
From log files to train traffic reports:
Using Natural Language Generation
to explain anomalies from Train Con-
trol System log files
Thesis report
Bojana Urumovska

Te
ch
ni
sc
he
U
ni
ve
rs
ite
it
D
el
ft

From log files to train traffic reports:
Using Natural Language Generation to
explain anomalies from Train Control

System log files
Thesis report

by

Bojana Urumovska
in partial fulfillment of the requirements for a degree of

Master of Science
in Computer Science

Data Science and Technology Track

at Delft University of Technology

Student number: 4633334
Project duration: Sep 1, 2018 – August 22, 2019
Supervisor: Dr. N. Tintarev
Thesis committee: Prof. dr. ir. G. J. Houben

Dr. Nava Tintarev
Dr. Matthijs Spaan

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

The Natural Language Generation field has advanced in generating human readable reports for domain
experts in various fields. Nevertheless, Natural Language Generation and anomaly detection techniques
have not been used in the rail domain yet. Currently, data analysis and incident reporting for log files
from the train control system are performed manually which is very time consuming task that is prone to
missing crucial information. The rail domain is safety critical domain where detailed analysis of the train
control system may prevent incidents from happening as well as help improve the performance of the
train control system. This research designs, implements and evaluates a Natural Language Generation
model that successfully translates anomalies detected in log files into human readable reports.

This thesis presents the steps taken for developing a Natural Language Generation system in the
rail domain. Additionally, we examine two representations of the train control system used for the
Content Determination task of the Natural Language Generation system. Through a case study with
domain experts, we evaluate the performance and preference between the reports generated based
on the two representations of the train control system and the data retrieved from the log files. The
goal is to find a representation that presents the used with a full/solid understanding of the anomalies
detected in the log files.

Based on the case study performed to evaluate the system, we present the finding that when de-
veloping a Natural Language Generation system for the rail domain, reports generated using a more
detailed representation of the train control system (more precisely, using both state names and state
attributes that specify the step by step process of setting a route for a train) were preferred over the re-
ports generated using a less detailed representation (only state names). The preference was based on
readability, accuracy and understandability measures of the reports presented during the case study.

Keywords Natural Language Generation, Anomaly Detection, Log Files, Rail Domain

iii

Contents

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Motivation . 1
1.2 Research Question and Steps . 1
1.3 Contributions . 2
1.4 Thesis Outline . 2

2 Related Work 5
2.1 Introduction . 5
2.2 What is Natural Language Generation . 5
2.3 Challenges in NLG . 8
2.4 The usage of NLG systems over the year in different fields 9

2.4.1 NLG in medical field . 9
2.4.2 NLG in weather forecasting . 10
2.4.3 NLG in other fields . 10

2.5 Evaluation of NLG systems . 12
2.6 Graph Based Anomaly detection. 13

2.6.1 What is graph-based anomaly detection? . 13
2.6.2 Challenges of graph based anomaly detection 14

2.7 Research gaps and Research question . 15
2.8 Summary . 15

3 Project context 17
3.1 Background information . 17
3.2 The architecture of the train control system (TCS) & ASTRIS. 17
3.3 The functionality of ASTRIS . 19
3.4 Problem statement . 19

4 Methodology 23
4.1 Requirement Analysis . 23

4.1.1 Interviews . 23
4.1.2 Functional requirements . 24
4.1.3 Non-functional requirements . 26

4.2 The architecture of the NLG system. 26
4.2.1 Data Analysis . 26
4.2.2 Data Interpretation. 32
4.2.3 Document Planning . 32
4.2.4 Microplanning and Realisation. 32

4.3 Summary . 35

5 Evaluation 37
5.1 Evaluation methods . 37
5.2 Independent variables . 38
5.3 Dependent variables . 39
5.4 Hypothesis and Measures. 40
5.5 Materials . 40
5.6 Procedure . 40
5.7 Results . 41

5.7.1 Participants . 41

v

vi Contents

5.7.2 H1 : Report 1 is more understandable than Report 2 41
5.7.3 H2 : Report 1 is preferred over Report 2 . 44

5.8 Summary . 46
5.8.1 Hypothesis 1 . 46
5.8.2 Hypothesis 2 . 46

5.9 Answering Research Question . 46

6 Discussion and Future Work 47
6.1 Project Summary . 47

6.1.1 Research goal . 47
6.1.2 Exploratory stage. 47
6.1.3 Implementation stage . 48
6.1.4 Evaluation - Case study . 48
6.1.5 Results . 48

6.2 Conclusion . 48
6.3 Lamination . 49
6.4 Future Work. 49

Bibliography 51

A Appendix A 53

List of Figures

1.1 Step by step representation of the research work . 2

2.1 Overview of the NLG tasks through an example from [10] 6
2.2 Most general modular architecture pipeline for NLG systems [23] 8
2.3 Architecture for data-to-text NLG systems defined by Reiter in 2007[23] 9

3.1 Overview of Astris . 18

4.1 The pipeline used for the NLG systems developed in this research 26
4.2 State Encoding table . 28
4.3 ASTRIS behavior graph . 30
4.4 ASTRIS State Machine representation without attributes 31
4.5 Syntax tree used for realization of paragraph 1 when explaining Type 1 anomaly with the

NLG system that uses(SM + A). The realization of this sentence can sen seen in Figure
4.8. 33

4.6 Syntax tree used for realization of sentence 3 for explaining anomaly type 5(undefined
anomaly) for both NLG systems . 34

4.7 Syntax tree used for realization of sentence 4 for explaining anomaly type 5(undefined
anomaly) for both NLG systems . 34

4.8 Example of type 1 anomaly explained with both of the NLG systems 35

5.1 Coding schema used to categorize and quantify answers 42

A.1 Syntax tree used for realization of paragraph 2 when explaining Type 1 anomaly with
NLG system that uses (SM + A) . 54

A.2 Syntax tree used for realization of sentence 5 for explaining anomaly type 5(undefined
anomaly) for both NLG systems . 54

A.3 Example Report 1 . 55
A.3 Example Report 1 (cont.) . 56
A.3 Example Report 1 (cont.) . 57
A.4 Example Report 2 . 58
A.4 Example Report 2 (cont.) . 59
A.5 Example message from an IDCR log file . 61

vii

List of Tables

5.1 Report 1 & 2 Descriptive Statistics Overall . 42
5.2 Wilcoxon Sign Rank Test Report 1 vs Report 2 . 42
5.3 Report 1 & 2 Descriptive Statistics by Case . 42
5.4 Wilcoxon Sign Rank per Case . 43
5.5 Report Preference Measures Results . 45

ix

1
Introduction

1.1. Motivation
Natural Language Generation has been used for producing human readable summaries for domain
experts to simplify and improve complex tasks that would otherwise require a lot of time and domain
knowledge to be performed. Such example are the different BabyTalk[19], [11], [32] Natural Gen-
eration systems that have been developed to help medical professionals to do shift-handovers and
continuously follow the medical health of babies in neonatal care. The advantages of having this Natu-
ral Language Generation systems especially in safety critical environments is the precision the system
offers as well as quickly generated human understandable reports based on complex data analysis.
Natural Language Generations systems help automatize generating reports from a large amounts of
heterogeneous or unstructured data.

Even though the Natural Language Generation field has been advancing and it has been used in va-
riety of domains, it has not been yet implemented in the railway domain. Analyzing the large amounts
of data that is being used and produced on daily bases from the train control system required a lot of
domain knowledge and due to the nature of the data, it is very time consuming. Rail domain experts
have been doing log analysis and writing incidents reports based on manual analysis. As mentioned
before, due to the large amount of data available, it is fairly easy for the human eye to miss crucial
information in the log files.

This research has a motivation to automatize the generation of incident reports in the rail domain.
Additionally, we aim to help prevent incidents by providing detailed human readable reports to the train
control system developers about any abnormalities detected in the log files.

As Natural Language Generation and anomaly detection techniques have not been used in the rail
domain, one of our biggest challenges is to establish an accurate representation of the train control
system that would lead to a solid explanation of the anomalies detected.

Lastly, this research is done in collaboration with CGI B.V Netherlands, who proposed the research
topic and requested a solution that would provide human readable reports from the log files of the
train control system.

1.2. Research Question and Steps
As stated in the motivation section above, the goal of this research is to design and implement a Natural
Language Generation system that would generate human readable summaries that explain anomalies
detected in log files from a train control system. We design two representation of the train control
system that are used for the first task of the Natural Language system. We examine how well each
representation performs and we answer the following research question: When reporting anomalies of
a train control system, what degree of detail from the log files should the NLG system use such that

1

2 1. Introduction

the user gets a full understanding of the anomaly?

To answer the research question we perform a case study and test the following two hypothesis:

• H1: The reports generated by the NLG system that uses the more detailed representation of the
train control system is more understandable compared to the reports generated by NLG system
that uses the less detailed representation of the train control system

• H2: The reports generated by the NLG system that uses the more detailed representation of the
train control system is preferred by the domain experts compared to the reports generated by
the NLG system that uses the less detailed representation of the train control system

The research steps taken in this thesis are shown in Figure 1.1

Figure 1.1: Step by step representation of the research work

1.3. Contributions
The contribution of this research is a Natural Language Generation model that generates human read-
able reports that obtain high performance score when presented to domain experts. Furthermore, the
research examined and concluded that using more detailed representation of the train control system
for the Content Determination task contributes to generating reports that are preferred over reports
that are generated based on a less detailed representation of the train control system. More precisely,
extracting and using both the state names and state attributes for the log files helps in generating
reports that better explains the anomalies detected. This research shows the benefits of using Natural
Language Generation systems in the rail domain.

1.4. Thesis Outline
The structure of the thesis report is as follows:

• Chapter 2 : Related Work
In this chapter the reader is presented with the existing research for the problem in question. The

1.4. Thesis Outline 3

techniques used to solve related problems are review and explained. Furthermore, the techniques
on who to evaluate the methods used are discussed. Lastly, the research gaps and the research
question are presented.

• Chapter 3 : Project Context
The Project Context chapter gives a detailed explanation and a general overview of the problem in
question. It introduces the train control system that is being analyzed and explains the information
that can be found in the log files used.

• Chapter 4 : Methodology
The methodology chapter explains all the techniques used and the steps taken to develop the
Natural Language Generation system.

• Chapter 5 : Evaluation
The evaluation section covers all the techniques used for evaluating the system. It gives a detailed
explanation of the case study performed. Furthermore, it presents the reader with the hypothesis
of the research, the results from the case study and the answers of the hypothesis tested.

• Chapter 6 : Discussion and Future Work
In this chapter a summary of the research is presented, after which the results are discussed and
the research question is answered. Additionally, suggestions for future research are given.

2
Related Work

This literature study presents the reader with the background knowledge on the existing techniques of
Natural language generation as well as some background knowledge on graph-based anomaly detec-
tion. Based on this literature study the methods used during the research will be chosen.

2.1. Introduction
This chapter presents the state-of-art literature in the field of Natural Language Generation and graph-
based anomaly detection. It analyses the fields in which this techniques are used and the methods
used for implementing them. In Section 2.2 an introduction of Natural Language Generation is pre-
sented as well as an overview of the existing methods used in NLG. Furthermore, section 2.3 presents
the challenges one may encounter when developing an NLG system. Then in Section 2.4, some re-
lated problems are discussed and compared to the problem of the research. Section 2.5 presents
the reader with the techniques used for evaluation Natural Language Generation systems. Section 2.6
presents background knowledge of graph-based anomaly detection. Literature in graph based anomaly
detection is presented as anomaly detection is required for performing one of the Natural Language
Generation tasks. In Section 2.7 the research gaps and the research question are introduced.

Based on this literature study the methods used during the research will be chosen. The main goal
of this chapter is to present the reader with the basic knowledge of the techniques that will be used.
Furthermore, to show in which other aspects this techniques can be used and what is the connection
between existing research/literature and the research in this thesis work.

2.2. What is Natural Language Generation
Natural Language generation falls within the natural language processing field. It is a method that
is used for generating natural language from a given set of text or data. Therefore, two task that a
natural language generation system can solve are data-to-text or text-to-text problems. As this thesis
is dealing with machine generated data (log files), the task to be performed is data-to-text.

