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Summary
Over the last three decades, the social roots of human intelligence have come to influence
the development of artificial intelligence (AI). Researchers in AI have moved beyond agents
operating in isolation towards developing socially situated agents that can operate in the real
world. Meanwhile, researchers in the social sciences have been leveraging AI techniques
to analyze and theorize about social phenomena. Both these research endeavors came to
be independently termed Artificial Social Intelligence (ASI), leading to the emergence of a
field spanning several subdisciplines of the social and computational sciences.

This Thesis takes a holistic view of ASI and makes contributions toward both its
historical goals. Moreover, the work presented here focuses on taking ASI research into
natural real-world settings in the wild. The research is organized under three themes:
acquiring, modeling, and perceiving social human behavior.

The Thesis begins by addressing the challenge of data acquisition. We propose a
replicable data collection concept for curating datasets of real-world social human behavior,
incorporating technical innovations and ethical considerations required for the noninvasive
sensing of multimodal behavioral streams. To overcome the limited availability of real-
world data, we also explore the potential of synthetic training data for downstream tasks.

Next, we tackle the challenge of modeling real-world social behavioral cues. Evidence
from social psychology suggests that individuals uniquely adapt their behaviors to different
conversation partners to sustain interactions. How can we jointly forecast these mutually
dependent future cues of conversation partners? We propose a stochastic meta-learning
method that adapts its forecasts to the unique dynamics of a conversation group given
example behavior sequences. Thereby, it generalizes to unseen groups in a data-efficient
manner by avoiding the need for group-specific models. Further, to facilitate the integra-
tion of data-driven and hypothesis-driven research, we propose a post hoc explanation
framework for identifying timesteps that are salient to a forecasting model’s predictions.

Finally, we contribute to a nuanced perception of social interactions by establishing
evidence of multiple conversation floors within a single conversing group, in contrast to
the prevailing implicit assumption in the automatic detection of conversation groups. We
also develop an instrument for measuring the perceived quality of conversations at the
individual and group levels.

Through these research themes, we provide novel contributions to the field of ASI,
taking important steps toward the development of socially intelligent machines that can
operate effectively in complex real-world settings.
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Samenvatting
Gedurende de laatste drie decennia hebben de sociale aspecten van menselijke intelligentie
een aanzienlijke invloed uitgeoefend op de ontwikkeling van artificiële intelligentie (AI).
Onderzoekers binnen het domein van AI zijn afgestapt van het werken met geïsoleerde
agenten en hebben zich toegelegd op de ontwikkeling van sociaal gesitueerde agenten die in
de echte wereld kunnen functioneren. Tegelijkertijd hebben wetenschappers in de sociale
wetenschappen AI-technieken toegepast voor de analyse van sociale fenomenen en het
opstellen van theoretische modellen. Beide onderzoeksinspanningen werden onafhankelijk
aangeduid als Artificial Social Intelligence (ASI), wat heeft geleid tot de opkomst van
een interdisciplinair onderzoeksveld dat meerdere subdisciplines binnen de sociale en
computationele wetenschappen omvat.

Dit proefschrift benadert ASI vanuit een holistisch perspectief, en levert bijdragen aan
beide historische doelstellingen. Bovendien richt het hier gepresenteerde werk zich op
het uitvoeren van ASI-onderzoek in natuurlijke, realistische situaties. Het onderzoek is
gestructureerd rond drie thema’s: het verzamelen, modelleren en waarnemen van sociaal
menselijk gedrag.

Allereerst behandelt het proefschrift de uitdaging van het verzamelen van gegevens.
Wij introduceren een herhaalbaar dataverzamelingsconcept om datasets van sociaal men-
selijk gedrag in realistische situaties samen te stellen, waarbij de technische innovaties
en ethische aspecten worden geïntegreerd die noodzakelijk zijn voor het niet-invasief
waarnemen van multimodale gedragspatronen. Om de beperkte beschikbaarheid van
echte gegevens te ondervangen, onderzoeken we ook het potentieel van synthetische
trainingsgegevens voor downstream taken.

Vervolgens richten we ons op het modelleren van realistische sociale gedragskenmer-
ken. Studies in de sociale psychologie laten zien dat mensen hun gedrag specifiek aanpassen
aan wie ze spreken, om een gesprek gaande te houden. Maar hoe kunnen we voorspellen
hoe deze gedragingen zich in de toekomst zullen ontwikkelen, zeker als ze afhankelijk zijn
van meerdere gesprekspartners? Wij introduceren een flexibele voorspellingsmethode,
gebaseerd op stochastische meta-learning. Deze methode leert van voorbeeldgesprekken
en past zich aan aan de unieke stroom van elk gesprek. Zo kan het model effectief worden
toegepast op nieuwe, nog niet eerder geziene groepen, zonder dat er voor elke groep een
apart model nodig is. Teneinde de integratie van datagedreven en hypothese-gedreven
onderzoek te bevorderen, introduceren wij een post-hoc verklaringskader om tijdstappen
te identificeren die relevant zijn voor de voorspellingen van een voorspellingsmodel.



xiv Samenvatting

Ten slotte dragen wij bij aan het genuanceerd waarnemen van sociale interacties
door bewijs aan te voeren voor het bestaan van meerdere gespreksniveaus binnen één
converserende groep. Hiermee betwisten we de gangbare impliciete veronderstelling in de
automatische detectie van gespreksgroepen. Daarnaast ontwikkelen we een instrument
om de waargenomen gesprekskwaliteit zowel op individueel als op groepsniveau te meten.

Door het verkennen van deze onderzoeksthema’s dragen we niet alleen bij aan de
vooruitgang van het vakgebied ASI, maar zetten we tevens cruciale stappen richting de
ontwikkeling van sociaal intelligente machines die in staat zijn om effectief te functioneren
in complexe omgevingen.
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सारांश
�पछले तीस वषा� में , मानव बु�द्ध के सामा�जक आधाराें ने कृ�त्रम बु�द्धमत्ता (‘‘आ�ट����शयल इंटे�लजेंस (ए.आई.)”)
की प्रग�त को प्रभा�वत करने में महत्वपूण� भू�मका �नभाई है। ए.आई. शोधकता� एकांत में काय�रत ‘‘एजेंटाें” से
आगे बढ़कर ऐसे पारस्प�रक संवादात्मक एजेंटाें के �वकास में प्रया�सत हैं जो वास्त�वक दु�नया में काय� करने योग्य
हाें । इस दौरान, सामा�जक �वज्ञान के शोधकता� सामा�जक घटनाआें से संबं�धत �सद्धांताें का अध्ययन और �नमा�ण
करने के �लए ए.आई. �व�धयाें का उपयोग कर रहे हैं। ये दोनाें शोध प्रयास स्वतंत्र रूप से कृ�त्रम सामा�जक बु�द्धमत्ता
(‘‘आ�ट����शयल सो�शयल इंटे�लजेंस (ए.एस.आई.)”) के रूप में जाने गये, �जसके प�रणामस्वरूप एक ऐसे के्षत्र
की स्थापना हुई �जसमें सामा�जक और संगणना (कम्प्यूटेशनल) �वज्ञान की �व�भन्न शाखाएं शा�मल हैं।

यह शोध-प्रबंध (थी�सस) ए.एस.आई. का समग्र दृ�ष्टकोण अपनाती है और इसके दोनाें ऐ�तहा�सक लक्ष्याें की
�दशा में योगदान देती है। �वशेष रूप से, यहां प्रस्तुत शोध �नयं�त्रत वातावरण से परे वास्त�वक दु�नया के प�रदृश्याें
में ए.एस.आई. के अनुप्रयोग की खोज पर कें ��त है। यह जांच तीन मुख्य �वषयाें पर संर�चत है: सामा�जक मानव
व्यवहार से संबं�धत दत्त-सामग्री/‘‘डेटा” संग्रह, प्र�तमान/‘‘मॉडल” �वकास, और व्यवहार के संज्ञानात्मक पहलुआें
की अनुभू�त।

यह शोध-प्रबंध डेटा संग्रहकी चुनौती को संबो�धत करते हुए आरम्भ होती है। हम वास्त�वक दु�नया के सामा�जक
मानव व्यवहार के डेटासेट एकत्र करने के �लए एक प्र�तकृ�त डेटा संग्रह अवधारणा को प्रस्ता�वत करते हैं। �वशेष
रूप से, हम �व�भन्न व्यवहार धाराआें की गैर-आक्रामक संवेदन के �लए आवश्यक तकनीकी नवाचाराें और नै�तक
�वचाराें को शा�मल करते हैं। इसके अ�त�रक्त, हम वास्त�वक दु�नया के डेटा की कमी की भरपाई के साधन के रूप
में एआई काया� के �लए कृ�त्रम रूप से उत्पन्न प्र�शक्षण डेटा का उपयोग करने की संभावना की भी जांच करते हैं।

तदुपरांत, हम वास्त�वक दु�नया के सामा�जक व्यवहार संबंधी संकेताें के मॉड��ंग की चुनौती से �नपटते हैं।
सामा�जक मनो�वज्ञान के प्रमाण से पता चलता है �क व्य�क्त बातचीत को बनाए रखने के �लए अलग-अलग वाता�लाप
भागीदाराें के साथ अपने व्यवहार को �व�शष्ट रूप से अनुकू�लत करते हैं। हम वाता�लाप साझेदाराें के इन परस्पर �नभ�र
भ�वष्य के संकेताें का संयुक्त रूप से पूवा�नुमान कैसे लगा सकते हैं? हम एक ‘‘स्टोके�स्टक, मेटा-ल�न�ग” पद्ध�त
का प्रस्ताव प्रस्तुत करते हैं जो अपने पूवा�नुमानाें को उदाहरण व्यवहार अनुक्रम �दए गए वाता�लाप समूह की अ��तीय
ग�तशीलता के अनुरूप बनाती है। इस प्रकार, यह समूह-�व�शष्ट मॉडलाें की आवश्यकता से बचकर डेटा-कुशल तरीके
से अनदेखे समूहाें का सामान्यीकरण करता है। इसके अलावा, डेटा-संचा�लत और प�रकल्पना-संचा�लत अनुसंधान
के एकीकरण को सु�वधाजनक बनाने के �लए, हम पूवा�नुमान मॉडल की भ�वष्यवा�णयाें के �लए मुख्य समय-चरणाें
की पहचान करने के �लए एक ‘‘पोस्ट हॉक” स्पष्टीकरण साध्य का प्रस्ताव प्रस्तुत करते हैं।

अंत में , हम वाता�लाप समूहाें की स्वचा�लत पहचान में प्रच�लत अंत�न��हत धारणा के �वपरीत, एक ही समूह
के अंतग�त एका�धक समांतर वाता�लाप के अ�स्तत्व का प्रमाण स्था�पत करके सामा�जक बातचीत की एक सूक्ष्म
अनभु�ू� में योगदान देते हैं। आगे, हम व्य�क्तगत और समूह स्तर पर बातचीत की क�थत गुणवत्ता को मापने के
�लए एक उपकरण भी �वक�सत करते हैं।

इन शोध �वषयाें के माध्यम से, हम ए.एस.आई. के के्षत्र में नवीन योगदान प्रदान करते हुए, ऐसे सामा�जक रूप
से बु�द्धमान मशीनाें के �वकास की �दशा में महत्वपूण� कदम उठाते हैं जो वास्त�वक दु�नया के ज�टल प�रदृश्याें में
कुशलता से काम कर सकते हैं।
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સારાંશ

છેલ્લા ત્રણ દાયકાઓમાં, માનવ બુ�દ્ધના સામા�જક મૂળે કૃ�ત્રમ બુ�દ્ધ (‘‘આ�ટ��ફ�શયલ ઇન્ટે�લજન્સ (એ.આઈ.)”)
ના �વકાસને પ્રભા�વત કરવામાં મહત્વપૂણ� ભૂ�મકા ભજવી છે. એ.આઈ. સંશોધકો એકલતામાં કાય� રત ‘‘એજ-
ન્ટો”થી આગળ વધીને એવાં પરસ્પર સંવાદાત્મક એજન્ટો �વકસાવવા તરફ અગ્રસર થયા છે જે વાસ્ત�વક દુ�નયામાં
કાય� કરી શકે છે. આ દર�મયાન, સામા�જક �વજ્ઞાનના સંશોધકો સામા�જક ઘટનાઓ �વશેના �સદ્ધાંતોનંુ �વશ્લેષણ
અને �નમા�ણ કરવા માટે એ.આઈ. તકનીકોનો ઉપયોગ કરી રહ્યાં છે. આ બંને સંશોધન પ્રયાસો સ્વતંત્ર રીતે કૃ�ત્રમ
સામા�જક બુ�દ્ધ (‘‘આ�ટ��ફ�શયલ સો�શયલ ઈન્ટે�લજન્સ (એ.એસ.આઈ.)”) ના નામથી ઓળખાવામાં આવ્યા,
જે સામા�જક અને ગણના (કોમ્પ્યુટેશનલ) �વજ્ઞાનની અનેક પેટાશાખાઓમાં ફેલાયેલંુ ક્ષેત્ર છે.

આ શોધ-પ્રબંધ (થીસીસ) એ.એસ.આઈ. નો સવ�ગ્રાહી દૃ�ષ્ટકોણ લે છે અને તેના બંને ઐ�તહા�સક ધ્યેયો
તરફ યોગદાન આપે છે. તદુપરાંત, અહીં પ્રસ્તુત કાય� એ.એસ.આઈ. સંશોધનને કુદરતી વાસ્ત�વક-�વશ્વની પ�ર-
�સ્થ�તઓમાં લેવા પર કે�ન્દ્રત છે. આ સંશોધન ત્રણ �વષયો હેઠળ આયો�જત છે: સામા�જક માનવ વત� નની
મા�હતી/‘‘ડેટા” સંગ્રહ, પ્ર�તકૃ�ત/‘‘મોડે�લ�ગ”, અને અનુભૂ�ત.

આ શોધ-પ્રબંધ (થીસીસ) ડેટા સંગ્રહ ના પડકારને સંબોધીને શરૂ થાય છે. અહીં વાસ્ત�વક-�વશ્વના સામા�જક
માનવ વત� ણૂકના ‘‘ડેટાસેટ્સ” એક�ત્રત કરવા માટે એક પુનરુત્પાદન યોગ્ય ડેટા સંગ્રહ ના ખ્યાલનો પ્રસ્તાવ અમે
આપીએ છીએ. ખાસ કરીને, અહીં અમે �વ�ભન્ન વત� ન પ્રવાહની �બન-આક્રમક સંવેદના માટે જરૂરી તકનીકી
નવીનતાઓ અને નૈ�તક �વચારણાઓનો સમાવેશ કરીએ છીએ. વધુમાં, વાસ્ત�વક દુ�નયાના ડેટાની મયા� �દત
ઉપલબ્ધતાને દૂર કરવા માટે, અમે એ.આઈ. કાયા� માટે કૃ�ત્રમ તાલીમ ડેટાની ક્ષમતા પર અન્વેષણ કરીએ છીએ.

તદુપરાંત, અમે વાસ્ત�વક-�વશ્વના સામા�જક વત� ણૂકીય સંકેતોના મોડે���ગ પડકારનો સામનો કરીએ છીએ.
સામા�જક મનો�વજ્ઞાનના પુરાવા સૂચવે છે કે દરેક વ્ય�ક્ત �ક્રયાપ્ર�ત�ક્રયાને ટકાવી રાખવા માટે તેમના વત� નને
વાતચીતના �વ�વધ ભાગીદારો સાથે અનન્ય રીતે અનુકૂ�લત કરે છે. વાતા� લાપ ભાગીદારોના આ પરસ્પર �નભ� ર
ભા�વ સંકેતોની આપડે સંયુક્ત રીતે આગાહી કેવી રીતે કરી શકીએ? આ �વષયમાં અમે ‘‘સ્ટોકે�સ્ટક મેટા-લ�ન�ગ”
પદ્ધ�તનો પ્રસ્તાવ આપીએ છીએ જે તેના અનુમાનને વાતચીત જૂથની અનન્ય ગ�તશીલતા સાથે અનુકૂ�લત કરે છે,
ઉદાહરણ તરીકે વત� ન ક્રમ. આમ, તે જૂથ-�વ�શષ્ટ મોડલ્સની જરૂ�રયાતને ટાળીને ડેટા-કાય�ક્ષમ રીતે અદ્રશ્ય જૂથોને
સામાન્ય બનાવે છે. વધુમાં, ડેટા-આધા�રત અને પૂવ� ધારણા-સંચા�લત સંશોધનના એકીકરણને સરળ બનાવવા
માટે, અમે આગાહી મોડલના અનુમાનો માટે મહત્ત્વપૂણ� હોય તેવા સમય પગલાંને ઓળખવા માટે ‘‘પોસ્ટ-હોક”
સમજૂતી માળખંુ પ્રસ્તા�વત કરીએ છીએ.

અંતમાં, અમે વાતચીત જૂથોની સ્વચા�લત શોધમાં પ્રચ�લત ગ�ભ�ત ધારણાથી �વપરીત, એક જ વાતા� લાપ
જૂથની અંદર અનેક સમાંતર વાતા� લાપના અ�સ્તત્વના પુરાવા સ્થા�પત કરીને સામા�જક �ક્રયાપ્ર�ત�ક્રયાઓના સૂક્ષ્મ
અનુભૂ�� માં યોગદાન આપીએ છીએ. આગળ, અમે વ્ય�ક્તગત અને જૂથ સ્તરે વાતચીતની ક�થત ગુણવત્તાને
માપવા માટે એક સાધન પણ �વકસાવીએ છીએ.

આ સંશોધન �વષયો દ્વારા, અમે એ.એસ.આઈ. ના ક્ષેત્રમાં નવતર યોગદાન પ્રદાન કરીને આવા સામા�જક
રીતે બુ�દ્ધશાળી મશીનોના �વકાસ તરફ મહત્વપૂણ� પગલાં લઈએ છીએ જે વાસ્ત�વક-�વશ્વના જ�ટલ સં�ેગોમાં
અસરકારક રીતે કાય� કરી શકે છે.
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Introduction

So once you do know what the question actually is,
you’ll know what the answer means

— Douglas Adams, The Hitchhiker’s Guide to the Galaxy
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2 Introduction

Social human interaction is a spectacularly elaborate process. Information born of
a medley of mental and physical processes involving our desires, beliefs, feelings,

and intentions is manifested through a complex interplay between verbal and nonverbal
messages. These are then transmitted over often imperfect and noisy channels in the hope
that when they are decoded by perceivers, the original meaning is preserved. Yet, social
interactions and relationships are critical to our daily lives and wellbeing [1]. In fact, so
central is the social context to our existence that researchers have long hypothesized that
human intelligence evolved primarily to adapt to the complexities of social life [2, 3].

The influence of these social roots of human intelligence on artificial intelligence (AI)
research gained impetus in the 1990s. In this era, two distinct research endeavors emerged
independently and were subsequently referred to as Artificial Social Intelligence (ASI): one
rooted in the computational sciences, focusing on developing autonomous agents, and the
other originating from the social sciences, utilizing computational tools to understand social
human behavior. Recognizing the limitations of studying isolated agents, AI researchers
began accounting for the social and cultural environment to develop socially situated agents
capable of operating in the real world [4–7]. As researchers delved into the development of
machines that could interact with their surroundings and humans, it became apparent that
these artificial intelligence agents also required artificial social intelligence. Simultaneously,
sociologists began applying AI techniques to analyze social phenomena and construct
theories pertaining to human behavior [8, 9]. This intersection of AI techniques and the
study of social behaviors also came to be known as the field of Artificial Social Intelligence.

Over the years, these motivations have intertwined to crystallize into two closely
related interdisciplinary domains: affective computing and social signal processing [10].
Affective computing places human emotion at the core, exploring how affective factors
influence interactions between humans and technology, and how sensing and generating
affect can inform our understanding of human behavior [10, Chap. 2]. On the other hand,
the broader field of social signal processing aims to model and comprehend the social
meaning of nonverbal human behavior in interactive contexts from a machine perspective
[10, Chap. 7]. However, despite significant progress in these fields, a central drawback
persists. Themajority of research has primarily occurred in controlled laboratory settings or
semi-controlled pre-arranged interactions [11, 12]. While such settings afford researchers
the advantage of isolating specific phenomena of interest for study, a crucial question arises:
to what extent do findings from controlled settings reflect the realities of uncontrolled,
real-world settings?

The objective of this Thesis is to bring ASI research directly into real-world settings,
contributing to both historical motivations: advancing the development of socially intel-
ligent machines and assisting domain experts in the social sciences to gain new insights
into social human behavior. The research presented here specifically focuses on real-world
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interaction settings in the wild. This work adopts an inherently interdisciplinary outlook,
encompassing machine learning, computer vision/graphics, affective computing, social
signal processing, and distributed systems. Consequently, an implicit goal of this work
is to bridge the divide that exists between these disciplines, which arises in part due
to the differences in methodologies and focus areas, resulting in contrasting values and
goals. Researchers from these distinct fields might find familiarity in the data-driven and
hypothesis-driven methodologies employed in this work and appreciate how these methods
complement and support each other.

This introductory chapter is organized as follows. I begin by reviewing various attempts
at defining human social intelligence and its artificial counterpart in Section 1.1. Specifically,
to emphasize the bidirectional exchange between AI and social sciences, I propose three
broad goals of ASI. In Section 1.2, I review the broad methodological commonalities and
contrasts between disciplines. I then discuss the challenges involved in taking human
behavior research into real-life settings in Section 1.3. Finally, I conclude by describing the
specific research themes and questions considered in this Thesis and summarizing concrete
contributions it makes in Section 1.4.

1.1 Social Intelligence: Real and Artificial
1.1.1 The Social Roots of Intelligence
Defining Social Intelligence. Social intelligence has been explicitly viewed as an integral
aspect of human intelligence since as early as 1920, when Thorndike [13] distinguished
social from mechanical and abstract intelligence. He defined social intelligence as “the
ability to understand and manage men and women, boys and girls—to act wisely in human
relations”. While Thorndike did not build any theory of social intelligence, this simple
definition encapsulated the two primary components that would guide future definitions
over the next century [14]: the cognitive (understanding others) and the behavioral (acting
effectively in social situations). Nevertheless, defining social intelligence remains a difficult
task. One issue is the lack of consensus [15, 16]: some researchers emphasize the cognitive
aspects [17], others the behavioral [18], while yet others focus on a psychometric foundation
in terms of “the ability to performwell on tests thatmeasure social skills” [19]. Another issue
is that socially intelligent behavior is contextual. Strang [20] argued that social intelligence
is not a “unit characteristic but rather a complex pattern of behavior”, and may vary for
the same individual depending on the interaction partners, situation, and time. Finally,
researchers have long questioned whether social intelligence is a distinct construct at all.
In 1930 Strang [20] posited that general and social intelligence may be inextricably linked.
Based on correlations between scores on social and general intelligence tests, she argued
that the two may be unanalyzable parts of “a total organic attitude, involving attitudes of
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mind, emotional conditions, ingrained habits and conditioned behavior” [21]. Confounded
by concerns over the validity and reliability of the measures [20], this perspective persisted
for decades owing to the empirical difficulty in separating social intelligence from other
related constructs such as academic intelligence [19]. More sophisticated recent designs
have now established evidence for the distinguishing social from academic intelligence [18]
as well as the cognitive and behavioral components of social intelligence itself [22]. Despite
such progress, the dimensions and measures of social intelligence still vary significantly
across studies, and a unified definition remains to be established.

An Evolutionary Perspective. In the absence of a clear definition and measure, recent
stances follow an evolutionary perspective; here social intelligence is viewed as the mani-
festation of the theory of mind (ToM) [23] ToM refers to the ability to ascribe mental states
such as desires, beliefs, feelings and intentions to oneself and others [24–26]. Knowing
what people want, think, feel, and intend enables one to interpret their behavior and make
predictions about how they will act [25, 27]. Moreover, the absence of ToM may relate to
an impairment in social communication and high-level control of actions, as found to be
the case in individuals with autism spectrum disorder and Asperger syndrome [25, 26, 28].

The theory of mind can trace its roots to theories from cognitive evolution that have
come to be collectively called the social intelligence hypothesis [29–31]. The hypothesis
suggests that our higher intellectual faculties do notmerely help navigate social situations as
a consequence, but may have primarily evolved to adapt to the complexities of social living.
In his seminal work on the social function of intellect, Humphrey [31] argued that more
than the physical daily problems confronting primates (apes and humans), such as finding
and extracting food, it is the competitive social maneuvering—the ability to recognize
individuals, track relationships and deceive one another—that has driven the development
of our sophisticated intelligence and large brains. In particular, it was Humphrey’s emphasis
on this anticipation, counter-anticipation, and manipulation of behaviors and minds of
others that led to the ToM becoming a research focus in comparative and developmental
psychology [32]. The Social Intelligence Hypothesis complements theories surrounding
the importance of social context in developing human intelligence proposed as early as
the 1920s: Lev Vygotsky’s theory of cognitive development emphasizes that individual
intelligence emerges as a result of biological factors (embodiment) that interacts with a
physical, and especially, a social environment (social situatedness) through a developmental
process [7]1.

1Unfortunately, Vygotsky’s work from the 1920s and 1930s took a while to widely influence research, partly
because it only reached the Western world in the 1960s, with the first public translation appearing in 1962. This
in turn may be because it was banned in the Soviet Union from the mid-1930s to the mid-1950s. See [7, Sec. 2]
for a detailed discussion of his ideas.
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1.1.2 Artificial Social Intelligence

How do these theories about human intelligence and its development influence the ad-
vancement of artificial intelligence? Over the last three decades, there have been distinct
views on the matter, several of which have used the term Artificial Social Intelligence (ASI)
to encapsulate research goals and methods. The earliest explicit use of the term was in
1994, when Bainbridge et al. [8] used it to discuss the use of AI techniques within Sociology,
the discipline focusing on topics pertaining to social structure, social class, and social insti-
tutions in society at large. Independently, inspired by the social intelligence hypothesis,
Dautenhahn [6] called for a field with the name of ASI towards developing interactive
autonomous robots that could lead to individualized robot societies. However, as Kappas
et al. [33] observe, the term ASI did not catch on. Nevertheless, much of what is currently
explicitly referred to as ASI lies within the context of affective computing, social robotics,
and social signal processing. Figure 1.1a illustrates the overlap between subdisciplines
relevant to ASI research. Kappas et al. [33] explicitly refer to the field of ASI, mentioning
only affective computing and social robotics. While the authors acknowledge that the terms
in Figure 1.1a are not mutually interchangeable, the contemporary use of ASI is largely
restricted to the development of interactive systems that understand their social context
and interaction partners: ASI in the sense of an artificial agent with social intelligence.
Little, comparatively, is discussed in current literature about the field of artificial social
intelligence as the primary focus, especially what lies within its research scope outside the
realm of affective computing and social robotics.

To take a broader perspective, in this subsection, I propose three goals of ASI drawing
upon distinct historical motivations spanning disciplines (see Figure 1.1b). These are:
(i) developing socially-aware AI systems; (ii) AI-assisted social theory building; and (iii)
socially situated development of AI. Rather than directly defining the term ASI, I argue
that it is of more practical value to describe the various goals, problems, and methods
that fall within its scope. The primary motivation in broadening this scope beyond its
conventional use is simple: ASI ought to subsume the bidirectional reciprocity between
artificial intelligence and what we know of social intelligence. The conventional use
emphasizes a unidirectional transfer of knowledge from the social sciences to AI for building
an applied system with social intelligence. A bidirectional perspective also encapsulates
the use of AI techniques for advancing social theory, independent of whether an interactive
agent is involved in the process. Moreover, the view of ASI presented here also incorporates
foundational AI research that draws inspiration from how natural intelligence develops
within a social context. Beyond this conceptual contribution, this Thesis makes novel
contributions to the first two of the three proposed goals.
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Figure 1.1: Illustrating the interconnections among subdisciplines relevant to Artificial Social Intelli-
gence (ASI) research. (a) Kappas et al. [33] explicitly characterize ASI as a field, suggesting that much of its
content can be found within the domains of Affective Computing and Social Robotics. The primary motivation is
developing artificial agents with social intelligence; (b) In this work, I adopt a distinct view of ASI, highlighting
the proposed objectives and the diverse disciplines they encompass. This perspective emphasizes bidirectional
reciprocity between the computational and social fields, expanding the previous notion of ASI with the original
dual motivations: (i) ASI as in the AI-assisted understanding of social intelligence; and (ii) utilizing insights from
social intelligence for training artificial intelligence.

Developing Socially-Aware AI Systems. Since humans are fundamentally social, a long-
standing research goal has been to endow interactive artificial agents with human-inspired
social intelligence [6, 34, 35]. In order to effectively communicate with people, such
systems need to participate in a bidirectional exchange of social meaning. This high-order
semantic meaning—the attitudes, intents, feelings, mental states, personalities, etc. of
people—constitutes a social signal [36] that is embodied through people’s behavior and
transferred through a set of low-level behavioral cues. Here, the term behavioral cue
describes a set of short observable temporal changes in physical or physiological activity,
with examples including gaze exchanges, smiles, head nods, and winks [36, 37]. For
communicating with humans, interactive agents need to be able to sense such cues, perceive
the social signal embedded within, and synthesize interpretable cues to convey their social
information. Even when a system is not designed to interact with humans directly, the
sensing and perception components are critical for social awareness. More recently, in
an effort to go beyond the limitations of modeling only external behavior while ignoring
internal mental states, researchers have leveraged cognitive models. Specifically, given its
integral role in social intelligence, researchers have argued that endowing agents with an
artificial theory of mind is crucial to the agents’ abilities in operating alongside humans
and multiagent systems [23, 38].

AI-Assisted Social Theory Building. One of the earliest explicit definitions of Artificial
Social Intelligence dates back to 1994, when Bainbridge et al. [8] used it to describe research
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reciprocity between AI and Sociology:

“Broadly defined, Artificial Social Intelligence (ASI) is the application of ma-
chine intelligence techniques to social phenomena. ASI includes both theory
building and data analysis.” [8]

The discussion reflected the growing connections between the two disciplines at the
time, owing to “a growing interest among researchers in artificial intelligence in the socially
situated agent, and a growing interest among sociologists in using artificial intelligence
techniques for theorizing about social phenomena” [9]. Here, special emphasis was laid on
the use of data- and theory- driven computational simulations towards rendering theories
more rigorous, connecting scattered hypotheses into coherent theoretical frameworks,
discovering hidden assumptions, or inspiring new theories altogether [8]. Since then, AI
has seen much progress, and there are some recent examples of simulations being used
to test social theories [39]. Nevertheless, research within AI and social theory largely
remain independent endeavors. Recently, in order to operationalize AI-driven social theory
beyond relying on simulations, Mökander and Schroeder [40] proposed three essential
requirements for AI systems: semanticization, transferability, and generativity. Similarly,
to aid researchers at the intersection of machine learning and the social sciences, Radford
and Joseph [41] outlined a theory in, theory out framework, outlining how social theory
can help build machine learning models (theory in), and a checklist of the potential uses of
the model (theory out).

Socially Situated Development of AI. Evolutionary speaking, given that the social con-
text is crucial for the development of natural intelligence, could a social (and cultural)
embedding similarly aid artificial intelligence? Motivated by this question, since the 1990s
and early 2000s, AI researchers have argued for the development of AI systems by em-
bedding them within a social environment where it learns by interacting with humans
[6, 42]. Known as Socially Situated AI [7, 43], this argument for the simultaneous develop-
ment of technical and social intelligence is complemented by a cognitive developmental
perspective: children are born in to a social environment and grow up as social beings
alongside acquiring technical skills that are required for specific tasks [34]. While tradi-
tional AI research between the 1950s and 1980s paid little attention to social factors and
learning/development—Gardner [44] argued that accounting for the “murky concepts” of
affect, context, and cultural factors would confound finding the “essence” of human cogni-
tion—the developmental underpinnings of Socially Situated AI are also found in Turing’s
works. In his 1950 paper Computing Machinery and Intelligence [45], Turing discusses the
so-called child machines: instead of simulating the adult mind, the idea is to produce a
machine simulating that of a child’s, whose education “could follow the normal teaching
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of a child”. Noting that the Turing Test is a test of human social intelligence rather than of
a putative general intelligence [46], some researchers have also argued for the evaluation
of AI in the social context. Edmonds [47] postulated that in order to pass the Turing Test
over any period of extended time, it is necessary to embed the AI entity into society.

Recently, within the past two years, the idea of agents learning through social inter-
actions has received renewed attention [48, 49]. Krishna et al. [48] also proposed the
framework of socially situated AI [48], without acknowledging any of the past works using
the same term. In contrast to the prior conceptualizations of the framework however,
they formalize the task of socially situated learning as a reinforcement learning problem.
Elsewhere, Bolotta and Dumas [49] propose the framework of Social Neuro-AI developing
three research axes towards aligning interactions between natural and artificial intelligence:
biological plausibility, temporal dynamics, and social embodiment. Specifically, they also
identify multi-agent reinforcement learning (MARL) and active inference as promising
tools towards social learning.

1.2 MethodologicalApproaches acrossDisciplines
The aforementioned goals, in as much as I believe they ought to fall under the purview of
ASI, illustrate that ASI research has implications for several disciplines. Consequently, the
pursuit of these goals requires a broad understanding of the commonalities and contrasts
between the methodologies native to these disciplines. To characterize how this Thesis
makes contributions towards the first two of the goals of ASI, I next provide a categorization
of these approaches. This categorization is not meant as a comprehensive taxonomy. Rather,
its purpose is to serve as a window into understanding the often contrasting goals of
different disciplines, and consequently, the values and assumptions guiding the people
engaging in the enterprise of science, to the extent that they are aware of these.

Top-Down and Bottom-Up Approaches. At the broadest categorization, research in ASI
has leveraged two antipodal strategies from AI research that are termed top-down and
bottom-up approaches. The earliest foundations of these concepts were laid by Alan Turing
in his 1948 manifesto, where he contrasted machines built for a definite purpose from
those constructed from some kind of standard components [50]. Historically, top-down
approaches dealt with “high-level symbolic processes that reflect the complex thought
processes of which humans are capable” [8, p. 409]. Symbolic process models conceptualize
the world using high-level human-readable representations of problems, where procedures
(logical rules) and words are used to describe behaviors and actions. In contrast, bottom-up
approaches such as neural networks are predominantly numeric frameworks, concerned
with modeling low-level processes such as the functioning of a bundle of neurons, “with
the hope that eventually they could work their way up to the level of human consciousness”
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[8, p. 409]. The bottom-up approach is often referred to as connectionism given its assertion
that intelligence arises not in the manipulation of symbols but in the connections between
neurons. Over the decades, other similar terms in different domains have come to describe
the broad conceptual underpinnings of these strategies. Trading precision for compre-
hension, some analogous terms capturing the contrasting focus areas of top-down vs
bottom-up approaches are confirmatory vs. exploratory, hypothesis-driven vs. data-driven,
and inductive vs. deductive. Note that this brief overview is not meant to do full justice to
such a complex topic, but to only provide you, the reader, with a representative picture of
the historical roots of these contrasting strategies.

While the terms top-down and bottom-up are overloaded and allude to different concepts
across domains [51–58], in this Thesis they incorporate the primary goal of the research
and where it begins in addition to the specific methodology used. When the primary
purpose is to gain semantic insights into specific behavioral phenomena, the resulting
approach is referred to as top-down. In contrast, the primary focus of bottom-up strategies
is on modeling patterns in the available data. Consequently, there exists a semantic gap2

in the expected human-understandable insights the research strategy provides into social
phenomena. Methodologically, hypothesis- and data-driven research designs correspond
more naturally to top-down and bottom-up strategies respectively. However, it is entirely
possible, and indeed commonplace, for top-down approaches to use techniques that would
qualify as data-driven. For instance, while exploratory factor analysis [60] is a data-driven
technique, it is employed to understand human-interpretable relationships between input
dimensions in the data. Consequently, the incorporation of the focus areas beyond the
methodology constitutes a nuance in the way this Thesis refers to top-down and bottom-up
approaches.

Methodologies and Disciplines. A holistic consideration of how we may endow ma-
chines with social intelligence spans disciplines; these include machine learning, computer
vision/graphics, social psychology, affective computing, social signal processing, and dis-
tributed systems. How do the research strategies map to research disciplines? It is perhaps
unsurprising that top-down methods are common in the disciplines of social psychology
and sociology, while bottom-up approaches dominate machine learning and its cousins.
Research in the social fields often begins with a hunch, or a belief about the world, that the
researcher wishes to test [11, Ch. 2]. These hypotheses may result from the researcher’s
dissatisfaction with previous theories and explanations of phenomena, or from their own
2The term semantic gap was originally defined within an information retrieval setting as “the lack of coincidence
between the information that one can extract from the visual data and the interpretation that the same data have
for a user in a given situation” [59]. Its use here is beyond the strict scope of its original definition to capture the
sense of a difference in semantic information a researcher may obtain about a specific social phenomenon from
contrasting research strategies.
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personal experiences. Nevertheless, the overarching goal is to expand our understanding
of social influence at the level of individuals—in the case of social psychology—or groups,
institutions, and even societies at large—as is the case in sociology. In contrast, research in
machine learning, even when dealing with tasks surrounding behavioral data, is primarily
concerned with finding patterns in available data. Primary goals notwithstanding, several
analogs exist in the specific methods employed across these domains. Revisiting the exam-
ple of exploratory factor analysis, while the tool is most commonly used by psychologists,
it is one of several unsupervised learning techniques. The curious reader may further refer
to articles by Allen et al. [61], Liem et al. [62], and Nilsen et al. [63] for a deeper discussion
on the commonalities and contrasts between the domains and methodologies.

1.3 Moving Beyond the Laboratory:
Considerations and Challenges in the Wild

A great deal of research into social human behavior occurs in laboratory settings. This is
because it enables the researcher to orchestrate events so that extraneous factors do not
influence the phenomena under study. This is typically the case when the researcher is
interested in studying the effect of varying some variable, called the independent variable,
on an outcome of interest, namely the dependent variable. Here, the key to a good
experiment is maximizing internal validity [11, p. 36]: ensuring that nothing other than
the independent variable affects the dependent variable.

However, this experimental control in the laboratory often comes at the cost of realism.
One way to increase realism is to conduct experiments in the real world, but the natural
setting makes it harder to control for extraneous variables. This gives rise to concerns over
external or ecological validity3 [11, p. 37]: to what extent do the results of an experiment
generalize to other situations and people? In social psychology, this trade-off between
internal and external validity is called the basic dilemma of the social psychologist [66].

Today, the phrase in the wild has come to broadly describe research that seeks to
understand or operate in naturalistic settings from everyday living. The term is widely used
in several disciplines: in human-computer interaction to evaluate technology interventions
and account for user experiences in everyday lives [67]; in deep learning to refer to
the gap between cutting-edge research and its applications in practice [68]; in computer
vision to motivate the need for moving beyond restricted supervisory labels towards open-
set/domain visual recognition and task-level transfer [69]; and in affective computing to
evaluate emotion recognition methods in noisy real-world conditions [70].

3Readers interested in the evolution of research terminology may enjoy essays by Hammond [64] and Kihlstrom
[65] on the matter of ecological validity.
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Beyond the trade-off between internal and ecological validity, researching social human
behavior in the wild poses several other practical challenges:

• Noninvasive and Distributed Sensing: How can we design a noninvasive sensor
setup to avoid invalidating the naturalness of the behavior? When the study involves
several participants, how can we deploy multisensor setups such that the collected
data is well synchronized across sensor streams and modalities?

• Data Fidelity vs. Privacy Preservation: Capturing high-fidelity data often bears
the risk of revealing sensitive participant information. For instance, high-frequency
speech facilitates the extraction of verbal content of real interactions. Similarly,
high-resolution video makes it easier to reveal participant identities and, possibly,
lip movements, especially when faces are captured. How do we select behavioral
streams that capture social dynamics while protecting participant privacy?

• Ethical Considerations: How do we design experiments to respect participant
consent and provide them with agency over their data? How can we comply with
standards of responsible data collection and sharing?

• Scene and Data Noise: Real interactions can evolve in unpredictable ways making
it challenging to obtain clean and usable data, especially in complex conversational
scenes [71]. With video, occlusions, unfavorable lighting, and failure to track indi-
viduals beyond camera coverage constitute possible challenges. With audio, ambient
noise and cross-talk between individual microphones make it hard to isolate the
primary source of the speech data.

1.4 Research Themes, Questions, & Contributions
Given the interdisciplinary nature of its subject matter, the contrasting approaches across
domains, and the various challenges characterizing the in-the-wild setting, this Thesis
is organized under three research themes: i. data acquisition: sensing and synthesis
for supporting downstream bottom-up modeling and top-down analyses; ii. modeling:
data-efficient methods for predicting real-world social behavior and obtaining post hoc
data-driven insights; and iii. perception: hypothesis-driven analysis and development of
instruments for quantifying relevant social phenomena. Figure 1.2 illustrates the contribu-
tions this Thesis makes in supporting diverse workflows surrounding ASI research.

1.4.1 Data Acquisition: Sensing & Synthesis
If we are to endow machines with the ability to perceive and operate in the real world,
common wisdom entails that we need to obtain ecologically valid data from the real world.
The previously discussed trade-offs between data fidelity, participant privacy, and ethical
considerations confound data acquisition efforts beyond the laboratory setting. How can
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we then record the dynamics of unscripted human interactions in the real world? The
highly instrumented wired setups common in lab studies are impractical for sensing natural
free-standing interactions. How can we then design wireless multisensor and multimodal
sensing setups to preserve ecological validity while also allowing for fine-grained analysis
of social phenomena?

Chapter 2 follows a dataset by the community for the community ethos and proposes a
data collection concept viewing conferences as living labs called ConfLab. The chapter
also describes the first instantiation of this concept at a major international conference
and the resulting dataset and benchmark. Crucially, we discuss the often overlooked and
underappreciated aspects of conducting an in-the-wild dataset collection: participatory
design, engineering innovations, responsible data sharing, and the design choices that
empower participant agency. In doing so, the broader goal is to serve as a template such
that data collection efforts may be replicated by the community, diminishing the logistical
burden on any single research group.

Chapter 3 details the technical innovation surrounding data synchronization in ConfLab.
Specifically, we propose a modular solution for synchronizing wireless sensors across
modalities at acquisition itself for in-the-wild behavior research. Traditional approaches
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Figure 1.2: Overview of the research contributions presented in this Thesis and how they relate to each other
towards advancing Artificial Social Intelligence in the wild.
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in widely used behavior datasets perform synchronization as a post-processing step. This
fails to provide latency guarantees suitable for studying social phenomena such as mimicry
and synchrony which occur at the time scale of tens of milliseconds. Meanwhile, wireless
solutions from the broadcasting industry are prohibitively expensive for typical academic
research budgets. From a survey of latency measures in social literature, we identify 40 ms
as a suitable tolerable latency for human behavior research. Through technical trade-offs,
the described approach attains an empirical crossmodal latency of 13 ms at worst, at 1/8-th
of the cost of the synchronization solutions used in commercial broadcasting.

The cost and effort involved in collecting even a single dataset in the wild are formidable.
So, even with a reproducible template, it is challenging to acquire representative datasets
across interaction settings and cultures. Consequently, this Thesis explores whether syn-
thetic data can replace real-world training data for in the wild tasks. The promise of a
synthetic data pipeline lies in the control it affords. Real-world data may contain biases
along sensitive variables arising from inadequate representation of ethnicities, cultures,
appearances, and interaction contexts. These biases are subsequently reflected in models
trained on such data. Additionally, synthetic identities also alleviate several privacy and
ethical concerns that are relevant when recording real people. Can we synthesize training
data to achieve downstream performance comparable with training on real-world data?

Chapter 4 investigates the broader question of whether photorealism is excessive for
synthetic training data for face-related computer vision tasks, a domain where synthetic
data has already demonstrated promising results. Specifically, we boost the realism of our
synthetic faces by introducing dynamic skin wrinkles in response to facial expressions
and observe performance improvements in downstream tasks of landmark localization and
surface-normal estimation. The key contribution is an approach that produces realistic
wrinkles across a large and diverse population of digital humans. We do this by aggregating
wrinkling effects directly from high-quality expression scans of people. By leveraging
a measure of tension in the face mesh, the proposed method scales with an increasing
number of identities and expressions without any additional manual effort and produces
realistic wrinkles for expressions not represented in the source scans.

While the synthesis of realistic multimodal social behavior constitutes an overarching
motivation, focusing on the more widely studied domain of faces enables the evaluation of
using synthetic training data on well-established tasks and benchmarks. Consequently, the
chapter represents an important stepping stone toward generating general social behavior
across modalities.
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1.4.2 Modeling: Forecasting & Explaining Social Behavior
Motivated by its success across several domains, a recent trend has been the application of
deep learning techniques to various tasks involving nonverbal social human behavior data.
However, a crucial consideration here is data efficiency. The scarcity of in-the-wild data is
compounded by the fact that the phenomena or events of interest occur infrequently over
the duration of the interaction. Examples of such events of interest include speaker turn
transitions [72, 73], mimicry episodes [74], disengagement or interaction termination [75],
or high-order social actions such as stepping, laughing, drinking, etc. [76, 77]. This precludes
the training of large networks for modeling such phenomena. A natural question arises:
How can we apply deep learning methods in the small-data regime that is social human
behavior research? Furthermore, nonverbal behavior is a function of several individual
factors such as age, cultural background, and personality variables [78, Ch. 1; 79, p. 237].
How can models adapt their predictions to the idiosyncrasies of individuals and groups?
Training a separate model per individual or group of interacting partners would further
confound the data scarcity issue.

Chapter 5 follows a bottom-up approach and formalizes the self-supervised task of Social
Cue Forecasting, with specific task requirements motivated from social science literature.
The ability to anticipate behaviors of interacting partners is a critical outcome of the theory
of mind, and is consequently a crucial ability towards developing artificial social intelligence.
Computationally, the idea is to learn neural representations of general social behavior
by leveraging the larger amount of event-agnostic low-level nonverbal cues. Specifically,
this is done by forecasting future low-level cues from the same preceding cues over the
entire available interaction data. Moreover, taking a meta-learning and stochastic view
of group dynamics, we propose the Social Process (SP) family of models. At training, SP
methods condition their predictions for a sequence on a set of context interaction sequences
for a given conversing group, thereby learning to adapt to the dynamics in the context
set. In this way, the models can generalize to unseen groups at test by conditioning on a
correspondingly unseen context set, avoiding the need to train group-specific models.

While early applications of ASI primarily involved theory- and data-driven simulations,
much has changed in the landscape of AI research. How can contemporary domain experts
develop new social theories given a model that predicts the low-level dynamics of real-
world social behavior? Specifically, the next question this Thesis considers is how models
forecasting low-level nonverbal cues can be leveraged in forming data-driven hypotheses
about causal relationships between high-order social behaviors.

Chapter 6 proposes a post hoc saliency-based explanation framework for counterfactual
reasoning in probabilistic multivariate forecasting. The chapter begins by revisiting what
constitutes a causal explanation and establishes a conceptual link between counterfactual
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reasoning and saliency-based explanation methods. To address the lack of a principled
notion of saliency in existing explainable AI methods, we leverage a unifying expression
of bottom-up saliency grounded in preattentive human visual cognition and extend it
to forecasting settings. The chapter concludes with a case study of how the proposed
framework may be used in forming hypotheses surrounding group-leaving behavior using
real-world data and forecasting models. In doing so, the broader goal is to bridge bottom-up
modeling approaches with the domain insights obtained from top-down approaches.

1.4.3 Perception: Analyzing & Quantifying Social
Phenomena

The final part of this Thesis deals with advancing social theories and developing novel
measures for quantifying social phenomena within in-the-wild interactions. How can we
improve and evaluate existing theories of social interactions in real-world settings? What
constructs or instruments are required for quantifying social phenomena in these settings?
The research approach here is top-down, following methods more native to traditional
social psychology and affective computing.

Chapter 7 deals with identifying conversations in free-standing interactions. Specifi-
cally, we unify spatial and temporal notions of a conversation to establish evidence for
the presence of multiple simultaneous conversations within a single spatial free-standing
conversing group (FCG, operationalized through the framework of F-formations [79]). The
chapter begins with Hung’s [80] observation that the prior state-of-the-art interpretation
of an F-formation assumed only one conversation to exist within it. This assumption did
not match our personal observations and experiences. To establish supporting evidence,
we visit early conversation analysis literature for the notion of a conversation floor, which
incorporates the temporal factors in the development of conversations. Using simulta-
neous speaking turns as a key feature, the chapter establishes empirical evidence for the
existence of multiple floors within a single F-formation, and provides post hoc analysis for
investigating the effect of group size on speaking turn durations of simultaneous speakers.

Chapter 8 proposes a perceived measure of the quality of spontaneous conversations.
Prior research operationalized the quality of conversations in narrow terms, associating
greater quality to less small talk. Other works taking a perspective of interaction experi-
ence have indirectly studied quality through one of the several overlapping constructs in
isolation, such as rapport or engagement. Instead, we propose a holistic conceptualization
of conversation quality building upon collaborative attributes of cooperative conversa-
tion floors. Specifically, we take a multilevel perspective of conversations: we propose
and validate individual- and group-level instruments for capturing external raters’ gestalt
impressions of participant experiences from thin slices of nonverbal behavior.
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Abstract
Recording the dynamics of unscripted human interactions in the wild is challenging due to
the delicate trade-offs between several factors: participant privacy, ecological validity, data
fidelity, and logistical overheads. To address these, following a datasets for the community
by the community ethos, we propose the Conference Living Lab (ConfLab): a new concept
for multimodal multisensor data collection of in-the-wild free-standing social conversations.
For the first instantiation of ConfLab described here, we organized a real-life professional
networking event at a major international conference. Involving 48 conference attendees, the
dataset captures a diverse mix of status, acquaintance, and networking motivations. Our
capture setup improves upon the data fidelity of prior in-the-wild datasets while retaining
privacy sensitivity: 8 videos (1920×1080,60 fps) from a non-invasive overhead view, and custom
wearable sensors with onboard recording of body motion (full 9-axis IMU), privacy-preserving
low-frequency audio (1250 Hz), and Bluetooth-based proximity. Additionally, we developed
custom solutions for distributed hardware synchronization at acquisition, and time-efficient
continuous annotation of body keypoints and actions at high sampling rates. Our benchmarks
showcase some of the open research tasks related to in-the-wild privacy-preserving social data
analysis: keypoints detection from overhead camera views, skeleton-based no-audio speaker
detection, and F-formation detection.

2.1 Introduction

Acrucial challenge towards developing artificial socially intelligent systems is under-
standing how real-life situational contexts affect social human behavior [1]. Social-

science findings indeed show that the dynamics of how we conduct daily interactions vary
significantly depending on the social situation [2–4]. Unfortunately, such dynamics are
not adequately captured by many data collection setups where role-played or scripted
scenarios are typical [5].

In this paper we address the problem of collecting a privacy-sensitive dataset of un-
scripted social dynamics of real-life relationships where encounters can influence someone’s
daily life. We argue that doing so requires recording these exchanges in the natural ecol-
ogy, requiring an approach different from the typical setup of locally-organized studies.
Specifically, we focus on free-standing interactions within the setting of an international
conference (see Figure 2.1).

Recording an international community in its natural habitat is characterized by several
intersecting challenges: an intrinsic trade-off exists between data fidelity, ecological validity,
and privacy preservation. For ecological validity, a non-invasive capture setup is essential
for mitigating any influence on behavior naturalness [6–8]. The most common solution
involves mounting cameras from aerial perspectives such as top-down [9, 10] and elevated-
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Figure 2.1: Snapshot of the interaction area from our cameras. We annotated only cameras highlighted with
red borders (high scene overlap). For a clearer visual impression of the scene, we omit cameras 1 (few people
recorded) and 5 (failed early in the event). Faces blurred to preserve privacy.

side views [11–13]. Now elevated-side views make it easy to capture sensitive personal
information such as faces, which leads to several ethical concerns. For instance, capturing
faces has been related to harmful downstream surveillance applications [14]. Besides,
state-of-the-art (SOTA) body-keypoint estimation techniques perform poorly on aerial
perspectives [9, 15], making the extraction of automatic pose annotations challenging
(Figure 2.3). To avoid such issues, some researchers have turned to more privacy-preserving
wearable sensors shown to benefit many behavior analysis tasks [8, 16, 17].

In all, the closest related datasets (see Table 2.1) suffer from several technical limitations
precluding the analysis and modeling of fine-grained social behavior: (i) lack of articulated
pose annotations; (ii) a limited number of people in the scene, preventing complex interac-
tions such as group splitting/merging behaviors, and (iii) an inadequate data sampling-rate
and synchronization-latency to study time-sensitive social phenomena [18, Sec. 3.3].

