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Introduction

Micro Air Vehicles or drones are generating increased interest in recent years. It is expected
that these small flying robots will become ever more important in a wide variety of applica-
tions. Current MAVs are however still lacking in autonomous flight capabilities. This task is
challenging due to the limited sensor quality and processing power on-board of such a small
platform. Especially in indoor and urban environments, when a reliable GPS signal is un-
available. Another major limitation of current MAVs is the endurance. Therefore in general
it can be said that to increase range in autonomous flight, the drone has to fly faster.

A recent trend is so called First Person View (FPV) drone racing. Human pilots have to
control their drone through a track of gates, while viewing a live stream of the on-board
camera. The maneuverability and speed of these human pilots still outperforms the best
autonomous drones. Drone racing has much in common with autonomous high speed drone
flight. The races are often held in an indoor environment, blocking the GPS signal and
requiring alternative navigation methods. Also the planning and executing of a time-optimal
trajectory is part of the challenge. Therefore to promote the developments in the area of
autonomous high speed MAV flight the International Conference on Intelligent Robots and
Systems (IROS) is organizing a yearly autonomous drone race since 2016. The goal is to fly a
known track of gates in the right order and as fast as possible. The race is indoor, therefore
no GPS can be used and other external position systems are not allowed. The drone has to
navigate purely based on onboard sensors.

The current thesis describes a system which is capable of autonomous drone racing, while
only using on-board sensors and processing power. The system has to operate in an indoor
environment and on a small computationally constrained MAV. Therefore the system uses
a computationally lightweight visual-inertial navigation method. The computer-vision, state
estimation and control methods, together with a performance analysis of the system are
described in detail in a scientific article. After that the preliminary thesis report is also
included as a reference.
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Abstract— High-speed autonomous flight of Micro Air Ve-
hicles has gained much attention in recent years. However,
flight in complex GPS-denied environments still poses a serious
challenge. One scenario which contains these elements is drone
racing, where pilots have to fly complex tracks at high speed,
often in an indoor environment. In this work we therefore
present an MAV capable of autonomously flying such a drone
race track. The system has to operate in a GPS-denied environ-
ment, hence a visual navigation method is employed. Position is
recovered from gate detections based on a novel least-squares
method, while heading is estimated using an optimization
based method. Experiments show that both methods have a
higher accuracy than the standard P3P pose estimation method.
Furthermore, a state estimation filter is designed to fuse the
visual measurements with IMU measurements, by using an
EKF with drag based prediction model. For high-level control
different motion primitives are linked, which allow the MAV
to fly the track without having a detailed on-board map. The
overall approach does not rely on SLAM or Visual odometry,
which results in low computational complexity. Also, it does not
rely on downward optical flow velocity measurements, which
enables it to work even in low texture environments.

Fig. 1: Parrot BebobTM Consumer MAV which is used as
a test platform

NOMENCLATURE

jx,y Pixel-coordinate of point in image frame
fx,y Camera focal length in pixels
cx,y Camera principal point
vi Bearing vector of 3D point in body frame
Rb

c Camera to body rotation matrix
Rw

b Body to world rotation matrix
ni Bearing vector of 3D point in world frame
xi 3D light ray from gate corner point
pi Gate corner point position
λ Parameter of 3D line equation

t Translation vector of body frame w.r.t. the world
frame, expressed in world frame

D Point to line distance
gs Gate size
xh Histogram gate distance
yh Histogram lateral position
d Distance from gate to vehicle
h Vehicle altitude above ground
a Gate approach angle
ϕ Roll Euler angle
ψ Yaw Euler angle
θ Pitch Euler angle
Rb

w World to body rotation matrix
Rc

b Body to camera rotation matrix
si gate corner point detection in image frame
B Back-projection error
ax,y,z Accelerometer specific force measurements
Fdx,y External force in body x- and y-axis
vbx,y,z Velocity in body frame
kx,y Drag coefficients in body x- and y-axis
bx,y,z Accelerometer sensor bias
m Vehicle mass
x State vector
u Input vector
y Output vector
w Process noise vector
m Measurement noise vector
p, q, r Rotational rates of body frame w.r.t. the inertial

frame
v Velocity vector
g gravity vector
k Heading filter gain
Fext External force vector
Ω Rotational rates vector
T Thrust force in body frame
D Acceleration due to drag
Rf

b Body to f-frame rotation matrix

I. INTRODUCTION

Micro Air Vehicles (MAVs), especially from the quadrotor
type have applications in various fields, including aerial
photography, industrial inspection, search and rescue[16],
agriculture and law enforcement. Currently most MAVs are
piloted manually. However, to improve the efficiency and
scalability of MAV operations it is necessary that MAVs
can operate autonomously[13]. This task can be challenging
due to the absence of a reliable GPS signal in indoor
environments and urban canyons. Also, the quality of on-
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board sensors such as the Inertial Measurement Unit (IMU)
is often low. Additionally, a typical mission of an MAV has
a time constraint, such as in a search and rescue mission or
due to limited endurance of the MAV in general. Therefore,
these factors require an MAV to be capable of high speed
autonomous flight.

A recent trend in manual MAV flight is so called FPV
drone racing. Human pilots race each other by controlling
the drone via a video stream. A typical drone race has
all components of high speed MAV flight, such as a time
constraint, a race track which requires aggressive maneuvers
and the absence of a GPS signal when flying indoor. To
promote the developments in high speed autonomous MAV
flight, now also autonomous drone races are being organized.
An example of this is the annual drone race that is part of
the International Conference on Intelligent Robots and Sys-
tems(IROS) since 2016. The current work therefore describes
an MAV system for autonomous drone racing. The system
uses visual-inertial navigation to allow for flights in GPS-
denied environments.

In the literature various examples of high speed au-
tonomous MAV flight were performed by [11], [6], [2],
[14] and [10]. In[11] impressive results were obtained of
quadrotor MAVs flying aggressive trajectories. They exploit
the differential flatness property of the quadrotor model to
design control laws and to iteratively design trajectories. It
has to be noted however that these trajectories were generated
off-board and a high-precision indoor positioning system was
used for navigation. In[2] a solution is proposed with both
on-board sensing and processing. LIDAR depth information
is fused with IMU data for state estimation. Trajectories
are flown in a known obstacle dense environment. Way-
points are generated by RRT after which polynomial spline
trajectories through these way-points are optimized for time.
The disadvantage of LIDAR is that the sensors tend to
be relatively heavy and power consuming, compared to
other sensors such as a camera and IMU. In[14] a small
quadrotor is equipped with a stereo camera for navigation
purposes. Their approach consists of a high-rate monocular
pose estimation algorithm, combined with low-rate scale
recovery step from the second camera. The camera pose
information is fused in a Kalman filter framework with IMU
data. A major drawback of this approach is that the scale
recovery is dependent from depth information. Therefore, if
the depth in a scene is outside of the maximum stereo vision
range, scale drift will not be corrected for. Next to stereo
vision also monocular vision methods can be used for indoor
navigation. This has as an advantage that it can be used on-
board of even the smallest MAVs. An example of this is
shown in[4] where a small quadrotor performs aggressive
high-speed flight through a narrow gap. Visual data from the
gap detection is fused with IMU data for pose estimation.
It has to be realized though that only a single gap flight is
performed at a time, after which the drone is stabilized to
a hovering state. This does not test the system performance
over longer periods of time.

One example of an autonomous drone racing system is

given in [8]. This is the winning system of the 2016 IROS
drone race. Here a gate-based visual servoing approach is
used together with optical flow velocity estimation. Race
gates are detected using a color based segmentation method
and stereo-depth vision. Global navigation is performed by
means of leg-by-leg planning, taking into account the known
map of the track. The use of optical flow means that an
abundantly textured floor surface is required for feature track-
ing. However, in many situations the floor surface is very
smooth causing this method to fail. Also, the gate detection
algorithms that are used require a high-end embedded GPU
board to run on. This limits the implementation on smaller
and more lightweight MAVs.

The current work aims to solve the drone racing problem
as computationally efficient as possible. By limiting the re-
quired processing power, the methods can potentially be im-
plemented on even the smallest, computationally constrained
MAVs. Therefore computationally expensive SLAM[2], vi-
sual odometry[14] and gate detection methods cannot be
used. Instead, visual navigation will only rely on the detec-
tion of gates in the drone race track, combined with IMU and
sonar data in a lightweight filtering approach. The system is
therefore not relying on optical flow velocity measurements.
Also in the current drone racing scenario longer flights will
be performed without time for stabilization. Compared to the
relative short experiments of [2] , [14] and [4] we investigate
the performance of the system on a longer flight of several
minutes. We do this in order to verify if the state estimation
can cope with long exposure to aggressive maneuvers.

The remainder of this work is structured as follows. First in
section II a high-level overview is given of the drone racing
problem and the strategy which is employed for solving it.
Section III gives a description of the gate detection method
and how these detections are used for pose estimation.
Section IV shows how visual pose estimates are fused with
inertial and sonar measurements. Furthermore, the control
system design is discussed in section V. Then in section
VI the performance of the previously described methods is
evaluated, while section VII finally holds the conclusions and
recommendations.

II. TASK AND SYSTEM OVERVIEW

In this work two different tracks are considered. One short
two-gate track as described in figure 2 and a longer track,
which represents a more realistic racing scenario. The short
track is equipped with an Optitrack motion-capture system,
which provides ground-truth position, speed and pose data.
For both tracks the MAV has to pass the gates in the correct
sequence and as fast as possible. In the current drone racing
scenario the flight takes place in a GPS-denied environment.
Therefore, computer vision is used for detecting gates in the
race track. The shape of a gate in image frame together with
the known gate geometry will then be used to determine the
position of the MAV with respect to the current gate in view.
Global navigation is performed without building a detailed
map of the environment, but rather by linking multiple
standard maneuvers. On-board of the MAV a sequence is
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stored which describes how far to fly after passing a gate,
how much to turn and where the next gate will be located
approximately. One advantage of the overall approach is that
it is computationally lightweight. Also, by only using gate
detections as visual feedback the method will work even in
low texture environments.

Fig. 2: Two-gate oval race track

In figure 3 a description of the drone racing autopilot
system is given. Images from the on-board camera are used
to detect the gates in the track. Gate detections are then
processed to recover position and heading data with respect
to the current gate in view. Pitch and roll attitude is estimated
using IMU data in a state observer approach similar to[15].
These pitch and roll estimates are used in the visual pose
estimation block as well as in the state estimation block.
An Extended Kalman Filter(EKF) estimates position and
accelerometer biases, based on raw IMU measurements,
attitude and visual pose estimates. Position estimates are then
fed into the controller which can switch from closed loop
mode, when there is a gate detected, to an open loop mode
when no gate is detected.

The platform that is used for this research is a 2014
Bebop MAV from Parrot. The Bebop is a small 400 gram
computationally constrained consumer quadrotor. The plat-
form is equipped with a dual-core ARM-processor capable of
basic computer vision. Sensors include a front-facing camera
with 180 degrees fish-eye lens, as well as a MEMS inertial
measurement unit and sonar altimeter. Note that the camera
image available for processing is only 160x315 pixels and
has a rate of 15 Hz. The MAV is further only modified
by replacing the standard autopilot firmware with the open
source Paparazzi autopilot. The Bebop was chosen because
of its low cost and high durability. However, the drone
racing system would function on any quadrotor MAV capable
of basic computer vision and equipped with front-facing
camera, IMU and sonar.

Fig. 3: System architecture

III. VISUAL SENSING

A. Gate detection

Gate detections are used as a visual reference for position
and heading determination. The task of detecting these gates
in the current scenario amounts to detecting orange square
shaped objects, which are open in the middle. This may be
accomplished by multiple different computer vision methods,
such as Viola and Jones[17], Hough transform[7] and deep
learning[12]. However, in order to limit processing power
to a minimum, an alternative method is used instead. The
current method for detection of square gates in the image
consists of a two-step approach where an initial rough
detection is further refined. The rough estimate is made
by random sampling the original image(4a) for the target
color(4b), after which a pixel search is performed, first in
vertical direction and then in horizontal direction(4c). If two
or more gate segments are found, the rest of the segments
are calculated to form a square(4d). To further improve
this approximation the corner point locations are refined by
finding the centroid of the patch around each rough corner
(3e). This results in a polygon(3f), which is later used for
pose estimation. When a previous image frame contained
a valid detection, this detection is used as an initial rough
estimate in the next frame.

Examples of gate detections are given in figure 4. The
detections vary in accuracy from a high quality detection in
4a, to a low quality detection with a significant outlier in 4d.
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Fig. 3: Gate detection process

(a) (b)

(c) (d)

Fig. 4: Gate detection examples

When the MAV is close to the gate and only a part of the
gate is in view, a second detection method is employed. This
method is able to detect the sides of the gate by searching
the histogram for peeks in the color value of the gate as
in (5). Here the histogram represents the accumulated color
value in the image columns. The side bar positions in pixel
coordinates can then be converted to a position estimate,
enabling position feedback in the final approach to a gate.

Fig. 5: Histogram gate side detection

B. Pose estimation

The gate detection together with the known geometry of
the gate, can be used to estimate the position of the MAV.
The problem of determining the camera pose from a set of
image points, given the known 3D locations of these points is
known as the Perspective-n-Point problem(PnP). A solution
exists for 3,4,8 and more points, where for the square gate
detection problem only the 3- and 4-point methods are pos-
sible. Both 3- and 4-point methods have multiple solutions,
such as[5]and[9]. Small errors in the gate detection process
can amplify into large errors in pose estimate. Therefore,
these methods are generally implemented in a RANSAC
scheme to reject noise and outliers. However, the fact that
only four corner points are available on one gate limits the
effectiveness of such a scheme.