Definition : Data-To-Text Natural Language Generation
Given a non-linguistic input
Generate text or speech in a natural (human readable/understanding) language

Data-to-text NLG is also characterized as ”the sub field of artificial intelligence and computational
linguistics that is concerned with the construction of computer systems that can produce understand-
able text in English or another human language from some underlying non-linguistic representation of
information” [22].

When solving an NLG problem there are 6 general tasks that need to be performed:

5

6 2. Related Work

• Content Determination focuses on deciding what data is relevant for the audience and therefore
should be communicated

• Text Structuring is a step where the order of presenting the data is decided upon (e.g. this can
be from temporal order, to importance or any other grouping that the scientist might decide on,
based on the communication purpose)

• Sentence aggregation is the process by which related text is merged together and put (grouped)
in a single sentence. This task is usually domain dependent. One example for this is a football
match reporting system. If one player scores 2 or more goals during a match, instead of reporting
each goal in a separate sentence, the sentence aggregation step will enable the summary to have
one sentence which reports the name of the player and all the goals he scored with a consecutive
time of when each of the goals was scored. This task contributes to making the summaries look
less machine generated as repetitiveness of same sentences is avoided.

• Lexicalization is the task in which the content is fully known and a natural way of expressing
the problem needs to be decided upon. Deciding on what would be a natural way to express
some content might be rather difficult as in natural language there is a variety of ways to say one
same thing. Whether a system should use a consistent way of communicating the information or
diversity is important, depends on the domain. Additionally, in this task, some systems may even
need to adapt to other considerations such as attitude or affect towards the content that is being
communicated. A simple way to perform this task would be to operate on pre-verbal messages,
converting domain concepts directly into lexical items.

• Referring expression generation (REG) deals with recognizing and communicating different do-
main entities in a correct way. For example, when an entity is mentioned in the summary for the
first time, one needs to decide the way the entity will be introduced. Furthermore, REG takes
care that the text is synchronized and once an entity has been mentioned, it will be refereed to
in later appearances.

• Linguistic realizationmakes sure that each sentence in the summary is following all morphological
rules. In this task one also needs to handle auxiliary words as well as correct punctuation of
the sentences. Additionally, for some languages one also needs to take care of correct verb
conjugation and similar linguistic rules. There are plenty of methods researchers have came up
with for completing this task. The tree main once are: human crafted templates, human-crafted
grammar-based systems and statistical approaches

Figure 2.1: Overview of the NLG tasks through an example from [10]

Figure 2.1 shows a overview of the above explained tasks through an example from a NLG system
that produces medical reports for babies that are in neonatal intensive care.

2.2. What is Natural Language Generation 7

Within NLG there are several approaches that one can take which may focus more on different
tasks depending on the problem that is being solved. Different NLG architectures may focus on one or
more of this tasks. The first and most general NLG architecture was defined by Reiter et al. in [21].
This pipeline is called the modular architecture and it divides the above mentioned tasks into different
modules and treats the modules with a very clear division from each other.

The main NLG approaches/architectures are :

• Modular Architectures : Modular architectures involve very clear division between the subtasks
with a significant variation between them. The most general and standard pipeline for modular
architecture in NLG is introduced originally by Reiter and Dale and it has been generated based
on actual practice. The pipeline is shown in Figure 2.2. Combination of the above mentioned
subtasks are implemented in different modules. For example, the Text planning module is mainly
concerned with deciding on ”what to say”. In this step the content determination and text struc-
turing tasks are performed. The output of the first module is a text plan. This plan is then given
as input to the Sentence planner which performs the sentence aggregation, lexicalization and re-
ferring expression generation tasks. This is seen as the ”how to say it” process. The last module
is the Realiser which uses the output of the Sentence Planner. It implements the last task which
is the linguistic realization task. It generates the final sentences in a grammatically correct way
by applying syntactic and morphological rules. This is only one example and the most general use
of a modular architecture and therefore different variations exist. For getting informed about the
majority of other modular approaches proposed in different NLG literature the reader is refereed
to look at the [10].

Furthermore, a special attention is given to the modified version of general modular NLG system
architecture. The newly suggested NLG system is adapted for systems whose input is raw data
instead of AI knowledge base. The difference of this (Figure 4.1) architecture to the general one
is that this architecture has two additional steps in the pipeline. A Signal analysis accompanied
with the data interpretation step. This two steps have been added to the data-to-text system
when dealing with raw data as the system must first analyze and interpret the data after which
one can decide how to linguistically communicate it. Below the modified pipeline is explained in
detailed.

1. Signal Analysis: Reiter has defined this step as the step where numerical data is being
analyzed by looking for trends and patterns in the data. He states that the goal of signal
analysis is to replace numerical data by a set of discrete patterns. He furthermore explains
that when the data is structured this step can be skipped. An important aspect that one
needs to take care of in this step is that in case the data includes any noise, this is the time
when the noise need to be removed.

2. Data Interpretation: This stage interprets the output of the signal analysis. It relates pat-
terns and trends found to the data and infers more domain-specific messages. Furthermore,
it decides how important an event is. Lastly, it explores if there is some relationship between
events detected.
For example, if the system is producing medical reports for babies the system analysis out-
puts 3 events that are important. Assume one shows a decrease in heart rate , another
shows stabilization of the heart rate later on. The third event is that some medicine was
given to the baby. The Data Interpretation stage can relate this and interpret it as the baby
had a low heart rate but after the medicine was given, it normalized. So the normalization
of the heart rate is associated with the medicine given. Multiple messages/relationships can
be created in this stage, given the patterns and trends found in the data.

3. Document Planning: Document Planning takes all the messages that were produced by the
data interpreter and chooses which of this messages are important and should be commu-
nicated to the user. The structure of the text is also constructed in this stage. This task is
very important when a lot of messages have been produced by previous step(s) and not all
of them should be communicated. On the other hand, if the case is such that all patterns
and information provided needs to be communicated, then the document planning step is a
very straight forward task.

8 2. Related Work

4. Microplanning and Realisation: Microplanning and Realisation is the last stage that out-
puts the finalized syntactically and grammatically correct natural language explanation. This
stage is a merge of the microplanning and realization stages given in the standard modular
architecture presented in Figure 2.2

Figure 2.2: Most general modular architecture pipeline for NLG systems [23]

• Planning based Approaches : In a plan-based NLG approach there are no rules regarding which
actions will form the plan, therefore it is possible to combine elements from strategic (what) and
tactical (how) nature. In that way the problem of “what and how” can be approached with a same
set of operations. The main concept of this approach is that text generation can be viewed as the
execution of planned behavior to achieve a communicative goal, where each action leads to a new
state. As seen in literature there are two main ways to design plan based approaches. Planning
through Grammar or Stochastic Planning under uncertainty using reinforcement learning.

• Integrated or global approaches : The integrated or global approaches became widely used and
developed in a later stage of the NLG development. Their rise was mostly because of the growth
of data availability, the growth of computational power and the research developments in data
analysis. Due to the challenges the modular approaches experiences such as limitation on gen-
eralizing a model due to specificity on developing very domain specific solutions, the integrated
approaches tent to emphasize the use of statistics in the NLG process. This approaches tend to
take a cooperative approach rather then modular. Integrated approaches are a more advanced
level of NLG in which the NLG problem may be seen as sequential process, a classification or
optimization problem. Current research is being performed on ways to avoid developing domain
specific NLG systems. The existing solutions on this are models that used advanced up to date
neural network models as well as other machine learning techniques. Moreover, there is research
performed where NLG was approached by deep learning methods.

As this research will follow a modular approach, we do not discuss the integrated and global
approaches in details.

2.3. Challenges in NLG
Even though a lot of research has been done in the NLG filed and it is generously advanced, there are
still some challenges one might encounter when developing an NLG system.

One major challenge that might arise when developing a Natural Language Generation system that
is very domain specific and is developed for experts in a field is the Content Determination part of the
NLG. In this cases, the people that develop the system must get a sound understanding of the domain
as well. This will prepare the developer/researcher to make a good decision in which information are
important and therefore should be presented in the generated text. This is challenging and expensive
as it might require a variety of domain specific training for a solid understanding of the domain to be
acquired.

Another challenge is to be able to interpret the information. This fall within the text structuring
task. Once all the important information have been identified, one needs to know how to interpret and
explain them on a level of the expert that will be reading the text. An example of such a system is
the BabyTalk project [19]. The BabyTalk project requires a lot of medical knowledge when performing
both of the tasks mentioned above. As the goal of this research is to produce summaries from data of
a train control system, there is a need on understating the specific software as well as the train traffic
domain. Therefore this is one of the first challenges we encounter in this research.

2.4. The usage of NLG systems over the year in different fields 9

Figure 2.3: Architecture for data-to-text NLG systems defined by Reiter in 2007[23]

Finally, when looking in methods for evaluating the system, one might be limited to the choices as
some methods require a golden standard text. This can be a text produced by a human or another
NLG system. Unfortunately, if there is not an existing NLG system that can handle the data set or the
domain, then there is no golden standard text. Additionally, if there is a lot that needs to be analyzed
for a particular report to be produced, then asking a human to do that is not efficient and may be very
expensive. This is another challenge we face with this research.

2.4. The usage of NLG systems over the year in different fields
In this section the state of art of NLG is presented. The NLG methods and architectures used for
specific problems and the latest developments of the field will be also covered. The domains in which
the NLG systems got a lot of attention are discussed in different subsections. Furthermore, domains
where NLG is in the early stage of development are discussed in the last subsection.

2.4.1. NLG in medical field
As mentioned in the introduction section, currently, there is a substantial development of NLG systems
in the medical field. On of the earliest data-to-text NLG systems - TOPAZ was developed in 1991. It
was used for generating summaries from blood cells count and drug intake data of lymphoma patients.
The system was a schema based system that helped clinicians in analyzing the data from the patients.
This NLG system along with others was developed for discrete numerical data. Moreover, there are also
systems that generate summaries for patients rather then medical staff. Later on, [19], contributed
to a development of a NLG system that is used in the neonatal intensive care. The project is called
BabyTalk and it is implemented such that it can produce different types of reports based on who the
target user is. BT-45 generates summaries from clinical data from 45 minutes and it is to help medical
staff make decisions. BT-45’s input data included both the continuously monitored physiological data
and supplemental discrete information which was collected for the purpose on the ward by a research
nurse. The BT-Nurse [11] [32] system on the other hand, generates summaries from data gathered for
12 hours and the system is developed to help nurse shift handover. Handover is a very patient safety
critical process. The system has been designed to use only data that is available in electronic form that
represents the routinely checkups of the infants during a shift. The system contributes to making the
handover more safe and easy as it addressed the decision on which data is the most relevant for the

10 2. Related Work

next shift given the high volume of heterogeneous data. Lastly, the BabyTalk project has also been
developed to create summaries on data from 24 hours but in a less medical specific language. This
summaries are generated for the parents, hence the tool is called BT-Family [13]. Furthermore, there
was a intention to also develop a BT-Clan tool, that would generate summaries with the status of the
baby and the parents and it was meant to serve information to friends and family of the baby. This
tool was intended to include information about the status of the parents as well, but due to lack of
data on the status of the families the tool was not developed. The pipelines and evaluation methods
used for the above mentioned NLG systems are specified in Table 2.4.3.

From all the above mentioned NLG system, the BT-45 will be discussed in more detailed, due to
the similarity of the problem defined in that research and the problem we are working on. One main
similarity is the type of reports generated by the system. BT-45 generates reports for experts in the
filed, which is also the goal of this research work. Additionally, the BT-45 system is using raw data
generated by machines which is the case with the the data used in this research. Due to the nature
of the data, in the BT-45 system the modern modular approach pipeline for data-to-text NLG is used.
BT-45 system takes raw data (sensor data and event logs) as input. The first task of the BT-45 system
is concerned with signal analysis (analyzing the raw data in order to find patterns and trends). The
next task performed is the data interpretation task where the patterns found in the signal analysis are
interpreted as a medical expert level messages and correctional and or causal relationship between the
messages is searched for.