To address all these limitations, we propose the Conference Living Lab (ConfLab): a
new concept for multimodal multisensor data collection of ecologically-valid social settings.
From the first instantiation of ConfLab, we provide a high-fidelity dataset of 48 participants
at a professional networking event.

Methodological Contributions: We describe a data collection design that captures a
diverse mix of real levels of seniority, acquaintance, affiliation, and motivation to network
(see Figure 2.2). This was achieved by organizing ConfLab as part of a major international
scientific conference. ConfLab had these goals: (i) a data collection effort follwing a by the
community for the community ethos: the more volunteers, the more data, (ii) volunteers
who potentially use the data can experience first-hand potential privacy and ethical consid-
erations related to sharing their own data, (iii) in light of recent data sourcing issues [14, 19],
we incorporated privacy and invasiveness considerations directly into the decision-making
process regarding sensor type, positioning, and sample-rates.

Technical Contributions: (i) aerial-view articulated pose: our annotations of 17 full-
body keypoints enable improvements in (a) pose estimation and tracking, (b) pose-based
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Table 2.1: Comparison of ConfLab with prior datasets of free-standing conversation groups in in-the-wild social
interaction settings. Conflab is the first and only social interaction dataset that offers skeletal keypoints and
speaking status at high annotation resolution, as well as hardware synchronized camera and multimodal wearable
signals at high resolution.

Dataset People/
Scene Video Manual Annotations Wearable Signals Synchronization

Cocktail [13]† 7 512×384 F-formations
(20 and 30 min, 1/5 Hz) None Unknown

CoffeeBreak [12] 14 1440×1080 F-formations
(130 frames in two sequences) None None

IDIAP [10] > 50 180 min;654×43920 fps

F-formations
(82 independent frames) None None

SALSA [11]† 18 60 min;1024×76815 fps

Bounding boxes (30 min)
Head & body ori. (30 min)
F-formations (60 min)
(all 1/3 Hz)

Audio MFCCs (30 Hz)
Acceleration (20 Hz)
IR proximity (1 Hz)

Post-hoc infra-red
event-based (no-drift
assumption)

MnM [9]† 32 30 min;1920×108030 fps

Bounding boxes (30 min, 1 Hz ‡ )
F-formations (10 min, 1 Hz )
Actions (45 min, 1 Hz‡) Accelerometer (20 Hz)

Radio proximity (1 Hz)

Intra-wearable sync via
gossiping protocol;
Inter-modal sync using
manual inspection @1 Hz

ConfLab 48 ∼ 45 min;1920×1080
60 fps

17 keypoints (16 min, 60 Hz)
F-formations (16 min, 1 Hz)
Speaking status (16 min, 60 Hz)

Low-freq. audio (1250 Hz)
BT proximity (5 Hz)
9-axis IMU (56 Hz)

Wireless hardware sync
at acquisition, max
latency of ∼ 13 ms [18]† Includes self-assessed personality ratings ‡ Upsampled to 20 Hz using Vatic [20]

BT: Bluetooth IMU: Inertial Measurement Unit

recognition of social actions (under-explored in the top-down perspective), (c) pose-based F-
formation estimation (has not been possible from prior work [10, 21–23]), and (d) the direct
study of interaction dynamics using full body poses (previously limited to lab settings [24]).
(ii) subtle body dynamics: we are the first to use a full 9-axis Inertial Measurement Unit
(IMU) enabling a richer representation of behaviour at higher sample rates; previous rates
were found to be insufficient for downstream tasks [17]. (iii) enabling finer temporal-
scale research questions: a sub-second crossmodal latency of ∼ 13 ms along with higher
sampling rate of features (60 fps video, 56 Hz IMU) opens the gateway for the in-the-wild
study of nuanced time-sensitive social behaviors like mimicry and synchrony.

2.2 Related Work
Early datasets of in-the-wild social events either spanned only a few minutes (e.g. Coffee
Break [12]), or were recorded at such a large distance from the participants that performing
robust, automated person detection or tracking with SOTA approaches was non-trivial (e.g.
Idiap Poster Data [10]). More recently, two different strategies have emerged to circumvent
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Figure 2.2: Frequency of newcomer/veteran participants (left) and
reported research interests (right).

Figure 2.3: Keypoint detection using pre-
trained RSN [28]. Additional SOTA results
are in Appendix 2.F.1

such issues.
One approach involves fully instrumented labs with a high resolution multi-camera

setup for video and audio data. Here automatic detectors [24–26] could be applied to obtain
poses. This circumvents the cost- and labor-intensive process of manually labeling head
poses, at the cost of less portable sensing setups. Notable examples of such in-the-lab
studies include seated scenarios, such as the AMI meeting corpus [27], and more recently
standing scenarios like the Panoptic Dataset [24]. Both enable the learning of multimodal
behavioral dynamics. However, the dynamics of seated, scripted, or role-playing scenarios
are different from that of an unconstrained social setting such as ours. In contrast, ConfLab
moves out of the lab with a more modular and portable multimodal, multisensor solution
that scales easily in the wild.

Another approach exploited wearable sensor data to allow for multimodal process-
ing—sensors included 3 or 6 DOF inertial measurement units (IMU); infrared, bluetooth, or
radio sensors to measure proximity; or microphones for speech behavior [9, 11]. While
proximity has been used as a proxy of face-to-face interaction [11, 29–32], recent find-
ings highlight significant problems with such an assumption [33]. Such errors can have
a significant impact on the machine-perceived experience of an individual, precluding
the development of personalized technology. Chalcedony badges used by [9] show more
promising results with a radio-based proximity sensor and accelerometer [34], but such
data remains insufficient for more downstream tasks due to the relatively low sample
(20Hz) and annotation (1Hz) frequency [17]. In light of these challenges in wearable
sensing, ConfLab features custom-developed Midge sensors that enable more flexible and
fine-grained on-device recording. At the same time, ConfLab enables researchers in the
wearable and ubiquitous computing communities to investigate the benefit of exploiting
wearable and multimodal data.

Furthermore, while both SALSA [11] and MatchNMingle [9] capture a multimodal
dataset of a large group of individuals involved in mingling behavior, the inter-modal
synchronization is only guaranteed at 1/3 Hz and 1 Hz, respectively. Prior works coped
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with lower tolerances by computing summary statistics over input windows [17, 35, 36].
While 1 Hz is able to capture some conversation dynamics [37], it is insufficient to study
fine-grained social phenomena such as back-channeling or mimicry that involve far lower
latencies [18, Sec. 3.3]. ConfLab provides data streams with higher sampling rates, syn-
chronized at acquisition with our method shown to yield a 13 ms latency at worst [18]
(see Section 2.3). Table 2.1 summarizes the differences between ConfLab and other related
datasets.

2.3 Data Acquisition
In this section we describe the considerations, design, and supporting community engage-
ment activities for the first instantiation of ConfLab at ACM Multimedia 2019 (MM’19), to
serve as a template and case study for other similar efforts.

Ecological Validity and Recruitment An often-overlooked but crucial aspect of in-the-
wild data collection is the design and ecological validity of the interaction setting [6–8]. To
capture natural interactions in a professional setting and encourage mixed levels of status,
acquaintance, and motivations to network, we co-designed a networking event with the
MM’19 organizers called Meet the Chairs! Our event website (https://conflab.ewi.tudelft.nl/)
served to inform participants about the goals of a community created dataset, and transpar-
ently describe the data collection process (Figure 2.4). During the conference, participants
were recruited via word-of-mouth marketing, social media, conference announcements,
and the event website. As an additional incentive beyond interacting with the Chairs and
participating in a community-driven data endeavor, we provided attendees with post-hoc
insights into their networking behavior from the collected wearable-sensors data. See
Supplementary material for a sample participant report.

Privacy and Ethics The collection and sharing of ConfLab is GDPR compliant. The
dataset design and process was approved by both, the Human Research Ethics Committee
(HREC) at our institution (TUDelft) and the conference location’s national authorities
(France). All participants gave consent for the recording and sharing of their data at regis-

Figure 2.4: Screenshots from the ConfLab: Meet the Chairs! event website Figure 2.5: The Midge

https://conflab.ewi.tudelft.nl/
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tration. (See the Datasheet in the Appendix for the consent form.) Given the involvement
of private human data, ConfLab is only available for academic research purposes under an
End User License Agreement. Such an as open as possible and as closed as necessary ethos
for open science acknowledges the limitation that personal data places on open sharing
[38, 39].

Data Capture Setup Our goal while designing the capture setup was to find the best
trade-off between maximizing data fidelity and interfering with the naturalness of the
interaction (ecological validity) or violating participant privacy (ethical considerations).
Through discussions with the HREC and General Chairs of MM’19 we decided to mitigate
the capture of faces, which constitute one of the most sensitive personally-identifiable
features. Avoiding the inclusion of faces serves two purposes. First, it safeguards against
misuse in downstream tasks with potential negative societal impacts such as harmful
surveillance. Such issues have led to the retraction of some person re-identification datasets
[14]. Second, it protects the participants who are part of a real research community; since
the dataset does not involve role-playing or scripted conversations, the dataset contains
their actual behavior. Consequently, we chose an aerial perspective for the video modality
(see Figure 2.6). The 10 m × 5 m interaction area was recorded by 14 GoPro Hero 7 Black
cameras (60fps, 1080p, Linear, NTSC) [40]. 10 of these were placed directly overhead at
a height of ∼ 3.5 m at 1 m intervals, with 4 cameras at the corners providing an elevated-
side-view perspective. (The HREC has suggested not sharing the elevated-side-view videos
due to the presence of faces.) For capturing multimodal data streams, we designed a
custom wearable multi-sensor pack called the Midge1 (see Figure 2.5 for a design render),
based on the open-source Rhythm Badge designed for office environments [41]. We
improved upon the Rhythm Badge to achieve more fine-grained and flexible data capture
(see Appendix 2.D). We designed the Midge in a conference badge form-factor for seamless
integration. Unlike smartphones, wearable badges allow for a simple grab-and-go setup
and do not suffer from sensor/firmware differences across models. Popular human behavior
datasets are synchronized by maximizing similarity scores around manually identified
common events, such as infrared camera detections [11], or speech plosives [42]. While
recordings in lab settings can allow for fully wired recording setups, recording in-the-
wild requires a distributed wireless solution. We developed a solution to synchronize the
cameras and wearable sensors directly at acquisition while significantly lowering the cost
of the recording setup [18], making it easier for others to replicate our capture setup. See
Appendix 2.D for synchronization and calibration details, and Appendix 2.B for images of
the setup.

1Documentation and schematics: https://github.com/TUDelft-SPC-Lab/spcl_midge_hardware

https://github.com/TUDelft-SPC-Lab/spcl_midge_hardware
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Figure 2.6: Comparing the top-down (top-left, camera 4) and elevated-side camera views (rest). Note how the
top-down view is better at mitigating the capture of faces and suffers from fewer occlusions. This allows for a
clearer capture of gestures and lower extremities for the most number of people while also preserving privacy.

Data Association and Participant Protocol One consideration for multimodal data
recording is the data association problem—how can pixels corresponding to an individual
be linked to their other data streams? To this end, we designed a participant registration
protocol. Arriving participants were greeted and fitted with a Midge. The ID of the Midge
acted as the participant’s identifier. One team member took a picture of the participant
while ensuring both the face of the participant and the ID on the Midge were visible.
In practice, it is preferable to avoid this step by using a fully automated multimodal
association approach. However this remains an open research challenge [43, 44]. During
the event, participants mingled freely—they were allowed to carry bags or use mobile
phones. Conference volunteers helped to fetch drinks for participants. Participants could
leave before the end of the one hour session.

Replicating Data Collection Setup and Community Engagement After the event, we
gave a tutorial at MM’19 [45] to demonstrate how our collection setup could be replicated,
and to invite conference attendees and event participants to reflect on the broader consid-
erations surrounding privacy-preserving data capture, sharing, and future directions such
initiatives could take.

2.4 Data Annotation
Continuous Keypoints Annotation Existing datasets of in-the-wild social interactions
have mainly focused on localizing subjects via bounding boxes [9, 11]. However, richer
information about the social dynamics such as gestures and changes in orientation cannot
be retrieved from bounding boxes alone, and necessitates the labeling of multiple skeletal
keypoints. The typical approach to keypoint annotation involves using tools such as Vatic
[20] or CVAT [46] to manually label every 𝑁 frames followed by interpolating over the rest
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of the frames. This one-frame-at-a-time annotation procedure makes obtaining keypoint
annotations a labor- and cost-intensive process. Moreover, interpolation fails to capture
the finer temporal dynamics of the underlying behavior, and reduces the benefits of higher-
framerate video capture. Limited by existing tools, no related dataset of in-the-wild human
behavior has included time-continuous pose or speaking status annotations.

In contrast, to overcome these issues we collected fine-grained time-continuous annota-
tions of keypoints via a web-based interface implemented as part of the Covfee framework
[47]. Here, annotators follow individual joints using their mouse or trackpad while playing
the video in their web browser. The playback speed of the video is automatically adjusted
using an optical-flow-based technique to enable annotators to follow keypoints contin-
uously without pausing the video. This design enables easy keypoint labeling in every
frame of the video (60 Hz). We also incorporated a binary occlusion flag for every body
keypoint. Annotators simultaneously controlled this flag to indicate when a body joint was
not directly visible. Note that the flag is only an additional confidence indicator; we asked
the annotators to label the occluded keypoint using their best estimate if it was deemed to
be within the frame. Our pilot study on the efficacy of Covfee compared to non-continuous
annotation via CVAT [46] is presented in [47]. For the pilot annotators, the continuous
annotation methodology resulted in a 3× speedup with statistically indifferent error rates.

We chose the top-down camera views for annotation since they suffer from fewer
occlusions than the elevated-side views, enabling improved capture of gestures and lower
extremities for more number of people (see Figure 2.6). Given the overlap in the camera
views, we annotated keypoints in five of the ten overhead cameras (see Figure 2.1). Note
that the same subject could be annotated in multiple cameras due to the overlap in even the
five annotated cameras. Videos were split into two-minute segments to ease the annotation
procedure. Each segment was annotated by one annotator by tracking the joints of all the
people in the scene.

Continuous Speaking Status Annotations Speaking status is a key non-verbal cue for
many social interaction analysis tasks [48]. We annotated the binary speaking status of
every subject due to its importance as a key feature of social interaction [16, 49–52] and
to contribute the existing community who are working on this task [17, 53, 54]. Action
annotations have traditionally been carried out using frame-wise techniques [9], where
annotators find the start and end frame of the action of interest using a graphical interface.
Given the speed enhancement of continuous annotation, we also annotated speaking status
via a continuous technique. We implemented a binary annotation interface as part of
Covfee [47]. We asked annotators to press a key when they perceived speaking starting
or ending. In a pilot study with two annotators, we measured a frame-level agreement
(Fleiss’ 𝜅) of 0.552, comparable to previous work [35]. Similar to [9], the annotations were
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(a) Keypoint annotation interface in covfee [55] (b) Gallery of identities (c) Occlusion

Figure 2.7: Illustration of the body keypoints annotation procedure: (a): our custom time continuous annotation
interface; (b): the gallery of person identities used by annotators to identify people in the scene (faces blurred);
and (c): the skeleton template with the fraction of occluded frames.

made by watching the video. We provided the annotators with all overhead views to best
capture visual behavior.

F-formation Annotations Identifying who is likely to have social influence on whom is
another important feature for analyzing social behavior. This is operationalised via the
theory of F-formations, which are groups of people arranging themselves to converse or
socially interact. Similar to prior datasets [9, 11, 13], F-formations group membership were
annotated using an approximation of Kendon’s definition [56]. F-formation stands for
Facing formation, which is a socio-spatial arrangement where people have direct, easy and
equal access while excluding the space from others in the surroundings. The arrangement
commonly maintains a convex space in the middle of all the participants (determined by
the location and orientation of their lower body), although other spatial arrangements
(e.g., side-by-side, L-shaped) are possible, especially for smaller-sized groups of people.
Annotations were labeled by one annotator at 1 Hz, following this definition. Since this is a
largely objective and common framework for defining F-formations, we deemed it sufficient
to obtain one set of annotations. Further, since F-formations may span camera views, we
always used the camera that captured each F-formation in its entirety for annotation.

2.5 Dataset Statistics
Individual-Level Statistics Figure 2.7c shows the average occlusion values we obtained
from annotators for each of the 17 keypoints. In Figure 2.8a we show the distribution
of turn lengths in our speaking status annotations, for both newcomers and veterans,
as per their self-reported newcomer status to the conference. We defined a turn to be a
contiguous segment of positively-labeled speaking status, which resulted in a total of 4096
turns annotated.



2.6 Research Tasks

2

35

(a) speaking turn lengths (b) group size (c) group duration (d) fraction of newcomers in groups

Figure 2.8: Data distributions for speaking status and conversation groups

Group-Level Statistics We found 119 distinct F-formations of size greater than or equal
to two, and 38 instances of singletons. Of these, there are 14 F-formations and 2 singletons
that include member(s) using the mobile phone. The distributions for group size and
duration per group size are shown in Figure 2.8b and Figure 2.8c, respectively. Mean group
duration doesn’t seem to be influenced by group size although higher variations are seen
at smaller group sizes. The fraction of community newcomers (first-time attending the
conference) in groups is summarized in histogram in Figure 2.8d. The figure demonstrates
two peaks on both sides of the spectrum (i.e., no newcomers vs. all newcomers in the same
group). This spread over mixed and non-mixed seniority presents opportunities to study
how acquaintance and seniority influence conversation dynamics.

2.6 Research Tasks
We report experimental results on three baseline benchmark tasks: person and keypoints de-
tection, speaking status detection, and F-formation detection. The first task is a fundamental
building block for automatically analyzing human social behaviors. The other two demon-
strate how learned body keypoints can be used in the behavior analysis pipeline. We chose
these benchmarking tasks since they have been commonly studied on other in-the-wild
behavior datasets. Code for all benchmark tasks is available at: https://github.com/TUDelft-
SPC-Lab/conflab. See the Uses section of the Datasheet in the Appendix for a discussion of
the broader range of tasks ConfLab enables.

2.6.1 Person and Keypoints Detection
This benchmark involves the tasks of person detection (identifying bounding boxes) and
pose estimation (localizing skeletal keypoints). Since pre-trained SOTA methods struggle
with a privacy-sensitive top-down perspective [15] (also see Figure 2.3 and Appendix 2.F.1
for ConfLab results), we finetune COCO-pretrained models on our dataset. We used Mask-
RCNN [57] (Detectron2 framework [58] implementation) with a ResNet-50 backbone for
both tasks for benchmarking. Since keypoint annotations were made per camera, we used
four of the overhead cameras for training (Cameras 2, 4, 8, 10) and one for testing (Camera
6). Implementation details are available in Appendix 2.E.1.

https://github.com/TUDelft-SPC-Lab/conflab
https://github.com/TUDelft-SPC-Lab/conflab
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Table 2.2: Mask-RCNN results for person bounding
box detection and keypoint estimation.

Model Person Detection Keypoint Estimation
AP50 AP AP75 APOKS

50 APOKS APOKS
75

R50-FPN 73.9 38.9 38.4 45.3 13.5 3.3 Figure 2.9: Predictions from the Mask-RCNN model;
COCO pretrained (left), and ConfLab finetuned (right).

Evaluation Metrics We evaluated person-detection performance using the standard met-
rics in the MS-COCO dataset paper [59]. We report average precision (AP) for intersection
over union (IoU) thresholds of 0.50 and 0.75, and the mean AP from an IoU range from 0.50
to 0.95 in 0.05 increments. For keypoint detection, we use object keypoint similarity (OKS)
[59]. APOKS is a mean average precision for different OKS thresholds from 0.5 to 0.95.
Results and Analyses Table 2.2 summarizes our person detection and joint estimation
results. Our baseline achieves 73.9 AP50 in detection and 45.3 APOKS

50 in keypoint estimation.
Figure 2.9 shows qualitative results from our fine-tuned network.

For further insight we performed several analyses and ablations. In Appendix Table 2.6,
we depict the effect of varying the number of training samples on performance. For training,
we use the same four cameras and only vary the number of frames for each camera. We
evaluate on the same testing images from camera 6. We find that performance saturates at16% training samples. We next investigated the effect of increasing training data size by
adding specific cameras one at a time. We report results in Appendix Table 2.7. There is a260% performance gain when first doubling the training samples to 69 k with the addition
of camera 4, and a 46% gain when adding another 43 k samples from camera 8. Finally,
since the lower body regions suffer from higher occlusion, we experiment with different
sections of body for further insight and report results in Appendix Table 2.8.

2.6.2 Speaking Status Detection
In data collected from real-life social settings, individual audio recordings can be hard to
obtain due to privacy concerns [60]. This has led to the exploration of other modalities to
capture some of the motion characteristics of speaking-related gestures [35, 36]. In this
task we explore the use of body pose and wearable acceleration data for detecting the
speaking status of a person in the scene.

Setup We use the SOTA MS-G3D graph neural network for skeleton action recognition
[61], pre-trained on Kinetics Skeleton 400. For the acceleration modality, we evaluated three
time series classifiers, each of whichwe trained from scratch: 1D Resnet [62], InceptionTime
[63], and Minirocket [64]. We performed late fusion by averaging the scores from both
modalities. Like prior work [17, 36], the task was set up as a binary classification problem.
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We divided our pose (skeleton) tracks into 3-second windows with 1.5 s overlap. A window
was labeled positive if more than 50% of the continuous speaking status labels within it
are positive. This resulted in an imbalanced dataset of 42882 windows with 29.2% positive
labels. Poses were pre-processed for training following [61]. Three of the keypoints (head,
and feet tips) were discarded due to not being present in Kinetics. We adapted the network
by freezing all layers except for the last fully connected layer and training for five extra
epochs. Acceleration readings were not pre-processed, other than by interpolating the
original variable-sampling-rate signals to a fixed 50 Hz.

Evaluation Evaluation was carried out via 10-fold cross-validation at the subject level,
ensuring that no examples from the test subjects were used in training. We used the area
under the ROC curve (AUC) as main evaluation metric to account for the imbalance in the
labels.

Results The results in Table 2.3 indicate a better performance from the acceleration-based
methods. One possible reason for the lower performance of the pose-based methods is
the significant domain shift between Kinetics and Conflab, especially in camera viewpoint
(frontal vs top-down). The acceleration performance is in line with previous work [17].
Multimodal results were slightly higher than acceleration-only results, despite our naive
fusion approach, a possible point to improve in future work [65]. Experiments with the
rest of the IMU modalities are presented in Appendix 2.F.2.

2.6.3 F-formation Detection
Setup Like prior work [10, 21–23], we operationalize interaction groups using the frame-
work of F-formations [56]. We provide performance results for F-formation detection using
GTCG [23] and GCFF [67] as a baseline. Recent deep learning methods such as DANTE
[22] are not directly applicable since they depend on knowing the number of people in the
scene, which is variable for ConfLab. We use pre-trained model parameters (reported in
the original GTCG and GCFF papers on the Cocktail Party dataset [13]) and tuned a subset
of parameters more relevant to ConfLab attributes on camera 6. More details can be found

Table 2.3: ROC AUC and accuracy of skeleton-based,
acceleration-based and multimodal speaking status de-
tection (10-fold cross-validation).

Modality Model AUC Acc.

Pose MS-G3D [66] 0.676 0.677

Acceleration
InceptionTime [63] 0.798 0.768

Resnet 1D [62] 0.801 0.767
Minirocket [64] 0.813 0.768

Multimodal MS-G3D + Minirocket 0.823 0.775

Table 2.4: Average F1 scores for F-formation detection
comparing GTCG [23] and GCFF [67] with the effect
of different threshold and orientations (standard devia-
tion in parenthesis).

GTCG GCFF

T=2/3 T=1 T=2/3 T=1

Head 0.51 (0.09) 0.40 (0.12) 0.47 (0.07) 0.31 (0.23)
Shoulder 0.46 (0.11) 0.38 (0.11) 0.56 (0.25) 0.36 (0.16)
Hip 0.45 (0.10) 0.37 (0.12) 0.39 (0.06) 0.25 (0.11)
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in Appendix 2.E.2. We derive three different sets of orientation features from (i) head, (ii)
shoulder and (iii) hip keypoints.

EvaluationMetrics We use the standard F1 score as evaluationmetric for group detection
[23, 67]. A group is correctly estimated (true positive) if at least ⌈T ∗ |G|⌉ of the members
of group G are correctly identified, and no more than 1− ⌈T ∗ |G|⌉ is incorrectly identified,
where T is the tolerance threshold. We report results for 𝑇 = 23 and 𝑇 = 1 (more strict
threshold) in Table 2.4.

Results We show that different results are obtained using different sources of orienta-
tions. Different occlusion levels in keypoints due to camera viewpoint may have affected
performance. Another factor influencing model performance is that F-formations (which
are driven by lower-body orientations [56]) may have multiple conversations floors [50].
Floors are indicated by coordinated speaker turn taking patterns and influence coordinated
head orientations of the group.

2.7 Conclusion and Discussion
ConfLab contributes a new concept for real-life data collection in the wild and captures a
high-fidelity dataset of mixed levels of acquaintance, seniority, and personal motivations.

ConfLab: the Dataset We improved upon prior work by providing higher-resolution,
fidelity, and synchronization across sensor networks. We also carefully designed our social
interaction setup to enable a diverse mix of seniority, acquaintanceship, and motivations
for mingling. The result is a rich set of 17 body-keypoint annotations of 48 people at 60 Hz
from overhead cameras for developing more robust estimation of keypoints, speaking
status and F-formations for further analyses of more complex socio-relational phenomena.
Our benchmark results for these tasks highlight how the improved fidelity of ConfLab can
assist in the development of more robust methods for these key tasks. We hope that models
trained on ConfLab for localizing keypoints would fill the gap in the cue extraction pipeline,
enabling past datasets [9, 10] without articulated pose data to be reinvigorated; this would
open the floodgates for more robust analysis of the social phenomena labeled in these
other datasets. Finally, our baseline social tasks form the basis for further explorations into
downstream prediction tasks of socially-related constructs such as conversation quality
[68], dominance [52], rapport [49], influence [69] etc.

ConfLab: the Data-Collection Concept To relate an individual’s behaviors to trends
within their social network, further iterations of ConfLab are needed. These iterations
would enable the study of behavioral patterns at different timescales, including multiple
interactions in one day, multiple days at a conference, or across distinct conferences. This
paper serves as a template for such future ventures. We hope that if the idea of a conference
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as a living lab gains traction, the effort and cost of data collection can be amortized across
different research groups, even involving support from the conference organizers. This
data by the community for the community ethos can enable the generation of a corpus of
related datasets enabling new research questions.

Societal Impact ConfLab’s long-term vision is towards developing technology to assist
individuals in navigating social interactions. In this work we have identified choices
that maximize data fidelity while upholding ethical best practices: an overhead camera
perspective that mitigates identifying faces, recording audio at a low-frequency, and using
non-intrusive wearable sensors matching a conference badge form-factor. We argue this is
an essential step towards a long-term goal of developing personalized and socially aware
technologies that enhance social experiences. At the same time, such interventions could
also affect a community in unintended ways: worsened social satisfaction, lack of agency,
stereotyping; or benefit only those members of the community who make use of resulting
applications at the expense of the rest. More nefarious uses involve exploiting the data for
developing methods that harmfully surveil or profile people. Researchers must consider
such inadvertent effects while developing downstream applications. Finally, since we
recorded the dataset at a scientific conference and required voluntary participation, there is
an implicit selection bias in the population represented in the data. Researchers should be
aware that insights resulting from the data may not generalize to the general population.

Empowering Users Through an Agentist Rather Than Structurist Approach The
analysis of human behavior in social settings has classically taken a more top-down
perspective. For instance, the analysis of situated interactions (via only proximity networks)
has provided insight into the process of making science in the field of Meta Science
[70]. However, while social network science is a well-populated domain, it lacks a more
individualized measurement of social behavior: see more discussion of the structure vs.
agency debate [71]. Relying on the network science approach jeopardizes an individual’s
right to technologies that enable free will. We consider the agency in choosing such
technologies to be a form of individual harm avoidance. ConfLab provides access to
more than just proximity data about social interactions, enabling the study of context-
specific social dynamics. These dynamics are a uniquely dependent not only on the
individual, but also the group they are interacting with [72]. We hope our highlighting of
participatory design practices and these value-sensitive design principles promote social
safety in developing socially assistive technologies.
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Appendices

2.A Hosting, Licensing, and Organization
The dataset is hosted by 4TU.ResearchData, available at https://doi.org/10.4121/c.6034313.

The dataset itself is available under restricted access defined by an End-User License
Agreement (EULA). The EULA itself is available under a CC0 license. The code
(https://github.com/TUDelft-SPC-Lab/conflab) for the benchmark baseline tasks, and the
schematics and data associated with the design of our custom wearable sensor called the
Midge (https://github.com/TUDelft-SPC-Lab/spcl_midge_hardware) are available under
the MIT License.

Figure 2.10 on the next page illustrates the organization of the ConfLab dataset on
4TU.ResearchData. The components are as follows:

• Annotations (restricted, https://doi.org/10.4121/20017664): annotations of pose, speak-
ing status, and F-formations

• Datasheet for ConfLab (public, https://doi.org/10.4121/20017559): documentation of
the dataset following Datasheets for Datasets [73] (see Appendix 2.B)

• EULA (public, https://doi.org/10.4121/20016194): End User License Agreement to be
signed for requesting access to the restricted components

• Processed-Data (restricted, https://doi.org/10.4121/20017805): processed video and
wearable sensor used for annotations

• Raw-Data (restricted, https://doi.org/10.4121/20017748): raw video and wearable
sensor data

• Data Samples (restricted, https://doi.org/10.4121/20017682): samples of the sensor,
audio, and video data

https://doi.org/10.4121/c.6034313
https://github.com/TUDelft-SPC-Lab/conflab
https://github.com/TUDelft-SPC-Lab/spcl_midge_hardware
https://doi.org/10.4121/20017664
https://doi.org/10.4121/20017559
https://doi.org/10.4121/20016194
https://doi.org/10.4121/20017805
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https://doi.org/10.4121/20017682


2

48 Curating Datasets of Social Interactions in the Wild

Figure 2.10: File structure of the ConfLab dataset
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2.B Datasheet For ConfLab
This document is based on Datasheets for Datasets by Gebru et al. [73]. Please see
the most updated version here.

MOTIVATION

Q. For what purpose was the dataset created? Was there a specific task in mind? Was
there a specific gap that needed to be filled? Please provide a description.
There are two broad motivations for creating this dataset: first, to enable the privacy-
preserving, multimodal study of real-life social conversation dynamics; second, to bring
the higher fidelity of wired in-the-lab recording setups to in-the-wild scenarios, enabling
the study of fine time-scale social dynamics in-the-wild.
We propose the Conference Living Lab (ConfLab) with the following goals: (i) a data
collection effort that follows a by the community for the community ethos: the more
volunteers, the more data, (ii) volunteers who potentially use the data can experience
first-hand potential privacy and ethical considerations related to sharing their own data,
(iii) in light of recent data sourcing issues [19], we incorporated privacy and invasiveness
considerations directly into the decision-making process regarding sensor type, positioning,
and sample-rates.
From a technical perspective, closest related datasets (see Table 2.1 in the main paper) suffer
from several technical limitations precluding the analysis and modeling of fine-grained
social behavior: (i) lack of articulated pose annotations; (ii) a limited number of people in
the scene, preventing complex interactions such as group splitting/merging behaviors, and
(iii) an inadequate data sampling-rate and synchronization-latency to study time-sensitive
social phenomena [18, Sec. 3.3]. This often requires modeling simplifications such as the
summarizing of features over rolling windows [17, 35, 36]. On the other hand, past high-
fidelity datasets have largely involved role-played or scripted interactions in lab settings,
with often a single-group in the scene.
This dataset wasn’t created with a specific task in mind, but intends to support a wide
variety of multimodal modeling and analysis tasks across research domains (see the Uses
section).
Q. Who created this dataset (e.g., which team, research group) and on behalf of
which entity (e.g., company, institution, organization)?
ConfLab was initiated by the Socially Perceptive Computing Lab, Delft University of
Technology in cooperation and support from the general chairs of ACM Multimedia 2019
(Martha Larson, Benoit Huet, and Laurent Amsaleg), Nice, France. Since this dataset was
by the community, for the community, members of the Multimedia community contributed

http://arxiv.org/abs/1803.09010
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as subjects in the dataset.
Q. What support was needed to make this dataset? (e.g. who funded the creation of
the dataset? If there is an associated grant, provide the name of the grantor and the grant
name and number, or if it was supported by a company or government agency, give those
details.)
ConfLab was partially funded by Netherlands Organization for Scientific Research (NWO)
under project number 639.022.606 with associated Aspasia Grant, and also by the ACM
Multimedia 2019 conference via student helpers, and crane hiring for camera mounting.
Q. Any other comments?
None.

COMPOSITION

Q. What do the instances that comprise the dataset represent (e.g., documents,
photos, people, countries)? Are there multiple types of instances (e.g., movies, users,
and ratings; people and interactions between them; nodes and edges)? Please provide a
description.
The dataset contains multimodal recordings of people interacting during a networking
event embedded in an international multimodal machine learning conference. Overall,
the interaction scene contained conversation groups (operationalized as f-formations),
composed of individual subjects, each of which had individual data associated to their
wearable sensors. The complete interaction scene was additionally captured by overhead
cameras. Figure 2.11 shows the structure of these instances and their relationships.
Note however that the precise notion of what constitutes an instance in the dataset is very
much task-specific. In our baseline tasks we considered the following instances:
Person and Keypoints Detection Frames, containing pose annotations (17 body key-

points per person per frame @60 Hz) from 5 overhead videos (1920× 1080,60 fps)
for 16 minutes of interaction.

Speaking Status Detection Windows (3 seconds) of wearable sensor data and speaking
status annotations (60 Hz) extracted from each subject’s data.

F-formations Operationalized conversation groups, annotated at 1 Hz from the 16 min-
utes of annotated data, and the pose data associated to the people in the F-formation.

Q. How many instances are there in total (of each type, if appropriate)?
The notion of instance is very much dependent on how a user intends to use the data.
Regarding the instances in Figure 2.11, our full dataset consist of 45 minutes of:
Video recordings from 10 overhead cameras placed over the interaction area. Five of

these videos, enough to cover the complete interaction area, were used in annotation.
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Figure 2.11: Structure of some of the instances in the dataset and their relationships. The interaction space was
captured via overhead videos, in which f-formations (conversation groups) were annotated. An F-formation
consists of set of people interacting for a variable period of time, and identified via a subject ID. Each person in
the F-formation can be associated to their pose (annotated in the videos), their wearable sensor (IMU) data, and
their action (speaking status) labels.

Individual wearable sensor data For the 48 subjects in the interaction area, a chest-
worn conference-type badge recorded: audio (1250 Hz), and Inertial Measurement
Unit (IMU) readings (accelerometer @ 56 Hz, gyroscope @56 Hz, magnetometer
@56 Hz and Bluetooth RSSI-based proximity @5 Hz)

Conference experience label For each of the 48 subjects, an associated self-report label
indicating whether it was their first time in the conference.

The instances in the annotated 16 minutes segment out of the 45 minutes of interaction
contain:
2D body poses For each of the 48 subjects, full body pose tracks annotated at 60Hz (17

keypoints per person). These were annotated using 5 of the 10 overhead cameras
due to the significant overlap in views (cameras 2, 4, 6, 8, and 10). Annotations were
done separately for each camera by annotating all of the people visible in each video,
for each of the 5 cameras, and tagged with a participant ID. We made use of a novel
continuous technique for annotation of keypoints. We chose this approach via a
pilot study with 3 annotators, comparing our technique to annotations done using
the non-continuous CVAT tool. We found no statistically significant differences in
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errors per-frame (as measured using Mean Squared Error across annotators), despite
a 3x speed-up in annotation time in the continuous condition. The details of the
technique and this pilot study can be found in [47].

Speaking status annotations For each of the 48 subjects, these include a) a binary signal
(60 Hz) indicating whether the person is perceived to be speaking or not; b) continu-
ous confidence value (60 Hz) indicating the degree of confidence of the annotator in
their speaking status assessment. These annotations were done without access to
audio due to issues with the synchronization of the audio recordings at the time of
annotation. The confidence assessment is therefore largely based on the visibility of
the target person and their speaking-associated gestures (eg. occlusion, orientation
w.r.t. camera, visibility of the face)? We measured inter-annotator agreement for
speaking status in a pilot where two annotators labeled three data subjects for 2
minutes each. We measured a frame-level agreement (Fleiss’ 𝜅) of 0.552, comparable
to previous work [35].

F-formation annotations These annotations label the conversing groups in the scene
following previous work. Each individual belongs to one F-formation at a time or is a
singleton in the interaction scene. The membership is binary. The annotations were
done by one of the authors at 1 Hz by watching the video. The time-stamped usage
of mobile phones are available as auxiliary annotations, which are useful for the
study of the role of mobile phone users as associates of F-formations. Since Kendon’s
theories date back to before the widespread use of mobile phones, their influence on
F-formation membership remains an open question.

In our baseline tasks, which made use of the complete annotated section of the dataset, the
instance numbers were the following:
Person and Keypoints Detection 119k frames (60fps) containing 1967k person instances

(poses) in total, from 48 subjects recorded in 5 cameras (16 minutes of annotated
segment).

Speaking Status Detection 42884 3-second windows, extracted from the 48 participants’
wearable data and speaking status annotations.

F-formations 119 conversation groups. Details are in Section 2.5.
Q. Does the dataset contain all possible instances or is it a sample (not necessarily
random) of instances from a larger set? If the dataset is a sample, then what is the larger
set? Is the sample representative of the larger set (e.g., geographic coverage)? If so, please
describe how this representativeness was validated/verified. If it is not representative of
the larger set, please describe why not (e.g., to cover a more diverse range of instances,
because instances were withheld or unavailable).
The participants in our data collection are a sample of the conference attendees. Participants
were recruited via the conference website, social media posting, and approaching them in
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person during the conference. Because participation in such a data collection can only be
voluntary, the sample was not pre-designed and may not be representative of the larger set.
Additionally, 16 minutes of sensor data has been annotated for keypoints, speaking status
and F-formations out of the total of 45 minutes recorded. The remaining part (across all
modalities) is provided with no labels. For privacy reasons, the elevated cameras (distinct
from the previously mentioned 8 overhead cameras) and also individual frontal headshots
that were used for manually associating the video data to the wearable sensor data is not
being shared.
Q. Is any information missing from individual instances? If so, please provide a
description, explaining why this information is missing (e.g., because it was unavailable).
This does not include intentionally removed information, but might include, e.g., redacted
text.
Camera 5 failed early during the recording, but the space underneath it was captured by
the adjacent cameras due to the high overlap in the camera field-of-views. Nevertheless
we share what was recorded before the failure from camera 5, bringing the total number of
cameras to 9.
Q. Are relationships between individual instances made explicit (e.g., users’ movie
ratings, social network links)? If so, please describe how these relationships are made
explicit.
The F-formations, subjects, and their associated data relate as shown in Figure 2.11. These
associations are made explicit in the dataset via anonymous subject IDs, associated to pose
tracks, speaking status annotations, and wearable sensor data. These same IDs were used
to annotate the F-formations.
Pre-existing personal relationships between the subjects were not requested for privacy
reasons.
Q. Are there recommended data splits (e.g., training, development/validation,
testing)?
Since the dataset can be used to study a variety of tasks, the answer to this question is
task dependent. Please refer to our reproducibility details (Appendix 2.G of our associated
paper) for information about the splits that we used in out baselines.
Q. Are there any errors, sources of noise, or redundancies in the dataset? If so,
please provide a description.
Individual audio Because audio was recorded by a front-facing wearable device worn

on the chest, it contains a significant amount of cocktail party noise and cross-
contamination from other people in the scene. In our experience this means that
automatic speaking status detection is challenging with existing algorithms but
manual annotation is possible.
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Videos and 2D body poses It is important to consider that the same person may appear
in multiple videos at the same time if the person was in view of multiple cameras.
Because 2D poses were annotated per video, the same is true of pose annotations.
Each skeleton was tagged with a person ID, which should serve to identify such
cases when necessary.

Q. Is the dataset self-contained, or does it link to or otherwise rely on external
resources (e.g., websites, tweets, other datasets)?
The dataset is self-contained.
Q. Does the dataset contain data that might be considered confidential (e.g., data
that is protected by legal privilege or by doctor-patient confidentiality, data that
includes the content of individuals’ non-public communications)?
The data contains personal data under GDPR in the form of video and audio recordings of
subjects. The dataset is shared under an End User License Agreement for research purposes,
to ensure that the data is not made public, and to protect the privacy of data subjects.
Q. Does the dataset contain data that, if viewed directly, might be offensive, insult-
ing, threatening, or might otherwise cause anxiety?
No.
Q. Does the dataset relate to people?
Yes, the dataset contains recordings of human subjects.
Q. Does the dataset identify any subpopulations (e.g., by age, gender)? If so, please de-
scribe how these subpopulations are identified and provide a description of their respective
distributions within the dataset.
Data subjects answered the following questions before the start of the data collection event,
after filling in their consent form:

• Is this your first time attending ACM MM?
• Select the area(s) that describes best your research interest(s) in recent years. De-
scriptions of each theme are listed here: https://acmmm.org/call-for-papers/

Figure 2.12 shows the distribution of the responses / populations.
Q. Is it possible to identify individuals (i.e., one or more natural persons), either
directly or indirectly (i.e., in combination with other data) from the dataset?
We do not share any directly identifiable information as part of the dataset. However,
individuals may be identified in the video recordings if the observer knows the participants
in the recordings personally. Otherwise, individuals in the dataset may potentially be
identified in combination with publicly available pictures or videos (from conference
attendees or conference official photographer) from other media from the conference the
dataset was recorded at. In any case, re-identifying the subjects is strictly against the End
User License Agreement under which we share the dataset.

https://acmmm.org/call-for-papers/
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Figure 2.12: Distribution of participant seniority (left) and research interests (right) in percentage.

Q. Does the dataset contain data that might be considered sensitive in any way
(e.g., data that reveals racial or ethnic origins, sexual orientations, religious beliefs,
political opinions or union memberships, or locations; financial or health data;
biometric or genetic data; forms of government identification, such as social
security numbers; criminal history)?
We did not request any such information from data participants. Here, the ACMMultimedia
’19 General Chair Martha Larson also helped advocate on behalf of the attendees during
the survey-design stage. As a result of these discussions, information such as participant
gender, ethnicity, or country of origin was not asked.
Q. Any other comments?
None.

COLLECTION

Q. How was the data associated with each instance acquired? Was the data directly
observable (e.g., raw text, movie ratings), reported by subjects (e.g., survey responses), or
indirectly inferred/derived from other data (e.g., part-of-speech tags, model-based guesses
for age or language)? If data was reported by subjects or indirectly inferred/derived from
other data, was the data validated/verified? If so, please describe how.
The collected data is directly observable, containing video recordings, low-frequency
audio recordings and wearable sensing signals (inertial motion unit (IMU) and Bluetooth
proximity sensors) of individuals in the interaction scenes. Accompanying data includes
self-reported binary categorization of experience level which is available upon request
from the authors. The self-reported interests categories are not shared because of privacy
concerns.
Video recordings capture the whole interaction floor where the association from multi-
modal data to individual is done manually by annotators by referring to frontal (not-shared)
and overhead views. The rest of the data was acquired from the wearable sensing badges,
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which is person-specific (i.e., no participant shared the device). Video and audio data were
verified in playback. Wearable sensing data was verified through plots after parsing.
Q. Over what timeframe was the data collected? Does this timeframe match the
creation timeframe of the data associated with the instances (e.g., recent crawl of old news
articles)? If not, please describe the timeframe in which the data associated with the s was
created. Finally, list when the dataset was first published.
All data was collected on October 24, 2019, except the self-reported experience level and
research interest topics which are either obtained on the same day or not more than one
week before the data collection day. This time frame matches the creation time frame of
the data association for wearable sensing data. Video data was associated with individual
during annotation stage (2020-2021), but all information used for association was obtained
on the data collection day.
Q. What mechanisms or procedures were used to collect the data (e.g., hardware
apparatus or sensor, manual human curation, software program, software API)?
To record videos, we used 14 GoPro Hero 7 Black cameras. The wearable sensor hardware
has been documented and open-sourced at
https://github.com/TUDelft-SPC-Lab/spcl_midge_hardware. The validation of the sensors
was completed through an external contractor engineer. The data collection software
was documented and published in [47], which includes validation of the system. These
hardwares andmechanisms have been open-sourced along with their respective publication.
The synchronization setup for data collection (intramodal and intermodal) was documented
and published in [18], which includes validation of the system.
To lend the reader further insight into the process of setting up the recording of such
datasets in-the-wild, we share images of our process in Figure 2.13.
Q. What was the resource cost of collecting the data?
The resources required to run this first edition of ConfLab include equipment, logistics, and
travel costs. Table 2.5 shows the full breakdown of the costs. The equipment expenses are
fixed one-time costs since the same equipment can be used for future iterations of ConfLab.
The on-site costs at the conference venue were toward renting a crane for a day to mount
the cameras on a scaffold on the ceiling. We have open-sourced the Midge (our custom
wearable) schematics so that others don’t need to spend on the design and development.
No additional energy consumption was incurred for collecting the data. However, the
ancillary activities (e.g., flights, accommodation) resulted in energy consumption. Flights
from the Netherlands to France round-trip for six passengers results in 1020 kg carbon
emissions. Accommodation for six members resulted in 22 kWh energy consumption.
Q. If the dataset is a sample from a larger set, what was the sampling strategy (e.g.,
deterministic, probabilistic with specific sampling probabilities)?

https://github.com/TUDelft-SPC-Lab/spcl_midge_hardware
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(a) Aligning cameras (b) Affixing the mounting beam (c) Aligning floor markers

(d) Marking the floor grid (e) Interaction area (f) Verifying camera sync.

(g) Assembling Midges (h) Midges (i) Verifying crossmodal sync.

Figure 2.13: Illustrating the process of setting up the data recording.

ConfLab contains both annotated and unannotated segments of multi-modal data. The
segment where the articulated pose and speaking status were annotated is selected to
maximize crowd density in the scenes. The annotated segment is 16 minutes; the whole
set is roughly 1 hour of recordings.
Q. Who was involved in the data collection process (e.g., students, crowdworkers,
contractors) and how were they compensated (e.g., how much were crowdworkers
paid)?
The Conflab dataset was captured during a special social event called Meet the Chairs!
at an international conference on signal processing and machine learning. Newcomers
and old-timers to the conference freely donated their social behaviour data as part of a
by the community, for the community data collection effort. Aside from the chance to
meet the chairs and create a community dataset, the attendees also received a personalised
report of their social behaviour from the wearable sensors (see Appendix 2.C) Conference
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Table 2.5: Itemized costs associated with recording ConfLab

Item Cost (USD)

Travel (total for 6 people)
Flights 1800
Accommodation 1500

Equipment (one time)
Mounting scaffold 2000
14 × GoPro Hero 7 Black 4900
Designing the Midge (custom wearable, now made open source) 26000
110 × Midges (boards, batteries, 4 GB sd cards, cases) 3660
Multimodal synchronization setup 730

Annotations 8000
Computational cost for experiments 500

student volunteers were involved in assisting the set-up of the event. Conference organizers
(mentioned in the Motivation section) assisted in connecting us with conference venue
contacts to mount our technical set-ups in the room. Volunteers and conference organizers
were not paid by us. Conference venue contacts were paid by the conference organizers.
Data annotations were completed by crowdsourced workers. The crowdsourced workers
were paid $0.20 for qualification assignment (note that typically requesters do not pay for
qualification tasks). Depending on the submitted results, workers earn qualification to
access of the actual tasks. The annotation tasks were categorized into low-effort ($150),
medium-effort ($300), and high-effort ($450), corresponding to the amount of estimated
time each would take. The duration of the tasks was determined by the crowd density and
through timing of the pilot studies. The average hourly payment to workers is around $8.
Q. Were any ethical review processes conducted (e.g., by an institutional review
board)? If so, please provide a description of these review processes, including the out-
comes, as well as a link or other access point to any supporting documentation.
The data collection was approved by the Human Research Ethics Committee (HREC) of our
university (Delft University of Technology), which reviews all research involving human
subjects. The data collection protocol is also compliant to the conference location’s national
authorities (France). The review process included addressing privacy concerns to ensure
compliance with GDPR and university guidelines, review of our informed consent form,
data management plan, and end user license agreement for the dataset and a safety check
of our custom wearable devices.
Q. Does the dataset relate to people?
Yes.
Q. Did you collect the data from the individuals in question directly, or obtain it
via third parties or other sources (e.g., websites)?



2.B Datasheet For ConfLab

2

59

Figure 2.14: Screenshots of the ConfLab web-page used for participant recruitment and registration.

We collected the data from individuals directly.
Q. Were the individuals in question notified about the data collection? If so, please
describe (or show with screenshots or other information) how notice was provided, and
provide a link or other access point to, or otherwise reproduce, the exact language of the
notification itself.
The individuals were notified about the data collection and their participation is voluntary.
The data collection was staged at an event called Meet the Chairs at ACM MM 2019. The
ConfLab web page (https://conflab.ewi.tudelft.nl/) served to communicate the aim of the
event, what was being recorded, and how participants could sign up. This allowed us
to embed the informed consent into this framework so we could keep track of sign ups.
See Figure 2.14 for screenshots. This event website was also shared by the conference
organizers and chairs (https://2019.acmmm.org/conflab-meet-the-chairs/index.html).
Q. Did the individuals in question consent to the collection and use of their data?
If so, please describe (or show with screenshots or other information) how consent was
requested and provided, and provide a link or other access point to, or otherwise reproduce,
the exact language to which the individuals consented.
All the individuals who participated in the data collection gave their consent by signing a
consent form. A copy of the form is attached below in Figure 2.15.
Q. If consent was obtained, were the consenting individuals provided with a mech-
anism to revoke their consent in the future or for certain uses? If so, please provide
a description, as well as a link or other access point to the mechanism (if appropriate)
Yes, the consenting individuals were informed about the possibility of revoking access to
their data within a period of 3 months after the data collection experiment, and not after
that. The description is included in the consent form.

https://conflab.ewi.tudelft.nl/
https://2019.acmmm.org/conflab-meet-the-chairs/index.html
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Figure 2.15: Consent form signed by each participant in the data collection.

Q. Has an analysis of the potential impact of the dataset and its use on data subjects
(e.g., a data protection impact analysis) been conducted?
No.
Q. Any other comments?
None.

PREPROCESSING / CLEANING / LABELING

Q. Was any preprocessing/cleaning/labeling of the data done(e.g.,discretization or
bucketing, tokenization, part-of-speech tagging, SIFT feature extraction, removal
of instances, processing of missing values)? If so, please provide a description. If not,
you may skip the remainder of the questions in this section.
We did not pre-process the signals obtained from the wearable devices or cameras. The
only exception is the audio data. Due to a hardware malfunction (this is resolved for the
Midges by using different SD cards), the audio needed to be post-processed in order to
synchronize it with the other modalities. The synchronization against other modalities
was manually checked.
Labeling of the dataset was done as explained in the Composition section.



2.B Datasheet For ConfLab

2

61

Q. Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data
(e.g., to support unanticipated future uses)?
The dataset is separated into raw data and the post processed data. For the audio, the
original raw data is not suitable for most use cases due to the mentioned synchronization
issue. So we share the synchronized version in the raw part of the repository.
Q. Is the software used to preprocess/clean/label the instances available? If so,
please provide a link or other access point.
The processing / fixing of the audio files did not require special software.
The annotation of keypoints and speaking status was done by making use of the Covfee
framework: https://josedvq.github.io/covfee/
Q. Any other comments?
None.

USES

Q. Has the dataset been used for any tasks already? If so, please provide a description.
In the main paper, we have benchmarked three baseline tasks: person and keypoints
detection, speaking status detection, and F-formation detection. The first task is a funda-
mental building block for automatically analyzing human social behaviors. The other two
demonstrate how learned body keypoints can be used in the behavior analysis pipeline for
inferring more socially related phenomena. We chose these benchmarking tasks since they
have been studied on other in-the-wild behavior datasets.
Q. Is there a repository that links to any or all papers or systems that use the
dataset?
None at the time of writing of the paper.
Q. What (other) tasks could the dataset be used for?
Given the richness and the unscripted open-ended nature of the social interactions, ConfLab
can be used for many other tasks.

