two shear layers. For calculation purposes, it

is important that weIl defined initial conditions and sufficient

turbulence measurements be available to characterize the main features

of the flow. AIso, the data should cover the complete mixing region. At

present, no totally satisfactory set of data is available. Howevér,

some of the measurements of the velocity are shown in figure 4.13. Most

of the data falls on one curve indicating that the results are in good

agreement. These results were obtained under different conditions at
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Table 4.5

Parameters for plane mixing layers

Investigator W,lsnanski LieEmann Patel Sarni

Dimension 51 * 18 152 * 19 76 * 43 30 dia.
(cm)

Range 58 90 100 450
x/D

Max Re 465,000 1,100,000 1,800,000 660,000

S 0.2 0.16 0.165 0.163

Maximum
Reynolds 0.0091 0.008 0.01 0.0109.
Stress

Max turb
kinetic 0.035 0.02 0.0275 --

energy k

the start of the mixing layer. Measurements of Albertson et al. [43] and

Sunyach et al. [44] were in the initial region of a plane jet while Sarni

[45] and Bradshaw [46] obtained data in the initial region of a large

round jet which is approximately considered to be two dimensional. In

figure 4.14, the kinetic energy profiles of self simi1ar mixing layers

are shown. Unlike the velocity profile, there is a large arnount of

scatter and, thus, it is difficult to say which data is more accurate.

Part of this discrepency is due to the variatio~ in the initial

condition.



0.6
- • WYGNANSKI

~
Cl UEPMANN:J

0.4- • PATEL
0 ALBERTSON
I:::. SU NYACH

0.2
X BRADSHAW
V SAMI

0
-1.5 -1 -0.5 0 0.5 1

Y!(Y 0.1-Y0.')

0.8

Figure 4.13. Measured velocity
profile in a plane mixing layer

104



105

0.08~-------------------- ~

• SPENCER
o WATT0.06
• SUNYACH
OPATEL

N - l:l,. WYGNANSKI
~ 0.04

X BRADSHAW~

V LlEPMANN

0.02

o.oo~----~~----~------~ ~ ~
-1 -0.5 o 0.5

Y/(YO•1-Yo .•)
1

Figure 4.14. Measured k-profile
in a plane mixing layer

1.5



4.5 Jets flowing into a oarallel moving stream

Unlike the flow of jets into stagnant surrounding, this type of flow

is known to be approximately se1f-simi1ar. Due to the presence of the

moving f1uid in the surrounding, the flow has tWQ distinGt

characteristic regions. Close to the jet or the near region, thé

center1ine velocity U is much 1arger than the free stream velocityo

u

Therefore, the mean strain rate is high. In this region, the flow

properties are similar to that of a stagnant jet. Far downstream, the

jet centerlin$ velocity is on1y slightly larger than the free stream

velocity,i.e.

u

where ~ is small. Hence, the strain rate is weak and the velocity

profile resembles an inverted wake velocity profile. !his region is

sometimes termed the 'wake like ' region.

Due to the change in the flow characteristic from large strain rate

to smal1 strain rate, jet~ flowing into moving stream ptovide a good

case for testing a turbu1ence model.
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4.5.1 Plane jet

Although the spread of turbulent jets issuing into parallel moving

streams has been the subject of a number of theoretical treatments [48],

reliable experimental data on these flows are still comparatively

sparce.

Figure 4.15 shows the velocity profile measurements made by Bradbury

et al. [30] for several ratios of UE/CUo - UE)' Since the centerline

velocity decreases with x, these ratios,effectively correspond to

different x locations in the flow field. All the profiles coincide into

a single curve indicating that the flow is approximately self-similar.

In figure 4.16, the centerline velocity decay is shown. In both the

figures, the ratio of the free stream velocity UE to the nozzle velocity

UN was 0.3.

4.5.2 Round jet

Figure 4.17 shows the plot of mean velocity profiles at three

different stations as obtained by Antonia et al. [49]. All velocity

profiles fall into a single curve, indicating that the mean flow is

almost self-similar. The ratio UE/UN for this data is 0.3.

In figure 4.18, the Reynolds shear stress is shown for various

locations of x/D ranging from 38 to 248. There is a considerable amount

of scatter at y/Y, < 0.8. However, the shape of the data curve is

similar and has a peak at about y/y,=0.8.
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4.ó Buovant jets

The turbulence model for the prediction of the turbulent buoyant flow

is given in chapter 111. In order to verify the model, some reliable

èxperiJDentaldata is necessary. !he existing turbulence models dg r""t

predict the mean and turbulent quantities close to experimental data

unless the model constants are altered. Chen and Rodi [50] have

collected available data on buoyant jets which ean be used to verify the

performance of the two-scale model. Unfortunately, experimental data,

especially the turbulence quantities, for buoyant flows are not

sufficient for an accurate test of the model.

4.6.1 Plane buoyant jet

Table 4.6 shows the plume region of buoyant plane jets. !he modified

Grashoff number, which is the product of the Grashoff number and the

heat;flux, ranges from 3,900,000 to about 966,000,000. The 'Grashoff

number is defined as

where

p =ambient fluid density,a

p =fluid density at nozzle exito

v =kinematic viscosity

o =jet width or diameter

Th~ rate of velocity spread which is defined as
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_ dy!
S - dx

is measured by the variou~ investigators to vary from 0.095 to 0.147.

!he recommended value is 0.12. The thermal rate of spread is defined as

where y!T is the location where the temperature is one-half that of the

centerline temperature. From the temperature measurements, the thermal

rate of spread has been obtained by most investigators to be around

0.13.

Table 4.6

Gross parameters for buoyant plane jets

Investigator Rouse Kotsovinos Harris Anwar- -
Modified 39 470 9660 -
Gr No.
*105

Froude - 1.4-5.9 4-193 16-100
No.

(x/D) 650 43 70 50

S .15/.14 .095 - -
!hermal
Spread .13/.14 .12 .135 .131
rate



!he velocity and temperature profiles fot a plane jet are shown in

figures 4.19 and 4.20. The first figure is for a pure jet measured 01

Btadbury and Van der Hegge while the second is for a pure pIume obt,ained

by Róuse et al. l51]. These are two extreme cases of a buoyaat jet.

The centérline velocity a:ccdrdingto Chen and Rodi [50] can be diviciê'd

into three distirtct regions in a buoyant jet, namely, the neär or the

non-buoyant region, the intermediate region and the plumè regioh. lA

all thè thiee regions, the experimental,data lies closely to the

ühèor etLcaI lines which are obtained from similarity analysLs. Hènca

the profiles at all Froude numbers should lie between those of pure jet

and pure plume. Figure 4.21 shows the Reynolds shear stress for plane

buoyant jets obtained by Ramaprian et al. [SZ}. Their measurements

aróbnd Y/Yi=l shows sQme scatter. In figure 4.22, the t~tbulent normal

Streés distributions measured by Kotsovirtós [53] and Bradbury [30] àre

show. Bradbury'~ data is for a pure jet while Kotsovinos's

measurements are for a pure plume. It can be Seèn that thè turbu Lent;

ifitens:1.tyin a pure plume iS lÖuch larger than that in ,apure Jet.

4.6.2 Round buoyánt jet

Fof'a zcuad buoyant jet, Table 4.7 SWDtllatizèSthe grö'$sparàftiéeters

dbt4ined by different investigators. tbe ~odified Grashoff numbèt varies

from 10' to 1011• Thè rate of velocity spread varies from 0.084 t,o

0.12. The recommended value is 0.112. The value suggestëélfor the

thermal rate of spread is 0.1.
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Figure 4. 21. ~leasured Reynolds
stress for a plume
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Table 4.7

Gross parame~ers for a buoyant round jet

Investigator Rouse George Abraham---

Modified 1.38 13.3 4.53
Gr No.,
*10

Froude - .714 1.82
No.

(x/D) 75 16 26

S .084 .112 -
Thermal
Spread .098 .104 -
rate

In figure 4.23 the velocity and temperature profiles are shown for a

pure jet where the Froude number is infinite. The data is obtained by

Rodi for velocity and Ruden for temperature. On the other hand, figure

4.24 shows the velocity and temperature distributions obtained by George

et al. [54] for a pure plume where the Froude number is O. The

turbulent kinetic energy in buoyant jets is shown in figure 4.25.

Rodi's measurements are for a pure jet while George's measurements are

for a pure plume. Unlike the plane buoyant jet, there is a decrease in

the turbulence intensity for a round jet due to the presence of

buoyancy. Hence, more experimental data is needed before a meaningfull

conclusion of the accuracy of the turbulence model can be made.
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4.7 Summary

From the experimen~al data reviewed above, it can be summarized that

though the amoun~ of data is enough to adequately test a model, i~ is

still not complete. In most cases, there is no experimental data of

turbulence quantities at the inlet, thereby making it difficult to

compare the prediction of flow near the initial region particularly in

the near region of the wake flow. Also, in wake and jet flows, the

turbulence at the inlet influences the velocity and kine~ic energy in

the near region. Therefore, small discrepencies be~ween experimen~al

data and numerical calculation using the turbulence model may not

indicate that the model is unsuitable. Due to lack of initial condition

some trial and error or guess of initial turbulent condition during

computation is necessary in order to examine or compare the experimental

data with numerical results in some region of the flow.

In chapter V, the prediction based on of the two-scale turbulence

model for nonbuoyant flows is compared with the experimental data.

Chapter VI contains a comparison of the results of the two scale model

for buoyant flows and experimental data for such flows.



PREDICTION OF TURBULENT NON-BUOYANT FLOWS

This chapter presents the results obtained by the two-scale

turbulence model for non-buoyant flows based on equations (2.2), (2.3),

(2.11), (2.12) and (2.13) with the turbulent constants of Ck=0.9,

C1=2.8, C2=0.47, Ct=2.00, Ct1=17.5/(Re)', Ct2=18.9/CRe)', CT=0.13,

CT1=3.2 and CT2=0.5. The predicted results are compared with the

experimental data discussed in chapter IV. Furthermore, prediction of

the one-scale turbulence model is shown and compared. For the one-scale

turbulence model, instead of equation (2.12) for c, equation (1.10) is

used and instead of Ck=o.9, Ct=2.00, Ct1=17.5/(Re)t, Ct2=18.9/(Re)t, the

values used are 0.225, 0.15, 1.435 and 1.92, respectively.

As mentioned earlier, the selection of turbulent free shear flows as

the first type of flow to verify the predictability of the turbulence

model is based on the following considerations. First, there is

sufficient data available for comparison for both mean velocity and

turbulent transport properties. Setond, the pressure gradient in free

shear flows is negligible so that the pressure gradient will not play a

major role in determining the flow field. Therefore, the prediction of

.the free shear flow field is most sensitive to the modelling of the

Reynolds stress, turbulent kinetic energy and its dissipation. Third,
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the complexity of the near-wall turbulence is absent in free shear

flows. Therefore, the error in the approximate treatment of near wall

turbulence can be excluded from the problem and the accuracy of the

turbulence model can be carefully examined. Fourth, although it is

secondary, the numerical procedure in calculating turbulent free shear

flows is simpier than that in wall shear flows or separated flows.

5.1 Numerical procedure

The equations derived in chapter 11 for free shear flows are

parabolic in nature and 50 the GENMIX program developed by Patankar and

Spalding ~5] is used. The program has been modified by Chen and

Nikitopolous [23] and Chen and Chen [56] to include the governing
-,

equations for k, t and e .

Briefly, in the computation, the two coordinates chosen are the x and

., coordinates instead of x and y coordinates. The governing equations

are transformed from the x-y coordinate system to the x-' system. Thus
-r

the governing equations for U, T, k, t anda are cast in the same form.
-y

The initial conditions are specified for U, T, k, t anda at x=O. These

conditions for each flow are given later in the individual section

describing the flow. The inner boundary conditions are the symmetry

conditions for jets and wake. For the mixing layer, the free stream

conditions apply at the inner side. !he outer boundary conditions are

zero or constant velocity and no turbulence.



The solution at each section normal to the mean flow direct ion is

obtained by using an implicit method. The marching step äx at each

station is calculated from various flow parameters. The grid size 4y is

0.01 times Ax. A total of 40 points are chosen in the cross-stream

direction which is verified by Chen and Nikitopolous [23] to provide

grid independent solution.

The calculations were performed upto a maximum distance of x/D=75 for

jet flows and x/a of 600 for wake behind a flat plate.

5.2 Prediction of gross parameters

The first thing to be concerned with is the prediction of gross

characters of the flow field. For this the spread parameter is chosen.

When a model is not capable of predicting an accurate spread rate for

free shear flows, it is not very meaningful to examine further the

details of flow and turbulent structure in the flow.

Table 5.1 shows the spreading rate for various non-buoyant flows.

For jets, the spread rate S is defined as the slope of Yt in the flow

direction, where Yt is the location in the normal direction of a point

where the U velocity is one-half the centerline velocity, i.e. Ut=0.5Uc'

For wake, S is the spread rate times the free stream velocity, UE' and

divided by the velocity defect, w , or (UE - U ) as defined in figureo c

4.1. In the case of the mixing layer, the spread rate is obtained in

terms of the width of the mixing layer. The width is defined as th~

distance between the edges of mixing layer where the velocity is 10~ and
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90% of the free stream velocity. From Table 5.1, it is seen that the

values of S predicted by the one-scale model for round jet and plane

wàke without altering the turbulent constants are significantly

different from the experimental data while the two-scale turbulence

model predicts satisfactory results for all cases calculated. This

demonstrates that the two-scale turbulence model indeed provides better

prediction than the one-scale turbulence model.

Table 5.1

Spreading rate S

Flow Spread Dne Exp. Two-- --IIE! Parameter scale data scale

Round dYi 0.1189 0.08 0.081
jet dx

Plane " 0.1125 0.11 0.109
jet

Plane " 0.068 0.098 0.0975
wake

Mixing " 0.159 0.16 0.15
layer

5.3 Jets flowing into stagnant surrounding

As mentioned earlier, jets flowing into stagnant surrounding become

self-similar far downstream. For meao quantities, it should take a

minimum of 40 diameters to establish self-similarity and about 60 to 70

diameters for turbulent quantities depending on the initial conditions

at the jet exit. In the near region, the flow parameters are dependent



on the initial conditions like the velocity and turbulen~ kine~ic energy

at the jet nozzle. 1t is necessary to compare experimental data and

prediction for both near and far regions in order to verify the accuracy

of.the one-scale and two-scale models. Unfortunately, most of the

available data do not provide complete information abou't the initial

conditions prevailing at the nozzle such as, velocity profile, 'turbulent

kinetic energy or dissipation. This could lead to differences in the

decay of centerline velocity and turbulent Reynolds stress or

dissipàtion function. The results for both plane and round jets are

discussed below.

5.3.1 Plane jet

In the present çalculations, the initi4l condition for the velocity

is

U=U exp(-y2)N

The k and E initial conditions are

E=O •09k 1 • 5 IR

Here UN is the jet nozzle velocity. The 6% and 9% levels of intensity

are taken here so that the predicted result in the near field resembles

closely that of the measured data. Similar values were used by Chen and

Nikitopolous [23].
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Figure 5.1 shows the comparison of velocity profile for a plane jet

in the region of self-preservation at x/D=ï5. The experimental data

shown in the previous chapter is represented once again in figure 5.1

and most of the points fall in one line. The dashed line is the

predicted result of the one-scale model while the chain-dashed line

gives the results of the two-scale model. The agreement is excellent

between calculations and experiment, except near the outer edge of the

jet.

In figure 5.2, the turbulent kinetic energy is shown. As mentioned in

chapter IV, there is a large amount of scatter between various

experimental data, where the maximum k may vary from 0.065 to about

0.084. All the experimental data are shown once again along with the

predictions of the one-scale and two-scale modeIs. The two-scale model

predicts turbulent kinetic energy within experimental scatter near the

centerline. In the outer edge of the jet, the two-scale model predicts a

larger k. This larger 'tail' is, perhaps, due to the numerical

diffusion problem.

The Reynolds stress profile of a self-preserving plane jet at x/D=75

is shown in figure 5.3. There is a slight difference in value between

experimental data, one-scale and two-scale models away from Y/Yt=1.5.

The maximum Reynolds stress obtained by various investigators, as shown·

in table 4.2, varies from about 0.02 to about 0.026. The prediction of

the two-scale model shows good agreement with the data by giving a

larger peak than the one-scale model. These predictions can be

considered accurate within experimental uncertainty.
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The results discussed so far are in the self-preserving region of a

plane jet where xjD >40. Figure 5.4 shows the velocity decay in the near

region of a jet. The slight difference in the results can be attributed

to the difference in initial conditions at the nozzle. Chen and

Nikitopolous [23] found that the larger the turbulence intensity at the

jet exit, the shorter is the potential core length. They found that when

the initial turbulent intensity is taken to be 6% of the mean flow

kinetic energy, the predicted potential core agrees with that measured

by experiment [57]. Therefore, 6% value is used in the present

calculations. The experimental data of Van der Hegge [31] and Bradbury

[30] are shown along with the prediction of the two models. With 6%

turbulence intensity, the two-scale model predicts the core length less

than that of the one-scale model. Hence, it is assumed that a smaller

turbulent intensity might be necessary for the two-scale model to have

better agreement with experiment.

The spreading rate obtained by the one-scale and the two-scale models

are 0.112 and 0.109 respectively, both of which are close to the

recommended value of 0.11 obtained experimentally.