2.4.2. NLG in weather forecasting
The trend on using NLG for weather forecasting started as early as the 1991 by developing weather
forecasting systems. The very first systems developed were the [16], [25], [12], [8]. One of the later on
developed NLG systems is the SUMTIME-MOUSAM and it is a marine forecast generator that produces
textual marine weather forecasts for offshore oilrig applications. The interesting aspect about this
system is that forecasters can tailor the output text using control data derived from end user profiles.
Furthermore, the summaries generated are post-edited by forecasters before the summaries is hand
over to the end users. The data used for generating the summaries is time series data from Numerical
Weather Prediction (NWP) models. The dataset includes around 40 weather parameters from a time
interval of 3 hours with weather prediction up to 72 hours from the moment the forecast is issued.
The SUMTIME-MOUSAM system used the general modular NLG architecture Figure 2.2. Finally, the
evaluation of the system is done by measuring the edits forecasters make after the system gives the
output and before the summary is given to the end user.

2.4.3. NLG in other fields
The NLG systems have been also developed in other fields such as football reports, scuba diving
reports and many others. The NLG system have been developed to be able to handle big amounts
of heterogeneous data. Further reading in the above mentioned fields can be found in the following
papers.

• Scuba diving reports [27] [28]

• Football match reports [29] [7]

2.4. The usage of NLG systems over the year in different fields 11

P
ap
er

Y
ea
r

N
LG
A
rc
hi
te
ct
ur
e
us
ed

G
oa
l

Ev
al
ua
ti
on
m
et
ho
d

us
ed

BT
-N
ur
se
,H
un
te
r
at
al
.
[1
1]

20
12

D
at
a-
to
-t
ex
t
pi
pe
lin
e
4.
1

G
en
er
at
in
g
12
h
m
ed
ic
al
re
po
rt
s

fo
r
nu
rs
e
sh
ift
ha
nd
ov
er

H
um
an
Ra
tin
g

[4
]

20
13

M
od
ul
ar
de
si
gn
2.
2

Pr
od
uc
in
g
m
ed
ic
al
re
po
rt
s
fr
om

Ph
ys
io
lo
gi
ca
lD
at
a
M
on
ito
rin
g

no
in
fo
rm
at
io
n

[2
0]

20
09

M
od
ul
ar
de
si
gn
2.
2

G
en
er
at
in
g
45
m
in
s
tim
e
pe
rio
d

m
ed
ic
al
re
po
rt
s
fo
r
m
ak
in
g
fa
st

de
ci
si
on
s
by
m
ed
ic
al
st
af
f

no
in
fo
rm
at
io
n

[1
3]

20
11

M
od
ul
ar
de
si
gn
2.
2

G
en
er
at
in
g
24
h
m
ed
ic
al
re
po
rt
s

fa
m
ily
m
em
be
rs
of
th
e
pa
tie
nt

(b
ab
y)

no
in
fo
rm
at
io
n

[2
6]

20
03

G
en
er
al
m
od
ul
ar
pi
pe
lin
e
2.
2

G
en
er
at
in
g
w
ea
th
er
fo
re
ca
st
in
g

re
po
rt
s

m
od
ify
in
g
th
e
ou
tp
ut
an
d

m
ea
su
rin
g
th
e
ed
its
m
ad
e

12 2. Related Work

2.5. Evaluation of NLG systems
As seen in the previous subsection, NLG is used in a variety of way, most of them safety critical (e.g
[19], [27], [11], [20]). NLG systems are developed to perform a rather challenging task and therefore
need to be evaluated. The following 3 techniques are being used for evaluating NLG systems: task
performance, human rating and metrics (comparison to golden standard). Moreover, the evaluation
can be performed under controlled or real world setting. Which method the researcher uses for the
evaluation depends on the goal of research or the hypothesis that is being tested.

Below an overview of all the techniques is presented.

• Task Performance This evaluation technique measures whether the NLG system achieves its
goal. This technique can be performed both in real world or in a laboratory experiment. For
example, when one wants to evaluate a behavior change support system that generates text to
help an individual develop a habit or get read of a bad habit, the task performance evaluation
should measure the success of the NLG text on developing/getting rid of the habit.

• Human Rating When using the Human rating evaluation technique, the measures taken to
determine the quality of the generated text is Readability, Accuracy and Usefulness. It is an
intrinsic evaluation and usually researchers use Likert scale (3,5, or 7 point) in order to gather
quantitative feedback. Additionally, researchers sometimes also ask for textual feedback and
analyze that feedback as well.

• Metric For a metric based evaluation creating a gold standard is the first and most important
task. A gold standard (reference text) is a text that is the desired output of the system and it is
written based on the same input data that is given to the NLG system that is being evaluated.
Usually the text is human-written and it is required to acquire multiple texts from different people.
Furthermore, a gold-standard can be generated by an already existing NLG system if one is
available. After the gold standard is set, the output of the NLG system (candidate text) and
the gold standard text are compared. This can be done using different metrics. Some common
metrics for NLG evaluation are BLEU, ROUGE and METEOR and the difference between them is
the scoring functions used.

– BLEU is a precision based metric which calculates a score of a generated text based on
comparing the generated text with a gold standard text. The BLEU metric can use different
length of n-grams for calculating the score of the text. The score is calculated by the formula
given below:

𝐵𝐿𝐸𝑈 = 𝑚
𝑛

where m is the number of n-grams that appeared in both the candidate text and the reference
text and n is the total number of words in the candidate text. The output of the BLEU metric
is always a number between 1 and 0. Scoring a 1 corresponds to perfect matching of the
texts compared.

– On the other hand, ROUGE is a recall based measure. It checks how many n-grams from
the reference text appears in the system candidate text. This metric is seen as a weaker
one compared to the BLEU metric, as humans can be inconsistent and in the ROUGE metric
that might point to not so poor results.
The ROUGE metric has multiple ways of scoring the text. One way of calculating the ROUGE
score is by using a fixed length of n-grams, this technique is called ROUGE-N. The second
option is to look for the longest common sub sequence of word between the gold standards
and the generated text, this approach is called ROUGE-L. Lastly, one can also generate a
ROUGE-S/SU score by calculating the number of skipped bi-grams (pair of words in their
sentence order, but allowing for any number of other words to appear between the pair.)

– Lastly, METEOR is a calculated by getting the harmonic mean of recall and precision on
unigrams. An additional feature that the METEOR metric has is that it also matches words
by looking for synonyms and roots of words (stemming). The METEOR metric gives a higher
weight to the recall. The formulas for calculating recall, precision and finally METEOR are
the following:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑚
𝑤፭
, 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑚

𝑤፫

2.6. Graph Based Anomaly detection 13

where m is the number of unigrams in the candidate translation that are also found in the
reference translation, 𝑤፭ is the number of unigrams in the candidate translation and 𝑤፫ is
the number of unigrams in the reference translation.

𝑀𝐸𝑇𝐸𝑂𝑅 = 𝐹፦፞ፚ፧ =
10𝑃𝑅
𝑅 + 9𝑃

2.6. Graph Based Anomaly detection
This section presents the literature studied that is related to Graph-based anomaly detection. It gives
an overview of the methods used in the field and the challenges associated with it. Graph based
anomaly detection is part of this research as it will be for the Signal Analysis task which was explained
in the Section 2.2. The goal of the NLG system is to explain anomalies found in the log files. In order
to be able to achieve this goal, the anomalies need to be detected and this is done by using graph
based anomaly detection.

2.6.1. What is graph-based anomaly detection?
Anomaly detection is a field in data-mining and it is identification of data points, items, observations
or events that do not conform to the expected pattern of a given group. This means spotting unusual
behavior of data points. Anomaly occurs very infrequently but can point out very significant information.
Graph based anomaly detection is anomaly detection performed on graph based data. Graph based
anomaly detection is vital because of the following reasons:

• The first and main reason for using graph based anomaly is because of the type of anomaly
this research is trying to detect. The train control system uses a specific pattern of states when
setting a route. This pattern is presented as a graph. As the anomaly to detect in this research
is when the stages go in an unusual pattern, the graph-based anomaly detection is chosen

• Another reason for using graph based anomaly detection is the inter-dependent nature of data
and the powerful representation graphs provide for this type of problems. [2]. As the data
objects are related to each other and exhibit dependencies, a good way to visually show this is
by using graphs. Graphs naturally present the inter-dependencies by introducing edges between
the related objects. The multiple paths lying between these related objects effectively capture
their long-range correlation. Moreover, a graph representation facilitates the representation of
rich data sets enabling the incorporation of node and edge attributes/types.

Types of graph-based anomaly detection
As presented by two graph based anomaly detection surveys by Leman at al. [2] and Debajit and Samat
[24] graph-based anomaly detection is divided in 4 main parts. Static vs. Dynamic graph anomaly de-
tection and Plain vs. Attributed.

Anomaly detection on static graphs is performed in order to spot anomalous network entities such
as nodes and edges when an entire graph structure is present. The static graphs may be plain or
attributed. A graphs is said to be attributed when the nodes and/or edges of the graphs have some
features associated with them. On the other hand, plain graphs consist of nodes and edges connecting
the nodes. Static graph based anomaly detection is used when the structure of the graph is complete
and known.

Definition 1 : Static-Graph Anomaly Detection Problem
Given the snapshot of a (plain or attributed) graph database
Find the nodes and/or edges and/or substructures that are ”few and different” or deviate significantly
from the patterns observed in the graphs

Detecting anomalies for static graph based anomalies can be performed by using a state machine.
A state machine is a directed graph that consists of states and state transitions. The states are repre-
sented as nodes and the state transitions are represented as edges. Using state machines for detecting
anomalies has been seen in a variety of anomaly detection problems. For example, Treutniet [30]
presents how a state machine was used to follow the progression of a Transmission Control Protocol

14 2. Related Work

connection and detect any irregularity that occurs in the standard well defined protocol. Furthermore,
Maier et al. [14] use a probabilistic deterministic timed state machine to detect anomalies in production
plants. Michael et al. [15] compare the performance between using state machine and n-grams meth-
ods to detect anomalies in computer audit data. The results of their study suggest that a state machine
has a capacity to represent long-term dependencies while the n-gram method performs slightly better
but is slower to learn and requires a bigger amount of data when such dependencies are in question.
Finally, Allen [3] researches how state machines can be used for discrete event system in manufactur-
ing. A discrete event system is defined as a system that has defined states and defined state transitions
which represent occurrence of events. Using a state machine to represent such systems leads to de-
tecting any unusual and unallowed behavior by the manufacturing machines.

Another common way to detect anomalies in graph based data is by using graph similarity. Com-
mon ways to do graph comparison is by looking at isomorphism [31] and [17], the maximum/minimum
common sub-graphs [9], [18] or the error-correction [5]. Two graphs are isomorphic when they have
the same number of nodes and edges. Furthermore, the edge connections between the nodes of the
two graphs are exactly the same. Additionally, maximum/minimum common sub graphs is calculated
by checking the level of isomorphism between two graphs. The error correction method check how
many edges/nodes need to be changes in order for the two graphs to be identical. The error correction
method gives a solid information of how much diversity is detected between the two graphs.

Using graph similarity methods are of great advantage when the problem in question can be repre-
sented by one graph that is always followed. A disadvantages of the methods are encountered when
the problem in question is represented by a graph that has multiple correct paths. For example, if the
system is such that a task can be performed in multiple ways (various edge paths can be followed to
perform a task), and the graph represents all the paths that can be taken. This is because the graph
that represents the data that is being checked for an anomaly, represents only the one path that was
followed in that scenario. In such a case, an anomaly will be detected as the graphs will never be
isomorphic. As the problem of this research is a problem that represents a system in which multiple
paths can be taken, using isomorphism, graph error-correction and/or maximum/minimum sub graph
matching will make the anomaly detection process challenging and less accurate.

Anomaly detection on dynamic graphs can be also defined as temporal anomalous pattern, event
or change-point detection. It is performed on time series graph data.
Definition 2: Dynamic Graph Anomaly Detection Problem
Given a sequence of (plain or attributed graphs)
Find (i)the timestamps that correspond to a change or event, as well as,
(ii)the top-k nodes, edges, or parts of the graph that contribute most to the change (attribution)

Dynamic graph based anomaly detection is not discussed in detailed as the problem this project is
solving is not defined a dynamic graph. For more information about dynamic graph anomaly detection
please refer to [2].