Therefore, alternative methods are used in our system to
improve performance in the presence of noise and outliers.
The approach consists of separating the pose estimation
problem in a position estimation problem and a heading
estimation problem. The heading method then employs the
initial estimate of the position method.

For both methods first a distortion correction step is
applied as in[3]. The camera is therefore further treated as a
pinhole camera.

1) Position estimation least squares: The position method
makes use of the IMU based attitude to reduce the pose
estimation problem to a position estimation problem. It will
be shown that even in the case of large errors in the attitude
estimation process, the method is more accurate than the P3P
method. The position estimation method of figure 6 can be
described as follows:

The projection of a 3D point onto the image is given by
the following formula, assuming a pinhole camera model.
Metric position x, y and z is normalized and multiplied with
the intrinsic matrix to obtain pixel coordinate j. Here focal
lengths fx, fy and principal point cx,y are both in pixel units.

[
j

1

]
=

fx 0 cx
0 fy cy
0 0 1




x
z
y
z

1

 (III.1)

A detected gate corner points in the image frame can be
converted to a bearing vector using the camera model.

v =

(jx − cx)/fx
(jy − cy)/fy

1

 (III.2)

The vectors v1 to v4 for each corner point are described
in the camera frame.

These bearing vectors are rotated into the world frame
with the camera to body rotation matrix Rb

c and body to
world matrix Rw

b . The rotation matrices are based on the
current attitude and heading, together with the camera to
body transform.

ni = Rw
b R

b
cvi (III.3)
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The vectors v1 to v4 and the known 3D gate corner point
locations p1 to p4 are then used to parameterize the light
rays originating from the corner points x1 to x4.

xi = pi + λni (III.4)

The intersection of these light rays then determines the
camera position. Errors in corner point location or attitude
estimation can however cause the rays to not intersect
perfectly. The problem is solved by writing the point to line
distance and optimizing the translation t of the body frame,
such that the distance to all rays is minimized.

D(t;pi,ni) = ∥(pi − t)− ((pi − t)Tni)ni∥ (III.5)

argmin
t

i=4∑
i=1

D(t;pi,ni) (III.6)

To find the best approximation the problem is formulated as
a least squares problem. Therefore this method will further
be referred to as the LS method.

Fig. 6: Gate based pose estimation problem

2) Position estimation histogram: The histogram gate
detection method can find the vertical segments of a gate.
The positions of the segments in image frame are converted
to angles α1 and α2. These angles determine the vehicles
position by using the simple trigonometric equations of III.7-
III.10. Note that only the position in the horizontal plane can
be estimated.

xh

yh

α1

α2 gs

β

γ

r1

r2

γ = π/2− α2 (III.7)

r1 = (sinγ gs)/sin(α1 − α2) (III.8)

xh = cosα1 r1 (III.9)

yh = gs/2− sinα1 r1 (III.10)

3) Heading estimation: Heading estimation on-board
small MAVs is generally performed by using a magnetometer
sensor. However, in an indoor environment the earth mag-
netic field is often distorted, preventing the MAV of obtaining
a reliable heading estimate. Alternatively heading can be
estimated with the IMU by integrating the gyroscope rates,
however small sensor bias errors will cause this estimate
to drift over time. Therefore, a visual heading estimation
method is needed. The method estimates the heading angle
with respect to the gates by minimizing back-projection
errors. When the heading of each gate is known in the track,
the global heading of the MAV can be estimated.

The visual heading estimation can be described as an
optimization problem where orientation R and translation
t have to be found to minimize the error between the gate
detection and its back-projection. During the optimization
the altitude h as well as the distance d to the gate are kept
constant in order to reduce the computational complexity
of the problem. This is allowed because the altitude is
already measured by the sonar and known with relative high
certainty. Also, the distance to the gate, estimated by the LS
method is known with a relative high certainty, even under
large initial attitude and heading errors. This can be observed
from the results in the experiments section. The translation
t of the body frame is therefore only depending on constant
distance d, altitude h and a varying gate approach angle a,
as shown in figure 7.

t(d, h, a) (III.11)

The position of a corner point in camera reference frame is
obtained by multiplying the corner point position pi with the
world to body and body to camera rotation matrices.

Rb
w(ϕ, θ, ψ) (III.12)xy

z

 = Rc
bR

b
w(pi − t) (III.13)

Back-projection error per corner point is given as follows,

B(a, ϕ, θ, ψ; d, h,pi, si) = ∥si − ji(x, y, z)∥ (III.14)

with si the actual corner point detection i in the image. Point
ji is the image point projected using the pinhole model. Here
j is a function of x,y,z position in camera frame.

For all four points the optimization problem can be de-
scribed as in.

argmin

i=4∑
i=1

B(a, ϕ, θ, ψ; d, h,pi, si) (III.15)

This problem is solved with gradient descent and yields the
heading angle ψ.
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Fig. 7: Gate heading estimation

IV. STATE ESTIMATION

The vision-based position estimates described in the pre-
vious chapter are of low rate and contain noise, which is
insufficient for control. Also, these estimates are only avail-
able when a gate is in view of the camera. The estimation
performance can be improved by fusing the vision-based
estimates with data from other on-board sensors. A common
approach of such filtering is performed by combining IMU
data with position data in an Extended Kalman Filter(EKF).
EKF based position filters consist of a prediction and a
measurement update step. The prediction model used is
generally a kinematic model, which integrates IMU angular
rates into attitude angles. Attitude is then used for rotating
the accelerometer measurements in a global frame, after
which they are integrated twice to predict the position. In
a kinematic model however errors in the accelerometer bias
will be integrated over time, which causes the velocity error
to increase unbounded between measurement updates. There-
fore, the prediction model of the current filter instead makes
use of the aerodynamic forces measured by the on-board
accelerometer. This approach makes the velocity prediction
error linearly dependent of the accelerometer bias error. The
prediction error therefore only varies at the same rate as the
slowly changing bias drift. Also, the quality of these velocity
measurements is not dependent on the floor texture, as with
common optical flow velocity estimation methods. A similar
method can be found in [1], however their approach still
relies partly on optical flow.

A. Drag based velocity

One of the properties of an accelerometer is that it
measures specific force(ax, ay, az), rather than vehicle accel-
eration. This can be interpreted as the resultant external force
applied, divided by the vehicle mass. In x- and y-direction
this is described as:

ax =
Fdx

m
, ay =

Fdy

m
(IV.1)

Furthermore the accelerometer z-axis is assumed to be
aligned with the body z-axis zb of the vehicle, which is the
same axis in which the resultant thrust vector T acts. In figure
8 only the two-dimensional case is given, therefore the force

Fdx measured in the body x-axis xb is purely caused by
drag. For quadrotor MAVs the drag is mostly caused by the
blade flapping effect [1], which is linearly dependent from
airspeed vbx with drag-coefficient kx.

Fdx = vbxkx , Fdy = vbyky (IV.2)

Once the drag forces are known, they can be converted to
airspeed by the inverse drag model, while accounting for
sensor biases bx, by .

vbx = (ax − bx)
m

kx
, vby = (ay − by)

m

ky
(IV.3)

This theory therefore allows to measure airspeed in body
frame in the xb and yb body axis, which are perpendicular
to the thrust axis zb. Note that this theory is able to measure
airspeed only and not ground speed. However in an indoor
scenario these quantities can be assumed the same.

Fig. 8: Drag model

B. Extended Kalman Filter

The dynamics of the MAV can be described by a non-
linear state-space system with state vector x, input vector u,
additive process noise w and measurement noise m.

ẋ = f(x,u) +w (IV.4)

y = h(x) +m (IV.5)

The state vector of the Extended Kalman Filter estimates the
following states. x, y and z position in world frame, body ve-
locity vbz in z-axis, as well as accelerometer biases bx, by, bz .
The input vector contains raw accelerometer measurements
ax, ay, az , gyroscope body-rates p and q and IMU based
attitude angles ϕ, θ, ψ. Output vector y contains the x, y and
z position estimates.

x = (x, y, z, vbz, bx, by, bz)
T (IV.6)

u = (ax, ay, az, ϕ, θ, ψ, p, q)
T (IV.7)

y = (x, y, z)T (IV.8)

The prediction model uses the accelerometer measurements
ax and ay for estimating the body velocity in x- and y-
direction. These are then rotated into the world frame with
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rotation Rw
b according to the attitude inputs ϕ, θ and ψ from

the attitude filter.

ẋẏ
ż

 = Rw
b (ϕ, θ, ψ)

(ax − bx)
m
kx

(ay − by)
m
ky

vbz

 (IV.9)

The vehicle acceleration in z body-frame ˙vbz is obtained
using the relation of the vector time derivative in rotating
frame. Inertial acceleration expressed in the body-frame
dv
dt

∣∣b
I
, can be measured by the accelerometer after subtracting

the gravity vector and sensor biases. Rotational rates p,q
and r between inertial- and body-frame are measured by the
gyroscopes.

dv

dt

∣∣∣∣∣
b

I

=

 ˙vbx

˙vby

˙vbz

+

pq
r

×

vbxvby
vbz

 (IV.10)

Isolating the z-component, working out the crossproduct
and substituting the drag based velocity yields the following
result.

˙vbz = az − bz + gcosθcosϕ+ q(ax − bx)
m

kx
− p(ay − by)

m

ky
(IV.11)

Furthermore the accelerometer biases are assumed to be
constant during the prediction step.

ḃx = ḃy = ḃz = 0 (IV.12)

The EKF prediction step is performed at a constant rate
while the measurement step is only performed when a
new visual measurement becomes available. Now velocity
and position are also estimated when visual measurements
are temporarily unavailable. EKF based state estimation is
performed in all closed-loop parts of the track. During the
open-loop turning maneuver no feedback is needed, therefore
the EKF is inactive and reinitializes when starting a new leg
of the track. The discrete time EKF can be described by the
following equations.

xk+1,k = xk,k +

∫ tk+1

tk

f(x,u)dt

Pk+1,k = Fk+1,kPk,kF
T
k+1,k +Q

Kk+1 = Pk+1,kH
T
x (HxPk+1,kH

T
x +R)−1

xk+1,k+1 = xk+1,k +Kk+1(zk+1 − h(xk+1,k))

Pk+1,k+1 = (I−Kk+1Hx)Pk+1,k(I−Kk+1Hx)
T+Kk+1RKk+1

C. Heading filter

Heading can be estimated by gyroscope integration alone,
however small bias errors in the angular rate will result in
large angular errors over time. Therefore, heading is esti-
mated by fusing gyroscope rate measurements with vision-
based heading measurements in a complementary filter.

ψk = k(ψk−1 + ψ̇ dt) + (k − 1)ψv (IV.13)

The gain k determines the weight given to the gyroscope
measurements ψ̇ with respect to the vision measurements
ψv . Gyroscope measurements are available at a rate of 512
Hz, while the vision measurements are only available when
a detection is made at a maximum rate of 15Hz. Therefore,
when no vision measurements are available the gain will
be set to 1 which results the angular rate simply being
integrated. Filter results over a multi-lap flight are discussed
in the results section.

V. CONTROL

The control strategy in the drone racing scenario consists
of a mode switching controller which can change between
open loop and closed loop control. Closed loop control
is performed when approaching a gate, which provides
visual feedback from the gate detections. For turning, an arc
maneuver is performed using an open loop control method.
In both control modes forward velocity is maintained by
commanding a fixed pitch angle.

For the open loop arc maneuver roll and yaw angles over
time are determined based on the velocity of the MAV. Speed
along the trajectory is then predicted using the initial speed,
when entering the arc and by numerically integrating the
dynamical MAV model.

Fig. 9: Arc maneuver

For the arc maneuver velocity is described in f frame
which moves along the arc with x-axis tangent to the arc
and z-axis pointing up as in figure 9. The dynamical model
is based on newton’s second law in a rotating frame.

m
dv

dt

∣∣∣∣∣
f

W

= Ff
ext (V.1)
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dv

dt

∣∣∣∣∣
f

W

=
dv

dt

∣∣∣∣∣
f

f

+Ωf
fW × vf (V.2)

With external forces in the f frame consisting of gravity,
thrust and drag.

Ff
ext = m

 0
0
−g

−mRf
b

0
0
T

−mDf (V.3)

After simplifying for the arc maneuver, the model can be
described as follows, assuming a constant pitch angle and a
negligible small roll rate.

v̇f =

00
g

+Rf
b

0
0
T

+Df −

0
0

ψ̇

× vf (V.4)

Acceleration due to drag Df , in f-frame is obtained by
rotating the velocity vf in body frame, calculating the drag
and rotating back in f frame.

vb = Rb
fvf (V.5)

Db = diag(kx, ky, kz)vb/m (V.6)

Df = Rf
bDb (V.7)

Thrust is calculated by assuming zero vertical acceleration.

T = (
−g −Dfz

cosϕ
)/cosθ (V.8)

The desired roll command can then be determined by
writing the y-component of V.4 and enforcing ˙vfy zero, to
maintain a zero side slip turn.

˙vfy = −sinϕ T +Dfy − vfx ψ̇ (V.9)

When using
ψ̇ =

vfx
r

(V.10)

and substituting for T , the roll-command is as follows.