5.3.2 Round jet

One of the major improvements of the two-scale turbulence model is

the prediction of round jet flow field. As shown in table 5.1, the two­

scale model predicts correctly a spreading rate of 0.081 for the round

jet while the one-scale model, without varying the turbulent constants
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from that used in the plane jet prediction, gives 0.119, a 45~ larger

spread rate than the experimental value. It should be remarked that in

order to remedy the deficiency of the one-scale model in predicting the

round jet flow field, many ad hoc proposals [58-60] were put forth. Pope

[58] proposed that the constant Ct2 be modified as

where

Rodi [4] proposed a modification of the constant Ct2 used in the t-

equation. The correct ion is

y~ dUc dU 0.2
= 1.92 - O.0667[~(ldx I - dxC)]

c

Several other modifications have also been suggested, namely, by Morse

[59] and McGuirk and Rodi [60].

The velocity profile for a round jet is shown in figure 5.5. The

initial conditions for U, k and t at the jet exit are the same as those

of a plane jet. It should be remarked that the abscissa is now y/x. The

prediction of the one-scale model with the same constants as for plane

jet gives incorrect spread rate as shown in figure 5.5.
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!he experimental data plotted in figure 5.5 are ob~ained for a ~iàe

range of x/Do Hetsroni's [32] measurements were upto a distance of

x/D=35 while Wygnanski [33] measured up to x/D=40. These measurements

are somewhat different from those of Shearer [34]-et al. who collected

data as far as 510 diameters downstream. Overall, these data points x~ll

in one curve within a certain amount of scat~er indicating tha~ ~he mean

flow reaches similarity some distance downs~ream of x/D=40. This is

further confirmed by the result predicted by the two-scale model where

the result of the calculations are taken at x/D=75. !he predic~ed

results agree very weIl with the experiment throughout the whole region,

except near the edge of the outer region where the measurement may be

Figure 5.6 gives the distribution of turbulent kinetic energy in a

affected by the intermittency between laminar and turbulent flow. The

fact that the centerline velocity predicted at x/D=75 agrees weIl with

the data shows that the velocity decay along the axial line is

satisfactory.

round jet. Tbe calculations are taken at x/D=75. From this figure, it

is clear that there is a large variation near the center of the jet.

Wygnanski's data, taken at x/D=40 only, indicates a value of k /U 2 ofc 0

0.1 which is higher than 0.08 measured by Shearer. !be latter made

measurements up to x/D of 510. Tbis difference in the centerline kinétic

energy could be due to the fact that turbulence quantities become self-

preserving much after the mean quantities become self-similar. Tbe one-

scale model due to its inability to predict correctly the spreading rate
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predicts turbulent kinetic energy distribution further away from the

experimental data. Using the one-scale turbulence model without the

modified constants, a maximum value of 0.095 is obtained at the

centerline while the two-scale model predicts a value of 0.067.

Although more experimental data are necessary to decide the level of

turbulence intensity at the jet centerline, it seems that the two-scale

model may predict a smaller turbulent intensity than the avai1ab1e data.

Figure 5.7 shows the Reynolds stress distribution in a round jet.

There is, once again, a difference of about 20% in the maximum va1ue of

the Reynolds stress as obtained by Wygnanski and by Shearer. The farmer

measured a peak value of 0.0168 while Shearer got a value of 0.020. The

prediction of the one-scale model indicates a maximum Reynolds stress of

0.025 whereas the value of 0.019 ob~ained by the two-scale model is

closer to the experimental data of Shearer. In general, the two-scale

model predicts satisfactory results.

Figure 5.8 gives the centerline velocity decay for a round jet using

the one-scale and two-scale models along with the experimental data of

Corssin [35], Wygnanski [33] and Shearer [34]. The difference in the

result is due to the initia1 condition of the turbu1ént kinetic energy

and the mean velocity profile. Chen and Nikitopolous [23] showed that

the initial potential core length is astrong function of thé initia1

mean velocity profile and turbulent kinetic energy. For fixed turbulent

intensity at 1.25% of the mean kinetic energy, the core length is ~bQu~

7.3 jet diametérs with a flat exit velocity profile and 3.25 with a
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triangular exit velocity profile. In the present calculation, a

turbulerit intensity of 6% and the exit mean velocity profile given by

was used. !be prediction of the two-scale turbulence model indicates a

core length of about 5 diameters which agrees with the measured core

length.

5.4 Plane wake

The initial conditions used in the calculations of the plane wake are

U=U (y/6)1/7 .
E

where UE is the free stream velocity and 6 is the boundary layer

thickness at the beginning of the wake flow. Most of the existing

turbulence models used in the calculation of turbulent flows do not

accurately predict some of the flow parameters of turbulent wakes, in

particular, the spread rate of the wake. !bis is, perhaps, due to the

fact that the turbulent process in a wake involves complex interaction

among turbulent diffusion, product ion and dissipation and also due to

the fact that the flow in the far wake region is not fully turbulent. As

shown in table 5.1 , the one-scale model underpredicts the spreading

rate by about 30%. The measured spreading rate, defined as
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s = DE dYt
w dxo

is 0.098 while the one-scale model gives 0.068. On the other hand, the

two-scale model predicts quite satisfactorily a spread rate of 0.0975.

Figure 5.9 shows the asymptotic velocity profile in the far wake

region where x/9=600. The momentum thickness, 9~ is obtained from the

velocity profile at the trailing edge. The experimental result is that

of Pot [39], taken at x/9=lOOO, which compares very weIl with the

predicted profile of the two-scale model except at the edge of the wake.

When the predicted velocity profile is plotted against Y/Yi' the one­

scale and two-scale turbulence models differ somewhat near the edge of

the wake. However, it should be noted that the Yi predicted by the one­

scale model is 30% lower than experimental value.

In figure 5.10, the Reynolds stress versus Y/Yi is shown for the far

wake. The va lues calculated from the one-scale model differ considerably

from that by the two-scale model and experiment. Patel et al. [37]

improved the one-scale turbulence model with the turbulent constants

altered and by introducing the intermittency near the edge of the flow.

Their result showed some improvement 1n the prediction. However, it is

emphasized that no modification of turbulent constants were needed for

the two-scale turbulence model in predicting the wake flow.

Figure 5.11 gives the center-line velocity defect in the near and far

wake region. UE and Uo are the free stream and centerline velocity
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respectively. The results of both the one-scale and two-scale models

are in good agreement with experimental results.

5.5 Plane mixing layer

The accurate prediction of mixing layer flow depends heavily on the

initial conditions since the mixing flow resembles the initial

development of a jet.

Figure 5.12 shows the velocity profile in a mixing layer ob~ained at

x/D=5. Here D is the width of the jet exit. The calculations were done

from x/D=O to x/D=5 with the initial conditions for U and k as

U=O for y>O

U=Ur for y<O

k=o.01Ur2exp(_y2) for y<O

where Ur is the initia1 velocity of the mixing flow. The calculations

are presented on1y for the two-scale model since one-scale model

prediets satisfactori1y the gross properties. The two-sca1e model also

predicts velocity distribution which is in good agreement with

experimental resu1ts. The kinetic energy profile obtained by various

experiments [41-46] varies considerably as shown in figure 5.13.

However, the model generally predicts satisfactory results.
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5.6 Jets flowing into moving surrounding

In this section, jet flows into roovingsurroundings are considered

where the jet exit velocity is larger than the free-stream velocity. As

mentioned in chapter IV, jets flowing into moving surrci)lindingare C" 1y

approximately self-similar. The flow field can be approximately divided

into two regions, namely, strong jet region where the strain rate is

large and a weak region where the strain rate falls from relatively

large to small values. This weak jet regiön is an important test case

for turbulence modeis, since turbulence process in this region of weak

strain rate involves not only turbulent production and dis,sipationbut

also significant amount of turbulent diffusion. Therefor'e,unless the

turbulent transport equations are properly modelled, the predictability

may not be accurate. The initia! .conditionsfo'rthe jet are

U=UNexp(-y%)

k=O.06UN%exp'(-y%)

K=O

and for the free stream are

U=UE=Constant
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5.6.1 Plane jet

Experimental data of Bradbury and Riley [30] shows that except near

the nozzle exit, the velocity profiles collapse into a single curve

independent of the ratio

UE, = ---==---
" U - UE 0

where UE is the free stream velocity and Uo is the cen~erline veloci~y.

With U varying in the axial coordinate, the ratio, À, may be used too

denote various distances downstream and to indicate when self-similarity

is achieved. Figure 5.14 shows the velocity profiles for a plane jet.

The calculations of the one-scale and two-scale models are shown along

with the experimental data. Since the flow far downstream becomes

approximately self-similar, calculations are shown for only one location

x/D=75. The ratio, UN/UE' of jet exit velocity to free stream velocity

used in the calculation was 3.3. The results of the two models show

good agreement with the experimental data of Bradbury and Riley [30].

In figure 5.15, the decay of centerline velocity of the plane jet is

shown. The predicted centerline velocity by the two-scale model gives

slightly slower decay rate. Nevertheless, the calculations tend to

reach experimental value far downstream.
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5.6.2 Round jet

For a round jet, the predictions of the one-scale and two-scale

mode Is are compared with the experimental result of Antonia and Bilger

[49] as shown in figure 5.16. The experimental data collapse into a

single curve for all distanees beyond xjD=38. Hence, the velocity

profile at x/D=75 is shown where the flow is approximately self-similar.

The ratio of the nozzle velocity UN te the free stream velocity DE

chosen is 3.3. There is a good agreement between the experimental

result and the two turbulence modeis.

!he Reyno1ds stress is shown in figure 5.17 for xjD=75. According to

the experimental data of Antonio and Bilger, the stress at xjD=248 is

larger than that at xjD=152. This indicates that the turbulence

quantities have not reached self-simi1arity. The calculations of the

one-scale and two-scale models are shown for xjD of 75. Around yjYi of

0.8, there is some difference between the two models and the

experimental data. The predicted Reynolds stress in general follows the

trend of the experiment but gives smaller magnitude particularly near

the peak or Y/Yi=0.8. The cause of large value of measured Reynolds

stress probably is due to the initial conditions where in the experiment

the nozzle of the round jet has a finite thickness while it is assumed

infinitely thin in the computation. Furthermore, an increase in the

initial turbulent kinetic energy for the calculation can not only cause

steeper decay of centerline velocity than that shown in figure 5.1S Qut

also increase the predicted Reyno1ds stress in figure 5.17.
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5.7 Sensitivi~v of the Coefficients

This section gives a brief discussion of the sensitivi~y of the

coefficients Cel and Ce2 in the e-equation. From homogeneous shear flow

and flow behind a grid turbulence, these coefficients were found to be

l8.90/(Re)! for the two-scale second order closure model of ~, k and
1 J

e. However, the coefficient Cel was modified to be l7.50/(Re)! for the

two-scale k-e model. This modification was made because, in the

calibration of C 1 and C ~, the diffusion terms in k and E equa~ions for
. E E_

bo~h homogeneous and grid turbulence flows were neglected which is not

the case. The va lues C~1=17.5/(Re)! and C ~=18.9/(Re)! were obtained by
.. t~

solving the plane jet flow where the turbulent diffusion term is

increased in the,calculation.

It is known that flow prediction based on the one-scale turbulence

model is very sensitive to the Ce2 coefficient which has a value between

1.90 and 1.92. Any value outside this range may cause the prediction to

change significantly. On the other hand, for computation based on the

two-scale turbulence model, Ct2 may be changed from 11.90/(Re)! to

l8.90/(Re)! and Cel from 10.50/(Re)! to 17.50/(Re)!, the predic~ion is

quite stable and satisfactory as long as the same difference of

1.4/(Re)! between Cel and Ce2 is kept.

Table 5.Z shows the spreading rate for a plane jet for various values

of Ctl and CeZ' These calculations were done for Reynolds number

ranging from 12,000 to 1Z0,000.



Table 5.2

Sensitivity of spreading rate on
the coefficients

Re cel/eRe)! Ce/ eRe)! S

12,000 17.50 18.90 0.1017

" 15.50 16.90 0.1146

" 10.50 11.90 0.1200

24,000 17.50 18.90 0.1000

120,000 17.50 18.90 0.1009

The spreading rate varies from 0.1 to 0.12 for a change in Ct2 from

10.50/eRe)' to 18.90/eRe)' at a Reynolds number of 12,0.00. Hence it can

be conc1uded that there is a s1ight change in S even with an appreciable

change in the coefficients. This difference can be attributed more to

the GENMIX program than to the physica1 phenomenon.

The effect of the Reynolds number is aLso shown in table 5.2 for a

pLane jet flow. The values of Cel and Ct2 used are 17'.5,0,and 1:8.90

respectively. The Reyno1ds number is changed from 104 to 106. The

change in the spreading rate is again very small. Thus, it can be said

that a change in Reynolds number does not;affect the evaralI structure

of tne jet. It should be remarked, however, that by changing the

coefficients and keeping Reynolds number fixed is effectively the same

as keeping the coefficients fixed and changing Reyno,ldsnumber. Since

there is no set pattern in the va1ue of S, the difference is due tq the

numerical problem.
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To fur~her s~udy the effect of Reynolds number, the kinetic energy is

calculated for various Reynolds numbers. Figure 5.18 showsthat ~here is

very little difference in the kinetic energy profile at different

Reynolds numbers. The difference shown in this figure may be due to the

numerical diffusion in the program which calculates the flow using

qimensional quantities.
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CHAPTER VI

PREDICTION OF TURBULENT BUOYANT JETS

This chapter shows the predictions of the two-scale turbulence model

for buoyant jets based on equations (3.31), (3.32), (3.33), (3.35) and

(3.36) and that of the one-scale model based on equations (3.31),

(3.32), (3.33), (3.35) and (1.10). As mentioned in chapter IV, the

amount of experimental data available for turbulent transport quantities

in buoyant jets is scarce and insufficient to test the accuracy of the

turbulence model. Hence, most of the comparison between one-scale

model, two-Sca!é modël aridexperimental data is cönfined to mean flow

quantities. Tbe velocity and temperature decay along the jet axis are

shown for various Froude numbers. In the present study, Froude number

is defined as

where

p =fluid density at jet exito

p =ambient fluid densitya

U =jet exit velocityo

D =diameter or width of jet
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Some of the measurements of normal stress u% and the kinetic energy are

also presen~ed, whenever available.

6.1 Bouyant olane jet

!he exit and initial conditions for plane buoyant jets are the same

as that of nonbuoyant jets, namely

u=u exp(_y1)
N

t=O.09k1•SjH

For the temperature, T and fluctuating temperature, Ft the jet exit

conditions were set as

T - T =(T - T )exp(-y1)a 0 a

The calculation procedure is carried out similar to that for the

nonbuoyant jet except that additional equations for Tand 91 are

included.

The most significant characteristic to be predicted by the turbulence

model is the temperature or velocity rate of spread for buoyant jets.

These parameters are defined as
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~d

The recommended experimental value of the spread rate of velocity is

0.12 while that for temperature is 0.13. In the present study, the

spread rates predicted by the two-scale turbulence model are 0.11 for

velocity and 0.135 for temperature. The one-scale turbulence model

predicted values of 0.11 and 0.116 for velocity and temperature

spreading rates. In camparison, the two-scale turbulence model seems to

give better prediction.

The centerline velocity has been found to be a function of the

distance x. The dimensionless grouping for velocity

versus distance

was first derived by Chen and Rodi [50]. In these dimensionless plots,

Chen and Rodi showed that all centerline velocity decay of turbulent

buoyant jets can be collapsed into a single curve. The buoyant jet flow

can be divided into three different regions, namely, nonbuoyant,



intermediate and plume region. From experimental data the following

correlations were obtained. For the nonbuoyant region,

for

L-2/3 Po -113o S =Z (---) S 0.5
D Pa

In the intermediate region, the relation is

u P 5/12 -1/4
c = 2.85F-1/3(-2) C~D)

UN .Pa

for

L-2/3 Po -113
0.5 S nZ Cp-) S 5

a

and in the plume region,

for

L-2/3 Po -113
5 < =r (---)

D Pa
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where F is ~he densime~ric Froude number. In ~his investiga~ion, a

couple of cases were selec~ed for calcula~ion. The Froude numbers used

were 6 and 24 which lie be~ween ~he ex~reme cases of F=O for a pure

plume and F=- for a pure jet.

Figure 6.1 presents the velocity profiles of the one-scale and the

two-scale turbulence models in aplane buoyant jet for Froude numbers of

6.0 and 24. The experimen~al da~a of Bradbury [30] for a plane jet and

of Rouse [52] for a pure plume are included for comparison. The

calculated results were obtained for x/D=40. There is a good agreemen~

between experiment and calculations.

Figure 6.2 gives the turbulent quantities, namely k and u1 as

measured by Kotsovinos [53] and Bradbury [25]. The kinetic energy at

the centerline for a pure jet is 0.064 whereas the normal stress for a

pure plume is 0.14. Increase in the kinetic energy or normal stress for

the plume can be explained by the existence of positive buoyant force.-
which promotes the generation of turbulence. In other words, g(üë/T ) ina
equation (3.35) is positive. The calculations of the two-scale model

and one-scale model are plot~ed for Froude numbers of 6.0 and 24. These

profiles fall within the ex~reme cases of a pure jet and a pure plume.

Thus the prediction can be considered to be satisfac~ory.

In figure 6.3, the temperature profile is shown for Froude numbers of

6.0 and 24 as obtained by the one-scale and two-scale turbulence models.

These resul~s are compared wi~h the experimen~al data of Van der Hegge
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[31] for a pure jet and that of Rouse et al. [51] for a pure plume.