2.6.2. Challenges of graph based anomaly detection
In this section the challenges of using anomaly detection techniques will be discussed.

The anomaly detection survey by Varun Chandola et al. [6] and the graph based anomaly detection
survey by Leman Akoglu et al. [2] presents few challenges that are associated with using anomaly
detection techniques and graph based anomaly detection, respectively. A basic anomaly detection
approach is to define a pattern/region/behavior that the data should fall into and is seen as correct.
Furthermore, to declare any observation that would be seen as unusual and therefore an anomaly.
This approach is very simple but there are few challenges that come with it.

Data-specific challenges
• The general challenges that come when using big data also apply on this techniques. Some of
these challenges are: volume, velocity and variety of massive, streaming, and complex datasets.
As collecting data is much easier now days, there are big volumes of data. Furthermore, the data

2.7. Research gaps and Research question 15

is very rich and complex and comes at a high rate.

Domain-specific challenges
• Different domains have different tolerance of anomaly. For example, a small deviation from
normal in the medical domain might be a significant anomaly indicator while in the stock market
domain a small division should not be seen as anomaly. Thus applying a technique developed for
one domain to another is not very straightforward.

Problem-specific challenges
• Another reason for why it is difficult to specify what is seen as anomalous is that the boundary
between anomalous and non-anomalous is not always very precise. This is why sometimes there
can be miss classification between what is anomalous and what is not. For example, a deviation
from the usual behavior might be allowed by the system that is being analyzed, and therefore is
not detected as an anomaly, but some deviation from the usual behavior might indicate a fault in
the system and therefore should be reported

• Another key challenge is the class imbalance. This challenge arises since anomalies are rare, only
a small part of the data is expected to be abnormal

• Additional challenge in the process is explaining the anomaly detected. This means finding the
root of the problem and being able to explain when and how was this anomaly caused. Presenting
the results in a user-friendly form for further analysis can be a difficult task

Graph-specific challenges
• For inter-dependent objects, the relational nature of the data makes it challenging to compute
the level of anomaly of the graph objects. The traditional anomaly detection assumes that the
objects are independent and identically distributed while the objects in graph data have long-
range correlation.

• Defining anomaly in graphs is much more diverse than in the traditional anomaly detection, given
the rich representation of graphs.

The above challenges show that a general anomaly detection problem is difficult to solve. In
anomaly detection there are various factors that decide which approach should be followed. Some
general factors to look at are : the nature of the data, availability of labeled data, type of anomaly to
be detected, etc. Different domains satisfy different combination of the mentioned factors.

2.7. Research gaps and Research question
As shown in the previous section of this chapter, Natural Language Generation techniques, nor anomaly
detection techniques have not been used in the rail domain to check or explain Train Control System
abnormalities. Due to the challenge of performing the log analysis by hand, this project applies Natural
language generation techniques on the log files from the train control system in The Netherlands. In
this research, we develop a natural language generation systems that uses two different graph rep-
resentation in terms of the data retrieved from the logs of the train control system. We compare the
performance based on the reports generated by the NLG system from the two different graph repre-
sentations. The difference in the graph representation is explained in detailed in 4.2.1.

The goal of the project is to answer the following research question:
When reporting anomalies of a train control system, what degree of detail from the log files should the
NLG system use such that the user gets a full understanding of the anomaly?

2.8. Summary
In this chapter the reader has been introduced to the Natural Language Generation techniques one
could use for implementing a Natural Language Generation System. The general pipeline and all the
tasks that need to be performed for a NGL system were explained in detailed. Furthermore, as the
Content Determination/Signal Analysis task discussed required a anomaly detection analysis of the data,

16 2. Related Work

techniques on how anomaly detection can be performed is also discusses in details. After reading this
chapter, the reader is familiar with all the steps that will be taken in this research. Additionally, the
ways to evaluate a Natural Language Generation system are explained. The exact techniques chosen
for implementing the Natural Language Generation system in this research are explained in Chapter
4.

3
Project context

This chapter presents the reader with the project context. In Section 3.1 the background of the
company is presented. Section 3.2 presents the reader with the required domain knowledge for un-
derstanding the problem. This includes an explanation of the train control system in the Netherlands
as well as ASTRIS, the software that is being analyzed. Finally, the log files produced by ASTRIS are
explained. In section 3.4 an overview of the problem that this thesis is aiming to solve is explained.

3.1. Background information
This thesis is done in collaboration with CGI therefore, the problem is proposed by the company.

CGI is an IT consultancy company and has a very big impact in the railway system in the Netherlands.
The railway infrastructure in the Netherlands is maintained by a government task organization called
ProRail. The train traffic is managed by a train control system. One layer of the system is the ASTRIS
software that has been developed by CGI for their client ProRail. The software provides up to date
information on the state of the railway infrastructure as well as it allows the train controller to control
the traffic and the rails. More details about the train control system and ASTRIS can be found in the
following sections.

3.2. The architecture of the train control system (TCS) & ASTRIS
In Figure 3.1, the structure of the train control system (TCS) is presented. The TCS in the Netherlands
consist of 3 main layers: the layer which the train controller uses to send requests and receive status
updates (Procesleiding), ASTRIS and BevNL which is the layer that directly controls the rails and all the
rail elements and performs an additional security check.

1. Procesleiding
The Process Leader layer (Procesleiding) is the layer in which everything gets started. A request
is sent from the procesleiding to Astris Routering Component for some action to be taken (e.g.
a route to be set, a switch to be turned etc.). This initialization process starts with a message
(request) sent to Astris. The messages that go between the Procesleiding and Astris Routering
Component are stored in one log file. That file is named ARC. In Figure 3.1 this is represented
by the dark red arrow.

2. ASTRIS

• Astris Routering Component(ARC) has the role to transfer this request to one of the main
components. Based on what command is requested, ARC will send it to the responsible
component. This communication goes through the Message oriented middleware.

17

18 3. Project context

Figure 3.1: Overview of Astris

• The Message oriented middleware - MOM is a communication layer within Astris. Messages
between the Astris components go through this layer. Not all of this messages are stored in
a log file.

• The Route Setting Component (Rijweg Component - RMC) is responsible for setting a route.
Setting a route consists of more commands that control multiple elements (e.g. turning a
switch, setting the correct sign etc.) This is why this component communicates a lot with
the Element Component. Each element that needs to be adjusted for a route, is adjusted
such that the Rijweg Component sends a separate command to the Element component for
each element that needs to be adjusted.

• The Element Component (Element Component - EMC) is in control of the elements such as
switches, signs, sections, crosses, etc.

• The Authority/Area Component (Gebied Component - GMC) is responsible to give the control
to the right person (e.g. this is used when there is maintenance on the rails. The gebied
component then authorizes the maintenance workers to be in control of that particular area
on the railway) and no trains have access to that area at that moment.

• The System Component (Systeem Component - SMC) is the technical component, it han-
dles all commands that do not fall in the regular component list (the previous 3 components).

• The Security Component (Bevieiliging Component) communicates with the other 4 compo-
nents and the BEVNL layer. They exchange information regarding a requested command
that needs to be performed and Bevieiliging component checks the security measures that
come with the commands. Through this component all the commands are sent to the BEVNL.

3.3. The functionality of ASTRIS 19

• The Management Component (Beheer Component) is responsible for starting the Astris soft-
ware such that it starts all the other components. It continuously checks if all the other
components in Astris are up and running.

3. BEVNL
The BEVNL is the layer with the software that controls the rails and all the rail elements directly.

The 4 main components are the RMC, EMC, GMC, SMC. If everything runs smoothly those are the
components that cover any type of request. This 4 components communicate with the Information
Distribution Component through the MOM. Each important message that goes from or to this 4 com-
ponents is stored in a corresponding log file - IDCR, IDCE, IDCG, IDCS.

This communication and the message flows that are stored are represented by different color arrows
in Figure 1.

3.3. The functionality of ASTRIS
As explained above ASTRIS is one layer in the train control system. It handles the communication be-
tween the train controller and the rail infrastructure. It is a safety critical software that gets messages
from the train controller for a particular command (such as, preparing the rails for a specific route a
train needs to take or making sure there is no traffic on places in the rails where some construction
work is being done) and checks if the command requested is safe to be performed. If so, the software
sends the request to the rail infrastructure layer with requests for all the necessary actions to be per-
formed such that the command requested by the train controller is completed.

During the communication, ASTRIS generates a high amount of data records. This data records are
stored in log files. Log files are files that record either events that occur in an operating system or other
software runs, or messages between different users of a communication software. The log files from
Astris contain all the information about any action that has been requested/performed on the railways,
all the messages that have been sent between the different components of the train control system
and all the relevant status updates of the railway infrastructure. As this actions are highly technical, so
are the log files. They can be used in many different ways and contribute in having a better overview of
the rail traffic and potentially further improving it. They can also contribute in finding a reason behind
an unwanted matter or analyzing an incident report. Furthermore, from the log files it is possible to
extract key performances indicators of the train control software systems.

Currently, this log files are analyzed manually by the developers which is very inefficient and time
consuming. This research aims to detect any abnormalities in the system and translate the anomalous
log messages into human readable reports. Information from the log files will be extracted and re-
ported as summaries. This will contribute to easier detection of anomalies in the software by analyzing
the log files. To perform the security check on the requests from the train controller and if an action
is secure, ASTRIS will pass the request to the rail infrastructure software layer (BEVNL). It also serves
as a communication layer that transfers messages between the train controller and the software that
controls the rails. The main role of ASTRIS is when a request sent by the train controller is received,
ASTRIS check if the request satisfies all the security requirements and therefore is safe to be sent to
the software that controls the rail infrastructure. Astris has all the safety rules and can ensure whether
a certain action is safe to be performed or not. Therefore ASTRIS is a safety critical application.

3.4. Problem statement
Having the basic background knowledge of how ASTRIS works is presented such that one can under-
stand the problem we are trying to solve.

This thesis is focusing on one of the main ASTRIS components - Route Setting Component (Rijweg
Component - RMC). This component generates the IDCR log files. As explained above, this component

20 3. Project context

is concerned with requests for setting a route. The RMC component checks if a request on setting a
route sent by the train controller is safe to be performed. For one route to be set, the train controller
sends a request in which he specifies which route needs to be set by giving 3 main and most important
information. These are the beginning sign, the end sign and a the LR (left-right) String (the LR string
specifies with which directions the route needs to be set). For instance, the rails have a lot of switches
that enable the trains to go in a specific direction. This directions are specified by the train controller
by this LR String.

Setting the route is not a simple process and as mentioned above a lot of requirements needs to
be checked and satisfied before the route is ready to be set. Firstly, the route is checked and reserved
(if safe). The RMC communicates with the lowest layer of the TCS and when one stage is ready to be
executed (for example all elements of the route to be reserved) the request is passed onto the lowest
layer (BEVNL). There is an exact pattern that is followed during the process, and some of the steps
requires back and forth communication between RMC and BEVNL. This patterns are specified in terms
of visited states and attributes that are active/non-active when the system is in a particular state. They
indicate how far a request has got and the status of the rails (whenever a change has occurred). To
make this more understandable we created the graph that represents the normal behavior of ASTRIS.
This graph is shown in Figure 4.3. A request always starts in Rest state with no attributes active,
furthermore this is also the expected end state. Unfortunately, there are cases when things do not
go as planned, and some unusual behavior may be noticed in the ASTRIS software. Even though this
happens very rarely, it may cause in incident. When incidents happen, there is only one way to detect
where the system went wrong, and that is by looking at the log files.

As every action and status is logged in this files, they are very long and reading thought them is a
very difficult and time consuming task when performed by humans.

Therefore, this thesis is trying to tackle this problem by creating human readable reports about any
anomalous(unusual) behavior detected in ASTRIS by analyzing the log files.

What is seen as an anomalous behavior of ASTRIS is specified by the software developers of ASTRIS.
They have specified the possible anomalies in 2 categories.

• Defined anomalies which are behaviors of the system that are not incorrect but are rare and
their occurrence may indicate that something is wrong with the system. There are two types of
predefined anomalies specified by the software developers.