ϕcmd = tan-1((
v2fx
r

−Dfy)
cosθ

g +Dfz

) (V.11)

During the straight parts of the drone race track simple
lateral PID position control is used for passing gates. Altitude
is maintained with vertical PID control. High-level control
is based on switching between the straight flying mode and
the arc maneuver. After each gate pass an on-board stored
sequence determines where and how far to turn, as well as
where the next gate is approximately located.

VI. EXPERIMENTAL RESULTS

In the following section the performance characteristics of
the vision, state estimation and control methods are evaluated
separately. Also, the performance of the complete system is
evaluated in a simple racing scenario with two gates, as well
as on a more complex five-gate track.

A. Vision-based position and heading

Position is estimated using the least squares method(LS),
which is complemented by the histogram method when close
to the gate. Heading is estimated with the optimization based
method(OP). The accuracy of the LS method as well as the
OP method is compared with the standard P3P method in
a simulation environment. The simulation approach allows
the camera location to be chosen precisely and a high
number of experiments can be performed repeatedly. For
simulation an artificial gate is created, which is projected
onto a virtual pinhole camera image. Because gate detections
contain image noise and outliers, a set of real gate detections
was compared with ground truth data. Based on this test
the vision method experiments will therefore contain image
noise with a standard deviation of 3.5 pixels.

The LS position accuracy is evaluated with the Root Mean
Squared Error(RMSE). The error varies mainly as a function
of distance to the gate. Therefore, the RMSE is given per axis
and as a function of distance. Each data point represents a
thousand trails of the position estimation algorithm in the
presence of pixel noise. In figure 9 the position RMSE of
the LS method is compared with the P3P method from[9]
at various distances. The LS method uses prior knowledge
of the attitude and heading of the vehicle to obtain a more
accurate position estimate. To study the effect of attitude
error, noise with a variance of 0, 5 and 15 degrees is added
to the attitude and heading estimates. It is clear from the
figure that the LS method has far higher accuracy in RMSE
compared to the P3P method, even in the presence of relative
large noise in the attitude estimate.
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Fig. 9: X, Y and Z Least squares position RMSE as function
of distance to the gate

Also, the histogram position estimation method is evalu-
ated in simulation. Similar to the LS method, pixel noise with
a standard deviation of 3.5 is introduced. Figure 9 shows the
results of the position RMSE in the horizontal plane in x-
and y-direction. The experiment is performed with a heading
angle of -30, 0 and 30 degrees. From the figure it can be
observed that the position error of this method is relatively
low. However, in reality the method is only effective up to a
maximum distance of 1.5 meters, due to possible background
color.
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Fig. 9: X and Y histogram position RMSE as function of
distance to the gate

The heading as estimated with the OP method is com-
pared with P3P heading in simulation. The experiments are
performed at various distances to the gate, as well as with
different heading angles to the gate. In figure 9 RMSE
heading error is shown for P3P as well as for the gradient
descent and genetic algorithm version of the OP method.
The heading is varied from -30 degrees to 30 degrees. It can
be seen that the OP method has a higher accuracy than the
P3P method for both solution methods. Especially at large
heading angles the difference is significant. The P3P method
in this case evaluates groups of 3 points on a gate and tries
to minimize the back-projection error with the fourth point
in a RANSAC approach. P3P likely performs worse, because
there are only a few points available for RANSAC.
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Fig. 9: Psi heading RMSE at various gate approach angles

B. State estimation

The performance of the Extended Kalman Filter as de-
scribed in the state estimation chapter is now evaluated using
data from on-board the MAV. The MAV repeatedly flies a
simple oval track with two gates. In figure 10,11 and 12
x, y and z position estimates of the filter are compared
with the ground truth position values. Also, the estimated
accelerometer sensor biases are shown in figure 15,16 and
17. In figure 10 the x position estimate is shown for one
lap on the track. Note that the vision measurements are only
available at the straight parts of the track, when a gate is
in sight. After the MAV passes a gate and starts with the
turn, the state is predicted. Note that there are only small
errors in x position with respect to the ground truth. On
the y position graph in figure 11 it can also be noted that
only small errors occur, even when vision measurements
are temporarily unavailable. In figure 12 also the z position
estimate is compared to the ground truth. Finally, the body
velocity estimate in z-direction is given in figure 13. The z-
body velocity contains the most noise of all state variables,
with errors up to 0.2 m/s. However, this internal state variable
is not directly used for control and has a limited effect on
the z position estimate.

Error distributions of the x, y and z position estimates are
given in figure 14. All histograms are centered around zero
error. Both x and y distributions have a small tail, which can

be contributed to the fact that one of the turns in the data
set was too wide. For turn accuracy also see figure 21.

25 30 35 40

Time [sec]

-2

0

2

4

6

X
 p

o
s
it
io

n
 [

M
]

X position

X position Optitrack

X position estimate

Arc prediction

Vision measurements

Fig. 10: Estimating X position
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(c)

Fig. 14: X-Y and Z error distributions

The accelerometer bias estimation has a direct effect on the
predictive performance of the EKF. Therefore, it is important
to study the convergence of these biases. In figure 15 and
16 it can be observed that the X and Y accelerometer biases
converge fast to the final value. This happens once the first
vision measurements become available to the filter. In figure
17 the z-axis bias also converges fast, however the value first
briefly overshoots. This short overshoot has no major effect
on the estimation of the other state variables.
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Fig. 17: Z accelerometer bias estimation

The estimated trajectory on the oval drone race track is
shown in figure 18.
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Fig. 18: Trajectory estimate during test

Heading is estimated using a complementary filter which
fuses gyroscope rate measurements with visual heading es-
timates. In figure 19 the filtered heading and the integrated
heading estimates are compared with the heading ground-
truth data from Optitrack after 28 gate passes. From figure
20 It can be observed that the integrated heading has a drift of
more than twenty degrees at the end of the flight. The filtered
heading still shows a maximum error of approximately eight
degrees, however the long term drift is sufficiently bounded.
Note that the vision-based heading estimation unfortunately
could not be implemented on-board of the drone in time.
Therefore, for long flights on the two-gate track, Optitrack
heading is used as a reference. Vision-based heading was
post-processed in Matlab.
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C. Control

The MAV performs turns with an open loop arc maneuver.
The accuracy of this predictive method is naturally highly
dependent on state estimation accuracy at the start of the ma-
neuver. Therefore, a high number of arc turns are performed
during a test flight, as can be seen in figure 21. This results
in a pattern with an even spread in position error with a few
outliers. The velocity estimation errors at the start of a turn
where logged together with the resulting position errors at the
end of each turn. These error variances in x- and y-direction
are summarized in table I. The table shows that the position
variance is the highest in y-direction. This also corresponds
to the relative high entry velocity error in the same direction.
The velocity error in y-direction is higher than the x error,
because in x-direction a moving average filter with a longer
window is chosen. This is because x velocity is more stable,
due to the constant pitch angle.
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Fig. 21: Open loop arc maneuver

Axis Entry speed variance M/S Position error variance
X 0.0043 M/S 0.0296 M
Y 0.0106 M/S 0.8087 M

TABLE I: Open loop arc accuracy

D. Full track

The drone racing system is now tested in an obstacle
dense drone racing track. The indoor environment provides
no useful GPS-signal for navigation. Also, the floor offers
no significant texture for optical flow velocity measurements.
The environment was not equipped with a ground truth
position system, therefore only estimated data is available.
However, analyzing the estimated trajectory does give an
insight of the flight and estimation performance in general.

-6 -4 -2 0 2 4 6 8

X position [M]

-2

0

2

4

6

8

10

12

14

16

18

Y
 p

o
s
it
io

n
 [

M
]

Position estimate

Flight 1

Flight 2

Flight 3

Start 

Fig. 22: Drone race track top view
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The track consists of five gates which have to be passed
in the correct sequence. In figure 22 and 23 the estimated
trajectories of three different one-lap flights are plotted. It can
be observed that during some parts of the track some rapid
changes in position occur. These jumps in position estimate
occur once the next gate is first detected after a longer
period without seeing a gate. During this period the position
estimation only relies on integration of the drag based
velocity. Errors in this prediction introduce an accumulating
drift in the position estimate, which is corrected when a
gate detection is available again. After the correction, the
lateral position controller has enough time to steer the drone
through the gate. Note that with these tests the visual heading
estimation algorithm is not yet implemented on-board of
the drone. The gyroscope-only heading therefore limits the
flights to about three consecutive laps. After this, the heading
estimate has already drifted excessively with more than 10
degrees.

VII. CONCLUSION AND FUTURE WORK

In this work a system overview is given of an autonomous
racing drone. The system runs on-board a computationally
constrained consumer MAV, while only making use of a
monocular camera, IMU and sonar altimeter. The approach
does not rely on computational complex SLAM or visual
odometry methods, or optical flow based velocity measure-
ments. But it rather detects the gates in the track and exploits
their known geometry. Long sections without visual feedback
are traversed using a combination of drag based odometry
and open loop turning maneuvers. The MAV executes the
track by linking different motion primitives based on the
known track layout. Tests on the race track showed speeds
over 2 m/s and yaw rates of more than 2 rad/s. The success
rate of gate passes is high, with a record flight of 62
consecutive gate-passes on the small track and 3 laps on
the five-gate track. It is shown that the complex task of
autonomously flying a drone race track can be solved by

only using sparse vision data and by taking into account the
vehicles drag model, in a computationally lightweight sensor
fusion approach.

However, there is still room for improvement on a number
of subjects. The current system uses gate detections as the
only visual input. Errors in the detection process thus have
a large influence on the state estimation process, making it
beneficial to improve the detection accuracy. Future work
will therefore focus on using a computationally lightweight
learning method for gate detection, to better cope with
uncertain conditions in the environment. Additionally, the
front facing camera can be used to provide optical flow
measurements, which can be integrated in the state estimation
filter. In this way the state estimation accuracy can be
improved, without having the texture problem of downward
facing optical flow. Also, the current leg-by-leg path planning
can be improved, by implementing a planning method, which
globally optimizes the trajectory for minimum time.

APPENDIX

The experiments take place in the basement of the
Aerospace engineering faculty at Delft university of tech-
nology. The basement is filled with aircraft parts, serving
as a reference for students. This location therefore provides
a perfect obstacle dense and GPS-denied environment for
demonstrating the capabilities of the system. Images from
the drone race track are included in figure 24 to 27. On-board
square gate and histogram detections are given in figure 28
and 29.

Fig. 24: First gate in the track

Fig. 25: Second gate
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Fig. 26: Third and fourth gate

Fig. 27: Final fifth gate

Fig. 28: On-board square gate detection

Fig. 29: On-board histogram detection
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Chapter 1

Introduction

Micro Air Vehicles or drones are gaining much interest over the past years. It is expected that
these kind of small flying robots will become very important in a wide variety of applications.
Possible applications include aerial photography, industrial inspections, search and rescue
missions(Tomic et al., 2012), agriculture and many more. Currently most MAV operations
are piloted manually which poses limitations in efficiency due to how many MAV’s can be
controlled by an individual pilot(Scherer et al., 2015). Also in most scenarios a reliable high-
speed data link can not always be guaranteed. To overcome these issues MAV’s should be
capable of full autonomous flight.

Current MAV’s are still lacking in autonomous flight capabilities(Floreano & Wood, 2015).
This task is challenging due to the limited sensor quality and processing power on-board
of such a small platform. Also in indoor and urban environments, GPS position is not
available, or from low quality. Next to that current drones also have major limitations in
range and endurance. The quadrotor drone type which is most commonly used, has a severely
limited flight time. However the dynamics of the quadrotor type allow the drone to fly higher
speeds with only a minor increase in energy consumption with respect to the hovering state.
Therefore to increase range in autonomous flight, the drone has to fly faster.

A recent drone related trend is so called FPV drone racing. In this new sport multiple human
pilots have to fly a small drone through a track of gates, while monitoring a live stream of the
on-board camera. The speeds and level of maneuverability which is attained by these human
pilots is stunning and still far from the capabilities of current autonomous drones. The drone
racing scenario has much in common with autonomous high speed drone flight. Often these
races are held in an indoor environment, blocking the GPS signal, which requires alternative
navigation methods. Also the planning and executing of a time-optimal trajectory is part
of the challenges. Therefore to promote the developments in the area of autonomous high
speed MAV flight the IROS has started organizing an autonomous drone race since 2016. The
goal is to fly a known track of gates, which have to be passed in the right order and as fast
as possible. The race is indoor, therefore no GPS position can be used and other external
position systems are not allowed. The drone has to navigate purely based on onboard sensors.
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2 Introduction

1-1 Research Objective

The Micro Air vehicle Lab, at which the current research will take place, was amongst the
teams participating in the 2016 IROS autonomous drone race. Although their drone became
second overall, the speed at which the drone flew the race was far from satisfying and not
even close to the speeds which human pilots can attain. Therefore it was decided that the
current drone racing system needs to be improved.

The task of autonomous drone racing can be divided in multiple different sub problems. First
the state of the vehicle, with variables such as position, speed and attitude has to be estimated
in a GPS denied environment. The state is estimated by fusing data from onboard sensors,
such as the camera and Inertial Measurement Unit (IMU). Subsequently the estimated state
is used to plan and follow the desired trajectory through the race track.