Again the predicted results for buoyant jets fall within the two

envelops of pure jet and pure plume as one would expect.

Tbe Reynolds stress for aplane buoyant jet is shown in figure 6.[.

Tbe one-scale and the two-scale model results are shown for comparison.

Tbe experimental result of Ramaprian and Chandrasekhara [52] is shown

for Froude number of 2.4.

6.2 Buovant round iet

Tbe predicted spread rates for velocity and temperature in buoyant

round jets using the two-scale turbulence model are 0.1 and 0.115

respectively. Tbe one-scale model gives these parameters as 0.12 and

Figure 6.6 gives the temperature profile of a buoyant round jet. The

0.11. Tbe experimental values of the velocity and thermal spreading

rates are 0.112 and 0.1 indicating that the two models predict

satisfactorily the gross parameters.

~.

Figure 6.5 shows the velocity profile of a buoyant round jet. Tbe

two-scale model calculations are shown for the two cases of F=6 and F=24

while the one-scale model prediction is shown for F=6. Tbe experimental

data of Rodi [4] and George et al. [54] are also shown for pure jet and

pure plume respectively. !bere is a good agreement between the

predicted result and experimental data.

pure jet profile is that of Rodi while the pure plume temperature
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profile is that of George [54]. The calculations of the ~wo-scale model

and the one-scale model show temperature profiles closer to ~he pure

plume than pure jet.

In figure 6.7, the kinetic energy and normal stress of the buoyant

jet is shown. The pure plume data is that of George and the pure jet

data is that of Rodi. The one-scale and two-scale results are shown for
.

comparison. As in the case of the nonbuoyant jets the prediction of

kinetic energy by the one-scale model is higher than that by the two-

scale model.

6.3 Concluding remarks

Though the comparison between prediction and experiment was not

extensive, it can be said th~t the results of the two-scale turbulence

model are satisfactory. More rigoro~s comparisons are necessary which

can be done only with better and complete set of experimental data.

Further, the effect of reducing the partial differential equations for

---ez and te into algebraic equations need to be studied. Since the

equation for te was replaced by arelation suggested by Launder in

equation (3.28a), the influence of the small time scales on the buoyant

jets could not be studied.
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CHAPTER VII

PREDICTION OF RECIRCULATING FLOWS

In the present investigation the emphasis is placed on prediction of

turbulent free shear flows. This is because the mean velocity field of

turbulent free shear flows is determined by the Reynolds stress and not

by the pressure force which is likely to be a dominant force in more

complex separate flows. Therefore, any turbulence model for Reynolds

stress, turbulent kinetic energy or dissipation of turbulent kinetic

energy can be better tested and verified by its capability of prediction

without the action of the pressure force. In addition, prediction of

turbulent free shear flow does not have the complexity of the near wall

turbulence.

In the previous chapters, the two-scale turbulence model has been

tested and verified for its prediction capability in turbulent free

shear flows. In this chapter, the two-scale turbulence model is used to

predict turbulent separated flows. Results are shown and compared with

those obtained by the one-scale k-E model for two different flows,~

namely, flow past a backward facing step and flow through an obstacle.

7.1 Flow past a backward facing step

The first case of recirculating flow chosen is the flow past a



backward facing step. This is chosen because sufficient experimental

data is available including the mean velocity profiles, separation

length and same turbulent quantities. Stevenson et al. [60] used laser

velocimetery technique to measure mean and turbulent quantities. Eaton

and Johnston [61] reviewed several other measurements of backward facing

step for the 1980 Stanford Conference meeting.

The flow domain which was measured by Stevenson et al. [60] and a

portion of the grid distribution near the step are shown in figure 7.1.

The same domain is used in the calculation using the one-scale and two­

scale turbulence modeis. The height of the step is H and the distance

from the step to the upper wall is also H. In the calculation, the

boundary or entry conditions were set at a distanee of O.02R upstream of

the step where experimental data is available. The exit conditions were

set at 12 step heights downstream with the boundary conditions also from

experiment. Near the wall and the step, the grid distribution is

nonuniform with more nodes in the vicinity of the walls where the

gradient of dependent quantities is steep. The smallest grid size is

about 0.02H while the largest spacing is 2.0R. The grid system for the

computational domain has 30 by 17 nodes.

The governing equations for turbulent flow were derived in.chapter

11. These equations are written here once again. The mean flow equations

are

----------------------------------- --------
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au.~
ax.~

= 0 (7.1)

and

ou.~
Dt

ap a 2.u . aü"':'ü.
=---+v ~ ____!_lpax. ax. ax . ax.

~ J J J

(7.2)

To complete the closure problem, the Reynolds stress are written using

the eàdy viscosity hypothesis to be

-u.u.
~ J

2
-3kÓ ..~J

(7.3)

The turbulent quantities k and t are additional unknowns. The k equation

is modelled as

(7.4)

The t-equation based on one-scale model is

0 '" a k2.a'" au...2.... = [C ..] C E - ~ C ..
Ot ax. E t dX. - El k uiUj ax. - E2 k

J J J
(7.5)

with CE' Ct1 and Ct2 as 0.15, 1.435 and 1.92. Based on the two-scale

concept the t-equation is

(7.6)



where CE' CEl and CE2 are 2.00, 17.S0/eRe)! and lS.90/eRe)!.

The numerical method used for solving the differential equations is

the Finite-analytic method developed by Chen et al. [62] [ó3]. The

calculations were carried by the computer program (FANS-I Finite-

Analytic solution of Navier-Stokes equations) developed by

Sheikholeslami [64]. !his program incorporates the SUfPLER algorithm

suggested by Patankar [55]. The wall function f64] is used for the near

wall velocity and turbulent conditions. !he velocity profile at the

inlet and outlet we re specified from the data of Stevenson et al. [60].

The kinetic energy profile at the inlet is about 3% of the mean velocity

squared. The dissipation function E at the inlet is calculated from the

turbulent kinetic energy using the relation

l' 5
k

E = 0.09i{

At the outlet, both the turbulent kinetic ener8J and its dissipation

function are assumed to be fully developed, i.e.

3k = 0ax
and at = 0ax

The Reynolds number based on the mean !nIet velocity and step height H

is 50,000.

In figure 7.2, the contour plot of the streamlines predicted by the

one-scale and the two-scale turbulence model are shown. The time step

178
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used in the calculation was 0.2 and the convergence criterion be~ween

the solutions of two consecutive time steps was set at 0.0001 for

velocities and 0.001 for pressure. The computational time on Prime 850

computer for both one-scale and two-scale model prediction was 60

minutes of epu time. From figure 7.2, it can be seen that the length oi

separation using the two-scale model is about 7 times the step height

whereas the ene-scale model predicts a separation length of about 5 step

heights. Since experimental data shows a separation length of about 7

step heights, the one-scale seems to underpredict the reattachment

length. The reason for this is that the one-scale turbulence model in

general predicts a larger turbulent kinetic energy and hence larger

turbulent eddy viscosity for flow after a step. This causes greater

mixing or momentum transfer resulting in a smaller separation zone.

Figure 7.3 gives hori~ontal velocity profiles predicted by the one­

scale and the two-scale turbulence models at x/H=4.1 where the flow is

separated and has a region of reverse flow. It can be seen that the

two-scale model predicts a fuller velocity profile in the mid-channel

and the flow is separated near the lower wall which is closer to

measured values. The one-scale model predicts much smaller reverse flow

than the experimental results of Stevenson et al. [60]. In figure 7.4,

the velocity profiles at x/H=7.1 are given. The comparison again shows

that a fuller velocity profile is predicted by the two-scale modei in

the mid-channel seems to have better agreement with experiment.
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The turbulent kinetic energy profiles a~ x/H=7.1 and 9.1 are shown in

figures 7.5 and 7.ó. The results of the one and two-scale models are

presented along with the experimental results. Comparison with measured

data reveals ~hat both models predict correctly the general trend of

distribution of turbulent kinetic energy and is on1y in fair agreement

with experimental data. It should be remarked that the peak turbulent

kinetic energy predic~ed by the ~wo-scale model is slightly smaller in

magnitude than that predic~ed by the one-scale model.

Figure 7.7 presents the shear stress at x/H=9.1 for the two models.

Both mode1s predict correctly the location of the maximum shear stress

which is found from the experimenta1 data to be at yjH=O.75 from the

bottom wall. Both models predict larger negative stress .~. with the
1 J

two-scale model predicting a better overall trend.

7.2 Flow past an obstacle

The second case considered in this chapter is the flow past an

extended rectangular plate in a two-dimensional channel. Figure 7.8

shows the stretched geometry of the flow domain along with ~he grid

distribution for flow past a rectangular plate with a height of H and a

thickness also of H. The flow domain has 41 by 14 nodes. !he same

numerical procedure and the method of solution is used as ~hat for the

backward facing step. The calculation is performed from x/H=-11 to

x/H=45. The velocity profiles at the inlet and outlet are the one-

seventh power law. The kinetic energy at the inlet is specified using
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the experimental data of Durst et al. [65]. The dissipation at ehe

inlet is specified using the relation

2
e == Vt (au/ay)

At the outlet, the fully developed profiles for k and E are assumed. A

portion of the streamline contour near the obstacle predicted by the

one-scale and the two-scale model for Reynolds number of 17,000 based on

H and mean velocity U is shown in figure 7.9. The two-scale model

predicts a reattachment zone of 10H. The one-scale model, however,

predicts a length of 4H. The experimental results of Durst et al. [65]

for Re=17,000 show a separation length of about 7H. This is in closer

agreement with the lOH predi~ted by the two-scale model.

Figures 7.10 and 7.11 show the velocity profiles predicted by the two

models at x/H=4.1 and x/H=7.1 respectively. The two-scale turbulence

model has a genera 1 tendency to predict a flatter velocity profile in

the separation zone as shown in figure 7.10 which is in better agreement

with the experimental data. Figure 7.11 shows that the two-scale model

predicts separation as indicated by the experiment where the one-scale

predicts no separation. In figures 7.12 and 7.13, the kinetic energy

profiles are shown at the locations xfH=4.l and xfH=7.l. Again, the two­

scale turbulence model predicts a smaller kinetic energy profile.

7'.3 Concluding remarks

The results presented above are two cases of recirculating flows

predicted by the turbulence modeis. Comparison with exper Imerrt shows
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that the two-scale turbulent model indeed predicts better flow field for

the two dimensional separation flow than the one-scale model. ~lorework

is needed to verify the prediction capability of the two-scale

turbulence model in other flow configurations. Grid dependence studies,

as weIl as improvement in the wall function, are necessary for better

prediction of turbulent quantities.
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CHAPTER VIII

CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

In this investigation, a new two-scale turbulencè model is developed.

The two turbulent scales are based on a large energy containing scale

Calculations of free shear flows in Chapters V and VI and

(k,e) and a small energy dissipating scale (v,e). The Ck,e) scale has

been used in previous turbulence models. The (v,e) scale, which is known

as the Kolmogorov scale, is used in the present investigation to model

the destruction term of the t-equation.

The two-scale turbulence model shows that the t-equation needs to

have the influence of viscosity since viscosity is the main cause of

dissipation. In general, the two-scale turbulence model predicts a...
lower kinetic energy than the one-scale'model.

recirculating flows in Chapter VII indicate that the two-saale k-e

turbulence model gives significant improvement over the one-scale

turbulence model. It is important to point out that unlike the one-

scale turbulence model, the two-scale turbulence model does not require

modification of turbulent éonstants in predicting plane or round

jets,mixing layer flows, plane and round wakes, buoyant jets, flow past
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a backward facing step and flow past a channel obstacle. Therefore, the

predictability of the two-scale turbulence model is demonstrated.

Since the present study relied on the existing solution techniques,

it should be mentioned that proper understanding of the numerical scheme

is important in solving the flow problem. During the study it was found

that it is necessary to choose a suitable marching step in the modified

Patankar - Spalding algorithm in order to obtain an accurately converged

solution. Also, it should be remarked that the initial conditions affect

the solution to some extent particularly near the inlet or initial zone.

Hence, it was necessary to carefully evaluate experimental data before

comparisons between either various experiments or experiment and

prediction are made.

Further, during the course of this study, it was found that though

experimental data was abundant, many sets of data were not complete for

most f1ows. For example, numerous results were given at various sections

of the flow field, but initial conditions particularly for turbulent

quantities were not mentioned. In some instances, only one component of

normal stress was available for comparison instead of the turbulent

kinetic energy and shear stress. Finally, since the main difference

between the two-scale and the one-scale turbulence model is in the t­

equation, it would be of interest to compare the dissipation of

turbulent kinetic energy predicted by the two models. However, there

were almost no experimental measurements of the rate of dissipation of

turbulent kinetic energy.



8.2 Recommenda~ion for fu~ure s~udv

From ~he present inves~iga~ion several issues s~ill require fur~her

study or clarification. They are explained below.

1. In chapter 11, it was mentioned that the turbulent structure in a

flow is a function of the Reynolds number, which is normally

based on the charac~eristic velocity and length of the problem.

However, in most experimental investigations it is the turbulent

Reynolds number based on the Taylor microscale tha~ is used. Tbe

correlation between ~he problem or mean Reynolds number and

Taylor microscale Reynolds numbers is not known. Further study is

necessary in turbulent spectral analysis to obtain such a

relation. It is worthwhile to see how the turbulent structure

changes directly with a change in the Reynolds numbe.r of the

problem. This may verify the validity of the turbulent model for

a range of Reynolds numbers.

2. In chapter 11 it was mentioned that the spectral analysis was

done for isotropic flows only. At present, there is no work

available for analysis of nonisotropic flows. Such an

investigation, if possible, could help in understanding the

energy transfer process and provide a better turbulence model.

3. Various aspects of the computation for turbulent flows need to be

considered in order to improve the two-scale turbulence model.

For example, most of the results shown in Chapters V, VI and VII

are either for mean velocity profile, centerline velocity,

turbulent kinetic energy and shear stress. It is desirable to
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rurther inves~igate the prediction of the two-scale model for

other flow parameters such as entrainment, normal stresses and

for flows involving secondary motion and three dimensional

configuration.

4. Further, the model needs to be extended to compressible flows and

other flows with strong curvature.



APPENDIX A

COMPUTER PROGRAM GENMIX

INSERT SYSCOM>ERRD.INS.FTN
INSERT SYSCOM>KEYS.INS.FTN
INSERT SYSCOM>KEYS.INS.FTN

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
REAL*8 LAB
DIMENSION OUT(83) ,DIFK(83) ,DIST(83) ,CONK(83) ,F4V(83)

1,D~~(40),XUU(40),YYH(40),YYHT(40),XLONG(lOO),FLONG(8,100)
2 ,FEl (100)
DlMENSION XPLOT( 100),YPLOT(lO, 100),YAXES (20) ,SYNBOL(20)
DlMENSION FLUX(7),DFI(7),DFE(7),AJID(7),AJED(7)
DlMENSION YDT(83), UDT(83) ,TDT(83) ,CDT(83) ,FKDT(83) ,FEMDT(83)
DlMENSION FBI(7),FBE(7),EPS(83),FK3E2(83),FK4E3(S3)
DlMENSION SYMBLl(s),SYMBL2(4)
COMMON/COMA/A(83),AJE(7),AJI(7),B(83),C(83),CSALFA,D(83),DPDX(83),

1 DX,EMU(83) ,F(7,83) ,FS(5,83) ,IAX,IEND, IFIN, INDE(7), INDI (7),IOUT,
2 ISTEP, lTEST, IUTRAP ,JS,JSW ,JV ,JY ,KEX,KIN ,KRAD ,N,ND2 ,NF,NOVEL,NP1,
3 NP2,NP3,OM(83),OMD(83),P(83),PEI,PR(7),PREF(7,83),PSIE,PS11,R(83)
4,RHO(83),RME,RMI,RU(83),SD(7,83),SU(7,83),TAUE,TAU1,U(83), XD,XU,
sY(83) ,YE,Y1 ,ENU(83) ,NDEQ,BPI ,BPE ,DKl(83) ,DK2 (83) ,EDK1(83) ,EDK2 (83)
6,US(83) ,FACTOR
COMMON/COMB/ ARRCON ,EWALL,H,HFU, INERT ,MASSTR,~!ODEL,OXDFU ,PREEXP,

1 PRESS ,UBAR,AK,RE ,FR,ALMG,UFAC
COMMON/COMC/ENUT(83),ENUTDN(83),DUDY(83),DUDDY(83),DTDY(83),

I DTDDY(83),PROK(83),BUPROK(83),ENUPR(83),PREFI(7)
2,CDFN(83),PKDEP(83) ,CVFN(83),UV(83) ,VV(83),UT(83),
3 VT(83),TT(83),PTDET(83),PROT(83),DtFTT(83),Su~(8~),SUUE(83)
4 ,SUUT(83),FUUK(83),FUUE(83),FUUT(83)
COMMON/CONST/IZT,CMUF,GDM,CDIS,Cl,C2,NCM,ALI,ALD,CRI,CRD,BUOY,

1 CIT,CIK,C2K,NIB,ENUL1M,NBUPRO,CT,CEI,CE2,CTl,CCI,CC2,C2T,CSP,CE
2 ,NPKDE,NPTDE,NALG,CAXIAL,PCLINR,LlNEAR,LESSON,CE3,CM2,C2TM
COMMON/AUXL/RENO,V1SMIX,RHOA,TA,COEFEP,COEFED,EPSPK,EPSDT
DATA VI/'TEST 1'/,V2/'U'/,V3/'F(I,I)'/,V4/'F(2,I)'/,Vs/'F(3,1)'/
DATA V6,V7 ,V8,V9,VIO/'TEST2', 'FS(l,I)', 'FS(2,I)', 'FS(3,I)', 'RHO(I)
1 ' /
DATA Vll,VI2,Vl3,VI4,Vls/'TEST3', 'Y(I)', 'R(I)', 'RU(I)', 'TEST4'/
DATA Vl6, Vl7 ,Vl8 ,Vl9 ,V20/ 'EMU(I),,'OMEGA' ,'TESTS' ,'Rl Y5' ,'VEL'/
DATA V2l,V22,V23,V24,V25 /'TEMP', 'T', 'RHO', 'KENGY', 'K'/
DATA V26,V27,V28,V29,V30/'DISSK', 'D', 'SU(I)', 'ENUTDN', 'ENU'/
DATA V3l,V32,V33,V34,V35/'ENUT', 'uv', 'Vv', 'DIFTT', 'DIS!'/
DATA V36,V37,V38,V39,V40/'UT', 'VT', 'DKDEP', 'PTDEt', 'CD FN'/
DATA V4l,V42,V43,V44,V45/'CV FN', 'TT-AGL', 'TT-DEQ', 'TT','E'/
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DATA V46,V47 ,V48,V49,VSO;' DUDDY' ,'DTDDY' .'CO!\'K','DIFK' ,'PROK' j
DATA VS1,VS2.V53,VS4,V55j'BUPROK','PREFTT','PREFEP'

1,'PREF-K','PREF-T'j
DATA Sy}lBL1j1HU,lHT,lHK,lHD,lHEj
DATA STIIBL2jiau , 1HT,1HA,1HFj

C
CALL SR(READ,'INPI',4,7,TYPE,CODE)
CALL SR(WRIT,'PSPI',4,2,TYPE,CODE)
CALL SR(WRIT,'PSP3',4,3,TYPE,CODE)

C
C ------------------------- _

CHAPTER11111111111111111 PARAMETERS AND CO~7ROL INDICES 11111111111111
C NSTAT= NO. OF STEPS BETWEEN OUTPUT OF SINGLE VARIABLES.
C NPROF= NO. OF STEPS BETWEEN OuiPUT OF ARRAY VARIABLES.
C ----- NPLOT= NO. OF STEPS BETWEEN OUTPUT OF PLOT.
C ----- IN THIS EXAHPLE, PLOT IS CALLED AT END OF INTEGRATION ONLY.