– Type 1: An example of such a case is the following: The route that is trying to be set
contains a switch that has a small stone stuck in the mechanism and therefore turning this
switch is not possible. For ASTRIS, this is seen as a situation where the system is not able
to manipulate the switch and therefore the route can not be set. So instead of taking the
regular path in Figure 4.3, ASTRIS goes through states that are specified as defined anomaly
(WV1 -> G3 or WV2 -> G4, this is marked by the red edge) .

– Type 2: Anomaly of type one is defined by a state transition (IV1 -> IA1 or IV2 -> IA1).
This behavior may occur when ASTRIS has performed all the security check and evaluated
the request as safe. Therefore, the request was sent to BEVNL, but BEVNL evaluated this
request as unsafe. This prevents the request from being executed and therefore ASTRIS
goes through an unusual state transition. This may be caused be few reasons, such as a
bug in ASTRIS or a ’timing’ error, meaning the request was sent few seconds/microseconds
earlier or later then the BEVNL was ready to accept it.

This is why it is very important to have an autonomous system that would spot this unusual
behaviors.

• Undefined anomalies are behaviors which are not represented in the graph. This means that
the system went through a state that is not even defined in the graph. This may happen because
for some reason some of the attributes do not get activated or do not get deactivated when a
state transition occured. This behaviors are not seen very often, but they may indicate a error in
ASTRIS.

3.4. Problem statement 21

To find the behavior of ASTRIS for one particular request, one needs to first find all the messages
in the IDCR log file that are related to this request. The approach taken to detect and explain the
anomalies are explained in the next Section (4).

An example message from a log file can be found in Appendix A

4
Methodology

This chapter explains the methodology for implementing a Natural Language Generation systems that
uses two different representations of ASTRIS for explaining anomalies detected in log files from a train
control system. Two representations of the train control system are designed and implemented in order
to be able to answer the research question When reporting anomalies of a train control system, what
degree of detail from the log files should the NLG system use such that the user gets a full understand-
ing of the anomaly, by comparing the two reports generated by the NLG system that using the two
different representations of ASTRIS.

This chapter gives a detailed explanation of the approach taken to solve the problem in question.
In Section 4.1 the requirement analysis is presented. Based on interviews with the software developers
we specify the requirements into functional and non-functional. In Section 4.2 the pipeline of the NLG
systems is explained. All the task performed are explained step by step following the pipeline structure
used in this research. In Section 4.3 a summary of the methodology is presented.

4.1. Requirement Analysis
After carefully studying the related literature, and obtaining the domain knowledge two graphs that
represent the system were designed. The graphs show a representation of ASTRIS and therefore they
represent the usual behavior of the software. The graphs will be presented and explained in 4.2.1.

What is seen as an unusual/anomalous behavior was defined by my CGI supervisor and other two
ASTRIS software developers.

4.1.1. Interviews
The first step taken in this research was interviews with two ASTRIS developers in order to perform
the requirement analysis and identify the properties of the NLG systems. The two interviewees are CGI
employees that have at least one year of experience on developing and testing ASTRIS.
The first part of the interviews were designed to address the design of the anomaly detection meth-
ods. Furthermore, the second part of the interviews consisted of questions which would help specify
the design of the textual explanation generated by the NLG systems. For this, the interviewees were
presented with two sample reports. The difference between the two reports is explained below.

The first part of the interview consisted of presenting the participant with the graph that represented
the software and the defined anomalies. This questions were asked in order to specify the functional
requirements of the system. The participants were asked to look at the graph and answer the following
two questions:

1. Do you think this graph is a good representation of what you would define as normal or anomalous
behavior of ASTRIS. If not, what would you change?

23

24 4. Methodology

2. Could you rate the anomalies that are represented in the graph by how bad of effect they could
cause in case they happen? If so, could you please label the anomalous edges with weights that
would represent this bad effect factor?

Both participants though that graph was a correct representation of what what normal/anomalous
behavior of the software. For the second question, both answers given were that there is no need
to give more weight to any of the predefined anomalies as all the predefined anomalies are equally
important. For the interviews, two prototype reports were created. The purpose of the reports was
to illustrate the expected end result of the system and get feedback on the reports from the target users.

As explained above, the second part of the interviews consisted of question concerning the design
of the human readable reports. With this questions we address the non-functional requirements of
the system. The difference between the two reports was that Report 1 would show all the commands
performed by the system regardless if they are anomalous or not. The anomalous command could be
distinguished from the non anomalous commands by a message in red bold text saying that an anomaly
has been detected. Furthermore, the command that had an anomaly had contained more information
in the report. Report 2 on the other hand consisted of only anomalous commands. The two prototype
reports were shown to the participant at the same time and the following questions were asked.

1. Is there some missing information. If so, please indicate what additional information you would
like to see in the report.

2. Do you think a visualization is necessary ?

3. Do you think a text file with all the original log messages adds a value to this report?

4. Do you prefer Report 1 (showing all the commands and point out the anomaly, if any) or Report
2 (showing only the anomalous command(s))

5. By looking at the report, can you assess what went wrong given the information provided in the
report? And if so, which factors (parts of the report) contributed ?

Both participants answered that the exact time when the message was logged is important and
therefore should be communicated through the report.

Both participants answered that a visualization and an option to download a file with all the mes-
sages related to an anomaly were not necessary.

Both of the participants also suggested that when an automatic set route command is in question,
pointing that out in the report will add value.

Both participants answered that Report 2 (showing only anomalous requests) is a better way to
present the log files. They though that the list of request that do not contain an anomaly is extra
information and distracts them from focusing on the anomalous requests.

4.1.2. Functional requirements
Based on the problem specification and the interview outcomes, the functional requirement of the sys-
tem is to generate a textual explanation if an anomaly is detected. This means that the system should
recognize anomalies as defined by the software developers and output an explanation of any anomaly
detected. More specifically, the goal of the system is to generate a textual explanation whenever a de-
fined or an undefined anomaly is detected. As we are dealing with NLG systems that use two different
representation of the ASTRIS system we divide this section and interpret the functional requirement of
detecting anomalies for each representation. We refer to the first representation as SM + A, and for
the second representation as SM - A. The difference in the representations will be explained in detail
in Section 4.2.1.

4.1. Requirement Analysis 25

Anomaly types for NLG system that uses the SM + A ASTRIS representation
As mentioned above, the functional requirement of this system is to explain anomalies detected. The
anomalies that this system can detect are defined and interpreted below:

• Type 1 - Type 1 anomaly stands for one of the defined anomalies. The anomalous state transition
is Wordt_voorbereid with attribute InstelenRijweg active to Gereserveerd with attribute Instelen-
Rijweg active. This defined anomaly occurs when one or more elements that are part of the route
did not get in the correct position. This means that the route could not be prepared, due to a
failure of adjusting all switches to the requested position.

• Type 2 - Type 2 anomaly stands for another defined anomaly. The anomalous state transition is
the transition from state ’Ingestelobdracht_vertuurd’ with no attributes active to state ’Ingestelop-
dracht_afgekurt’ with no attributes active. This anomaly occurs when the ASTRIS software ran
all the safety checks and determined that the route request is safe to be adjusted. After this,
the request was sent to the last layer of the train control system. Due to some reason the safety
system in the last layer identified this route is unsafe to be set and therefore the request send
from ASTRIS to the last layer was rejected. This anomaly occurs due to contradiction between
the safety evaluation of the two Train control system layers.

• Type 3 - Type 3 anomaly is another defined anomaly. It is the similar type of anomaly as anomaly
Type 1. The only difference is that the route request was ’Automaat’ and therefore the Automaat
attribute was active in addition to the InstelenRijweg attribute for both states in question.

• Type 4 - This anomaly is also a defined anomaly and it is the similar anomaly as Anomaly Type 4
but with the Automaat attribute active with all the states in question

• Type 5 - Type 5 anomaly is an undefined anomaly. It occurs when an undefined state is found
in one of the log messages concerned with the route request. Additionally, this may occur if a
state is defined but the particular state transition is not allowed. Furthermore, this may occur if
the defined end state was not reached/found in the log file. The reason behind this anomaly is a
bug in the ASTRIS software.

• Type 6 - This anomaly is detected when the system does not go back to the initial state. This
may occur for few reasons, some of which are:

– Lost connection and therefore a restart of the ASTRIS software occurred

– The log file reached its size limit and therefore the messages for all the route requests are
not logged.

This anomaly type does not explicitly indicate that there was an anomaly in the system, but as
explained it might be because of file size reached, but as a prevention measure, the system will
still report this as an anomaly.

Anomaly types for NLG system that uses the SM - A ASTRIS representation
This NLG system that uses the SM - A representation has the functional requirement to detect and
explain the anomalies in the following way:

• Type 1 - Anomaly type 1 is a defined anomaly which indicates that the system transitioned from
state Wordt_voorbereid to state Gereserveerd.

• Type 2 - Type 2 anomaly is a defined anomaly that indicates that the system transitioned from
state Ingestelopdracht_versuurd to Ingestelopdracht_afgekurt.

• Type 3 - This NLG system can only detect undefined anomalies when a invalid state transition
occurs. Or if the system did not go back to the initial state

26 4. Methodology

4.1.3. Non-functional requirements
The non-functional requirements for the two systems are very similar, as the non-functional require-
ments specify the information that should be communicated to the user if an anomaly is detected.

Based on the domain knowledge obtained and the interviews outcome. Each of the reports has to
include the following information:

• Exact route request specification in textual form

• Exact anomaly detected explain in textual form

• Anomalous state transition specified in textual form (for NLG with SM + A, state and active
attributes are included while for NLG with SM - A only states are included)

• Table in which all the anomalous messages are presented in correct order with the following
details:

– Exact time in term of seconds and microseconds when the anomalous messages were logged
– The checksum of each anomalous message logged
– The state and the active/non-active attributes indicated in each anomalous log message

4.2. The architecture of the NLG system
In this section the Natural Language Generation pipeline used for this project is presented. Figure
4.1 shows the pipeline visually. Furthermore, Section 4.2.1 explains the first task of the NLG systems.
It explains how the logs were analyzed and which anomaly detection method was used. In section
4.2.2 the second task - Data Interpretation is presented. Furthermore, section 4.2.3 explains how the
document planning task was executed. In Section 4.2.4 we explain the way the Microplnanning and
Realisation task were performed in this project. The templates designed for each anomaly as well as
the final step where the templates are generated in grammatically correct English language.

Figure 4.1: The pipeline used for the NLG systems developed in this research

4.2.1. Data Analysis
Due to the nature of the data for this research, the signal analysis task will be excluded from the
pipeline and changed with a Data Analysis task. The NLG pipeline task specification suggests that the
signal processing task is for numerical data only and when dealing with structured data this could be
skipped.

The reason for still inducing an additional task before the data interpretation is that even thought
the log files have a structured format, the data itself is not structured as the log consists of a lot of

4.2. The architecture of the NLG system 27

messages which are not mapped or labeled in any way. Furthermore, the goal of this research is to
detect log massages that report abnormalities in the system. Therefore the log files need to be analyzed
and this abnormalities need to be detected in the first stage. Therefore with a minor modification from
the original pipeline, log analysis will be performed as a first step in the module. This analysis will
be performed in two steps. Firstly, the data will be processed and the log messages will be mapped.
After this sub-task is performed, a state machine will be used to detect the anomalies in the TCS. Both
sub-tasks are explained in detail in the next two sub-sections.

Data Processing
The goal of Data Processing is to identify the patterns of messages the correspond to the same route
request.

The data used in this research is log files that are structured and presented in an xml form. As
mentioned earlier this system does not give a unique identification that would show the sequence of
messages concerned with each and every route request. Therefore, one of the early sub-tasks in the
data processing is to add this identification to each log message. Each step of the data processing
method is presented below:

1. The log files are cleaned and all the excess information are erased.

2. Each log message is parsed and stored in a csv file. During this task each message is assigned a
unique ID. Each xml element within a message is parsed in a separate column. We will refer to
this csv file as the Messages csv

3. Next, we perform data mapping based on 3 (BeginObjectNaam, EndObjectNaam, LRString)
columns parsed from the log message. This three elements represent an identification of a
route. Once the system detected which messages are from a same route, another csv file is
created. We will refer to this csv file as the Routes csv. In each row of the csv we store the 3
elements that identify the route and each route/row is assigned a unique ID. Additionally, in a
column called ’set’ all the messages IDs mapped to the route are stored. This shows us which
messages correspond to the exact route. Furthermore, we add a ’Messages’ column that shows
the number of messages detected for the route in question.