Forecasting, causal relationship discovery Recently, tasks pertaining to the forecasting
low-level social cues in conversations have been receiving increased attention from the
community [72, 74]. The real-life nature of ConfLab along with the increased data and
annotation fidelity can prove a valuable resource for such tasks. Similarly, ConfLab can
also be used for efforts towards discovering causal relationships between social behaviors
[75].

Data Association. A crucial assumption made in many former multimodal datasets[9,
11, 24] is that the association of video data to the wearable modality can be manually

https://josedvq.github.io/covfee/
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performed. Few works [43, 44] have tried to address this issue but using movement
cues alone to associate the modalities is challenging as conversing individuals are mostly
stationary. This remains a significant and open question for future large scale deployable
multimodal systems. One solution may be to annotate more social actions as a form of top-
down supervision. However, detecting pose and actions robustly from overhead cameras
remains to be solved.

Conversation floor and F-formation estimation Prior analysis on the MatchNMingle
dataset has demonstrated that F-formations can contain multiple simultaneous conversa-
tions when the F-formations contain a least 4 people [50]. If this is the case for the ConfLab
dataset, this may drastically change how F-formations should be labelled (e.g. returning
to being a more subjective task [10]) as more time-precise labelling could enable a more
nuanced take on F-formation and conversation floor membership over time.

Multi-class social action estimation More annotations resources were focused on
speaker status, F-formation, and keypoint estimation. However, there are a wealth of
other social actions in the data that could be interesting to combine into a more complex
multi-class social action estimation task. Example social actions include drinking, mobile
phone use, hand and head gesture types [9, 76].

Estimation and analysis of socially-related phenomena Beyond the modeling of
human behavior which is of interest to the Computer Vision and Machine Learning com-
munities, our benchmarked tasks form the basis for further explorations into downstream
prediction of socially-related constructs which is of interest to the Social Science and Social
Psychology communities. Such constructs include conversation quality [68, 77], dominance
[52], rapport [49], and influence [69].

Investigation of novel crossmodal fusion strategies The baseline tasks in our paper
rely only on a late fusion strategy. However, ConfLab’s sub-second expected cross modal
latency of ∼ 13 ms along with higher sampling rate of features (60 fps video, 56 Hz IMU)
opens the gateway for the in-the-wild study of nuanced time-sensitive social behaviors
like mimicry and synchrony (for predicting e.g. attraction [78]) which need tolerances
as low as 40 ms [18, Sec.3.2]. Prior works coped with lower tolerances by computing
summary statistics over input windows [17, 35, 36]. ConfLab enables for the first time,
the exploration of Multimodal machine learning approaches for social behaviour analysis
in these highly dynamic in-the-wild settings [65]. Through the provided annotations
Conflab also enables research in the topic of usage of mobile phones in small-group social
interactions in-the-wild.

Person attribute estimation Estimating individuals that are newcomers/old timers from
the dataset may be possible based on their networking strategies.
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Q. Is there anything about the composition of the dataset or theway it was collected
and preprocessed/cleaned/labeled that might impact future uses? For example, is
there anything that a future user might need to know to avoid uses that could result in
unfair treatment of individuals or groups (e.g., stereotyping, quality of service issues) or
other undesirable harms (e.g., financial harms, legal risks) If so, please provide a description.
Is there anything a future user could do to mitigate these undesirable harms?
Although ConfLab’s long-term vision is towards developing technology to assist individuals
in navigating social interactions, the data could also affect a community in unintended ways:
for instance, cause worsened social satisfaction, a lack of agency, stereotype newcomers
and veterans, or benefit only those members of the community who make use of resulting
applications at the expense of the rest. More nefarious uses involve exploiting the data for
developing methods that harmfully surveil or profile people. Researchers must consider
such inadvertent effects must while developing downstream applications. Finally, since
we recorded the dataset at a scientific conference and required voluntary participation,
there is an implicit selection bias in the population represented in the data. Consequently,
researchers using the data should be aware that resulting insights may not generalize to
the general population.
Q. Are there tasks for which the dataset should not be used? If so, please provide a
description.
Beyond the cautionary discussion in the previous question, tasks involving the re-identifying
the subjects is strictly against the End User License Agreement under which we share the
dataset.
Q. Any other comments?
None.

DISTRIBUTION

Q.Will the dataset be distributed to third parties outside of the entity (e.g., company,
institution, organization) on behalf of which the dataset was created? If so, please
provide a description.
The dataset is available for third parties outside of Delft University of Technology to use
for academic research purposes subject signing and approval of our End User License
Agreement. The dataset will be hosted by 4TU.ResearchData (see the Maintenance section
for description of the 4TU entity).
Q. How will the dataset will be distributed (e.g., tarball on website, API, GitHub)?
Does the dataset have a digital object identifier (DOI)?
The dataset will be distributed via the 4TU.ResearchData user interface where the data can
be downloaded. The dataset has a DOI: https://doi.org/10.4121/c.6034313

https://doi.org/10.4121/c.6034313
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Q. When will the dataset be distributed?
The dataset has been available since June 9, 2022.
Q. Will the dataset be distributed under a copyright or other intellectual property
(IP) license, and/or under applicable terms of use (ToU)? If so, please describe this
license and/or ToU, and provide a link or other access point to, or otherwise reproduce,
any relevant licensing terms or ToU, as well as any fees associated with these restrictions.
The dataset will be distributed under a restricted copyleft license, specified within our End
User License Agreement, accessible through the 4TU.ResearchData dataset website. No
fees are associated with the license.
Q. Have any third parties imposed IP-based or other restrictions on the data
associated with the instances?
No.
Q. Do any export controls or other regulatory restrictions apply to the dataset or
to individual instances? If so, please describe these restrictions, and provide a link or
other access point to, or otherwise reproduce, any supporting documentation.
The terms of our EULA and the European General Data Protection Regulations (GDPR)
apply.
Any other comments?
None.

MAINTENANCE

Q. Who is supporting/hosting/maintaining the dataset?
The dataset is hosted by 4TU.ResearchData (https://www.4tu.nl/en/about_4tu/), and sup-
ported and maintained by The Socially Perceptive Computing Lab at TUDelft.
Q. How can the owner/curator/manager of the dataset be contacted (e.g., email
address)?
Via email: SPCLabDatasets-insy@tudelft.nl.
Q. Is there an erratum?
No.
Q. Will the dataset be updated (e.g., to correct labeling errors, add new instances,
delete instances)? If so, please describe how often, by whom, and how updates will be
communicated to users (e.g., mailing list, GitHub)?
Updates will be done as needed as opposed to periodically. Instances could be deleted,
added, or corrected. The updates will be posted on the 4TU.ResearchData dataset website.
Q. If the dataset relates to people, are there applicable limits on the retention of
the data associated with the instances (e.g., were individuals in question told that
their data would be retained for a fixed period of time and then deleted)?

https://www.4tu.nl/en/about_4tu/
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No limits were communicated to our data participants.
Q. Will older versions of the dataset continue to be supported/hosted/maintained?
If so, please describe how. If not, please describe how its obsolescence will be communicated
to users.
Only the latest version of the dataset will be maintained. If applicable, we will also host
older versions of the data, accessible through the 4TU.ResearchData website.
Q. If others want to extend/augment/build on/contribute to the dataset, is there a
mechanism for them to do so? If so, please provide a description. Will these contribu-
tions be validated/verified? If so, please describe how. If not, why not? Is there a process
for communicating/distributing these contributions to other users? If so, please provide a
description.
We are open to contributions to the dataset. In accordance with our End User License
Agreement, contributions should be made available, indicating if there are any restrictions
on their contribution. We encourage the potential contributors to contact us to discuss how
they wish to be attributed (e.g. citation of a paper or repository related to code/annotations).
After finalizing the attribution discussion, we can add the attribution as an update following
the same process explained above.
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2.C Sample Participant Report

ACMMM 19 - ConfLab Report
Socially Perceptive Computing Lab - Delft University of Technology

Conflab: Meet the Chairs!
While you were at ACM MM in Nice earlier this year, you had participated in our event called ConfLab:
Meet the Chairs!. We want to thank you again for being part of our data collection initiative and contributing
to the e�ort of understanding more about human behaviors and conference experience.

We thought you might be curious about some basic statistics that we have extracted from the collected
data. You can find below some general information about all the event participants and some personal infor-
mation particular to you. Please keep in mind that 1) these are preliminary analyses that we have performed
and there could be errors in our estimations, and 2) to protect your privacy, these results are only available
to you.

General information about ConfLab participants
When you signed up, we had asked 1) if this was your first time at ACM MM and 2) your research interests
(multi-select multiple choice). We had a total of 48 participants. You can see below the statistics over all 48
people.

(a) Newcomers and ACMMM Veterans (b) Interests

Figure 1: Statistics of Conflab participants

1

Your networking behaviour - Bluetooth
Here we estimate how many people you have interacted with throughout the event. Our sensors record RSSI
values and we set a single threshold for eliminating values corresponding to large physical distance that we
do not consider as possible for face-to-face social interactions. We define the criterion of an interaction to be:
1) pairwise RSSI values below -55, and 2) pairwise proximity pings of at least 35 counted within a 1-minute
window (sampling rate: 1Hz).

(a) Newcomers and ACMMM Veterans (b) Interests

Figure 2: Statistics of people you interacted with

In Figure 2a, the breakdown of the types of people you have interacted with is shown. In Figure 2b, you will
find the interests breakdown of everyone you have interacted with. Figure 3 shows the distribution of the
number of participants you interacted with. You will find yourself in the red bin; the x-axis says how many
people you have interacted with and the y-axis says how many others had the same numbers as you.

Figure 3: Distribution of the numbers of people participants interacted with

2

Your movement behavior - accelerometer
Here we estimate your motion behavior based on the accelerometer signal. Our sensors record tri-axial
accelerometer values and we quantify the amount of motion by calculating the magnitude of the values of
all 3 axes. We process the accelerometer data to separate movement and gravitational components of the
signals based on a previous approach (Euclidean Norm Minus One [1]). For ease of visualization, we averaged
the magnitude of acceleration over 30-second windows. You can see in Figure 4 your personal acceleration
magnitude over time, as well as the mean and standard deviation values of acceleration magnitude for all
participants over time.

Figure 4: Acceleration magnitudes

Your speech behaviour - low-frequency audio
Here we estimate the amount of time you spoke. We first calculate the envelope of the low-frequency audio
signal by taking the absolute value. Then, we apply a moving mean operator to the signal. By manually
observing the signals of multiple participants, we selected a threshold to identify the speaking parts of the
signal. We then further process the binary stream by filling the gaps between continuous speaking regions
and eliminating speech regions that are smaller than a predefined threshold. Figure 5a and 5b show your
percentage of speaking during the event and how you compare to the rest of the participants, respectively.

3

(a) Percentages of speech and non-speech (b) Distribution of speaking percentages for all participants

Figure 5: Your speaking behaviour

And that’s it from the Socially Perceptive Computing Lab for now!
Note that for us, these analyses are just the starting point for estimating socially relevant behaviours. To do
this more robustly and using more complex approaches is one of the reasons why we plan to share the data
in next year or so. Maybe you are also curious to develop your own estimation techniques.

Finally, we welcome feedback on what other analyses that you are interested in, technical approaches, how
to display your data better, your participatory experience, and any comments or advice that you might have
for us. Please feel free to reply to this email or write to one of us directly.

Thanks again for your interest and we hope to see you again in the future!

[1] Bakrania, Kishan, et al. "Intensity thresholds on raw acceleration data: Euclidean norm minus one
(ENMO) and mean amplitude deviation (MAD) approaches." PloS one 11.10 (2016): e0164045.

4

Figure 2.16: Sample post-hoc report sent to each participant of ConfLab. The report contains insights into the
participant’s networking behavior from the collected wearable-sensors data. This insight served as an additional
incentive to participate in ConfLab, beyond interacting with the Chairs and contributing to a community-driven
data endeavor (see main paper Section 2.3).
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2.D Data Capture Setup Details

The Midge We improved upon the Rhythm Badge in three ways towards enabling more
fine-grained and flexible data capture: (i) enabling full audio recording with a frequency
up to 48 KHz, with an on-board switch to allow physical selection between high and low
frequency capture directly at acquisition; (ii) adding a 9-axis Inertial Measurement Unit
(IMU) with an on-board Digital Motion Processor (DMP) to record orientation; and (iii)
an on-board SD card to directly store raw data, avoiding issues related to packet loss
during wireless data transfer required by the Rhythm Badge. IMUs combine three tri-axial
sensors: an accelerometer, a gyroscope, and a magnetometer. These measure acceleration,
orientation, and angular rates respectively. These sensor measurements are combined on-
chip by a Digital Motion Processor. Rough proximity estimation is performed by measuring
the Received Signal Strength Indicator (RSSI) for Bluetooth packets broadcast every second
(1 Hz) by every Midge. During the event, IMUs were set to record at 50 Hz. We recorded
audio at 1250 Hz to mitigate extraction of verbal content while still ensuring robustness to
cocktail-party noise.

Wireless Synchronization at Acquisition The central idea for our syncrhonization
approach involves using a common Network Time Protocol (NTP) signal as reference for
the camera and wearables sub-networks. The set-up achieved a cross-modal latency of
13 ms at worst, which is well below the 40 ms latency tolerance suitable for behavior
research in our setting [18, Sec. 3.3]. Additionally, our synchronization approach allowed
for dynamic addition of sensors to the network while still obtaining synchronized data
streams. This is crucial in extreme in-the-wild events where some participants might arrive
late.

Sensor Calibration For computing the camera extrinsics, we marked a grid of 1 m ×1 m squares in tape across the interaction area floor. We ensured line alignment and right
angles using a laser level tool (STANLEY Cross90). For computing the camera intrinsics,
we used the OpenCV asymmetric circles grid pattern [79]. The calibration was performed
using the Idiap multi camera calibration suite [80]. All wearable sensors include one TDK
InvenSense ICM-20948 IMU [81] unit that provides run time calibration. To establish a
correspondence with the camera frame of reference, the sensors were lined up against a
common reference-line visible in the cameras to acquire an alignment so that the camera
data can offer drift and bias correction for the wearable sensors.
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2.E Implementation Details
2.E.1 Person and Keypoint Detection Models
Data Cleaning A few frames contained some incorrectly labeled keypoints, a product
of annotation errors like mis-assignment of participant IDs. We removed these using a
threshold on the proximity to other keypoints of the same person. Further, in some cases,
a person might be partially outside a camera’s field of view. For the person detection task,
we compute the bounding box from the keypoint ground-truth annotations. If more than
half the body (50% keypoints) is missing in the frame so that e.g. only their legs are visible
(see top of Figure 2.7a), we don’t consider the person for that frame in the person detection
experiments. Note that due to the significant overlap between the camera views, the person
would be considered for the corresponding frame in the next camera. If they move back
into the original view, we again take them into consideration for the original camera for
the corresponding frame. Moreover, if there are more than 10% missing keypoints across
all people in an image, we also discard that image from the experiment. This preprocessing
resulted in a training set with 112k frames (1809k person instances) and a test set with 7k
frames (158k person instances).

Training We resized the images to 960×540, and augmented the data by randomizing
brightness and horizontal flips. The learning rate was set to 0.02 and batch size to 4. We
trained the models for 50 k iterations, using the COCO-pretrained weights for initialization.
All hyper-parameters were chosen based on the performance on a separate hold-out camera
chosen as validation set. During training, any missing ground-truth keypoints (resulting
from the person being partially outside the camera’s view for instance) are ignored during
back-propagation.

2.E.2 F-formation Detection
Data Cleaning Because keypoint annotations of the subjects are based on camera view
and that the F-formation clustering methods cannot group subjects that do not exist under
one camera view (e.g., when there are more identities than in associated ground truths),
we processed the ground truth also based on camera number. This filtering pre-processing
was decided based on the best camera view of the F-formations.

Feature Extraction The required features of GCFF and GTCG include location and
orientation of the subjects. We used the X and Y position of subjects’ head (as it is the most
visible from the top-down view) for location, and extracted orientations for head, shoulders
and hips. The orientations are calculated based on corresponding vectors determined by
head and nose keypoints, left and right shoulder keypoints, and left and right hip keypoints,
respectively.
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Training We used pre-trained parameters for field of view (FoV) and frustum aperture
(GTCG) and minimum description length (GCFF), provided in these models trained on
the Cocktail Party. FOV and aperture are related to human eye gaze and head anatomical
constraints reported by [82], and hence not dataset specific. The minimum description
length is an initialized prior dictated by the same form of the Akaike Information Criterion,
and becomes part of the optimization formulation. We tuned parameters such as frustum
length (GTCG) and stride (GCFF) to account for average interpersonal distance in ConfLab
based on Camera 6, as they vary across different datasets.

2.F Additional Results
2.F.1 Person and Keypoints Detection
Predictions from Pretrained SOTA Models Figure 2.17 shows predictions from SOTA
human keypoint estimation models, namely, RSN [28], MSPN [83], HigherHRNet [84],
and HourglassAENet [85], for the testing images of the Conflab dataset. Note that RSN
and MSPN are top-down networks, i.e., they require person bounding boxes to predict
the keypoints in each bounding box. We use COCO pretrained faster-RCNN network
for bounding box estimation. HigherHRNet and HourglassAENet are bottom-up models,
i.e., they directly predict keypoints from the full image. We use publicly available COCO
pretrained checkpoints for prediction. The results show that the state-of-the-arts 2D body
keypoint detection models fail to capture the body keypoints in the Conflab dataset. We infer
that training on the dataset (e.g., COCO) that contains mostly side-view images does not
work well in top-view images, for which Conflab dataset is important to the community.

Qualitative Results from ResNet-50 Finetuning Figure 2.18 illustrates more qualitative
results from our finetuning experiments. We find that finetuning on our non-invasive
top-down camera perspective significantly improves the keypoint estimation performance.

Ablations Tables 2.6 and 2.7 include the results of our experiments investigating the
effect of varying the training data size on keypoint detection performance (see main paper
Section 2.6.1). In Table 2.8, we show keypoint detection scores for experiments with
different number of keypoints. We first focus on the five upper body keypoints: {head,
nose, neck, rightShoulder, leftShoulder}. We then additionally considered the torso region
keypoints for a total of nine: {rightElbow, rightWrist, leftElbow, leftWrist}. Finally, we add
the hip keypoints {rightHip, leftHip} to the set. The experiments in the main paper are
performed with all 17 keypoints. The results show that performance drops slightly when
adding the arms keypoints (5→ 9, APOKS

50 and APOKS), and that the relative gain when
adding the hip keypoints (9→ 11) is lower than when adding the lower body keypoints
(11→ 17, especially APOKS

75 ). We believe this is largely due to the lower body being more
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Figure 2.17: Results from Pretrained keypoint detection models. From top to bottom - predictions from RSN [28],
MSPN [83], HigherHRNet [84], and HourglassAENet [85]. Results show that SOTA 2D body keypoint detection
models fail to capture the body keypoints in the ConfLab dataset.

Figure 2.18: Results from (top) COCO pretrained Mask-RCNN model, (bottom) our ConfLab finetuned Mask-
RCNN model.

static relative to the arms that move a lot to execute gestures during conversations.

2.F.2 Speaking Status Detection
Experiments with Different Sensor Modalities Table 2.9 displays the results from ex-
periments using specific modalities from our IMUs for the task of speaking status detection.
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Table 2.6: Effect of varying % frames from each
camera at training on keypoint estimation.

% of training samples APOKS
50

1.6% 29.0
3.2% 35.9
8% 39.0
16% 44.5
100% 45.3

Table 2.7: Effect of adding all frames from individual cameras
to the training set on keypoint estimation.

Train Camera #(training samples) APOKS
50

cam 2 34k 8.6
cam 2 + cam 4 69k 31.1
cam 2 + cam 4 + cam 8 112k 45.3

Table 2.8: Keypoint estimation ablation with
keypoints from different body sections: head
and shoulders (5), + torso (9), + hips (11), + knees
and feet (full 17).

#Keypoints APOKS
50 APOKS APOKS

75

5 26.6 7.1 1.4
9 26.5 6.9 2.0
11 35.8 9.5 2.2
17 45.3 13.5 3.3

Table 2.9: ROC AUC and accuracy for different sensor modal-
ities from out 9-dof IMU in speaking status detection using
the Minirocket classifier [64]. The number of channels in the
corresponding modality is indicated in parentheses.

Input Modality AUC Accuracy

Acceleration (3) 0.813 0.768
Gyroscope (3) 0.765 0.716
Magnetometer (3) 0.610 0.656
Rotation vector (4) 0.726 0.696
All (13) 0.774 0.739

We used the best performing classifier (Minirocket [64]) among the ones tested in Table 2.3.
The experiment setup is the same as detailed in Section 2.6.2, and the model is not changed
between runs, except for the fact that different modalities may have a different number of
input channels.

2.G Reproducibility Checklist

2.G.1 Person and Keypoints Detection
• Source code link: https://github.com/TUDelft-SPC-Lab/conflab
• Data used for training: 112k frames (1809k person instances).
• Pre-processing: See Section 2.4, Appendix 2.E.1.
• How samples were allocated for train/val/test: cameras 2, 4, and 8 are selected for
training. For hyperparameter tuning, camera 8 are held out for validation.

• Hyperpatameter consideration: We considered learning rates (0.001/0.005/0.05/0.01),
number of epochs (10/20/50/100), detection backbone (R50-FPN/R50-C4). Also see
Appendix 2.E.1

• Number of evaluation runs: 5
• How experiments were ran: See Section 2.6.1.
• Evaluation metrics: Average precision at different thresholds.
• Results: See Section 2.6.1 and Appendix 2.F.1.

https://github.com/TUDelft-SPC-Lab/conflab
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• Computing infrastructure used: All baseline experiments were ran on Nvidia V100
GPU (16GB) with IBM POWER9 Processor.

2.G.2 Speaking Status Detection
• Source code link: https://github.com/TUDelft-SPC-Lab/conflab
• Data used for training: 42884 windows (3 seconds), extracted from 48 participants’
wearable data and speaking status annotations

• Pre-processing: Data was windowed into 3-second segments (see Section 2.6.2). The
source code includes this pre-processing step.

• How samples were allocated for train/val/test: 10-fold cross-validation at the subject
level (48 subjects) to test generalization to unseen data subjects. The splits can be
reproduced exactly using the source code.

• Hyperparameter considerations: For acceleration-based methods, we used default
network hyper-parameters and architectures from their tsai implementation [86].
For the MS-G3D baseline [61], we used default hyperparameters from the authors’
implementation. For both, we determined the early stoppage point using a small
subset (10%) of the training set.

• Number of evaluation runs: 1 run of 10-fold cross-validation
• How experiments were ran: For each fold, the early stoppage point was first deter-
mined using 10% of the training data as validation set and AUC as performancemetric.
The model at this stoppage point was then applied to the test set for evaluation.

• Evaluation metrics: Area under the ROC curve (AUC)
• Results: See Section 2.6.2
• Computing infrastructure used: Experiments were ran on a personal computer with
GPU acceleration (NVidia RTX3080).

2.G.3 F-formation Detection
• Source code link: https://github.com/TUDelft-SPC-Lab/conflab
• Data used for training: Camera 6
• Pre-processing: See Section 2.E.2 for data cleaning and feature extraction.
• How samples were allocated for train/val/test: samples from Camera 6 were used
to select the best model parameters. The rest are for test (evaluation). However, we
note that Table 2.4 shows averaged performance on all cameras to provide a holistic
view of the F-formation detection performance on ConfLab.

• (Hyper)parameter considerations: Both baseline methods are not deep-learning based
and model parameters are interpretable. For GTCG, the parameters are frustum
length (275), frustum aperture (160), frustum samples (2000), and sigma for affinity
matrix (0.6). For GCFF, the parameters are minimum description length (30000) and

https://github.com/TUDelft-SPC-Lab/conflab
https://github.com/TUDelft-SPC-Lab/conflab
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stride (70).
• Number of evaluation runs: 1
• How experiments were ran: A total of eight experiments were run for choosing the
best parameters, and three for evaluation (for camera 2, 4, and 8). The parameters
were chosen based on grid-search. For optimizing frustum length in GTCG, we
searched over [170,195,220,245,275] with 275 being averaged interpersonal distance
based on Camera 6. For optimizing stride 𝐷 in GCFF, we searched over [30,50,70].

• Evaluation metrics: F1
• Results: See Section 2.6.3
• Computing infrastructure used: The experiments were run on Linux-based cluster
instances on CPU with Matlab 2018a.
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Abstract
Existing data acquisition literature for human behavior research provides wired solutions,
mainly for controlled laboratory setups. In uncontrolled free-standing conversation settings,
where participants are free to walk around, these solutions are unsuitable. While wireless
solutions are employed in the broadcasting industry, they can be prohibitively expensive.
In this work, we propose a modular and cost-effective wireless approach for synchronized
multisensor data acquisition of social human behavior. Our core idea involves a cost-accuracy
trade-off by using Network Time Protocol (NTP) as a source reference for all sensors. While
commonly used as a reference in ubiquitous computing, NTP is widely considered to be
insufficiently accurate as a reference for video applications, where Precision Time Protocol
(PTP) or Global Positioning System (GPS) based references are preferred. We argue and show,
however, that the latency introduced by using NTP as a source reference is adequate for human
behavior research, and the subsequent cost and modularity benefits are a desirable trade-off
for applications in this domain. We also describe one instantiation of the approach deployed
in a real-world experiment to demonstrate the practicality of our setup in-the-wild.

Keywords: synchronization, data collection, human behavior, social behavior, datasets

3.1 Introduction

Human social behavior is a dynamic multimodal phenomenon; we express ourselves
visually, vocally, and verbally. A significant focus of research here is the complex

interpersonal dynamics between interaction partners, such as turn-taking in conversations
[1, 2], or synchrony between participants [3]. An essential characteristic of these phe-
nomena is their highly dynamic and multimodal nature; they evolve on short time-scales,
requiring precise synchronization of multimodal and multisensor data streams.

Historically, human social behavior for automated analysis has been captured in con-
trolled lab settings. As multimodal data analysis has become more prevalent, recorded
sensors would be physically connected to relay timing information to ensure packet syn-
chronization [4–6]. Concurrently, the ubiquitous computing community were developing
approaches using wearable sensors that allowed for more pervasive sensing of social
behaviors [7–9] while loosening strong requirements for data synchronization. As the
trend moved towards more in-the-wild behavior analysis, multimedia researchers turned
to collecting data in more uncontrolled settings that better matched real-world scenarios.
Here, multiple visual and wearable sensing sources from both modalities have been com-
bined [10, 11]. Figure 3.1 depicts a typical in-the-wild social interaction. In such prior
works however, frame level synchronization requirements were circumvented by designing
automated analysis approaches that smoothed behavioral data over broader time intervals
on the order of a few seconds. On the other hand, the ubiquitous computing approach
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has somewhat waived the need for more robust synchronization by adapting to problems
that are able to take the wearable sensor data at face value and aggregate over sufficiently
long time periods. This makes fine grained timing errors on the shorter scale of minutes or
seconds less relevant [9].

In this paper, we argue that developing any approach to analyze the fine temporal
dynamics of multi-modal multi-sensor behavioral data requires us to ensure a maximum
temporal latency at the data collection stage of 40 ms (see Section 3.3.3 for further dis-
cussion). This requires us to bridge two traditions related to synchronization from the
multimedia and ubiquitous computing domain which utilize different timing protocols and
formats. Modalities such as audio and video, which have been used to analyze human
behaviour analogous to human perception have used protocols such as PTP or GPS based
reference time which enables sub-frame level synchronization using specialized hardware.
Data here is often timestamped in the frame-based SMPTE timecode format such as linear
time code (LTC)- HH:MM:SS:FF [12]. Meanwhile, in the ubiquitous computing domain,
sensing devices have been born out of a tradition of wireless and distributed computing
where each sensing device is itself also a microcomputer and as such has used NTP [13],
relying on local UNIX system time to timestamp data. While it is widely understood
that PTP or GPS based timing affords superior accuracy compared to NTP, setting up a
multimodal multisensor system using the specialized hardware is prohibitively expensive.

In summary, we seek to answer the following question: how can we design a modular,
cost-effective, distributed multi-sensor data acquisition setup for synchronized capture of
social human behaviour in-the-wild? Concretely, our contributions are as follows:

• We propose and deploy a novel distributed data acquisition architecture built upon
commercially available off-the-shelf components to wirelessly synchronize cameras
(video) and wearable sensors (audio, inertial motion data, proximity) in-the-wild.
Our core idea involves utilizing the Network Time Protocol (NTP) [14] as a common
reference for all modalities, a choice contrary to conventional use in broadcasting
setups.

• We show that the reduced accuracy of NTP in favor of significant cost and modularity
benefits is a desirable trade-off for achieving crossmodal synchronization in data
recording for human behavior research applications.

We support our argument in the rest of this work as follows. In Section 3.2 we review
data recording or post-processing techniques used in other human behavior research and
discuss the trade-offs involved. In Section 3.3 we establish acceptable latency tolerances
for our application domain and propose our architecture, also describing a real-world
instantiation of our system. We provide experiments to quantify the latency involved in
our setup in Section 3.4 before discussing cost versus latency considerations in Section 3.5.
Finally, we summarize our findings in Section 3.6.



3

78 Synchronizing Multimodal Data at Acquisition

Figure 3.1: A typical in-the-wild social interaction set-
ting; adapted from the MatchNMingle Dataset [11]

Figure 3.2: Basic types of desynchronization

3.2 Related Work
Synchronization Issues. We begin by first concretely describing the synchronization
issues we propose to solve. We break these down into two basic types—constant and
variable offset between data packets. Figure 3.2 depicts these issues for two data streams𝑆1 and 𝑆2 over a world clock time axis 𝑡.

In the first case, all packets in 𝑆2 are offset from the corresponding packets in 𝑆1 by a
uniform constant offset. This could arise because the triggers for recording the two streams
are delayed, or because the internal clocks of the devices don’t match. In the second case,
while some packets are aligned in both streams, other packets are out of sync by a variable
offset, and are said to have drifted. One such common scenario involves devices recording
with variable framerate or dropped packets; for instance, while recording a long session
with a standard webcam with autofocus or variable framerate, the video often drifts with
respect to the audio over time. In practice, both these issues occur simultaneously, and
information about the world clock is required to correct for these issues directly.

Event-based Approaches and Post Processing. Many widely used human behavior
datasets attempt to fix the constant offset issues in post-processing bymaximizing similarity
scores around a manually identified common event in data streams. Traditionally, such
an event included a balloon pop, a clap or the turning off of lights to get a common dark
frame across cameras. More recently, Alameda-Pineda et al. use infra-red detections in
cameras and wearable sensors to compute the optimal shift according to a similarity score
[10]. Ringeval et al. use a common speech event such as the rise of a plosive to manually
align high-quality audio from an external microphone to the low-quality audio from a
webcam before computing the inter-correlation score around the located event [15]. While
this approach helps with fixing mismatches around a single manually identified event,
they are insufficient for fixing streams that have drifted over time or have variable offset
(Alameda-Pineda et al. work with a no-drift assumption). More sophisticated approaches
attempt to automatically identify events for synchronizing larger parts of the streams
[16]. In contrast, we propose a modular approach that synchronizes the devices at data
acquisition, requiring minimal—if any—post processing for synchronization.
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Figure 3.3: Overview of our proposed architecture. The reference time signal originates from the chosen NTP
server and propagates to the subnetworks of wearable sensors and cameras.

Downstream Tasks. In addition to fixing synchronization issues in post-processing, a
common approach is to mitigate their effect on downstream tasks. The core idea is to
compute features over a window [17–20]. The size of this window is chosen to be larger
than the duration by which the modalities are assumed to be out of synchronization. The
features are computed using summary statistics, or by passing the individual features
through a recurrent neural network and using the last hidden state as a representation
of the window. This choice of window size, and whether this has a detrimental effect
on the study of the phenomenon of interest can be contextualized by the discussion in
Section 3.3.3.

Ubiquitous Computing Approaches. The analysis of social interactions has also been
of interest to the ubiquitous computing community. Early work involved the development
of custom wearable sensors like the UbER-Badge [21] to analyze interest and affiliation in
conference attendees [22]. Period timestamps in these setups were relayed across a Radio
Frequency (RF) network every 15 minutes. Cattuto et al. analyzed interactions in crowded
social settings using custom RFID (Radio Frequency Identification) tags [23]. Packets from
the tags were relayed to radio receivers that passed it to a central server for timestamping
and storage. Their approach does not record timestamp at tag acquisition, and does not
account for potential delays in transmission. For modeling longitudinal social interaction
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networks in-the-wild, [8] used personal digital assistant (PDA) devices, and found the
PDAs’ clocks to be ”shockingly unreliable”, drifting up to 5 minutes across three weeks.
Matic et al. infer interpersonal distance and relative orientation averaged over 10 s windows
from up to five mobile phones in interactions lasting up to 15 minutes [20]. They state the
mobile phones had synchronized clocks without specifying how they were synchronized.

Synchronization at Acquisition. A significantly more accurate, albeit expensive, ap-
proach compared to those discussed involves performing synchronization at data acqui-
sition. This is achieved at the hardware level using either software or hardware triggers.
Early approaches involved connecting low-cost cameras to standard computers over an
Ethernet network and using software triggers to drive the recording [4, 5]. While the cost
of sensors in these setups is low, the cost of computers remains. Timing control can be
improved by using a common clock and physical hardware trigger lines into the cameras
in an array [24], although this only works for the video modality.

Lichtenauer et al. significantly improved over previous works by proposing a system for
multimodal data capture that centralizes the synchronization task by physically connecting
the sensors to a multi-channel audio interface [6]. This approach was used in the recording
of the MAHNOB-HCI datasets [25]. Other approaches have been proposed for setups
involving motion-capture systems, where synchronization is achieved by plugging the
output of the motion capture system to a robot in a human-robot interaction study [26], or
in post-processing by performing an optimization over or manually annotated markers
in a subset of frames [27]. These solutions are hard to deploy within in-the-wild settings
over large physical areas since they are mainly wired solutions. They entail physically
running trigger lines to the sensors of connecting the sensors or multiple PCs to a central
audio interface. Comparatively, our solution affords for seamless decentralized addition of
sensors to the system as long as those sensors are synchronizing clocks to the common
NTP reference.

The closest work matching the scale and design requirements of our interaction setup is
the MatchNMingle dataset [11], involving speed-dates followed by a mingling event. Their
setup for the mingling event involves nine overhead GoPro cameras and wearable sensors
on about 30 participants for each of three days. GoPro cameras in their setup are triggered
using an infrared remote which might induce trigger delays, and no explicit timecode
synchronization is done between the cameras which each record local time. The wearable
sensors are synchronized intramodally to a global timestamp accurate to 1 second [28]. The
video data is synchronized manually to the wearable sensors by using a GoPro to visually
record the global timestamp propagating through the wearable network displayed on a
screen. In contrast, our solution achieves timecode sync at acquisition at the microsecond
level for the camera network and at the millisecond level across modalities.
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To the best of our knowledge, the system we propose here is the first complete dis-
tributed and scalable multi-sensor data capture solution providing timecode synchroniza-
tion between modalities at data acquisition for human behavior research.

3.3 Our Approach
Our core idea is to propagate a common time reference NTP signal to end devices (i.e.,
wearable sensors and cameras) at the time of data acquisition. Our approach is illustrated
in Figure 3.3. The key challenge is that different subnetworks employ different timing
information. The cameras use LTC for correct color framing and clock synchronization;
the wearable sensors use the UNIX time received from the hub. With simply one additional
hardware component (Plura ELC) combinedwith our choice of a commonNTP reference, we
achieve seamless crossmodal synchronization while preserving the existing local scheme
of timekeeping. Starting from the origin of our system which is the NTP server, we
explain the trade-offs of using NTP in Section 3.3.1. We describe a particular real-world
instantiation of our system in Section 3.3.2, where we provide implementation details
on how to relay time information to the sensor subnetworks. We contextualize latency
measures within the human behavior research domain in Section 3.3.3, which frames our
subsequent experimental design.

3.3.1 NTP as a Reference Signal
The main consideration of our approach is whether using NTP as a reference for cameras
recording audiovisual data compromises the latency tolerance margins of the application
when compared to more commonly used higher accuracy references such as PTP and
GPS. Concretely, NTP is a software based protocol. While it uses a standardized, 64-bit
UDP packet that can theoretically achieve picosecond timing, the latency error for NTP is
heavily dependent on the network and ambient characteristics, and is typically measured
on the order of milliseconds. On the other hand, PTP (specified in the IEEE 1588 standard)
utilizes hardware based timestamping [29] to improve over NTP latency accuracy. With
customized hardware, the latency error of PTP can be guaranteed to be on the order of
microseconds. Though not as accurate as PTP or GPS-based solutions, using NTP has
three advantages: firstly, ease of setup; synchronizing the system clock of a device to a
local or public NTP server is straightforward, secondly, modularity; an entire subsystem of
devices can be seamlessly added to the setup and guaranteed to be synchronized with all
other devices if they synchronize to a common NTP reference, and thirdly, reduced cost ;
we discuss details in Section 3.5. For human behavior research applications, the lowered
precision trade-off in favor of increased modularity of our setup is preferable, as we further
contextualize in Section 3.3.3.

Specifically, the clock disciplining algorithm at the heart of the NTP specification states
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that if left running continuously, an NTP client on a fast local area network in a home
or office environment can maintain synchronization nominally within one millisecond
[30]. As an implementation detail, practitioners can choose between a public server such
as 𝑡𝑖𝑚𝑒.𝑔𝑜𝑜𝑔𝑙𝑒.𝑐𝑜𝑚, or an isolated local NTP server at the source. Using a local server
avoids upstream latency introduced by network congestion. However, using a public server
provides easier setup.

3.3.2 Real-World Implementation
We now describe one implementation of our approach. This setup was deployed to record
data from a real-world social event. It involved 48 participants each wearing a sensor
around their neck, in an interaction area of size 12m x 6m, captured by elevated and
overhead cameras. Our setup included the following sensors:

• 13 GoPro Hero 7 Black video cameras (60fps, 1080p, Linear, NTSC) with audio
(48 kHz); commercially available [31].

• 48 custom wearable sensors adapted from the open source Rhythm Badges [32]; each
sensor includes an inertial measurement unit (IMU), mono microphone (1.2 kHz),
and a Bluetooth proximity sensor.

The core components, custom hardware, and a working setup of our solution is depicted
in Figure 3.4. Note that in keeping with privacy regulations, the wearable sensors record
audio at frequencies only sufficient for detecting voice activity rather than verbal content.
This makes the already subjective task of identifying semantic event boundaries in-the-wild
even harder. Consequently, for the post-hoc evaluation of our system and comparison
against widely used approaches in the domain that rely on such events for synchronization,
we take a more principled approach to defining and sampling stimulus events, as we discuss
in Section 3.4. While the number of devices we report here were used in our real-world
deployment, it is not the system limit, as we discuss below. Our system is modular and
scalable to larger number of devices with additional hubs and base stations (indicated in
Figure 3.3).

Relaying Time to Cameras. We explain the bottom branch in Figure 3.3 regarding the
camera network and its upstream components in this section. A laptop that receives the
time reference from a local NTP server (same as the one used by the Bluetooth hub) shares
the network time through a Power-Over-Ethernet injector (Plura 30W Single Port) with
an Ethernet-to-LTC Converter (Plura ELC) [33]. The LTC signal that is converted from
NTP is sent to a base station unit by Timecode Systems called :pulse [34], which allows
for control, synchronization and metadata exchange for all devices within the camera
network. It serves as the master in the localized master-slave radio frequency (RF) network,
which shares its timecode with slave devices called Syncbac PRO [35], also manufactured
by Timecode Systems. Each Syncbac PRO is physically tethered to a GoPro camera so
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Figure 3.4: Real-world implementation of our proposed approach. Our working setup in Figure 3.4b is shown
here recording audio-visual events for evaluating crossmodal synchronization, as discussed in Section 3.4.2.

that the accurate shared timecode is embedded within the MP4 files in each camera. In
practice, once the timecode information of each video is available, any common video
editing software can be used to align the video streams automatically for playback. An
important consideration of our system design is to start the data acquisition remotely and
wirelessly, since cameras are often mounted on the ceiling or other inaccessible places. The
BLINK Hub app is used to remotely control (e.g. start, stop, etc), monitor and set features
of all units within the localized RF network, which includes :pulse and Syncbac PRO. The
BLINK Hub app can control up to 64 devices over a range of 500 m line of sight. Each :pulse
unit can theoretically connect to an unlimited number of Syncbac PRO slaves within the
same RF network over a range of 200 m line of sight. Both the RF network and the BLINK
hub app control could have more network latency with increasing number of connections
on the specific RF channel. The accuracy of the RF network synchronization is zero parts
per million when the slaves (Syncbac PROs) are locked to the master (:pulse) [34, 35].

Note that our use of the ELC is different from its typical application of providing a signal
for displaying the reference from a dedicated master reference generator. The novelty of
our system stems from not requiring a typical GPS master reference generator at the source
to phase lock to. Since our approach uses the local NTP server as the main reference itself,
our use of the ELC allows for a simple method for video reference generation. Through
experiments in Section 3.4 we show that our setup is appropriate for the domain. With
the addition of a single component (any hardware or software NTP-LTC converter, the
ELC in our setup), we wirelessly achieve crossmodal synchronization between the camera
and wearables network compared to previous works as well as the more expensive GPS-
based setup described in Section 3.4. Specifically, we are able to wirelessly embed the
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timecode generated from the same reference used for other subnetworks into the video
files, while relying on commercial products (with only custom connecting cables) for easier
reproduction.

Relaying Time to Wearable Sensors. We explain the top branch in Figure 3.3 regarding
the wearable sensors network in this section. Note that our system design is agnostic
to the choice of the type of wearable sensors. Our choice of wearable sensors for this
specific instantiation is motivated by the open source platform [32] for its accessibility and
reproducibility, but could be replaced by any other subnetwork of sensors—wearable or
otherwise—that supports NTP time synchronization. In our system, a hub node (in form
of a laptop) receives the NTP time reference and shares it with the wearable sensors. The
hub connects to the sensors sequentially in order of their MAC addresses for a Bluetooth
handshake that transmits the UNIX time from the hub to the sensor. Each sensor then
updates its system time to this timestamp. The frequency of establishing connection
(i.e., synchronization messages) is a user defined parameter, and it has been shown that
any interval between 0 and 600 seconds would be appropriate [36]. Since the hub is not
maintaining a connection with all sensors at all times, there is no limit on the number
of sensors that the hub can connect to. In practice, the maximum number of sensors
associated to the hub is dictated by the saturation of wireless channel (i.e., when collisions
occur). The mean average error in synchronization within the sensor network has been
shown to be 5 ms over 9.5 hours of recording [36]. While intramodal synchronization
within this subnetwork can be improved through various methods such as tracking the
timestamps at each timestamp reception and parallelization of communication between
the hub and the sensors, such improvements are outside the scope of our contribution.

We thereby achieve multisensor intramodal synchronization, multicamera intramodal
synchronization, as well as multisensor-multicamera crossmodal synchronization. To
summarize, each wearable is timestamped with the UNIX system time of the wearable
network hub. The hub is set to the time of the local NTP server also providing time reference
to the cameras, which are then recorded in terms of LTC. In post-processing, we convert
the UNIX time to UTC time (HH:MM:SS:mS) to match samples to video frames denoted
by LTC timecode (HH:MM:SS:FF). Note that these post-processing steps are insignificant
compared to ones taken in manual alignment.

3.3.3 Latency Measures in Social Literature
To contextualize our assessment of tolerable latency margins, we review representative lit-
erature from social psychology that alludes to latency measures across different behavioral
phenomena.

Measuring human response time (between stimulus and reaction) is an intuitive way
to quantify behavior latencies. Early works have found that the response time spans
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between 120 ms and 300 ms [37], with a specific example finding a 157 ms latency in
speech perception [38]. Related to speech behavior is the more complicated turn-taking
mechanism in conversations that involves pauses, gaps and overlaps. The time frame of
consideration in identifying gaps between speakers. (speaker change) is approximately
200 ms, which is shown to be suitable for the task [1]. Studies in synchrony, mimicry,
entrainment, and other higher-level social phenomena usually consider a larger window
size. Levitan et al. have shown that a window size of 200-1000 ms works well in practice
for studying speech backchannels. An episode of facial and body motor mimicry could be
between 40 ms and 4 s [39, 40].

Apart from surveying the size of time frame used in various studies, an important
measure of time offset is the latency in human perception of audiovisual data , since
many human behavior datasets are manually annotated. Humans are shown to tolerate an
audio lag of 200 ms or a video lag of 45 ms [41]. A successful automated method of data
synchronization should perform on par with, if not better than human perception. It is
worth noting that humans cannot annotate sensor data such as acceleration, in which case
an automated synchronization solution is needed if aligning such data is required.

We deduce that offsets within a window size and/or range of human perception error,
are generally tolerable. Based on the studies listed above, we consider a time offset to
be acceptable if it is between 40 ms (e.g., facial analysis) and 1000 ms (e.g., entrainment).
Though smaller offsets between different data streams can be achieved, the incremental
gain becomes less relevant, especially for common phenomena of interest as discussed
above. Nevertheless, our setup—in which we achieve a median video latency of 414 𝜇s
and wearable data latency of 5 ms over 9.5 hours [36]—is also applicable to data collection
situations where fine details like faces are important such as egocentric vision setups, or
those involving physiological sensors.

3.4 Experiments
The primary metric for synchronization accuracy is timing latency. A principled evaluation
of our system would require characterizing latency at the local connection links in our
proposed architecture, as well as final latency in the recorded data streams.

A common method for crossmodal synchronization used by human behavior datasets is
the aligning of semantic events [10, 15]. As discussed in Section 3.3.2, given the subjective
nature of start and end boundaries of semantic social events and low frequency audio
recordings from wearables for privacy, we employ a more principled approach of defining
and sampling stimulus ground-truth audio-visual events for our experiment presented
in Section 3.4.2. Note that while the ground truth events are manually generated for
control, the synchronization setup exactly matches the one we deployed in our in-the-wild
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experiment.
Our core crossmodal approach introduces one point of latency through the use of an

NTP-LTC converter to share the common NTP reference with the camera subnetwork.
Since limited hardware connections prevent recording the output LTC streams during
real-world deployment, we first present a pre-experiment to measure latency at the isolated
connection in Section 3.4.1. Latency measures in our individual sensor subnetworks are
depicted in Figure 3.3 and already discussed in Section 3.3.2.

With these time drifts quantified, we demonstrate that our approach is more robust and
suitable for video, audio, and wearable sensor data alignment for the purpose of studying
human behavior compared to previous approaches. Code and data for the decoding and
analysis in these experiments are publicly available1.

3.4.1 Timecode Latency between NTP-LTC Converter and
Camera Network Master

We use the Plura Ethernet to LTC converter (ELC) for passing an LTC signal generated
from the common NTP reference into the :pulse base station, as a timing reference for the
camera network. In this experiment we evaluate the latency between two LTC signals: the
LTC output of Plura ELC and the LTC output of :pulse.

Encoding. LTC is an encoding of timecode data within an audio signal. The timecode
data is in the hour:minute:second:frame format. The data bits in an LTC signal are encoded
using the biphase mark code (BMC) as depicted in Figure 3.5: a 0 bit has a single zero-one
transition at the start of the bit period; a 1 bit has two transitions, at the beginning and
middle of the bit period. Each LTC frame is made up of 80 bits of data, including a 16
bits long ‘sync word’ 0011111111111101 denoting the end of a frame. Consequently, at a
framerate of 30 frames/sec, the LTC timecode has a maximum frequency of 2400 Hz (binary
ones). In our experiments we measure the latency between the two LTC signals at the
smallest possible time resolution; we consequently record the audio signals at the highest
possible sampling frequency of 192 kHz, allowing for the smallest latency resolution of
about 5 microseconds. Note that here theoretically, 80 audio samples correspond to 1 bit of
data, and 80 bits correspond to 1 LTC frame.

Test Setup and Data. We passed the outputs of the Plura ELC (RJ45 jack) and the
:pulse (BNC socket) to a Focusrite Scarlett 2i2 audio interface [42] through custom cables.
Figure 3.7 depicts a part of our setup for recording the signals from the two devices. The
Plura ELC was configured to use the public NTP server 𝑡𝑖𝑚𝑒.𝑔𝑜𝑜𝑔𝑙𝑒.𝑐𝑜𝑚 as reference and
generate an LTC signal at 30 frames/second. An isolated private NTP server can also be
used upstream as mentioned, but that does not affect the outcome of the latency between
1Code & data are available at https://github.com/TUDelft-SPC-Lab/sync-experiments

https://github.com/TUDelft-SPC-Lab/sync-experiments
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Figure 3.5: Biphase Mark Encoding of Linear
Time Code
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Figure 3.6: Raw audio LTC signals generated by the Plura ELC
and :pulse modules. The window includes the encoding of an LTC
sync word (0011111111111101) followed by the bits 0001000 from
the next frame. The lower signal here leads the upper signal by 62
audio samples, or less than 1 bit of data.

the ELC and the :pulse we are studying here. The LTC signals were recorded using the
application Audacity. We recorded for a total duration of 30 minutes over six sessions of
five minutes each, for a total of 54000 LTC frames. Figure 3.6 depicts a window from our
recorded audio signals at the end of a frame. The signals here represent the real-world
noisy LTC signals encoded using the biphase mark code depicted in Figure 3.5.

Experiments. We measure synchronization at two levels: LTC frame level, and audio
sample level. We use demodulation to refer to the conversion of the audio signal to binary
data, and decoding to the conversion of the binarized data into the hour:minute:second:frame
format. The recorded audio signals have imperfect leading and falling edges along with
noise, with optima corresponding to a single data bit period being between 77-83 samples
apart instead of the theoretical 80 audio samples. During demodulation, we begin by
finding the local optima within a window size of six samples around the 80th sample
following an optima. This new optima becomes the reference for the subsequent clock
period. The demodulation was verified to match the original timecode presented in the
recordings on the devices. We conducted a synchronization test using the 30 minutes of
recording from six sessions where the binarized stream following the first sync word was
decoded into timecode for checking correspondence at the frame level. We found that
the data was indeed synchronized at the frame level for all the frames. With frame-level
synchronization verified, we measured the world clock latency between the signals at the
sub-frame level. We do this by finding the shift in number of audio samples to achieve
maximum cross-correlation between the two audio signals. This lag was found to be
[79, 80, 80, 80, -43, 78] samples for our six recordings, yielding a mean latency of 307.29
microseconds (59 samples) and a median latency of 414 microseconds (79.5 samples). A
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positive lag implies that the :pulse signal leads the Plura ELC while a negative one implies
the opposite. One way to interpret this is that the median latency is approximately 1 bit
of data, which corresponds to 1/80th of an LTC frame. We conclude that this measure of
latency is an order of magnitude lower than our overall acceptable latency tolerance of
about 40 ms for the application domain as established in Section 3.3.3.

3.4.2 Evaluating Crossmodal Synchronization
Assuming that the GoPro audio and video are synchronized, we compare the audio recorded
by the wearable sensors with the audio recorded by the GoPros in order to evaluate
crossmodal synchronization of the wearable sensors and cameras of our system. We
defined 10 stimulus audio-visual events that occurred randomly based on interval length
(from 1-5 seconds) sampled from a Poisson distribution. An event is comprised of a visual
color change accompanied by an audio beep. These events can be seen as the ground truth
events in which the duration between each event is known. Figure 3.4b depicts our full
working setup for recording these events.

The experiment considers 4 wearable sensor sensors and 4 GoPro cameras simultane-
ously capturing the generated audiovisual events played over approximately one minute.
Figure 3.8 is a representative example showing that the audio events from one of the
wearable sensors and one of the GoPro cameras appear to be in alignment. To further
quantify the time offsets between different audio streams, we determine the number of
samples between the end of an audio event and the onset of the subsequent event by thresh-
olding the amplitude. Since the sampling frequencies of the wearable sensors (20 kHz) and
the GoPros (48 kHz) are known, the number of samples is converted to time duration in
seconds. We compare these empirically found durations from the recordings to ground
truth durations between events .