NSTAT=100
NPROF=1000
NPLOT=20000

C ----- MODEL=l ONE-SCALE K-E HODEL
C ----- MODEL=2 TWO-SCALE K-E MODEL

MODEL=l
C ----- IDAT=O=NO DATA READ IN, =1= BUILT IN PROFILE

IDAT=O
C----- ILONG =NO OF STEPS BETWEEN OUTPUT IN LONGITUDINAL DIRECTION

ILONG=300
C ------- ISTTRAT=l=STRATIFCATION,=O=NO STRATIFICATION

ISTRAT=O
C ------- RATTD=RATE OF 10 VARIATION IN X DIRECTION (DEG.CjMETER)--

RATTD=2.0
C------ LESSON = 1 = CE1*TOTAL PROK IN EP EQ.------------­
C------ LESSON = 2 = CE1*SHEAR PROK AND CE3 * BUOY PROD.IN EP EQ.

LESSON=2
C-------NBY=l WEEN BUOYANT FORCE IS INCLUDED-----

2 NBY=l
7 KRAD=O

C ------------------------------ _

CHAPTER222222222222222222222222 GRID AND GEOMETRY 22222222222222222222C---------------------------------- _
C S. I. UNITS

L=1
C----N=NO OF GRID POINTS

N=40
YNOZ=l.
XULAST=10.0E+O
LASTEP=20000

C IF(KRAD.EQ.1)LASTEP=3500
C IF(KRAD.EQ.0)LASTEP=2100

XU=1.E-30
XP=.99*XU
XOUT=O.
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XEND=O.
C----- FRA = PERCEr-rrAGEOF FORWARD HARCHING, _X = FRA # _Y

FRA=0.005
C----- FACTOR FOR LlNEARIZATIONOF SOl~CE TER}lIN E-EQUATION

FACTOR=l.0
ULIM=.Ol
ENULUl=l.E+30
TAN=O.Ol
PEILIM=O.Ol
KIN=3
KEX=2
CSALFA=l.
----- R(l) ADJUSl1mNT MADE JUST BEFORE CALL STRIDE(I).
----------STRIDE4----------STRIDE4----------STRIDE4-e--~.-STRIDE4
CALL STRIDE(4)
IAX=O
IF(XEND.LE.O.) IEND=O
IF (XOUT.LE.O.) IOUT=O
--------------------CHANGE IEND, IAX AND IOUT, IF NECESSARY.

C
C

C
C

C ---------------------------------------------.---------.-------------
CHAPTER333333333333333333333333 DEPENDENT VARIABLES SEtECTION 33333333
C U(I)=VELOCITY
C F(l,I)=STAGNATIONENTHALPY
C F(2,I)=CONCENTRATIONOF FOEL
C F(3,I)=CONCENTRATIONOF OXIDANT-OXDFU*F(2,I)=PHI
C FS(l,I)=CONCENTRATIONOF OXIDANT
C FS(2,I)=TEMPERATURE
C FS(3,I)=CONCENTRATIONOF PRODUCT
C F(4,I)=KlNETIC ENERGY OF TURBULENCE
C F(5,I)=DISSIPATIONRATE OF KINETIC ENERGY
C F(6.I)= THERMAL ENERGY OF TURBULENCE TT
C F(7.I)= DISS.RATE OF THERMAL ENERGY
C---- FLONG(l,L)=MAXlMUMVELOCITY
C---- FLONG(2,L)=AXIAL TEMPERATURE
C---- FLONG(3,L)=ENTRAINMENT COEFFICIENT
C---- FEI(L)=BOUYANT FLUX INTEGRAL
C -----NDEQ=O=ENTHALPYAND CONCENTRATION EQUATION NOT SOLVED
C -----NDEQ=l=ENTHALPYEQUATION SOLVED
C -----NDEQ=2=ENTHALPYAND CONCENTRATION EQUATION SOLVED

NDEQ=l
NDEQP1=NDEQ+l
NEQ=3+NDEQ
----NF=NO OF DEPENDENT VARIABLES TO BE SOLVED
NF=6

C----NDX=NO OF X INTERVAL USED IN CA~CULATE ENTRAINMENT COEFF.
NDX=40
NDXM1=NDX-l

C ------------------------------------------------- --__.--- _
CHAPTER44444444444444444444444444444444444444CONSTAh7S444~444444444444
C CHAPTER 4A--------------MATERIALCONSTANTS

C
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C S.I. L~ITS
C------GAS CONSTAT IN JOULE/KILOHOLE/DEG. K ---------­

GASCON=8300.
C------SPECIFIC HEAT AT CONST. PRESS. IN JOULE/KG/DEG.K---­

curx-rioo.
C------HOLECULAR \vEIGHT IN KG/KILOMOLE--------­

WMIX=29.
WA=29.
WD=29.
GAMMA=CMIX/(CMIX-GASCON/WMIX)
~~GSCN=WMIX/GASCON
VISMIX=1.OE-7
PREEXP=l.

C
IZT=20

C
C --------------CONSTANTS FOR TURBULENCE ~1ODEL

CV=.475
C-------- CONSTANTS FOR UT VT EQS -----­

C1T=3.2
C2T=.5.
C2TM=C2T

C-------- CONSTANTS FOR UV OU VV EQS -------­
CC1=2.8
CC2=O.47
CM2=CC2
CSP=0.9
IF(MODEL.EQ.1) CSP=0.225
CST=1.6

C------ CONSTANT FOR TT EQUATION -------­
CT1=0.13
CT=1.25

C-----CONSTANTS FOR TURBULENT KINEMATIC VISCOSITY ------­
CD=(1.-CC2)*CV/CC1
PREFI(4)=1.
PREFI(5 )=1.3
PREFI(6)=CD/CT1
PREFI(7)=1.
CDIS=CD

42 DO 40 J=1,3
PR(J)=.7

40 PREFI(J)=(1.-CC2)*C1T/CC1
BUOY=FLOAT(NBY)*9.81

C
C------- CONSTANTS FOR EP EQ -------­

CE=2.00
CE1=17.50
CE2=18.90
CE3=CE1
IF(MODEL.EQ.1) CE=0.15
IF(MODEL.EQ.1) CE1=1.435
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IF(MODEL.EQ.l) CE2=1.92
COEFEP=CEl
COEFED=CE2
WRITE(6,45)
WRlTE(6,43) CSP,CC1,CC2,ClT,C2T,CM2,CE1,CE2,CE3,CE,CT1,CT,
1 FRA,C2TM

45 FO~tAT(20X, '-~---- CONSTANTS FOR TURBULENCE MOOEL --...'/)
43 FORMAT(4X, 'css =' ,FlO.5,5X, 'CCl =' ,FlO.S,5X, 'CC2 =' ,F10.5,/

1 4X, 'ClT =' ,FlO.5,SX, 'C2T =' ,FlO.5,5X, 'CH2 =' ,FlO,5,/
2 4X, 'CEl =' ,FlO.S,SX, 'CE2 =' ,FlO.S,5X, 'CE3 =' ,FlO.S,/
3 4X, 'CE =' ,FlO.5,5X, 'CTl =' ,FlO.5,5X, 'CT =i ,FlO.S,1
4 4X, 'FRA =' ~FlO.5,5X,'C2TII=',FlO.5,5X/)

C -----------------------------------------------------------------r---
CHAPTERS5555S555555555555555555555555555 INITIAL CONDITIONS 5555555555
C---- SPECIFY RADIUS ,VELOCITY ,TEMP. ETC

RA=O.
RB=O.
RC=O.
RD=0.065
DIAD=2. *RD
UA=l.5
UB=UA
UC=UA
UD=O.O
TA=3lS.
TD=300.5
TDD=TD
TB=TA
TC=TA
NEMU=l
EMUI=1.
UREF=l.
YIN=RB
'NALL=299.
PRESS=l.E5
PDGSCN=PRESS/GASCON
RHOA=PDGSCN*WA/TA
RHOD=PDGSCN*WD lTD·

C------ INITIAL LONGlTUDINAL CONDITIONS -------­
DD=2.*RD
XLONG(1)=XU/DD
FLONG (1,l)=l.
FLONG(2,1)=l.
FLONG(3,1)=0.5
FEl (1)=0 .

C------- CALCULATE RE.FR GR RI NUMBERS -------­
C

SBG=9.81*RATTD/TD
BGDGD=RD*SBG/(9.81*(TA-TD)/TD)
GUDGD=SBG~':UA**2.I ((9.81*(TA-TD) ITD)**2.)
RENO=(RHOA*UA*2*RD)/CVISMIX*OSQRTCTA))
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FRNOS=(UA":*2":TA)j (9.81":2":RD'':(TA-TD))
F~~O=DSQRT(FRNOS)
GRNO=(9. 81* (TA-TD)*(2'':RD)**3) j (TAi:(VISHIX":DSQRT(TA)jRHOA)"<>':2)
RICHN=DSQRT(GRNO)jRENO

C
WRlTE(6,48) RENO,FRNOS,F&~O,GRNO,RICHN.BGDGD,GUDGD,SBG

48 FORMAT(/4X, 'RENO =' ,E13.6,2X, 'FRNOS=' ,E13.6,2X, 'FRNO =' ,E13.6,j
1 4X, 'GRNO =' ,E13.6,2X, 'RICHN=' ,E13.6,2X, 'BGDGD=' ,E13.6,j
2 4X, 'GUDGD=',E13.6,2X, 'SBG =' ,E13.6/)

C
C --------------CREATION OF 1NT1AL PROFILES

Y(NP3)=RD-RB
EXPY=l.
UIN=UA
UEN=UD
TMPI=TA
TIIPE=TD
ClI=l.
C1E=0.
FATI=0.10
FAET=O .10
FAl=FA'IT
FA2=FAET
DO 52 J=4,NF
FBI(J)=O.

52 FBE(J)=O.
C --------------------------------------------------------- _
C INITIALIZE SOME OF THE PARAMETERS
C

DO 53 1=1,NP3
UT(I)=Q.O
VT(I)=O.O
UV(I)=O.O
VV(I)=O.O
F4V(I)=0.0

53 CONTINUE
Y(1)=O.
Y(2)=0.
YEPLS=O.O
RME=O.O
UIDUOL=O.O
TIDTOL=O.O
SB=l.O
SA=l.O
F(3,1)=1.0
FE=1.0
Y(NP2)=Y(NP3)
U(l)=UIN
U(2)=UIN
U(NP3)=UEN
U(NP2)=UEN+1.0E-6



UHB=U(1)-U(NP3)
UHBS=UHB~':*2
FS(2,1)=THPI
FS(2,2)=TMPI
FS(2,NP3)=TMPE
FS(2,NP2)=TMPE
F(2,1)=C1I
F(2,2)=C1I
F(2,NP3)=C1E
F(2,NP2)=C1E
DO 513 J=4,NF

513 F(J,NP3)=FBE(J)
1F(K1N.NE.2) GO TO 510
DO 514 J=4,NF

514 F(J,l)=FB1(J)
GO TO 503

510 F(4,1)=FA1*UHBS
F(5,1)=0.10*F(4,1)**1.5/(0.09*YCNP3»
F(6, l)=FATT*(FS (2,1)-FS(2,NP3))~~~~2.
F(7,1)=0.10*F(6,1)**1.5/CO.09*Y(NP3))

503 DO 516 J=4,NF
F(J,2)=F(J,1)

516 F(J,NP2)=F(J,NP3)
C
C --------------PROF1LES
C

DYAF=l. /FLOAT(N)**EXPY
DO 520 I=2,NP2
Y(I)=(1.-DYAF*FLOAT(NP2-I)**EXPY)*Y(NP3)
YP2=Y(I)**2.
U(I)=U(NP3)+(U(1)-U(NP3))*DEXP(-2.8*YP2)
FS(2,I)=TMPE+(TMPI-TMPE)*DEXP(-2.8*YP2/1.44)
F(2,I)=C1E+(C1I-C1E)*DEXP(-2.8*YP2)
F(3,I)=1.-F(2,1)
F(4,I)=UHBS*FA1*DEXP(-1.7*YP2)
1F(KIN.EQ.2.AND.KEX.EQ.2) F(4,I)=FA1*UHBS*(1.-((Y(I)-Y(NP3)/2.)

1 /(Y(NP3)/2.)**2)
F(5 ,I)=O.10*F(4,I)**1.51 (0.09*Y(NP3))
F(6,I)=F(6,1)*DEXP(-1.7*YP2)
F(7,I)=O.10*F(6,1)**1.5/(0.09*Y(NP3))

520 CONTINUE
DO 521 I=1,NP3
RHO(I)=PDGSCN/FS(2,I)*WMIX

521 F(1,I)=CMIX*FS(2,I)+.5*UCI)*U(I)+F(4,I)
IF(KIN.EQ.3) YNOZ=2.*Y(NP3)
IF(KIN.EQ.2) YNOZ=2.*YIN

C------ CALCULATE INITIAL CD FUNCT10N FQR ENU(I) -----­
DO 525 1=1,NP3
CDFN(I)=0.07

525 CVFN(I)=0.47
WRlTE(6,526) PKDEP(3),CDFN(3),CVFN(3),N
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526 FOR!'lAT(/'PKDEP=',E13.6,1X, 'CDFN =' ,E13.6,1X, 'CVFN =' ,E13.6,1X,
i '~ =' ,15)

DO 527 J=1,NF
DO 527 I=1,NP3

527 PREF(J,I)=l.
C CALCULATE OMEGA AND STREAM QU~lITIES AND WRITE

501 YNDP=l.
DO 540 I=3,NP2
IF(KRAD.EQ.l) YMDP=.5*(Y(I-l)+Y(I))+YIN
RUA=.5*(RHO(I)*U(I)+RHO(I-l)*U(I-1))

540 OM(I)=OM(I-1)+YMDP*RUA*(Y(I)-Y(I-l))
PEI=OM(NP2)

C---~-OMEGA,OM(I),IS MADE DIMENSIONLESS HERE ------­
DO 541 I=3,NP2

541 OM(I)=OM(I)/PEI
PSII=YIN*U(1)*RHO(1)
IFCKRAD.EQ.1) PSII=PSII*YIN/2.
PSIE=PSII+PEI

C---------SET UP INITIAL SPREAD PARAMETER FOR U AND T
F1A=CMIX*TA+.5*UA**2
F1D=CMIX*TD+.5*UD**2
~2A=1.
F2D=0.
F3A=1. -F2A
F3D=1. -F3A
DYHA=O.
UBARDL=l.
DYHAV=1.
YHA=O.
YHALS=0.25
YELS=O.
DYHAT=O.
TBARDL=l.
DYHAVT=l.
YHAT=O.
YHATLS=O .25
DO 549 K=1,NDX
YYH(K)=O.
YYHT(K)=O.
XUU(K)=O.