4. At this point, there are two different procedure in the data processing based on the two different
representations of the train control system.

(a) For one of the models, the next step in the prepossessing is the following: For each route
stored in the Routes csv, iteration through all the IDs stored in the ’set’ column is performed.
For each ID in the ’set’ the system refers to the Messages csv file and retrieves the value of
the ’RijwegToestand’ (Route state) column. This column represents the state of the route at
the moment the message was logged. Each route state is encoded by a upper-case symbol
that is the first(or first two) letters of the name of the state in question - encoding table pre-
sented in Figure 4.2. Furthermore, the system takes the values of 6 attributes ’Automaat’,
’Herroepen’, ’ReserverenRijweg’, ’VoorbereidRijweg’, ’InstellenRijweg’, ’RijwegVrijrijden’ that
add extra information of the route state. The values this attributes can hold are 0 and 1,
representing if an attribute was Not active or Active at the moment the message was logged.
Based on the combination of active/nonactive status of this attributes, the system assigns a
new symbol to the route that is concatenated to the encoding of the route state.

Once the route state and the route attributes are encoded and concatenated, the system
splits the concatenation whenever the initial state of a route is detected (the initial state is
encoded as ’Ra’ which represents that the route is in Rest state with all the attributes non
active.) The decision to split the route messages in this way is because each time a route
request is sent by the train controller the route starts and end in this state. This step is
performed as our goal is to have all the messages per route request. The train controller
might request the same route to be set multiple times during the day, and we want to treat
each request as a separate. This will help to have a more precise information of where the

28 4. Methodology

Figure 4.2: State Encoding table

anomaly is, if any anomaly is detected.

When the system detects multiple request per same route and splits it, a new row is added
and the identification of the route is copied, as well as the corresponding IDs of the mes-
sages that are split to represent one request at a time. A corresponding command ID is also
assigned by incriminating the largest command ID detected in the Routes csv file.

Lastly, from each row the encoded concatenation is further encoded to represent each state
transition. So as each message represents one state, when the messages are encoded and
concatenated, the concatenation represents each state transitions the route request followed
to prepare the route. The last encoding is done based on the state machine shown is Figure
4.3. This encoding is stored in the Routes csv in a column named ’String’ and is the value
that is given to the state machine. The string represents the pattern of the state transitions
per request reported in the log file.

(b) For the second anomaly detection model, this step is very similar. The only difference is that
the 6 attributes used in the above explained methods are omitted. So the state transition
pattern is represented only by the ’RijwegToestand’ (Route state).

Anomaly detection
To detect anomalies in the log files a finite state machine is used due to the nature of the problem. As
explained above, the ASTRIS system checks all the safety critical rules, and based on that, it sets the
route as requested by the train controller. The process of setting a route is performed gradually. The
ASTRIS system checks for the safety requirements, and if the requirement in question is satisfied, the
system transitions from one state to the other. Dependent of the type of request the system needs to
follow a defined path of states in order to execute the request. The process of setting a route follows
logical rules as conditions and a state transition occurs according to the a fixed set rules. State machine
are used to represent a set of complex rules and condition. Each state of the state machine represents
a physical condition.

As this research is trying to check if all the ASTRIS rules were followed, based on the ASTRIS re-
quirements, a state machine is a perfect fit for the problem. All the usual and allowed state transitions
of ASTRIS are implemented as rules of the state machine and the string generated from the log files
is given to the state machine as input. As we want to checking if all the ASTRIS rules were followed
correctly, the state machine allows us to check this in an accurate and precise way.

To summarize, the benefits of using a state machine are :

• The problem in question is about checking state transitions of the ASTRIS system, and this is
exactly what a finite state machine allows

• Compared to other graph based anomaly detection algorithm (e.g. graph adjacency matrix),
when one uses a state machine, and the string is rejected, retrieving the exact location and
reason for rejecting the string is very straight forward. For example, if a Adjacency matrix is used

4.2. The architecture of the NLG system 29

instead of a state machine, a way to check if something went wrong might be straight forward,
but finding the exact reason and location for it would be more complex than when using a state
machine

A disadvantage of using a finite state machine is the labor intensive work to write out all the
rules/conditions for the state transitions when the state machine represents a system with a lot of
requirements. Furthermore, if one wants to scale up or extend the system, this might be challenging.
Even though this is a disadvantage for using a state machine, up-to-date research has shown that there
are ways to let the state machine construct/learn all the rules by itself by using a machine learning
algorithms and a lot of data. This will be further discussed in the Future Work Section.

Once the data is processed and we have obtained patters that represent the state transitions for
every request logged, two different representations of the ASTRIS systems are created in terms of a
state machine. The first representation is a state machine that uses the active/non-active attributes
in addition to the state name to define the states. We call that representation a state machine with
attributes. The second representation is a state machine that uses only the state names. We refer to
this representation as a state machine without attributes.

State Machine with Attributes

The states in the state machine represent the state defined by the ASTRIS software. Furthermore,
this state machine uses extra information (state attributes) to further describe the state. These is
described in the data processing section (Section 4.2.1).

The state machine for this method is shown by the Figure 4.3. The red lines in the state machine
are state transitions that represent the defines anomalies. This state transitions are shown in the graph
but are not implemented in the state machine. This is because if any of those state transitions occur,
the system went through a defined anomaly and this is the scenario that the NLG system should report
in the final texts.

A state machine is defined by a list of its states, its initial state, and the conditions for each transi-
tion. The state machine with attributes consist of 36 states. The Rest state with all attributes nonactive
is the initial and the end state. Each state transition is represented by one unique symbol. This symbols
are seen as a rule for a transition to happen. The only way to reach one state from another is if this
exact symbol is defined and allows that state transition to occur. The state machine takes strings as
input. Each symbol in the string represents one state transition. If the sting contains a symbol that
is not accepted by the state machine, the whole sting is rejected. Rejecting a string shows that the
string given is violating some rules and that an unallowed state transition is present in the string.

For example when the state machine is state ’Ra’ (see figure 4.3) a valid state transition would be
a transition to state ’Rd’ or state ’Rh’. State ’Rd’ can be reached if the initial symbol of the string is a
(see arrow label in figure 4.3), furthermore to reach state ’Rh’ the initial symbol of the string has to be
b. Then from state ’Rd’ a valid state transition would a state transition to ’Gf’ which would mean that
the second symbol of the string is c and so on.

With the state machine implementation, 8 columns are added to the Routes csv file. Those are :
’SM_Status’, ’SM_Message’, ’SM_Stepwise’, ’Anomaly Type’, ’Anomaly Transition ID’, ’First Anomaly
State’, ’Second Anomaly State’, ’Index Of Anomaly Transition’.

30 4. Methodology

Fi
gu
re
4.
3:
AS
TR
IS
be
ha
vi
or
gr
ap
h

4.2. The architecture of the NLG system 31

The state machine goes through the Routes csv file and takes the value for the the column ’String’
and runs the state machine for the string. The output of the state machine is stored in the ’SM_Status’
column. If the state machine rejects the string, the stepwise function is invoked. The stepwise func-
tions gives all the states that were visited until the anomalous transition occurred. Furthermore, an
error message generated by the system points out that went wrong. After following some rules, the
state machine identifies the type of the anomaly that occurred. This is stored in the appropriate tables.
Lastly, when an anomaly is detected, by following the output of the stepwise function, rules of the
system detect the anomalous state transition and the index of the anomalous state transition.

State Machine without Attributes

The state machine for this method is represented in Figure 4.4. In contains 11 states, which is
drastically less compared to the state machine with attributes. This anomaly detection method works
very similar to the state machine with attribute, except it does not consider any attributes. So the
states are represented only by the state name. For this reason it is known that this anomaly detection
technique is less accurate. It will miss anomalies where the state transition is correct when looking at
the name of the state, but if the attributes that are active do not correspond to the state correctly, this
method will not be able to recognize that. Even though we are aware that this state machine is less
accurate, we use it as its has less rules and therefore it is easier and faster to implement. Furthermore,
as the research question suggests, we want to evaluate if the lack of accuracy will significantly show
lower performance of the NLG system. As if this is not the case, having a faster and easier method for
the anomaly detection process might be preferred.

Figure 4.4: ASTRIS State Machine representation without attributes

32 4. Methodology

4.2.2. Data Interpretation
The goal of the data interpretation task is to analyze and interpret the patterns and abnormalities de-
tected in the data. This is the task of interpreting the meaning of the patterns detected and mapping
the patterns and events with the additional information provided in the log files. This patterns need
to be mapped into messages and relationships humans use when discussing the domain. Additionally,
we interpret the exact location of the anomaly and the additional information that will be presented to
the user.

For the data interpretation we follow the functional and non-functional requirements explained in
4.1.2, 4.1.3 to interpret the pattern and present the target users all required information.

Each anomaly is given same importance. This is primarily because any anomaly might cause an
incident and therefore it is equally important to report it. Additionally, as explained in the requirement
analysis, the software developers were asked if they would weight some of the anomalies with a higher
score and the answer was that they also see all the anomalies to be equally important.

4.2.3. Document Planning
The goal of the document planning task is to decide which of the events/patterns detected will be
communicated to the user. Furthermore, in this task the document structure is decided upon.

Deciding on what information to communicate
For this research deciding on which events to communicate is a straight forward task. Based on the
answers from the requirement analysis and the specifications of this research topic, this project is only
going to focus on communicating the anomalies. Any route request that does not contain an anomaly
will not be part of the report.

Deciding on the document structure
For each log file given to the NLG system, one document will be produced. This document will contain
explanation to all anomalies detected in the given log file. Additional to the summaries that explain
the anomaly, a table will be displayed for each anomaly detected. The table will have some basic
information about all the messages that are part of the anomalous route request. This table takes the
information directly from the Messages csv, which is the parsed log file. The table is there to help the
user see all the states the route request visited, but most importantly the exact seconds and microsec-
onds when the message was logged. Lastly, this table also displayed the check sum value found in the
log message. The time stamp and the checksum are included as this helps the used further link the
anomaly to the other TCS components log files.

The document will contain a textual explanation of each anomaly detected in pair with a table which
was discussed above.

4.2.4. Microplanning and Realisation
The last tasks of the NLG system is the Microplanning and Realisation. It serves as a plan on how to
communicate the information the system detected in the earlier tasks. One way to perform this task
is by using templates and this is the approach this research is taking.

Due to the nature of the problem, it is preferred that the text that explains a particular type of
anomaly is always the same. In this way the reports generated by the system would make the ex-
planations less confusing. For this reason, templates are used for explaning the anomalies detected.
Additionally, as the reports will be used by domain experts it is important that the NLG explains the
anomalies in a domain specific language. Therefore, the specific terms used by the developers are also
used in the reports. As ASTRIS is developed in the Dutch language, when the text explains a particular
route state, route request or attributes related to the state, the text refers to this term by the original
name as seen in the log files.

4.2. The architecture of the NLG system 33

Templates
The templates used by the NLG system complete two tasks in order to be lexicaly and syntactically
correct. Firstly, each word is chosen carefully in order to convey full explanation of the event. As ex-
plained earlier, the words chosen need to correspond to the domain language used by the developers.
The terms retrieved directly from the log files are therefore kept as they are (in Dutch) event though
the texts are in English. Secondly, the explanation of the anomaly detected uses domain terminology.
For example, the word ’Elements’ refers to the elements of the rails such as switches, signs and so
on. Furthermore, the system uses the word ’BEVNL’ to refer to the last layer of the TCS. For each
anomaly type a template is generated by the system. For each template a lexicalization task as well
as a realization task is performed.

Lexicalization and Realization
Lexicalization is the process of adding words, set phrases, or word patterns to a language. On the other
hand, realization is the process by which a text is generated based on an underlying representation.
In this case the representations will be syntax trees.

Lexicalization For example when the NLG system needs to convey the specifications of a route
request. Choosing the exact words for this sentence is done in the following way:
To express that there was an anomaly, we could use one of the following words: anomaly, abnormality,
unusual behavior etc.