The current thesis continues on the MAV Lab’s research towards an autonomous racing drone,
capable of near human performance. First an evaluation will be made of methods in the area
of computer vision, state estimation and control to find the best performing combination of
methods in the drone racing scenario. The methods and possible improvements thereof will
then be tested in a simulation environment after which the most promising methods will be
implemented on-board a real drone for validation.

The objective of this thesis can be summarised as:

A solution for the autonomous drone racing problem has to be found by designing autopilot
software which will turn an existing drone into an autonomous racing drone, capable of flying
the track, without external positioning systems and only relying on on-board available sensors
and processing power.

The MAV platform which will be used for this research is the Parrot Bebob drone. This small
250mm and 400gram commercial off the shelve (COTS) quadrotor MAV is equipped with one
front facing and one downward looking monocular camera, multiple other sensors and a dual
core processor.

(a) 2016 IROS autonomous drone race

track

(b) Parrot Bebob commercial off the

shelf drone

Figure 1-1: Autonomous drone racing
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1-2 Main research question

How can a MAV perform high speed autonomous flight through a track of known obstacles?

Sub-questions:

1. What are the limitations and advantages of each sensor on-board of the MAV?

2. What state estimation technique should be implemented to optimize performance, while
taking into account the limitations and advantages of each on-board sensor, without
exceeding on-board computational resources?

3. What computer vision approach is most suitable for this task, given the available on-
board computational resources?

4. How to generate trajectories such that they are feasible and are optimized on completing
the track as fast as possible?

5. How does the currently designed system compares to the state-of-the-art in speed and
agility?

1-3 Content and structure

This report contains an extensive literature study of the state-of-the-art in the various sub
domains of high speed MAV flight. chapter 2 describes previous work on high speed au-
tonomous drone flight. In chapter 3 the characteristics of the sensors on-board of the drone
are given, including multiple methods for pre-processing this data. Chapter 4 evaluates dif-
ferent visual inertial state estimation methods which can be used with the on-board cameras
and other sensors. Trajectory planning and control is discussed in chapter 5. The results of
the literature study are discussed in chapter 6. As preliminary results a performance analysis
is made of candidate state estimation and computer vision methods, which can potentially
be used for the drone race system. Conclusion and future work are given in chapter 8 and 9.
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Chapter 2

High speed flight in general

In this chapter an evaluation is made of previous work in the area of autonomous high speed
MAV flight. Although the examples do not cover autonomous drone racing particularly, still
most of the work is very much related to the problems of state estimation, trajectory planning
and control. The previous work is divided by the type of positioning system that is employed
for navigation. In the second part of this chapter an analysis is made of the work so far and
what possible contribution the current project can potentially provide.

2-1 Previous work

The variety of previous work at high speed autonomous MAV flight is numerous. In recent
years a wide range of different approaches to the problem of high speed flight have been tried.
The approaches differ in what type of sensors are used, what state estimation methods were
employed and what type of trajectory planning and control is performed. In the current
section it is chosen to classify the work based on which type of main sensor is used for state
estimation.

2-1-1 Motion capture systems

First major work in aggressive high speed flight of quadrotor MAV’s was performed by using
an external motion capture system. This system consists of an array of infrared illuminators
and cameras, to capture infrared markers on the MAV. The system enables high accuracy
position and attitude information, such that the research can focus more on the trajectory gen-
eration and control problem associated with high speed aggressive flight. (Mellinger, Michael,
& Kumar, 2014) Focus on the design of dynamically feasible trajectories and controllers. Ma-
neuvers in this paper include flying through narrow gaps and perching on vertical surfaces.
They use the dynamical quadrotor model for generating the trajectories and designing PD
and PID controllers. With this approach impressive results were achieved. However it has to
be emphasized that both navigation and control where completely performed off-board. The
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6 High speed flight in general

trajectories were designed offline in an iterative model based approach. Other work based
around a external motion capture system was performed by (Hehn & D’Andrea, 2011). Here
an iterative trajectory generation method is presented, capable of generating time-optimal
trajectories. The trajectory is optimized as an optimal control problem separately on each
degree of freedom. at each iteration it is evaluated if the control inputs remain within their
boundaries and the trajectory is feasible. If the trajectory is not feasible the optimization is
repeated with different boundary values.

2-1-2 LIDAR

In real world scenarios a reliable high speed data-link might not be available during an indoor
flight, also GPS position is not available or has severe limitations on accuracy. Therefore the
MAV can not rely on accurate external positioning systems or a high performance computer to
perform off-board calculations. Position information in these cases can be acquired from other
sources such as a LIght Detection And Ranging (LIDAR) sensor carried by the MAV. (Bry,
Richter, Bachrach, & Roy, 2015) used this approach on fixed wing and quadrotor platforms.
Both trajectory planning and the state estimation are discussed in detail. The experiments
take place in known and obstacle dense environments. Trajectories are generated by first
starting a straight line Rapidly exploring Random Tree (RRT) search and then using the
waypoints to fit a polynomial spline trajectory. This polynomial trajectory is optimized for
time. State estimation is performed by means of an extended Kalman filter with a particle
filter on the LIDAR data as measurement update. Trajectory generation is still performed off
board, however they claim that the algorithm is efficient enough to potentially run on-board
an MAV.

2-1-3 Stereo vision

Instead of LIDAR technology also vision based state estimation can be employed. Monocular
or stereo cameras are than the main sources of position information. An example of a stereo
vision approach is described by(Shen, Mulgaonkar, Michael, & Kumar, n.d.). A small quadro-
tor platform is presented that is able to fly at high speed through an indoor environment.
The main sensors are a stereo camera pair and an inertial measurement unit. The stereo
pair consists of a main camera, which is used for estimating the camera’s orientation and
position up to a scale. The absolute scale of movement is recovered using the second camera
to measure absolute scene depth. Here the monocular vision runs at a frequency of 20Hz,
while the scale recovery with the second camera is only performed at 1Hz rate. The camera
pose is then fused with data from the inertial measurement unit to provide a state estimate
for control.

2-1-4 Monocular vision

One of the difficulties in autonomous indoor flight, are the limited size restrictions on the
MAV platform. The MAV for example has to be small enough to be able to fit through open
doors or windows. Therefore recent studies are focusing on developing smaller autonomous
drones. In (Loianno, Brunner, McGrath, & Kumar, 2016), a small 250g quadrotor is able to fly
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fast trajectories through narrow gaps. Planning state estimation and control is all performed
on-board, while only using a single monocular camera and IMU as sensors. Camera and IMU
data is combined in a Visual inertial Odometry approach, where feature points are tracked
between frames at 30Hz, to estimate the current camera pose of the vehicle. An Unscented
Kalman filter estimated the vehicle states at a higher rate of 500 Hz for control purposes.
Trajectories are then generated by using the differential flatness approach. Here position and
yaw angles are chosen as flat outputs. The fourth order position and second order yaw angle
are then minimized as a quadratic programming problem. Both slalom and gap traversing
trajectories were flown in a small indoor environment at speeds up to 4.5 m/s.

Another example where all sensing planning state estimation and control tasks are performed
on-board is described by (Falanga, Mueggler, Faessler, & Scaramuzza, 2016). They focus on
the traversing of a narrow tilted gap, to simulate a part of a search and rescue mission in a
collapsed building. The gap size and tilt is such that an aggressive maneuver is required for a
successful passage. Interesting is that in contrary to other approaches, the state estimation in
this paper only makes use of the detection of the gap with a monocular camera. A so called
Perspective-8-point algorithm is used to determine the position and orientation of the drone,
given the known corner positions of the gap. The position and orientation are than fused with
inertial sensor data in an Extended Kalman Filter. Furthermore the trajectories are designed
as a ballistic trajectory in a tilted plane through the center of the gap. The traversing time
is optimized given the relevant constraints using quadratic programming. The yaw angle is
optimized separately to make the camera point in the direction of the gap for as long as
possible. It is also discussed how the approach trajectory is generated which brings the drone
to the start of the traverse trajectory.

2-2 Analysis and possible contribution

According to the previous overview of key papers in the area of high speed autonomous MAV
flight can be summarized as follows. Initial work focused more on the trajectory generation
and control part of the problem by using a high accuracy external positioning system for
state estimation. Therefore the sensing and state estimation part of the problem was largely
neglected. Also most of the processing was done off-board. These limitations only allow
the drone to fly in a specially prepared room and not in a general area. Later work uses a
scanning laser LIDAR and IMU as primary sensors. This approach allows all calculations to be
performed onboard without relying on external positioning systems or off-board computing.
This approach however has the drawback that LIDAR sensors are relatively heavy, requiring
a larger drone and limiting flight time. Vision based state estimation methods prove useful,
since camera sensors are weighing less than typical LIDAR units. Both stereo vision as well
as monocular vision approaches were investigated. The most lightweight approach currently
known uses a monocular vision system, fused with inertial sensor data.

One thing that can be noticed in the described methods is that all test maneuvers only last
for a very small amount of time, typically only a few seconds. After a few seconds of fast and
aggressive flight the MAV brakes and stabilizes itself again into a stable hover. It is however
to our knowledge never been investigated what will happen if such an MAV would perform
aggressive high speed flight for longer periods at a time. This could potentially deliver insights
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8 High speed flight in general

on particular issues in state estimation, such as issues with bias drift or slowly diverging error
behaviour. The drone racing scenario forms a perfect test case for such a drone.

Another aspect of the drone racing scenario which is not touched by the previous work, is the
higher level decision making process which has to take place during a race. Typical drone race
tracks consist of a complex course of gates, which have to be passed in the right order. The
complexity of a course can make it unclear what next gate to pass, when consecutive gates
are close to each other. This requires fast decision making and robustness to false detections.
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Chapter 3

Sensing and vision

Sensing can be performed with a wide variety of sensors which all have their specific strong
and weak points. Sensors can include cameras, inertial sensors, pressure or magnetic sensors.
Due to the strict weight limitations which are inherent to small MAV’s, only very small and
lightweight sensors can be used. However these types of sensors tend to have much lower
accuracy and higher noise compared to sensors used in other applications of aerospace or
robotics. In this chapter the variety of sensors found on-board the Bebob MAV are described
and evaluated for performance and their strong and weak points. In particularly the inertial
and camera sensors are discussed in detail, since they will be used in the next chapter in a
state estimation approach. For the inertial sensors the error characteristics are described.
For the camera sensors multiple methods of preprocessing camera data are described and
compared for their performance characteristics.

3-1 On-board sensors

One of the key technologies which enabled small drones is the invention of small scale
lightweight inertial sensors. Micro Electrical Mechanical Sensor (MEMS) sensors were orig-
inally developed for the smartphone industry to determine the movements and attitude of
a device. These sensors have the advantage that they are low cost, have a small form fac-
tor of several millimeters and weighing less than a gram. However these benefits come at
a price, since MEMS sensors offer highly reduced performance in both accuracy and noise
levels, compared to regular tactical or navigation grade sensors.

3-1-1 Inertial sensors

The most important on-board sensor is the Inertial Measurement Unit, consisting of a MEMS
gyroscope and accelerometer. Both sensors have multiple causes of errors in the measured
signal. For each sensor a description of the measured signal and an analysis of the various
errors are given. MEMS gyroscopes are measuring angular rate but are sensitive to bias error,
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10 Sensing and vision

(a) MEMS IMU

Figure 3-1: MEMS IMU data can be used to estimate attitude angles

scale error, alignment error and noise. Angular rate bias error changes steadily therefore rate
integrated attitude can drift by as much as 200deg/hour. Bias drift is mainly influenced
by temperature, which can be monitored by means of an onboard temperature sensor(TNO
mpu6050). Scale error varies per sensor, but can be estimated using a calibration table.
Alignment error is caused by the mounting of the MEMS chip on the PCB. Also the alignment
error can be estimated using a calibration table. the noise can be assumed to be white gaussian
with a limited bandwidth. MEMS accelerometers measure specific force and suffers from bias,
scale and alignment errors as with the gyroscope.

Another option for estimation of the gyroscope and accelerometer biases is by means of
a sensor fusion filter which takes into account other sensor data, such as acceleration and
position data. Sensor fusing is studied in more detail in chapter 4.

3-1-2 Additional sensors

Apart from the main IMU sensor also a number of other sensors are available on-board the
Bebop drone. These sensors are a MEMS magnetometer, a MEMS barometer and a sonar
altimeter.

The magnetometer measures the direction of the earth’s magnetic field lines. If an attitude es-
timation is available this direction vector can be used to estimate heading. The magnetometer
is also very sensitive to ferromagnetic metals and magnetic fields other than the earth mag-
netic field. Therefore the magnetometer is mostly suitable for use in outdoor environments
with limited metal and other potential disturbances.

The MEMS barometer is a highly sensitive air pressure meter which can be used for altitude
measurements, when the pressure on the ground is known. However even with this high
accuracy altitude can only be measured to about half a meter accuracy(Sensortec, 2015).
Also the noise of such a pressure meter is very high. In an indoor scenario a barometer is also
sensitive to sudden pressure changes, such as caused by the slamming of a door.

For measuring absolute altitude with respect to the ground surface a sonar altimeter is used.
This sensor sends and receives high frequency sound waves and estimates distance by timing
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3-2 Monocular camera 11

the received signal. The sonar sensor is known to be more accurate, with a typical accuracy
of 2.5cm (Maxbotix, 2015). However the distance is limited to five meters from the ground
surface.