We found that the average time offset for all wearable sensors and all GoPro recordings
is 10.8±5.6 ms and 1.9±2.0 ms, respectively, when compared to the ground truth durations.
Therefore, the maximum offset on average between wearable sensor and GoPro audio

Figure 3.7: Hardware setup with custom ca-
bles for recording LTC signals from the Plura
ELC and the :pulse base station.
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Figure 3.8: Representative example showing the aligned audio
events in one of the wearable sensors and one of the GoPros.
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signals is the sum of these offsets, resulting in approximately 13 ms, for a conservative
estimation. In light of the latency in upstream links which are orders of magnitude smaller
than what we observe here in the end devices, we offer some hypotheses on the possible
sources of errors. Firstly, there is uncertainty in the generation and transmission of
synchronization messages between the hub and the wearable sensors, ranging from a
few milliseconds to several seconds, depending on connection interval settings [36, 43].
The time offset between the hub and the wearable sensors is inversely proportional to
the frequency of connection. While it is possible to address this random time offset in
Bluetooth connections via the Media Access Control (MAC) layer of the communication
interface, the current approach is optimized towards energy efficiency [36]. Other possible
reasons include varied quality of the wearable sensors and GoPro cameras resulting in
discrepancy in sensor behavior and sensitivity, and offsets between the playback of the
audiovisual events on the laptop (in Figure 3.4b) and the actual recording by the sensors.
Despite the 13 ms offset across the camera and wearable sensor modalities, we highlight
that it is still lower than both, the lower bound of 40 ms described in Section 3.3.3 and
the human perception tolerance limit of audiovisual skew which is ± 80 ms [44]. In these
purely perceptual tests, we could not hear any audible differences when the GoPro audio
and the wearable sensor audio are played simultaneously. This shows that our approach
is at least as good as, if not better than manual alignment of multimodal signals in the
context of this experiment.

3.5 Cost versus Latency Considerations
Apart from providing a seamless interface for synchronizing different subnetworks of
sensors, our choice of leveraging NTP as the common reference is also motivated by
cost—the only component we have introduced to achieve crossmodal synchronization is
the NTP to LTC converter. We have also shown that the reduced accuracy of our choice is
well within tolerable latencies between sensors for our application domain. But what if
cost is not a constraint?

For setups enjoying higher budgets, we recommend using synchronization references
from highly-accurate GPS satellites. These satellites are all synchronized to the same
time using stabilized atomic clock hardware and known locations due to their medium
earth orbits. As a result, GPS receivers can listen to multiple broadcast sources and use
trilateration (somewhat similar to triangulation) to determine their own position and time
deviation. GPS modules can consequently perform time-synchronization with a resolution
of 100 nanoseconds or smaller [45].

Through the use of satellites, a GPS based solution largely mitigates issues like unquan-
tifiable delays in network communications or a lack of local operating system resources
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commonly plaguing the use of the protocols described in Section 3.3.1. Additionally, GPS
modules can be used to generate NTP and PTP signals [46] for downstream subnetworks.
One potential downside of using GPS references is that the GPS antenna needs to be in-
stalled outdoors under visible sky to obtain the GPS reference, which might pose logistical
challenges depending on the physical setting of the interactions being studied.

Since we use the Plura ELC in our setup, for comparison we provide an example GPS
controlled setup using components from Plura. This involves modules from their Rubidium
Series [47]. A GPS receiver such as the RUB G16X would obtain the GPS signal and pass it
as reference to the RUB GT master timecode generator module to produce an LTC signal.
This LTC signal would act as an external reference for the :pulse base station like in our
current setup. A RUB PM-N module connected to the the GT would serve the dual purpose
of powering the setup and acting as an NTP server to generate the NTP signal for the hub
of the wearable sensor network similar to our current setup. The entire setup would be
housed in a RUB H1 rack. The GPS setup for crossmodal synchronization is approximately
eight times more expensive than our setup using an ELC and a POE injector2.

3.6 Conclusion
In this paper we introduce a novel approach for synchronized and wireless acquisition of
human behavior data across video, audio, and wearable sensor data modalities, captured
in highly dynamic in-the-wild settings. The key challenge of synchronization in these
settings is to propagate a common time reference signal to end devices such as cameras
and wearable sensors in a wireless and scalable manner without compounding network
delays. Another challenge is that different types of sensors rely on different types of timing
information. Existing solutions in this space are either wired solutions, or achieve limited
synchronization in post-processing, making them less suitable for our scenario involving
a large number of people free to move in a large physical area. Our novel solution uses
a common NTP reference signal for both the camera and wearable sensors modalities;
conventionally NTP is superceded by more accurate reference signals for video. Through
empirical experiments, we show that the median time latency introduced by our choice
of using NTP is 414 𝜇s for the video modality. The intramodal latency of our wearable
sensor network built by extending an open platform is 5 ms over 9.5 hours [36]. The
overall crossmodal latency of our setup is approximately 13 ms at worst based on an
events-based experiment. We contextualized our findings using latency measures from
representative social behaviour literature, and find that our setup performs well within
a tolerable latency margin of 40 ms for our application domain and human perception.

2The GPS setup described currently costs approximately US $5700, while the combined cost of the ELC and the
POE injector is about US $730.
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To the best of our knowledge, this is the first work that quantifies latency tolerances for
a data collection system designed for collecting human behavior data, and proposes a
distributed architecture built on commercially available products. Through valid trade-offs,
our approach provides a practical, accurate, cost-effective, time-efficient, and modular
solution that is more advantageous than the current state-of-the art methods/heuristics for
highly dynamic social settings.
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Abstract
Recent advances in synthesizing realistic faces have shown that synthetic training data can
replace real data for various face-related computer vision tasks. A question arises: how
important is realism? Is the pursuit of photorealism excessive? In this work, we show otherwise.
We boost the realism of our synthetic faces by introducing dynamic skin wrinkles in response to
facial expressions and observe significant performance improvements in downstream computer
vision tasks. Previous approaches for producing such wrinkles either required prohibitive
artist effort to scale across identities and expressions, or were not capable of reconstructing
high-frequency skin details with sufficient fidelity. Our key contribution is an approach that
produces realistic wrinkles across a large and diverse population of digital humans. Concretely,
we formalize the concept of mesh tension and use it to aggregate possible wrinkles from
high-quality expression scans into albedo and displacement texture maps. At synthesis, we
use these maps to produce wrinkles even for expressions not represented in the source scans.
Additionally, to provide a more nuanced indicator of model performance under deformations
resulting from compressed expressions, we introduce the 300W-winks evaluation subset and
the Pexels dataset of closed eyes and winks.

4.1 Introduction

Synthetic data has been commonly employed for a variety of computer vision tasks
including object recognition [2–5], scene understanding [6–9], eye tracking [10, 11],

hand tracking [12, 13], and full body analysis [14–16]. However, the complexity of modeling
the human head has largely precluded the generation of full-face synthetics for face-related
machine learning. While realistic digital humans have been created for movies and video
games, they usually entail significant artist effort per character [17, 18]. Consequently in
literature, the synthesis of facial training data has been accompanied by simplifications,
or a focus on parts of the face such as the eye region [19, 20] or the hockey mask [21–24].
This has resulted in a domain gap—a difference in distributions between real and synthetic
facial data that makes generalization challenging. Efforts towards bridging this domain
gap have mainly utilized domain adaptation to refine synthesized images [25] or domain-
adversarial training where models are encouraged to ignore domain differences [26]. As
such, generating realistic face data has been considered so challenging that it is assumed
that synthetic data cannot fully replace real data for in-the-wild tasks [25].

To directly address the challenge, Wood et al. [1] attempted to minimize the domain
gap at the source, by generating synthetic faces with unprecedented realism. Their method
procedurally combines a parametric 3D face model with a comprehensive library of high-
quality artist-created assets including textures, hair, and clothing. In doing so, the method
overcomes a key bottleneck in techniques employed by the Visual Effects (VFX) industry for
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Figure 4.1: Final renders for a diverse set of synthetic identities and expressions. For each identity
we illustrate renders using the base method of Wood et al. [1] (left), and our added technique for generating
expression-based wrinkling effects (right). For the same expression parameters, our method produces varied
wrinkling effects across distinct identities (middle and bottom row).

synthesizing realistic humans—that of scale. The procedural sampling can randomly create
and render novel 3D faces without manual intervention. Machine learning systems trained
on the synthesized data for landmark localization and face parsing achieved performance
comparable with the state-of-the-art without using a single real image.

However, one limitation of the method proposed by Wood et al. [1] is the lack of
dynamic, expression dependent wrinkles. The method generates textures using only the
neutral-expression scans, which remain static for all deformations of the underlying face
mesh resulting from expression changes. In this work we propose a simple yet effective
method for incorporating expression-based wrinkles. Our central idea is to capture complex
wrinkling effects for an identity from high-resolution scans of their posed expressions.
We store all these possible wrinkles into albedo and displacement textures we refer to as
wrinkle maps. At synthesis, for any arbitrary expression beyond those represented in the
source scans, we blend between the neutral and wrinkle textures using a notion of the
tension in the face mesh to obtain dynamic wrinkling effects. Figure 4.1 contrasts the results
of our method against the current state-of-the-art (SOTA) approach for face synthetics. We
also include animated sequences in the Supplementary Material.
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The term wrinkle maps was first used by early VFX approaches to refer to artist-
defined bump or normal maps for simulating animated wrinkles [27–30]. However, these
approaches suffer from three drawbacks. First, the bump and normal maps only simulate
underlying geometry changes; the silhouette and shadows which are of relevance for
face related tasks such as landmark localization remain unaffected. Second, the methods
do not affect the albedo or diffuse textures. Finally, the most crucial drawback is scale.
The methods entail manual definition of wrinkle maps and masks for every blendshape
for every character. In contrast, our automatic mesh-tension driven method naturally
scales with the number of identities and expressions, while incorporating real wrinkles for
both albedo and displacement textures from scans. Furthermore, we also handle identities
without expression scans, transferring plausible wrinkles from the most similar neutral
textures.

To advance the development of synthetics for face-related tasks, we make the following
concrete contributions:

• A system for dynamic, expression-based wrinkles that scales easily with increasing
identities and expressions.

• A demonstration of empirical qualitative and quantitative improvement over the
SOTA synthetics system on face-keypoint localization and surface-normal estimation.

• Novel evaluation data and metrics for keypoint localization in the eye region where
wrinkles are especially relevant for learning tasks.

4.2 Background: Synthesizing Faces
We build upon the work of Wood et al. [1] for synthesizing face images for downstream
machine learning tasks. Their method involved sampling from a generative 3D blendshape-
based face model learned from 3D scans of 511 individuals with neutral expression. The
sampled face is then dressed up with samples from a large collection of hair, clothing, and
accessory assets. For each synthesized face, the authors employ three textures that remain
fixed across all expressions: one albedo map for skin color; one coarse displacement map
to encode scan geometry not captured by the sparsity of the vertex-level identity model;
and one meso-displacement map to approximate skin-pore level detail built by high-pass
filtering the albedo texture. In contrast, we automatically compute an additional sets
of albedo and displacement wrinkle textures from expression scans to support dynamic
wrinkling effects.

4.3 Related Work
Wrinkle Maps Oat [27] proposed using a pair of bump maps to render animated wrinkles
on virtual characters. These bump maps—called wrinkle maps—store surface normals for an
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expanded (or stretched) and compressed (or scrunched-up) expression, typically obtained
from artist sculpted high-resolution meshes. A base normal map stores fine surface details
such as pores. In order to achieve independently controlled wrinkles, the face is divided
into multiple regions. Each region is specified by an artist-defined mask stored in a texture
map. An animated scalar wrinkle weight in the range [−1,1] then interpolates between the
two wrinkle maps for each masked region: at either end of the range one of the wrinkle
maps is at its full influence, with a weight of 0 corresponding to no influence on the base
normal map. A similar method was later independently proposed by Duque Reis et al. [31]
using a single wrinkle map. Jimenez et al. [29] expanded on the scheme proposed by Oat
[27], allowing for the use of any number of wrinkle maps, with a weight in the range of[0,1] defining the influence of each map. Subsequent improvements to make the technique
amenable in real-time or performance driven settings involved the dynamic generation of
either the region masks [30] or the wrinkle weights [28]. Both approaches relied on using
a skinned mesh attached to bones. Dutreve et al. [30] proposed generating dynamic region
masks by using the bone influence weights from a set of artist defined reference poses. Oat
[28] proposed generating dynamic wrinkle weights by comparing each mesh triangle’s area
before and after skinning, a technique derived from Microsoft’s DirectX 10 Sparse Morph
Targets demo [32]. While the term wrinkle maps in literature has been alternatively used
to refer to bump or normal maps, in this work we use the term to collectively refer to the
textures used for synthesizing wrinkles: the albedo and displacement maps corresponding
to the expanded and compressed textures.
Simulation Based Approaches While the use of wrinkle maps is the most common
methodology when artistic control is of importance, several alternate techniques have
been proposed for simulating wrinkles on 3D surfaces. These methods can broadly be
grouped into physical and geometric simulation of wrinkles. An early physical simulation
based approach employed a biomechanical perspective, considering the skin as an elastic
membrane and modeling the deformations using linear plastic model [33]. Boissieux et al.
[34] extended the elastic membrane perspective by modeling the skin as a volumetric
substance comprising layers of different materials and using a finite element method
for computing deformations. Finite element modeling was also employed in subsequent
works to simulate forearm skin wrinkling [35], and skin aging [36]. Wang et al. [37] and
Venkataraman et al. [38] proposed energy based approaches. Here, wrinkle deformations
are produced by minimizing an energy function indicating flexure properties of a governing
curve on a surface. To produce wrinkles on dynamic meshes such as simulated cloth, Müller
and Chentanez [39] proposed attaching a higher resolution wrinkle mesh to the coarse base
mesh and determining the deviations of the wrinkle mesh vertices using a static solver [40].
Geometric simulation based approaches typically involve expressing the wrinkles using
some geometric primitives. Bando et al. [41] represented wrinkles using a cubic Bezier
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curve, generating their furrows from a sequence of starting points along a user specified
direction field. Other proposed techniques involved the use of length preserving constraints
on planar curves along with artist placed features at locations on an animated mesh where
wrinkling is desired [42, 43]. Ilie et al. [44] employed a Hermite spline interpolation along
with a modified Rayleigh distribution function to simulate wrinkling activity in facial
animations. Subsequent methods extracted wrinkle curves automatically from images
[45, 46]. Finally, Gui et al. [47] used both a muscle model and a geometric wrinkle shape
function to simulate 3D facial wrinkles.

Machine Learning Approaches More recently, several methods for expression and
texture synthesis, and facial performance capture have addressed the synthesis of wrinkles.
As part of their performance capture system, Cao et al. [48] trained regressors for mapping
local image appearance to wrinkle displacements to augment a coarse face mesh tracked
in real-time. Zeng et al. [24] and Richardson et al. [22] proposed convolutional networks
based refinement architectures to reconstruct detailed facial geometry from a single image.
Nagano et al. [49] proposed a conditional generative adversarial network architecture
for the synthesis of image-based dynamic 3D avatars. Given a single neutral-face input
image, their system can generate novel photo-real expressions from alternate viewpoints,
including variable details such as wrinkles. More directly, Deng et al. [50] proposed a
variational autoencoder architecture to synthesize plausible fine-scale wrinkles on a variety
of coarse-scale 3D faces.

4.4 Synthethizing Expression-Based Wrinkles
Figure 4.2 illustrates an overview of our approach. The underlying idea is that wrinkles
can by synthesized additively over the neutral-expression textures. We formalize the
concept of mesh tension and use it to automatically aggregate wrinkling effects in a data-
driven manner across all expression scans of an identity. We store these possible wrinkles
corresponding to the expansion and compression deformations of the face in separate
albedo and displacement textures, which we collectively refer to as wrinkle maps in this
work. Note that displacement maps modify the underlying geometry unlike bump or
normal maps that simply simulate the geometry changes. At synthesis, we sample a face
mesh from a generative face model [1] and randomly select a set of neutral and wrinkle
textures corresponding to an identity from the available scans. We then compute the tension
in the face mesh to drive the blending between the neutral and wrinkle maps to obtain
dynamic wrinkling effects. In contrast with previous learning-based wrinkling methods
[22–24, 50], we do not build a generative model for the textures since such models struggle
to reconstruct high frequency details such as wrinkles compared to directly extracting
them from scans.
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Albedo Displacement Tension MapsGeometry Result

Figure 4.2: Method Overview. The state-of-the-art method for face synthetics [1] generates albedo and
displacement textures using only the neutral-expression scan for an identity (middle row, also see Figure 4.1). In
contrast, we automatically compute expanded and compressed texture maps to aggregate wrinkling effects in the
face and neck regions across available posed-expression scans for the identity. At synthesis, for a given set of
arbitrary expression parameters we compute the local tension at every vertex in the corresponding face mesh:
we depict expansion in green and compression in red. This mesh tension serves as weights to dynamically blend
between the neutral, expanded, and compressed texture maps to synthesize the wrinkling effect at that vertex.
Note that our method can thereby generate wrinkles for expressions even beyond those represented in the source
scans.

4.4.1 Mesh Tension
We formalize mesh tension to capture the amount of compression or expansion at each
vertex of a 3D polygon mesh resulting from a deformation. More concretely, we express
mesh tension as a function of the mean change in the length of the edges connected to
a vertex as a result of the deformation. Consider an undeformed mesh X = (𝑉,𝐸) with a
sequence of vertices 𝑉 and sequence of edges 𝐸, that undergoes a deformation to result in
the mesh X = (𝑉 ,𝐸). We only consider deformations such that X and X possess the same
topology. For vertex 𝑣𝑖 ∈ 𝑉, let (𝑒1,… ,𝑒𝐾) denote the sequence of 𝐾 edges connected to 𝑣𝑖,
with (𝑒1,… ,𝑒𝐾) denoting the corresponding edges in 𝑋 connected to 𝑣𝑖. We then define the
mesh tension at 𝑣𝑖 as 𝑡𝑣𝑖 ≔ 1− 1𝐾 ∑𝑘∈[𝐾] ‖𝑒𝑘‖‖𝑒𝑘‖ , (4.1)

where [𝐾] = {1,…,𝐾}, and ‖.‖ denotes edge length. Note that we subtract from 1 so that
positive values of 𝑡𝑣𝑖 indicate compression, negative values indicate expansion, and a value
of 0 indicates no change.

In practice, for finer manual control we introduce the parameters of strength 𝑠 to
scale the tension, and bias 𝑏 to artificially favor expansion or compression, computing the
weighted tension at 𝑣𝑖 as 𝑡′𝑣𝑖 = 𝑠 ⋅ 𝑡𝑣𝑖 +𝑏. Further, we allow for artificial propagation of expan-
sion and compression effects through the mesh. For each effect we introduce a parameter
denoting the number of iterations for a morphological dilation (positive values) or erosion
(negative values) operation. The propagation of each effect is first performed independently
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Figure 4.3: Mesh Tension. We illustrate our com-
putation of mesh tension for various deformations
of a simple cylinder. Expansion is depicted in green
and compression in red. Black shading corresponds
to zero tension.

Figure 4.4: Data—High-resolution 3D Scans. For each
identity, we illustrate: the raw neutral scan (top-left), the
manually-cleaned neutral scan to remove sensor noise and
hair (top-right), and two raw expression scans (bottom).

over the mesh, and the resulting tension values are added for vertices that end up with both
expansion and compression. Figure 4.3 illustrates these effects for a simple cylindrical mesh.
See Appendix 4.A for additional illustrations of the effect of the tension parameters. Code
as a Blender [51] add-on is available at https://github.com/chiragraman/mesh-tension.

4.4.2 Data and Preprocessing
We start with a set of high-quality commercially available 3D scans of 208 individuals. All208 identities contain scans with neutral expressions, while 52 contain additional scans for
posed expressions. The neutral scans were manually cleaned for removing noise and hair
artifacts, and registered to the topology of the 3D face model proposed by Wood et al. [1],
resulting in a mesh of 7,667 vertices and 7,414 polygons. Figure 4.4 illustrates the scans.

Automatic Cleaning of Expression Scans The manual cleaning of scans is a labor-
intensive process. To automate the process of masking the noise and hair artifacts from the
expression scans, we utilize the difference between the raw and manually-cleaned neutral
scans. Concretely, we employ a two-stage masking procedure illustrated in Figure 4.5.
First, we apply an identity-agnostic coarse mask to filter most artifacts outside of the
hockey-mask and neck regions where expression-based wrinkling occurs. Next, to capture
the manual changes made by the artists in the cleaning of each neutral scan, we employ a
Gaussian Mixture Model-based background subtraction technique [52]. Treating the clean
neutral textures as background and the raw original ones as foreground, we obtain an
identity-specific mask of the noise and hair artifacts for every identity. We apply this fine
mask to clean the textures from the corresponding expression scans for each identity.

4.4.3 Data-Driven Wrinkle Maps
Tension-Weighted Wrinkle Maps Figure 4.6 illustrates our method for generating wrin-
kle maps from the face scans. Our underlying idea is to use the tension at each vertex

https://github.com/chiragraman/mesh-tension
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Raw Coarse
Mask

Fine Mask Cleaned Base

Figure 4.5: Cleaning Raw Textures. We illustrate
the cleanup of albedo (top) and displacement (bottom)
textures on the surprise expression. We automatically
remove the hair and sensor noise artifacts in the raw
textures around the head, neck, and cheeks while pre-
serving the desired wrinkles in the nose, forehead, and
mouth regions (compared to the base mesh, with neutral
albedo and without displacement respectively, for the
same expression).

Compressed AlbedoExpanded Albedo Compressed AlbedoExpanded Albedo

Figure 4.6: Generating Wrinkle Maps from Scans.
We illustrate the computation of albedo wrinkle maps
with three raw expression scans (top). We compute
the tension maps corresponding to the scans (middle),
depicting expansion in green and compression in red.
Finally, the expression albedo textures (bottom) are lin-
early combined using the normalized tension as weights
to obtain the expanded and compressed albedo wrinkle
maps. A similar procedure is applied to obtain the dis-
placement wrinkle maps.

Figure 4.7: Grafting Wrinkles. For an identity with
missing expression scans (target), we find the identity
from among those with expression scans that has the
most similar neutral albedo map (source). We then graft
the wrinkles from the source’s wrinkle map onto the tar-
get’s neutral texture to obtain the target wrinkle maps
(here illustrating the compressed albedo).

Figure 4.8: Final Renders for Some Identities with
Grafted Wrinkles. We computed the wrinkle maps
for these identities by grafting wrinkles from identities
with expression scans (see Figure 4.7). We illustrate two
expressions for each identity, without (left) and with
wrinkles (right).
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as weights in a linear combination of the cleaned textures across expressions, with zero
tension corresponding to the neutral textures. (Figure 4.6 depicts raw textures for easier
visual correspondence with the scans.) We begin by fitting the generative face model from
Wood et al. [1] to the raw scans and compute the tension maps from the resulting meshes.
The individual expansion and compression maps are then normalized using the softmax
function. Finally, we linearly combine expression textures using the normalized tension
as weights to obtain the expanded and compressed wrinkle maps. The same procedure is
applied to obtain both the albedo and displacement wrinkle maps.

Identities With Missing Expression Scans How do we compute wrinkle maps for the
identities without posed expression scans? We employ a simple wrinkle-grafting procedure.
For a target identity without wrinkle maps, we find the source identity with wrinkle maps
that has the most similar neutral albedo map, measured by mean squared error in pixel color.
For the source identity, we compute the wrinkling effects as the difference between the
neutral and wrinkle maps (for both albedo and displacement). We then add this difference to
the neutral textures for the target identity to obtain the target wrinkle maps. We illustrate
the grafting procedure for the compressed albedo maps in Figure 4.7, and final example
renders with grafted wrinkles in Figure 4.8.

4.5 Experiments and Results
We evaluate our proposed mesh-tension driven wrinkles both quantitatively and qualita-
tively on two face analysis tasks: landmark detection (Section 4.5.1) and normal estimation
(Section 4.5.2). We compare adding mesh-tension to the existing SOTA method for full-face
synthetics, and compare the performance of models trained on the resulting data against
SOTA approaches in the field for these tasks.

4.5.1 Landmark Localization
Experimental Details. We use direct regression based facial landmark detection [53] with
an off-the-shelf ResNet 101 [54]. We use a 256×256 px RGB image as input to predict 703
dense facial landmarks. We additionally employ label translation [1] to deal with systematic
inconsistencies between our 703 predicted dense landmarks and the 68 sparse landmarks
labeled as ground truth in our evaluation datasets (this is done only for Table 4.1).

As a training dataset we rendered 100𝑘 synthetic images, consisting of 20𝑘 identities
with 5 frames for each identity (different view-points, expressions, and environments). We
also generated ground-truth annotations of 703 dense 2D landmarks from the face-meshes
to accompany each image. We train our models for 300 epochs using PyTorch Lightning,
starting with a learning rate of 1e−3 and halved every 100 epochs.
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Table 4.1: Landmark Localization on 300W.We normal-
ize mean error using interocular distance. Lower is better.

Method Common Challenging Private
NME NME FR10%

Trained on Real Data
LAB [55] 2.98 5.19 0.83
AWING [56] 2.72 4.52 0.33
ODN [57] 3.56 6.67 -
3FabRec [58] 3.36 5.74 0.17
LUVLi [59] 2.76 5.16 -

Trained on Synthetic Data
No wrinkles [1] 3.11 4.84 0.33
Ours (wrinkles) 3.10 4.83 0.17

Table 4.2: Landmark Localization - Eyes. We
report eye-opening errors for Pexels, and eyelid
point-to-polyline errors for 300W and the winks
subset. In all cases normalized by bounding-box
diagonal. Lower is better.

Method Pexels 300W 300W-winks

Trained on Real Data
AWING [56] 1.06 0.62 0.69
3FabRec [58] 3.60 0.81 1.32
Trained on Synthetic Data
No wrinkles [1] 0.97 0.51 0.86
Ours (wrinkles) 0.86 0.48 0.74

Evaluation Datasets and Metrics. We use the 300W dataset [60] (with common, chal-
lenging and private subsets), and employ the standard normalized mean error (NME) and
failure rate (FR10%) error metrics [60].

While the 300W dataset provides evaluation of overall landmark detection performance,
it is not sensitive enough to detect improvements in specific parts of the face or during
particular expressions. We identify a small subset of 30 images from 300W that contain
winks and compressed face expressions (300W-winks) to provide a more nuanced indica-
tion of performance under such deformations. We report errors for eyelid-landmarks by
taking a point-to-line distance from every predicted eyelid landmark to the corresponding
polyline defining an eyelid in ground truth. This metric allows us to better understand eye
region error and to use different landmark definitions in training and evaluating models
(e.g. from our 703 landmark model or from 98 landmark models [56]). See Appendix 4.E
for the list of images in 300W-winks.

We also introduce a Pexels dataset which contains 318 images of fully closed eyes
(because of blinking, scrunching or compressing the face) and 105 images with only
a single eye closed (winking). This allows us to asses model performance under such
conditions which are rare in other datasets. To collect the data we used a stock photography
website 1 using search terms wink/blink/compress/scrunched and similar image searches.
We select only semi-frontal images with no or limited occlusion of the eyes to best evaluate
performance in that region. The URLs of the images selected can be found in Appendix 4.F.
Knowing which images contain fully closed eyes or just a single eye closed allows us to
measure eyelid accuracy without explicit landmark annotations. We define the eye opening
error as the mean eye aperture of both eyes in the eye-closed case and eye aperture of
closed eye in the wink case. See Appendix 4.B for illustrations of the above two metrics.

1https://www.pexels.com/

https://www.pexels.com/
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Trained on Real Data Trained on Synthetic Data

AWING [56] 3FabRec [58] No Wrinkles
[1]

Ours
(Wrinkles)

Figure 4.9: Qualitative results for landmark local-
ization on Pexels. Training on synthetic faces with
our expression-based wrinkles is crucial for localizing
keypoints in compressed regions of the face.

Base Disp. Only Albedo Only Albedo & Disp.

Figure 4.10: Expression-Based Wrinkle Compo-
nents. We add wrinkles through two components: dis-
placement and albedo. Here we show each in isolation.
Displacement is critical for achieving realistic lighting
of wrinkles. Especially note the forehead (zoomed) and
neck regions.

Table 4.3: Landmark Localization Ablation. We
report eye-opening errors for Pexels, and eyelid point-
to-polyline errors for 300W and thewinks subset. Lower
is better.

Dataset Base Disp. Only Albedo Only Full

300W 0.51 0.51 0.50 0.48
300W-winks 0.86 0.76 0.80 0.74
Pexels 0.97 0.86 0.89 0.86

Baselines. We compare against recent SOTA methods trained on images of real faces.
For subsequent nuanced analysis on 300W-winks and Pexels we consider the methods of
Wang et al. [56] and Browatzki and Wallraven [58] since they collectively yield the best
performance on 300W.

Results. From Table 4.1 we see that our proposed mesh-tension driven wrinkles provide
a marginal improvement for landmark localization. However, when we look at specific
eye region results on 300W, 300W-winks and Pexels in Table 4.2, we see that improvement
is much larger for the eye region and our synthetic-only trained approaches outperform
real-data based models. Also see Figure 4.9 and Appendix 4.C.

Ablation. We further analyze the importance of the albedo and displacement wrinkling
components for landmark detection. From Figure 4.10 and Table 4.3 we see that displace-
ment plays a more important role than albedo in improving performance, but best results
are achieved through a combination of both.

4.5.2 Surface-Normals Prediction
Surface normals can be used to infer 3D information about a surface from 2D images,
and have been used in several human-centered vision tasks such as clothing [61] and
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Input Image No Wrinkles
[1]

Ours
(Wrinkles)

[1] Top Inset /
Ours Bottom

Figure 4.11: Qualitative Surface-Normals Predic-
tions on Pexels. The model trained on synthetic
faces with wrinkles recovers significantly more high-
frequency details.

Input Image CMDFN [62] SfSnet [63] Ours

Figure 4.12: Qualitative Comparison against SOTA.
Our synthetic data-only U-Net yields predictions com-
parable to SOTA while being less noisy and more robust
to lighting.

face-shape [62] reconstruction and relighting [63].
We train a U-Net [64] with a ResNet 18 [54] encoder to predict camera-space surface

normals of the face. As input we use 256 × 256 px RGB images from a dataset of 50𝑘
synthetics images. The network is trained for 200 epochs using cosine similarity loss with
a learning rate of 1e−3. Camera-space surface normal images rendered as part of our
synthetic data pipeline are used as ground-truth.

Results on real images are shown in Figure 4.11; the network trained on images syn-
thesized with our method recovers more high-frequency detail on the face. As shown in
Figure 4.12, we achieve comparable results to other recent methods for face surface-normals
prediction [62, 63]. Further comparisons are provided in Appendix 4.D.

4.6 Conclusion
We have presented a method for introducing dynamic expression-based wrinkles to syn-
thetic faces that yields improved performance on the downstream tasks of landmark local-
ization and surface-normals estimation, especially for regions of the face most deformed
by expressions.

Our use of tension in the face mesh is key in the automatic scaling of our method with
identities and expressions, which has been a bottleneck for past wrinkling approaches that
rely on prohibitive artist effort. In addition, our data-driven approach also enables the
capturing of real wrinkles from scans which doesn’t require artistic judgment.

By boosting the realism of synthesized faces with dynamic wrinkles, we have made
an explicit case for synthetic data: our method yields improved performance for models
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on downstream tasks. In addition, synthesizing data with diverse faces across races and
genders involves significantly less effort than collecting representative datasets in the wild.
Consequently, downstream real-life systems developed using such synthetic data are less
likely to suffer from unfair biases along these sensitive variables.
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Appendices

4.A Illustrating Tension Parameters

s: 3 b: 0 s: 5 b: 0 s: 10 b: 0 s: 10 b: -0.6 s: 10 b: 0.6 s: 10 b: 0 s: 10 b: 0 s: 10 b: 0
e: 0 c: 0 e: 0 c: 0 e: 0 c: 0 e: 0 c: 0 e: 0 c: 0 e: 3 c: -3 e: -3 c: 3 e: -3 c: -3

Figure 4.13: Tension Parameters - Cylinder. Illustrating the effect of varying tension parameters on a simple
cylinder mesh. Legend: s - strength, b - bias, e - iterations for dilating/eroding expansion, c - iterations for
dilating/eroding compression.

Strength
Low Default High

Iterations
Low Default High

Figure 4.14: Tension Parameters - Face. Illustrating the effect of varying tension parameters on a face mesh.

4.B Eye-Region Landmark Metrics
To deal with different landmark annotation conventions (e.g. 68, 98, 703 landmarks), we
use a point to polyline distance. For each eyelid point in the prediction, we measure its
distance to the relevant polyline, e.g. for a predicted point on upper-left eyelid we measure
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the distance from it to upper-left eyelid polyline (illustrated in Figure 4.15). This allows us
to compare models with different annotation schemes and to have a better understanding
of eye region error.

In cases where we do not have landmark annotations, but we know that both eyes are
closed (or a single eye is closed), we can use the eye opening/aperture error instead. This
is illustrated in Figure 4.16. The limitation of this approach is that it measure the relative
openness of eye only and will have a low error even if the location of eyelid is wrong (but
the aperture is correct). However, in combination with other metrics it provides a good
signal to how well the models deal in detecting winks and blinks.

Figure 4.15: Point-to-Line Distance Metric. Green:
ground truth annotation polyline. Blue: predicted eye-
lid landmarks. Red: residual distance. Top-left corner:
associated error.

Figure 4.16: Eye Opening / Aperture Error. Green:
prediction. Red: distance between the top and bottom
lid that measures eye opening. Top-left corner: eye-
opening of the left and right eye and the subsequent
error.

4.C Landmark Predictions on 300W
We present examples of predictions on 300W dataset from models trained on real and
synthetic data in Figure 4.17.

4.D Surface-Normals Predictions
In Figure 4.18 we show further comparisons to the recent face surface-normals prediction
techniques of Abrevaya et al. [62] and Sengupta et al. [63].

Figure 4.19 shows failure cases from Abrevaya et al. [62] and our results on the same
images. It is clear that our technique results in a significantly more robust model which
can deal better with extreme lighting conditions, occlusions and darker skin tones. Note
that when training our model we take the surface of glasses lenses into account, though it
is also possible to ignore these and predict for the face underneath depending on how the
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Input Image AWING [56] 3FabRec [58] No
Wrinkles [1]

Ours
(Wrinkles)

Figure 4.17: Qualitative Comparison against SOTA. Comparing prediction on 300W against SOTA models for
facial landmark detection, our synthetic-only model often results in better accuracy for eye region, with improved
performance for wink detection with mesh-based tension data.

rendering pipeline is configured. In all figures relating to surface-normals prediction we
use our own face alignment to select the region of interest (ROI) to input to the normals
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prediction U-Net model, which causes some misalignment with the ROI used in other
techniques.

Input Image CMDFN [62] SfSnet [63] No
Wrinkles [1]

Ours
(wrinkles)

Figure 4.18: Surface-Normals Comparison. Qualitative results for surface-normals compared with two recent
approaches. Note that we use our own face-alignment resulting in slight offset of the predicted ROI.
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Figure 4.19: Surface-Normals Robustness. Comparison of surface-normals prediction to failure cases from
Abrevaya et al. [62], showing input (top), Abrevaya et al. (middle) and Ours (bottom). Our approach is significantly
more robust in cases of extreme lighting, occlusion and darker skin.

4.E The 300W-winks Subset
The subset of 300W images that make up 300W-winks is:
indoor_048, indoor_052, indoor_053, indoor_054, indoor_055, indoor_089, indoor_094, indoor_099, indoor_180,

indoor_226, indoor_242, indoor_253, indoor_264, indoor_267, indoor_278, indoor_280, indoor_282, indoor_286,

outdoor_073, outdoor_076, outdoor_077, outdoor_089, outdoor_097, outdoor_145, outdoor_165, outdoor_209,

outdoor_243, outdoor_249, outdoor_251, outdoor_292

4.F The Pexels Winks and Blinks Dataset
All images can be accessed by appending to https://www.pexels.com/photo/

4.F.1 Blinks subset
abhishek-sinari-2026945, adrienne-andersen-2552127, adrienne-andersen-2552131, alekke-blazhin-7448048, alekke-blazhin-

8450287, alekke-blazhin-8450288, alekke-blazhin-8450290, alekke-blazhin-8450296, alena-darmel-6940463, alena-shekhovtcova-

7036537, alesia-kozik-7295537, alex-green-6626087, alexander-krivitskiy-4383786, alexander-stemplewski-2906663, alexandr-

podvalny-1540408, alexandra-patrusheva-6806789, ali-karimiboroujeni-11381826, alina-blumberg-6925493, alyona-pastukhova-

11495069, amar-preciado-10820282, amr-osman-10665375, anastasia-ilinamakarova-10832112, anastasia-shuraeva-7539962,

anastasia-trofimczyk-10311002, anastasiia-chaikovska-11834502, anastasiia-shevchenko-10568846, andre-porto-7753232, andrea-

gulotta-11140482, andrea-piacquadio-3757942, andrea-piacquadio-3760262, andrea-piacquadio-3760611, andrea-piacquadio-

3764535, andrea-piacquadio-3768163, andrea-piacquadio-3768724, andrea-piacquadio-3771813, andrea-piacquadio-3786522,

andrea-piacquadio-3799096, andrea-piacquadio-3799787, andrea-piacquadio-3799830, andrea-piacquadio-3807762, andrea-piacquadio-

3811603, andrea-piacquadio-3811663, andrea-piacquadio-3812746, andrea-piacquadio-3831645, andrea-piacquadio-941693, andres-

https://www.pexels.com/photo/
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ayrton-6578880, anete-lusina-4793357, anete-lusina-5723189, angela-roma-7479819, angelica-reyn-11893387, anh-tuan-9889769,

anna-shvets-3746281, anna-shvets-3852192, anna-shvets-4557467, anna-shvets-4611655, anna-shvets-4971107, anna-shvets-

5034475, anna-shvets-5069470, anna-shvets-5069493, anna-shvets-5069609, anna-tarazevich-5155727, anna-zaykina-8452431,

antoni-shkraba-5890702, antoni-shkraba-7484863, arianna-jade-2896823, arina-krasnikova-6663361, arina-krasnikova-6663367,

arina-krasnikova-6914826, arina-krasnikova-6914833, arina-krasnikova-6998572, arina-krasnikova-7752573, arina-krasnikova-

7752693, armin-rimoldi-5269495, arsham-haghani-3423024, artyom-malyukov-11896104, azraq-al-rezoan-11763863, azraq-al-

rezoan-11763868, barathan-amuthan-2723624, ben-mack-6775289, blue-bird-7210441, breno-santos-10060165, brett-sayles-4095246,

caique-araujo-10218049, camilla-gari-10306657, charles-wundengba-3609781, cliff-booth-4057336, cottonbro-10049355, cottonbro-

10140838, cottonbro-10678800, cottonbro-4727484, cottonbro-5020308, cottonbro-5386370, cottonbro-5561559, cottonbro-5561563,

cottonbro-5850831, cottonbro-5976145, cottonbro-6700116, cottonbro-6700119, cottonbro-6700142, cottonbro-6700144, cottonbro-

6753360, cottonbro-6753370, cottonbro-6753371, cottonbro-7407129, cottonbro-8102360, cottonbro-8142260, cottonbro-9063608,

cottonbro-9063624, cottonbro-9063626, cottonbro-9316296, cottonbro-9467199, cottonbro-9577189, cottonbro-9955927, craig-

adderley-2306203, craig-adderley-2306210, craig-adderley-2306213, cup-of-couple-6634443, cup-of-couple-6962575, cup-of-couple-

6963527, daria-nekipelova-9665517, daria-rem-1977055, darina-belonogova-7886748, darina-belonogova-8386475, davner-toledo-

4574403, dziana-hasanbekava-6851631, efigie-lima-marcos-11831324, ehsan-7538807, ekaterina-bolovtsova-7113346, ekaterina-

bolovtsova-7113362, elina-fairytale-3865731, elina-fairytale-3865763, elina-fairytale-3865765, eman-genatilan-5348809, eman-

genatilan-8589781, emmy-pua-10196907, engin-akyurt-5059305, eric-deine-11781294, estelle-umaes-11734787, evelina-zhu-

6286063, faruk-tokluoglu-8777603, fireberrytech-6683091, flint-huynh-11804619, gary-barnes-6248993, gary-barnes-6249024,

greta-hoffman-7675722, guilherme-almeida-1858175, hebert-santos-5485599, ichad-windhiagiri-7616249, imad-clicks-11742222,

imad-clicks-11742223, ivan-mudruk-10400317, ivan-samkov-6968814, ivan-samkov-8952728, jamie-saw-10029674, jeandaniel-

francoeur-7678688, jennifer-enujiugha-1904674, jill-burrow-6758033, joao-vitor-heinrichs-1787039, joshua-abner-3605015, joshua-

mcknight-3290242, julia-avamotive-1070967, julia-tatyanenko-11855943, juliana-marinina-9957288, kampus-production-6298293,

kampus-production-6298321, kampus-production-7928134, kampus-production-8871412, karolina-grabowska-4378486, karolina-

grabowska-4498195, kat-smith-568021, ketut-subiyanto-4473864, ketut-subiyanto-4545165, ketut-subiyanto-4584390, ketut-

subiyanto-4584601, kindel-media-7298396, kindel-media-7298459, kindel-media-7938549, kirill-palii-3545783, klaus-nielsen-

6303717, korede-adenola-11785507, kseniya-buraya-10008858, kwesiblaq-10986569, leah-kelley-3722162, leo-acevedo-3261142,

lucas-souza-1964442, lucas-souza-3608010, maksim-goncharenok-4892914, marcelo-chagas-2535859, maria-eduarda-loura-magalhaes-

4340053, maria-luiza-melo-11819746, maria-orlova-4946635, maria-orlova-4947740, marija-7737766, marlon-schmeiski-11193234,

mart-production-7880131, matheus-bertelli-11749497, matheus-ferrero-11470717, matheus-henrin-11360455, maycon-marmo-

4346013, michelle-leman-6774345, mike-cabugao-8503888, mikhail-nilov-6707031, mikhail-nilov-6943956, mikhail-nilov-6945088,

mikhail-nilov-6968191, mikhail-nilov-6968331, mikhail-nilov-7776528, mikhail-nilov-8343016, mikhail-nilov-8350479, ming-zimik-

5861623, miriam-alonso-7623727, monica-turlui-8218377, monstera-5063295, monstera-5273734, monstera-5302897, monstera-

5384518, monstera-6781240, monstera-6973715, monstera-6974031, monstera-6977869, monstera-7352909, mosei-films-9209576,

nadin-sh-11872307, nguyen-phuong-linh-6211165, nicola-barts-7925781, nikita-nikitin-11008044, nikita-semezhin-9787604, oleg-

magni-1669154, olia-danilevich-8964938, olya-prutskova-7179057, orione-conceicao-2983464, ozan-culha-11850759, ozan-culha-

11858978, ozan-culha-11866492, pavel-danilyuk-7267691, pavel-danilyuk-7267700, pavel-danilyuk-7406040, pexels-user-9281097,

pnw-production-8980983, pnw-production-8981313, polina-chistyakova-9052464, polina-kovaleva-5885655, polina-kovaleva-

7090394, polina-tankilevitch-6630835, polina-tankilevitch-8210939, rachel-claire-4992586, rafael-freire-5714746, rafael-portraits-
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9281360, raquel-silva-11870922, renthel-cueto-11131698, renthel-cueto-11131703, rfstudio-3843292, rheyan-glenn-dela-cruz-

manggob-10210334, rodnae-productions-7402945, rodnae-productions-8173525, rodnae-productions-8173543, roman-odintsov-

11760366, roman-odintsov-11760376, roman-odintsov-11760378, roman-odintsov-8018975, ron-lach-10139616, ron-lach-10321431,

ron-lach-8159655, run-ffwpu-11757051, ruslan-rozanov-11585357, samer-daboul-4506967, samson-katt-5256085, santiago-jose-

calvo-11757764, sasha-lazarev-3578326, shiny-diamond-3762659, shotpot-6338298, shvets-production-6974955, shvets-production-

6975262, shvets-production-6975383, shvets-production-6975413, shvets-production-6984635, shvets-production-8005151, si-

luan-pham-8778439, sound-on-3756943, svetlana-10311383, taina-bernard-3482526, tanya-gorelova-3855199, thiago-alencar-

10154765, thiago-matos-10359136, thirdman-6958390, thirdman-7237074, thirdman-7268229, thirdman-7268234, thirdman-

7268483, thirdman-8053704, thomas-nguka-10163670, thomas-nguka-7562643, tieu-bao-truong-8298108, tiffany-freeman-11038435,

tima-miroshnichenko-5118496, tima-miroshnichenko-6670752, tubarones-photography-2737046, tubarones-photography-2943689,

tubarones-photography-3065450, valdemar-9546870, vanessa-loring-5082946, vika-kirillova-10119334, vika-kirillova-11067905,

vinicius-altava-2657594, vitoria-santos-1913161, vitoria-santos-2838831, vlada-karpovich-8528898, vlada-karpovich-8939842,

vladimir-konoplev-11323367, vladimir-konoplev-11323376, vladimir-vasilev-7640302, wesley-carvalho-4126255, yan-krukov-

6617027, yan-krukov-7155545, yana-sperry-11810044, yaroslav-shuraev-6281021, zayceva-tatiana-11210581, zayceva-tatiana-

11698072

4.F.2 Winks subset
airam-datoon-9637814, alena-darmel-7322312, alena-darmel-8153597, alexander-krivitskiy-6471731, alexander-krivitskiy-6828450,

amina-filkins-5560027, amina-filkins-5560029, amina-filkins-5561443, amina-filkins-5561455, andrea-piacquadio-3764391, andrea-

piacquadio-3777558, andrea-piacquadio-3777563, andrea-piacquadio-3778216, andrea-piacquadio-3778673, andrea-piacquadio-
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Abstract
Free-standing social conversations constitute a yet underexplored setting for human behavior
forecasting. While the task of predicting pedestrian trajectories has received much recent
attention, an intrinsic difference between these settings is how groups form and disband.
Evidence from social psychology suggests that group members in a conversation explicitly
self-organize to sustain the interaction by adapting to one another’s behaviors. Crucially, the
same individual is unlikely to adapt similarly across different groups; contextual factors such as
perceived relationships, attraction, rapport, etc., influence the entire spectrum of participants’
behaviors. A question arises: how can we jointly forecast the mutually dependent futures of
conversation partners by modeling the dynamics unique to every group? In this paper, we
propose the Social Process (SP) models, taking a novel meta-learning and stochastic perspective
of group dynamics. Training group-specific forecasting models hinders generalization to
unseen groups and is challenging given limited conversation data. In contrast, our SP models
treat interaction sequences from a single group as a meta-dataset: we condition forecasts for a
sequence from a given group on other observed-future sequence pairs from the same group. In
this way, an SP model learns to adapt its forecasts to the unique dynamics of the interacting
partners, generalizing to unseen groups in a data-efficient manner. Additionally, we first
rethink the task formulation itself, motivating task requirements from social science literature
that prior formulations have overlooked. For our formulation of Social Cue Forecasting,
we evaluate the empirical performance of our SP models against both non-meta-learning
and meta-learning approaches with similar assumptions. The SP models yield improved
performance on synthetic and real-world behavior datasets.

Keywords: Social Interactions, Nonverbal Cues, Behavior Forecasting

5.1 Introduction

Picture a conversing group of people in a free-standing social setting. To conduct such
exchanges, we transfer high-order social signals across space and time through explicit

low-level behavior cues—examples include our pose, gestures, gaze, and floor control
actions [1–3]. Evidence suggests that we employ anticipation of these and other cues to
navigate daily social interactions [1, 4–8]. Consequently, for machines to truly develop
adaptive social skills, they need to have the ability to forecast the future. For instance,
foreseeing the upcoming behaviors of partners in advance can enable interactive agents
to choose more fluid interaction policies [9], or contend with uncertainties in imperfect
real-time inferences surrounding cues [3].

In literature, behavior forecasting works mainly consider data at two representations
with an increasing level of abstraction: low-level cues or features that are extracted manu-
ally or automatically from raw audiovisual data, and manually labeled high-order events or
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Figure 5.1: Conceptual illustration of forecasting approaches on an in-the-wild conversation from the MatchN-
Mingle dataset [16]. Top. A group leaving event [10]: the circled individual has moved from one group in the
observed window 𝒕obs ≔ [𝑜1…𝑜𝑇] to another in a future window 𝒕fut ≔ [𝑓 1…𝑓 𝑇 ]. Bottom. Input behavioral
cues 𝒃𝑖𝑡: head pose (solid normal), body pose (hollow normal), and speaking status (speaker in orange). a. The
top-down approach entails predicting the event label from such cues over 𝒕obs, from only 200 instances of group
leaving in over 90 minutes of interaction [10]. b. Our proposed bottom-up, self-supervised formulation of Social
Cue Forecasting involves regressing a future distribution for the same low-level input cues over 𝒕fut (shaded
spread). This enables utilizing the full 90 minutes of event-unlabeled data.

actions. The forecasting task has primarily been formulated to predict future event or action
labels from observed cues or other high-order event or action labels [5, 6, 9–13]. Moreover,
identifying patterns predictive of certain semantic events has been a long-standing topic
of focus in the social sciences, where researchers primarily employ a top-down workflow.
First, the events of interest are selected for consideration. Then their relationship to pre-
ceding cues or other high-order actions are studied in isolation through exploratory or
confirmatory analysis [14, 15]. Examples of such semantic events include speaker turn tran-
sitions [5, 6], mimicry episodes [13], the termination of an interaction [9, 10], or high-order
social actions [11, 12].

One hurdle in such a top-down paradigm is data efficiency. The labeled events often
occur infrequently over the interaction, reducing the effective amount of labeled data. This,
combined with the fact that collecting behavior data is cost and labor-intensive, precludes
the effective application of neural supervised learning techniques that tend to be data
demanding. More recently, some approaches have adopted a more bottom-up formulation
for dyadic conversations. The task entails predicting event-independent future cues for
a single target participant or virtual avatar from the preceding observed cues of both
participants [17, 18]. Since training sequences are not limited to windows around semantic
events, such a formulation is more data-efficient. Figure 5.1 illustrates the top-down and
bottom-up approaches conceptually.
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In practice, however, the concrete formulations within the bottom-up paradigm [17, 18]
suffer from several conceptual problems: (i) predictions are made for a single individual
using cues from both individuals as input; since people behave differently, this entails
training one forecasting model per person; (ii) even so, predicting a future for one individual
at a time is undesirable as these futures are not independent; and (iii) the prediction is only
a single future, despite evidence that the future is not deterministic, and the same observed
sequence can result in multiple socially-valid continuations [19–21].

To address all these issues, we introduce a self-supervised forecasting task called Social
Cue Forecasting: predicting a distribution over future multimodal cues jointly for all group
members from their same preceding multimodal cues. Note that we use self-supervised here
to simply distinguish from the formulations where the predicted quantity (e.g. event-labels)
is of a different representation than the observed input (e.g. cues). Given the cue data, the
inputs and outputs of our formulation are both cues, so we obtain the supervisory signal
from the data itself.

Furthermore, a crucial characteristic of free-standing conversations is that people
sustain the interaction by explicitly adapting to one another’s behaviors [1]. Moreover, the
way a person adapts to their partners is a function of several complex factors surrounding
their interpersonal relationships and the social setting [22, Chap. 1; 1, p. 237]. The social
dynamics guiding such behavior are embedded in the constellation of participant cues
and are distinct for every unique grouping of individuals. As such, a model should adapt
its forecasts to the group under consideration. (Even in the pedestrian setting where
coordination is only implicit, Rudenko et al. [23, Sec. 8.4.1] observe that failing to adapt
predictions to different individuals is still a limitation). For our methodological contribution,
we propose the probabilistic Social Processes models, viewing each conversation group
as a meta-learning task. This allows for capturing social dynamics unique to each group
without learning group-specific models and generalizing to unseen groups at evaluation in a
data-efficient manner. We believe that this framing of SCF as a few-shot function estimation
problem is especially suitable for conversation forecasting—a limited data regime where
good uncertainty estimates are desirable. Concretely, we make the following contributions:

• We introduce and formalize the novel task of Social Cue Forecasting (SCF), addressing
the conceptual drawbacks of past formulations.

• For SCF, we propose and evaluate the family of socially aware probabilistic Seq2Seq
models we call Social Processes (SP).

5.2 Related Work
To aid readers from different disciplines situate our work within the broader research
landscape, we categorize behavior-forecasting literature by interaction focus [24]. In a
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focused interaction, such as conversations, participants explicitly coordinate their behaviors
to sustain the interaction. In unfocused interactions, coordination is implicit, such as when
pedestrians avoid collisions.