549 CONTINUE
XUU(NDX)=XU

C-----SET UP INITIAL ENTRAINMENT VELOCITY-----
C ----- RTBDVB IS RATIO OF TEMP. TO VEL.LAYER AT BOUNDY,USE IN
C --------------------------------------------- ENTRAIN.CONTROL

RTBDVB=1.4
ENTV=O.
ElIo'TVLS=O.
DENTV=O.
YELS=RD
IF(KIN.EQ.3) UIV=U(l)
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FLOA=PSII
IF(RC.LE.RB) GO TO 560
DO 550 I=1,NP3
YAB=Y(I)+YIN
IF(YAB.LT.RC) GO TO 550
IC=I
GO TO 551

550 CONTINUE
551 FLOB=PEI*OM(IC)

FLOC=PEI-FLOB
ICMl=IC-1
F2B=0.
DO 552 I=2,ICM1
OMDP=OM(I+1)-OM(I)
TB=TB+(FS (2,1)+FS(2,1+1))irOMDP

552 F2B=F2B+(F(2, I)+F(2,1+1))"rOMDP
TB=.5'':TB
F2B=.5*F2B
F3B=1. -F2B
F2C=0.
DO 553 I=IC,NP1
OMDP=OM(I+1)-OM(I)
TC=TC+(FS(2,I)+FS(2,I+1))*OMDP

553 F2C=F2C+(F(2,I)+F(2,I+1))*OMDP
TC=.5*TC .
F2C=.5*F2C
F3C=1. -F2C
GO TO 570

560 FLOB=O.
F2B=0.
F3B=0.
FLOC=PEI
F2C=O.
DO 561 I=2,NP1
OMDP=OM(I+l)-OM(I)
TC=TC+(FS(2,I)+FS(2,I+1))*OMDP

561 F2C=F2C+(F(2,I)+F(2,I+1))*OMDP
TC=.5*TC
F2C=.5*F2C
F3C=1. -F2C

570 FLOTOT=PEI

208

C
C ------------------------------------------------------------------
CHAPTER6666666666666666666666666666666 THERMODYNAMIC PROPERTIES 666666
C J( Ic #'. it, lt,:. ..,;. "'lt,Alt /.;. ,\,,',)\)', ... Ic START OF MAIN LOOP l.."-.,',,Ie JeI, ,tclT, ,r,)'.:,,\ :..,\ h ...',,:,',.,-,,',

60 CONTINUE
C

603 CONTINUE
C ------------------------------ ADJUST R(l) AND YIN

IF(KIN.NE.2) GO TO 630
1F(KRAD.EQ.1) GO TO 631
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YIN=PSII/CU(l)*RHO(l))
GO TO 630

631 YIN=DSQRT(DABS(2.*PSII/(RHOC1)*U(1))))
R(l)=YIN

630 CONTINUE
C
C ----------STRIDE1----------STRIDE1----------STRIDE1-------STRIDE1

CALL STRIDE (1)
C
C --------RHO'·~U·R AND Y ARE CALCULATED
C --------------CALCULATION OF CHARACTERISTIC FLOW WIDTH AND UGL

UHB=U(1) -U(NP3)
L~B2=1./(UHB**2)
UHA=.5*UHB
lJlIC=DABS(UHA)
UHA=UHA+U(NP3)
UHE=DABS(UHB)/CDEXP(l.))
lHE=3

C
C---- YEP= Y AT U= UMAX/EXP --------------­
C---- YHA= Y AT U= ~X/2 --------------­
C---- YHAT= Y AT T= TMAX/2. --------------­
C

DO 619 I=3,NP2
IF(DABS(U(I)-U(NP3)).GT.UHE) GO TO 619
lHE=I-1
GO TO 618

619 CONT~NUE
618 YEP=Y(IHE)+(UHE-UCIHE))*(Y(IHE+1)-Y(IHE))/(U(IHE+1)-U(IHE))

lHA=2
DO 620 I=3,NP2
IF(DABS(U(I)-U(NP3)).GT.UHC) GO TO 620
lHA=I-1
GO TO 621

620 CONTINUE
C
C----------CALCULATE Y HALF (YHA) ------­
C
621 YHA=Y(IHA)+(UHA-UClHA))*CYClHA+l)-Y(IHA))/(U(IHA+l)-UCIHA))

YHR=YHA+YIN
THB=FS(2,1)-FS(2,NP3)
THB2=1./CTHB**2)
THA=.5*THB ,
THC=DABS(THA)
THA=THA+FS(2,NP3)
IHT=l
DO 626 I=3,NP2
IF(DABSCFSC2,I)-FS(2,NP3)).GT.THC)GO TO 626
IHT=I-1
IF(IHT .GT. 0) GOTO 627

626 CONTINUE



627 YHAT=YCIHT)+(THA-FS (2,IHT) )~':(Y(IHT+l) -Y (IHT) )/
1 (FS(2,IHT+l)-FS(2,IHT)+.IE-5)

DYHAT=(YHAT-YYHT(I»/(XUU(NDX)-~lm(I»
DYHA=(YHA-YYH(I»/(h~U(NDX)-XUU(l»
DYHATL=(YHAT-YHATLS)/(XU-XP)
YHDYHT=YHAjYHAT
DYEP=(YEP-YEPLS)/(XU-XP)

C
C------CALCULTE ENTRAI~mNT COEFFICINT-------­
C

DYE=-(YELS2-YE)/(XUU(NDX-2)-XP)
A.~G=ATAN(DYHA)
A.~G=COS(ANG)
ENTV=RME*ANG/(RHO(NP3)*R(NP3»/RTBDVB
ALFA=ENTVjU(I)
ALFALO=RME*ANG/ (RHO(NP3)"'~RCNP3)i~U(l»/RTBDVB
ALFAA..'C=RME~'~ANG/CRHO(NP3)~·~U(l)~':(YCIHE)i~*KRAD»/RTBDVB
DENTV=(ENTV-ENTVLS)/CXU-XP)
IF(KIN.NE.2) GO TO 610

C
C-----------IF FLOW IS OF SHEAR LAYER ------­
C

YHM=YHA
UDI=.9*UHB
UDIC=DABS(UDI)
UDI=UDI+U(NP3)
UDE=.I*UHB
UDEC=DABS(UDE)
UDE=UDE+U (NP3)
YDI=O.
IDI=2
DO 622 I=3,NPI
IF(DABS(U(I)-U(NP3».GT.UDIC)GO TO 622
IDI=I-l
IF(IDI .GT. 0) GO TO 623

622 CONTINUE
623 YDI=Y(IDI)+(UDI -U(IDI»* (Y(IDI+l)-Y(IDI» /(U'CIDI+l)-U(IDI»

IDE=l
DO 624 I=3,NPI
IREAL=NP3-I+l
IF(DABS(U(IREAL)-U(NP3».LT.UDEC) GO TO 624
IDE=IREAL
IF(IDE.GT.O) GO TO 625

624 CONTINUE
625 YDE=Y(IDE)+(UDE-U(IDE) )*(Y(IDE+l)-Y(IDE» j (U(IDE+l)-U'(IDE»

YHA=YDE -YDI
C
C-------CALCULATE RATE OF SPREAD-------­
C

610 CONTINUE
IF(U(NP3).LE.0.) GO TO 640

210
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IF(DABS(UHBjU (NP3)) .LT ..02) DYHA=DYH..4.i<U(~P3)jL1iB
640 DYHALO=(YHA-YHALS)jDX

YHALS=YHA
YHATLS=YHAT
YELS=YE
YEPLS=YEP
ENTVLS=ENTV
YYH(NDX)=YHA
YYHT(NDX)=YHAT
XUU(NDX)=XP
DO 650 K=1,NDXM1
YYH(K)=YYH(K+1)
YYHT(K)=YYHT(K+1)
2I.W (K)=XUU (K+1)

650 CONTINUE
C
CHAPTER7777777777777777777777777777777777777777 FORWARD STEP 777777777

DX=FRA*Y(NP3)
IF(ISTEP.LT.50) DX=DXjFLOAT(51-ISTEP)

C
IF(ISTEP.GE.IEND) GO TO 70
IF(DX.LT.XEND-XU) GO TO 70
DX=XEND-XU
IEND=ISTEP+1

70 IF(ISTEP.GE.IOUT) GO TO 71
IF(DX.LT.XOUT-XU) GO TO 71
DX=XOUT-XU
IOUT= ISTEP+ 1

71 IF(DX.GT.XULAST-XU) DX=XULAST-XU
IF(DX.GT.O.) GO TO 73
IFIN=l
GO TO 1011

C

C
C
C
C ---------------------------- _

CHAPTER888888888888888888888888 ADJUST LONGITUDINAL CONDITIONS 8888888
C
C
C
C

73 XD=XU+DX
-------THIS IS JUST INITIAL GE~LRAL SETUP
----- FURTIIER ADJUSTMENTS TO DX ARE MADE IN CHAPTERS 8 AND 9.

CHAPTER8A ------------------------------BOUNDARY CONDITIONS
---------------- I BOUNDARY
------------------- SYMMETRY AXIS

80 KIN=3
RMI=O.
YIN=O.
R(1)=O.
PSII=Q.

C -----------------------------------------FREE
85 KEX=2

C -----------------------UBAR



89 UBAR=O.
TBAR=O.
DO 820 I=2,NP1
TBAR=TBAR+(FS(2, I)+FS(2,1+1) )"tOMD(I)

820 UBAR=UBAR+(U(I)+U(I+1»*O~rn(I)
TBAR=. 5~'tTBAR
UBAR=.5itUBAR
IF(KIN.EQ.2) UBAR=(UBAR-UA)*PEI/PSIE+UA
IF(KIN.EQ.2)TBAR=(TBAR-FS(2,NP3»*PEI/PSIE+FS(2,NP3)

C
c ----------------------------------------------------- ._6 _
CHAPTER999999999999999999999 TRANSPORT AND ENTRA1~ffiNTPROPERTIES 9999
C ---------- LAH1NAR VISCOS1TY ACCORD1NG TO SQUARE-ROOT FOR!1tJLA,
C W1TH WEIGHTING ACCORDING TO MASS FRAC!ION.

DO 98 I=1,NP3
FSAB=DABS(FS(2,I»

98 EMU(I)=V1SM1X*DSQRT(FSAB)
CONTINUE
E!'tu(2)=E!'tu(1)
EMU(NP2)=EMU(NP3)

C
C ----------AUX----------AUX----------AUX----------AUX----------AUX

CALL AUX
C---- SOURCE TERM FOR K 'AND EP ALSO UV, VV , vr,UT,TI' ,ARE CALCULATED
_ç --'---------- -------------- - --- ENTRAINMENT CONTROL.

IF(KIN.NE.2) GO TO 94
RAT=DABS((U(3)-U(1»/(U(NP3)-U(1)+1.E-30»
IF(RAT.LT.ULIM) EM U(2)=EM U(2)*RAT/ULIM
RMI=2.*EM U(2)

94 CONTINUE
IF(KEX.NE.2) GO TO 97
RAT=DABS«U(NPl)-U(NP3»/(U(NP3)-U(1)+1.E-30»
RME=-2.*EM U(NP1)*RTBDVB
IF(RAT.LT.ULIM) RME=RME*(RAT/ULIM)**2
IF(RAT.LT.ULIM*.5) ID1E=O. .

97 IF(XD.EQ.XEND.OR.XD.EQ.XOUT.OR.XD.EQ.XULAST.OR.IAX.EQ.IS!EP+l)
1 GO TO 96

C ---------- LIMIT ON INCREMENT IN PEl.
IF(DABS(RMI)+DABS(RME»*DX.LT.PEI*PEILIM) GO 10 96
DX=PEI*PEILIM/(DABS(RMl)+DABS·(RME))
XD=XU+DX

96 CONTINUE
C
C ----------STRIDE2----------STRIDE2----------STRIDE2-----~-STRiDE2

95 CALL STRIDE(2)
C
C------ SET UP ABC D ARRAY ---------C ---------------~------------------ •
CHAPTER 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 OUTPUT 10 10 10
C------- SET UP OUTPUT FORMAT ---------
1000 ANSTAT=NSTAT

2i2
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AJ.'1PROF=NPROF
A.\'PLOT=NPLOT
IF(ISTEP.GT.O) GO TO 106

CHAPTER 10A ------------------------------------- HEADISGS
REY=2.~'~R(NP3)i~RHO(l)*UBAR/EMU( 1)
EQRAT=O.O

c
WRlTE(6,1013) KRAD,LESSON

C
1013 FORMAT(/'KRAD =' ,I3,10X, 'LESSON=',I3,10X/)

WRITE(6,1010) UA,UB,UC,L~,TA,TB,TC,TD,RA.RB,RC,RD,
1 XULAST,PRESS,PREEXP

C
1010 FORMAT(/4X, 'UA =' ,E13.6,5X, 'UB =' ,E13.6,5X, 'uc =' ,E13.6/

1 ,4X,'UD =' ,E13.6,5X, 'TA =' ,E13.6,5X, 'TB =' ,E13.6/
2 ,4X,'TC =' ,E13.6,5X, 'TD =' ,E13.6,5X, 'RA =' ,E13.6/
3 ,4X,'RB =' ,E13.6,5X, 'RC =' ,E13.6,5X, 'RD =' ,E13.6/
4 ,4X,'h~LAST=' ,E13.6,5X,'PRESS =' ,E13.6,5X, 'PREEXP=' ,E13.ó/)
LAB=V17
~~ITE(6,100) LAB,(OM(I),I=1,NP3)
PRESS1=PRESS

106 CONTINUE
c
C ----- IPRINT=O GIVES NO OUTPUT, =1 GlVES SINGLE VARIABLES ONLY,
C =2 GIVES BOTH SINGLE AND ARRAY (PROFILE) VARIABLES .
1011 IPRINT=O

IF(FLOATCISTEP/NSTAT).EQ.FLOAT(ISTEP)/ANSTAT) IPRINT=l
IF(FLOAT(ISTEP /NPROF) .EQ.FLOAT(ISTEP)/ANPROF) IPRINT=2
IF(ISTEP.EQ.IEND.OR.ISTEP.EQ.IAX.OR.ISTEP.EQ.IOUT) IPRINT=2
IF(ITEST.NE.O.OR.IFIN.NE.O) IPRINT=2

C ----- THE NEXT STATEMENT WOULD BE USED FOR A TYPICAL PLOT CONTROL
IF(FLOAT(ISTEP/NPLOT).EQ.FLOAT(ISTEP)/ANPLOT) IPRINT=3

C ----- THE NEXT STATEMENT PROVIDES A PLOT JUST PRIOR TO TERMINATION
IF(XU.GE.XULAST.OR.IFIN.NE.O.OR.ISTEP.EQ.LASTEP) IPRINT=3

C
1015 ALFAX=RME"'~ANG/(RHO(IHE)*UBAR*(YEPLS~':*KRAD»

C
CHAPTER IOC ----------------------------SINGLE STATION VARIABLES.
1200 IF(IPRINT.EQ.O) GO TO 110

UBAR=O.
DO 1021 I=2,NP1

1021 UBAR=UBAR+OMD(I)*(U(I)+U(I+1»
UBAR=.5*UBAR
UBARLS=UBARDL
UBARDL=(UBAR-U(NP3»/UHB
DUBAR=DABS(UBARDL-UBARLS)/UBARDL
DDYHA=DABS«DYHA-DYHAV»
DYHAV=DYHA
U1DUO=U(1)/(UA-U(NP3»)
T1DTO=(FS(2,1)-TDD)/(TA-TDD)

C------- TEST FOR DEVELOPED FLOW ------------ __



IF(DUBAR.LT.1.E-3.AND.DDYHA.LT.1.E-4.~ND.ISTEP.GT.4000) IFI~=2
IFCIFlN.EQ.2) IPRlNT=3
WRlTE(6,1030) ISTEP,1~AD,KlN,KEX,FRNOS,PSIl,PSlE,U1DUO,
1 ~~l,RME,PEl,U(1),YHA,DYHA,UBARDL,T1DTO

C
1030 FORMATc/jjj'lSTEP ='l9,-SX,'KRAD =' ,l9,5X,

1 'KIN =',I9,5X,'KEX =',l9,5X,/
1 'FRNOS =' ,E9.3,5X, 'PSU =' ,E9.3,5X, 'PSlE =' ,É9.2,j
2 'U1DUO =' ,E9.3,5X, 'RMl =' ,E9.3,5X, 'rum =' ,E9.3,j
3 'PEl =' ,E9.3,5X, 'U(l) =' ,E9.3,5X, 'YHA =' ,E9.3,j
4 'DYHA =' ,E9.3,5X, 'UBARDL=' ,E9.3,SX, 'T1DTO =' ,E9.3,j)

XDD=XUjDlAD
DU1DUO=(U1DUOL-U1DUO)jCXU-XP)jDIAD
DT1DTO=(T1DTOL-T1DTO)jCXU-XP)jDlAD
WRlTE(6,1014) XDD,DU1DUO,DT1DTO,DYEP

1014 FORHATC'XDD ='E9.3,SX, 'DU1DUO=' ,E9.3,5X, 'DT1DTO=' ,E9.3,
1 5X, 'DYEP =' ,E9.3,/)

U1DUOL=UlOUO
T1DTOL--T1DTO

WRITE(6,1036) DUBAR,DDYHA,BPE,FSC2,1),FSC2,NP3),YHAT,DYHAt,RATTD
1036 FORMATC'DUBAR =' ,E9.3,5X, 'DDYHA =' ,E9.3,5X, 'BPE =' ,E9.3,5X,

1 'FS2I =' ,E9.3,5X,j'FS2E =' ,E9.3,5X, 'YHAT =' ,E9.3,5X,
2 'DYHAT =' ,E9.3,5X, 'RATTD =' ,E9.3,/)
WRITE (6,1037) ALFA,ENTV,DENTV,DYE,CE1,CE2
1,ALFALO ,DYHALO ,ALFAX,DYHATL, YHDYHT

1037 FORMAT('ALFA =' ,E9.3,5X, 'ENTV =' ,E9.3,5X, 'DENTV =' ,E9.3,5X,
1 'DYE =' ,E9.3,5X,/'CE1 =' ,E9.3,5X, 'CE2 =' ,E9.3,5X,
2 'ALFALO=' ,E9.3,5X, 'DYHALO=' ,E9.3,5X,/'ALFAX =' ,E9.3,5X,
3 'DYHATL=' ,E9.3,5X, 'YHDYHT=' ,E9.3,/)
DO 1020 J=l,NF

1020 FLUX(J)=O.
DO 1035 I=2,NP1
DO 1035 J=l,NF

1035 FLUX(J)=FLUX(J)+OMD(I)*(F(J,I)+F(J,l+1))
UFLUX=PEI*UBAR
DO 1022 J=1,NF

1022 FLUX(J)=.5*PEl*FLUX(J)
C

UREF=U(NP3)+1.E-30
. RUREF=UREF*RHO (NP3)

AEXD=O.
DO 1023 J=l,NF
DFI(J)=F(J,1)-F(J,NP3)+1.E-30

1023 DFE(J)=DFI(J)+F(J,1)-F(J,NP3)
UFLUX=UFLUX-PEI*U(NP3)+U(1)*PSlI
GO TO (1041,1042,1043), NDEQP1

1043 FLUX(3)=FLUX(3)-PSlE*F3D+F3A*PSII
1042 FLUX (2)=FLUX(2) -PSlE*F2D+F2A"~PSII
1041 FLUX(1)=FLUX(1)-PSlE*F1D+F1A*PSIl

PRESSD=PRESSjPRESS1-1.
RELO=U(1)*2.*YHA*RHO(1)j (VlSMIX*DSQRT(FS(2, 1)))

214



215

C
w~ITE(6,1031)XU,DX,UFLUX,RELO

1031 FORNAT('XU =' ,E9.3,.5X,'DX =' ,E9.3,.5X,'üFLUX =' ,E9.3,.5X,
1 'RELO =' ,E9.3,/)

C
TK25=.5*(F(4,2)+F(4,3)
E25=.5*(F(5,2)+F(5,3)

C
1026 CONTINUE

C
CHAPTER 10D ----------------------------PROFILES AND OTHER ARRAYS.