3-2 Monocular camera

The Parrot Bebob MAV used in this research has two Monocular cameras on-board. One
high resolution front facing fisheye camera and one standard resolution downward facing
camera. Monocular cameras are a rich source of information for navigation and collision
avoidance purposes. The resolution of monocular cameras is generally higher than that of
stereo camera systems. The size and weight of camera sensors make them suitable to be
carried on board of small drones. However monocular cameras can only sense relative depth
and motions, where for navigation absolute measurements are needed. Therefore the vision
system has to be complemented with other sensors in order to estimate absolute motions and
navigate properly. In the following paragraphs the characteristics of the monocular camera are
described. Also a number of methods for extracting useful information from the monocular
camera are described and compared in a qualitative analysis.

3-2-1 Calibration and pinhole model

Most computer vision techniques assume a perfect pinhole camera model, where the incoming
light rays exit the lens the same angle as they enter the lens. The basic pinhole camera
model without lens distortion is given in fig(). The transformation from world coordinates to
camera coordinates is performed by subsequently multiplying the world point vector with the
extrinsic matrix and the intrinsic matrix. The extrinsic matrix contains the rotation matrix
and translation vector. Describing the camera pose with respect to the world frame. The
intrinsic matrix contains the camera focal length and principal point. Parameter s is chosen
such that the system is transformed to homographic coordinate system. Hence s = 1/Z
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The world coordinates are given in an arbitrary unit such as meters. The camera focal length
in millimeters is generally known which then given the dimensions and resolution of the image
sensor the length and principal point can be transferred to pixel units.

However in reality almost all cameras have a lens which adds a certain amount of distortion
to the light rays. Various types of distortion exist, with the most important ones being
radial distortion and tangential distortion. In fig() is described how this model is extended
to also include radial and tangential distortion. The image coordinates are transformed to
homography coordinates and distorted with a radial and tangential distortion model. Radial
distortion is given by the equation with parameters k1 to k6 and tangential distortion is
modeled with p1 and p2.
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3-2-2 Optic flow

One of the most important information that can be extracted from a sequence of images is
optical flow. Early research ha be done by gibson, studying what techniques human pilots
employed for manual aircraft landings. He concluded that an important aspect of their ap-
proach uses optical flow. Optical flow is described by Gibson as the deformation of the retinal
image as a result from motion(Gibson, 1950). Possible information that can be retrieved from
the optical flow field is direction of travel, time to contact with obstacles and relative speed.

Flow information

The equations describing the relation between camera movement and optical flow can be de-
scribed as in (eq..)(Society, Society, & Sciences, n.d.). It has to be noted that these equations
can be split in a rotation dependent part and a translation dependent part. This property
can be simplify the problem when rotational information is available from other sources, such
as gyroscopes.

Figure 3-2: In Longett, Higgins are defined the optical flow vectors in image plane u and v.

These relate to camera translational and rotational rates.

When for the feature z coordinate is known by means of another sensor such as an ultrasonic
distance sensor, the camera speed can also be calculated. This approach of optical flow as
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Figure 3-3: The flow can be broken down in a rotational and translational part. This can be

utilized by measuring the rotational rates using the onboard gyroscopes. This leaves the following

expression for optical flow.

speed measurement is commonly used in drones to assist in stabilizing the drone in lateral
direction. When integrating the velocity measurements a crude form of position measurement
can be obtained. This approach is susceptible to measurement noise which will cause a drift
in position over time. There are however there are a number of drawbacks to this method. It
is assumed that there is a flat underground, such that the measured z is predictable for the
whole surface. If the surface is not flat errors in the solution will become more apparent.

The direction of camera motion can derived from the optical flow field by searching for the
Focus of expansion (FOE). This is the point in the image where the optical flow due to
translational motion equals zero. This can be applied to (eq..) which results in (eq..).

Figure 3-4: Focus of expansion

During research on the human braking behavior in car driving tasks(Lee, 1976) discovered
that humans make use of the expansion rate of objects, to judge if a collision is imminent. the
ratio of distance Z and forward speed W is known as the Time-To-Contact (TTC). Using the
TTC it is possible to judge distances, without knowing absolute depth. TTC can be derived
as follows from the optical flow equations(eq..).
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14 Sensing and vision

Figure 3-5: Time-Tc-Contact

Figure 3-6: Time-To-Contact

Optic flow calculation methods

For optical flow measurements it is necessary to track visual features over multiple image
frames. Various methods were developed to solve this problem. Commonly used feature
types are corner points. Corner points are suitable because they have a gradient in two
directions. This avoids the aperture problem of having only a gradient on one direction, such
as a line segment, making it impossible to observe motion in parallel to the gradient direction.
Corner based optical flow generally follows a two-step approach, consisting of a combination of
a corner detection method and a corner tracking method. Well known detection methods are
Harris (Harris & Stephens, 1988) and FAST(Trajkovii, Hedley, Trajkovic, & Hedley, 1998).
A corner tracker which is widely used is Lukas Kanade(Lucas & Kanade, 1981). This method
uses a numerical method to solve the shift of a block of pixels.

An example of another feature descriptor is the Scale Invariant Feature Transform or
SIFT(Lowe, 1999). This feature descriptor looks at the various gradient directions in a pixel
block and is independent of rotation, translation or scaling. Features are matched by compar-
ing the collection of all sift features and matching the most similar feature descriptions with
each other. The computational complexity of the algorithm makes it unsuitable for real-time
embedded applications. This is illustrated by(Mori & Scherer, 2013) where sift features are
used for monocular collision avoidance onboard an MAV. They have to run the sift algorithm
offboard due to computational constraints. An adaptation to the sift algorithm is SURF,
which is a faster version of the original sift algorithm(Xu & Namit, 2008). Although improv-
ing the performance surf is still very processor intensive compared to Lucas kanade and harris
corner detection.

A recently developed method for optical flow is described in(McGuire et al., 2016). This edge
Flow method performs a simple sobel edge filter, to convert the image to an edge image. The
edge image is then converted to a histogram in x direction and a histogram in y direction.
Histogram binning in x and y direction is defined as the total amount of edge pixels in each
column or row respectively. The edge histogram is characterized by a certain pattern of
peaks, depending from the pattern in view. If the scene viewed by the camera shifts in x or
y direction, the corresponding peak pattern in the histogram also shifts. This approach gives
the global optical flow. This optical flow measure still has to be de-rotated using the on-board
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gyroscopes. The main advantage of this method is that it has very limited computational
requirements; also the method performs better in regions with a low number of corner points,
if compared to Lukas Kanade. An additional functionality is the measurement of diversion,
which can also be derived by observing the change in peak pattern.

3-2-3 Perspective n point

For the drone racing scenario there is also an alternative option for computer vision based
navigation. The drone race track will consist of a number of brightly colored gates, of constant
shape and size. Also as with every race, the track layout is known in advance. This infor-
mation can be exploited to be able to make a more efficient computer vision and navigation
system. The gate size and shape are especially useful for relative position estimation. In case
of a circular gate the eccentricity can provide information about rotation of the camera and
the gate size provides slant range. Also for a gate with corners such as a square or hexagonal,
a specific type of methods exist to determine the camera pose by viewing a set of points, of
which the world coordinates are known. This problem is known as the Perspective-n-point
(Pnp)(S. Li, Xu, & Xie, 2009).

P3P

Multiple solutions exist for this problem, both analytical as well as numerical. Also the
methods vary for how many points are needed to solve the problem. The minimum number
of points needed to solve the Pnp problem is three (P3p). The number of points available
can of course be higher than the minimum needed for the respective method. In this case
a RANSAC approach can be used, by back projecting the remaining points onto the image
plane and comparing them with the viewed image points. A well known Pnp method is that
of (Gao, Hou, Tang, & Cheng, 2003) in which three points are used to find four closed form
solutions for the camera pose. An example of an analytical solution for the p3p problem
is given in(Kneip, Scaramuzza, & Siegwart, 1991). The author compares its performance
with the standard solution of Gao. In the current work performance of the analytical P3p is
evaluated, in comparison to other methods.

Figure 3-7: Perspective 3 point problem description
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16 Sensing and vision

P4P

The Perspective-n-point problem also exist for 4 points, which is also known as P4p. Multiple
solutions for this problem exist. The majority of these methods assume that the points
involved are non-coplanar. However in the problem of pose estimation based on gate corners,
the gate corner points clearly lie on a single plane. Methods which also function with coplanar
points do exist, such as described in(Horaud, Conio, Leboulleux, & Lacolle, 2011).
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Chapter 4

State estimation

Small unmanned aerial vehicles usually have a large number of on-board sensors. Typical
sensors include inertial sensors, a camera, and a magnetometer for sensing the direction of
the earth magnetic field. Furthermore a barometric pressure sensor for altitude estimation
and a sonar sensor for low altitude height sensing. The challenge of optimally fusing all these
sensors is complex due to the relative low quality of the sensor data and the very different
data rates of the sensors.

In the first part of this chapter an elaborate description is made of sensor fusion by means of
a Kalman filter. Different types of Kalman filters are discussed together with their specific
characteristics. In the second part an overview is given about the most important monocular
visual inertial navigation methods.

4-1 Kalman filter sensor fusing

4-1-1 Original Kalman filter

One of the most frequently used sensor fusion method is the Kalman filter. The Kalman
filter is an optimal estimator for linear problems, capable of giving an optimal state estimate
provided with multiple noisy sensor readings(Welch & Bishop, 2006). The filter chooses the
optimal weight between the model based state prediction and the measurements, given the
process and sensor noise characteristics. Five steps can describe the propagation of the filter
as follows. In step one the current state is predicted based on the previous state given the
process model. step two predicts the covariance given the previous covariance the process
noise and the process model. The covariance prediction is then used for computing the
kalman gain, which is the dynamic weight factor describing the importance of measurements
with respect to the model prediction. Step four gives the optimal estimate of the current
state by correcting the state prediction using the measurement and the Kalman gain. The
fifth step computes the final covariance of the current state estimate. The original Kalman
filter assumes a linear sensor model, which is mostly not the case. Still the filter has shown
to work on systems which are locally linear(Lefebvre *, Bruyninckx, & De Schutter, 2004).
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Figure 4-1: Original kalman filter equations

4-1-2 Extended Kalman filter

The original Kalman filter theory is only applicable to linear or approximately linear prob-
lems. To be able to apply the Kalman filter theory to nonlinear systems an extension to
the linear Kalman filter was proposed, known as the Extended Kalman Filter (EKF). The
EKF extends the regular kalman filter theory to nonlinear systems. This is accomplished by
locally linearizing the nonlinear state transition and output matrices around the current state
estimate. Hence calculating the first order partial derivatives or jacobians of the nonlinear
state transition and output matrices. Also the state prediction step for the nonlinear model
is performed by numerically integrating the state. One has to note that contrary to the linear
kalman filter, the EKF is not guaranteed to converge, due to the linearization approximation
(Boutayeb, Rafaralahy, & Darouach, 1995). The extended Kalman filter is widely used in
SLAM and Visual Inertial Odometry methods.
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Figure 4-2: Extended kalman filter equations

4-1-3 Unscented Kalman filter

A different form of the Kalman filter for nonlinear systems is the Uncented Kalman Filter
(UKF), first proposed by (Julier & Uhlmann, 1997). The UKF differs from the EKF that the
state and error covariance prediction are directly propagated to the next time step by using
the nonlinear prediction model. This is accomplished by selecting a small number of points
around the current state estimate called sigma points, which are then propagated through
the nonlinear prediction model. The resulting spread of the sigma points determines the new
mean and covariance. The mean is then used as the state prediction. It has been proven that
the UKF has a better convergence behavior than the EKF(Wan & Van Der Merwe, 2000).
Also the results are more accurate, because the UKF uses a 3rd order nonlinear approximation
instead of a 1st order approximation as with the EKF.

Figure 4-3: Sigma point vectors and corresponding weights.

Figure 4-4: Sigma point are propagated through the nonlinear mapping.
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Figure 4-5: Mean is calculated based on nonlinear mapped sigma points and corresponding

weights.

Figure 4-6: Covariance is calculated based on nonlinear mapped sigma points and corresponding

weights.

4-1-4 Loose and tight coupling

One important distinction in the types of sensor fusing methods is the difference between
loosely coupled systems and tightly coupled systems. This difference has to do with how the
sensor data from each sensor is integrated in the state estimation filter. In a loosely coupled
filter the sensor data is first separately preprocessed to some higher level of information, after
which this preprocessed data from multiple sources is fused together to form the final state
estimate. In a tightly coupled approach the raw sensor data is fused directly in the state
estimation filter to provide the final state estimate. In general the tightly coupled methods
give a more accurate result, however depending on the situation the loosely coupled design
might be more favorable.

4-2 Monocular Visual inertial navigation

Navigation and state estimation are very important but challenging tasks for small scale
unmanned aerial vehicles, both from a perspective of sensor limitations as well as processing
power. In a GPS denied environment the vehicle can only rely on laser or vision based
navigation. However if the goal is navigation on even the smallest drones possible, even
LIDAR sensors exceed weight limitations.

4-2-1 Method classification

Visual state estimation can be divided in so called odometry methods, as well as Simultinous
Localization and Mapping (SLAM) methods. In SLAM approaches the map and state are
estimated concurrently(Barea, Bergasa, & Molinos, n.d.). In an odometry approach only the
pose is calculated in an incremental fashion. Only a small subset of features might be used
for refining the results, no attempt is made in reconstructing a globally consistent map of the
environment(Scaramuzza, 2012).