Focused Interactions. The predominant interest in conversation forecasting stems from
the social sciences, with a focus on identifying patterns that are predictive of upcoming
speaking turns [5–8], disengagement from an interaction [9, 10], or the splitting or merging
of groups [25]. Other works forecast the time-evolving size of a group [26] or semantic
social action labels [11, 12]. More recently, there has also been a growing interest in the
computer vision community for tasks related to inferring low-level cues of participants
either from their partners’ cues [27] or raw multimodal sensor data [28]. Here there has
also been some interest in forecasting nonverbal behavior, mainly for dyadic interactions
[17, 18, 29]. The task involves forecasting the future cues of a target individual from the
preceding cues of both participants.

Unfocused Interactions. Early approaches for forecasting pedestrian or vehicle tra-
jectories were heuristic-based, involving hand-crafted energy potentials to describe the
influence pedestrians and vehicles have on each other [30–37]. Recent approaches build
upon the idea of encoding relative positional information directly into a neural architecture
[38–45]. Some works go beyond locations, predicting keypoints in group activities [46, 47].
Rudenko et al. [23] provide a survey of approaches within this space.

Non-Interaction Settings. Here, the focus has been on forecasting individual poses from
images [48] and video [49, 50], or synthesizing poses using high-level control parameters
[51, 52]. The self-supervised aspects of our task formulation are related to visual forecasting,
where the goal has been to predict non-semantic low-level pixel features or intermediate
representations [34, 50, 53–57]. Such learned representations have been utilized for other
tasks like semi-supervised classification [58], or training agents in immersive environments
[59].

For the interested reader, we further discuss practical considerations distinguishing fore-
casting in conversation and pedestrian settings in Appendix 5.E.

5.3 Social Cue Forecasting: Task Formalization
While self-supervision has shown promise for learning representations of language and
video data, is this bottom-up approach conceptually reasonable for behavior cues? The
crucial observation wemake is that the semantic meaning transferred in interactions (the so-
called social signal [60]) is already embedded in the low-level cues [61]. So representations
of this high-level semantic meaning that we associate with actions and events (e.g. group
leaving) can be learned from the low-level dynamics in the cues.
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5.3.1 Formalization and Distinction from Prior Task Formu-
lations

The objective of SCF is to predict future behavioral cues of all people involved in a social
encounter given an observed sequence of their behavioral features. Formally, let us denote
a window of monotonically increasing observed timesteps as 𝒕obs ≔ [𝑜1,𝑜2, ..., 𝑜𝑇 ], and an
unobserved future time window as 𝒕fut ≔ [𝑓 1,𝑓 2, ..., 𝑓 𝑇 ], 𝑓 1 > 𝑜𝑇. Note that 𝒕fut and 𝒕obs
can be of different lengths, and 𝒕fut need not immediately follow 𝒕obs. Given 𝑛 interacting
participants, let us denote their social cues over 𝒕obs and 𝒕fut as𝑿 ≔ [𝒃𝑖𝑡; 𝑡 ∈ 𝒕obs]𝑛𝑖=1, 𝒀 ≔ [𝒃𝑖𝑡; 𝑡 ∈ 𝒕fut]𝑛𝑖=1. (5.1a, b)

The vector 𝒃𝑖𝑡 encapsulates the multimodal cues of interest from participant 𝑖 at time 𝑡.
These can include head and body pose, speaking status, facial expressions, gestures, verbal
content—any information streams that combine to transfer social meaning.

Distribution over Futures. In its simplest form, given an 𝑿, the objective of SCF is to
learn a single function 𝑓 such that 𝒀 = 𝑓 (𝑿). However, an inherent challenge in forecasting
behavior is that an observed sequence of interaction does not have a deterministic future
and can result in multiple socially valid ones—a window of overlapping speech between
people may and may not result in a change of speaker [19, 20], a change in head orientation
may continue into a sweeping glance across the room or a darting glance stopping at
a recipient of interest [21]. In some cases, certain observed behaviors—intonation and
gaze cues [5, 62] or synchronization in speaker-listener speech [63] for turn-taking—may
make some outcomes more likely than others. Given that there are both supporting and
challenging arguments for how these observations influence subsequent behaviors [63, p. 5;
62, p. 22], it would be beneficial if a data-driven model expresses a measure of uncertainty in
its forecasts. We do this by modeling the distribution over possible futures 𝑝(𝒀 |𝑿), rather
than a single future 𝒀 for a given 𝑿, the latter being the case for previous formulations for
cues [18, 27, 46] and actions [11, 12].

Joint Modeling of Future Uncertainty. A defining characteristic of focused interactions
is that the participants sustain the shared interaction through explicit, cooperative coordi-
nation of behavior [1, p. 220]—the futures of interacting individuals are not independent
given an observed window of group behavior. It is therefore essential to capture uncer-
tainty in forecasts at the global level—jointly forecasting one future for all participants at a
time, rather than at a local output level—one future for each individual independent of the
remaining participants’ futures. In contrast, applying the prior formulations [17, 18, 27]
requires the training of separate models treating each individual as a target (for the same
group input) and then forecasting an independent future one at a time. Meanwhile, other



5.4 Method Preliminaries

5

129

prior pose forecasting works [48–52] have been in non-social settings and do not need to
model such behavioral interdependence.

Non-Contiguous Observed and Future Windows. Domain experts are often interested
in settings where 𝒕obs and 𝒕fut are offset by an arbitrary delay, such as forecasting a time
lagged synchrony [64] or mimicry [13] episode, or upcoming disengagement [9, 10]. We
therefore allow for non-contiguous 𝒕obs and 𝒕fut. Operationalizing prior formulations
that predict one step into the future [11, 12, 27, 46] would entail a sliding window of
autoregressive predictions over the offset between 𝒕obs and 𝒕fut (from 𝑜𝑇 to 𝑓 1), with errors
cascading even before decoding is performed over the window of interest 𝒕fut.
Our task formalization of SCF can be viewed as a social science-grounded generalization
of prior computational formulations, and therefore suitable for a wider range of cross-
disciplinary tasks, both computational and analytical.

5.4 Method Preliminaries
Meta-Learning. A supervised learning algorithm can be viewed as a function mapping
a dataset 𝐶 ≔ (𝑿𝐶,𝒀𝐶) ≔ {(𝒙 𝑖, 𝒚𝑖)}𝑖∈[𝑁𝐶] to a predictor 𝑓 (𝒙). Here 𝑁𝐶 is the number of
datapoints in 𝐶, and [𝑁𝐶] ≔ {1,…,𝑁𝐶}. The key idea of meta-learning is to learn how
to learn from a dataset in order to adapt to unseen supervised tasks; hence the name
meta-learning. This is done by learning a map 𝐶 ↦ 𝑓 (⋅,𝐶). In meta-learning literature,
a task refers to each dataset in a collection {𝒯𝑚}𝑁tasks𝑚=1 of related datasets [65]. Training
is episodic, where each task 𝒯 is split into subsets (𝐶,𝐷). A meta-learner then fits the
subset of target points 𝐷 given the subset of context observations 𝐶. At meta-test time, the
resulting predictor 𝑓 (𝒙,𝐶) is adapted to make predictions for target points on an unseen
task by conditioning on a new context set 𝐶 unseen during meta-training.

Neural Processes (NPs). Sharing the same core motivations, NPs [66] can be viewed
as a family of latent variable models that extend the idea of meta-learning to situations
where uncertainty in the predictions 𝑓 (𝒙,𝐶) are desirable. They do this by meta-learning a
map from datasets to stochastic processes, estimating a distribution over the predictions𝑝(𝒀 |𝑿 ,𝐶). To capture this distribution, NPs model the conditional latent distribution𝑝(𝒛|𝐶) from which a task representation 𝒛 ∈ ℝ𝑑 is sampled. This introduces stochasticity,
constituting what is called the model’s latent path. The context can also be directly in-
corporated through a deterministic path, via a representation 𝒓𝐶 ∈ ℝ𝑑 aggregated over 𝐶.
An observation model 𝑝(𝒚𝑖|𝒙 𝑖, 𝒓𝐶, 𝒛) then fits the target observations in 𝐷. The generative
process for the NP is written as

𝑝(𝒀 |𝑿 ,𝐶) ≔ ∫𝑝(𝒀 |𝑿,𝐶,𝒛)𝑝(𝒛|𝐶)𝑑𝒛 = ∫𝑝(𝒀 |𝑿,𝒓𝐶, 𝒛)𝑞(𝒛|𝒔𝐶)𝑑𝒛, (5.2)
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Figure 5.2: Architecture of the SP and ASP family.

where 𝑝(𝒀 |𝑿 ,𝒓𝐶, 𝒛) ≔∏𝑖∈[𝑁𝐷] 𝑝(𝒚𝑖|𝒙 𝑖, 𝒓𝐶, 𝒛). The latent 𝒛 is modeled by a factorized Gaus-
sian parameterized by 𝒔𝐶 ≔ 𝑓𝑠(𝐶), with 𝑓𝑠 being a deterministic function invariant to
order permutation over 𝐶. When the conditioning on context is removed (𝐶 = ∅), we
have 𝑞(𝒛|𝒔∅) ≔ 𝑝(𝒛), the zero-information prior on 𝒛. The deterministic path uses a
function 𝑓𝑟 similar to 𝑓𝑠, so that 𝒓𝐶 ≔ 𝑓𝑟(𝐶). In practice this is implemented as 𝒓𝐶 =∑𝑖∈[𝑁𝐶]MLP(𝒙𝑖, 𝒚𝑖)/𝑁𝐶. The observation model is referred to as the decoder, and 𝑞,𝑓𝑟, 𝑓𝑠
comprise the encoders. The parameters of the NP are learned for random subsets 𝐶 and 𝐷
for a task by maximizing the evidence lower bound (ELBO)

log𝑝(𝒀 |𝑿 ,𝐶) ≥ 𝔼𝑞(𝒛|𝒔𝐷)[log𝑝(𝒀 |𝑿 ,𝐶,𝒛)] −𝕂𝕃(𝑞(𝒛|𝒔𝐷)||𝑞(𝒛|𝒔𝐶)). (5.3)

5.5 Social Processes: Methodology
Our core idea for adapting predictions to a group’s unique behavioral dynamics is to
condition forecasts on a context set 𝐶 of the same group’s observed-future sequence pairs.
By learning to learn, i.e., meta-learn from a context set, our model can generalize to unseen
groups at evaluation by conditioning on an unseen context set of the test group’s behavior
sequences. In practice, a social robot might, for instance, observe such an evaluation
context set before approaching a new group.

We set up by splitting the interaction into pairs of observed and future sequences,
writing the context as 𝐶 ≔ (𝑿𝐶,𝒀𝐶) ≔ (𝑿𝑗,𝒀𝑘)(𝑗,𝑘)∈[𝑁𝐶]×[𝑁𝐶], where every 𝑿𝑗 occurs before
the corresponding 𝒀𝑘. Since we allow for non-contiguous 𝒕obs and 𝒕fut, the 𝑗th 𝒕obs can
have multiple associated 𝒕fut windows for prediction, up to a maximum offset. Denoting
the set of target window pairs as 𝐷 ≔ (𝑿,𝒀 ) ≔ (𝑿𝑗,𝒀𝑘)(𝑗,𝑘)∈[𝑁𝐷]×[𝑁𝐷], our goal is to model
the distribution 𝑝(𝒀 |𝑿 ,𝐶). Note that when conditioning on context is removed (𝐶 = ∅),
we simply revert to the non-meta-learning formulation 𝑝(𝒀 |𝑿).

The generative process for our Social Process (SP) model follows Equation 5.2, which we
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extend to social forecasting in two ways. We embed an observed sequence 𝒙 𝑖 for participant
p𝑖 into a condensed encoding 𝒆𝒊 ∈ ℝ𝑑 that is then decoded into the future sequence using a
Seq2Seq architecture [67, 68]. Crucially, the sequence decoder only accesses 𝒙 𝑖 through𝒆𝑖. So after training, 𝒆𝑖 must encode the temporal information that 𝒙 𝑖 contains about the
future. Further, social behavior is interdependent. We model 𝒆𝑖 as a function of both, p𝑖’s
own behavior as well as that of partners p𝑗,𝑗≠𝑖 from p𝑖’s perspective. This captures the
spatial influence partners have on the participant over 𝒕obs. Using notation we established
in Section 5.3, we define the observation model for p𝑖 as𝑝(𝒚𝑖|𝒙 𝑖,𝐶,𝒛) ≔ 𝑝(𝒃𝑖𝑓 1,… ,𝒃𝑖𝑓 𝑇|𝒃𝑖𝑜1,… ,𝒃𝑖𝑜𝑇,𝐶,𝒛) = 𝑝(𝒃𝑖𝑓 1,… ,𝒃𝑖𝑓 𝑇|𝒆𝑖, 𝒓𝐶, 𝒛). (5.4)

If decoding is carried out in an auto-regressive manner, the right hand side of Equation 5.4
simplifies to ∏𝑓 𝑇𝑡=𝑓 1 𝑝(𝒃𝑖𝑡 |𝒃𝑖𝑡−1,… ,𝒃𝑖𝑓 1, 𝒆𝑖, 𝒓𝐶, 𝒛). Following the standard NP setting, we im-
plement the observation model as a set of Gaussian distributions factorized over time and
feature dimensions. We also incorporate the cross-attention mechanism from the Attentive
Neural Process (ANP) [69] to define the variant Attentive Social Process (ASP). Following
Equation 5.4 and the definition of the ANP, the corresponding observation model of the
ASP for a single participant is defined as𝑝(𝒚𝑖|𝒙 𝑖,𝐶,𝒛) = 𝑝(𝒃𝑖𝑓 1,… ,𝒃𝑖𝑓 𝑇|𝒆𝑖, 𝑟 ∗(𝐶,𝒙 𝑖),𝒛). (5.5)

Here each target query sequence 𝒙 𝑖∗ attends to the context sequences 𝑿𝐶 to produce a
query-specific representation 𝒓∗ ≔ 𝑟 ∗(𝐶,𝒙 𝑖∗) ∈ ℝ𝑑.

Themodel architectures are illustrated in Figure 5.2. Note that our modeling assumption
is that the underlying stochastic process generating social behaviors does not evolve over
time. That is, the individual factors determining howparticipants coordinate behaviors—age,
cultural background, personality variables [22, Chap. 1; 1, p. 237]—are likely to remain
the same over a single interaction. This is in contrast to the line of work that deals with
meta-transfer learning, where the stochastic process itself changes over time [70–73]; this
entails modeling a different 𝒛 distribution for every timestep.

Encoding Partner Behavior. To encode partners’ influence on an individual’s future,
we use a pair of sequence encoders: one to encode the temporal dynamics of participant
p𝑖’s features, 𝒆𝑖self = 𝑓self(𝒙 𝑖), and another to encode the dynamics of a transformed repre-
sentation of the features of p𝑖’s partners, 𝒆𝑖partner = 𝑓partner(𝜓(𝒙𝑗,(𝑗≠𝑖))). Using a separate
network to encode partner behavior enables sampling an individual’s and partners’ features
at different sampling rates.

How do we model 𝜓(𝒙𝑗,(𝑗≠𝑖))? We want the partners’ representation to possess two
properties: permutation invariance—changing the order of the partners should not affect the
representation, and group-size independence—we want to compactly represent all partners
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Figure 5.3: Encoding partner behavior for participant p0 for a single timestep. To model the influence partners
p1 and p2 have on the behavior of p0, we transform the partner features to capture the interaction from p0’s
perspective, and learn a representation of these features invariant to group size and partner-order permutation
using the symmetric max function.

independent of the group size. Intuitively, to model partner influence on p𝑖, we wish to
capture a view of the partners’ behavior as p𝑖 perceives it. Figure 5.3 illustrates the underlying
intuition. We do this by computing pooled embeddings of relative behavioral features,
extending Gupta et al. [40]’s approach for pedestrian positions to conversation behavior.
Note that our partner-encoding approach is in contrast to that of Tan et al. [28], which
is order and group-size dependent, and Yao et al. [46], who do not transform the partner
features to an individual’s perspective.

Since the most commonly considered cues in literature are pose (orientation and
location) and binary speaking status [28, 74, 75], we specify how we transform them. For a
single timestep, we denote these cues for p𝑖 as 𝒃𝑖 = [𝒒𝑖; 𝒍𝑖; 𝑠𝑖], and for p𝑗 as 𝒃𝑗 = [𝒒𝑗; 𝒍𝑗; 𝑠𝑗].
We compute the relative partner features 𝒃𝑗,𝑟𝑒𝑙 = [𝒒𝑟𝑒𝑙; 𝒍𝑟𝑒𝑙; 𝑠𝑟𝑒𝑙] by transforming 𝒃𝑗 to a
frame of reference defined by 𝒃𝑖:

𝒒𝑟𝑒𝑙 = 𝒒𝑖 ∗ (𝒒𝑗)−1, 𝒍𝑟𝑒𝑙 = 𝒍𝑗 − 𝒍𝑖, 𝑠𝑟𝑒𝑙 = 𝑠𝑗 − 𝑠𝑖. (5.6a-c)

Note that we use unit quaternions (denoted 𝒒) for representing orientation due to their
various benefits over other representations of rotation [76, Sec. 3.2]. The operator ∗ denotes
the Hamilton product of the quaternions. These transformed features 𝒃𝑗,𝑟𝑒𝑙 for each
p𝑗 are then encoded using an embedder MLP. The outputs are concatenated with their
corresponding 𝒆𝑗self and processed by a pre-pooler MLP. Assuming 𝑑in and 𝑑out pre-pooler
input and output dims and 𝐽 partners, we stack the 𝐽 inputs to obtain (𝐽 ,𝑑in) tensors. The(𝐽 ,𝑑out)-dim output is element-wise max-pooled over the 𝐽 dim, resulting in the 𝑑out-dim
vector 𝜓(𝒃𝑗,(𝑗≠𝑖)) for any value of 𝐽, per timestep. We capture the temporal dynamics in
this pooled representation over 𝒕obs using 𝑓partner. Finally, we combine 𝒆𝑖self and 𝒆𝑖partner
for p𝑖 through a linear projection (defined by a weight matrix 𝑊) to obtain the individual’s
embedding 𝒆𝑖ind = 𝑊 ⋅ [𝒆𝑖self; 𝒆𝑖partner]. Our intuition is that with information about both p𝑖
themselves, and of p𝑖’s partners from p𝑖’s point-of-view, 𝒆𝑖ind now contains the information
required to predict p𝑖’s future behavior.
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Encoding Future Window Offset. Since we allow for non-contiguous windows, a single𝒕obs might be associated to multiple 𝒕fut windows at different offsets. Decoding the same𝒆𝑖ind into multiple sequences (for different 𝒕fut) in the absence of any timing information
might cause an averaging effect in either the decoder or the information encoded in 𝒆𝑖ind.
One option would be to immediately start decoding after 𝒕obs and discard the predictions in
the offset between 𝒕obs and 𝒕fut. However, auto-regressive decoding might lead to cascading
errors over the offset. Instead, we address this one-to-many issue by injecting the offset
information into 𝒆𝑖ind. The decoder then receives a unique encoded representation for
every 𝒕fut corresponding to the same 𝒕obs. We do this by repurposing the idea of sinusoidal
positional encodings [77] to encode window offsets rather than relative token positions in
sequences. For a given 𝒕obs and 𝒕fut, and 𝑑𝑒-dim 𝒆𝑖ind we define the offset as Δ𝑡 = 𝑓 1−𝑜𝑇,
and the corresponding offset encoding 𝑂𝐸Δ𝑡 as𝑂𝐸(Δ𝑡,2𝑚) = sin(Δ𝑡/100002𝑚/𝑑𝑒),𝑂𝐸(Δ𝑡,2𝑚+1) = cos(Δ𝑡/100002𝑚/𝑑𝑒). (5.7a, b)

Here 𝑚 refers to the dimension index in the encoding. We finally compute the representa-
tion 𝒆𝑖 for Equation 5.4 and Equation 5.5 as𝒆𝑖 = 𝒆𝑖ind +𝑂𝐸Δ𝑡. (5.8)

Auxiliary Loss Functions. We incorporate a geometric loss function for each of our
sequence decoders to improve performance in pose regression tasks. For p𝑖 at time 𝑡, given
the ground truth 𝒃𝑖𝑡 = [𝒒; 𝒍; 𝑠], and the predicted mean �̂�𝑖𝑡 = [�̂�; ̂𝒍; ̂𝑠], we denote the tuple(𝒃𝑖𝑡, �̂�𝑖𝑡) as 𝐵𝑖𝑡. We then have the location loss in Euclidean space ℒl(𝐵𝑖𝑡) = ||𝒍 − ̂𝒍||, and we
can regress the quaternion values using

ℒq(𝐵𝑖𝑡) = ‖‖‖𝒒− �̂�‖�̂�‖ ‖‖‖ . (5.9)

Kendall and Cipolla [76] show how these losses can be combined using the homoscedastic
uncertainties in position and orientation, �̂�2l and �̂�2q :ℒ𝜎(𝐵𝑖𝑡) = ℒl(𝐵𝑖𝑡)exp(− ̂𝑠l) + ̂𝑠l +ℒq(𝐵𝑖𝑡)exp(− ̂𝑠q) + ̂𝑠q, (5.10)

where ̂𝑠 ≔ log �̂�2. Using the binary cross-entropy loss for speaking status ℒs(𝐵𝑖𝑡), we have
the overall auxiliary loss over 𝑡 ∈ 𝒕fut:ℒaux(𝒀 , �̂� ) =∑𝑖 ∑𝑡 ℒ𝜎(𝐵𝑖𝑡) +ℒs(𝐵𝑖𝑡). (5.11)

The parameters of the SP and ASP are trained by maximizing the ELBO (Equation 5.3) and
minimizing this auxiliary loss.
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5.6 Experiments and Results
5.6.1 Experimental Setup
Evaluation Metrics. Prior forecasting formulations output a single future. However,
since the future is not deterministic, we predict a future distribution. Consequently,
needing a metric that accounts for probabilistic predictions, we report the log-likelihood
(LL) log𝑝(𝒀 |𝑿 ,𝐶), commonly used by all variants within the NP family [66, 69, 70]. The
metric is equal to the log of the predicted density evaluated at the ground-truth value.
(Note: the fact that the vast majority of forecasting works even in pedestrian settings
omit a probabilistic metric, using only geometric metrics, is a limitation also observed
by Rudenko et al. [23, Sec. 8.3].) Nevertheless, for additional insight beyond the LL, we
also report the errors in the predicted means—geometric errors for pose and accuracy for
speaking status—and provide qualitative visualizations of forecasts.

Models and Baselines. In keeping with the task requirements and for fair evaluation, we
require that all models we compare against forecast a distribution over future cues.

• To evaluate our core idea of viewing conversing groups as meta-learning tasks, we
compare against non-meta-learning methods: we adapt variational encoder-decoder
(VED) architectures [78, 79] to output a distribution.

• To evaluate our specific modeling choices within the meta-learning family, we
compare against the NP and ANP models (see Section 5.5). The original methods
were not proposed for sequences, so we adapt them by collapsing the timestep and
feature dimensions in the data.

Note that in contrast to the SP models, these baselines have direct access to the future
sequences in the context, and therefore constitute a strong baseline. We consider two
variants for both NP and SP models: -latent denoting only the stochastic path; and -uniform
containing both the deterministic and stochastic paths with uniform attention over context
sequences. We further consider two attention mechanisms for the cross-attention module: -
dot with dot attention, and -mh with wide multi-head attention [69]. Finally, we experiment
with two choices of backbone architectures: multi-layer perceptrons (MLP), and Gated
Recurrent Units (GRU). Implementation and training details can be found in Appendix 5.D.
Code, processed data, trained models, and test batches for reproduction are available at
https://github.com/chiragraman/social-processes.

5.6.2 Evaluation on Synthesized Behavior Data
To first validate our method on a toy task, we synthesize a dataset simulating two glancing
behaviors in social settings [21], approximated by horizontal head rotation. The sweeping
Type I glance is represented by a 1D sinusoid over 20 timesteps. The gaze-fixating Type III
glance is denoted by clipping the amplitude for the last six timesteps. The task is to forecast

https://github.com/chiragraman/social-processes
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Figure 5.4: Ground truths and predictions for the toy task of
forecasting simulated glancing behavior. Our SP models learn a
better fit than the NPmodel, SP-GRU being the best (see zoomed
insets).

Figure 5.5: Mean per timestep LL over the se-
quences in the synthetic glancing dataset. Higher
is better.

Table 5.1: Mean (Std.) Metrics on the Syn-
thetic Glancing Behavior Dataset. The met-
rics are averaged over timesteps; mean and std.
are then computed over sequences. Higher is
better for LL, lower for MAE.

LL Head Ori.
MAE (°)

NP-latent 0.28 (0.24) 19.63 (7.26)

SP-latent (MLP) 0.36 (0.20) 19.46 (7.05)
SP-latent (GRU) 0.55 (0.23) 18.55 (7.11)

the signal over the last 10 timesteps (𝒕fut) by observing the first 10 (𝒕obs). Consequently,
the first half of 𝒕fut is certain, while the last half is uncertain: every observed sinusoid
has two ground truth futures in the data (clipped and unclipped). It is impossible to
infer from an observed sequence alone if the head rotation will stop partway through the
future. Figure 5.4 illustrates the predictions for two sample sequences. Table 5.1 provides
quantitative metrics and Figure 5.5 plots the LL per timestep. The LL is expected to decrease
over timesteps where ground-truth futures diverge, being ∞ when the future is certain.
We observe that all models estimate the mean reasonably well, although our proposed SP
models perform best. More crucially, the SP models, especially the SP-GRU, learn much
better uncertainty estimates compared to the NP baseline (see zoomed regions in Figure 5.4).
We provide additional analysis, alternative qualitative visualizations, and data synthesis
details in Appendices 5.A, 5.B, and 5.C respectively.

5.6.3 Evaluation on Real-World Behavior Data
Datasets and Preprocessing. With limited behavioral data availability, a common prac-
tice in the domain is to solely train and evaluate methods on synthesized behavior dynamics
[12, 80]. In contrast, we also evaluate on two real-world behavior datasets: the MatchN-
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Table 5.2: Mean (Std.) Log-Likelihood (LL) on the
MatchNMingle and Haggling Test Sets. For a single
sequence, we sum over the feature and participant dimen-
sions, and average over timesteps. The reported mean and
std. are over individual sequences in the test sets. Higher
is better. Underline indicates best LL within family.

MatchNMingle Haggling

Random Fixed-Initial Random Fixed-Initial

VED Family [78, 79]
VED-MLP 8.1 (7.2) 7.9 (7.0) 4.0 (8.3) 4.1 (8.2)
VED-GRU 25.4 (18.0) 25.1 (19.1) 60.3 (2.2) 60.3 (2.1)

NP Family [66, 69]
NP-latent 22.1 (17.8) 21.6 (18.5) 27.2 (17.3) 27.9 (16.3)
NP-uniform 21.4 (18.8) 20.5 (17.8) 24.8 (22.9) 25.0 (22.2)
ANP-dot 22.8 (18.6) 21.0 (18.3) 26.7 (21.4) 24.7 (20.8)
ANP-mh 23.6 (15.6) 20.0 (23.9) 25.1 (23.1) 24.8 (22.4)

Ours (SP-MLP)
SP-latent 102.1 (29.9) 101.5 (29.2) 136.6 (7.0) 136.7 (7.0)
SP-uniform 112.8 (34.1) 111.4 (33.8) 138.3 (8.0) 137.6 (8.4)
ASP-dot 109.9 (32.9) 107.6 (32.1) 137.8 (7.5) 136.4 (7.6)
ASP-mh 112.9 (34.7) 111.3 (33.6) 146.0 (10.9) 145.7 (10.2)
Ours (SP-GRU)
SP-latent 86.4 (37.2) 85.4 (37.2) 66.7 (27.4) 66.2 (30.7)
SP-uniform 87.0 (38.4) 85.5 (38.3) 79.9 (50.5) 78.6 (52.2)
ASP-dot 87.6 (39.1) 83.9 (38.1) 38.4 (60.4) 27.2 (93.4)
ASP-mh 85.8 (37.1) 82.3 (36.0) 66.3 (30.3) 59.3 (32.4)

X1 Y1
X2 Y2 Y3X3

time

a.

X✱ Y✱

X1 Y1
X2 Y2

Y3X3

time

b.

X✱ Y✱

Figure 5.6: Context Regimes. For a target sequence
pair (𝑿∗, 𝒀∗), context pairs (here 3) are sampled ei-
ther a. randomly across the lifetime of the group
interaction (random), or b. from a fixed initial dura-
tion (fixed-initial).

Figure 5.7: Forecasts over selected timesteps from
the Haggling group 170224-a1-group1. Speaking
status is interpolated between orange (speaking)
and blue (listening). Translucent models denote the
predicted mean± std.

Mingle (MnM) dataset of in-the-wild mingling behavior [16], and the Haggling dataset of a
triadic game where two sellers compete to sell a fictional product to a buyer [27]. For MnM,
we treat the 42 groups from Day 1 as test sets and a total of 101 groups from the other two
days as train sets. For Haggling, we use the same split of 79 training and 28 test groups
used by Joo et al. [27]. We consider the following cues: head pose and body pose, described
by the location of a keypoint and an orientation quaternion; and binary speaking status.
These are the most commonly considered cues in computational analyses of conversations
[28, 74, 75] given how crucial they are in sustaining interactions [1, 20, 61]. For orientation,
we first convert the normal vectors (provided in the horizontal direction in both datasets)
into unit quaternions. Since the quaternions q and −q denote an identical rotation, we
constrain the first quaternion in every sequence to the same hemisphere and interpolate
subsequent quaternions to have the shortest distance along the unit hypersphere. We then
split the interaction data into pairs of 𝒕obs and 𝒕fut windows to construct the samples for
forecasting. We specify dataset-specific preprocessing details in Appendix 5.C.
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Context Regimes. We evaluate on two context regimes: random, and fixed-initial (see
Figure 5.6). In the random regime, context samples (observed-future pairs) are selected as a
random subset of target samples, so the model is exposed to behaviors from any phase of
the interaction lifecycle. Here we ensure that batches contain unique 𝒕obs to prevent any
single observed sequence from dominating the aggregation of representations over the
context split. At evaluation, we take 50% of the batch as context. The fixed-initial regime
investigates how models can learn from observing the initial dynamics of an interaction
where certain gestures and patterns are more distinctive [1, Chap. 6]. Here we treat the
first 20% of the entire interaction as context, treating the rest as target.

Conversation Groups as Meta-Learning Tasks? While our core idea of viewing groups
as meta-learning tasks is grounded in social science literature (see Section section 5.5), does
it help to improve empirical performance? Comparing the LL of non-meta-learning and
meta-learning models in Table 5.2 by architecture—VED-MLP against NP and SP-MLP, and
VED-GRU against SP-GRU—we find that accounting for group-specific dynamics through
meta-learning yields improved performance. All best-in-family pairwise model differences
are statistically significant (Wilcoxon signed rank test, 𝑝 < 10−4).
Comparing Within Meta-Learning Methods. While our SP-MLP models perform the
best on LL in Table 5.2 (pairwise differences are significant), they fare the worst at estimating
themean (Appendix 5.A.2). On the other hand, the SP-GRUmodels estimate a better LL than
the NPmodels with comparable errors in themean forecast. TheNPmodels attain the lowest
errors in predicted means, but also achieve the worst LL. Why do the models achieving
better LL also tend to predict worse means? Upon inspecting the metrics for individual
features, we found that the models, especially the MLP variants, tend to improve LL by
making the variance over constant features exceedingly small, often at the cost of errors in
the means. Note that since the rotation in the data is in the horizontal plane, the qx and qy
quaternion dimensions are zero throughout. We do not observe such model behavior in the
synthetic data experiments, which do not involve constant features. Figure 5.7 visualizes
forecasts for an example sequence from the Haggling dataset where a turn change has
occurred just at the end of the observed window. Here, the SP-GRU model forecasts an
interesting continuation to the turn. It anticipates that the buyer (middle) will interrupt
the last observed speaker (right seller), before falling silent and looking from one seller to
another, both of whom the model expects to then speak simultaneously (see Appendix 5.B
for the full sequence). We believe that the forecast indicates that the model is capable of
learning believable haggling turn dynamics from different turn continuations in the data.
From the visualizations also we observe that the models seem to maximize LL at the cost of
orientation errors; in the case of SP-MLP seemingly by predicting the majority orientation
in the triadic setting. Also, the NP models forecast largely static futures. In contrast, while
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Table 5.3: Mean (Std.) LL for the Ablation Experiments with the SP-uniform GRU Model. The reported
mean and std. are over individual sequences in the test sets. Higher is better.

MatchNMingle Haggling

Random Fixed-Initial Random Fixed-Initial

Full Model 87.0 (38.4) 85.5 (38.3) 79.9 (50.5) 78.6 (52.2)

Encoding Partner Behavior no-pool 77.8 (31.2) 76.9 (31.0) 54.5 (75.5) 50.1 (97.5)
pool-oT 82.3 (33.3) 81.0 (33.6) 66.9 (26.0) 66.8 (25.7)

No Deterministic Decoding Shared Social Encoders 88.5 (40.7) 87.6 (39.6) 93.1 (39.3) 91.9 (40.4)
Unshared Social Encoders 81.4 (38.1) 80.2 (37.8) 66.6 (24.0) 64.8 (23.4)

being more dynamic, the SP-GRU forecasts contain some smoothing. Overall, the SP-GRU
models achieve the best trade-off between maximizing LL and forecasting plausible human
behavior.

5.6.4 Ablations
Encoding Partner Behavior. Modeling the interaction from the perspective of each
individual is a central idea in our approach. We investigate the influence of encoding
partner behavior into individual representations 𝒆𝑖ind. We train the SP-uniform GRU variant
in two configurations: no-pool, where we do not encode any partner behavior; and pool-oT
where we pool over partner representations only at the last timestep (similar to [40]). Both
configurations lead to worse LL and location errors (Table 5.3 and Appendix 5.A).

Deterministic Decoding and Social Encoder Sharing. We investigate the effect of
the deterministic decoders by training the SP-uniform GRU model without them. We
also investigate sharing a single social encoder between the Process Encoder and Process
Decoder in Figure 5.2. Removing the decoders only improves log-likelihood if the encoders
are shared, and at the cost of head orientation errors (Table 5.3 and Appendix 5.A).

5.7 Discussion
The setting of social conversations remains a uniquely challenging frontier for state-of-the-
art low-level behavior forecasting. In the recent forecasting challenge involving dyadic
interactions, none of the submitted methods could outperform the naive zero-velocity
baseline [17, Sec. 5.5]. (The baseline propagates the last observed features into the future as
if the person remained static.) Why is this? The predominant focus of researchers working
on social human-motion prediction has been pedestrian trajectories [23] or actions such
as punching, kicking, gathering, chasing, etc. [46, 47]. In contrast to such activities which
involve pronounced movements, the postural adaptation for regulating conversations is
far more subtle (also see the discussion in Appendix 5.E). At the same time, the social
intelligence required to understand the underlying dynamics that drive a conversation
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is comparatively more sophisticated than for an action such as a kick. We hope that the
social-science considerations informing the design of SCF (joint probabilistic forecasting
for all members) and the SP models (groups as meta-learning tasks) constitute a meaningful
foundation for future research in this space to build upon. Note that for our task formulation,
even the performance of our baseline models constitutes new results.

Cross-Discipline Impact and Ethical Considerations. While our work here is an
upstream methodological contribution, the focus on human behavior entails ethical con-
siderations for downstream applications. One such application involves assisting social
scientists in developing predictive hypotheses for specific behaviors by examining model
predictions. In these cases, such hypotheses must be verified in subsequent controlled
experiments. With the continued targeted development of techniques for recording social
behavior in the wild [81], evaluating forecasting models in varied interaction settings
would also provide further insight. Another application involves helping conversational
agents achieve smoother interactions. Here researchers should be careful that the ability
to forecast does not result in nefarious manipulation of user behavior.
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Appendices

5.A Detailed Results
5.A.1 Forecasting Glancing Behavior: Quantitative Results
All models are evaluated under the random context regime and no-pool configuration. The
sinusoids are interpreted to represent a horizontal head rotation between −90° and 90°.
Figure 5.8 plots the LL and head orientation error per timestep in 𝒕fut. In Figure 5.9 we plot
the MAE in predicted and expected mean forecasts.

Figure 5.8: Mean Per Timestep Metrics over the Sequences in the Synthetic Glancing Dataset. We repeat
Figure 5.5 here for completeness. Head orientation error is computed between the predicted and expected mean
(mean of the two ground-truth futures). We observe that the SP-GRU model performs best, especially when the
future is certain, learning both the best mean and std. over those timesteps.

Figure 5.9: Error in forecast mean and expected mean orientation (mean of the two ground-truth futures)
averaged over 𝒕fut for every sequence in the Synthetic Glancing dataset. Each sequence is denoted by the phase of
the sinusoid. The SP-GRU error plot is smoother with respect to small phase changes, with lower errors overall.
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5.A.2 Errors in Predicted Means for Real-World Behavior
Datasets

Tables 5.4 and 5.5 specify the error between the predicted mean forecast and ground-truth
sequences in the test sets: mean-squared error (MSE) for the head and body keypoint loca-
tions; mean absolute error (MAE) in orientation in degrees; and speaking status accuracy.
Note that we report the absolute error in rotation in 3D: while the ground-truth normals
are constrained to the horizontal plane, we don’t constrain our predicted quaternions. The
metrics are computed by taking a mean over the participants, timestep dimensions of the
tensors. The mean and std. are then reported over individual sequences.

Table 5.4: Mean (Std.) Errors in Predicted Means over Sequences in the MatchNMingle Test Sets. Lower
is better. Underline indicates best measure within family.

(a) Random Context

Family Model Head Loc. Body Loc. Head Ori. Body Ori.
MSE (px) MSE (px) MAE (°) MAE (°)

VED [78, 79] VED-MLP 131.12 (52.0) 110.58 (45.3) 74.84 (39.6) 97.55 (56.8)
VED-GRU 30.00 (18.0) 24.80 (17.2) 22.62 (15.7) 24.72 (29.1)

NP [66, 69]

NP-latent 41.16 (21.4) 33.41 (21.1) 25.58 (21.1) 35.88 (47.7)
NP-uniform 42.93 (20.9) 39.76 (21.0) 27.14 (21.4) 38.22 (48.0)
ANP-dot 41.59 (20.4) 37.57 (19.5) 26.42 (20.6) 37.19 (47.6)
ANP-mh 41.49 (20.7) 36.77 (19.5) 25.39 (20.7) 35.82 (48.0)

Ours (SP-MLP)

SP-latent 297.24 (92.3) 258.71 (87.8) 95.11 (41.3) 110.74 (51.6)
SP-uniform 73.53 (34.2) 61.95 (36.2) 95.00 (41.3) 110.06 (50.8)
ASP-dot 78.86 (24.8) 67.77 (21.7) 95.02 (41.3) 110.27 (51.1)
ASP-mh 63.99 (22.4) 53.59 (22.2) 95.00 (41.3) 109.81 (50.6)

Ours (SP-GRU)

SP-latent 38.58 (20.9) 27.45 (19.9) 49.50 (44.1) 63.06 (57.4)
SP-uniform 41.48 (22.2) 37.82 (18.9) 56.39 (47.8) 62.59 (54.3)
ASP-dot 44.17 (21.4) 37.13 (19.7) 55.41 (47.1) 62.14 (54.5)
ASP-mh 43.49 (21.3) 38.29 (19.8) 57.68 (47.3) 61.94 (53.7)

(b) Fixed-Initial Context

Family Model Head Loc. Body Loc. Head Ori. Body Ori.
MSE (px) MSE (px) MAE (°) MAE (°)

VED [78, 79] VED-MLP 131.67 (52.6) 111.50 (46.0) 75.97 (38.7) 98.26 (55.6)
VED-GRU 29.51 (16.5) 24.33 (16.1) 22.75 (15.9) 26.60 (32.0)

NP [66, 69]

NP-latent 40.82 (19.1) 32.81 (19.5) 25.58 (21.6) 38.97 (51.0)
NP-uniform 45.22 (19.1) 40.60 (19.0) 28.34 (22.4) 42.65 (51.8)
ANP-dot 44.67 (18.6) 40.03 (18.2) 29.08 (21.9) 44.44 (54.4)
ANP-mh 42.75 (18.7) 37.56 (18.4) 26.95 (22.3) 42.20 (51.9)

Ours (SP-MLP)

SP-latent 296.36 (92.8) 259.46 (87.5) 94.75 (39.0) 108.62 (47.3)
SP-uniform 81.61 (40.7) 64.44 (42.6) 94.68 (39.0) 108.26 (46.7)
ASP-dot 92.03 (38.2) 78.97 (33.1) 94.69 (39.0) 108.36 (46.9)
ASP-mh 66.22 (25.5) 53.04 (24.0) 94.67 (39.0) 108.14 (46.5)

Ours (SP-GRU)

SP-latent 38.31 (18.2) 26.79 (17.7) 51.78 (45.1) 65.38 (55.9)
SP-uniform 42.75 (21.7) 42.18 (19.8) 57.79 (48.6) 64.44 (53.3)
ASP-dot 54.42 (25.9) 44.88 (22.6) 56.12 (46.9) 65.28 (54.5)
ASP-mh 56.62 (26.3) 47.78 (22.9) 58.90 (47.9) 64.46 (54.1)
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Table 5.5: Mean (Std.) Errors in Predicted Means over Sequences in the Haggling Test Sets. Lower is
better for all metrics except for speaking status accuracy. Underline indicates best measure within family.

(a) Random Context

Family Model Head Loc. Body Loc. Head Ori. Body Ori. Speaking
MSE (cm) MSE (cm) MAE (°) MAE (°) Accuracy

VED [78, 79] VED-MLP 42.04 (16.0) 41.53 (15.6) 24.70 (20.7) 19.02 (13.3) 0.636 (0.24)
VED-GRU 0.79 (0.4) 0.75 (0.4) 1.55 (0.6) 1.06 (0.4) 0.989 (0.02)

NP [66, 69]

NP-latent 14.21 (6.5) 15.06 (6.1) 16.29 (13.8) 12.82 (13.7) 0.787 (0.23)
NP-uniform 15.01 (7.3) 15.97 (7.2) 17.45 (18.3) 14.65 (20.0) 0.715 (0.24)
ANP-dot 11.86 (5.4) 12.22 (5.5) 15.44 (13.3) 12.56 (18.0) 0.806 (0.23)
ANP-mh 16.36 (7.4) 17.17 (7.2) 19.41 (20.4) 16.02 (22.1) 0.692 (0.21)

Ours (SP-MLP)

SP-latent 25.58 (10.1) 26.57 (9.0) 91.07 (23.9) 97.09 (22.5) 0.638 (0.08)
SP-uniform 31.99 (8.2) 36.33 (7.3) 91.08 (23.9) 91.36 (23.9) 0.629 (0.18)
ASP-dot 27.16 (7.7) 31.19 (7.1) 90.88 (23.9) 91.43 (23.8) 0.704 (0.19)
ASP-mh 23.88 (7.8) 27.13 (7.7) 90.50 (23.9) 91.04 (24.1) 0.792 (0.24)

Ours (SP-GRU)

SP-latent 17.18 (6.5) 17.41 (6.2) 17.76 (15.8) 14.78 (20.7) 0.713 (0.23)
SP-uniform 15.84 (5.5) 17.76 (7.5) 20.65 (19.9) 21.73 (29.5) 0.671 (0.22)
ASP-dot 22.59 (8.7) 23.52 (10.2) 17.90 (11.3) 16.10 (19.3) 0.722 (0.24)
ASP-mh 14.65 (5.8) 15.38 (6.1) 28.06 (24.5) 36.90 (37.9) 0.767 (0.23)

(b) Fixed-Initial Context

Family Model Head Loc. Body Loc. Head Ori. Body Ori. Speaking
MSE (cm) MSE (cm) MAE (°) MAE (°) Accuracy

VED [78, 79] VED-MLP 41.71 (16.2) 41.27 (15.8) 24.36 (19.8) 19.33 (13.4) 0.640 (0.25)
VED-GRU 0.76 (0.4) 0.72 (0.3) 1.56 (0.6) 1.04 (0.3) 0.989 (0.02)

NP [66, 69]

NP-latent 13.85 (6.1) 14.71 (5.7) 16.22 (14.1) 12.69 (13.9) 0.774 (0.24)
NP-uniform 15.01 (7.5) 15.95 (7.5) 17.26 (15.9) 14.68 (18.7) 0.701 (0.24)
ANP-dot 12.83 (5.9) 13.26 (6.0) 16.19 (13.7) 13.56 (17.8) 0.717 (0.23)
ANP-mh 16.68 (7.9) 17.43 (7.7) 19.78 (21.2) 15.57 (20.3) 0.682 (0.21)

Ours (SP-MLP)

SP-latent 25.27 (10.0) 26.33 (8.9) 91.14 (23.8) 97.09 (22.5) 0.640 (0.09)
SP-uniform 32.93 (9.4) 37.16 (8.5) 91.15 (23.9) 91.36 (23.9) 0.633 (0.18)
ASP-dot 27.94 (7.8) 31.83 (7.1) 90.93 (23.9) 91.43 (23.8) 0.628 (0.20)
ASP-mh 24.07 (8.1) 27.35 (8.3) 90.53 (23.9) 91.07 (24.1) 0.770 (0.25)

Ours (SP-GRU)

SP-latent 16.66 (6.2) 17.17 (6.0) 17.67 (16.0) 14.64 (20.3) 0.705 (0.23)
SP-uniform 16.53 (6.0) 18.20 (8.0) 20.74 (19.5) 21.31 (28.9) 0.674 (0.22)
ASP-dot 23.91 (8.8) 25.34 (10.6) 19.11 (12.8) 17.36 (19.0) 0.635 (0.26)
ASP-mh 16.87 (6.0) 16.96 (6.1) 28.90 (24.3) 37.23 (37.6) 0.705 (0.24)

The keypoint annotations for MnM are provided in image space from a top-down
perspective, so the location errors in Table 5.4 are reported as the MSE in pixel locations.
We do not consider speaking status cues for experiments with MnM (see Appendix 5.C.2).



5.A Detailed Results

5

149

5.A.3 Ablations

Table 5.6: Mean (Std.) Errors in Predicted Means for the Ablation Experiments with the SP-uniform
GRU Model. The reported mean and std. are over sequences in the MatchNMingle Test Sets. Lower is better.

(a) Random Context

Head Loc. Body Loc. Head Ori. Body Ori.
MSE (px) MSE (px) MAE (°) MAE (°)

Full Model 41.48 (22.2) 37.82 (18.9) 56.39 (47.8) 62.59 (54.3)

Encoding Partner Behavior no-pool 36.25 (19.3) 30.88 (18.1) 47.28 (39.0) 62.09 (54.5)
pool-oT 41.81 (19.7) 33.78 (17.9) 54.01 (45.3) 63.32 (54.8)

No Deterministic Decoding Shared Social Encoders 41.84 (19.9) 30.99 (18.4) 44.59 (37.2) 72.02 (62.4)
Unshared Social Encoders 37.25 (19.7) 36.13 (18.0) 62.81 (55.6) 56.15 (52.6)

(b) Fixed-Initial Context

Head Loc. Body Loc. Head Ori. Body Ori.
MSE (px) MSE (px) MAE (°) MAE (°)

Full Model 42.75 (21.7) 42.18 (19.8) 57.79 (48.6) 64.44 (53.3)

Encoding Partner Behavior no-pool 36.17 (17.4) 31.77 (16.5) 48.28 (39.6) 64.19 (53.3)
pool-oT 41.91 (18.6) 34.17 (16.0) 54.95 (45.7) 65.20 (53.7)

No Deterministic Decoding Shared Social Encoders 41.29 (18.2) 31.62 (16.9) 45.54 (38.0) 73.30 (60.9)
Unshared Social Encoders 37.78 (18.5) 35.28 (16.3) 63.96 (56.1) 58.23 (53.0)

Table 5.7: Mean (Std.) Errors in Predicted Means for the Ablation Experiments with the SP-uniform
GRU Model. The reported mean and std. are over sequences in the Haggling Test Sets. Lower is better for all
except for speaking status accuracy.

(a) Random Context

Head Loc. Body Loc. Head Ori. Body Ori. Speaking
MSE (cm) MSE (cm) MAE (°) MAE (°) Accuracy

Full Model 15.84 (5.5) 17.76 (7.5) 20.65 (19.9) 21.73 (29.5) 0.671 (0.22)

Encoding Partner Behavior no-pool 18.20 (6.7) 18.05 (7.7) 16.76 (12.8) 14.30 (20.9) 0.690 (0.21)
pool-oT 17.02 (6.1) 19.18 (6.5) 23.71 (25.1) 17.80 (26.8) 0.738 (0.21)

No Deterministic Decoding Shared Social Encoders 15.76 (7.2) 16.34 (6.6) 45.54 (44.6) 21.87 (25.0) 0.644 (0.22)
Unshared Social Encoders 17.40 (6.9) 18.33 (6.7) 18.62 (14.7) 14.54 (20.2) 0.704 (0.23)

(b) Fixed-Initial Context

Head Loc. Body Loc. Head Ori. Body Ori. Speaking
MSE (cm) MSE (cm) MAE (°) MAE (°) Accuracy

Full Model 16.53 (6.0) 18.20 (8.0) 20.74 (19.5) 21.31 (28.9) 0.674 (0.22)

Encoding Partner Behavior no-pool 18.64 (6.7) 18.45 (7.4) 16.85 (12.9) 14.29 (20.5) 0.687 (0.21)
pool-oT 17.39 (6.2) 18.97 (6.4) 23.90 (24.6) 17.63 (25.6) 0.730 (0.21)

No Deterministic Decoding Shared Social Encoders 16.93 (8.1) 17.15 (7.0) 45.49 (44.3) 21.83 (24.7) 0.637 (0.22)
Unshared Social Encoders 18.54 (7.9) 19.18 (7.1) 18.68 (14.9) 14.44 (20.0) 0.700 (0.23)
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5.B Qualitative Visualizations
5.B.1 Glancing Behavior

Figure 5.10: Forecasting Glancing Behavior for a Sequence in the Context Set. We visualize the same
sinusoid within the context set as plotted in Figure 5.4 (phase = 4.2), here interpreted as a horizontal head rotation
between −90° and 90°. The bottom three rows depict predictions, with the solid head denoting the mean, and
the translucent heads the std. GT stands for Ground-Truth. The SP models learn better uncertainty estimates,
especially over the timesteps where the future is certain (see timestep 11, for instance).

Figure 5.11: Forecasting Glancing Behavior for a Sequence Not in the Context Set. We visualize the same
sinusoid not in the context set as plotted in Figure 5.4 (phase = 0.005). See the Figure 5.10 caption for details.
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5.B.2 Real-World Behavior

Figure 5.12: Forecasts for a Sequence from the Haggling Test Group 170221-b1-group3. We visualize
cues from real-world data using 3D models to preserve privacy. Similar to Figure 5.7, speakers are depicted in
orange. The predicted speaking status mean is visualized as an interpolated shade between orange and blue.
The translucent models in the forecasts denote the mean± std. pose and speaking status. A speaker turn change
occurs at around timestep 18 in the observed sequence. The buyer (on the right) looks at both sellers in turn
mostly through gaze changes visible in the original video. This is barely registered in posture changes since
both speakers are within the buyer’s field of vision in this triadic setting (see Appendix 5.E for a discussion).
The leaning motions of the new speaker, however, are captured in the postural shifts that continue into the
ground-truth future. We observe that the NP forecasts are almost completely static. The SP-GRU forecasts are
comparatively dynamic with lower uncertainties overall. The SP-MLP model seems to be learning an overall
average orientation, forecasting all participants to be facing in the direction of the two sellers. Note that these
pose changes are far more subtle than in the glancing behavior dataset, which is an important consideration for
the domain practice of evaluating methods on synthesized behavior alone [12, 80].
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Figure 5.13: Forecasts for a Sequence from the Haggling Train Group 170224-a1-group1. We see a similar
pattern to the model forecasts as in Figure 5.12: NP forecasts are static, SP-GRU predicts more dynamic futures,
while the SP-MLP forecasts average orientations. A turn change has occurred at the end of the observed window.
We observe that the SP-GRU model forecasts an interesting continuation of the turn. It anticipates the buyer
(middle) to quickly interject the last observed speaking seller, before falling silent and directing attention between
the sellers, both of whom it expects to then speak simultaneously. While this is not the ground-truth future in
this instance, we believe that the forecast still indicates that the model is capable of learning believable haggling
turn dynamics from the overall training data. See the Figure 5.12 for details on the visualization setup.