IF(IPRINT.EQ.1) GO TO 110
C
CHAPTER 10DD
C

------------------KINETIC ENERGY BALANCE

DO 1087 I=3,NPl .
FK3E2(I)=F(4,I)**3jF(.5,I)**2
FK4E3(I)=F(4,I)**4jF(5,I)**3
DIV=U(1)**3jYHA
PROK(I)=PROK(I)jRHO(I)jDIV
BUPROK(I)=BUPROK(I)/RHO(I)jDIV
DIFK(I)=(ENU(I)*(R(I)+R(I+l»*(F(4,I+l)-F(4,I)j
1 (Y(I+l)-Y(I))*PREF(4,I))-ENU(I-l)*(R(I-l)+R(I))*(F(4,I)-F(4,I-1)
2 )j«(Y(I)-Y(I-l)*PREF(4,I)))j«Y(I+l)-Y(I-l))*R(I))
DIFK(I)=DIFK(I)jRHO(I)jDIV
CONK(I)=-(RHO(I)*U(I)*(F(4,I)-F4V(I»j(XU-XP)+PEI*(SA+SB*0M(I))
1 *(F(4,I+l)-F(4,I-l))j«Y(I+l)-Y(I-l))*R(I)))
CONK(I)=CONK(I)jRHO(I)jDIV
DIVT=FS(2,1)**2.*U(1)jYHAT
PROT(I)=PROT(I)jRHO(I)jDIVT
DIFTT(I)=(ENU(I)*(R(I)+R(I+l))*(F(6,I+l)-F(6,I))j
1 «(Y(I+l)-Y(I»*PREF(6,I»-ENU(I-l)*(R(I-l)+R(I»)*(F(6,I)-F(6,I-l)
2 )j«Y(I)-Y(I-l»*PREF(6,I»)j«Y(I+l)-Y(I-l»*R(I»)
DIFTT(I)=DIFTT(I)jRHO(I)jDIVT
DIST(I)=CT*F(5,I)*F(6,I)jF(4,I)jDIVT

1087 CONTINUE
C------ 10E --------- 10E --------- 10E --------
CHAPTER 10E OUTPUT TRAVERSE PROFILES
1086 CONTINUE

LAB=V19
DIV=YlIA
DO 1095 I=1,NP3

1095 OUT(I)=Y(I)jDIV
WRITE(6,100) LAB,R(1),(OUT(I),I=2,NP3),Y(NP3),YlIA
XAXIS=V12
DO 1085 I=1,NP3

1085 XPLOT(I)=OUT(I)
LAB=V2
SUB=O.
DIV=l.
IF(KIN.EQ.3) SUB=U(NP3)
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1F(KIN.EQ.3) D1V=U(1)-U(NP3)+1.E-30
DO 1094 1=1,NP3 .

1094 OUT(1)=(U(1)-SUB)jD1V
WR1TE(6,100) LAB,U(1),(O~7(1),1=2,NP3),U(NP3),D1V
NY=l
YA.XES(NY)=V20
STI1BOL(NY)=SYMBLl(NY)
DO 1084 1=1,NP3

1084 YPLOT(NY,1)=OUT(1)
1F(NDEQ.EQ.O) GO TO 1091

C
LAB=V21
SUB=FS(2,NP3)
D1V=1.E-30+FS(2,1)-FS(2,NP3)
DO 1093 1=1,NP3

1093 OUT(1)=(FS(2,1)-SUB)jD1V
wlUTE (6,100) LAB ,FS(2,1),(O~7(I),1=2,NP3),FS(2,~P3),DrV
NY=NY+1
YAXES (NY)=V21
STIlBOL(NY)=STIlBL1(NY)
DO 1083 1=1,NP3

1083 YPLOT(NY,1)=OUT(1)
C

LAB=V23
WRITE(6,100) LAB,(RHO(1),1=1,NP3)

C
1091 CONTINUE
9999 LAB=V24

D1V=(U(1)-U(NP3))**2
DO 1097 1=1,N~3

1097 OUT(I)=F(4,1)jD1V
WRITE(6,100) LAB,(OUT(1),1=1,NP3),DIV
NY=NY+l
YAXES (NY)=V24
SYMBOL(NY)=SYMBL1(NY)
DO 1098 1=1,NP3

1098 YPLOT(NY,1)=OL7(I)
C

LAB=V26
D1V=(U(1)-U(NP3))**3jYHA
DO 1096 1=1,NP3

1096 OUT(I)=F(S,1)jD1V
WRITE(6,100) LAB,(OUT(I),1=1,NP3),DIV
NY=NY+1
YAXES (NY)=V26
S~BOL(NY)=SYMBL1(NY)
DO 1099 1=1,NP3

1099 YPLOT(NY,I)=OUT(1)
D1TT=(FS(2,1)-FS(2,NP3))**2.
1F(1STEP.EQ.O) GO TC 1114
LAB=V28
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wR1TE(6,100) LAB,(US(1),1=1,NP3)
LAB=V29
w~1TE(6,100) LAB, (ENUTDN(1),1=1,NP3)
LAB=V30
WR1TE(6,100) LAB,(ENU(1),1=1,NP3)
LAB=V31
WRlTE(6,100) LAB,(ENUT(I),1=1,NP3)
LAB=V32
DIV=(U(1)-U(NP3»**2
DO 1071 1=1,NP3

1071 OUT(I)=UV(I)jD1V
WRlTE(6,100) LAB,(OUT(1),I=1,NP3),DIV
IF(MODEL.NE.4) GO TO 1120
LAB=V33
DO 1100 1=1,NP3

1100 OUT(1)=VV(I)/DIV
WR1TE (6,100) LAB,(OUT(1), 1=1,NP3),DIV
LAB=V34
WR1TE(6,100)LAB,(D1FTT(I),1=1,NP3)
LAB=V35
WRlTE(6,100)LAB,(D1ST(I),1=1,NP3),D1VT
D1UT=U(1)*(FS(2,1)-FS(2,NP3»
LAB=V36
DO 1105 1=1,NP3

1105 OUT(1)=UT(1)jDIUT
WR1TE(6,100)LAB,(OUT(1),1=1,NP3),DIUT
LAB=V37
DO 1110 1=1,NP3

1110 OUT(1)=VT(1)jD1UT
WR1TE(6,100)LAB,(OUT(1);1=1,NP3),D1UT
LAB=V38
WR1TE(6,100)LAB,(PKDEP(I),1=1,NP3)
LAB=V39
WR1TE(6,100)LAB,(PTDET(1),1=1,NP3)
LAB=V40
WR1TE(6,100) LAB,(CDFN(1),I=1,NP3)
LAB=V41
WRlTE(6,100) LAB,(CVFN(1),1=l,NP3)
LAB=V42
DO 1115 1=1,NP3

1115 OUT(1)=TT(1)jD1TT
WR1TE(6,100)LAB,(OUT(I),1=1,NP3),D1TT

1114 LAB=V43 .
DO 1111 1=1,NP3

1111 OUT(1)=F(6,1)jD1TT
WR1TE(6,100)LAB, (OUT(1),I=1,NP3),D1TT
1F(1STEP.EQ.O) GO TO 110

NY=NY+1
YAXES(NY)=V44
SYMBOL(NY)=SYMBL1(NY)
DO 1113 1=1,NP3



1113 YPLOT(NY,I)=OUT(I)
1120 CO('.;"TINUE

LAB=V46
WRlTE(6,100) LAB,(DL~DY(I),I=I,NP3)
LAB=V47
WRlTE(6,100) LAB,(DTDDY(I),I=I,NP3)
LAB=V48
WRlTE(6,100) LAB, (CONK(I),I=1,NP3)
LAB=V49
WRlTE(6,100) LAB, (DIFK(I),I=1,NP3)
LAB=VSO
WRlTE(6,100) LAB,(PROK(I),I=1,NP3)
LAB=VS1
WRlTE(6,100) LAB,(BUPROK(I),I=I,NP3)
LAB=VS2
w~ITE(6,100)LAB,(PREF(6,I),I=1,NP3)
LAB=VS3
WRlTE(6,100)LAB,(PREF(5,I),I=1,NP3)
LAB=V54
WRlTE(6,100) LAB, (PREF(4,I),I=I,NP3)
LAB=V55
WRlTE(6,100) LAB,(PREF(1,I),I=1,NP3)

C
1009 CONTINUE

IF(IPRINT.EQ.2) GO TO 110
IF(ISTEP .EQ.0) GO TO 110

WRITE (6,1070) XU, ISTEP,KRAD ,FRNOS ,DYHALO ,DYHATL
1070 FORMAT('PLOT AT XU=' ,E9.3,lX, 'ISTEP=' ,IS,lX, 'KRAD=' ,IS,lX,

1 'FRNOS=' ,E9.3,1X, 'DYHALO=' ,E9.3,IX, 'DYHATL=' ,E9.3/)
CALL PLOTS(XPLOT,43,NP3,XAXIS,YPLOT,10,NY,YAXLS,SYMBOL)

NPLOT2=2
IF(NPLOT2.NE.1) GO TO 110
NY=l
YAXES(NY)=V32
SYMBOL(NY)=V64
DO 1201 1=I,NP3

1201 YPLOT(NY,I)=UV(I)
NY=NY+1
YAXES (NY)=V33
SYMBOL(NY)=V6S
DO 1210 1=1,NP3

1210 YPLOT(NY,I)=VV(I)
NY=NY+l
YAXES (NY)=V36
SYMBOL(NY)=V66
DO 1220 1=1,NP3

1220 YPLOT(NY,I)=UT(I)
NY=NY+1
YAXES (NY)=V37
LAB=V67
DO 1230 I=1,NP3

218
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1230 YPLOTCNY,I)=v7(I)
CALL PLOTSCXPLOT,43,NP3,XAXIS,YPLOT,10,NY,YAXES,SYrIBOL)

C ------------------------------ _

GHAPTER 11 11 11 11 11 11 11 11 11 11 11 END OF MAIN LOOP
110 IF(ISTEP.GE.LASTEP.OR.XU.GE.XULAST.OR.IFIN.NE.O) GO TO 111

XP=XU
SA=RM1/PEI
SB=(RHE-RMI)/PEI
DO 113 I=1,NP3

113 F4V(I)=F(4,I)
C

LX=L*ILONG
IF(ISTEP.NE.LX)GO TO 114
1=L+1
XLONG(L)=XU/DD
FLONG(1,L)=(U(1)-UCNP3»
FLONG(2,L)=CFSC2,1)-FSC2,NP3»/CTA-TD)
FLONG(3,L)=-ALFAX
AFDTT=DABSCF(6,1)/DITT)
FLONG(4,L)=DSQRT(AFDTT)
1FCNBY.EQ.O) GO TO 104
FLONG(s,L)=FLONG(1,L)*XLONG(L)**(KRAD/3.)
FLONG(6,L)=FLONG(2,L)*XLONG(L)**«3.+2.*KRAD)/3.)
GO TO 105

104 CONTINUE
FLONG(s,L)=FLONG(1,L)*XLONG(L)**«1.+KRAD)/2.)
FLONG(6,L)=FLONG(2,L)*XLONG(L)**CC1.+KRAD)/2.)

105 FEI(L)=FE
FLONG(7,L)=F(4,1)/«U(1)-UCNP3»**2)

C ----------STRIDE3----------STRIDE3----------STRIDE3-------STRIDE3
114 CALL STRIDE(3)

IF(IFIN) 1011,60,111
C
C ------------------------------------------- TERMINATION

111 WRITE(6,112) ISTEP,LASTEP,XU,XULAST,IFIN.DDYHA
112 FORMATC23H TERMINATED WITH ISTEP=,Is,8H LASTEP=,I5,

1 4H XU=,lPE11.3,8H XULAST=,E11.3,6H IFIN=,I3,7H DDYHA=,E11.3)
C------ 11A ------ 11A -------- 11A ---------- 11A _
C----- CHAPTER 11A OulPUT LONGlTUDINAL PROFILES

NLONG=l
IF(NLONG.EQ.O)GO TO 120
WRITE(6,103)
DO 115 1=l,L

115 WRITE(6,102)I,XLONG(I),FLONG(1,I),FLONGC2,I),FLONG(3,I),FEI(1)
1 ,FLONG(4,I),FLONG(s,I),FLONG(6,I),FLONG(7,I)

102 FORMAT(I4,lP11E11.3)
103 FORMAT(3X, 'L',4X,IX/DI,4X,'U(l)/UA',2X,'CTC-TD)/(TA-TD), ,

1 2X, '-ALFAX',3X,'FE INTGL' ,lX,'DSQRT(TT)/CTC-TA), ,lX,'UAXIAL*X'
2 ,lX,'TAXIAL*X',lX,'KENG')
XAXIS=V68
IF(L.GT.6s) 1=65



1F(L .EQ. 65) GO TO 120
DO 1310 1=l,L

1310 XPLOT(I)=XLONG(I)
NY=l
DO 1330 J=1,3

YAXES (NY)=V69
DO 1320 1=l,L

1320 YPLOT(NY,1)=FLONG(J,I)
1330 NY=NY+1

STIiBOL(1)=STI1BL2(I)
STI1BOL(2)=SYMBL2 (2)
STI1BOL(3)=STIiBL2(3)
SYMBOL (4)=STIiBL2(4)
YA.XES(NY)=V72
DO 1340 1=l,L

1340 YPLOT(NY,I)=FEI(I)
1350 FORMAT(lHI,35H PLOT LONG1TUDINAL VARIABLES AT Y=O)

CALL PLOTS(XPLOT,65,L,~XIS,YPLOT,10,NY,YA.XES,STI1BOL)
C ---------------------------------------------------------------------
C------ CHAPTER 1IB CONTROL FOR CASES CALCULATION ---------

120 CONTINUE
150 DO 119 1=1,NP3

YY=Y(I)/YHA
UU=(U(I)-U(NP3»/(U(1)-U(NP3)+1.E-30)
WRITE(7,8888) YY,UU

119 CONTINUE
DO 129 I:;::1,NP3
YY=Y(I)/YHA
FF=F(4,I)/(U(1)-U(NP3»**2

C FF=F(4,I)/(U(1)**2)
WRITE(7,8888) YY,FF

129 CONTINUE
DO 139 I=1,NP3
YY=Y(I)/YHA
FUV=UV(I)/(U(1)-U(NP3»**2

C FUV=UV(I)/(U(1)**2)
WRITE(7,8888) YY,FUV

139 CONTINUE
DO 149 I=1,NP3
YY=Y(I)/YHA
FT=(FS(2,I)-FS(2,NP3»/(FS(2,1)-FS(2,NP3)
WRITE(7,8888) YY,FT

149 CONTINUE
DO 159 I=l,L
UUU=FLONG(1,I)/(DSQRT(UA*(UA-UD»)
WRITE(7,8888) XLONG(I),UUU

159 CONTINUE
8888 FORMAT( 2E20.7)

CALL EXIT
C 100 FORMAT(lH ,A8,lPIIEIO.3,8(/9X,11E10.3»
100 FO~~T(//lH ,A8,lP5E14.7,8(/9X,5E14.7»

220
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C 100 FO~~T(lH ,A8,lP11E10.3j(9X,11E10.3)jC9X,12E10.3))
101 FO~IAT OH ,AB , 11111)