The lexicalization is performed for each sentence in order to establish the lexicon for this NLG sys-
tem. Once the lexicalization is specified, we proceed with forming the phrases for each template. This
is done by following syntactic rules and creating syntax trees for each template. The NLG systems uses
this syntax trees to generate lexicaly and grammatically correct texts. The implementation is performed
by using SimpleNLG in Java[1].

Template for anomaly Type 1 (SM + A) Below are the syntax trees used for generating a
template for NLG when using SM + A for anomaly Type 1.
Paragraph one consist of one sentence only. This sentence specifies the exact route request where the
anomaly was detected. Figure 4.5 shows the syntax tree for paragraph 1. The X is a placeholder for
the details that are retrieved from the Routes csv file. Furthermore, Figure A.1 shows the syntax tree
used for paragraph 2. This paragraph explains the anomaly. The X in this sentence is a placeholder
for the unusual state transition. This states are also retrieved from Routes csv file. Anomaly Type 1
occurs when ASTRIS is not able to place one or more elements in the route as requested by the train
controller. Lastly, paragraph 3 explains the table which shows all the messages concerned with the
anomalous route request.

Figure 4.5: Syntax tree used for realization of paragraph 1 when explaining Type 1 anomaly with the NLG system that uses(SM
+ A). The realization of this sentence can sen seen in Figure 4.8.

Template for anomaly type 2 (SM + A)
The template for explaining anomaly type 2 when using SM+A, starts with the same sentence as
anomaly type 1. Paragraph 2 consist of 3 sentences. As identified earlier, anomaly type 2 is a defined
anomaly which indicates that ASTRIS identified a route request as safe to be performed, but the last
layer in the TCS rejected the request. In the template this is explained with domain specific terms. The
third paragraph is the same as the template for anomaly Type 1. This is because the last paragraph
explains the information provided in the table that is presented after each textual explanation.

34 4. Methodology

Template for anomaly type 3 (SM + A)
This template is almost exactly the same as the template for anomaly Type 1. The only difference is in
the first sentence which give the specification about the route request. The difference is that when this
anomaly type occurs, it is know that the route request was automatic. In the requirement analysis the
ASTRIS developers explained that this is an important information and they would like have it pointed
out in the textual explanation

Template for anomaly type 4 (SM + A)
This template is almost the same as the template for anomaly Type 2. The only difference is in the
first sentence of the template. This template indicates that the route request sent by ASTRIS was
automatic. Again, this has been decided upon based on the request of the developers of ASTRIS.

Figure 4.6: Syntax tree used for realization of sentence 3 for explaining anomaly type 5(undefined anomaly) for both NLG
systems

Template for anomaly type 5 (SM + A)
This is the last type of anomaly for the system that uses a state machine with attributes in the log
analysis task. Anomaly Type 5 is the undefined anomaly. Therefore the exact cause of this anomaly
can not be specifically explained. Even though that is the case, the text still explains the two possible
reasons on why this route request were detected as anomalous. This template, as the previous 4, has
3 paragraphs and a table for each anomaly Type 5 detected.

The syntax tree (from the second paragraph that explains the anomaly) for this template can be
seen in Figures 4.6, 4.7 and A.2

Figure 4.7: Syntax tree used for realization of sentence 4 for explaining anomaly type 5(undefined anomaly) for both NLG
systems

Template for NLG that uses SM - A
The templates used for the NLG system that uses the state machine without attributes as log analysis
method are very similar. As the state machine does not use state attributes to detect the anomalies,
the attributes are excluded from the textual explanation of the anomalies. Everything else stays the
same.

Additionally, as this system does not consider the attributes, as explained above, there are only
3 types of anomalies that the system can detect. Those are the Type 1 - defined anomaly when

4.3. Summary 35

state Wordt_voorbereid transitions to Gereserveerd, Type 2 - defined anomaly when state Ingestelop-
dract_vertuur transitions to Ingestedopdracht_afgekurt. And finally, Type 3 which is an undefined
anomaly.

Figure 2.4 shows an example explanation of anomaly Type 1 generated with both NLG systems.
The difference is marked with red. The words marked with red are in the report of the NLG system
that uses the SM + A, but not in the report of the NLG system that uses the SM - A

Figure 4.8: Example of type 1 anomaly explained with both of the NLG systems

4.3. Summary
In this section all the steps taken for implementing an NLG system using two different representation
is explained in detailed. Below a overview of the methods is summarized.

The first step taken in this research was obtaining the domain knowledge. Next, a requirement
analysis was performed in a form of interviews. From the requirement analysis, we could observe
what the users expected from the NLG system. A representation of ASTRIS was constructed in two
ways. One was a graph that represents the system states with more information (state name + active
attributes), whereas the other graph represented the system only in terms of state names.

The next step taken was the data analysis. Translating and encoding the log file into strings that
represents the behavior of the route requests. Once the data was processed and each request found
in the log files was in a string representation, we implemented the two graphs as state machines.
The state machines outputs a label for each request. The labels would represent the behavior of the
request. If there was an anomaly detected, the label would represent the type of the anomaly, while
if the request was not anomalous the system would label the request as such.

Furthermore, all the anomalies were interpreted and mapped to additional information from the log
files. Next, the structure of the document was decided upon.

Lastly, templates were created based on the information the system will include in the human
generated text. The templates were represented by syntax trees to insure syntactically and grammat-
ically correct sentences. The syntax trees were realized by using a realizer. Finally, the output of the
realization step was the human readable reports.

5
Evaluation

Once the NLG systems were implemented, we had an NLG system that generates summaries based
on log analysis that uses state machine with attributes system representation and a NLG system that
generates summaries based on log analysis that uses a state machine without attributes system repre-
sentation. In this chapter we evaluate the two different reports. The reports are compared in terms of
user performance and user preference. To do this we perform a case study in which a sample of target
users are presented with the two NLG reports. The users are asked to answer few question which will
help us answer the two hypothesis of this research.

5.1. Evaluation methods
When NLG systems are developed, the main measure that one needs to evaluate are the readabil-
ity, accuracy, and usefulness. As discussed in the related work section (2.5), there are three main
techniques for evaluating NLG systems. Those are:

• Task Performance

• Human Rating

• Metric

In this research we use task performance and human ratings to evaluate the two NLG systems
created.

Task Performance Task performance metric is used as it is seen as the most rigorous evaluation
metric for NLG systems. It has been discussed that task performance is the best way to evaluate NLG.
The advantages of the method are that the target users get to see the reports and answer questions
that they would need to answer in real life when the NLG system is put in use. Therefore, the under-
standing the user acquired based on the reports presented is evaluated in a very pragmatic way. For
this research, the participants are presented with the generated reports and asked questions about the
text they read. This method directly measures how well the desired message is communicated to the
users based on the answers they gave to the questions after they read the reports.

Human Rating The human rating method is seen as the second best way to evaluate an NLG
system. This is because the target users are directly asked to express their opinion on the reports pre-
sented. Human rating evaluation is performed by asking the users to rate the usefulness, readability
and accuracy of the report on a likert scale. Another way to perform human rating evaluation when
one needs to compare two reports, is to ask the users to choose a preferred report base on the 3 above
mentioned measures. As this research compares two different NLG system, the participants are asked
to choose a preferred report. The exact questions are show in Section 5.3

37

38 5. Evaluation

It is important to mention that the Metric evaluation method is not possible for this research, as a
gold-standard report needs to be available for this type of evaluation. A gold-standard is a text that
has been generated by an already existing NLG system or a text that has been written by a human,
based on the data used by the NLG system that is being evaluated. As there is no existing NLG system
that produces anomaly detection summaries based on train control system log files, nor there is any
human written reports based on the log files, a gold-standard report is not available for this research.

The task performance and the human rating methods have been used to answer the hypothesis
which will be introduced in the Section 5.4.

5.2. Independent variables
The two NLG systems are evaluated based on the reports they produce. In the evaluation, we compare
the two different reports that are generated based on the same log data. The independent variables
in this evaluation are Report types. We perform a within-subject experiment by presenting the users
with two reports at the same time.

• Report 1 is the report generated by the Natural Language generation system that uses the State
Machine with attributes

• Report 2 is the report generated by the Natural Language generation system that uses the State
Machine without attributes

Furthermore, the reports consists of multiple cases (anomaly types) which are specified as addi-
tional independent variables in this evaluation. Based on the representation that the NLG system uses
(State machine with attributes or state machine without attributes), a different number of cases is pre-
sented in each report. Each case that is part of the report is chosen as they explain different anomaly
types. The decision of using the specific cases was made as we wanted to have each defined and
undefined anomaly type that can be detected by the more detailed representation (State machine with
attributes) at least once. As the NLG system that uses a state machine without attributes can detect
less anomaly types compared to the NLG system that uses the state machine with attributes, therefore
Report 2 had one case less.

All the cases presented in the reports and the anomaly detected by each system is explained. In
bold letters, the label given but the each of the state machine is also shown.

• Case 1 :

– SM + A - defined anomaly - anomalous transition : Wordt_voorbereid (InstellenRijweg at-
tribute active) -> Gereserveerd (InstellenRijweg attribute active) Type 1

– SM - A - defined anomaly - anomalous transition : Wordt_voorbereid -> Gereserveerd Type
1

• Case 2 :

– SM + A - defined anomaly - anomalous transition : Ingestelopdracht_versuurd (no attributes
active) -> Ingestelopdracht_afgekurt (no attributes active) Type 2

– SM - A - defined anomaly - anomalous transition : Ingestelopdracht_versuurd -> Ingestelop-
dracht_afgekurt Type 2

• Case 3 :

– SM+ A - defined and undefined anomaly - anomalous state transition : Ingestelopdracht_versuurd
(Automaat attribute active) -> Ingestelopdracht_afgekurt (Automaat attribute active) is a
defined anomaly by itself, but more importantly state Ingestelopdracht_afgekurt with Au-
tomaat attribute active is not defined in the system and this is an undefined anomaly Type
5

– SM - A - defined anomaly - anomalous transition : Ingestelopdracht_versuurd (Automaat
attribute active)-> Ingestelopdracht_afgekurt (Automaat attribute active) Type 2

5.3. Dependent variables 39

• Case 4 :

– SM + A - undefined anomaly - system did not return to initial state Type 6
– SM - A - undefined anomaly - system did not return to initial state Type 3

• Case 5 :

– SM + A - undefined anomaly - anomalous state transition - Rest (no attributes active) ->
Rest(no attributes active) is an undefined anomaly as the system should never log messages
if no change in the state or the attributes have been made Type 6

– SM - A - anomaly not detected by this NLG system - this system does not recognize this as
an anomaly as it does not consider the attributes in which case transitioning from Rest ->
Rest is allowed No anomaly

An full example of both Report 1 and Report 2 can seen in A.3

5.3. Dependent variables
In this project we are measuring the performance and the preference of the two reports.

To avoid order biases, the Latin Square experiment design was used. The Latin Square technique
suggest that when there are multiple representations or scenarios, each report should present all the
possible scenarios in a different order. Following the Latin Square rule, each participant saw a report
that was unique. The uniqueness was the order in which the cases explained above were ordered.
This was done for every participant, but it is important to point out, that the order of the cases was
kept the same between the two reports (NLG with SM + A and SM - A) presented per participant. For
example, if the case order for the first participant was case 1 , case 2, case 3, etc. , this case order
was followed for both Report 1 and 2.

Furthermore, for half of the participants the report generated by the NLG system that uses SM +
A was placed on their hand-right side and the report generated by the other NLG system was placed
on their left-hand side. For the other half of the participants, the reports were placed the other way
around. For clarity, we refer to the report generated by the NLG system that uses SM +A as Report 1
and the report generated by the NLG system that uses the SM - A as Report 2.

We measure the performance of the reports by using the task performance technique. Two ques-
tions were asked after each anomaly explanation. The questions were designed to measure the general
understanding of the texts the participants were presented.

• The first question is : Which unusual behavior occurred?. This is an open answer question where
the participant needed to explain what went wrong based on the explanation read and the table
provided.

• The second question is : Please mark in the table the messages that correspond to the explained
unusual behavior?. This question measures if the participant will be able to precisely spot the
anomalous transition based on the explanation provided.