Since it is decided that only the front facing camera should be used, visual inertial state
estimation is limited to monocular methods only. One of the major difficulties with these
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methods is that a monocular camera is not able to estimate absolute visual scale. Hence
additional sensor data is needed to do this. Often inertial data is used for performing this
scale estimate, but in theory also other sensors can be used. In both SLAM and Odometry
methods there are differences in how visual data is fused with inertial data. This can be
either a loosely coupled or a tightly coupled approach. In a loosely coupled approach the
visual data is preprocessed into pose estimates or pose and map estimates. However these
vision only estimates are still missing an global scale factor, which converts them to absolute
estimates. In a tightly coupled approach raw visual data is used directly in the filter, instead of
preprocessing it first. In general a tightly coupled approach his better performing in accuracy
and robustness, However also other factors can play a role, such as computational complexity.

One other means of classifying the various different visual navigation methods is the way
that they handle the detection of features of the environment. A distinction can be made
between so called direct methods, semi-direct methods and feature based methods. Direct
methods work by estimating camera motion and scene structure by directly evaluating pixel
intensity values(Engel, Sch, & Cremers, 2014). Generally direct methods are more accurate
because they include all information available from the image. Also direct methods are much
more robust in scenes with little texture. However this comes at the cost of requiring more
processing power.

Feature based methods on the other hand work by tracking a limited number of salient features
between different camera poses(Mur-Artal, Montiel, & Tardos, 2015). The tracked features
are then used to estimate both scene structure and camera motion. Back projection can then
be used to further refine the pose and structure. Feature based methods tend to be faster
than direct methods, but use only a limited amount of the information in the image which
reduces their accuracy. Also environments with a low amount of detectable features form a
problem when using such a method.

A relatively new development are the so called semi-direct methods(Forster, Pizzoli, & Scara-
muzza, 2014). These methods are similar to the direct methods in the sense that they op-
erate directly on pixel intensity values. However the pixel intensity optimization operations
are performed on sparse set of small image patches, instead of on the full image. This ap-
proach increases the computational performance, while still benefiting from the accuracy and
robustness of direct methods.

4-2-2 SLAM methods

Given the background information in the previous paragraph, the following paragraphs will
describe the most important monocular SLAM methods used in MAV navigation. A brief de-
scription of the main working principles, together with its specific performance characteristics,
including strong and weak points is given.

PTAM

One method which is frequently used for state estimation in MAV’s is Parralel Tracking And
Mapping (PTAM)(Jama & Schinstock, 2011). PTAM is a form of simultaneously estimating
the camera pose and building a map of the environment. In this approach the tracking

Vision-based Autonomous Drone Racing in GPS-denied Environments M.M.O.I Ozo



22 State estimation

and mapping are split, enabling them to work on two different processor cores to increase
performance. The method, first proposed by (Klein & Murray, 2007). A typical sequence
of the PTAM algorithm is follows: The pose estimation part of PTAM works by projecting
previously known map points onto the current camera image, using an initial estimate of the
new camera pose. The reprojected points are compared to the corresponding feature points
in the image. Reprojection error is then minimized using a least-squares approach. Mapping
is performed by using multiple camera poses to triangulate feature points. The map is further
refined with local and global bundle adjustment.

PTAM was developed for use in small augmented reality workspaces, but also received atten-
tion from the autonomous MAV community. Multiple examples exist of PTAM implementa-
tions on MAV’s(Jama & Schinstock, 2011). The original PTAM algorithm does not estimate
absolute position. Therefore for use in MAV’s the algorithm has to be adapted in order to
estimate the global scale of the map. Most examples use a loosely coupled approach which
fuses the PTAM based position with inertial data from the IMU by means of an EKF.

The inherent parallel processing structure of this method makes it especially suitable for
use on modern multi core embedded devices. in(Weiss, Achtelik, Lynen, Chli, & Siegwart,
2012a) the PTAM algorithm is able to run on a 1.6 GHz atom computer, at a rate of 20Hz.
Also the authors in (Klein & Murray, 2007) compared PTAM to EKF-SLAM on the same
image sequence. They found that their method was more accurate by testing it in a office
space scene. However the algorithm is also prone to a number of failure modes. The stereo
matching initialisation can fail, feature tracking can fail, which results in wrong information
being added to the map. Finally because the detection and matching of points make PTAM
a feature based method, typically a large number of features are tracked to increase accuracy.
This however makes the method sensitive to environments which lack of salient visual features.

ORB SLAM

One other important monocular SLAM methods is ORB-SLAM. This method estimates both
the camera pose, as well as a globally consistent map. Also if a previously visited area is
visited the algorithm performs a loop closure procedure, which globally refines the map. ORB-
SLAM first proposed by (Mur-Artal et al., 2015) is a feature based method which employs
ORB feature descriptors. These scale and rotation invariant(ref) features are used in both
tracking, mapping and loop closure parts of the algorithm. During the tracking stage, the
camera pose is estimated by matching point features from previous image frames to features
in the current frame. The pose is optimized to minimize back projection error of the tracked
points. One of the features of ORB-SLAM is that if tracking is lost due to camera occlusion
an automated relocation process can recover the current position by looking for matches in
a database of stored feature descriptions. Mapping is performed by adding new features to
by means of triangulation. Also a test is performed to verify that the points are tracked
properly, with minimal outliers. Local map consistency is then optimized using local bundle
adjustment. The final step in the method is able to detect previously visited locations. These
detections are than used to globally refine the map.

Multiple examples exist for ORB-SLAM implementations in MAV’s, such as (Marquez, Gar-
cia, & Mayol-cuevas, 2015),(Barea et al., n.d.),(ref). These approaches use a loosely coupled
EKF framework for fusing the scaled position and speed measurements with the onboard
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IMU. The first two papers also use speed information provided by the OEM optic flow sensor
fusing methods pre-installed on their respective drone. Real-time performance is obtained,
however it has to be noted that neither of these papers implement the full ORB-SLAM ap-
proach on-board of the MAV. They rather use a powerful ground station computer for running
the ORB-SLAM algorithm, based on a video stream and sensor data from the MAV.

LSD SLAM

A recent development in direct monocular SLAM methods is Large Scale Direct SLAM.
This method is able to build a large-scale map of the environment together with the current
estimate of the camera pose. The method was first proposed by(Engel et al., 2014) and is able
to run at a CPU. The method consists of three components, a tracking components, a depth
map estimation components and a map optimization component. The tracking component
estimates new camera poses by trying to minimize the variance normalised re projection
error with respect to the previous frame. the optimization is performed by the iteratively
re-weighted Gauss-Newton method. By normalizing by the depth noise, this methods takes
into account the varying noise values. Also it has to be noted that the method only works on
areas of the image with sufficient gradient.

4-2-3 Odometry methods

In the following paragraphs the most important monocular odometry methods used in MAV
navigation are described. A brief description of the main working principles, together with
its specific performance characteristics, including strong and weak points is given.

Multi State Constraint Kalman Filter

An example of such an approach of fusing visual and inertial data is the Multi State Constraint
Kalman Filter (MSCKF) (Mourikis & Roumeliotis, 2007). Here the well-known Extended
Kalman Filter is formulated in such a way that the tracking of visual features with the camera
greatly improves the inertial navigation solution. Contrary to other approaches (Mingyang Li
and Anastasios I. Mouriki), the features do not form a part of the state vector, but are rather
used for posing geometric constraints on a sliding window of estimated camera poses. This
approach of not including the tracked features in the state is less computational intensive if
a high number of features has to be tracked over a short period of time.

EKF Visual Inertial Odometry

Contrary to the MSCKF approach EKF Visual Inertial Odometry (EKF VIO) does hold the
feature positions inside the state vector. This approach has a computational advantage when
a small number of features need to be tracked for a longer time(M. Li & Mourikis, 2012). An
example of the EKF VIO formulation is described in (Bloesch, Omari, Hutter, & Siegwart,
2015). The EKF state propagation of the position velocity and attitude states is based on the
IMU measurements inserted into a kinematic model. Also the feature states are propagated
based on the current speed predictions and angular rate measurements. Features are described
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in the inverse depth representation by a bearing vector and a distance. This representation
has an advantage during the feature initialization process, when far away features can be
used immediately for improving the camera motion estimate(Civera, Davison, & Montiel,
2008). Features used are rectangular patch features instead of corner features. Each feature
consists of a small block of pixel intensity values. Pixel intensity errors are directly used
in the measurement update step of the EKF. This so called semi-direct approach has as an
advantage that it is not relying on the availability of corner like features. The feature tracking
will also work in scenes that are dominated by straight lines, common for most man made
environments.

An example of this can be shown in(Bloesch et al., 2015). Here a semi-direct visual inertial
odometry algorithm is implemented on a MAV and is able to run at 20Hz update rate.
in (Loianno et al., 2016) the VIO algorithm is implemented on a 250g micro drone. state
estimation is accurate enough to aggressively fly through tilted gaps.

EKF Optical flow speed estimation

The previous approaches mentioned that fuse visual and inertial data provide the vehicle
state, by either keeping track of a window of previous states, or by including the features
inside the state vector. A more computationally efficient approach is proposed by(Weiss et
al., 2012a). They propose a framework for metric speed estimation by fusing optical flow
information with inertial measurements. The approach makes use of the fact that a camera
can estimate scaled speed based on optical flow and the IMU can estimates metric speed,
corrupted by sensor noise and bias drift. As with the some of the previously discussed visual
inertial state estimation approaches the complementary nature of both sensors make them
suitable for sensor fusion with an EKF.

In the chapter of sensing and vision was described how optical flow information can be ex-
tracted and processed. One of the things which can be extracted from the optical flow field is
the location of the FOE. The FOE points to where the camera is traveling, expressed in the
camera reference frame. Hence when the FOE is obtained one also obtained an arbitrarily
scaled speed vector in camera frame. Using epipolar geometry the scaled speed in camera
frame can be obtained by solving the following system, with flow, point direction vectors and
unknown speed vector.

Figure 4-7: Optical flow speed calculation by solving this system

The scaled optical flow based speed data is combined with IMU data inside the EKF frame-
work. Scaled speed treated as a measurement in the EKF, by rotating the speed in global
frame and multiplying it with the speed scale factor. This scale factor dependent from average
scene depth and is a state which is estimated by the EKF.

The authors of (Weiss et al., 2012a) evaluate their method on speed and position accuracy.
The velocity RMSE is less than 5 CM/Sec. The position was estimated during a 80 second
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flight. At the end of the flight position was drifted for 20 centimeters. These results are con-
siderably less than EKF VIO approaches, however the method is much less computationally
intensive, with the most demanding operation in the EKF being a 3 by 3 matrix inversion.
The authors therefore evaluate the algorithm as a backup mechanism to rely on when a more
complex method such as PTAM fails. The computational efficiency of this method makes it
also suitable for implementation on computationally constrained platforms.

4-2-4 Qualitative evaluation

Given the description in the previous paragraphs about the visual inertial state estimation
methods now a summary can be made of each method’s performance characteristics. The
methods are rated on accuracy, computational efficiency and the reliability. This evaluation
can then help with the selection for a visual inertial state estimation approach for the drone
racing system. It has to be noted tough that full objective performance indicators can only
be determined by implementing all methods in a test framework, where they are subjected
to the same test datasets. To limit the comparison task to a more comprehensible scale it is
chosen to perform a qualitative rating, based on each method’s characteristics as reported by
literature.

From the discussed SLAM methods is considered the most accurate method is ORB SLAM,
since this method has an integrated loop closure mechanism. This refines the global map
when e previously visited place is visited. The accuracy and computational performance
of the odometry methods of MSCKF and EKF VIO is complementary(M. Li & Mourikis,
2012),where the best performing method depends on the number of tracked features. The
optic flow speed estimation method is the least accurate, because it does not use local or
global refinement methods and is semi-tightly coupled.

Computational efficiency is evaluated based on what hardware the algorithms have proved to
work. From all methods ORB SLAM has proved to be the most computational intensive and
only works on high performance desktop computers(Martinez-Carranza, Loewen, Mirquez,
Garcia, & Mayol-Cuevas, 2016). All other methods are capable of running on-board a ARM
processor. The most computationally efficient method is optic flow speed estimation. This
approach is lightweight because it does not perform global optimizations and does not estimate
feature positions.

Visual inertial navigation methods can have different types of failure modes, which affects
the reliability of such a method. Here feature based methods such as PTAM and MSCKF
can lose tracking when in environments which lack corner points. Although ORB SLAM is
also a feature based method, it is very tolerant to tracking loss. When tracking is lost, due
to camera occlusion for example, than the method can use its map to quickly relocalize itself
when images are available again.
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Table 4-1: Qualitative analysis of the most important monocular visual inertial navigation meth-

ods

Accuracy Computational efficiency Reliability
PTAM ++ ++ +
ORB SLAM +++ + +++
LSD SLAM ++ ++ ++
MSCKF ++ ++ ++
EKF VIO ++ ++ ++
Flow speed + +++ ++
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Chapter 5

Trajectory generation and control

5-1 Trajectory generation

If the environment is partly or fully known by the drones internal state estimation and nav-
igation algorithms, then this knowledge can be used for generation trajectories throughout
that part of the environment. The planning of a dynamical feasible trajectory of a UAV in a
high speed flying scenario can be based on multiple different goals. Trajectories can be opti-
mized for least energy consumption, least amount of time and other constraints. In the next
paragraphs a division is made between polynomial based planning using differential flatness,
sample based planning where the search space is explored in a probablistic way and motion
primitive planning.