5.C Additional Dataset Details
5.C.1 Synthesized Glancing Behavior Dataset
The set of pristine sinusoids representing Type I glances is computed by evaluating the
sine function at the bounds of 19 equally spaced partitions of [0,3𝜋 +𝜙), for phase values 𝜙
in [0,2𝜋) with a step size of 0.001. More concretely, this is the set𝑔 = {𝑟 ∶ 𝑟 = sin(𝑥), 𝑥 = 𝑛 × (3𝜋 +𝜙)/19, 𝑛 ∈ {0,1,…19},𝜙 = 𝑝 ×0.001, 𝑝 ∈ {0,1,…6283}}, (5.12)

which results in 6284 sequences. Type III glances are represented by identical sinusoids
with clipped amplitudes for the last six timesteps, resulting in the final dataset of 12568
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sequences. We train with batches of 100 sequences, using a randomly sampled 25 % of the
batch as context. For evaluation, we fix 785 randomly sampled phase values as context.
For each phase, samples corresponding to both types of glances are included in the context
set, effectively using 25 % of all samples as context at evaluation.

5.C.2 Preprocessing the Real-World Behavior Datasets

For MnM, 2D keypoints are provided in image space (from a top-down camera perspective).
For Haggling, the keypoints are in 3D space, and we use the nose keypoint to represent
the head location, and the mid-point of the shoulders to represent the body location. We
standardize the location features to have zero mean and unit variance, using the train
statistics to standardize the test sets.

Haggling Preprocessing Details. Cue annotations are provided at 30Hz for the Haggling
Dataset. Motivated by the domain focus on the organization of turn-taking, we consider
window lengths of 2 seconds supported by dataset statistics and literature. The Haggling
dataset duration of contiguous speech follows a mean of 2.13 s (𝜎 = 2.61 s), which is close
to the mean measure of 1.68 s found in turn-taking analysis [19, 82]. We generate sliding
windows with an overlap of 0.8, constraining the offset between 𝒕obs and 𝒕fut to a maximum
of 5 s. This is to roughly restrict candidate future windows to those starting after two turn
changes. In total, we obtain about 135K observed-future sequence pairs for training, and
about 48K pairs for testing.

MatchNMingle Preprocessing Details. Cue annotations in MnM are provided at 1 Hz.
The provided speaking status labels were annotated from video alone, and then manually
smoothed by majority voting over 3 s windows. Consequently, these often do not match a
person’s pose behavior in the video for long sequences. We therefore deemed this data
stream unsuitable for continuous sequence prediction and excluded it from our experiments.
Assuming about 2 s per turn as before, and considering the 1 Hz annotation sample rate,
we choose 𝒕obs and 𝒕fut to contain 4 timesteps or two turn durations each, with a maximum
offset of 4 s as well. The keypoint annotations for every person are provided within
the camera that best captures the individual, which can change over the duration of the
interaction. For every group, we therefore first extract slices where the entire group
is visible within the same camera for at least 20 s. We found 20 s to be a reasonable
balance between not aggressively discarding groups, while still obtaining unique observed
sequences for each slice (at least four). In total, we obtained about 74K observed-future
sequence pairs for training, and about 52K pairs for testing.



5

154 Adaptive Forecasting of Social Cues in Conversing Groups

5.D Implementation Details
5.D.1 Neural Architectures
The hyperparameters we chose resulted from light tuning through 5-fold cross-validation
and showed improved performance for all models, but improved absolute performance
might be obtained through more extensive tuning. The architecture hyperparameters
were then kept fixed for the variants within each family for fair intra-family comparison.
Table 5.8 specifies the network architecture hyperparameters for the real-world behavior
dataset experiments. Note that for theMLP variants, the number of parameters is dependent
on sequence length (timestep and feature dimensions of the tensors are collapsed into a
single dimension; 60 timesteps for Haggling, 4 for MnM), so the final number of parameters
vary across the datasets.

Table 5.8: ArchitectureHyperparameters for real-world behavior dataset experiments (MnM /Haggling).
For the meta-learning models, the number of parameters are reported for the simplest -latent variant.

Hyperparameter VED-MLP VED-GRU NP SP-MLP SP-GRU

Sequence Encoder/Decoder
Number of layers 2 1 2 2 1
Hidden dim 180 320 180/460 64 320

Partner Pooler 𝜓(𝒙𝑗)
Number of MLP layers — — — 2 2
MLP hidden dim — — — 64 64
Output dim — — — 32 32𝒛 Encoder
Number of layers 2 2 2 2 2
Hidden dim 64 64 64 64 64

Representations𝒆, 𝒓, 𝒔, 𝒛 dim 64 64 64 64 64
Multi-Head Attention

Query/Key dim — — 32 32 32
Number of heads — — 8 8 8

Number of parameters
MatchNMingle Dataset 254K 1.1M 274K 283K 3.0M
Haggling Dataset 711K 1.1M 2.8M 2.2M 3.0M
The non-meta-learning baselines retain the probabilistic attributes of our proposed

Social Process models so that the only difference is the meta-learning aspect. We conse-
quently adapt these baseline models from RNN based variational autoencoder architectures,
first proposed for autoencoding sentences [79], and later refined for sketches [78]. The key
difference is that rather than autoencoding the observed cues, we decode the future cues
from the latent representations. Unlike [79], we are not working with discrete inputs, so the
cues are fed directly into the sequence encoders without an embedding layer. For consistent
comparison across models, we use unidirectional sequence encoders and decoders for the
GRU variants and omit the Gaussian Mixture Model layer of [78]. This way, the encoding of
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partner behavior is the only architectural difference in the backbone components between
our proposed SP models and the VED baselines.

5.D.2 Training and Evaluation
Themodels are trained in the random context regime following the standard NP setting. We
construct batches for training by bucketing samples such that all sequences in a batch share
the same length of 𝒕obs and 𝒕fut. Note that since the MLP models are operationalized by
collapsing the timestep and feature dimensions, the length of 𝒕fut is fixed for these models
across batches. However, since the recurrent models can handle sequences of different
lengths, we allow for forecasting different length futures across batches, resulting in a
few more training batches. Following the training practices suggested by Le et al. [83],
we construct the context set at training as a random subset of the batch. Consequently,
we further constrain samples in a batch to correspond to the same interacting group (see
Section 5.5 for the underlying meta-learning intuition). For the same reason, we also ensure
that a batch contains unique observed sequences so that a single observed sequence does
not dominate the aggregation of representations over context. This is because a single
observed sequence has multiple associated future sequences at different offsets, and could
show up multiple times in a batch through random sampling if not handled explicitly.

We optimize the models using Adam [84]. For the NP and SP-MLP models we use a
batch size of 128, an initial learning rate of 3 ⋅10−5, a weight decay of 5 ⋅10−4, and a dropout
rate of 0.25. For the MLP-GRU models we use a batch size of 64, an initial learning rate
of 10−5, and a weight decay of 10−3. The entire system was implemented using Pytorch
[85] and Pytorch Lightning [86]. Every model was trained on a single NVIDIA GPU on an
internal cluster depending on availability; one of Geforce GTX 970 (4 GB) or 1080 (8 GB),
or Quadro P4000 (8 GB).

We validate the hyperparameters using 5-fold cross-validation, in the random context
regime. At test, we use the same context sequences across models for a fair comparison. All
testing was done with a batch size of 128 for consistency. The errors in mean are computed
after destandardizing the location dimensions (orientation is already denoted by a unit
quaternion, and therefore not standardized). The predicted std. deviations are scaled by
the same value as the predicted means during destandardization.

5.E Distinguishing Forecasting in Focused and Un-
focused Interactions: A Meta Discussion

Free-standing conversations are an example of what social scientists call focused interactions,
said to arise when a “group of persons gather close together and openly cooperate to sustain
a single focus of attention, typically by taking turns at talking” [24, p. 24]. On the other hand,
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unfocused interactions occur when information is implicitly passed between individuals
that happen to be in each other’s presence by circumstance, such as pedestrians walking
in proximity. One practical challenge of forecasting cues in focused interactions stems
from the subtlety and sparsity of motion in recorded data. A common assumption is to
use head pose as a proxy for gaze [12, 28, 74, 80, 87, 88]. In real-world data, however,
attention shifts through changes in gaze are not always accompanied by similar head
rotations [89, Fig. 5]. However, gaze is hard to record during group interactions in the
wild with reasonable accuracy in a non-invasive manner. Even with the technology to
do so (e.g. using onboard sensors on a social robot interaction partner), the question of
whether recording faces is privacy-preserving is an ongoing discussion in the community.
Moreover, intrusive sensing or non-human partners might also invalidate the naturalness
of interaction behaviors (ecological validity). The consequence of not recording gaze is that
in dyadic and triadic configurations where people are within each other’s field of vision, the
recorded movements (only from head and body) are even more subtle since attention shifts
are predominantly achieved through gaze changes. This subtlety of motion in recorded data
further distinguishes forecasting in conversations from the unfocused setting of pedestrian
(or vehicle) trajectories. While some modeling techniques might be computationally
applicable in both scenarios, the data stream in pedestrian trajectory settings (locations)
can be comparatively more dynamic than the data streams in conversations (e.g. pose).
It is important for researchers to be aware of such nuances while interpreting results for
downstream applications (see Section 5.7).
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Abstract
We propose a post hoc saliency-based explanation framework for counterfactual reasoning in
probabilistic multivariate time-series forecasting (regression) settings. Building upon Miller’s
framework of explanations derived from research in multiple social science disciplines, we
establish a conceptual link between counterfactual reasoning and saliency-based explanation
techniques. To address the lack of a principled notion of saliency, we leverage a unifying
definition of information-theoretic saliency grounded in preattentive human visual cognition
and extend it to forecasting settings. Specifically, we obtain a closed-form expression for
commonly used density functions to identify which observed timesteps appear salient to an un-
derlying model in making its probabilistic forecasts. We empirically validate our framework in
a principled manner using synthetic data to establish ground-truth saliency that is unavailable
for real-world data. Finally, using real-world data and forecasting models, we demonstrate
how our framework can assist domain experts in forming new data-driven hypotheses about
the causal relationships between features in the wild.

6.1 Introduction
As we go about our daily lives, engaging in conversations, walking down the street, or
driving a car, we rely on our ability to anticipate the future actions and states of those around
us [1, 2]. However, the numerous unknowns, such as hidden thoughts and intentions, make
our predictions of the future inherently uncertain [2]. To reflect this uncertainty, several
machine learning methods in such settings forecast a full distribution over plausible futures,
rather than making a single point prediction [3, 4]. Identifying the factors that influence
such a model’s forecasts is particularly useful for domain experts seeking to understand the
causal relationships guiding complex real-world behaviors, especially in situations where
the future is uncertain. In this work, we introduce and address a novel research question
toward counterfactual reasoning in multivariate probabilistic regression settings: how can
we identify the observed timesteps that are salient for a model’s probabilistic forecasts over
a specific future window? Specifically, we introduce the first post hoc, model-agnostic,
saliency-based explanation framework for probabilistic time-series forecasting.

We begin with a fundamental observation about human social cognition: we are averse
to uncertainty and strive to minimize it [2]. Consider the scenario where a pedestrian is
approaching you on the street. Initially, there is uncertainty about which direction each
of you will take to avoid a collision. As one of you changes direction, the other observes
and takes the opposite direction, ultimately avoiding a collision. Concretely, the thesis
of this work is to formalize the following notion of saliency: the timestep that changes
the uncertainty of a predicted future is salient toward predicting that future. For instance,
in the aforementioned scenario, we posit that the moment when one pedestrian changes
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direction is salient toward forecasting the future trajectories of the pedestrians.
Our notion of saliency is grounded in preattentive human cognition and related to the

concept of surprisal or information associated with observations [5, 6]. Preattentive saliency
captures what the brain subconsciously finds informative before conscious, or attentive,
processing occurs. An unexpected or surprising observation is considered salient in this
context. However, when applied to forecasting, the idea of surprisal or informativeness
must be linked to the future outcome. Consequently, we propose that a timestep that alters
an observer’s certainty about the future is surprising, and therefore, salient. Crucially,
our unifying ‘bottom-up’ perspective treats a forecasting model like a human observer,
providing a principled definition of saliency that is not arbitrarily tied to task-specific error
metrics. In contrast, the ‘top-down’ or task-specific notions of saliency common in post hoc
explainable artificial intelligence (XAI) literature suffer from several drawbacks. Computed
saliency maps may not measure the intended saliency, and even be independent of both the
model and data generating process [7–9]. Moreover, what constitutes a good explanation
is subject to the biases, intuition, or the visual assessment of the human observer [7, 10]; a
phenomenon we refer to as the interpretation being in the eye of the beholder. Finally, as
Barredo Arrieta et al. [11, Sec. 5.3] note, “there is absolutely no consistency behind what
is known as saliency maps, salient masks, heatmaps, neuron activations, attribution, and
other approaches alike.”

To the best of our knowledge, no existing work addresses the specific task of obtaining
post hoc model-agnostic explanations for probabilistic forecasts. Existing XAI methods for
time-series data have predominantly focused on sequence classification, as we discuss in
Section 6.2 and Appendix 6.A. For regression, instead of post hoc explainability, researchers
have emphasized interpretability by design [11] or intrinsic interpretability [12], where
interpretability stems from the simple structure of models or coefficients of predefined
basis functions [13, 14]. Against this backdrop, we present the following key contributions:

• Conceptual Grounding: We establish the conceptual foundation for linking saliency-
based explanations with counterfactual reasoning. We draw upon insights from
Miller’s [10] work on explanations in artificial intelligence, highlighting the con-
trastive nature of explanations (Section 6.3).

• Information-Theoretic Framework: We extend Loog’s [5] framework of bottom-up
preattentive saliency to the domain of probabilistic forecasting. Specifically, we
introduce a novel expression of saliency based on the differential entropy of the
predicted future distribution, providing a closed-form solution for commonly used
density functions in the literature (Section 6.4).

• Empirical Validation: We empirically evaluate our framework using synthetic and
real-world data. In the synthetic setting, we achieve full accuracy in retrieving salient
timesteps with known ground truth saliency. In real-world scenarios without ground
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truth saliency, we demonstrate the utility of our framework in explaining forecasts
of social nonverbal behavior and vehicle trajectories, showcasing its effectiveness in
complex and dynamic contexts (Section 6.5).

6.2 Related Work
XAI Techniques for Time-Series Data. The taxonomy commonly used for explainabil-
ity methods categorizes techniques based on three criteria: (i) intrinsic or post hoc, (ii)
model-specific or model-agnostic, and (iii) local or global [12]. In the context of time-
series regression, existing techniques predominantly focus on non-probabilistic settings
and fall into the category of intrinsic and model-specific approaches. These include: (i)
incorporating inductive biases through internal basis functions [14] (also extended to the
probabilistic setting [13]), (ii) utilizing self-attention mechanisms in the model [15], and
(iii) adapting saliency maps from computer vision to measure the contribution of features
to the final forecast [16, 17]. For a comprehensive review of XAI methods across domains
and time-series tasks, please refer to Appendix 6.A.

Saliency-Based Explanations and Drawbacks. Saliency maps gained popularity as post
hoc explanation tools for image classification [16, 18]. However, the lack of consistency
in defining saliency has led to diverse interpretations, including occlusion sensitivity,
gradient-based attribution heatmaps, and neuron activations [11, 12]. Nevertheless, these
maps are typically computed by perturbing different parts of the input and observing the
resulting change in the prediction error or output class. Several issues arise with the current
use of saliency maps as explanations: (i) the feature-level manipulations used for saliency
maps may distort the sample in ways that deviate from the real-world data manifold and
destroy semantics [7–9]; (ii) given the arbitrary definitions, evaluating saliency maps
becomes challenging and is subject to observer biases [12, Sec.10.3.2], which can lead to
maps appearing correct even when they are insensitive to the model and data [7]; (iii)
for forecasting, Pan et al.’s [17] notion of saliency based on the error between the point
prediction and ground truth future is arbitrary and relies on ground truths unavialable
during testing; and (iv) the saliency map is explicitly retrained for a single observed-future
sequence, failing to capture salient patterns across similar observed sequences that result
in divergent but plausible futures [17].

Model-Agnostic Techniques. The SHAP framework, which integrates ideas from Shapley
Values, LIME, LRP, and DeepLIFT, has gained popularity as a model-agnostic approach [19].
However, adapting these techniques to time-series tasks poses several challenges. Firstly,
the Shapley methods rely on functions with real-valued codomains, such as a regression
function 𝑓𝑥 [19, see Eq. 4, 8], while our focus is on probabilistic models that output the
distribution 𝑝𝑌 |𝑋 instead of some 𝑦 = 𝑓𝑥(⋅) to handle future uncertainty. Adapting these
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methods to deal with full predicted distributions is nontrivial. Similarly, gradient-based
approaches compute gradients with respect to a single output instead of a full distribution.
Secondly, these methods provide feature importance measures for a single output, whereas
in time-series analysis, we are interested in identifying the importance of an observed
timestep for an entire future sequence. That is, the joint consideration of the entire future
sequencewhen computing input importancemeasures is challenging. As Pan et al. [17] note,
in evaluating single-time predictions, these methods “ignore crucial temporal information
and are insufficient for forecasting interpretation”. Finally, similar to perturbation-based
saliency methods, the sampling of features from arbitrary background samples in methods
like Shapley/SHAP can lead to Frankenstein Monster instances [12, Sec. 9.5.3.3] that may
not be valid samples on the data manifold. This undermines the semantics of the data,
particularly in scenarios like motion trajectories, where randomly replacing features can
result in physically impossible or glitchy motions.

6.3 ConceptualGrounding: Linking Saliency-Based
Explanations to Counterfactual Reasoning

Given the challenges in XAI where speculations are often presented in the guise of ex-
planations [20], we argue for grounding the concept of explanation within established
frameworks of how humans define, generate, and present explanations. Turning to research
in philosophy, psychology, and cognitive science, Miller [10] emphasized the importance
of causality in explanatory questions. Drawing upon Pearl and Mackenzie’s Ladder of
Causation [21], he proposed the following categorization:

• Associative (What? ): Reason about which unobserved events could have occurred
given the observed events.

• Interventionist (How? ): Simulate a change in the situation to see if the event still
happens.

• Counterfactual (Why? ): Simulate alternative causes to see whether the event still
happens.

To apply Miller’s framework in the context of forecasting, one needs to define the
abstract notions of ‘events’ and ‘causes’. Consider a model M that predicts features over a
future window 𝒕fut by observing features over a window 𝒕obs. We assert that the intrinsic
interpretability methods involving inductive biases [13, 14] and attention mechanisms
[15], fall under associative reasoning. These methods assess the (unobserved) importance
of features over 𝒕obs using model parameters or attention coefficients based on a single
prediction from M (the ‘event’) for a fixed 𝒕fut and single 𝒕obs. In contrast, we posit that the
perturbation-based saliency methods can support counterfactual reasoning. They perturb
different parts of the input over 𝒕obs simulating alternative ‘causes’ from M’s perspective,
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and observe the effect on an error metric (the ‘event’). However, the current application of
these methods encounters issues outlined in Section 6.2.

To address the aforementioned challenges, we employ a unifying information-theoretic
concept of bottom-up saliency grounded in preattentive human cognition [5, 6] as discussed
in Section 6.1. Concretely, we propose the following implication that links this saliency to
counterfactual reasoning:

observing the features at a timestep 𝑡 ∈ 𝒕obs results in a change in M’s infor-
mation about the future 𝐼fut over the given 𝒕fut ⟹ 𝑡 is salient. (6.1)

Note that the antecedent (on the left of the implication) is a counterfactual statement.
We formally express the implication using causal graphs [22] in Figure 6.1. The generic
graph expresses relationships between the random variables prior to training the forecasting
model 𝑀. The exogenous variable 𝜖𝑀 captures the randomness in the training process
and modeling choices, including the distribution family for representing the forecasts.
The exogenous variable 𝜖𝐻 captures the randomness in the human observer’s choice of
observed and future windows to examine the model. Our central idea is to evaluate the
information in the model’s predicted distribution denoted by 𝐼fut. Specifically, we propose
posing the following counterfactual question: What information would M have about the
future over a fixed 𝒕fut if it observed the features over 𝒕obs? Themodified graph for evaluating
this question is in Figure 6.1b. Once the model M has been trained and the windows𝒕obs and 𝒕fut have been chosen, the effect of the exogenous variables on the variable 𝐼fut
disappears. This allows us to evaluate the change in the information about the future in
response to different realizations of 𝒕obs and 𝒕fut, facilitating counterfactual analysis. Note
that we assume the modified graph is already available, as our focus is on the explanation
phase. While the procedure starting from training the model in the generic graph implicitly
follows Pearl’s abduct-action-prediction process [22, p. 207], estimating the distribution

Data 𝑀
𝜖𝑀
𝑇obs
𝑇fut

𝜖𝐻 𝐼fut
(a) Generic Graph

𝑀 =M𝑇obs = 𝒕obs
𝑇fut = 𝒕fut

𝐼fut = I

(b) Modified Graph

Figure 6.1: Causal Graphs for Explaining Forecasts
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over the exogenous variables from the abduction step is conceptually not applicable in this
setting.

Note that these graphs are not meant to describe relationships between random vari-
ables in the data for a specific hypothesis, as is typical in causal inference literature: for
instance, the effect of [rotating toward the speaker] on [turn changes] in conversations.
Rather, they describe the process of a human generating contrastive explanations for a given
pretrained forecasting model 𝑀—irrespective of whether or not it is the true model—for
some sequences in the data (𝒕obs, 𝒕fut). Further, the notion of counterfactuals, as used
within the context of contrastive explanations, is also distinct from that in causal infer-
ence. As Miller [10, Sec. 2.3] points out, “it is important to note that this is not the same
counterfactual that one refers to when determining causality. For causality, the counterfac-
tuals are hypothetical ‘noncauses’…whereas in contrastive explanation, counterfactuals
are hypothetical outcomes.” Miller’s point is that why explanations entail contrastive
reasoning which involves comparing ‘outcomes’ in response to alternate ‘causes’. In our
work, this ‘outcome’ relates to the information in 𝑀’s predicted distribution, the what-if
question being “would the information in 𝑀’s prediction for the window 𝒕fut change if
it had observed features over a different (contrastive) 𝒕obs?”. Contrast this to associative
reasoning which uses features from a single 𝒕obs to generate the attribution map. A longer
discussion is in Appendix 6.E.

Considering the information in forecasts in implication 6.1 links counterfactual reason-
ing to a more principled notion of saliency than has been used in XAI literature. Note that
the implication entails that for the antecedent to be true 𝑡 must be salient. However, know-
ing the antecedent is false is not sufficient to conclude that 𝑡 is not salient, i.e. there can
be other notions of saliency that make 𝑡 salient. However, for less speculative evaluation,
it is crucial that we use a unifying notion of saliency that is not arbitrarily defined based
on task-specific error metrics or model gradients [11, 16–18]. Preattentive saliency, as we
formalize in Section 6.4.1, is based on what is informative for the brain before conscious
processing, making it more objective in nature.

Our framework addresses all the concerns associated with saliency-based approaches
described in Section 6.2: (i) the counterfactuals in our framework are real observed features
rather than random input perturbations, preserving the semantics of the real-world data;
(ii) our use of information-theoretic preattentive saliency is principled and objective; (iii)
our framework allows for saliency computation on unseen test data where the ground-
truth future is unavailable, relying solely on the underlying model; and (iv) our approach
considers the distribution over possible futures for a single input, capturing the structural
predictive relationships between features across multiple samples. An additional advantage
of our framework is that it does not require any training to compute the saliency and can
be applied to any model that outputs a distribution over futures.
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6.4 Methodology: Closed-Form Saliency for Prob-
abilistic Forecasting

6.4.1 Preliminary: Information Theoretic Preattentive
Saliency

Loog [5] developed a general closed-form expression for saliency based on computational
visual perception that unifies different definitions of saliency encountered in the literature.
The framework was illustrated on images and employed a surprisal-based operational
definition of bottom-up attention. In this framework, an image is represented by a feature
mapping function 𝜙 that relates each location in the image to a set of features. The
saliency of a location 𝑥 is determined by the information or surprise associated with its
corresponding feature vector 𝜙(𝑥) compared to other feature vectors extracted from the
same image. The saliency measure is defined as follows:𝑆(𝑥) > 𝑆(𝑥′) ⟺ − log𝑝Φ(𝜙(𝑥)) > − log𝑝Φ(𝜙(𝑥′)). (6.2)

Here, 𝑝Φ represents the probability density function over all feature vectors, while 𝑝𝑋
captures any prior knowledge that influences the saliency of different image locations.

Contrary to approaches that determine saliency maps through an explicit data-driven
density estimation [16, 18, 23–25], once the feature mapping 𝜙 is fixed, a closed-form
expression for saliency can be obtained. The information content − log𝑝Φ can be obtained
from log𝑝𝑋 through a simple change of variables [26] from 𝑥 to 𝜙(𝑥). The saliency 𝑆(𝑥) is
then given by the expression:− log𝑝Φ(𝜙(𝑥)) = − log𝑝𝑋(𝑥)+ 12 logdet(𝐽 𝑡𝜙(𝑥)𝐽𝜙(𝑥)), (6.3)

where 𝐽𝜙 denotes the Jacobian matrix of 𝜙, and _𝑡 indicates matrix transposition. Since
a monotonic transformation does not essentially alter the map, Loog [5] simplifies the
saliency map definition to 𝑆(𝑥) ≔ det(𝐽 𝑡𝜙(𝑥)𝐽𝜙(𝑥)), (6.4)

This formulation of saliency offers several advantages. It provides a principled and
objective measure that captures the informativeness of features for human perception.
Moreover, the saliency computation is purely local to an image, making it independent of
previously observed data.

6.4.2 Defining 𝜙 in Terms of the Uncertainty over the Fu-
ture Window 𝒕fut

Let 𝒕obs ≔ [𝑜1,𝑜2, ..., 𝑜𝑇 ] represent awindowof consecutively increasing observed timesteps,
and 𝒕fut ≔ [𝑓 1,𝑓 2, ..., 𝑓 𝑇 ] denote an unobserved future time window, where 𝑓 1 > 𝑜𝑇. Con-
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sider a set of 𝑛 interacting agents, and let 𝑿 ≔ [𝒃𝑖𝑡; 𝑡 ∈ 𝒕obs]𝑛𝑖=1 and 𝒀 ≔ [𝒃𝑖𝑡; 𝑡 ∈ 𝒕fut]𝑛𝑖=1
represent their features over 𝒕obs and 𝒕fut respectively. Here, 𝒃𝑖𝑡 captures multimodal fea-
tures from agent 𝑖 at time 𝑡. The forecasting task is to predict the density 𝑝𝑌 |𝑋. Given a
model that outputs 𝑝𝑌 |𝑋, our task is to compute the saliency 𝑆(𝒕obs) of an observed 𝒕obs
with respect to a fixed choice of 𝒕fut.

To extend Loog’s [5] framework to forecasting settings, we need to choose an appro-
priate 𝜙. We formalize the implication in Equation 6.1 and map 𝒕obs to the differential
entropy of the model’s predicted future distribution over 𝒕fut. Specifically, we define𝜙 ∶ 𝒕obs ↦ℎ(𝑌 |𝑋 = 𝑿), where the conditional differential entropy of 𝑌 given {𝑋 = 𝑿} is
defined as ℎ(𝑌 |𝑋 = 𝑿) ≔ −∫𝑝𝑌 |𝑋(𝒀 |𝑿) log𝑝𝑌 |𝑋(𝒀 |𝑿)𝑑𝒀 . (6.5)

Our framework is summarized in Algorithm 1. Consider that a domain expert selects
a specific 𝒕fut corresponding to a high-order semantic behavior they wish to analyze.
This could be a speaking-turn change [27, 28] an interaction termination [29, 30], or a
synchronous behavior event [31]. Given an underlying forecasting model 𝑀 and look-back
period before 𝒕fut, we compute ℎ(𝑌 |𝑋 = 𝑿) for different observed multivariate features 𝑿
corresponding to different locations of a sliding 𝒕obs. The computed differential entropy
values are then inserted into Equation 6.4 to obtain the saliency of different 𝒕obs locations
towards the future over the chosen 𝒕fut. In Appendix 6.B we discuss other favorable
properties of differential entropy that make it a suitable choice as 𝜙.
Explanation Using the Running Example. Within our running example from Sec-
tion 6.1, 𝒕fut corresponds to the two pedestrians passing each other while avoiding collision.
In this example, let us assume 𝑀’s training data contains examples of pedestrians passing
others to both the left and the right. Consequently, for a 𝒕obs containing the pedestri-
ans approaching each other in a straight line, the predicted distribution 𝑝𝑌 |𝑋 over 𝒕fut
encapsulates both possibilities of each pedestrian passing to the left as well as the right
of the other. So the entropy ℎ(𝑌 |𝑋 = 𝑿) is high for this 𝒕obs. Only once 𝑀 is fed as input
with the trajectories from the 𝒕obs containing the pedestrians choosing one of the two

Algorithm 1 Temporal Saliency in Probabilistic Forecasting
Input: The probability density function 𝑝𝑌 |𝑋, a fixed 𝒕fut of interest, a sequence of 𝑚 preceding

observed windows 𝑂 = [𝒕1obs,… , 𝒕𝑚obs], and the behavioral features 𝑿 𝑗 for every 𝒕𝑗obs
Output: The saliency map 𝑆(𝑂) over the observed windows
1: for each 𝒕𝑗obs ∈ 𝑂 do
2: Compute the feature mapping 𝜙(𝒕𝑗obs)← ℎ(𝑌 |𝑋 = 𝑿 𝑗)
3: end for
4: Compute saliency 𝑆(𝒕obs)← det(𝐽 𝑡𝜙(𝒕obs)𝐽𝜙(𝒕obs))
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directions to pass, the predicted 𝑝𝑌 |𝑋 is certain in terms of the pedestrians continuing
along the chosen direction. (Note that in this case, we assume 𝑀 has been trained by
maximizing likelihood over the dataset containing only these two direction changes for
avoiding collision.) Consequently, the entropy ℎ(𝑌 |𝑋 = 𝑿) drops only once this moment
of the pedestrians committing to a direction is seen by the model and would be considered
salient for our algorithm.

6.4.3 Computing ℎ(𝑌 |𝑋 = 𝑿)
Typically, the density 𝑝𝑌 |𝑋 is modeled as a multivariate Gaussian distribution [4, 32–34].
When the decoding of the future is non-autoregressive, the parameters of the distributions
for all 𝑡 ∈ 𝒕fut are estimated at once, and the differential entropy has a closed-form expression,
given by (see Cover and Thomas [35, Theorem 8.4.1])ℎ(𝑌 |𝑋 = 𝑿) = ℎ(𝒩𝑑(𝝁,𝑲)) = 12 log[(2𝜋𝑒)𝑑 det(𝑲)]. (6.6)

A common choice is to set 𝑲 to be diagonal, i.e. the predicted distribution is factorized
over agents and features. In this case, we can simply sum the log of the individual variances
to obtain the feature mapping 𝜙. Note that from Equation 6.6, for a multivariate Gaussian
distribution, the differential entropy only depends on the covariance, or the spread of
the distribution, aligning with the notion of differential entropy as a measure of total
uncertainty. (See [35, Tab. 17.1; 36] for closed-form expressions for a large number of
commonly employed probability density functions.)

In cases where probabilistic autoregressive decoders are used [4, 33, 37, 38], we do not
have access to the full joint distribution 𝑝𝑌𝑓 1,…,𝑌𝑓 𝑇|𝑋 for the timesteps in 𝒕fut. This is because
inferring the density function 𝑝𝑌 |𝑋 often involves sampling: a specific sample 𝒀𝑡 is taken
from the predicted density at each 𝑡 ∈ 𝒕fut, and passed back as input to the decoder for
estimating the density at timestep 𝑡 + 1 [37, 38]. Therefore, the density at 𝑡 + 1 depends
on the randomness introduced in sampling 𝒀𝑡. Figure 6.2 illustrates the concept for two
timesteps. Here, a single forecast would only output the shaded red distribution for 𝑌2. In
such cases, computing the joint entropy ℎ(𝑌1,𝑌2) directly is challenging in the absence of
the full joint distribution 𝑝𝑌1,𝑌2 .

To address this, we have two options. The simpler option is to redefine our feature-
mapping as 𝜙 ∶ 𝒕obs ↦∑𝑡∈𝒕fut ℎ(𝑌𝑡|𝒀<𝑡,𝑿), i.e. we approximate the total uncertainty over
the predicted sequence by summing the differential entropies of the individual densities
estimated at each timestep. Note that following the chain rule for differential entropy (see
Cover and Thomas [35, Eq. 8.62]), the joint entropy can indeed be written as the sum of
individual conditionals. However,ℎ(𝑌 |𝑋 = 𝑿) = ∑𝑡∈𝒕futℎ(𝑌𝑡|𝑌<𝑡,𝑿) ≠ ∑𝑡∈𝒕futℎ(𝑌𝑡|𝒀<𝑡,𝑿). (6.7)
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Figure 6.2: Illustrating predicted densities under greedy autoregressive decoding for two timesteps. For simplicity,
we depict a joint Gaussian distribution and omit the conditioning on 𝑿 everywhere.

And yet, training autoregressive decoders by maximizing likelihood actually assumes the
inequality in Equation 6.7 to be approximately equal (see [39, Sec. 2; 40, Eq. 5]). The
approximation relies on the observation that, for autoregressive decoding, the parameters
of the predicted distribution for 𝑌𝑡 are computed as a deterministic function of the decoder
hidden state. That is, 𝑌𝑡 is conditionally independent of 𝑌<𝑡 given the hidden state of the
decoder 𝒔𝑡 at timestep 𝑡. The underlying assumption is that for a well-trained decoder, 𝒔𝑡
encodes all relevant information from other timesteps to infer the distribution of 𝑌𝑡. So
at inference, despite being a function of the single sample 𝒀𝑡−1, the predicted distribution
conditioned on 𝒔𝑡 provides a reasonable estimate of the uncertainty in 𝑌𝑡. This assumption
allows us to again obtain a closed-form expression for the saliency map when each 𝑌𝑡 is
modeled using a density function with a known closed-form expression for differential
entropy [35, Tab. 17.1; 36]. For the common choice of modeling 𝑌𝑡 using a Gaussian mixture
[37, 38], approximations that approach the true differential entropy can also be obtained
efficiently [41–43] to directly compute the feature mapping 𝜙.

The second option is to estimate ℎ(𝑌 |𝑋 = 𝑿) using sampling or other non-parametric
approacheswhen analytical expressions or computationally efficient approximations are not
available [44–47]. These sampling-based methods provide approximations that converge to
the true entropy, although they may be computationally more expensive than parametric
methods. Overall, the choice of modeling the future density and the approach for estimating
the differential entropy depends on the specific scenario and the available resources.

6.5 Experiments
The common evaluation of saliency-based explanations relies on qualitative visual assess-
ment, which is subjective and prone to observer biases [7, 11, 12]. Meanwhile, establishing
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a reliable ground truth for the salient relationship between the observed window 𝒕obs and
the future window 𝒕fut is challenging in real-world data due to conflicting domain evidence
on predictive relationships [28, 48]. Furthermore, fair validation of a model agnostic, post
hoc method requires evaluating it independently of imperfections in the underlying fore-
casting model. To address these challenges we conduct two types of empirical evaluation:
one using synthetic data to establish ground truth predictive saliency and validate the
framework, and another to demonstrate empirical utility in real-world scenarios where
perfect forecasts and ground truth saliency are unavailable.

No existing benchmarks or post hoc explanation frameworks exist for probabilistic
time-series regression that meet the necessary requirements for a meaningful empirical
comparison. Nevertheless, we provide results by adapting several explainability frame-
works in our experiments. Specifically, we considered DeepSHAP and GradientSHAP [19],
and IntegratedGradients and SmoothGrad [49]. It is important to note that we do not imply
that these are fair comparisons; they are not (see Section 6.2). However, the comparisons
are meant to characterize results from popular tools that practitioners are likely to use in
the absence of our proposed framework. Implementation details for the following experi-
ments and additional results for the real-world scenarios are in Appendices 6.C and 6.D,
respectively.

6.5.1 Empirical Validation using Synthesized Ground Truth
Saliency

Dataset. We simulate a group conversation that emulates real behavior patterns. Lis-
teners typically focus on the speaker, while the speaker looks at different listeners [50].
Additionally, head gestures and gaze patterns predict the next speaker [51–54]. In our
simplified simulation, the speaker rotates towards the center when speaking, and listeners
nod to trigger a turn handover. We use real-valued quaternions to represent 3D head
poses, commonly used for human motion and pose representation [4, 55, 56]. Following
the notation in Section 6.4.2, 𝒃 = [𝑞𝑤, 𝑞𝑥, 𝑞𝑦, 𝑞𝑧, 𝑠𝑠] where 𝑠𝑠 denotes binary speaking status.
We simulate the turn changes to occur once clockwise and once anticlockwise. The ground
truth salient timestep is when a listener initiates a head nod to trigger a turn handover,
ensuring a certain future turn change. Figure 6.3 illustrates this mechanism. The code,
dataset, and animated visualization are available in the Supplement.

Empirical Validation. To validate our framework in isolation, we assume a perfect
forecasting model that predicts the true distribution over the possible future quaternion
trajectories. The forecasting model focuses solely on low-level features and does not
incorporate any high-order semantics of turn-taking. The saliency map generated by our
framework, as shown in Figure 6.4a, accurately identifies the ground truth salient timesteps
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Figure 6.3: Illustrating the synthetic conversation dynamics dataset. Speakers are denoted in orange and
listeners in green. For a fixed 𝒕fut we depict two preceding 𝒕obs windows. By construction, when observing a
stable speaking turn over 𝒕1obs, two valid futures are possible over 𝒕fut. These correspond to a turn handover to the
immediate left or right of the current speaker. Over 𝒕2obs, when a listener nods to indicate the desire to take the
floor, the future over 𝒕fut becomes certain, corresponding to the listener successfully taking over the speaking
turn. Here 𝒕2obs is consequently more salient than 𝒕1obs towards forecasting the turn change over 𝒕fut. (Best viewed
as video, see Supplement.)

(a) Ours (Perfect forecast) (b) Ours (Trained model) (c) Attributions (Trained model)

Figure 6.4: Computing Saliency. The top plots show the quaternion dimensions qx and qy for the listener
that nods over 𝒕2obs in Figure 6.3. The gray dotted line indicates the true salient timestep 138 when the head nod
begins, making the future over timesteps 183−228 (𝒕fut) certain. The rest of plots show the (a) entropy over future
values of all participants (middle), and saliency map obtained using our framework (bottom), considering perfect
forecasts; (b) entropy and saliency for the forecasts from a Social Process model; and (c) mean attributions across
features per timestep from different explainability frameworks (DeepSHAP, GradientSHAP, IntegratedGradients,
and SmoothGrad) for the predicted mean and std. of the same forecast from the Social Process model.

at frames 138 and 139 where the head nod begins. The saliency decreases once the nod
is already in motion, indicating that it does not provide additional information about the
future. This empirically validates our framework.
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Introducing a Real Forecasting Model. We evaluate our framework using a real under-
lying forecasting model trained on synthetic data. We employ a Social Process model [4]
for its ability to capture relative partner behavior and adapt to specific group dynamics.
As shown in Figure 6.4b, our framework identifies the true salient timesteps with higher
saliency values. Conversely, the attributions provided by other explainability frameworks
in Figure 6.4c for the predicted mean and standard deviation of the same forecast fail to
capture the salient predictive relationships in the data. This comparison underscores the
effectiveness of our framework in capturing meaningful and interpretable saliency, even in
conjunction with an imperfect forecasting model.

6.5.2 Empirical Evaluation in Real-World Scenarios
The study of group-leaving behavior has garnered interest in social psychology and the
development of conversational agents [29, 30]. Recent approaches employ data-driven
models to predict future non-verbal cues, capturing general predictive patterns in the
data [4]. In this study, we demonstrate how our framework can assist domain experts
in hypothesizing about the causal relationships between behavioral patterns and group
leaving. We leverage the publicly available MatchNMingle dataset [57], which features
natural interactions of 92 individuals during a cocktail party. We use an Attentive Social
Process model [4] to forecast continuous head pose, body pose, and binary speaking status.

Through our analysis (see Figure 6.5a), we find that the salient timesteps in the model’s
forecasts correspond to instances when a person about to leave directs their gaze away
from the shared group space (o-space [1]) by rotating their head. This observation leads to
the following hypothesis:

gazing away from the o-space of a conversing group is predictive of group leaving.

While this hypothesis aligns with established leave-taking patterns [1, 58] and the
sweeping gaze behavior associated with seeking new interaction partners [59], it requires
further validation through subsequent studies and rigorous statistical testing with the
involvement of domain experts. Nonetheless, our experiment demonstrates how the
framework can unveil data-driven insights into patterns that, in other cases, may have
been overlooked by humans but captured by the forecasting model. By contrast, we do
not observe any discernible intuitive patterns in the features associated with the trends in
DeepSHAP and GradientSHAP values for the predicted mean and standard deviation.

Vehicle Trajectory Forecasting
The accurate forecasting of pedestrian and vehicle trajectories is crucial for safe and
socially-aware autonomous navigation of vehicles [37, 60–62]. In this study, we utilize
our framework to investigate vehicle dynamics in real driving scenarios. Specifically, we
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Figure 6.5: (a) Analysis of the group leaving instance at 12:11 on Day 1, Cam 12 in the MatchNMingle dataset.
Row 1: Video frames and overlaid arrows denoting the head orientation of participants. Orange indicates the
person leaving the group over the 𝒕fut. Row 2: Head orientation of the leaver plotted as 2D horizontal rotation.
Row 3: Saliency map from running predictions from the Attentive Social Process model through our framework.
The timesteps salient towards the model’s forecasts correspond to the leaver making sweeping gazes away from
the group. Rows 4-5: mean DeepSHAP and GradientSHAP across features per timestep for the predicted mean
and std. of the same forecast. (b) Analysis of the vehicle turn making instance on Scene 3 in the nuScenes
dataset. Row 1: Video frames showing the bus and surrounding cars from the camera. Row 2: Future predictions
for the bus position (circled) from the Trajectron++ model (ground truth in white, predicted mean in black and
variance in red). Row 3: Saliency map from running predictions through our framework. The timesteps salient
correspond to the model being more certain that the bus will make a turn. Rows 4-5: mean DeepSHAP values
across features per timestep for the predicted mean and std. of the same forecast. Best viewed as video (see
Supplement).

leverage the nuScenes dataset, a multimodal dataset for autonomous driving [63], and the
Trajectron++ forecasting model [37].

Figure 6.5b illustrates our analysis of vehicle dynamics at an intersection. Notably,
our framework identifies a salient timestep for the Trajectron++ model precisely when
it becomes more confident that the bus will make a turn instead of continuing straight.
This coincides with the model’s increased certainty that the point-of-view vehicle will
decelerate as a new vehicle enters the scene from the left. Although there are no relevant
domain-specific theories in this case to interpret this saliency, these identified patterns
align with expected driving behavior. In contrast, the DeepSHAP values fail to capture the
model’s change in certainty about the bus making the turn instead of continuing straight.
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Moreover, we also do not identify any intuitive patterns in the predictions associated with
the DeepSHAP trends. Thus, our framework serves as a valuable tool for sanity-checking
model forecasts in real-world driving scenarios. It helps identify instances where the
model’s predictions align or misalign with established norms and expectations.

6.6 Conclusion
We have proposed a computational framework that provides counterfactual explanations
of model forecasts based on a principled notion of bottom-up task-agnostic saliency. We
derive a closed-form expression to compute this saliency for commonly used probability
density functions to represent forecasts [4, 37, 38, 62]. To validate our framework, we
conduct empirical experiments using a synthetic setup, enabling quantitative validation and
mitigating observer biases associated with visual assessment of saliency maps. Additionally,
we demonstrate the practical utility of our framework in two real-world scenarios involving
the prediction of nonverbal social behavior and vehicle trajectories. By identifying salient
timesteps towards a predicted future through counterfactual reasoning, our framework can
support domain experts in formulating data-driven hypotheses regarding the predictive
causal patterns involving the features present at those salient timesteps. These hypotheses
can then be tested through subsequent controlled experiments, establishing a human-in-
the-loop Explainable AI (XAI) methodology. For a more comprehensive discussion, please
refer to Appendix 6.E.

6.7 Limitations and Potential Negative Societal
Impact

While our framework provides a closed-form or efficient solution for most probability
density functions, limitations arise when an analytic expression for differential entropy
is unavailable. As discussed in Section 6.4.3, alternative approaches like sampling or
nonparametric methods can be employed to approximate the entropy, albeit at an increased
computational cost.

Our work here is an upstream methodological contribution. However, when applied
downstream to human behavior or healthcare data, ethical considerations arise naturally.
Here, care must be taken that such methods are not applied for gaining insights into
behavior in a way that violates the privacy of people. Our framework enables domain
experts to derive data-driven insights and hypotheses about predictive causal patterns.
However, hypotheses should be rigorously tested, using controlled experiments and peer
review, before being considered valid statements about human behavior. Collaboration
among researchers, practitioners, and policymakers across disciplines is crucial to mitigate
such societal risks and ensure ethical deployment of AI technologies.
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Appendices

6.A Broader RelatedWork: ExplainableMethods
for Time-Series Data Across Tasks and Domains

The larger focus of explainability techniques involving time-series data has been on the
task of classifying time-series. The goal has been to estimate the relevance of each input
feature at a given timestep towards each output class. Here, saliency approaches often
overlap with techniques developed for image data and can be categorized into:

Gradient-Based Techniques. The broad approach involves evaluating the gradient of
the output class with respect to the input [64]. Several variants have been proposed
[19, 49, 65–67].

Perturbation-Based Techniques. The idea is to examine how the output changes in
response to some perturbation of the input. Perturbations are implemented by either
occluding contiguous regions of the input [68, 69]; performing an ablation of the features
[70]; or randomly permuting features [12]. Ismail et al. [71] provide a benchmark of a
subset of these techniques.

Attention-Based Techniques. These incorporate an attention mechanism into the model
that is trained to attribute importance to different parts of the input sequence towards
a prediction at each future timestep. Such techniques have been extensively utilized for
healthcare data. Early methods applied a reverse-time attention [72], Later methods applied
the attention to probabilistic state-space representations [73].

Some of these broad ideas have been applied to the regression setting to make inter-
pretable forecasts of future time-series features. Lim et al. [15] leveraged self-attention
layers for capturing long-term dependencies. Pan et al. [17] recently proposed computing
saliency as a mixup strategy between series images and their perturbed version with a
learnable mask for each sample. They view saliency in terms of minimizing the mean
squared error between the predictions and ground-truths for a particular instance. Focus-
ing on the univariate point-forecasting problem, Oreshkin et al. [14] proposed injecting
inductive biases by computing the forecast as a combination of a trend and seasonality
model. They argue that this decomposition makes the outputs more interpretable.

Developing explainable techniques for the probabilistic forecasting setting remains
largely unexplored and subject to non-overlapping notions of explainability. Rügamer et al.
[13] transform the forecast using predefined basis functions such as Bernstein polynomials.
They relate interpretability to the coefficients of these basis functions (a notion similar to
that of Oreshkin et al. [14]). Panja et al. [74] embed the classical linear ARIMA model into
a non-linear autoregressive neural network for univariate probabilistic forecasting. As
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before, the explainability here also stems from the ‘white-box’ nature of the linear ARIMA
component. Li et al. [75] propose an automatic relevance determination network to identify
useful exogenous variables (i.e. variables that can affect the forecast without being a part
of the time-series data). To the best of our knowledge, saliency-based methods have not
yet been considered within this setting.

6.B FavorableProperties ofDifferentialEntropy
Differential entropy possesses favorable properties that make it a suitable choice as 𝜙 for
computing the saliency map. First, the scale of the forecast density does not affect the
resulting saliency map (see Cover and Thomas [35, Theorem 8.6.4]):ℎ(𝑎𝑌 ) = ℎ(𝑌 )+ log |𝑎|, for 𝑎 ≠ 0,and (6.8)ℎ(𝑨𝑌) = ℎ(𝑌 )+ log |det(𝑨)|,when 𝑨 is a square matrix. (6.9)

That is, scaling the distribution changes the differential entropy by only a constant fac-
tor. So the saliency map resulting from inserting the entropy into Equation 6.4 remains
unaffected since the Jacobian term only depends on the relative change in entropy across
different choices of 𝒕obs. Similarly, translating the predicted density leaves the saliency
map unaffected (see Cover and Thomas [35, Theorem 8.6.3]):ℎ(𝑌 + 𝑐) = ℎ(𝑌 ). (6.10)

6.C Implementation Details for Experiments
6.C.1 Other Explainability Methods
For DeepSHAP and GradientSHAP, we used the official implementation of SHAP:
https://github.com/slundberg/shap. For IntegratedGradients and SmoothGrad, we used the
Captum framework: https://captum.ai/. We reiterate that these are not fair comparisons,
for the reasons we have discussed in Section 6.2. One crucial reason is that no existing
method is designed to handle a predicted distribution. To apply them in this context, we
need to compute attribution values for the predicted mean and standard deviation for every
feature at every 𝑡 ∈ 𝒕fut in isolation. In contrast, by measuring differential entropy, our
method jointly accounts for the parameters of the distribution and captures the information
content of the distribution. Despite these limitations, we include these comparisons to
provide readers with a contextual understanding of the results obtained from commonly
used explainability tools.

Computational Efficiency. For further insight, we measured the execution time of our
saliency method compared to DeepSHAP for both real-world scenarios (see Table 6.1).

https://github.com/slundberg/shap
https://captum.ai/
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Table 6.1: Comparing Computational Efficiency. We compare the practical execution time of our method to
running DeepSHAP. For a reasonably fair characterization of DeepSHAP, we report execution time for computing
the SHAP values associated with a single predicted parameter, the mean of the future distribution.

Scenario Saliency DeepSHAP

Forward Pass Compute Saliency Init Compute Values

Group leaving (MatchNMingle dataset) 50 ms 2 ms 50 ms 13.5 min
Vehicle trajectory (nuScenes dataset) 2.5 s 33 ms 68 ms 26.3 min

The main takeaway is that our method is an order of magnitude faster at computing the
saliency map compared to DeepSHAP. This is in part because DeepSHAP computes values
for every feature at every timestep in the output independently. Even if this is parallelized,
DeepSHAP requires multiple forward passes and gradient computations including samples
from a background set to compute the reference values. The computation time scales with
the size of the background set.

6.C.2 Empirical Validation using Synthetic Data
We model the future distribution using a Gaussian function for simplicity (setting std. to10−10 for the single future), but a more complex distribution that predicts the appropriate
change in variance would also work in practice. We now implement Algorithm 1 as follows.
We identify a window where a turn change occurs in the data (frames 183-228) and denote
this 45 frame window as the 𝒕fut of interest. While we manually identify an interesting
event for illustration, such a window could also correspond to an interesting prediction
by a model. We generate a set of candidate 𝒕obs by sliding a 30 frame window over a
horizon of 100 frames prior to 𝒕fut, with a stride of 1 frame. For every observed 𝒕obs, we fit
a Gaussian density to the quaternion and speaking status features of all participants over
the futures that can occur during 𝒕fut. We then set the entropy of this Gaussian density as
the feature 𝜙 for that 𝒕obs. For the experiments with a real forecasting model, we employ
the [recurrent, uniform attention] variant of the Social Process family given its ability
to capture dynamic movements [4].

6.C.3 Forecasting Group Leaving Behavior
We used the pretrained model on the MatchNMingle dataset provided with the official
implementation of Social Processes [4]: https://github.com/chiragraman/social-processes.
Specifically, we employed the [recurrent, dot-attention] variant of the Attentive Social
Process family (ASP-GRU-dot). We set 𝒕fut to correspond to a 3 second window (3 frames
in the data, which is at 1 Hz) containing an individual leaving a conversing group. We
obtained forecasts from the model corresponding to a rolling 5 second 𝒕obs within a 20
second preceding horizon. For computing DeepSHAP and GradientSHAP values, we used
the entire observed time horizon as the background dataset. This ensures that the expected

https://github.com/chiragraman/social-processes
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values are computed within a reasonably similar context for a given 𝒕obs.
6.C.4 Vehicle Trajectory Forecasting
We trained the Trajectron++ model [37] on the nuScenes dataset (mini version) [63] using
the default command provided in the official implementation:
https://github.com/StanfordASL/Trajectron-plus-plus. In particular, we used the int_ee
model which incorporates the agent’s system dynamics to produce dynamically-feasible
trajectories. For analysis, we used a sequence from scene index 3 (scene.name 757). We
set 𝒕fut to correspond to a window of 6 timesteps (14-19) with a lookback horizon from
timesteps 6 to 13. For computing DeepSHAP values we again used the entire observed
horizon as the background set. The features in the observed sequence contained several
NaN entries, which resulted in NaN DeepSHAP values. We ignored these when aggregating
values per timestep.