END
SUBROUTINE AUX

C j - - - - - - - - SUBROUTINE FOR PROGRAM GEN~lIX 4A
UIPLICIT DOUBLE PRECISION(A-H,O-Z)
REAL*8 LAB
DUtENS10N YMPI (83),UAV(83) ,Z(83),FLAV(83) ,RAVE(83)
DIMENSION DUDO(83),SC(83),SCVC83),GD(83),DSC2,43),YEDGE(6)
COMMONjCOMAjA(83),AJE(7),AJI(7),BC83),C(83),CSALFA,DC83),DPDX(83),

1 DX,EMU(83),F(7,83),FS(5,83),IAX,IEND,IFIN,INDE(7),INDIC7),I OU!,
2 ISTEP,ITEST,IUTRAP,JS,JSW,JV,JY,KEX,KIN,KRAD,N,ND2,NF,NOVEL,NP1,
3 NP2 ,NP3 .on (83) .onn (83),P(83) ,PEl,PR (7) ,PREF(7,83) ,PSIE ,PSII ,R(83)
4,RHO(83),RME,RMI,RU(83),SD(7,83),SU(7,83),TAL~,TAUI,U(83),XD,XU,
5Y(83),YE,YI,ENU(83),NDEQ,BP1,BPE,DK1(83),DK2(83),EDK1C83),EDK2(83)
6,US(83),FACTOR
COHMONjCmiBj ARRCON ,EWALL,H ,HFU,INERT ,HASSTR,HODEL,Ox1lFU,PREEXP,

1 PRESS,UBAR,AK,RE,FR,ALMG,UFAC
COMMONjCOMCjENUT(83),ENUTDN(83),DUDY(83),DUDDY(83),DTDY(83),

1 DTDDY(83),PROK(83),BUPROK(83),ENUPR(83),PREFI(7)
2,CDFN(83),PKDEP(83),CVFN(83),UV(83),VVC83),UT(83),
3 VT(83),TT(83),PTDET(83),PROT(83),DIFTT(83),SUUK(83),SUUE(83),
I SUUT(83),FUUK(83),FUUE(83),FUUT(83)
COMMON/CONST/IZT,CMUF,GDM,CDIS,C1,C2,NCM,ALl,ALD,CRl,CRD,BUOY,

I C1T,CIK,C2K,N1B,ENULIM,NBUPRO,CT,CEI,CE2,CTI,CCI,CC2,C2T,CSP,CE
2 ,NPKDE,NPTDE,NALG,CAXIAL,PCLINR,LINEAR,LESSON,CE3,CM2,C2TM
COMMON/AUXL/RENO,VISMIX,RHOA,TA, COEFEP,COEFED,EPSPK, EPSDT
DATA VI/'TEST l'/,V2/'U'j,V3/'F(1,I)'j,V4/'F(2,I)'/,V5/'F(3,I)'j
DATA V6,V7,V8,V9,VIOj'TEST2', 'FSC1,I)', 'FS(2,I)', 'FS(3,I)', 'RHOCI)
1 ' /
DATA V11,V12,V13,V14,V151'TEST3','Y(1)', 'R(I)', 'RU(1)', 'TEST4'/
DATA VI6,VI7,V18,V19,V20/'EMU(1)', 'O~tEGA','TESTS', 'Rl YS', 'VEL'/
DATA V21,V22,V23,V24,V25 /'TEMP', 'T','RHO','KENGY', 'K'/
DATA V26 ,V27,V28,V29,V30/ 'DISSK' ,'D','SU(1),,'ENUTDN' ,'ENU'/
DATA V31,V32,V33,V34,V35/'ENUT', 'UV', 'vv','DIFTT' ,'DIST'j
DATA V36,V37,V38,V39,V40/'UT', 'VT','DKDEP', 'PTDET', 'CD FN'/
DATA V41,V42,V43,V44,V4Sj'CV FN', 'TT-AGL', 'TT-DEQ', 'TT', 'E'I
DATA V46,V47,V48,V49,VSOj'DUDDY', 'DTDDY', 'CONK', 'DIFK', 'PROK'/
DATA V51,V52,V53,V54,V55/'BUPROK', 'PREFTT' ,'PREFEP'

1, 'PREF-K', 'PREF-T'/
C
C SD(3,I) IS USED FOR R(1)*CY(I+1)-YCI-I))
C------------------------------------
c----- K E MODEL ----------­
C------- CALCULATE V AND T GRADIENT

500 DO 550 I=2,NP2
CDFN(I)=0.07

550 CVFN(I)=0.47
600 DO 601 I=2,NP1

YMPI(I)=Y(I+1)-Y(I)
DUPI=UCI+1)-U(I)



DUDY(I)=DUPljYHPI(I)
DTDY(I)=CFS(2,I+1)-FS(2,I))/YHPI(I)
UAV(I)=.S*(U(I)+U(I+1))
CDFNCI)=.S*CCDFNCI+1)+CDFN(I))

601 DUDO(I)=DUPI/OMD(I)
DUDY(l)=O.
DTDY(l)=O.
DUDY(NP2)=DUDY(NP1)
DTDY(NP2)=DTDY(NP1)
CVFN(NP3)=CVFN(NP2)
CDFN(NP3)=CDFN(NP2)
DO 630 I =2,NP1

C--------CALCULATE ,K=Z(I), EPSILON=FLAV(I),RAVE=R AVÈRAG~--­
Z(I)=.5*(F(4,I)+F(4,I+1))
FLAVCI)=.5*CF(S,I)+FC5,I+1))
RAVECI)=.5*CR(I)+RCI+1))

C--------CALCULATE TU~BULNT VISCOSITY
628 ENUT( I)=0.5'it(RHO(I)+RHOC 1+1) )~!:CDFN(I)*Z (I)'i:*2/FLAV(I)

ENUTDN(I)=1.+C2./C2.*C1T-1.+PKDAVE+CT*CPTDAVE-1.))*ZCI)
1/FLAV(I)*(BUOY/FS(2,NP3»)*(DTDYCI)/DUDY(I))*«1.-GM2)/C1.-CC2)
IFCENUTDNCI).GT.ENULIM) ENUTDN(I)=ENULIM

630 ENU(I)=ENUT(I)*ENUTDN(I)
C------ CALCULATE REY. STRESS UV ------­

ENU(1)=ENU(2)
ENU (NP2)=ENU (NP1)
ENU (NP3)=ENU (NP2)
ENUT (1)=ENUT (2)
ENUT (NP2)=ENUT (NP1)
ENUT(NP3)=ENUT(NP2)
FLAV( 1)=FLAV(2)
FLAV(NP2)=FLAV(NP1)
Z(1)=Z(2)
Z(NP2)=Z(NP1)
Ez..vrnN(l)=l.
ENUTDN (NP2)=ENUTDN (NPl)
ENUTDN(NP3)=ENUTDN(NP2)
UVCNP3)=0.
UV(l)=O.
UV(NP2)=(UV(NPl)+UVCNP3))*.5

C ---------------------------------------------------
C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 VISCOSITIES
C --------------------- LAMINAR VISCOSI'Î'IE'SFOR CELL BOUNDARIES

200 DO 23 I=2,NPl
43 EMU(I)=.5*(EMUCI)+EMUCI+l)

C -----------------------------------010----- TURBULÈNT CONTRIBUTION
DO 20 I=2,NPl
EMU(I)=EHU(I)+ENU(I)

20 CONTINUE
C ------~---------- MODIFICATION OF EMU ARRAY

29 DO 24 I=2,NPl
24 EM U(I)=EMU(I)/(Y(I+l)-Y(I))
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IFCKRAD.EQ.O) GO TO 25
DO 26 I=2,NP1

26 ErIU(I)=EM U(I)~':.5*CR(1)+R(I+1»
25 CONTINUE

C --------------------------------------- 1NIT1AL PREF 5.
DO 230 1=1,NP2
PREF(1,I)=(1.-CC2)*C1T/CC1*ENUTDN(I)
PREF (2,1)=1.
PREF(3,1)=1.
PREF(4,I)=1.0*(1-CC2)(CC5P*CC1)
PREFC5,I)=1.0*(1-CC2)(CCE*CC1)
PREFC6,I)=2.*ENU(I)*FLAV(I)/CCT1*(RHO(I)+RHO(I+1»*Z(1)*Z(I»

230 PREF(7,I)=1.
DO 231 J=l,NF

231 PREF(J,NP3)=PREF(J,NP1)
PO 227 I=1,NP3

22ï ENUPRCI)=ENUCI)(PREFC1,I)
C 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 SOVRCES
C ----- VELOCITY U
C------CALCULATE SOURCE TERM IN M EQ ------

DO 308 1=3,NPl .
308 U5(I)=5 D(3,I)*CDPDX(I)-BUOY*RHO(I)*(FSC2,I)-FSC2,NP3»/FSC2,NP3»

U5(2)=S D(3,2)*(DPDX(2)-BUOY*RHO(1)*(.2S*C2.*FS(2,l)+
1 FS(2,2)+FSC2,3»/FS(2,NP3)-1.»
USCNP2)=S D(3,NP2)*CDPDXCNP2)-BUOY*RHOCNP3)*(.2S*(2.*FS(2,NP3)+
1 FS(2,NP2)+FS(2,NP1»/FS(2,NP3)-1.»

C------ TO CALCULATE SOURCE TERM FOR K AND EPS EQS ----
C------ FIRST COMPUTE VV,VT,TT,UT,UV,ETC-IN CENTRAL DIFFERENCE-----
C ---------------------K AND EPS
800 DO 801 I=2,NP2

DTDDYCI)=.5*(DTDY(I)+DTDY(I-1»
801 DUDDY(I)=.S*(DUDYCI)+DUDY(I-1»

DTDDY (1)=0.
DUDDY(l)=O.
F4KIN=.S*(.S*(F(4,3)+F(4,2»+F(4,1»
FSKIN=.S*(.S*(F(S,3)+F(5,2»+F(S,1»
F(4,2)=F4KIN
F6KIN=.S*(.5*(F(6,3)+F(6,2»+F(6,1»
FC5,2)=FSKIN
F(6,2)=F6KIN
FC4,NP2)=0.S*C.S*CF(4,NPl)+F(4,NP2»+FC4,NP3»
F(S,NP2)=.S*(.5*(FC5,NPl)+FCS,NP2»+F(S,NP3»
F(6,NP2)=.S*(.S*CFC6,NPl)+F(6,NP2»+F(6,NP3»

810 UV(l)=-.S*ENU(l)*DUDDY(l)jRHO(l)
VISCOS=VISMIX*DSQRT(TA)/RHOA
IF(MODEL.EQ.l) GO TO 812
CEl=COEFEPjDSQRT(RENO)
CE2=COEFED/DSQRTCRENO)

812 CE3=CEl
DO 850 I=2,NP2
UV(I)=-.S*CENUCI)+ENUCI-1»*DUDDYCI)/RHO(I)*1.0
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VVO )=2.";rCCC2-1.+CC l+CCH2/CC2 -CC2 )~':BUOY~'rUTCI)jFS (2,~P3)
1 IF(S,I))*F(4,I)/(3.*CCl)
VT (I)=-2. 'irF(4,I)'irVV(I)1rDTDDY(I)I CF(5,I)ir (2. =c 1T
1 +CT))

IF(NALG.EQ.O) GO TO 820
C----TT(I) HERE IS ALG - TT ------------

TT(I )=-2.*F (4,I)*VTCI )*DTDDY (I)I (F(S,I)'IrCT)
F(6,I)='IT(I)

820 CONTINUE
UT(I)=(-UV(I)*DTDDYCI)-VT(I)*DUDDY(I)*(I.+C2T)+BUOY*F(6,I)

1 *(1.-C2TM)/FS(2,NP3))*F(4,I)/(.5*F(5,I)*C2*CIT
2 +0. Si:CT) )
PROK( I)=RHO (1)*(-UV(I )*DUDDY (I)+BUOY~':UT(I)IFS (2 ,NP3J)
RDY=.S*R(I)*(Y(I+l)-Y(I-l))
IF (I.EQ.2) RDY=YlirR(2)
IF (I.EQ.NP2) RDY=YE*R(NP2)
BUPROK(I)=RHO(I)*BUOY*UT(I)/FS(2,NP3)
SU(4,I)=(PROK(I) -RHOCI )*1.OO*F (5,I))"'rRDY
PROKM=PROK(I)
IF (LESSON.EQ.2) PROKM=RHO(I)*(-UV(I)*DUDDY(I)+BUOY*UT(I)

1 /FS(2,NP3)*(CE3/CEl))
FFF=OABS(F(S,I))
IF(MOOEL.EQ.l) GO TO 830
EPSPK=RDY*OSQRT(FFF/VISCOS)*(CEl*PROKM)
EPSDT=RDY*DSQRT(FFF/VISCOS)*(CE2*F(S,I)*RHO(I))
GO TO 840

830 EPSPK=RDY*FFF/F(4,I)*(CEl*PROKM)
EPSOT=RDY*FFF*(CE2*FFF)/F(4,I)*RHO(I)

840 SU(S,I)=EPSPK-EPSDT
SU(S,I)=FACTOR*SU(S,I)
PROT(I)=RHO(I)*(-2.*VT(I)*DTDDY(I))

850 SU(6,I)=(PROT(I)-RHO(I)*CT*F(S,I)*F(6,I)/FC4,I))*RDY
FC4,2)=2.*(2.*F4KIN-F(4,l))-FC4,3)
F(S,2)=2.*C2.*FSKIN-F(S,l))-F(S,3)
FC6,2)=2.*(2.*F6KIN-FC6,l))-F(6,3)
FC6,NP2)=2.*C2.*F(6,NP2)-F(6,NP3))-F(6,NPl)
FC5,NP2)=2.*(2.*FCS,NP2)-F(S,NP3))-F(S,NPl)
FC4,NP2)=2.*(2.*F(4,NP2)-F(4,NP3))-FC4,NPl)

C------------------------------------------------------------
RETURN

100 FORMAT(lH,A8,lPllEll.3/C9X,llEll.3))
E~ .
SUBROUTINE STRIOE(ISW)

C/-------- SUBROUTINE FOR PROGRAM GENMIX 4A
C/----------------- O.B.SPALDING, IMPERIAL COLLEGE, 1972 --------------­
Cl THIS SUBROUTINE PERFORMS THE SAME OPERATIONS AS THE ONE IN GENMIX4A
C BUT MORE ECONOMICALLY. THE A,B,C ARRAYS ARE ONE-DI~mNSIONAL. SOME
C OFTEN USED FUNCTIONS OF OM ARE STORED, AND A 0 ARRAY SAVES
C UNNECESSARY ARI~mTIC IN THE TDMA OPERATlON.
C-----------------------------------------------------------------------

IMPLICIT'DOUBLE PRECISIONCA-H,O-Z)
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DHIENSION A2(7) ,&~P2(7) ,B2(7) ,BNP2(7) ,C2(l) ,CNP2(ï) ,D2(ï) ,DNP2(7),
1 AHLPT(83),BOMT3(83),FDIFE(7),
2 FDIFI(7) ,GE(7),GI(7),PB0i1(83),PGm1(83) ,THLPT(83) ,TTPF(7)
DHlENSION BOM(83) ,OHPOM(83)
COMMON/COMA/A(83),AJE(7),AJI(7),B(83),C(83),CSALFA,D(83),DPDX(83),

1 DX,E~ru(83),F(7,83),FS(5,83),IAX,IEND,IFIN,INDE(7),INDI(7),IOUT,
2 ISTEP,ITEST,IUTRAP,JS,JSW,JV,JY,KEX,KIN,KRAD,N,~~2,NF,NOVEL,NP1,
3 NP2,NP3,OM(83),O~ID(83),P(83),PEI,PR(7),PREF(7,83),PSIE,PSII,R(83)
4,RHO(83),RME,RMI,RU(83),SD(7,83),SU(7,83),TAUE,TAUI,U(83),XD,XU,
5Y(83),YE,YI,ENU(83),NDEQ,BPI,BPE,DK1(83),DK2(83),EDK1(83),EDK2(83)
6,US(83) ,FACTOR

C
GO TO (1000,2000,3000,4000), ISW

C

1000 IF(ISTEP) 1003,1003,1100
1003 OMI=.5*OM(3)

OME=.5* (1.-OM(NP1))
DO 1002 I=2,NP2
BOM(I)=OM(I+1)-OM(I-1)
BOMT3 (I)=3.'':BOM(I)
OMPOM(I)=OM(I)+OM(I+1)

1002 OMD(I)=OM(I+1)-OM(I)
OMD(l)=BOM(2)
BPE=l.
BPI=l.

Y(1)=0.
IF(KRAD.EQ.1) GO TO 1100
DO 1001 I=1,NP3

1001 R(I)=l.
R25=1.
RN15=1.
IF(ITEST.NE.O) w~ITE(6,9010) (R(I),I=1,NP3),R25,RN15

C---------------------------- CALCULATION OF RHO*U 's ----------------
1100 DO 1101 I=1,NP3

IF(RHO(I).GT.O.) GO TO 1101
WRlTE(6,1108) RHO(I),I,RHO(l)

1108 FORMA!Á36H ********** NEGATIVE OR ZERO RHO(I)=,lPE11.3,6H AT 1=,
1 I3,6X,21HSET TO ABS OF RHO(1)=,E11.3,17H **** ........STRIDE1)
RHO(I)=DABSCRHO(l))