5-1-1 Polynomial trajectory generation

The quadrotor type of MAV used in this research has a certain characteristic which are relevant
for trajectory generation. The quadrotor is proved to be a differentially flat system(Mellinger,
2011). A system is called differentially flat if the inputs can be written as function of one or
more flat output variables and their derivatives. Trajectories can than be designed in the flat
output space. Also the formulation allows to calculate the required control inputs for a given
set of flat outputs, which can be used for controller design. In (Mellinger, 2011) the position
and yaw angle are selected as flat outputs. In this work a polynomial minimum snap trajectory
is planned through multiple waypoints. It is chosen to minimize the fourth order position
derivative or snap to generate a smooth trajectory. Other Approaches which make use of
differential flatness to optimize polynomial trajectories are(Loianno et al., 2016),(Jamieson &
Biggs, n.d.) and(Richter, Bry, & Roy, 2013).

5-1-2 Sample based

One way of solving the trajectory generation problem is the sampling based approach. These
approaches include RRT (SM Lavalle, 1999) and Probabilistic Road Maps (PRM)(Kavraki,

Vision-based Autonomous Drone Racing in GPS-denied Environments M.M.O.I Ozo



28 Trajectory generation and control

Vestka, Latombe, & Overmars, 1996). These methods are useful for planning in high dimen-
sional state spaces.

PRM consists of a learning phase and a query phase. In the learning phase a graph is made
containing nodes and possible paths between them in the collision free part of the search
space. During this process care is taken that the nodes are also covering difficult parts of
the search space. The possible connections between nodes are determined by a local planner,
which calculates paths at a high rate. Next in the query phase the graph that was created in
the learning phase is used to get a close to optimal trajectory.

In RRT the trajectory is found by growing a tree of feasible solutions in the search space.
The tree is created by the following iterative provess: First a random point is generated in
the state space, then the nearest vertex in the current tree is selected. After that a control
input u is generated to minimize the distance between the random point and the new point.
Finally a new vertex and edge are added to the tree. In contrary to PRM, RRT gives the
globally optimal result, however this is at the cost of higher computational complexity. An
example of RRT in MAV flight is given in(Richter et al., 2013). To limit the computational
resources RRT is used only for a straight line search. The straight line trajectory is then
further optimized in a quadratic programming.

5-1-3 Motion primitive based

Another approach for trajectory generation is the use of so called motion primitives. In this
method a number of small and feasible trajectory segments are used to design a larger feasible
trajectory. The motion primitives can be generated offline and stored on-board of the drone
in a library. In flight the drone only has to choose between the trajectory segments in the
library to come closer to the goal and evade potential obstacles. This has as an advantage that
the trajectories do not have to be calculated in realtime, which would otherwise be very com-
putational intensive. However a drawback is that not all possible trajectories are considered
during the planning and there may is a more optimal choise outside the library(Paranjape,
Meier, Shi, Chung, & Hutchinson, 2013).

Multiple examples can be given of the use of motion primitives int autonomous drone flight.
In (Frazzoli, 2002) a framework for uav motion planning is proposed which is based on the
interconnection of a finite number of motion primitives. The motion primitives in this work
concist of so called trim trajectories and maneuver trajectories. During a trim trajectory the
state of the vehicle is steered to the trim position with constant body velocity and control
inputs. A maneuver trajectory is a trajectory that connects two trim trajectories. Trim and
maneuver trajectories are used sequentially.

An extension to motion primitive based planning algorithms is the use of so called funnel
libraries(Tedrake, Manchester, Tobenkin, & Roberts, 2010). The funnel approach compared
to the general motion library approach also takes into account potential disturbances or
sensor noise. In (Majumdar & Tedrake, 2013) an online implementation is discussed. After
generating the motion primitives, the library is augmented whith feedback controllers that
locally stabilize the trajectory. Then a funnel around the trajectory is calculated which
garantees stability of the closed loop system, taking into acount uncertainties caused by
sensor noise, initial conditions and model mismatch. A global trajectory is generated by
interconnecting multiple funnels.

M.M.O.I Ozo Vision-based Autonomous Drone Racing in GPS-denied Environments



5-2 control 29

5-2 control

The control problems that have to be solved for the autonomous racing drone project are
numerous. First of all the drone has only limited visual feedback throughout the course,
because there are scenarios where the next gate is not yet in view, after passing the current
gate. These periods of vision blackout have to be traversed by either performing open loop
feedforward control, or employing an inertial navigation dead reckoning approach. Which
method works optimal is dependent of the difference in accuracy of model based trajectory
prediction on the one hand and the quality of the ins solution. Therefore the control consists
of a feedback part and if model prediction is used, a feedforward part is also included. In the
next paragraph an analysis of feedback and feedforward control techniques is given.

5-2-1 Feedback control

PID

A common way to solve linear or local linear control problems is Proportional Integral Deriva-
tive (PID) control. This method however assumes that the system is linear, hence the perfor-
mance is dependent of the level of nonlinearity in the system model. However in practice it
turns out that most systems even with some level of non-linear behavior can still be controlled
by a PID controller. A quadrotor drone is a highly nonlinear system but still PID is commonly
used as attitude or trajectory controller on quadrotor drones, such as(Salih, Moghavvemi, Mo-
hamed, & Gaeid, 2010),(Sadeghzadeh & Mehta, 2011) and(Zul Azfar & Hazry, 2011). This is
because at small attitude angles and low speeds the system can be approximated by a linear
model(Bolandi, Rezaei, Mohsenipour, Nemati, & Smailzadeh, 2013). The racing scenario is
not characterized by low speed and small attitude angles. Therefore it has to be investigated
if this local non-linear assumption is still valid at race speed.

LQR

A linear Quadratic regulator is part of optimal control theory. The LQR controller tries
to minimize a quadratic cost function which is based on the desired performance character-
istics of the system. LQR control can be used for different control tasks ralated to MAV
flight. Examples of LQR implemntations can be found in(Panomrattanarug, Higuchi, &
Mora-Camino, 2013), where attitude control is performed. In(Jafari, Zareh, Roshanian, &
Nikkhah, 2010)and(Cowling, Yakimenko, Whidborne, & Cooke, 2007) an LQR trajectory
controller shows good performance.

NDI

Nonlinear Dynamic Inversion (NDI) uses the nonlinear model to linearize the control
problem(Enns, Jski, Hendrick, & Stein, 2017). This method has a better performance than
the common gain scheduling approach for controlling nonlinear systems. NDI is however
sensitive to model mismatch, which requires an accurate aerodynamic model and kinematic
model. Such an aerodynamic modle can be derived by interpolating data points from a large
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aerodynamic database. For the kinematic model center of gravity position and moment of
inertia are important. To make NDI more robust, a novel nonlinear control method is intro-
duced called Incremental Nonlinear Dynamic Inversion (INDI)(Sieberling, Chu, & Mulder,
2010). INDI is based on NDI but instead of calculating the control signal every time step,
INDI only calculates the increment in control signal needed. The rotational equations of
motion are rewritten in an incremental form, which has as a result that the time scale sep-
aration principle can be applied. The slow dynamics of the system, such as position change
or yaw can be separated from the fast dynamics of angular rotations and attitude changes.
The incremental form of NDI is much more tolerant to model mismatches as wel as actuator
faults.

5-2-2 Feed forward

If the inertial navigation solution proves to be not accurate enough in the presence of large
discontinuities in the vision based gate tracking feedback, than feedforward control can be
employed to bridge the gap between two gate detection zones. The problem amounts then
to find a sequence of control commands to execute a planned trajectory to the next gate
detection zone, given the vehicle state at the start of the trajectory. Errors in the initial state
and errors during the execution of the maneuver build up over time. Therefore this type of
control can only be used for a short period.
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Chapter 6

Literature discussion

In this chapter the main findings of the literature search are discussed. The literature search
first evaluated general approaches to the problem of high speed autonomous drone flight.
After that the main methods in the topics of sensing, state estimation, trajectory generation
and control were reviewed.

6-1 General high speed flight

The general problem of high speed autonomous drone flight is an area of research since more
than a decade. The overall complexity of the problem has resulted in a large number of
different approaches to the problem. Early approaches made use of off-board sensing, state
estimation and processing. However these approaches are far from fully autonomous, therefore
later work aims at performing all sensing and processing task on-board of the drone. A possible
approach for on-board navigation is by employing a LIDAR sensor. Although the LIDAR
based navigation approach proved a vailable solution to the autonomous flight problem, the
relative large size and weight of typical LIDAR sensors pose a severe limitation for use on small
drones. Also LIDAR methods are generally limited to well structured environments(Shen,
Michael, & Kumar, 2011). As an alternative for LIDAR also vision can be used as a basis
for state estimation, since camera sensors are more lightweight. Both stereo vision based
approaches as well as monocular based approaches were tried. Stereo and monocular methods
provided similar results, however monocular cameras have the advantage that they can even
be mounted on even the smallest drones(Loianno et al., 2016).

What all these approaches have in common is that they only consider short high speed
maneuvers lasting only a few seconds. It is not investigated what will happen if the high
speed flight lasts for longer periods of time. For example if sensor bias errors are being
estimated properly. The drone racing scenario forms a perfect setting for testing this. Also
in the drone racing scenario higher level decision making is needed to successfully complete
the course. At some parts of the track there might be multiple gates in sight, and the drone
needs to quickly choose where to go. Also the drone racing system should be robust to false
detections through distractors in the background.

Vision-based Autonomous Drone Racing in GPS-denied Environments M.M.O.I Ozo



32 Literature discussion

6-2 Sensing

In this literature review all on-board sensors of the drone used in the current research were
evaluated on their specific characteristics. The most important sensors on-board the drone
are the inertial measurement unit and two monocular cameras. The low cost lightweight
IMU sensor type on-board typical consumer drones has low accuracy, high noise and drifting
bias errors. Results can be improved by fusing the sensor data with other sensors such as
cameras. Monocular cameras on their own can not sense absolute depth or motion. However
still much important data can be obtained by studying the optical flow field in the moving
camera image. The optical flow field can be used for determining things like the direction of
travel, or the time to collision with an object. Various methods exist for extracting optical
flow from a sequence of images, the most frequently used method being subsequent corner
detection and tracking with the Lukas Kanade algorithm. Most methods are dependent on
the availability of corner features, which might not be available in certain scenes. Alterna-
tively a new method for estimating the global optical flow was developed in(McGuire et al.,
2016). This method uses an edge image and a histogram peak approach, which consumes
exceptionally low computational resources.

Other means of employing the camera for state estimation purposes is in the Perspective-
n-point problems(Pnp). The problem amounts to estimating the camera pose from viewing
a number of world points with known or unknown locations. When the point locations are
known, than the minimum number of points necessary for a solution is 3 (P3p). In the drone
race scenario square gates of known size can thus be used as a computational efficient method
for localization and attitude estimation. Therefore in the next chapter a preliminary analysis
will be conducted about the performance characteristics of P3p.

6-3 State estimation

State estimation in general as well as multiple monocular visual inertial state estimation
techniques were discussed, including a qualitative evaluation of the latter. Particularly the
Kalman filter is explained, including the most important variations, being the Extended and
Unscented Kalman filter types. These filter types are capable of performing sensor fusing
tasks in nonlinear and highly non-linear problems.

The visual inertial state estimation problem can be approached with two different fundamental
methods, being SLAM and odometry. SLAMmethods simultaneously locate the robot and try
to build a map of the environment, while odometry methods try to incrementally reconstruct
the path of the robot in a locally consistent way. Odometry method are more sensitive to the
incremental buildup of small errors over time, however this could be compensated by other
visual methods. One other way to classify the SLAM and odometry methods is through
how visual data is integrated into the filter. A distinction can be made between feature
based methods, direct methods and semi-direct methods. Feature based methods rely on the
detection and tracking of salient features. Direct methods work by directly optimizing pixel
intensity values. Generally feature based methods are more computationally efficient, while
direct methods work better in environments with limited salient features to track. A recent
development are semi-direct methods, which have the computational efficiency of feature
based methods, while also working in feature sparse environments.
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Both SLAM and odometry methods were evaluated. Commonly used SLAM methods are
PTAM, ORB-SLAM and LSD-SLAM. However only PTAM proved to be computationally ef-
ficient enough to run on-board a drone. The odometry methods MSCKF and EKF VIO have
complementary characteristics in accuracy and computational efficiency(M. Li & Mourikis,
2012). From the odometry methods the optical flow speed estimation approach(Weiss, Achte-
lik, Lynen, Chli, & Siegwart, 2012b) is the most computational efficient. This makes it an
interesting method suitable for integration in the current drone or even smaller drone types.

As a minimalistic approach to estimating the position of the drone it is chosen to fuse 3D
position based on the P3p algorithm with data from the IMU inside an Extended Kalman
Filter framework. The results of this analysis will be presented in the next chapter. The
estimated state can then later be used for trajectory planning and control tasks.

6-4 Trajectory generation and control

When an estimation of the MAV’s state is known and the race track is known, than still
the question remains how to generate and track the optimal trajectory. Multiple approaches
to trajectory generation were investigated. A common class of trajectory planning methods
are sample based methods such as RRT and PRM, where the state space is searched in a
probabilistic way. These methods are good at exploring the state space and generally are
able to find a close to optimal solution(Kavraki et al., 1996). The downside of these methods
if that they are computationally intensive(Boeuf, Cortes, Alami, & Simeon, 2015), while
autonomous MAV flight is bounded by the onboard computational constraints. Therefore
implementations on sample based MAV trajectory generation are generally performed off
board.