6.D Additional Results
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Figure 6.6: Analysis of two sequences in the MatchNMingle dataset. Row 1: Video frames and overlaid
arrows denoting the head orientation of the participant of interest. Row 2: Head orientation plotted as 2D
horizontal rotation. Rows 3-5: Saliency map from running predictions from the Attentive Social Process model
through our framework, as well as the mean DeepSHAP and GradientSHAP values across features per timestep
for the predicted mean and std. of the same forecast. Our saliency framework succeeds in identifying the salient
timesteps in both cases. In (a), the timestep in which the participant of interest is looking away is identified as
salient towards predicting the other participant leaving the dyadic interaction. In (b), the timestep in which the
participant of interest suddenly stops actively participating in the conversation (not nodding or looking at the
speakers) is identified as salient towards predicting their group leaving.

https://github.com/StanfordASL/Trajectron-plus-plus
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Figure 6.7: Analysis of a sequence on Scene 0 in the nuScenes dataset. Row 1: Video frames showing the
black turning car and surrounding cars from the camera. Row 2: Future predictions for the black car position
(circled) from the Trajectron++ model (ground truth in white, predicted mean in black and variance in red). Rows
3-5: Saliency map from running predictions through our framework, as well as the mean DeepSHAP values
across features per timestep for the predicted mean and std. of the same forecast. Our framework reveals that the
silver and point-of-view cars slowing is salient for the model in predicting that the black car completes the turn.

6.E Broader Discussion: Saliency & XAI with Do-
main Experts in the Loop

We begin this broader discussion by revisiting the different notions of saliency, to make
the case for why our proposed framework is suitable for forecasting tasks. Rather than
defining saliency in a top-down manner as a function of some task-specific error metric, we
have started from a more fundamental conception of bottom-up, or task-agnostic, saliency.
Loog’s [5] original definition pertains to preattentive saliency, which captures what is
perceived to be subconsciously informative before conscious (attentive) processing by the
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brain. Here, a surprising or unexpected observation is salient. For instance, in a large white
image with a single black pixel, the black pixel is salient. The direct application of this
concept to time-series data would involve identifying surprising task-agnostic temporal
events. For instance, imagine viewing a static landscape where a bird suddenly flies in. The
entry of the bird into the scene is unexpected, and therefore salient.

When applied to forecasting tasks, however, this idea of surprisal (or unexpectedness
or informativeness) that saliency represents needs to be tied to the future outcome. The
saliency computed by most methods working on point-forecasting tasks deals with which
past features are surprising given a specific realization of the future. While not explicitly
stated by these works, we argue that this notion of saliency is related to the surprisal in𝑝𝑋|𝑌 for some specific 𝒀. We therefore interpret these methods as being associative in
nature within Miller’s [10] categorization in Section 6.3. In contrast, our approach is coun-
terfactual because we examine alternate future outcomes, while conceptualizing saliency
more naturally defined in terms of the changes in the uncertainty in 𝑝𝑌 |𝑋 in response
to different realizations of observed sequences. However, rather than corresponding to
random occlusions or perturbations of the input, the different realizations of 𝑋 in our
framework correspond to real features (or behaviors) preceding a future, which is more
suitable to present to domain experts as candidate causes.

Loog’s [5] unifying framework subsumes all forms of saliency, although identifying
the appropriate 𝜙 for a specific domain is non-trivial. In this work we have established
both theoretically and empirically how expressing 𝜙 in terms of the information about the
future enables principled counterfactual reasoning in forecasting settings. Nevertheless,
we reiterate that the salient timesteps retrieved by our framework ought to be treated as
candidate causes until subsequently examined along with a domain expert. Our stance on
human-in-the-loop XAI also aligns with research on saliency-based and general XAI in
other domains [9, 76].

In principle, when it is possible to have access to the true 𝑝𝑌 |𝑋, the salient timesteps
identified by our framework reflect the true predictive structural relationships captured by
the underlying model across the entire data. However, estimating this density analytically
entails identifying the multiple futures in the data corresponding to every occurrence of the
same observed features. In practice, subtle variations in behaviors and sensor measurement
errors make it infeasible to estimate 𝑝𝑌 |𝑋 analytically, so a model is trained to capture
generalized patterns from the given data. In these cases, our framework identifies the
sequences that the model considers salient for its forecasts given the data. Consequently,
subsequent causal analysis of the features over the salient timesteps is crucial, especially in
the healthcare and human behavior domains to avoid potential prejudices against certain
behaviors, or worse, misdiagnoses of affective conditions.
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Abstract
The detection of free-standing conversing groups has received significant attention in recent
years. In the absence of a formal definition, most studies operationalize the notion of a
conversation group either through a spatial or a temporal lens. Spatially, the most commonly
used representation is the F-formation, defined by social scientists as the configuration in which
people arrange themselves to sustain an interaction. However, the use of this representation is
often accompanied with the simplifying assumption that a single conversation occurs within
an F-formation. Temporally, various categories have been used to organize conversational
units; these include, among others, turn, topic, and floor. Some of these concepts are hard
to define objectively by themselves. The present work constitutes an initial exploration into
unifying these perspectives by primarily posing the question: can we use the observation
of simultaneous speaker turns to infer whether multiple conversation floors exist within an
F-formation? We motivate a metric for the existence of distinct conversation floors based
on simultaneous speaker turns, and provide an analysis using this metric to characterize
conversations across F-formations of varying cardinality. We contribute two key findings:
firstly, at the average speaking turn duration of about two seconds for humans, there is
evidence for the existence of multiple floors within an F-formation; and secondly, an increase
in the cardinality of an F-formation correlates with a decrease in duration of simultaneous
speaking turns.

Index Terms: free-standing conversational groups, conversation floors, speaking turns

7.1 Introduction

Imagine a social scenario like a mingling or networking event. Interactions in such a
setting involve multiple dynamic conversations which are a medley of ever evolving

topics and partners. And yet, humans can instinctively navigate the complexities of such
encounters. How do we do this? We regulate our exchanges both spatially and temporally
using implicit social norms or explicit behavioural signals [1]. Furthermore, these cues
could be either verbal or non-verbal, expressed visually, vocally, or verbally through spoken
language.

A deeper understanding of these group dynamics constitutes a natural objective to-
wards the realisation of machines with social skills. For instance, consider a social robot
approaching a group of people in a public space, or evaluating attendee experience at
a conference poster session. In these and other cases, having an understanding of the
dynamics, and where channels of social influence lie, would enable the artificial agent
to develop increasingly sophisticated policies for interaction or inference. Conversation
groups have been of importance in the application domains of social robotics [2–5], activity
recognition [6, 7], social surveillance [8–10], and social signal processing [11, 12].
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Figure 7.1: Depiction of a single F-formation with multiple conversation floors. The darker green regions within
dotted lines represent distinct simultaneous conversation floors. Most works representing a conversing group as
an F-formation make the simplifying assumption that a single conversation occurs within an F-formation with a
joint focus of attention for all members.

Fundamental to the study of such conversations is defining the notion of a free-standing
conversational group (FCG). While it is easier to objectively conceptualize an FCG in spatial
terms in a scene of multiple interacting groups, delineating the boundary of conversations
poses a greater technical challenge. We could think of separating conversations on the basis
of topics, but this is challenging if audio data is unavailable due to privacy concerns. We
could operationalize a conversation as a set of participating members, but this membership
is challenging to infer visually for non-speaking participants. This often leads to the
simplifying assumption in some literature that the focus of an FCG is a single conversation.
As we illustrate in Figure 7.1, and discuss in the following sections, this may not always be
the case.

In the present work, we dive beyond the geometric bounds of an FCG to gain a deeper
understanding of the conversations occuring within it. In this initial approach, we focus
specifically on speaking participants as the most decisive indicator of the existence of a
conversation. Concretely, we pose the following broad research questions:
RQ 1. Can we use observed speaker turns to infer the conversation floors within an F-

formation?
RQ 2. How does the cardinality of an F-formation affect the conversation floors developed

within it?
The ground truth for speaker turns in this work comes frommanual annotations of video

data, mimicking use-cases where audio data might be unavailable due to privacy concerns.
Concretely, our contributions are as follows: conceptually, we provide an indicator of
distinct conversation floors that uses speaking turns alone, and situate this indicator in
schisming literature [13–15]; analytically, we provide evidence that multiple conversation
floors exist within an F-formation, and show that the cardinality of an F-formation correlates
negatively with turn duration of simultaneous speakers.

The rest of this paper is organized as follows. We describe some of the spatial and
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temporal perspectives used to study FCGs in Section 7.2. In Section 7.3 we provide a review
of literature involving the use of these spatial or temporal notions, motivating the need to
consider both of these aspects in unison. In Section 7.4, we propose an operationalization
of an indicator of distinct conversation floors, building upon the concepts of conversation
schisming. The dataset we use and the experiments performed for answering the research
questions are described in Section 7.5 and Section 7.6 respectively. Finally, Section 7.7
summarizes our findings and concludes the paper.

7.2 Background
Spatial Factors. One of the most common proxemic notions to describe an FCG is Adam
Kendon’s Facing Formation, or F-formation, originally defined as:

An F-formation arises whenever two or more people sustain a spatial and
orientational relationship in which the space between them is one to which
they have equal, direct, and exclusive access. [16, p. 210]

Kendon argues that activity is always located, and denotes the space in front of a person
that is used for the activity as the person’s transactional segment. When two or more people
come together to perform some activity, they are liable to arrange themselves such that
their individual transactional segments overlap to create a joint transactional space. This
joint space between the interactants is called an o-space. As we discuss in the next section,
many computational works involving the automatic detection of FCGs from video focus
on the detection of F-formations, often assuming that the transaction involves a single
conversation.

Temporal Factors. The conversation of focus in an FCG, however, is dynamic in nature. If
conversations change over time, what are the temporal units that describe their underlying
structure? Some of the terms used in early literature to organize conversational units
include turn, topic, gap, and floor. Edelsky provides an excellent review of these concepts
in [17], stating that most of these units were defined on the basis of some technical or
mechanical structure such as signals of speakers or auditors, ignoring the intention of
the participant. Using inferred participants’ meanings rather than technical definitions,
Edelsky defines turns and floors as follows:

The floor is defined as the acknowledged what’s-going-on within a psychologi-
cal time/space. What’s going on can be the development of a topic or a function
(teasing, soliciting a response, etc.) or an interaction of the two. It can be
developed or controlled by one person at a time or by several simultaneously
or in quick succession. [17, p. 405]
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7.3 Related Work
Detecting Conversational Groups. In most works, a conversational group is opera-
tionalized as an F-formation. Early work on the task of detecting FCGs in video data
developed concurrently from two perspectives: those that estimate the location of the
o-space using a Hough-voting strategy [8, 18]; or those that view an F-formation as a
set with individuals being assigned exclusive membership [12, 19]. There has also been
considerable work focused on incorporating temporal information for the same task of
detecting conversational groups [7, 20–22]. Notably, these approaches utilise the head pose
as a proxy for Visual Focus of Attention (VFoA) [9] in addition to the body pose to model
F-formation membership, and assume a single conversation within an F-formation. The
assumption that members in a group have a single joint focus of attention is seen in other
works as well. Hung et al. [23] model a single joint focus of visual attention of participants
to estimate dominance in groups. Vazquez et al. [4] also assume a single conversation
within an F-formation while developing a policy for a robot to be aware of a single focus
of attention of the conversation.

Estimating involvement. In a conversation, the floor is typically held by a single partici-
pant at a time [13]. What then characterizes the silent participants in a conversation group?
The following works demonstrate that the task of estimating participant involvement is
subjective in nature, and that gaze behaviour and turn-taking patterns can be informative.

Zhang and Hung [24, 25] study the task of detecting associates of an F-formation;
members that are attached to an F-formation but do not have full status [16]. They argue
that the labeling of conversation groups is not an objective task. Collecting multiple
annotations of perceived associates, they demonstrate how detecting them can improve
initial estimates of full-members of an F-formation. Oertel et al. [26] characterize silent
participants into multiple categories (attentive listener, side participant, bystander) from
audiovisual cues. Oertel and Salvi [27] also show that it is possible to estimate individual
engagement and group involvement in a multiparty corpus by analysing the participants’
eye-gaze patterns. Bohus and Horvitz [28] propose a self-supervised method for forecasting
disengagement with an interactive robot using a conservative heuristic. The heuristic is
constructed by leveraging features that capture how close the participant is, whether a
participant is stationary or moving, and whether a participant is attending to the robot.

Some works also used turn-taking features to estimate some notion of involvement.
Pentland et al. [29] measured engagement by the z-scored influence each person has on
the other’s turn-taking for a pair of participants. Hung and Gatica-Perez [30] found that
the pause duration between an individual’s turns, aggregated at group level, is highly
predictive of cohesion in small group meetings.
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Schisming. In a conversation with at least four participants, the conversation sometimes
splits up into two or more conversations. This transformation is referred to as a schism
[13] or schisming. One of the earliest allusions to the phenomenon of schisming based on
anecdotal evidence occurs in the work of Goffman, who suggested that a gathering of two
participants exhausts an encounter and forms a fully-focused gathering [31, p. 91]. With
more than two participants, there may be persons officially present in the situation who
are not themselves so engaged. These bystanders change the gathering into a partly-focused
one. If more than three persons are present, there may be more than one encounter carried
on in the same situation, resulting in a multifocused gathering.

In subsequent work, Sacks et al. [13] and Goodwin [14] both indicated that the co-
existence of two turn-taking systems is the most decisive characteristic of schisming.
This view was supported by Egbert, who demonstrated that although schisming is a
participation framework with two simultaneous conversations, each with its own turn-
taking system, there is an interface between them during schisming [15]. She also makes a
systematic differentiation between overlap and simultaneous talk during schisming. In
overlap, simultaneous speakers compete for the floor, an event usually resolved by returning
to one-speaker-at-a-time. In schisming by contrast, simultaneous speakers orient to one of
two distinct floors, an event which if resolved successfully, results in the establishment of
two floors [15, p. 43]. Overlapping speech is therefore expected to occur throughout the
lifespan of all conversation floors within an F-formation.

7.4 Methodology
In this section we build upon the previously discussed concepts to propose using simulta-
neous speakers in an F-formation as an initial conservative indicator of the existence of
distinct conversation floors.

A common concern with observing groups of conversing people is the potential viola-
tion of privacy. In our experience with collecting group interaction datasets, participants
often regard having their microphone data recorded and transcribed as being more invasive
than being captured on video. In these situations, the lack of verbal information makes it
extremely challenging to infer the topics being discussed. How can we then investigate
the existence of distinct conversations? Two observations could prove useful:

Inferring schisms without audio data. The relationship between bodymovements such
as gestures and speech has been long established in literature [32]. Some works have shown
promising results in estimating the presence of voice activity from automated gestural
analysis or accelerometer data [33–35]. It therefore seems feasible that speaker turns can
be automatically estimated without audio data. Combined with the observation that the
co-existence of two turn-taking systems is the most decisive characteristic of schisming,
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we argue that it is in turn reasonable to explore the inference of schisms without audio
data through speaking turns.

Linking schisming to floors and F-formations. While Egbert does explicitly use the
term floor to describe the conversations resulting from a schism, it is useful to observe
how this relates back to Edelsky’s view of floors. Edelsky defined floors in terms of the
acknowledged what’s-going-on within a psychological time space. The object of focus
here could either be a topic or some other function. To borrow Goffman’s terms, a schism
effectively changes a gathering into a multifocused one, where each object of focus can
be viewed to correspond to a floor in Edelsky’s definition. However, if the participant’s
lower bodies remain configured such that their transactional segments overlap to produce a
common o-space, they would still remain in the same F-formation even if the conversation
has undergone a schism into two or more distinct floors. Figure 7.1 depicts this situation
conceptually.

Combining these two broad observations, we argue that it is feasible to explore the existence
of distinct conversation floors within an F-formation without audio data, whilst capturing
speaker turns from visual observations. We propose to start with the following metric.
Given a sliding window 𝑤 of speaking duration 𝑑, we consider a speaker to be a participant
who speaks for the entire duration 𝑑. The number of simultaneous speakers thus defined
corresponds to the number of distinct conversation floors at that position of 𝑤, since they
correspond to speaking turns in distinct floors.

Of course, the metric is inextricably tied to the duration 𝑑 being considered; too short a
duration, and the concurrent turns might capture either backchannels or the overlapping
speech within the same floor as described in Egbert’s work. However, a reasonably long
duration would capture the speaking turns of participants holding distinct floors. This
leads to the question: what qualifies as a reasonable choice for 𝑑 to differentiate overlaps
within a floor from turns in distinct floors? In our experiments, we set the lower bound of𝑑 at one second. Here we provide evidence from literature to justify this choice.

Choice of speaking window duration. In a study of gaps and overlaps in conversations,
Heldner and Edlund report that on average 40% of the speaker transitions in their corpora
involved overlaps (including any overlap of over 10 ms) [36]. These represent overlaps for
competing for the floor. As for the duration of these overlaps, their histogram makes clear
that the duration follows a mode of 50 ms in the Spoken Dutch Corpus, with a mean of 610
ms, and median of 470 ms, all under one second. In a follow-up detailed statistical analysis,
Levinson and Torreira differentiate between types of overlaps: between-overlaps, that refer
to overlaps where the floor was transferred without a silent gap between speakers; and
within-overlaps, where overlapping speech occurred in between a speaking turn and did
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Figure 7.2: Illustration of gaps, within-overlaps, and
between-overlaps for two speakers (S1 and S2) within
the same floor. The scheme was originally proposed by
Heldner and Edlund [36] and adopted by Levinson and
Torreira in their analysis [37].

Figure 7.3: Snapshots of the mingling session (Cameras
1-5) in MatchNMingle.

not result in a transfer of floor [37]. Figure 7.2 illustrates these types of overlaps. They
used the Switchboard Corpus of English telephone conversations for their analysis, and
found that only 3.8% of the signal corresponded to simultaneous speech of both speakers.
This fits well with Sacks and colleagues’ observations that “overwhelmingly, one party
speaks at a time” [13, p. 700], for physically situated embodied social interactions. As for
the duration, between-overlaps had a modal duration of 96 ms, a median of 205 ms, a mean
of 275 ms. On the other hand, within-overlaps exhibited an estimated modal duration of
350 ms, a median of 389 ms, a mean of 447 ms. Further, of all the overlaps annotated, 73%
involved a backchannel. These statistics indicate that choosing a lower bound for 𝑑 would
reasonably capture simultaneous speech that does not belong to the same floor.

As for the upper bound, a reasonable value should be at least greater than the average
turn duration of a speaker. Using the same operationalization proposed in [36], Levinson
and Torreira report that contiguous speech delimited by a silent interval of at least 180 ms
had a mean duration of 1680 ms, and a median of 1227 ms.

7.5 Dataset
For this study, we use the publicly available MatchNMingle dataset [38] that records in-
the-wild interactions of 92 people during speed-dates followed by a cocktail party. Three
sessions of speed-dates and mingling were recorded in all across three days. We specifically
focus on the cocktail party recordings that capture free standing conversations between
participants. Figure 7.3 shows the video recordings from five cameras on the last day of
data collection. The participants were not given a script to follow and were free to choose
the participants they wished to interact with. This allows us to study naturally evolving
F-formations and conversation floors in an in-the-wild setting.

Dataset Statistics. The dataset consists of a total of 92 single, heterosexual participants
(46 women: 19-27 years with a mean age of 21.6 years and standard deviation of 1.9 years;
and 46 men: 18-30 years with a mean age of 22.6 years and standard deviation of 2.6 years).
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Over 45 minutes of free mingling interaction were recorded for each of the three days; 56
minutes on the first, 50 minutes on the second, and 45 minutes on the third, respectively.

Annotations. The dataset provides of annotations for both F-formations and a variety of
social actions. The F-formations were annotated directly from a video of the interacting
participants captured from overhead cameras. The annotations were made for every second
for an interval of 10 minutes per day. Each F-formation annotation provides the participant
IDs for its members and the start and end times delimiting the lifetime of the F-formation.
In all, 174 F-formations were annotated across 30 minutes. Of these, we filtered out those
with cardinality less than four, and those for which a participant was found to leave the
field of view of the cameras. This left us with 34 F-formations for our experiments.

Of the social actions annotated, we only use the Speaking Status—defined as whether
or not a person is speaking. The social actions were annotated for a 30 minute segment for
each day, by eight annotators hired for the task and trained by an expert. The annotations
were made at the frame level using a tool that allowed for interpolation across frames. In
all, 20 annotations per second for each social action are provided. Further, the speaking
status is estimated from video alone, by observing lip movements or inferring from the
participants’ head and body gestures.

7.6 Experiments
We perform two sets of experiments: first we identify the number of simultaneous speakers
in an F-formation using the methodology described in Section 7.4, and then evaluate
whether the number of members in an F-formation (cardinality) affects the speaking
duration of simultaneous speakers.

Simultaneous Speakers in an F-formation. The purpose of this experiment is to eval-
uate the following—can we infer the existence of distinct conversation floors within an
F-formation from simultaneous speaker turns? To recap, this intuition build upon early
work on schisming indicating that the co-existence of two turn-taking systems is the
most decisive characteristic of distinct conversation floors [13, 14]. Here we consider
F-formations of cardinality four and above, since the possibility of distinct conversations
occurs only for those F-formations.

We slide a window 𝑤 of duration 𝑑 across the lifetime of the F-formation in steps of
one second. For every position of 𝑤, we count the number of participants with a positive
speaking status for the entire duration 𝑑. We plot the maximum number of simultaneous
speakers over all positions of 𝑤. Following the formulation described in Section 7.4, this
represents the maximum number of distinct conversation floors that were observed during
the life-time of the F-formation. We vary 𝑑 from 1-20 seconds to guard against the possibility
that the smaller values of 𝑑 might capture co-narration or overlaps within the same floor.
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Figure 7.4: Plotting the effect of varying the speaking duration threshold 𝑑 on the number of simultaneous
speakers per cardinality of F-formation. To aggregate the data from each F-formation, the maximum of the
number of simultaneous speakers is considered over all the sliding window positions across the lifetime of the
F-formation. The y-axis plots the Mean (Maximum number of simultaneous speakers over window positions)
over F-formations.

The upper bound of 20 seconds was chosen as sanity check; we expected to see very few
speakers have a speaking turn that long.

The𝑚𝑎𝑥 operator was chosen to aggregate the number of simultaneous speakers across
all window positions into the most conservative measure for what this experiment seeks to
evaluate. A value of one for the maximum number speakers over all positions of 𝑤 would
indicate that only a single conversation floor existed within the F-formation. Therefore,
observing values greater than one for the 𝑚𝑎𝑥 metric would indicate the presence of
distinct floors with more certainty than other choices of summarizing statistics.

Figure 7.4 plots the mean number of distinct conversation floors per F-formation
against varying values of 𝑑, per cardinality of F-formation. Cardinality here refers to the
number of members in an F-formation. As a sanity check, we would expect the numbers
upper-bounded by the number of people in the F-formation; at worst, every person in
the F-formation speaks simultaneously to compete for the floor they are a part of. On
the same note, we observe that the starting mean values all seem reasonable: about 2 for
cardinalities four and five, about 3 for cardinality six, and about 4 for cardinality seven.
Assuming that it is common for speakers to have at least one conversing partner, we would
expect about half the number of simultaneous speakers as members in an F-formation.
Our minimum choice of 𝑑 was chosen to be greater than the modal duration of overlaps
found in previous work [37], so it is less likely that the lower turn durations capture
competing overlaps for the same floor. Moreover, at the average turn length of about two
seconds observed by Levinson and Torreira [37], we observe that the maximum number
of simultaneous speakers is greater than one at all cardinalities considered. This suggests
that the simplifying assumption from previous research of a single conversation within an
F-formation is insufficient.

We also observe a decreasing trend for the curves in Figure 7.4. This seems intuitive, as
it is much less likely that participants would speak for the entire duration of a window as𝑑 increases. Interestingly, there is a single example of a speaker speaking for 20 seconds in
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an F-formation of cardinality seven. On closer inspection, this turned out to be an error in
speaking status annotation, and we manually fixed this error for subsequent analysis.

Effect of cardinality on turn duration of simultaneous speakers. Sacks et al. observed
that there is a “pressure for minimization of turn size, distinctively operative with three
or more parties” [13, p. 713]. They note that the possibility of a schism introduced by the
fourth participant may influence the turn-taking system by ‘spreading the turns around’ if
there is an interest in retaining participants in the conversation. However, they concede
that this effect is equivocal, since turn distribution can also be used for encouraging
schisming. In this experiment, we explore this effect and pose the question as follows:
for a given speaking turn duration 𝑑, do we observe a decrease in the maximum number
of conversation floors observed over an F-formation’s lifetime with an increase in the
cardinality of an F-formation?

Qualitatively, this corresponds to the steepness of fall-off of the curves in Figure 7.4.
It seems that the the curves for cardinality six and seven falloff more steeply than those
for cardinalities four and five. To quantitatively test if cardinality has an effect, we fit a
Generalized Linear Model (GLM) to the same data as in the previous experiment with an
interaction factor between cardinality and the speaking turn duration 𝑑. Specifically, we
assume the maximum number of simultaneous speakers observed over the lifetime of each
F-formation, 𝑦𝑖 to be realizations of independent Poisson random variables, with 𝑌𝑖 ∼ 𝑃(𝜇𝑖)
and model 𝜇𝑖 as follows:

log(𝜇𝑖) = 𝛽0 +𝛽1 ∗ 𝑑𝑖 +𝛽2 ∗ 𝑐𝑖 +𝛽3 ∗ 𝑑𝑖 ∗ 𝑐𝑖 (7.1)

where 𝑑𝑖 refers to the duration of the speaking window, and 𝑐𝑖 refers to the cardinality
for the 𝑖th observation. The 𝛽s refer to the regression coefficients. The GLM was fit using
the statsmodels python package. The results of the GLM regression test are provided in
Table 7.1. We conclude that cardinality and the two-way interaction between cardinality
and turn duration are statistically significant at a significance level of 0.01. Turn duration
is itself significant at a significance level of 0.05.

While the previous test tells us that turn duration and cardinality are significant, we still
need to perform post-hoc comparisons to ascertain the differences between the cardinalities.
We fit multiple GLMs to each possible pair of cardinalities being considered and correct

Table 7.1: Generalized Linear Model Regression Results

Coef (𝜷) Std Err z P>|z|
Intercept 0.0626 0.339 0.184 0.854
Turn-duration 0.0057 0.002 2.296 0.022
Cardinality 0.1869 0.072 2.603 0.009
Turn-duration:Cardinality -0.0025 0.001 -4.543 0.000006
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Table 7.2: Nominal P-values for Six Post-Hoc GLM Regression Comparisons

Cardinality Pairs Intercept (𝜷0) d (𝜷1) c (𝜷2) d:c (𝜷3)
4-5 0.196 0.855 0.794 0.403
4-6 0.364 0.0007 0.010 0.00002*
4-7 0.697 0.428 0.030 0.009
5-6 0.079 0.0008 0.016 0.00016*
5-7 0.434 0.413 0.043 0.052
6-7 0.275 0.006 0.657 0.024

d = turn-duration, c = cardinality, d:c = interaction-factor. 𝛽s denote the corresponding regression coefficients. * denotes
significance at a threshold of 0.001 after Bonferroni correction for six tests.

the corresponding p-values using the Bonferroni correction for multiple testing. Table 7.2
provides the corrected p-values for the post-hoc comparisons. From the last column, we
find that cardinality and its interaction with turn-duration are significant between the
cardinalities {4, 6}, and {5, 6} at a significance level of 0.001.

One potential limitation of this analysis is the imbalance in the number of F-formations
of different cardinalities. F-formations of cardinality four were the most common in the
data, with reasonable number of samples to infer a pattern. We believe that the intuition
of cardinality and its interaction with speaking turn duration being significant is still a
sound intuition, although the statistical significance should perhaps be viewed within the
context of the number of F-formations we see in the data. Figure 7.5 plots the number of
observations that contributed to the graphs in Figure 7.4.

Figure 7.5: Number of F-formations at different speaking turn durations.
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7.7 Conclusion
In this study, we presented an initial exploration into unifying the spatial and temporal
perspectives of a free-standing conversing group. Specifically, we proposed using simulta-
neous speaking turns as an indicator for the existence of distinct conversation floors. In
the absence of audio data to identify the topics being discussed, our proposed metric can be
used to gain a deeper understanding of the conversation dynamics within an F-formation,
since speaking turns can be inferred from visual or wearable-sensor data. Our experiments
demonstrate that at an average turn duration of two seconds for humans [37], there is
evidence of multiple conversation floors within a single F-formation. Further, we found that
an increase in cardinality of an F-formation correlates with a decrease in turn duration of
simultaneous speakers, specifically between F-formations of sizes {4,6}, and {5,6} in our data.
A deeper analysis would be required to identify whether the differences in F-formations
of cardinality six hold across datasets, with preferably more examples of F-formations of
size six and greater. In this initial approach to the problem, our study does not account for
the behaviour of the silent participants, or the evolution of turn taking dynamics within a
floor. These remain promising avenues to explore for future works.
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Abstract
The quality of daily spontaneous conversations is of importance towards both our well-being
as well as the development of interactive social agents. Prior research directly studying the
quality of social conversations has operationalized it in narrow terms, associating greater
quality to less small talk. Other works taking a broader perspective of interaction experience
have indirectly studied quality through one of the several overlapping constructs such as
rapport or engagement, in isolation. In this work we bridge this gap by proposing a holistic
conceptualization of conversation quality, building upon the collaborative attributes of coop-
erative conversation floors. Taking a multilevel perspective of conversation, we develop and
validate two instruments for perceived conversation quality (PCQ) at the individual and group
levels. Specifically, we motivate capturing external raters’ gestalt impressions of participant
experiences from thin slices of behavior, and collect annotations of PCQ on the publicly
available MatchNMingle dataset of in-the-wild mingling conversations. Finally, we present an
analysis of behavioral features that are predictive of PCQ. We find that for the conversations
in MatchNMingle, raters tend to associate smaller group sizes, equitable speaking turns with
fewer interruptions, and time taken for synchronous bodily coordination with higher PCQ.

Index Terms: Perceived Conversation Quality, Spontaneous Interactions, Social and Behav-
ioral Sciences, Group Interactions

8.1 Introduction

Picture a spontaneous interaction such as a daily social conversation at work or home.
The quality of such conversations is of importance towards both our well-being as

well as the development of interactive technologies that influence our daily lives. At an
individual level, conversation quality is directly associated with our happiness and life
satisfaction [1, 2]. Furthermore, human judgement of conversation quality is a common
measure for the evaluation of artificial conversation agents [3, 4]. Despite its importance,
little prior research has directly studied conversation quality or jointly considered the
factors affecting its perception.

One challenge is that conversation quality is not directly measured, and needs to be
inferred from observable verbal and non-verbal behavioral cues. This has led to some
research viewing conversation quality in narrow terms, considering only isolated attributes
of the conversation. For instance, Milek et al. [1] and Mehl et al. [2] consider greater
conversation quality to correspond to less small talk and information exchange at more than
a trivial level of depth. On the other hand, taking a broader view of conversation quality runs
into another challenge: its potential intersection with several overlapping social concepts.
These include rapport [5], bonding [6], interest-levels [7], and involvement [8] amongst
others. When studied towards the development of interactive dialogue agents, the focus
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Figure 8.1: Conceptual illustration of individual experiences existing in the perception of interacting partners,
and how an external perceived measure of individual-level (green) and group-level (red) experience is relevant
for the development of artificial interactive social agents.

has been on the verbal content of non-spontaneous dyadic conversations with a chatbot
[3, 4]. In the second ConvAI2 Challenge, the human judgment of quality was evaluated
simply as a measure of enjoyment through the question “How much did you enjoy talking
to this user?” [4]. See et al. [3] conducted a large-scale study to identify the fine-grained
factors governing human judgments of full conversations. Even here, the human judgment
of overall quality is expressed in terms of the humanness and engagingness of artificially
generated verbal dialogues. Moreover, the recording of spontaneous conversations in a
way that enables the transcription of verbal content constitutes a privacy concern with
ethical implications [9, 10]. Consequently, while individual factors have been studied in
isolation, joint consideration of the multiple aspects of conversation quality in natural,
spontaneous conversations remains a knowledge gap.

In this work, we take the perspective that such a holistic characterization of the quality
of multiparty spontaneous interactions is an important objective in the development of
socially intelligent systems. For instance, consider a social robot approaching a conversing
group of people, as illustrated in Figure 8.1. Here, a perception of the group’s experience of
the conversation as a whole could aid the social agent in developing more nuanced policies
of approach. Furthermore, an estimate of each individual’s experience could then aid the
agent in developing personalized adaptive strategies to conduct the subsequent interaction
smoothly.

In addition to a holistic characterization, we specifically argue for a perceived measure
of conversation quality in this work, at both the individual and the group levels. This
is in contrast to existing efforts for quantifying quality-related aspects of conversations,
which have largely focused on self-reported measures after interactions [5, 6, 11, 12]. While
such measures attempt to estimate an individual’s true experience in situ, they also suffer
several drawbacks including desirability bias [13], egoistic bias [13, 14], and recall bias and
cognitive errors [15]. On the other hand, a perceived measure of experience quantifies how
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participants seem to be experiencing the interaction to an external third-party observer
[7, 8, 16]. While such a measure may not capture the true experience, it closely models
how we conduct interactions based on imperfect estimates of our conversation partners’
experiences, and is therefore also useful towards the development of machines with social
intelligence.

Concretely, we make three contributions in this work. First, we introduce the novel
measure of Perceived Conversation Quality (PCQ) towards quantifying social experience in
spontaneous interactions by jointly considering potentially overlapping related constructs.
Second, we present an instrument for collecting annotations of PCQ at both the individual
and the group level. We validate the instrument on the publicly available MatchNMingle
dataset [9] of mingling interactions following a speed-dating event. Third, we present
insights into the behavioral features that predict PCQ through confirmatory statistical
analysis and empirical data-driven analysis.

Our preliminary work on this topic was presented in [17], which described the proposed
instrument and analysis of annotations. The experiments we present in this manuscript
(Section 8.5 onward) are completely new. Moreover, this manuscript is a complete rewrite;
compared to our prior publication the manuscript now includes a clearer (i) overall pre-
sentation and motivation, (ii) organization of related literature, and (iii) description of the
process of conceptualizing, validating, and analyzing PCQ.

8.2 Related work
Spontaneous interactions are considered to be non task-directed, unconstrained, and
typically occurring in natural situations [18–20]. In such a dynamic conversation setting,
several constructs emerge. These include descriptors of interpersonal relationships amongst
participants (e.g. rapport [5] and bonding [6]), or those which capture qualitative attributes
of the interaction (e.g. involvement [8, 21], engagement [22], and interest-levels [7]).

8.2.1 Rapport and Bonding
Rapport and bonding have been widely studied as a pairwise phenomena using self-
reported measures [5, 6, 11]. Müller et al. [5] define rapport as “the close and harmonious
relationship in which interaction partners are ‘in sync’ with each other”. The authors
used a self-reported questionnaire adapted from Bernieri et al. [23] to measure rapport for
every pair of individuals within small interaction groups. Another related social concept is
bonding, which measures positive personal attachment including “mutual trust, acceptance,
and confidence” amongst interacting pairs [24]. Based on this definition, Jaques et al. [6]
studied bonding in human-agent interactions, using the bonding subscale of the Working
Alliance Inventory (B-WAI) [24].
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8.2.2 Involvement, Engagement, and Interest-Levels

Antil [21] defines involvement as “the level of perceived personal importance and/or in-
terest evoked by a stimulus (or stimuli) within a specific situation”. Following Antil’s
view of involvement as a non-binary variable, Oertel et al. [8] developed a 10-level anno-
tation scheme for joint involvement of a group based on intuitive, listener-independent
impressions of prosody and body and face movement. Oertel and Salvi [25] proposed a
gaze-based method to relate group involvement to individual engagement in multiparty
dialogue. Several researchers have conceptualized group cohesion to study its influence on
task performance [26], in settings such as meetings [27, 28] and long-term crew missions
[29, 30]. Gatica-Perez et al. [7] define group interest-levels as, “the perceived degree of
interest or involvement of the majority of the group”. The authors provided perceived
annotations for interest-levels using audio-visual recordings of interactions, on a discrete5-point scale. To this end, the external annotators were instructed to attend to interest-
indicating activities such as note-taking, focused gaze, and avid participation in discussion.
Note that these constructs have all been defined and studied in task-directed settings.

8.2.3 General Measures of Interaction Experience

In contrast to efforts focusing on specific social concepts, some recent approaches have
proposed more general measures of experience in conversations. Cuperman and Ickes [12]
introduced the Perception of Interaction (POI) questionnaire as part of a study to examine
the effects of gender and personality traits on participant behaviors in dyadic interactions.
The questionnaire collected self-reported measures of a participant’s perception of their
interaction experience. These aspects included the perceived quality of the interaction,
the degree of rapport they felt they had with the other person, and the degree to which
they liked the other person. This measure of interactions has been adapted by other works
to study bonding [6] and interaction experience [31]. Lindley and Monk [16] follow the
rationale that experience itself is difficult to quantify, but since it is entwined with social
interaction, wemight characterize experience bymeasuring aspects of conversation that are
related to it. They studied several behavioral process measures and developed the Thin-Slice
Enjoyment Scale (TES): a measure of empathized enjoyment in social conversations from
ratings of thin slices of behavior by naïve judges. In their factor analysis, the authors found
that the judges viewed enjoyment and conversation fluency as being related. However, the
POI was developed for self-reported measures, and neither work considered spontaneous
interaction settings: Cuperman and Ickes [12] considered scripted dyadic interactions
with confederates, while Lindley and Monk [16] developed the TES within the particular
task-directed context of photo sharing.
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8.3 Perceived Conversation Quality
8.3.1 Initial Conceptualization
The primary influences for our conceptualization of PCQ are the works of Edelsky [32],
Lindley and Monk [16], and Cuperman and Ickes [12]. Specifically, from these works we
motivate the rationale behind our choices of (i) focusing on the cooperative aspects of
conversation towards conceptualizing PCQ, and (ii) rating thin slices of behavior to capture
the gestalt impressions raters have of the continually unfolding conversation.

In an analysis of social interactions in a series of meetings, Edelsky [32] observed two
contrasting styles of conversation, termed cooperative floors and exclusive floors. Coop-
erative floors are characterized by collaborative stretches of “free-for-all” conversation
accompanied by a feeling of participants being “on the same wavelength” [32, p. 391]. (In
contrast, the exclusive floor is owned by a single person with turns rarely overlapping.)
This notion of the cooperative floor captures the sense of engagement associated with
positive experiences, and has been since linked with informal social interactions [33–35]
and enjoyment [36]. As such, we observe that Edelsky’s notion of “on the same wave-
length” strongly resonates with the POI questionnaire’s focus on how interaction partners
relate to each other [12]. Subsequent researchers have also derived qualitative measures of
conversation based on the “free-for-all” aspects of Edelsky’s description. These include
conversational equality and freedom [16] (or interactivity [37]), and fluency through the
occurrence of frequent turns [16, 38].

Ambady and Rosenthal [39] propose that thin slice judgments of behavior can be
usefully made so long as the variables in question are observable and there is an affective
or interpersonal component. They suggest that this is because such inferences are made
through subconscious decoding of expressive behavior, with judgemental accuracy being
strongly linked to “gestalt, molar impressions based on nonverbal behavior” [40, p. 439].
This result supports previous research showing that molar impressions, although vaguer
and fuzzier, generally yield more useful information than the coding of specific behaviors
without accounting for overall context. Researchers often encourage the formation of this
gestalt impression by intentionally reducing information presented to raters, e.g. removing
speech content while retaining tone of voice or extinguishing facial expressions [41].
In contrast, obtaining judgments of gestalt impressions is a natural fit for spontaneous
interaction settings where recording speech or ego-centric perspectives is often not possible
to preserve privacy [9, 10, 42].

8.3.2 Pilot Qualitative Interviews with Naïve Judges
We conducted pilot qualitative interviews with three naïve judges to verify if our initial
conceptualization matched the lay interpretation of PCQ. All judges were students enrolled



8.3 Perceived Conversation Quality

8

209

Figure 8.2: A snapshot from the MatchNMingle dataset [43].

in technical Masters programs at the authors’ university. The judges were shown unaltered
recordings from the publicly available MatchNMingle (MnM) dataset [43], and asked what
they thought of the conversations in the scene. Figure 8.2 illustrates a snapshot of a scene
from MnM. To obtain unbiased impressions, we didn’t specify our focus on conversation
quality, nor our conceptualization of it. All judges (i) described a continually evolving
perception of participant experiences over the conversation lifetime, aligning with our
choice of rating thin slices of behavior rather than a single rating for the entire conversation;
(ii) described perception of individual experiences as well as the group as a whole, aligning
with our choice of measuring PCQ at the individual- and group- levels separately; and (iii)
identified the attributes of equal opportunity for speaking, smoothness of interaction, and
interpersonal relationships that strongly resonates with the prior work that serves as our
primary influences [12, 16, 32].

8.3.3 Definition and Constituents
Following our initial conceptualization and pilot interviews, we formalize PCQ of a sponta-
neous interaction as

the degree to which participants in the spontaneous interaction appear to be on
the same wavelength and maintain an equal opportunity floor, as perceived by
an external observer.

Further, in the following subsections we present three constituents of PCQ that catego-
rize the multiple social concepts associated with this definition.

Interpersonal Relationships
This constituent describes the degree of association between participants or the notion of
being in-sync with one’s interaction partners, using constructs such as rapport [5] and
bonding [6]. More specifically, the constituent measures the degree to which an individual
was accepted and respected by other individuals in the group or the degree to which the
other individuals were paying attention to the individual. Increased bonding and rapport
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amongst interacting partners is widely acknowledged to result in improved collaboration,
and improved interpersonal outcomes, thereby having a key influence on the PCQ.

Nature of Interaction
This constituent describes the degree to which the interaction was smooth and relaxed
or forced and awkward. It captures the notion of whether the participants are having a
positive and pleasant experience, drawing upon the quality of interaction aspects of the
POI [12].

Equal Opportunity
This constituent captures the free-for-all collaborative aspects of Edelsky’s description of
cooperative floors [32]. It describes the notion of equality of opportunity for participation
shared amongst interacting partners, capturing the sense of cohesiveness and engagement
in informal conversations. This includes factors such as conversation freedom [44], equality,
and fluency [16] and an individual’s opportunity to take the lead in the conversation [6, 12].

8.3.4 PCQ Questionnaires: A Multilevel Perspective
We devise two independent questionnaires to measure PCQ at the individual and group
levels. This follows our broader multilevel perspective [45] of social interactions where
constructs can be conceptualized at different levels, such as the individual, dyadic, and
group levels. While prior works have often considered constructs at a single level (e.g.
Müller et al. [5] consider rapport as a dyadic pairwise construct), a multilevel perspective
aligns better with our pilot judges’ descriptions of attributes pertaining to individuals and
groups as a whole. Moreover, some prior works on conversation group dynamics have
indeed also taken a multilevel perspective: Oertel and Salvi [25] distinguish overall group
involvement from individual engagement, obtaining separate annotations at both levels.
In the case of PCQ, our view is that an observer’s perceptions of individual affect and
behavior dynamically interact to contribute to an overall group-level perception. Figure 8.3
illustrates the scope of observations towards measuring PCQ at each level.

Figure 8.3: Illustrating the scope of observation to measure the group-level (red) and individual-level (green)
PCQ.
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The individual level captures what the quality of the conversation appears to be to
a particular individual. The focus is on how the individual seems to be relating to their
partners and participating in the conversation. Consequently, every individual receives a
rating. Note that this perspective doesn’t consider the individual’s behavior in isolation by
excluding the context of partner behaviors. Rather, the scope of consideration is restricted
to what the individual seems to be experiencing. In contrast, the group level expands
this scope of consideration to all interlocutors as a whole, focusing on their collective
experience, resulting in a single group-level rating.

Concretely, we devise the PCQ questionnaires by drawing upon elements of the POI
scale [12] and the TES [16]. However, since the POI was developed for self-reports rather
than external perception, and neither was developed for spontaneous interaction settings,
we adapt the specific items. First, all items were updated to address external observers
and apply to group sizes beyond dyads. Second, privacy-preserving datasets of in-the-wild
conversations often omit recording audio. So items referring to the verbal or paralinguistic
content of speech were skipped, thereby relying solely on nonverbal cues for perception.
Finally, we excluded original items that would require external raters to make significant
speculations about participants’ desires and opinions beyond what can be inferred from
their observable behavior. These include questions related to interpersonal liking (e.g. “I
would like to interact more with the partner in the future”), or degree of rapport (e.g. “I felt
that the partner was paying attention to my mood”). From the varied descriptions of pilot
judges on the matter, as well as internal author discussions, we deemed that answering
such questions require external observers to make too many unverifiable assumptions for a
useful perceived measure of conversation quality. We provide the two PCQ questionnaires
in Supplementary Material Section 8.A.

8.4 Annotations, Validity, and Reliability
8.4.1 Dataset
We use the publicly available MnM dataset [43]. MnM is a multimodal dataset of in-the-wild
free-standing mingling interactions. The recordings constitute a total of 30 minutes of
interaction across three days, annotated for conversation groups using the spatial positions
of the participants in video from overhead cameras. Figure 8.2 illustrates a snapshot
from the dataset. Conversation groups were operationalized using the framework of F-
formations [46], where a unique group was considered to be an F-formation with a fixed
number of interlocutors. The leaving or joining of one or more members was considered
to give rise to new unique conversing groups. The authors of the dataset chose specific
windows of 10 minutes per day for annotation with an aim to eliminate possible effects of
participant acclimatization to being in a recorded mingling setting, and to maximize the
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density of participants in the scene. Over the 30 minutes 174 conversation groups were
annotated. The duration of group conversation follows a mean of 1.91min, std. of 2.13min,
median of 1.10 min, and a mode of 0.52 min. The provided data contains video from three
of the five overhead cameras, and accelerometer readings from a sensor pack worn by each
participant.

8.4.2 Annotation Procedure
The PCQ annotations were performed by only relying on overhead cameras videos. The
MnM dataset contains only general audio from the overhead cameras, which is insufficient
to reliably infer verbal cues of an individual, and close-talk microphone recordings are
not available. However, the MnM dataset contains video recordings that capture rich non-
verbal behaviors of participants from which a useful perception of conversation quality
can be formed [7, 16].

We began by splitting the group conversations into multiple thin-slices [6, 47]. The
distribution of group interaction duration in the data follows a median of 1.10 min and a
mean of 1.91 min. For a fair comparison to conversations lasting around 1 minute, we split
conversations of duration greater than 2 minutes into independent slices of 1 minute each.
Conversations of duration less than 2 minutes were untouched. We also omitted groups
with a duration of less than 30 seconds. Note that studies on the predictive validity of thin
slices of nonverbal behavior for other tasks have revealed (i) no clear pattern for optimal
slice locations for 1 min slices within a longer slice [48]; and (ii) only some loss in predictive
capacity for 1 min slices, while slices of duration 2 or 3 min were in general equal to 5 min
slices in predictive capability [48, 49]. Considering these results along with the distribution
of conversation duration in our data, we believe our choice of splitting conversations
larger than 2 minutes into 1 minute slices to be reasonable. After the omission of groups
lasting under 30 seconds, the total number of resulting conversation groups was 115. The
distribution of group cardinality (number of participants) and interaction duration can be
seen in Figure 8.4a and Figure 8.4b respectively.

We began by first conducting a qualitative annotation pilot with the same naïve judges
who participated in the qualitative interviews. Note that these judges were not used for
the final annotations. The goal of this pilot was to fine-tune the final annotation process
using any initial feedback about the annotation procedure. The pilot annotators were
presented with the videos of the individual thin-slices and asked to fill the two PCQ
questionnaires. However, post-hoc interviews revealed two considerations. First, the
annotators found the presence of free-standing conversation groups (FCGs) other than the
one under consideration distracting. Second, the annotators suffered from fatigue while
annotating longer conversations, especially while annotating both individual and group
level PCQ. In light of this feedback, we manually cropped each FCG from the overhead
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(a) Group Cardinality (b) Duration of interactions

Figure 8.4: Distribution of conversation group attributes from the MatchNMingle dataset.

video. To further reduce fatigue, annotators were given a period of two months to annotate
all the slices, and were instructed to not annotate more than three groups per day.

The final annotations1 were performed on a 5-point scale by three annotators. The
annotators were chosen to be naïve judges in order to capture a general perception of
conversation quality. The annotators were aged between 22 and 30 years, 2 females and1 male. The age range matches overlaps with the reported age range of the participants
in the data (18 − 30) [9]. One of the annotators spent time internationally as a Masters
student, matching the demographics of the participants. All annotators had completed
education at least the Bachelors level. The annotators were provided with the independent
conversation slices of cropped video clips and asked to fill out both PCQ questionnaires.
The slices were provided to the annotators in randomized order for each annotator, to
prevent any annotator bias which might occur from a chronological ordering of the clips.

8.4.3 Validity
When measuring intangible constructs such as PCQ, it is important to assess the validity
[50, 51] of the proposed instrument. Broadly, validity deals with whether the instrument
indeed measures what it claims to be measuring.

Face Validity
First we tested the face validity of our questionnaire items. Face validity is a consensus
measure, and is checked to ensure that the raters accept the instrument [50]. This is done
by asking the raters if the items seem valid. Both questionnaires passed the face validity
test with full consensus.

1Annotations will be available on the MatchNMingle website at http://matchmakers.ewi.tudelft.nl/matchnmin-
gle/pmwiki/

http://matchmakers.ewi.tudelft.nl/matchnmingle/pmwiki/
http://matchmakers.ewi.tudelft.nl/matchnmingle/pmwiki/
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Criterion and Construct Validity
When prior trusted standards exist for a construct, a criterion-oriented study is common.
Here validity can be established by showing that results of administering the instrument
correlates with a contemporary criterion (e.g. a psychiatric diagnosis) or by proposing
one instrument as a substitute for another (e.g. a multiple-choice form of spelling test
is substituted for taking dictation) [51]. However, since PCQ is a novel conceptualiza-
tion, prior trusted standards do not exist for it. In such cases where the attribute being
measured is not “operationally defined”, construct validity must be investigated [50, 51].
Construct validation is the gathering of evidence to support the interpretation of what a
measure reflects, and addresses the question “What constructs account for variance in test
performance?”

A typical approach for construct validation involves performing a factor analysis and
investigating if items corresponding to one construct correlate with each other along a factor
(convergent validity) and divert from items of other constructs (divergent validity) [50].
This works well for instruments with independent constructs (e.g. gender and complexity
of use in Brinkman’s mobile phone design questionnaire [50, Table 9]). However, such
an analysis is unsuitable for situations like ours with overlapping constructs. Indeed,
Cuperman and Ickes [12] decided to not reduce items from the POI to a smaller set of
factors, following a precedent set by [52]. In contrast, we do perform a factor analysis,
but rather than seeking the independence of factors, we investigate whether the loadings
correspond to interpretable attributes of the constructs.

A principal component analysis (PCA) of the annotations showed that 71% and 65.2%
of the variance at the group-level and individual-level respectively could be explained by
the first principal component (see Figure 8.5). Here, 1020 (3*340) and 345 (3*115) thin-

(a) Group-level (b) Individual-level

Figure 8.5: Eigenvalue distribution (bar chart) and the cumulative percentage of the explained variability (line
plot).
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(a) Group-level (b) Individual-level

Figure 8.6: Plot of the factor loadings (black lines) and the samples (blue dots) in the first two principal
components.

slice samples were used for individual and group level PCQ (i.e., annotations from three
annotators for each sample), respectively, with 10 features (the number of questionnaire
items), which is greater than the variables-to-features ratio suggested to perform PCA [53].
From the plot of the data samples using the first two principal components in Figure 8.6,
we see that questions corresponding to positive and negative orientations of PCQ cluster
in opposite directions along the two components. Specifically the individual-level items
pertaining to awkwardness (3), discomfort (5), and self-consciousness (10) load in the
exactly opposite direction to the item about the individual looking relaxed (1). Of these, at
the group-level only items 1 and 3 apply, and we see a similar pattern. Further, we also
observe that the items pertaining to equal opportunity cluster separately: these correspond
to items 5 and 6 about free-for-all participation at the group-level, and item 6 about taking
lead at individual-level. Specifically, the highest loading of individual-level item 6 suggests
that the taking lead in conversations accounts for the highest variance between individuals,
which is intuitive given prior work on dominance in groups [54].