1101 RU(I)=RHO(I)*U(I)
RU3=RU(3)
RUN1=RU(NP1)
DO 1102 I=2.NP1

1102 RU(I)=.5*CRU(I)+RU(I+1))
IF(ITEST.~L.O) WRlTE(6,9010) (RU(I),I=1,NP3),RUN1,RU3,PEI

C---------------------------- CALCULATION OF Y 's AND R 's -----------
C ---------------------------------------- Y'S FOR PLANE GEO~1ETRY

YI=PEI*OMI/(BPI*RU(2))
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Y(3)=Y1+PE1*OM(3)/(RU(2)+RU3)
Y(2)=2.*Y1-Y(3)
DO 1103 1=4,NP1

1103 Y cr )=Ycr -1)+PE1',:mID(I-1)/RU(1-1)
YN15=Y(NP1)+PE1*OMD(NP1)/(RU(NP1)+RUN1)
YE=PE1*OME/(BPE*RU(NP1))
Y(NP3)=YN15+YE
Y(NP2)=2.*YNlS-Y(NPl)
IF (KRAD •EQ .0) RETURN

C ----------------------- y' S AND R'S FOR AXISYMI1ETRICAL GEm'1ETRY
IF(CSALFA.EQ.O.) GO TO 1110

C ---------------------------------------- CSALFA NE ZERO
COSD2=.5*CSALFA
IF(R(l).NE.O.) GO TO 1105

C------------------------------------------ R(l)=O.
DO 1106 I=2,NP3
Y(I)=DSQRTCDABS(Y(I)/COSD2))

1106 R(1)=Y(I)1:CSALFA
YI=DSQRT(DABS(YI/COSD2))
YN15=DSQRT(DABS(YN15/COSD2))
GO TO 1107

C ---------------------------------------.- R(l) NE O.
1105 RID2=.5*R(1)

R1D2SQ=RID2*R1D2
DO 1104 I=2,NP3
Y(I)=Y(I)/(R1D2+DSQRT(DABS(R1D2SQ+COSD2*Y(I))))

1104 R(I)=R(l)+Y(I)*CSALFA
YI=YI/(RID2+DSQRT(DABS(R1D2SQ+COSD2*YI)))
YN15=YN15/(R1DZ+DSQRT(DABS(RID2SQ+COSD2*YN15)))

1107 R25=R(1)+YI*CSALFA
RN15=R(1)+YN15*CSALFA
YE=Y(NP3)-YN15
RETURN

C ---------------------------------------- CSALFA EQ ZERO
1110 DO 1111 I=2,NP3

Y(I)=Y(I)/R(l)
1111 R(l)=R(l)

YI=YI/R(l)
YN15=YN15 /R(1)
R25=R(1)
RN15=R(1)
YE=Y(NP3)-YN15
RETURN

CAAAAAAAAAAAAAA*AAAAAAAAAAAAAAAAAAAAAAA S TRI D E 2 AAAAAA*AAAAAAA**
C ------------------------------ PRELIMINARIES FOR COEFFICIENTS
2000 PX=PEI/DX

PD8=.125*PX
PD4=PD8+PD8
G=RMI-IU1E
ARMI=DABS(RMI)
ARME=DABS(RME)



GD4=.2S>':G
PG=PX+G
PGD8=.12S*PG
PGD4=PGD8+PGD8
RMID2=.Si:RMI
DO 2004 I=2,NP2

. PBOM(I)=PX*BOM(I)
2004 PGOM(I)=PGD4*OMD(I)

P40MP=PD4*BOM(2)
C ---------------------------------------- GRID POINT 2
C--------------------------------------- TAUI, BPI, Tl

TI=O.
IF(KRAD.EQ.0) BPI=.33333+.66667~':RU(1)jRU(2)
IF(KRAD.EQ.I) BPI=(R(I)*(S.*RU(I)+RU(2))+3.*R2S*

1 (RU(1)+RU(2)))/6./(R(1)+R25)jRU(2)
C --------------------- BO~~ARY COEFFICIENTS FOR VELOCITY
2002 HLP=RMID2-GD4*OMPOH(2)

AHLP=DABS(HLP)
THLP=HLP+HLP
THLPT(2)=THLP
TP=EM U(2)
TTP=TP+AHLP+DABS(TP-AHLP)
A(2)=TTP-THLP-TI-PGOM(2)
B(2)=2.*TI+RMI+ARMI
C(2)=P40MP*(3.*U(2)+U(3))-US(2)
D(2)=A(2)+B(2)+PBOM(2)

C ------------------------------ BOUNDARY COEFFICIENTS FOR F'S
IF(NF.EQ.O) GO TÓ 2304
DO 2300 J=l,NF
IF(J.GE.NDEQ+1.AND.J.LT.4) GO TO 2300
TPF2=TPjPREF(J,2)
TTPF(J)=TPF2+AHLP+DABS(TPF2-AHLP)
TIF=O.
FDIFI(J)=O.

2302 A2(J)=TTPF(J)-THLP-T1F-PGOM(2)+.S*SD(J,2)
B2(J)=2.*T1F+RMI+ARMI
SIMP=O.
IF(J.EQ.S) SIMP=SU(S,2)*(1.-FACTOR)jFACTOR
D2(J)=A2(J)+B2(J)+PBOM(2)-2.*SD(J,2)-SIMP
T=-TIF*FDIFI(J)
TT=3.*F(J,2)+F(J,3)
C2(J)=P40MP*TT+2.*CT+SU(J,2))
IF(J.EQ.S)C2(J)=P40MP*TT+2.*(T+SU(J,2))

2300 CONTINUE
C . ---------------------------------------- GRID POINT NP2
C--------------------------------------- TAUE, BPE, TNP3
2304 TNP3=O.

IFCKRAD.EQ.O) BPE=.33333+.66667*RU(NP3)/RU(NPI)
IF(KRAD.EQ.I) BPE=(R(NP3)*(S.*RUCNP3)+RU(NPI))+3.*RNIS*

1 (RU(NP3)+RU(NP1)))/6./CR(NP3)+ RN1S)/RU(NPl)
C -------------------- BOUNDARY COEFFICIENTS FOR VELOCITY

227
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2310 HLH=Rt1ID2-GD4'i:mIPOM(NP1)
AHUoI=DABS (HUt)
THU1=HLH+HL'1
TM=EM U(NP1)
TTM=TM+AHL'1+DABS(TM-AHL'1)
P40MM=PD4*BOM(NP2)
A(NP2)=2. *TNP3-ID1E+ARME
B (NP2)=='ITIl+THL'1-TNPJ-PGOM(NPl)
C (NP2)=P40MM*(3. '':U(NP2)+U(NPl» -US (NP2)
D(NP2)=A(NP2)+B(NP2)+PBOM(NP2)
IF (NF .EQ .0) RETURN

C ---------------------- BOUNDARY COEFFICIENTS FOR F'S
DO 2320 .J=1 ,NF
IF(J.GE.NDEQ+1.AND.J.LT.4) GO TO 2320
TMF=TMjPREF(J,NPl)
TTMF=TMF+AHU!+DABS (TMF-AHLM)
TNP3F=0.
FDIFE(J)=O.

2312 ANP2(J)=2.*TNP3F-RME+ARME
BNP2 (J)=TTMF+THLM-TNP3F-PGml(NP1)+. 5~':SD(J ,NP2)
SIMP=O.
IF(J.EQ.5).SIMP=SU(5,NP2)*(1.-FACTOR)jFACTOR
DNP2(J)=ANP2(J)+BNP2(J)+PBOM(NP2)-2.*SD(J,NP2)-SIMP
T=-TNP3F*FDlFE(J)
TT=3.*F(J,NP2)+F(J,NPl)
CNP2(J)=P40MM*TT+2.*(T+SU(J,NP2))
IF(J.EQ.5) CNP2(J)=P40MM*TT+2.*(T+SU(J,NP2»)

2320 CONTINUE
RETURN

3000 DO 3005 I=3,NP1
THLM=THLP
HLP=RMID2-GD4*OMPOM(I)
THLP=HLP+HLP
THLPT (I)=THLP
AHLP=DABS (HLP)
AHLPT(I)=AHLP
TTIl=TTP
TP=EM U(I)
TTP=TP+AHLP+DABS(TP-AHLP)
A(I)=TTP-THLP-PGOM(I)
B(I)=TTM+THLM-PGOM(I-l)
C(I)=PD4*(BOMT3(I)*U(I)+OMD(I)*U(I+l)+OMD(I-l)*U(I-l»-US(I)
D(I)=A(I)+B(I)+PBOM(I)
D(I)=A(I)+B(I)+PBOM(I)

3005 CONTINUE

C---------------------------- -------------~----
IF(KIN.EQ.2.AND.RU(1).NE.0.) U(1)=U(1)-DPDX(1)*DXjRU(1)
IF(KEX.EQ. 2.AND .RU(NP3) .NE.0.) U(NP3 )=U(NP3) -DPDX(NP3)'l':DX/RU(NP3)

C---------------------------- SOLVE FOR DOWNSTREAM U '5 ------------­
B(2)=(B(2)*U(1)+C(2»jD(2)

Cl. ,',,',l..l. ,',,'".:.:, Al.;.;. l4 Jt. l..:..AI. A ,t, Je;', ie Al.;. ,\ A A l. ,',:e ,ti:' l.,', S TRI D E 3 ***,"****,"*,\ ....,'..l, Ic'\' Jc*
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A(2)=A(2)jD(2)
DO 3048 I=3,NP2
T=D(I)-B(I)*A(I-1)
ACI)=ACI)jT

3048 B(I)=(B(I)*B(I-1)+C(I))jT
DO 3050 IDASH=2,NPZ
I=N+4-IDASH
U(I)=A(I)*U(I+1)+B(I)

3050 CONTINUE
C ------------------------------------------------

IF(KIN.EQ.3) U(1)=.5*(U(2)+U(3))
IFCKEX.EQ.3)U(NP3)=.5*(U(NP1)+U(NP2))

C -------------------------------------------
3013 IF(NF) 3060,3060,3014
3014 DO 3320 J=1,NF

IF(J.GE.NDEQ+1.AND.J.LT.4) GO TO 3320
C---------~------------------ SOLVL FOR DOWNSTREAM F 's ------------­

A(Z)=AZ(J)
B(Z)=B2(J)
C(Z)=C2(J)
D(2)=D2(J)
A(NP2)=ANP2(J)
B(NP2)=BNP2(J)
C(NP2)=CNP2(J)
D(NP2)=DNP2(J)
DO 3002 I=3,NP1
TTMF=TTPF(J)
TPF=EM U(I)jPREF(J,I)
TTPF(J)=TPF+AHLPT(I)+DABS(TPF-AHLPT(I))
A(I)=TTPF(J)-THLPT(I)-PGOM(I)
B(I)=TTMF+THLPT(I-1)-PGOM(I-1)
C(I)=PD4*(BOMT3 (I)*F(J,I)+OMD(I)'/:F(J,1+1)+OMD(I-1)*F(J,1-1))+
1 2.*SU(J,I)
SIMP=O.
IF(J.EQ.5) SIMP=SU(5,I)*(1.~FACTOR)jFACTOR

300Z D(I)=A(I)+B(I)+PBOM(I)-Z.*SD(J,I)-SIMP
C -----------------------------------------

B(Z)=(B(2)*F(J,1)+C(Z))jD(Z)
A(Z)=A(2)jD(Z)
DO 3148 I=3,NPZ
T=D(I)-B(I)*A(I-1)
ACI)=A(I)jT

3148 B(I)=(B(I)*B(I-l)+C(I))jT
DO 3150 IDASH=2,NP2
I=N+4-IDASH

3150 F(J,I)=A(I)*F(J,I+1)+B(I)
C---------------------------- ADJUST F(J,1) AND F(J,NP3) -------------

GO TO (3ZZ0,3220,3Z30),KIN
3230 F(J,1)=.5*(F(J,Z)+F(J,3))
3220 GO TO (3320,3320,3330),KEX
3330 F(J,NP3)=.5*(F(J,NP1)+F(J,NP2))
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CONTINUE3320
C
3060

C
XU=XD
lTEST=O
PSII=PSII-RMI"'DX
PSIE=PSIE-Rr-tE"'DX
PEI=PSIE-PSII
ISTEP=ISTEP+1
RETURN

4000 CONTINUE
ND2=Nj2
NPl=N+l
NP2=N+2
NP3=N+3
mi( 1)=0.
OH(2)=0.
OM(NP3)=1.
ISTEP=O
IEND=lOOOO
IA."\=10000
IOUT=10000
DX=1.E-30
IFIN=O
DO 4001 J=1,7
DO 4001 I=1,NP3
5U(J,I)=0.

4001 50(J,I)=0.
RETURN

9010 FORMAT(1H ,1P11E11.3)
END
SUBROUTINE PLOTS (X,IOIM,IMAX,XAXIS,Y,JDIM,JMAX;YAXE5,SYMBOL)

C *
C SUBROUTINE FOR PLOTTING J CURVES OF Y(J,I) AGAINST XCI).
C *
C X AND Y ARE ASSUMEO TO BE IN ANY RANGE EXCEPT THAT NEGATIVE VALUES *
CAREPLOTTEO AS ZERO. *
C X AND Y ARE SCALED TO THE RANGE O. TO 1. BY DIVISION BY THE ~~IMA, *
C w~ICH ARE ALSO PRINTED. *
C IDIM IS THE VARIABLE OIMENSION FOR X. *
C lMAX IS THE NUMBER OF X VALUES. *
C XA.XISSTORES THE NAME OF THE X-AXIS. *
C JDIM IS THE VARIABLE OIMENSION FOR Y. *
C JMAX IS THE NUMBER OF CURVES TO BE PLOTTED, (UP TO 10). *
C THE ARRAY YA.'{ES(J) STORES THE NAMES OF THE CURVES. *
C THE ARRAY SYMBOL(J) STORES THE SINGLE CHARACTERS USED FOR PLOTTING. *
C *

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DlMENSION X(IDIM),Y(JDIM,IDIM),YAXES(JDIM),SYMBOL(JDIM),



231

1 A(101),YMAX(20)
DATA DOT,CROSS,B~~K/1H. ,1H+,lH I

c,'·,,:*,,,·*SCALING X ARRAY TO THE RANGE 0 TO 50
X!-f&X=1.E-30
DO 1 1=1,IMAX

1 IF(X(I).GT.XMAX) XMAX=X(I)
DO 2 1=1,IMAX
X(I)=X(I)jXMAX*50.

2 IF(XCI).LT.O.) X(I)=O.
C***** SCALING Y ARRAY TO THE RANGE 0 TO 100

DO 3 J=1,JMAX
Yr-1AX(J)=l.E-30
DO 4 I=1,IMAX

4 IF(Y(J,I).GT.YMAX(J)) YMAX(J)=Y(J,I)
DO 3 1=1,IMAX
Y(J,I)=YCJ,I)jYMAX(J)*lOO.

3 IF(Y(J,I).LT.O.) Y(J,I)=O.
C***-I·* IDENTIFYING THE VARIOUS CURVES TO BE PLOTTEO

WRITE(6,103) ~XIS,XMAX
WRITE(6,lOO) (Y~XES(I),I=1,JMAX)
WRITE(6,106) (SYMBOLCI),I=l,JMAX)
WRITE(6,102) (YMAX(I),I=1,JMAX)
DO 5 1=1,11

5 A(I)=O.1*FLOAT(I-1)
WRITE(6,101) (ACI),I=1,11)

C***** MAIN LOOP. EACH PASS PRODUCES AN X-CONSTANT LINE.
DO 40 1=1,51
1F(I.EQ.1.0R.1.EQ.51) GO TO 32
GO TO 33

C***** ALLOCATE . OR + AS MARKER ON THE Y-AXIS
32 DO 30 K=1,101
30 A(K)=OOT

DO 31 K=11,101,10
31 A(K)=CROSS

Ci~ ALLOCATE. OR + MARK ON THE X-~XIS, ALSO THE APPROPRIATE X VALUE
33 A(1)=00T

A(l01)=00T
K=I-1

46 K=K-5
1F(K)48,47,46

47 A(1)=CROSS
A(l01)=CROSS

48 XL=O.02*FLOAT(I-1)
C***** CHECK IF ANY Y( XCI) ) VALUE LIES ON THIS X-CONSTANT LINE
C**AÁÁ IF YES GO TO 41, OTHERWISE GO TO 42

DO 43 K=1, U1AX
1FCIFIX(X(K)+1.5)-1) 43,41,43

C",rn-Jriri: LOCATE Y( X (I) )
41 DO 44 J=1,JMAX

NY=Y(J,K)+1.5
ACNY)=SYMBOL(J)
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44 CO~'TINtJE
GO TO 42

43 CONTIN1JE
C,'d:*** PRINT X-CONSTANT LINE

42 WRITE(6,105) XL,(A(K),K=l,lOl),XL
C,':'ir***PUTTING BLANKS INTO X-CONSTANT LINE

DO 49 K=l,lOl
49 A(K)=BLANK
40 CONTINUE

DO 50 1=1,11
50 ACI)=.1*FLOAT(I-1)

WRlTE(6,104) (A(I),I=1,11)
RETURN

100 FORMAT(llH Y-AXES ARE,5X,10C1X,A10))
101 FORMAT(lHO,2X,11F10.1)
102 FORMAT(15H HAXIMu~ VALUES,lP10E11.3)
103 FORNAT(11HOX-AXIS IS ,A8,17H ,MAXIMUM VALUE =,lPEIO.3)
104 FORMAT(3X,11F10.ljlHl)
105 FO~~T(2H X,F6.2,3X,101A1,F6.2)
106 FORMAT(7H STI1BOL,l1X,10(lX,AIO))

END
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