An alternative method to the trajectory generation problem is the use of motion primitives.
The trajectory is then assembled from a finite number of feasible trajectory segments from
a library. This method is less computational intensive since the library of motion primitives
can be calculated offboard in advance, while the actual trajectory generation can be per-
formed onboard the MAV. However this comes at the cost considering only part of the search
space(Paranjape et al., 2013). A recent extension to motion primitives is the funnel based
approach(Tedrake et al., 2010) this method also takes into account the various uncertainties
by using funnels where the robot is guaranteed to stay inside.

One other trajectory generation approach which is often seen in autonomous MAV flight is
a polynomial trajectory generation method(Loianno et al., 2016),(Jamieson & Biggs, n.d.)
and(Richter et al., 2013). These methods use the differentially flatness theory to optimize
the trajectory in the flat output space. As a additional criteria the trajectories are often
minimized to minimize snap, in order to guarantee smooth trajectories. This method relies
on existing waypoints, however if these are not available a simple straight-line RRT can be
used first to generate them(Richter et al., 2013).

Once the trajectory is established a controller is needed to track the trajectory. PID and
LQR control are commonly used for both inner loop attitude control as well as trajectory
tracking control. These methods rely on a linear system model. If aggressive maneuvers are
to be performed, as is the case in the drone racing scenario, then the linear model might not
be valid anymore. This can be solved by PID gain scheduling(Sadeghzadeh & Mehta, 2011)
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or other nonlinear control theory. Recent work in Nonlinear Dynamic Inversion as well as its
incremental form INDI have shown good results as controllers onboard MAV’s(Xie, Xia, &
Fu, 2011).
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Chapter 7

Preliminary results

7-1 Experimental Setup

As a preliminary analysis a minimal approach to visual inertial state estimation is considered.
The P3p algorithm is used as a main source of position. Pixel noise from the camera propa-
gates through the algorithm which results in noise in the position measurement. Additionally
the camera runs at a lower frame of 30Hz. That combined with possible missed or false de-
tections explains the need for improving the state estimation performance by fusing it with
inertial data. The sensor fusing part will than be performed in an Extended Kalman Filter,
due to the nonlinear characteristics of the problem. The performance of the Perspective-3-
point method is first evaluated separately, after which these results are processed in the EKF
state estimation filter. The analysis will be conducted in Matlab and involves both artificial
data, as well as real data from onboard of the drone. The data from the drone is obtained
by performing a number of test flights in a dedicated testing area of the MAV Lab, called
the Cyberzoo. The Cyberzoo is a 10X10X10m space which is protected by safety nets. It is
equipped with a high performance infrared camera tracking system called Optitrack, which
is able to determine the position of the MAV at sub millimeter accuracy at 30HZ data rate.
The data from the Optitrack system is used as groundtruth during the experiments.

The flight tests will be performed with the Bebop drone as described earlier. The drone is
able to log sensor data such as IMU readings at 500HZ rate and camera images at 30HZ in
its onboard memory. After a flight the logged data is downloaded and analysed in Matlab.

7-2 Vision

7-2-1 Gate corner detection

The perspective-3-point method is based on viewing the known locations of the gate corner
points. Therefore first the four corner points of the gate have to be found. Because the gate
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is coloured, a colour filter is applied followed by a coarse search for a square like shape. The
square is identified by randomly sampling the image for coloured pixels and performing a
snake like pattern of up, down and left, right motions along stretches of coloured pixels in
the image. However the initially estimated gate corner positions still have to be refined to
compensate for the orientation of the camera and lens distortion. This is performed by a
histogram based corner refinement. After that the corner point locations in image frame are
undistorted for radial lens distortion and passed to the P3p algorithm.

7-2-2 P3p

A perspective-3-point algorithm will be used to determine position and attitude of the MAV.
When the 3D world coordinates of the gate corner points are known, then position and
attitude can be determined based on the projection of these points onto the image frame.
The P3p algorithm as described in (Kneip et al., 1991) is implemented in a ransac approach
by back projecting the fourth gate point of different 3 corner point sets. The method is tested
on simulated data of a gate which is viewed at different angles and distances. Statistical
metrics include the Root Mean Squared Error (RMSE), as well as the variances of position
and attitude errors.

Results as function of distance:
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(a) Position variance in x direction
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(b) Position variance in y direction

Figure 7-1: X and Y position variances as function of distance to the gate
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Figure 7-2: Position variance in z direction as function of distance to the gate
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Figure 7-3: RMSE of Psi angle as function of Psi heading angle
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Figure 7-4: Phi error as function of Psi heading angle at 2m distance
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Figure 7-5: Theta error as function of Psi heading angle at 2m distance
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Figure 7-6: Psi error as function of Psi heading angle at 2m distance

The position estimation based on P3p only is subject to pixel noise from the camera. It
is expected that a larger distance between the camera and gate will also result in a larger
error. In figure 7-1 and 7-2 the error variances of x y and z position are plotted as function
over distance. It has been observed that the error variance characteristics are well fitting an
exponential function. This knowledge may be later used to integrate into the state estimation
filter to improve performance. Additionally also the possibility for cross coupling between
the psi heading angle and the attitude angle error is investigated, to verify the method’s
consistency. In 7-3 the RMS error in heading is shown as a function of the heading angle
between positive and negative 30 degrees. This shows that there is only a minor sensitivity in
heading, with the error remaining between 10 and 8 degrees. Also the figures 7-4, 7-5 and 7-6
supports this notion.

7-3 State estimation

In the previous section position and attitude data is estimated based on the known corner
point locations of a gate, using the P3p algorithm. Now to improve accuracy the P3p position
will be fused with inertial data from the IMU. During the test the MAV was manually flown
through a gate while logging the on-board sensor data. In Matlab an Extended Kalman filter
is used for state estimation. On-board inertial data is fused with simulated noisy vision data
to estimate position, attitude and sensor biases.

The test flight consists of a take-off, forward flight and a landing part. During the take-off,
the filter is initialised with accurate Optitrack position data. In the forward flight the filter
uses the P3p position data and the drone flies through the gate. After passing the gate the
P3p position is turned off and the filter continues estimation, based on inertial data only.
After that the drone lands again. A side view of the drone’s trajectory during the test flight
can be seen in 7-7
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Figure 7-7: XZ position EKF estimate
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Figure 7-8: X position EKF estimate
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Figure 7-9: Y position EKF estimate
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Figure 7-10: Z position EKF estimate
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Figure 7-11: Phi angle EKF estimate
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Figure 7-12: Theta angle EKF estimate
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Figure 7-13: Psi angle EKF estimate
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Figure 7-14: Gyroscope bias p EKF estimate
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Figure 7-15: Gyroscope bias q EKF estimate
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Figure 7-16: Gyroscope bias r EKF estimate

The results from the EKF state estimation with real flight test data look promising. In 7-7
the first part shows almost perfect correspondence between the estimated position and the

M.M.O.I Ozo Vision-based Autonomous Drone Racing in GPS-denied Environments



7-4 Discussion 45

ground truth position, as would be expected because high accuracy position information is
used to initialize the filter. When the forward flight starts, position measurements switches to
the P3p method. The vision based position measurements are denoted by the yellow asterisks.
It can be observed that after a short time the position converges towards the ground truth
value. The step like behaviour of the predicted signal is caused by the high noise and low
data rate of the P3p gate detection and the measurement updates of the filter only performed
at this low rate.

While flying towards the gate also sensor biases and attitude are estimated. In 7-14 to 7-16
the rate gyroscope sensor biases are plotted. The p, q and r biases seem to converge back
to their original value. It can also be observed that the psi angle shows a large error, before
converging to towards the groundtruth value. This can be explained by noting that the yaw
angle 7-13 is only indirectly observable when the vehicle is moving. Also the high noise levels
in the vision data pose an extra challenge to the estimation.

After passing the gate the detection stops and the filter is essentially an inertial navigation
system which integrates bias compensated inertial data. It can be seen in 7-8 that the error
after a few seconds does not grow larger than 20Cm. However in 7-9 the y direction position
estimate error quickly grows. It is assumed that this is the result of a noise spike during the
violent braking maneuver performed after passing the gate.

7-4 Discussion

In the current chapter the Perspective-3-point algorithm was evaluated and integrated in
an EKF framework where position measurements are fused with IMU data. One important
finding is that there is an exponential relation between the distance to the gate and the noise
level of the P3p method. This result can be used to improve the state estimation method,
for example by making the error variance in the Kalman Filter dependent from estimated
distance. Experiments with the Extended Kalman Filter show that it is possible to perform
inertial only navigation for short periods of time.
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Chapter 8

Conclusion

In this preliminary thesis report a literature review and early experimental results are pre-
sented towards the development of an autonomous drone racing system. In the literature
review previous work in the area of autonomous high speed drone flight is discussed. Also a
review is given of the on-board sensors, as well as methods for visual inertial state estimation.
Finally trajectory generation and control are described.

Previous work has first focussed on trajectory planning and control by using an external
positioning system and off-board processing. Later approaches did use onboard sensing and
processing. However the LIDAR sensors initially used were too heavy to be carried by small
drones. Alternatively on-board cameras were used for navigation purposes which reduces
weight and form factor. One thing that can be noticed in the previous work is that current
examples of high speed autonomous drone flight only consider short maneuvers. Also they
lack in a fast high level decision making process. These subjects can be investigated in the
autonomous drone racing scenario.

The primary sensors on-board the MAV are the inertial measurement unit and the camera.
The low cost lightweight IMU is highly susceptible to noise and bias errors, therefore adequate
filtering is especially important. The monocular camera sensor is the primary means of
navigation of the drone. Optical flow data from the camera can estimate useful information
such as direction of travel and time to contact. However to estimate absolute depth and
motions, the camera data has to be combined with other sensor data.

The monocular camera and the IMU data can be combined in a state estimation framework to
provide speed, position and attitude. Both SLAM and odometry methods can be used to solve
this problem. SLAM methods aim to create a globally consistent map of the environment,
while localizing the drone in the environment. Odometry methods only try to reconstruct
the robots path in an iterative way, which makes them more computationally efficient. A
method which is an interesting candidate for integration in the drone race system is an
odometry, method were optical flow measurements are fused with IMU measurements in an
EKF framework.

Trajectory generation can be performed by computationally intensive sample based meth-
ods such as Rapidly Randomized Tree(RRT) and Probabilistic roadmaps. However if an
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onboard implementation on the MAV is required, more computationally approaches are re-
quired. These include motion primitive methods as well as minimum snap polynomial based
trajectory planning. Control can be performed by classical linear methods such as PID and
LQR, but in a high speed aggressive flight nonlinear control methods such as Nonlinear Dy-
namic Inversion as well as its incremental form INDI is preferable.

The preliminary results reviewed a minimal viable approach to the drone racing scenario,
where the position is obtained by a Perspective-3-point algorithm. The position measurements
are then fused with IMU measurements in a Extended Kalman Filter. Experiments have
shown that the filter is able to estimate position attitude and sensor biases based on visual
and inertial data. When visual data is lost, bias compensated IMU readings can still be used
for short term inertial navigation. There is however much room for improvements, such as
better state estimation when between two gate detections. Also a global path planning and
control method should be implemented.

The results from the literature search and experiments in this preliminary thesis will be used
to further develop the autonomous drone racing system. In the next chapter a more detailed
explanation is given about the future work that will be conducted to develop this system.
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Planning

The preliminary results in this report only concidered a minimalistic solution to the au-
tonomous drone racing system. Improvements can be made in the areas of sensing, state
estimation and trajectory planning.

9-0-1 Sensing

In the preliminary results the method for determining position and attitude with respect to
a gate was a Perspective-3-point method. Although the method showed prommising results
when combined with inertial data, the measurements are far from perfect. At a larger distance
small pixel noise is amplified to relative high position and attitude errors. To improve the
method prior knowledge about the state of the vehicle has to be taken into acount. The
attitude and heading angle are generally known within few degrees, also the distance to the
gate can be estimated roughly by looking at the overall size. This information will be used
to improve the accuracy of the gate based position measurements.

Annother improvement that will be made is to the detection process of the gate. The es-
timated previous state of the drone can be used to predict the new location of the gate in
image frame. This prediction will increase the reliability of the gate detection.

9-0-2 State estimation

The current approach which was evaluated in the preliminary results relied on gate detections
for position measurements. When no gate detections are available, the system is essentially
navigating using deadreckoning. This approach is only accurate for a very short period of
time. Therefore also a navigation method is needed that works in between gate detections.
Therefore it is chosen to implement a computationally lightweight odometry method which
fits the computational constraints on-board the drone. This method fuses de-rotated optical
flow vectors in an EKF framework. The method also has to be adapted to include the position
and heading estimates based on the gate detection.
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9-0-3 Trajectory planning and control

When the current position speed and attitude of the drone are known, still the question of
how to fly the required trajectory remains. In the drone racing scenario the track is previously
known. The track can be seen as a number of waipoints tht have to be passed, with each
waypoint positioned at the center of the gate. The problem then amounts to finding a time
optimal trajectory through these waypoints. For this an arc based motion primitive trajectory
planning method will be investigated.
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