8.4.4 Reliability
To estimate inter-annotator agreement, we use the quadratic weighted kappa measure
(𝜅) [55], a variant of the Cohen’s kappa. The measure is especially useful when the
annotation data is ordinal in nature. Figure 8.7 plots the mean kappa score against the
mean conversation quality score in a scatter plot similar to the analysis of inter-annotator
agreement for cohesion performed by Hung and Gatica-Perez [27].

From the plots we see that there exists a linear relationship between mean kappa
scores and mean conversation quality scores, suggesting that annotators agree better on
conversations of higher perceived quality than conversations of lower perceived quality.
Moreover, in the individual-level annotations, there exists a small cluster of samples where
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(a) Group-level (b) Individual-level

Figure 8.7: Scatter plot of the Mean Kappa score (𝜅) vs the Mean Conversation Quality score.

annotators tended to agree higher for lower conversation quality samples as well. In
contrast, annotators never agree well for low conversation quality samples at the group-
level.

To handle low inter-annotator agreement, following suggestions by Ringeval et al.
[56], we performed zero-mean local normalization to remove annotator bias. Hung and
Gatica-Perez [27] omit samples below 𝜅 = 0.3, and Ringeval et al. [56] obtain an average 𝜅
of ≈ 0.2 for all their emotion dimensions. Following these approaches, data samples at both
the group- and individual- levels with 𝜅 < 0.2 were omitted from further analysis, where a𝜅 > 0.2 indicates a reliability of fair and above [57].

8.5 Modeling Conversation Quality
In this section we describe the experimental setup for our study of behavioral features that
can be predictive of PCQ.

8.5.1 Preprocessing
We first preprocess the raw tri-axial acceleration signal from the wearable sensors to
extract low-level features. First, each axis recording from the tri-axial accelerometer is
standardized by calculating the z-score for each individual and axis, thereby removing the
individual differences in movement intensity. Following prior work using wearable sensor
data to study conversation dynamics [58–60], we compute the following features using the
z-scores: the raw and absolute values for 3 axes each, and the Euclidean norm of the raw
values across axes, resulting in a total of 7 feature channels. Further, similar to [60], using
a sliding-window filter, we denoise the feature channels by extracting statistical (mean,
median and variance) and spectral features (log-bin values of power spectral density) from
the respective sliding-windows. Drawing inspiration from [61], we also include features
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Table 8.1: An overview of the four sets of individual- and pair- level behavioral features extracted.

Attribute Category Attribute Variant

Synchrony
1 Correlation correlation coefficient (𝜌𝑥𝑦)
2 Time-lagged Correlation min, max, argmin, argmax
3 Mutual Information min, max, mean, variance
4 Mimicry lag_min, lag_max, lag_mean, lag_variance,

lead_min, lead_max, lead_mean, lead_variance

Causality
5 Coherence min, max
6 Granger’s Causality f_value

Convergence
7 Symmetric Convergence 𝜌
8 Asymmetric Convergence lag, lead
9 Global Convergence 𝑑1 −𝑑2
Turn-Taking
10 Conversation Equality degree of equality
11 Conversation Fluency percentage of silence, # back-channels
12 Conversation Synchronization percentage of overlap, # successful interrupts, # unsuccessful interrupts

that are not preprocessed to circumvent any data loss from preprocessing. An analysis is
also presented to understand their respective benefits (see Section 8.6.2).

8.5.2 Feature Extraction
Individual and pairwise features
We consider pair-wise bodily coordination features and individual-level turn-taking fea-
tures to study PCQ. For bodily coordination, we extract three sets of features: synchrony,
convergence, and causality. An overview of the individual and pairwise features extracted
can be seen in Table 8.1.

Synchrony. Synchrony estimates the dynamic and reciprocal adaptation of the temporal
structure of behaviors between interlocutors [62]. Following existing literature [11, 28, 60],
we extract four unique measures of interpersonal synchrony: Correlation, Time Lagged
Correlation, Mutual Information, and Mimicry. See Supplementary Section 8.B.1 for feature
extraction details.

Causality. Correlation does not adequately capture the causal effect [63]. We therefore
extract two causality features: Coherence [64] and Granger’s Causality. See Supplementary
Section 8.B.2 for feature extraction details.

Convergence. These features capture the increasing similarity between interacting part-
ners over time [65], and have been shown to be predictive of mutual liking, attraction
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[60, 66], and social cohesion [28]. In this research, we use three unique estimates of con-
vergence: Symmetric Convergence, Asymmetric Convergence, and Global Convergence. See
Supplementary Section 8.B.3 for feature extraction details.

Turn-Taking. MnM provides binary speaking status of participants annotated from video
data. We extract turn-taking features using these annotations by assuming a speaking turn
to be a continuous speaking activity segment separated by at least 500ms of silence [16, 67].
Following existing literature [16, 27, 67], we extracted turn-taking features under three
categories: Conversation Equality, Conversation Fluency, and, Conversation Synchronization.
Assuming a conversation of duration 𝑇 and a group of 𝑁 people, and denoting the 𝑖-th
individual’s binary speaking status as 𝒔𝑖 = [𝑠𝑖1,… , 𝑠𝑖𝑇], we have the percentage of speaking
duration for 𝑖, 𝑑 𝑖speak = (∑𝑡∈[𝑇 ] 𝒔𝑖𝑡)/𝑇. The degree of equality for 𝑖 is 𝑒𝑞𝑖 = (𝑑 𝑖speak− ̄𝒅)/ ̄𝒅, wherē𝒅 = (∑𝑖∈[𝑁 ] 𝑑 𝑖speak)/𝑁. As measures of fluency, we compute the percentage of individual
silence 𝑑 𝑖silence = 1 − 𝑑 𝑖speak and the number of back-channels (very short utterances of
duration up to 2 s). As a measure of synchronization, we consider the percentage of speech
overlap, which is 𝑑 𝑖o = (∑𝑡∈[𝑇 ] {𝑠𝑖𝑡 = 𝑠𝑗,𝑗≠𝑖𝑡 })/𝑇 for individual 𝑖, and the number of successful
and unsuccessful interruptions, which are overlap durations when turn-change occurs and
does not occur, respectively.

Group-level features
Following [28, 30], we translate individual and pairwise features to group-level features
using the feature aggregatesminimum,maximum,mean,mode,median and variance. Specif-
ically, for individual-level modeling, similar to Müller et al. [5] we aggregate over pairwise
features involving that particular individual, and for group-level modeling aggregation is
done over all the pairs in the group.

8.5.3 Experimental Setup
Statistical Analysis
We perform hypothesis-driven tests to study the effect of (i) group cardinality, (ii) turn-
taking attributes and (iii) body coordination attributes on PCQ. We use the Quantile Least
Squares (QLS) and Joint LASSO models for our hypothesis-driven analysis. The QLS
analysis considers each set of behavioral features independently, while the Joint LASSO
analysis accounts for the combined effect of all features, allowing for complementary
insight. Due to the superior performance of models when no preprocessing was used
(empirically explained in Section 8.6.2), for the statistical analysis tests, we only used the
features without preprocessing.

Quantile Least Squares. QLS fits the regression to the conditional median of the depen-
dent variable, in contrast to the conditional mean estimated by Ordinary Least Squares



8.5 Modeling Conversation Quality

8

219

Table 8.2: Overview of the statistical analysis performed.

Dependent Variables Independent Variable Sets Statistical Models

IndivPCQ Group cardinality QLS Regression
GroupPCQ Turn-taking, Bodily Coordination LASSO Regression

(OLS). Intuitively, the conditional median is more robust against outliers. More crucially,
the QLS does not require the data to abide the assumptions of exogeneity and homoscedas-
ticity like the OLS does. We find that the variance of the independent variables varies
largely across quantiles (see Supplementary Figure 8.16 for scatter-plots), thereby violating
the exogeneity and homoscedasticity assumptions. We therefore use the QLS model for
our analysis.

Joint LASSO. While QLS is convenient in situations where classical parametric assump-
tions do not hold, it still suffers from effects of multicollinearity. We therefore use the
QLS model to only study behavioral feature sets in isolation. However, to also account for
the combined effect of feature sets, we perform a joint regression over all features using a
LASSOmodel, which uses the coordinate descent [68] to fit the coefficients, thereby inducing
sparsity to address multicollinearity. Subsequently, we perform a post-hoc Spearman’s
rank correlation on the LASSO filtered features.

An overview of the statistical tests performed can be seen in Table 8.2. We denote
individual- and group- level PCQ as IndivPCQ and GroupPCQ respectively. In total, with
two dependent variables, three sets of independent variables and three statistical models,18 tests were performed. Bonferroni correction is applied to the p-values to correct for
multiple testing for each dependent variable. After Bonferroni correction a significance
threshold of 0.005 was used for testing significance in all the analyses presented.

Analysis of Feature Extraction and Fusion
We perform data-driven analyses to study the effects of (i) window sizes for data preprocess-
ing; (ii) fusion of attribute categories; and (iii) feature aggregators to compute group-level
features from individual and pairwise features.

For these analyses, we treat predicting PCQ as a binary classification of low and high
PCQ scores. A threshold of 3.0 (on the 5-point scale) is used to binarize the scores into
low and high. As such, our annotations suffer from class imbalance, see Figure 8.7 for
the label threshold, and Supplementary Section 8.C for the class distribution. To address
this, we employ the Synthetic Minority Oversampling technique (SMOTE) [69], which
generates synthetic samples from the minority class. We use a logistic regression model
trained with the elastic loss that combines the 𝐿1 and 𝐿2 penalties of the lasso and ridge
regularization methods. Specifically, for each experiment we evaluate how the feature
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extraction or aggregation affects the predictive capability of the model. For dimensionality
reduction, we perform PCA on the z-score standardized features, by selecting features
that preserve the top 90% of variance in respective predictive tasks. As the performance
metric, we use the area under the ROC Curve (AUC) score. The metric is calculated as
the average across 5-folds in the cross-validation (CV) setting. A stratified k-fold CV was
used to preserve the percentage of samples of each target class as the complete set, in the
train and test partitions. Except when studying the effects of preprocessing, in all other
experiments only features that are not pre-processed were used. Code for all experiments
and analyses are available at https://github.com/LRNavin/conversation_quality.

8.6 Results
8.6.1 Statistical Analysis
Analysis of Group Cardinality
Existing research [70–72] has shown that behavior in group interactions varies with size
of the group (group cardinality). Is this true for PCQ as well? We test the hypothesis:

For an FCG, the PCQ changes with group cardinality.

From the plots in Figure 8.8, we see that for both GroupPCQ and IndivPCQ the means for
cardinalities of 2, 3 and 4 are higher than that of 5, 6, 7. The statistical tests reveal that
IndivPCQ and GroupPCQ are significantly different across groups of different cardinality.
We note that for all regression models, the 𝛽 coefficient for the group cardinality variable is
negative, suggesting that PCQ is inversely proportional to group cardinality. For example,
the QLS model associates the cardinality attribute with 𝛽 = −0.2167 and 𝛽 = −0.0833 for
IndivPCQ and GroupPCQ respectively (p-value=10−5), indicating that people appear to
have better quality conversations with fewer partners.

Figure 8.8: GroupPCQ and IndivPCQ across group cardinalities.

https://github.com/LRNavin/conversation_quality
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Post-hoc analysis testing for the differences in PCQ between cardinality pairs reveals
that the IndivPCQ scores are significantly different in dyadic group interactions when
compared to that of interactions in larger groups (cardinality ≥ 3). One possible alternate
explanation of this result is that raters score PCQ more conservatively when there are more
partners to pay attention to. Nevertheless, even if this were the case, it would be a valid
characteristic of how people perceive behaviors in larger groups. Significant results were
not observed for the post-hoc GroupPCQ comparisons, suggesting that no conclusions
can be drawn with respect to GroupPCQ regarding pairwise differences with cardinalities.
Note that this result should also be interpreted accounting for the small sample size for
cardinalities ≥ 5.
Analysis of Turn-Taking Attributes
Turn-taking features have shown to be indicative of constructs such as enjoyment and
cohesion [16, 27, 73]. We test the hypotheses:

In an FCG, turn-taking attributes (conversation equality, conversation fluency
and conversation synchronization) are positively correlated with PCQ.

For IndivPCQ, the QLS model reveals that conversation equality and percentage of silence
are the most significant attributes, with positive (𝛽 = 0.2136,𝑝 = 10−4) and negative (𝛽 =−0.5094,𝑝 = 10−4) correlations respectively. For GroupPCQ, QLS reveals that the number of
successful and unsuccessful interruptions are the most significant attributes, with negative
(𝛽 = −0.0859,𝑝 = 0.001) and positive (𝛽 = 0.0956,𝑝 = 0.002) correlations respectively. On the
other hand, the LASSO and rank correlation models reveal a different set of significant
attributes. For IndivPCQ, along with conversation equality and percentage of silence,
the two interruption based attributes were also revealed to be significant. Similarly, for
GroupPCQ, unlike the QLS, the two interruption attributes are found to be insignificant,
while conversation equality, percentage of silence and number of backchannel attributes
are found to be significant.

Intuitively, the result implies that observers consider group conversations with more
equitable speaking turns and fewer interruptions to be of higher quality. An important thing
to note here is that the complementary models associate all attributes with similar trends
even though they differ on which attributes they consider to be of statistical significance.
Even though the statistical significance of successful and unsuccessful interruptions differ
when considered in isolation or jointly with other features, they are associatedwith negative
and positive 𝛽’s respectively, by all models tested.
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Analysis of Bodily Coordination Attributes
Coordination features across modalities such as bodily movements [60] and paralinguistic
speech features [28] have been shown to be indicative of liking [60], attraction [60], and
cohesion [28]. Here we test the hypothesis:

In an FCG, bodily coordination features (synchrony, convergence, mimicry, and
causality) are positively correlated with PCQ.

For the synchrony attributes, for both IndivPCQ andGroupPCQwe find that the argmax and
argmin variants of lagged correlations are statistically significant attributes (𝑝 = 0.003). This
suggests that the time taken to achieve maximum or minimum synchronous coordination
has a significant effect on the conversation quality. We also note that for GroupPCQ, only
correlation based features from the synchrony category were statistically significant, while
other attribute sets (convergence and causality) were found to be statistically insignificant.
For IndivPCQ, theminimum and variance of the convergence attributes were all statistically
significant. This suggests that attributes capturing the least converging interacting pairs in
a group are relevant to external observers. Moreover, we note that the minimum of the
attributes are positively correlated, while the variance are negatively correlated. Further, the
maximum and minimum of the lagged mimicry attributes were also statistically significant
attributes. This suggests that pairs with high and low mimicry are relevant for estimating
individual experience.

The Joint LASSO results indicate that several other feature sets also have a significant
effect on IndivPCQ. Along with the min, max, argmin, and argmax attributes of the lagged
correlation features, the non-lagged correlation were also significant. Moreover, the
post-hoc rank correlation analysis associates different coefficient signs for some of the
significant features. For example, lagged mimicry attributes are given negative 𝛽’s by the
rank correlation model but positive 𝛽’s by LASSO. This suggests that there exists a non-
linear monotonic relationships between these variables and IndivPCQ, causing the LASSO
model to fail to explain this relationship, associating them with 𝛽 ≈ 0. One commonality
between the two models is that both consider the lagged variant of mimicry features to be
of more significance that the lead variant. For GroupPCQ, the LASSO and rank correlation
analysis reveals that when jointly considered with other bodily coordination features, the
lagged mimicry and convergence attributes are statistically significant.

8.6.2 Analysis of Feature Extraction and Fusion
Influence of Window Sizes
During data preprocessing we extract statistical and spectral features from the accelerom-
eter data using the commonly used sliding window approach [58–60]. The choice of
window-size influences a trade-off between noise-reduction and information loss. To
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(a) GroupPCQ results (b) IndivPCQ results

Figure 8.9: Results of the experiments on the predictive capabilities of different window-sizes.

understand the effect of this choice, we extract features using different window-sizes and
evaluate the resulting change in the logistic regression model’s predictive capability. The
results are presented in Figure 8.9 for respective sliding window-sizes, along with the
fusion of features from all the window-sizes, denoted as ”Fusion”.

From Figure 8.9, we see that the best performing features are the ones where no sliding-
window technique was used for both GroupPCQ and IndivPCQ. This suggests that the
smoothing of accelerometer readings results in a loss of information which hurts model
performance. The results might also indicate that bodily coordination between interacting
pairs occur at finer temporal granularity, which can be captured directly without the
sliding-window approach. The model with no sliding-window based features is capable of
predicting GroupPCQ with a mean AUC of 0.85± 0.07 and IndivPCQ with a mean AUC
of 0.76±0.13. Also, noting here that using no sliding-window achieves the least standard
deviation in AUC scores.

Influence of Fusing Attribute Categories
Here we study the influence of fusing different attribute categories on the performance of
the logistic regression.

From the GroupPCQ results in Figure 8.10a, we see that the synchrony attributes
(mean AUC of 0.89±0.04) and turn-taking attributes (mean AUC of 0.81±0.06), are the best
performing attributes. In contrast to the IndivPCQ results in Figure 8.10b, the convergence
attributes do not predict GroupPCQ well. Moreover, unlike for IndivPCQ, fusing turn-
taking attributes with synchrony and convergence attributes does not improve GroupPCQ
prediction, both in-terms of mean and variance AUC. From the IndivPCQ analysis, we
see that convergence (mean AUC of 0.75±0.12) and synchrony (mean AUC of 0.72±0.12)
based attributes perform well both by themselves and after feature-level fusion (mean AUC
of 0.60 ± 0.10). We also observe that although turn-taking attributes are one of the best
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(a) GroupPCQ results (b) IndivPCQ results

Figure 8.10: Predictive performance of different feature fusion approaches. Attribute category and indices as in
Table 8.1—tt : Turn-taking (10-12), sync: Synchrony (1-4), caus: Causality (5-6), conv: Convergence (7-9), coord :
Bodily Coordination (1-9).

performing feature sets by themselves (mean AUC of 0.72±0.15), fusing them with bodily
coordination attributes reduces the standard deviation of AUC, 0.70±0.09. The results also
suggest that synchrony and convergence attributes are best predictors of IndivPCQ, both
individually and fused.

Influence of Feature Aggregators
The last step of our feature extraction procedure is to use aggregators to combine pairwise
features into group-level features, or aggregate over pairs containing an individual for
individual-level modeling, following previousworks [5, 28, 30]. Herewe study how different
aggregators affect the predictive performance of the logistic regression model.

From Figure 8.11, we see that the mean aggregation of the features performs the best

(a) GroupPCQ results (b) IndivPCQ results

Figure 8.11: Predictive performance of feature aggregators.
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with a mean AUC of 0.89±0.08. The mean is a skewed average. In contrast, for IndivPCQ
the unskewed average, the median, is the most informative, with an AUC of 0.78 ± 0.17.
This is in line with inferences drawn by Nanninga et al. [28] while studying cohesion in
meetings. For both IndivPCQ and GroupPCQ, the variance aggregator performs worst.

8.7 Discussion and Conclusion
In this work, we have conceptualized, validated, and analyzed a perceived measure of
conversation quality by unifying overlapping constructs that have so far been largely
studied in isolation in literature. While our core motivation has been to gain insight into
how people perceive the individual and group experiences of others, we do not claim
that our proposed method measures, or is meant to be a third-party proxy for, the one
true experience of the individual or group in the scene. On the contrary, we suggest that
these perceptions are indicative of empathized gestalt impressions people draw of others’
experience as it unfolds. We argue that such a perceived measure should complement
other self-reported measures of experience to gain richer insight into how these differ and
identify the contextual factors that influence the perceptions.

Third-party ratings are always prone to be influenced by biases that are heavily embed-
ded in our cultures. We recommend users of this research to be mindful that third-party
perceptions are not the same as self-reported measures. This fundamentally influences the
system design process. The motivation for taking a third-party perspective is to enable
a study of whether such perceptions have agreement, and whether samples with high
agreement have common behavioral manifestations. To develop systems for inferring an
individual’s actual social experience, we advocate for a participant-in-the-loop strategy that
allows for the measuring of the actual experience while being mindful of the participants’
consent.

Inter-rater agreement and annotation drift are important aspects to consider while
collecting annotations for behavioral data. Annotation drift is an issue when the annotator’s
mental model of the measured phenomenon changes over time while the phenomenon
remains constant. Accounting for drift is crucial when the annotation is used as an attribute
of the underlying phenomenon rather than as an attribute of the third-party observer. This
is the case for annotating phenomena such as facial action units, where the goal of the
annotation is to represent the configuration of a person’s facial muscles rather than the
annotator’s perception of it, so a systematic drift over time or disagreement amongst
annotators is undesirable.

For a perceived measure like the one we are proposing, the central phenomenon being
studied is an onlooker’s perception. So, every perception is inherently valid. This argument
is based on our understanding that the measure requires some projection of one’s own
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experience onto the observed subjects when trying to empathize with their situation or
take their perspective. Following the assumption that we construct narratives of other’s
behaviors, and that our appraisal of a situation is constructed based on our experiences, any
drift occurring because of variations in one’s experience can only provide (another) valid
perspective on how the observed subject might be feeling. The same is true for variations
in annotator agreement resulting from differences in perception of the annotators, either
resulting from transient factors such as mood, or relatively stable factors such as personality
and cultural background. For a perceived measure, we view all such perceptions as valid.

Designing the instrument to remove such variations would amount to artificially
tampering with the phenomenon being measured. In our experiments we remove data
with low inter-annotator agreement from the evaluation. However, this is because by
design, the goal of the experiments is to gain insight into behavioral features that correlate
with a high agreement on PCQ across raters. More broadly, we view the presence of low
agreement on certain samples as a motivation for future work to explore more appropriate
ways to embed subjectivity into the learning process when the goal is to train machine
learning systems. Note that omitting the samples with low agreement from our experiments
does not detract the validity of our measure. When the goal is to measure conversation
quality as experienced by the individual or group in the scene, or even to use the third-
party annotations as a proxy for the true experienced quality, we suggest treating the
considerations of annotation drift and inter-rater agreement with care.

8.7.1 Limitations and Future Avenues
The data analyzed here was from spontaneous interactions in a single setting, that of
mingling interactions following a speed-dating event. So, our findings pertaining to the
individual features being indicative of PCQ ought to be interpreted within the scope of
such a social context rather than being reflective of social behavior in all spontaneous inter-
actions. As dedicated techniques for the non-invasive recording in-the-wild spontaneous
interactions [74] continue to advance, it would be interesting to compare the effects of
different social settings on the perception of PCQ using our proposed instrument.

Our operationalization of a conversing group follows the widely used framework
F-formation [46]. However, recent evidence suggests that there might be multiple simulta-
neous conversations within a single F-formation containing more than four participants
[72]. It would therefore also be interesting for future work to study PCQ within a single
conversation floor rather than for the whole F-formation.

Finally, we have used three raters in this work to obtain our annotations. It would be
useful for future works to use the proposed instrument to investigate systematic differences
in perceptions of conversation quality across different cultures and demographics at scale.
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Supplementary Material

8.A PCQ Questionnaires
The questionnaire items below have been organized in terms of the different constituents
of PCQ. The numbering before each questionnaire item indicates the ordering of the items
in the original questionnaire. The original source from which the item was adapted is
provided at the end of each question.

Instruction for the annotators: Use the set of questions below to annotate your perception
of the individual and group’s conversation quality, as seen in the video. First annotate the
individual conversation quality (Section 8.A.1) for all the members of the group, and then
annotate for group conversation quality (Section 8.A.2). Each interaction aspect in the
below questionnaire should be rated using a five-point likert scale (Disagree strongly (1) to
Agree strongly (5)). Read the questions carefully and observe the whole group carefully
before annotating the video. You are allowed to re-watch the video again if required. For
the group-level measures rate the group’s behavior according to how you perceive them to
behave as a whole. For ratings at both levels, try not to imagine how you would feel in
their position, but focus on how they seem to feel based on their behaviour.

8.A.1 The Individual’s Experience of Conversation Quality
Interpersonal Relationships

8 The individual was paying attention to the interaction throughout. [12]
9 The individual seemed to have gotten along with the group pretty well. [12][6]

Nature of Interaction
1 The individual looked like they had a smooth, natural, and relaxed interaction. [12]
2 The individual looked like they enjoyed the interaction. [12]
3 The individual’s interaction seemed to be forced, awkward, and strained. [12]
4 The individual looked like they had a pleasant and an interesting interaction. [12]
5 The individual appeared uncomfortable during the interaction. [12]

10 The individual appeared self-conscious during the interaction. [12]
Equal Opportunity

6 The individual attempted to take the lead in the conversation. [6][31]
7 The individual looked like they experienced a free-for-all interaction. [16]

8.A.2 The Group’s Conversation Quality
Interpersonal Relationships

4 The group members seemed to have accepted and respected each other in the inter-
action. [12]
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7 The group members seemed to have gotten along with each other pretty well. [12][6]
8 The group members were paying attention to their partners throughout the interac-

tion. [12]
9 The group members attempted to get “in-sync” with their partners. [12][6]

10 The group members used their partner’s behavior as a guide for their own behavior.
[12][6]

Nature of Interaction
1 The interaction within the group seemed smooth, natural and relaxed. [12]
2 The group members seemed to have enjoyed the interaction. [12]
3 The interaction within the group seemed forced, awkward, and strained. [12]

Equal Opportunity
5 The group members seemed to have received equal opportunity to participate freely

in the interaction. [16]
6 The interaction involved equal participation from all group members. [16]

8.B Feature Extraction Details
8.B.1 Synchrony
Correlation
As a measure of correlation, in this research, we use the Pearson correlation coefficient
(using the pearsonr method available in the scipy package [75]) to measure the correlation.
The pearson correlation coefficient is calculated as follows,

𝜌𝑥𝑦 = ∑𝑁𝑖=1(𝑥𝑖 −𝜇𝑥)(𝑦𝑖 −𝜇𝑦)𝜎(𝑋)𝜎(𝑌 ) (8.1)

where, x and y are the preprocessed accelerometer data of length 𝑁 from person X and Y, 𝑥𝑖
and 𝑦 + 𝑖 are the data values of x and y respectively at time-step i, 𝜇𝑥 and 𝜇𝑦 are the means
of x and y respectively, and 𝜎𝑦 and 𝜎𝑦 are the standard-deviations of x and y respectively.

Time-lagged Correlation
The time-lagged correlation is computed using pearson correlation coefficients at different
time lags, as follows, 𝜌𝑋𝑌 = ∑𝑁−𝜏𝑖=1 (𝑥𝑖 −𝜇𝑥)(𝑦𝑖+𝜏 −𝜇𝑦)𝜎(𝑋)𝜎(𝑌 ) (8.2)

where, X and Y are the preprocessed accelerometer data of length 𝑁 from person X and Y,𝑥𝑖 and 𝑦 +𝑖 are the data values of x and y respectively at time-step i, 𝜇𝑥 and 𝜇𝑦 are the means
of X and Y respectively, and 𝜎𝑦 and 𝜎𝑦 are the standard-deviations of X and Y respectively.
More importantly, the variable 𝜏 denotes the time-lag, that is, the positive time-lag in terms
of time steps between X and Y.
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Mutual Information
We use Mutual Information to capture the degree of dependence of signal values between
two interlocutors. It is calculated as follows,

𝑀𝐼(𝑋 ,𝑌 ) = 𝐻(𝑋)+𝐻(𝑌 )−𝐻(𝑋 ,𝑌 )√𝐻(𝑋)𝐻(𝑌 ) (8.3)

where H(X) and H(Y) denotes the entropy of preprocessed accelerometer data of person X
and person Y, and H(X, Y) represents the joint entropy of these preprocessed accelerometer
data X and Y. To calculate this feature, we use the Mutual Information calculator available
in the SyncPy package [76].

Mimicry
As the Mimicry measure, we use the similar technique as Nanninga et al. [28]. The mimicry
metric used in [28] was originally extracted from paralinguistic signals, in our case, we
extract these features from the preprocessed accelerometer data. The extraction technique
is depicted in Figure 8.12.

Figure 8.12: The illustration shows the extraction of Lagged Mimicry for Individual B and Lead Mimicry for
Individual A. The 𝜃 is the learnt model from A’s behaviour period and 𝐵1,𝐵2.....𝐵𝑡 are the data samples at each
time stamp of Individual B. A distance vector D is computed with respected to the probability values 𝑃(𝐵𝑡|𝜃𝐴),
which is later used to extract aggregate based mimicry features.

8.B.2 Causality
Coherence
In studying social signal processing, Richardson and Dale [64] have used coherence based
methods to study discourse comprehension of speakers and listeners. The coherence
between two signals X and Y can be measured as follows,

𝐶𝑋𝑌(𝑓 ) = |𝐺𝑋𝑌(𝑓 )|2𝐺𝑋𝑋(𝑓 )𝐺𝑌𝑌(𝑓 ) (8.4)
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where, X and Y are the preprocessed accelerometer data of person X and Y, 𝐺𝑋𝑌(𝑓 )
corresponds to the cross-spectral density of a signal and 𝐺𝑋𝑋(𝑓 ) and 𝐺𝑌𝑌(𝑓 ) correspond
to the auto-spectral density of signals X and Y respectively. Values of coherence will
always satisfy the property: 0 ≤ 𝐶𝑋𝑌(𝑓 ) ≤ 1. To calculate this feature, we use the Coherence
calculator available in the SyncPy package [76].

Causality
The Granger’s causality test is a statistical test which, similar to coherence, captures the
causality of one signal over another but in a different manner. This particular measures
capture the causality by estimating whether one signal is useful in forecasting the other
signal. In particular, let 𝑋(𝑡) ∈ ℝ𝑑×1 for 𝑡 = 1,…,𝑇 be a d-dimensional multivariate signal.
Granger causality is performed by fitting a VAR model with L time-lags as follows,

𝑋(𝑡) = 𝐿∑𝜏=1𝐴𝜏𝑋(𝑡 − 𝜏)+ 𝜀(𝑡) (8.5)

where 𝜀(𝑡) is a white Gaussian random vector, and 𝐴𝜏 is a matrix for every 𝜏. A signal 𝑋𝑖 is
called a granger cause of another time series 𝑋𝑗, if at least one of the elements 𝐴𝜏(𝑗, 𝑖) for𝜏 = 1,…,𝐿 is significantly larger than zero (in absolute value). In other words, an f-test is
performed on the Ordinary Least Squares (OLD) model with the optimal lag (estimated
using the BIC criterion), resulting in a f-value and a p-value which is open for interpretation.
For this research, we use the Granger Causality calculator available in the SyncPy package
[76].

8.B.3 Convergence
Symmetric Convergence
The symmetric convergence captures the decrease or increase in similarity between two
body movements along time, without any lag between the two signals. The extraction
technique is depicted in Figure 8.13.

Asymmetric Convergence
The asymmetric convergence captures the decrease or increase in similarity between two
body movements along time, with a time-lag between the two signals. The extraction
technique is depicted in Figure 8.14.

Global Convergence
Global convergence captures the change in similarity between two body movements,
specifically between its initial time-segments and its later time-segments. The extraction
technique is depicted in Figure 8.15.
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Figure 8.13: An illustration of symmetric convergence extraction between interacting partners A and B.𝐴1,𝐴2....𝐴𝑛 and 𝐵1,𝐵2....𝐵𝑛 vectors represent the accelerometer readings from A and B, respectively. A dis-
tance vector D is calculated using squared distance between the A and B’s data samples. Finally, D is used to
computer the correlation with time, to capture the evolving similarity.

Figure 8.14: The illustration shows the extraction of asymmetric convergence between interacting partners
Individual A and B. The 𝜃 is the learnt model from A’s behaviour period and 𝐵1,𝐵2.....𝐵𝑡 are the data samples
at each time stamp of Individual B. A distance vector D is computed with respected to the probability values𝑃(𝐵𝑡|𝜃𝐴), which is later used to computer the correlation with time, to capture the evolving similarity.

Figure 8.15: Illustration of global convergence between interacting partners A and B. Both A and B’s accelerometer
channels are split into two halves, (𝐴1/2), (𝐴2/2), (𝐵1/2) and (𝐵2/2), and squared distances (𝑑1, 𝑑2) are computed
with the respective halves. Finally, global convergence is the difference between the squared distances.
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8.C Class Imbalance Distribution

Table 8.3: Class Distribution between high and low PCQ samples, after Kappa and label thresholds.

(a) For GroupPCQ.

Low GroupCQ High GroupCQ

3 55

(b) For IndivPCQ.

Low IndivCQ High IndivCQ

16 163

8.D Additional Figures

(a) Scatter plot revealing the relationship between Percentage
of Overlap (Independent Variable) and the Group

Conversation Quality (Dependent Variable).

(b) Scatter plot revealing the relationship between Number of
Successful Interruptions (Independent Variable) and the

Group Conversation Quality (Dependent Variable).

(c) Scatter plot revealing the relationship between
Conversation Equality (Independent Variable) and the
Individual Conversation Quality (Dependent Variable).

(d) Scatter plot revealing the relationship between Percentage
of Silence (Independent Variable) and the Individual

Conversation Quality (Dependent Variable).

Figure 8.16: Scatter plots with respect to few Independent Variables and the Dependent Variables of Conversation
Quality. The scatter plots are a qualitative analysis of the independent variable’s variance (𝜎2) conditioned to
the dependent variable of Conversation Quality, and thus examine the Exogeneity and Homoscedasticity of the
dataset.
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9
Discussion

One of the things Ford Prefect had always found hardest to understand about humans
was their habit of continually stating and repeating the very very obvious.

— Douglas Adams, The Hitchhiker’s Guide to the Galaxy
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An implicit goal of this Thesis has been to advance Artificial Social Intelligence (ASI)
research in the wild along broad research themes and avenues. The preceding chapters

have consequently spanned the themes of acquiring, modeling, and perceiving social human
behavior. In the course of performing this research we have identified specific challenges
and opportunities for taking computational social behavior research into natural real-world
settings. Here we discuss the contributions of this Thesis towards this goal, the limitations
of this work, and potential ways forward for ASI research in the wild.

9.1 Curating Social Behavior Datasets

A core challenge in studying real-world social behavior is the lack of representative data.
In Chapter 2 we addressed this challenge directly, proposing a replicable data collection
concept called ConfLab viewing conferences as living labs. This enabled us to design
a real-world interaction setup involving a diverse mix of seniority, acquaintanceship,
and motivations for mingling. In doing so, we made choices and proposed technical
innovations to reduce the cost, effort, and time in collecting such datasets, and maximize
data fidelity while upholding ethical best practices. These innovations included the modular
synchronization-at-acquisition method described in Chapter 3 which achieves latency
tolerances suitable for studying phenomena such as mimicry and synchrony without the
need for post hoc data synchronization strategies. We also proposed the Covfee annotation
tool to enable continuous annotation, capturing gestalt impressions of raters and lowering
annotation time compared to traditional methods [1]. Finally, we developed the Midge
wearable sensor in a noninvasive conference badge form factor improving upon previous
wearable sensors by including a full 9-axis inertial measurement unit and the on-board
ability to switch between audio recording frequencies to preserve participant privacy.

While these technical innovations are an essential step in sensing and annotating
in-the-wild behavior, we have only provided the first iteration of ConfLab recording at a
major international conference. Even this first iteration required significant cooperation
and support from conference organizers, not to mention the logistical challenges arising
from recording in a different country while ensuring compliance with ethical best practices
established by multiple organizations and nations. However, in order to study the effect of
short time-scale embodied behaviors on long term relationships in real social networks,
multiple iterations of ConfLab are required. Our hope here is that the data for the community
by the community ethos of ConfLab will find wider traction, allowing for amortizing the
cost and effort of these data collection efforts across multiple research groups. In the
meanwhile, researchers must be aware that the insights resulting from data from this first
iteration may not generalize to other interaction contexts and the general population.
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9.2 Data Efficient and Adaptive Modeling of So-
cial Behavior

Chapter 5 addresses the limited-data challenge from a modeling perspective: if data
is scarce, can we develop machine learning methodologies that use the available data
efficiently to model social behavior? Here we formalized the Social Cue Forecasting task
to learn representations of low-level behavioral cues in a self-supervised manner. The idea
is to regress future social cues from the same preceding cues in a bottom-up manner, in
contrast to traditional top-down approaches that predicted semantic behaviors or high-
order social signals from cues. This enables learning general representations of behavior
from the entire available data. Specifically, from social science insights we motivated the
need to model a distribution over cues and jointly model future cues for all participants
to account for behavioral interdependence. Beyond this task formulation that advocates
for utilizing all available low-level cue data, we also proposed the Social Process models.
By viewing conversing groups as meta-learning tasks, we showed how models can adapt
to the unique behavioral coordination of unseen groups at evaluation. Specifically, we
modeled the low-level dynamics of group behavior as stochastic processes, learning joint
latent representations for all participants in the group. Crucially, unlike previous work,
the proposed method is also invariant to group sizes and participant order.

The overarching motivation of this line of research is to develop techniques that can
adapt to both individuals and groups from a few observations. The Social Process models
incorporate the interdependence between conversation partners into a single latent variable.
Consequently, a few natural questions arise regarding learning latent representations of
behavior directly from data. What latent factors uniquely describe a group? What latent
factors unique to individuals translate across the groups in which they participate? Here,
one possibility for future work is to induce a hierarchical structure over the latent space,
to model the interplay between individual and group latent variables. Doing so would also
address a limitation of the work in Chapter 5: so far, we have ignored inter-group dynamics.
In a complex conversational scene, social influence from outside a single group might
motivate individuals to leave and interact with different partners. Learning the structure
of the latent space for an entire scene, allowing for interplay between the individual
and group latent factors, constitutes a promising direction for this line of research. Of
course, researchers should be cognizant that learning structure directly from data with
reduced inductive prior information generally requires more data. Another aspect not
investigated in this Thesis is how the latent representations from these models can be
utilized in downstream tasks. The representations have been trained to predict future low-
level behavior while incorporating participant interdependence. Consequently, research
into anticipating specific phenomena such as interaction termination or turn changes can
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benefit from fine-tuning them using specific supervisory labels, or developing techniques
for imposing further structure over the latent space in the study of these phenomena.

In modeling low-level behavioral cues, we emphasize the choice of feature representa-
tions. In our experiments in Chapter 5 we represented pose using quaternions. Beyond the
favorable properties of quaternions discussed in the chapter, doing so also allowed us to
have a uniform feature representation across the MatchNMingle and Haggling datasets that
contain a different number of keypoints for every individual and different camera perspec-
tives. Here, when representing horizontal rotations, two dimensions of the quaternions
were perpetually zero throughout the data. In performing the experiments we discovered
that such constant features can pose problems when optimizing the evidence lower bound
(ELBO). Specifically, the models we experimented with maximized log-likelihood bymaking
the variance over these features exceedingly small, often at the cost of learning a worse
mean. Subsequent experiments with alternate representations such as keypoints did not
suffer from such issues. Consequently, we advise that special care is taken in choosing
feature representations and ensuring that the training procedure of such generative models
does not suffer from well-studied issues such as mode-collapse [2].

9.3 Synthesizing Social Human Behavior
Beyond curating additional datasets and developing efficient modeling techniques, a promis-
ing new approach to dealing with limited representative real data is to synthesize it. Chap-
ter 4 takes the first step in this direction. Given that synthesizing rich and expressive
multimodal behaviors remains a long-term goal, we first explore the more constrained
task of synthesizing faces. Specifically, we find that boosting the realism of synthetic
faces—with dynamic expression-based wrinkles in this case—helps in achieving perfor-
mance on downstream computer vision tasks comparable to that using real data.

The promise of synthetic data lies in the control it affords in addressing the biases
that exist in real data. Such biases can span lighting and environmental conditions as
well as factors surrounding appearance, clothing, and cultural representation. However,
synthesizing faces only scratches the surface of the possibilities of synthetic behavioral data.
Generating multimodal behaviors inherently suffers from a chicken-egg problem: synthetic
data is meant to address the scarcity of real data, but requires real data to learn from. In
the absence of adequate representative data across interaction settings and cultures, one
must again turn to existing insights from social theory to generate believable and varied
synthetic cues. Another opportunity in this space is to generalize to groups beyond dyads.
Most existing works in synthesizing nonverbal behavior have focused on nonsocial [3, 4] or
dyadic settings [5–7]. Here, our work inChapter 5 on group-size agnostic modeling of low-
level behavior is applicable in synthesizing socially-aware cues for multiple participants,
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thereby generalizing beyond dyadic settings. Nevertheless, several challenges exist in this
research space. How do we evaluate synthesized behaviors? How do synthesized cues
relate to the outcomes an artificial agent might desire to achieve in an interaction? While a
detailed discussion of these challenges is beyond the scope of this discussion, the research
space of synthetic behavioral data affords rich research questions towards advancing ASI.

9.4 Ethics and Privacy: Behavior as Biometrics?
In Chapter 2 we have discussed at length the trade-offs involved in improving data fidelity
and concerns surrounding participant privacy and ethical considerations. Specifically, our
participatory design principles have followed an agentist rather than structurist approach
(see Section 2.7). The goal here is to enable individualized measurements of social behavior,
in contrast to structural analyses commonplace in network sciences. Despite the afore-
mentioned choices in protecting the sensitive visual and verbal information of participants,
moving towards individualized measurements presents increased ethical concerns.

One consideration is the potential of nonverbal social behavior as biometric information.
Biometric technology concerns the use of physiological and behavioral characteristics of
individuals. While the first generation of biometrics focused on physiological individual
identifiers, the second shifted focus to behaviors [8]. Schumacher [9] characterized this
shift as moving from who you are to how you are. Behavioral features including gait,
stride, lip movement, speech, and blinking have been found to provide sufficiently accurate
identity verification [10]. Moving across these generations has also accompanied a shift in
purpose and applications of biometrics, from security to applications in commercial and
civil technology such as assessing student engagement in classrooms [8].

The advancement of behavioral biometrics and its introduction in daily life poses
some problematic ethical concerns and privacy risks. If anonymity cannot be preserved,
numerous types of privacy are violated. While informational privacy constituted the
primary early concern [11, 12], the evolution of biometric technology accounts for seven
types of privacy including the privacy of thoughts and feelings [13]. Obtaining informed
consent can then be mired in power imbalances as passive sensing technology captures
seemingly benign behavioral features from unaware subjects [14]. Moreover, technology
trained on seemingly privacy-preserving modalities can acquire biases that can facilitate
discriminatory decision-making while providing the illusion of objectivity [15].

Furthermore, ethical considerations also necessitate paying attention to legal and
cultural factors. While ConfLab’s data collection setup was compliant with the General
Data Protection Regulation (GDPR) in EU Law, different national legal environments
allow for different degrees of privacy when collecting data. For instance, China’s Personal
Information Privacy Law (PIPL) can be even stricter thanGDPR in some regards. Meanwhile,
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as privacy can be considered by some as a value rather than a right [8], attitudes towards
privacy and ethics can also be influenced by cultural norms and values.

The discussion surrounding ethical considerations against a backdrop of ever-advancing
AI technology is complex, and there are no direct and easy solutions to the unique ensuing
concerns. It would therefore be beneficial for future research in the realm of ASI to give
the matter greater consideration, especially when dealing with in-the-wild data.

9.5 Meta Discussion: Bringing Disciplines Closer -
A Practitioner’s Perspective

9.5.1 The Disciplinary Spectrum
The central motivation guiding the broader conception of ASI (Chapter 1) was emphasizing
a bidirectional reciprocity between AI and the social science disciplines. If the field of ASI
is so inherently interdisciplinary, where does the divide between disciplines arise? At one
end of the spectrum are computer scientists. Being typically unversed in social theory,
computer scientists often resort to explaining social phenomena using natural science
theories including physical forces [16] and evolution [17] (also see [18, 19]), which may
often be insufficiently expressive. This lack of social literacy bears the risk of devolving
into a pseudoscience, where a combination of misappropriated models and reading the tea
leaves [20] can lead to unsubstantiated social scientific claims or folk theory [21]. Similarly,
at the other extreme of the spectrum are social scientists, who are typically unversed in
advanced computational techniques such as machine learning or neural networks [22–24].
This lack of technical literacy can lead to unsubstantiated fears about the social implications
of AI or mistrust of AI systems on the one hand [19, 24], as well as unrealistic expectations
about the capabilities of such purportedly intelligent systems on the other. Between these
extremes lie the interdisciplinary fields. Here, in the pursuit of being versed in multiple
rapidly evolving disciplines, one runs the risk of knowing none.

The cumulative effect of these differences has been a largely unidirectional flow of
knowledge between the disciplines. Amidst the growing incorporation of AI methods in
sociology almost two decades ago, Chai [18] observed a lack of export of general social
theories into AI. More importantly, within sociology itself, the cookie-cutter application
of AI methods often accompanied an ignorance of domain knowledge: “for the most part,
social simulations within sociology, rather than drawing on general social theory for their
assumptions, have seemed to largely follow existing approaches from AI”. In the present
landscape, the exponential progress of deep learning research has catalyzed a similar trend.
Large off-the-shelf architectures are often applied to social behavior data without adapting
them using domain insights, or catering to domain challenges such as limited data. While
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the bulk of the contemporary focus lies with data analysis and modeling, comparatively
less is being done towards bottom-up frameworks for assisting social theory building. This
points to a producer-consumer model of research between AI and the less computational-
oriented disciplines interested in social phenomena. Even so, it is perhaps impractical to
expect the common practicing researcher—grappling with the rapidly growing demands
on their time and an even more rapidly growing pile of must-read literature—to keep
abreast methods from multiple disciplines. Beyond formal education, our knowledge is
acquired implicitly by reading articles and textbooks, whose authors may also not have
given interdisciplinary considerations much thought. The pursuit of science still remains a
human process, and is as such guided by methodological and cultural norms familiar to
researchers within their research bubbles.

9.5.2 How then, can we bridge the divide?
One avenue is of course, formal education. Almost three decades ago, Bainbridge et al.
[24] had already noted the need for literacy in interdisciplinary techniques, albeit on the
sociology side: “Current graduate training does not prepare students to take advantage of
ASI. Although some probability theory can be useful, hardly any of the material taught
in statistics courses is relevant to the computer techniques described here.” I posit that a
similar training in social theory is warranted on the computer science side for researchers
working on problems with social implications. In this respect, I believe things are moving in
the right direction, with interdisciplinary programs of study becoming more commonplace.
The second avenue is to interact more with researchers from other disciplines. Here, inter-
disciplinary communities, workshops, and conferences such as ICMI (https://icmi.acm.org/),
ACII (https://acii-conf.net/) provide fertile breeding grounds for the cross-pollination of
ideas. The practical risk here is that the greater perceived prestige associated with the more
mono-disciplinary venues, combined with an academic reward system that largely priori-
tizes perceived prestige, results in a dichotomy: should researchers prioritize meaningful
engagement that is more common in smaller interdisciplinary communities at the cost
of publishing at prestigious venues? The dichotomy bears more weight for early-career
researchers who are yet to establish themselves.

Yet, at a larger scale, these avenues might only be available to a select minority. For a
sizable majority, formal education and being embedded in an environment with access to
researchers from other disciplines are privileges. Nevertheless, information continues to
become more accessible. For the reader who has chanced upon this Thesis, without any
claims of being definitive or indeed prescriptive, I propose some rules of thumbs to use in
their own work towards bridging the disciplinary divide.

https://icmi.acm.org/
https://acii-conf.net/
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Grounding in Domain Literature and Challenges
The machine learning practitioner might find utility in paying attention to the formulation
of the task at hand, and whether it reflects the nature of the underlying phenomenon
being modeled. For instance, in Chapter 5, the formalization of Social Cue Forecasting
considered domain knowledge to argue for predicting a distribution over futures rather than
the common practice of predicting a single future at a time. Moreover, the formalization
also makes the case for jointly forecasting futures for all participants in an interaction
given evidence for the interdependency between partner behaviors.

When it comes to designing machine learning methodology, practitioners might benefit
from considering how their architectures or methods reflect domain knowledge. While
expressing social theories mathematically is not always straightforward, it is an important
matter to ponder. The Social Process models proposed in Chapter 5 treat learning the
unique adaptation of behaviors within a conversing group as a meta-learning task. In
doing so, the models can generalize to unseen groups at test in a data-efficient manner.

Being Aware of Implicit Assumptions
Practitioners from all disciplines related to ASI would benefit from ensuring that the as-
sumptions of the systems they are using matches their own. Within machine learning and
the computational fields, this pertains to being aware of the datasets pretrained models were
trained on and the possible biases they might have acquired. More straightforward, it also
pertains to understanding what basic machine learning architectures such as convolutional
or recurrent networks are designed to model. Within the applied disciplines, it is worth-
while to remember that modeling tasks often require making simplifying assumptions or
approximations. Being aware of what these are may help researchers in revealing insights
about the nature of social phenomena. For instance, Chapter 7 established evidence to
challenge the implicit assumption of one conversation per conversing group that prior com-
puter vision works had made for the task of detecting conversing groups in scenes. It might
be important to note that given the implicit nature of such methodological assumptions,
one might need to draw upon one’s own social experiences to identify and challenge them.

Beyond methodological assumptions, it is crucial to double check assumptions about
the data. It is often easy to altogether overlook issues in the data. One source of issues
could be the sensing and capture setup. For instance, the modular synchronization-at-
acquisition solution presented in Chapter 3 was aimed at ensuring that the latency in
multimodal data supports fine-grained temporal analysis of social phenomena. Beyond
synchronization, sensor calibration is another consideration to be aware of. Another source
of date-related issues is annotation. Here, it is important to be aware of the annotation
and ground-truthing procedure. Are there validity or reliability concerns? What was
the demographics of the annotators? Would they have introduced biases? Keypoint
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annotations, for instance, are usually obtained by annotating single frames separated in
time, and interpolating for the interim frames. The lack of motion in per-frame annotations
may introduce artificial artifacts across frames. This was one of the motivations for
designing the continuous annotation framework Covfee [1] for annotating the ConfLab
dataset presented in Chapter 2.

Supporting Research on the Other Side of the Fence
The third aspect to consider is how one’s proposed work might benefit researchers from
other domains, who might speak very different professional languages. One way is to help
situate readers from different disciplines using literature and parallel perspectives familiar
to them. Of course, this might require writing under the somewhat bold assumption that
researchers from outside one’s discipline would read the proposed work. It might also
require convincing reviewers of the relevance of referring to broader literature.

Taking inspiration from the work of Nelson [25] and Bamman et al. [26], Radford and
Joseph [27] aggregate two potential blueprints for howmachine learning can aid in revising
social theory. One way is to use known theories to hypothesize about what empirical
results might look like, and to provide alternative hypotheses for what results might look
like of a new or revised theory was instead true. Another is to build a machine learning
model that matches a theoretical model, and then demonstrate how adding components
inspired by new or revised theory improve model performance. In both cases, the new
theory is always expected to originate from the researcher. Moreover, the blueprints require
existing theories for the phenomenon being studied.

CombiningChapters 5 and 6, thisThesis establishes a first step toward a third blueprint:
the automated generation of hypotheses for evaluation. We do so by proposing a method to
identify patterns of data salient to a model trained in a bottom-up manner, thereby viewing
the model as a human observer. Here, our experiment on real-world data illustrated that
timesteps at which an individual rotated away from their interaction partners were salient
for a Social Process model in predicting their group-leaving behavior in the future. In this
case, this observation corroborates evidence in social science literature about behaviors
predicting interaction termination. Nevertheless, we argue that such data-driven insights
are strictly hypotheses obtained from real-world data which need subsequent investigation,
and emphasize a research methodology that involves a domain expert in the loop. Here,
demonstrating intended uses and limitations of proposed the framework is meant to situate
researchers in applied domains. The present work stops at identifying timesteps rather than
features that are salient for a given model; nevertheless the broader goal of automatically
obtaining data-driven domain hypotheses constitutes an open research direction.

On the social sciences side, establishing theories pertaining commonly made assump-
tions in machine learning can influence the development of new modeling techniques. For
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instance, the results from Chapter 7 may motivate researchers interesting in detecting
conversing groups to reconsider how the notion of a group is operationalized. Another
way for the social sciences to support the machine learning research into ASI is to provide
quantitative measures for subjective constructs so that artificial agents may perceive them.
In this regard, Chapter 8 argues for a perceived measure of conversation quality in light of
the fact that the true measure of the quality of a conversation experienced by an individual
is never known, even to humans. In interactions, we use a Theory of Mind to evaluate our
partners’ experience of conversation quality, so it would benefit artificial agents to similarly
have a conception of the perceived conversation quality to conduct social interactions in a
manner that exhibits social awareness.
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