These two questions were asked in a written form after each case in the report.

Furthermore, to measure the preference between the two reports we use the human rating evalu-
ation technique. The participants are asked to answer 3 multiple choice questions as well as one open
answer question where the participants are asked to elaborate on their answer choice of the multiple
choice questions. The questions used for the preference measure are the following:

• Please indicate which report you thought was easier to read?

• Please indicate which report was more accurate?

• Please indicate which report was more useful for you?

These 3 questions are measuring the readability, accuracy and usefulness of the reports.

40 5. Evaluation

5.4. Hypothesis and Measures
For this research two hypothesis have been tested in order to answer the research question. The
hypothesis compares the two NLG systems in terms of user performance and preference.

Hypothesis I : Report 1 is more understandable than Report 2

Hypothesis I measures the understandability the participants gained after they read the reports.

Hypothesis II : Report 1 is preferred over Report 2

Hypothesis II measures the preference of the participants over the two reports. The Preference is
measures in terms of readability, accuracy and usefulness.

5.5. Materials
The materials used for the case study were the reports generated. Furthermore, a consent form was
prepared for each of the participants in order to ensure the ethical clearance of the study.

Reports
As explained in the Independent variables section (5.2), two types of reports were generated for each
participants. This was done following the procedure explained in Section 5.3. The questions asked
during the case study were added to the reports after each case was explained. An example of the
Report 1 is presented in Appendix A.3, followed by an example Report 2 in Appendix A.4.

Consent form
As suggested by most researchers, before the case study took place, a consent form that explains the
case study, its purpose and the way data will be stored and used was created. This consent form was
approved by the TU Delft Ethics committee before the participants were invited to take part in the
study.

5.6. Procedure
During the case study each participant was presented with Report 1 and Report 2. To tackle the
challenge that participants may perform better if they read one of the reports first, the participants
were presented with both reports at the same time.

For every participant the case study was performed in the same way. The steps taken were the
following:

• Each interview started with a brief explanation of the general goal of using an NLG system to
analyze the log files.

• Then, each participant received the consent form

• If the participant agreed and signed the consent form, the following two ”warm up” questions
were asked : What is your role in ASTRIS? & For how long have you been working on ASTRIS?

• Next, the participants were asked to imagine a scenario where few incidents occurred and one of
their teammates asked them to look at the NLG generated reports and explain what went wrong.
The two reports were placed in front of the participant. The participants were given as much
time as needed to answer each question asked in the report. All the questions and answers were
given in a written form.

• Lastly, the participant was given another paper with the three multiple choice questions and the
open answer question in which they reason their answer of the multiple choice questions.

5.7. Results 41

5.7. Results
The data used to evaluate this research is the data obtained from the case study. We briefly discuss the
sample of participants that took part in the case study. This can be found in 5.7.1. Next, we discuss the
two hypothesis in terms of the results obtained from the case study. We first present the results from
the overall performance (H1) of the participants after which we discuss the results shown. Next, we
present the performance results for each individual case and discuss them. The same order is followed
for discussing H2. The preference measure results are presented and discussed.

5.7.1. Participants
The main challenge of the evaluation for this research is forming a sample of target users. This is
due to the very domain specific problem in question. To accurately evaluate this research, all the
participants need to have appropriate domain knowledge. This means the participants should be famil-
iar with the ASTRIS software and the meaning of the log files that are generated by the ASTRIS system.

A list of 20 people from CGI or ProRail that are/were involved in the ASTRIS project was suggested
by my company supervisor. The limited number of participants was as the CGI ASTRIS developers and
testers team consist of 8 people only. From the 20 people suggested, 16 people responded and took
part in the case study.

5.7.2. H1 : Report 1 is more understandable than Report 2
We are dealing with two dependent ordinal data sets. The data sets contain the answers of the question
Which unusual behavior occurred? for Report 1 and Report 2. This question was asked after each case
explanation. The answers were given in a textual form. To perform the statistical analysis we use a
coding schema to classify and give a score to each answer. The coding schema used is shown in Figure
5.1. The schema help to classify each answer in one of the categories based on the correctness of the
answer. In Table 5.1 we present the descriptive statistics of the overall performance of the reports,
while in Table 5.3 we present the descriptive statistics for each case separately. Furthermore, in Table
5.2 we present the Wilcoxon signed rank test results from the overall performance data, while in Table
5.4 we present the Wilcoxon signed rank test results per case. After this, we discuss the overall results
and by case results in the Discussion subsection.

Coding Schema
Each category is given a value based on the correctness of the answer. The categories were assigned
a value in the following way:

• Answers from category Excellent’ were assigned 1 point

• Answers from category ’Good’ were assigned 0.75 point

• Answers from category ’Average’ were assigned 0.5 point

• Answers from category ’Satisfactory’ were assigned 0.25 point

• Answers from category ’Poor’ were assigned 0 point

Furthermore, if multiple answers from a participant were missing or could not be assigned to any
category, the participant was eliminated from the sample size.

By using this method, two participants were eliminated.
The first eliminated participant had given unclear answers, such as : ”duplicate of ?” to case 3. Fur-
thermore, the participant did not answer 4 of the questions.

The second eliminated participant had given answers such as :”The same as described, well-
formulated” for the majority of the questions. From the given answers we can interpret that the
participant thought the text was explaining the anomaly well, but we can not put the answers to any
category as the level of understanding the participant gained after reading the reports it is not clear.

42 5. Evaluation

Figure 5.1: Coding schema used to categorize and quantify answers

Once all the answers are coded we perform an analysis that compares the performance of the
participants per case. Case 5 which is explained in 4.1.2, was eliminated from the dataset. It was
eliminated as the case occurred only in Report 1. More importantly, all the participants had given a
correct answer to the question and therefore scored one point. For this reason, the answers to this
case do not add any useful information when comparing the two reports and are therefore are not
used.

Statistical Results Overall Reports Performance

Table 5.1: Report 1 & 2 Descriptive Statistics Overall
Report Type n mean median sd
Report 1 13 .75 1 .3465516
Report 2 13 .6826923 .75 .3288251

Table 5.2: Wilcoxon Sign Rank Test Report 1 vs Report 2
Test statistics (Z) Asymptotic significance (p)
1.552 0.120

Discussion overall Reports performance
The overall performance for the two reports is presented in Figure 5.1. The Table shows the mean,
median and standard deviation for Report 1 and Report 2 based on all the case. Furthermore, Table
5.2 shows the report performance comparison based on the Wilcoxon signed rank test.

The Wilcoxon Sign Rank Test indicates that Report 1 and Report 2 ranks are statistically not signif-
icantly different, with Z=1.552 and p=0.120

Statistical Results per Case Reports Performance

Table 5.3: Report 1 & 2 Descriptive Statistics by Case

5.7. Results 43

Report 1 Report 2

Case # n mean median sd mean median sd

Case 1 13 .8653846 1 .2816504 .8076928 1 .3252218
Case 2 13 .7884615 1 .3202563 .8461538 1 .2802243
Case 3 13 .7692308 1 .3602883 .4807692 .5 .1898886
Case 4 13 .5769231 .5 .3870914 .5961538 .5 .3755338

Table 5.4: Wilcoxon Sign Rank per Case
Case # Test statistics (Z) Asymptotic significance (p)
Case 1 1 .3173
Case 2 -1.413 .1576
Case 3 2.598 .0094
Case 4 -1 .3173

Discussion per Case Reports performance
Case 1
TheWilcoxon Sign Rank Test indicates that Report 1 and Report 2 ranks are not statistically significantly
different for case 1 with Z = 1 and p = 0.3173. This means that when the participant was presented
with an explanation of the case in Report 1 and Report 2, the level of performance was similar as it
can be observed base on the mean performance for each report. In fact, the mean performance for
Case 1 Report 1 is 86% and 79% for Report 2. This shows that Report 1 performed slightly better.
Furthermore, based on the mean performance we can conclude that the participants got a good un-
derstanding of this case regardless of the report shown. Similarly, in terms of the median(1) we can
observe that both Report 1 and 2 give a solid performance.

Case 2
Similarly as for Case 1, the participants showed very similar level of understanding for Case 2 when
presented with Report 1 and Report 2. TheWilcoxson Sign Rank test indicates that Report 1 and Report
2 ranks are not statistically significantly different for case 2 with Z = -1.413 and p = 0.1576. Fur-
thermore, based on the mean performance for this case, we can conclude that the participants gained
a good understanding. Report 1 performed slightly worse than Report 2. Report 1 had obtained 79%
mean performance while Report 2 obtained 85%.

Based on the statistical analysis the difference in performance between report 1 and 2 for this cases
is not significant but the performance is high for both cases. We can observe two reasons behind this
results.

• Firstly, it is important to mention that the difference in the explanation of this two cases is very
small. The only difference in the explanation is that Report 1 presents the attribute that were
active next to the state that was part of the anomalous transition. Due to the close similarity of
the explanation presented by the two reports, the performance is not significantly different.

• Secondly, this two cases explain a defined anomaly. This means that the anomalous transition
that occurred is allowed by ASTRIS but the state transition indicates that something had gone
wrong. As the transition is allowed by ASTRIS we can explain the anomaly more precisely and
the participants score a high performance for this two cases.

Case 3
Contrary to the Case 1 and 2, the Wilcoxon Signed Rank Test indicates that Report 1 ranks are signifi-
cantly higher compared to Report 2 for Case 3. The Z value of the Wilcoxon Sign Rank test is 2.598
with a significance of p = 0.0094. This can be also observed from the mean and the median for this
case. Report 1 has a mean performance of 77% with a median of 1, while report 2 has a mean of
48% and median of 0.5. Based on the statistical results we can conclude that for case 3, participants
get a better understanding of the anomaly when looking at Report 1.

44 5. Evaluation

From the statistical analysis we can see that the performance of Case 3 for the two reports is sig-
nificantly different. Case 3 explains two anomalies, more precisely this case has both a defined and an
undefined anomaly. Due to the train control system representation used, detecting the anomalies for
the NLG system that generates Report 1, the anomaly detected is undefined. While the NLG system
that generates Report 2 can only detect the defined anomaly in this route request. For this reason the
explanation of this case is different in Report 1 and 2. Having a low performance in Report 2 for this
case, indicates that the participants do need a more detailed explanation and a pointer to the attributes
in order to fully understand what went wrong.

Additionally, as motioned in the 5.3 the order in which the participants were presented with the
reports varies. So, 7 out of 13 participants looked at Report 1 first. 4 out of the 7 participants had
explicitly mentioned that they get full understanding of the case because the saw Report 1 first. This is
why in the coding schema we classify the answer as an ’Average’ answer if the participants answer the
question in Report 2 correctly but mentioned that that was due to the knowledge obtained by seeing
Report 1 first.

Case 4
Lastly, for case 4 we observe that the difference in the performance between Report 1 and 2 is also not
significant. The Wilcoxon sign Rank Test for this case indicates that there is no statistically significant
difference in performance between Report 1 and Report 2. The test statistics from the Wilcoxon Sign
Rank test is Z = -1 with a statistical significance of p = 0.3173 This can be also observed by looking at
the mean performance of Report 1 which is 58%, while the mean performance for Report 2 is 60%.
Furthermore, an interesting observation for this case is that the overall performance for this case is
lower that the other cases. It is important to mention that for both reports this case was explained
exactly the same. This is because case 4 explains a route request where the ASTIS system did not return
to the initial state. Both NLG systems detect and classify this anomaly as an undefined anomaly. This
type of anomaly we have discussed in 4.2.1 that this behavior is not necessarily anomalous because
this may indicate that the ASTRIS system was restarted or the log file reached a size limit. This is
explained in the NLG reports. The lower performance for this case in both Reports may be because
some of the participants did not agree that this is anomaly. A solution to this is proposed in the 6.4.

5.7.3. H2 : Report 1 is preferred over Report 2
As explained earlier, the preference measure for Report 1 and Report 2 were obtained by asking every
participant to indicate there preferred Report in term of readability, accuracy and usefulness through
multiple choice questions. In addition to the three multiple choice questions, the participant was asked
an open and question to explain his/her choice on the previous three questions. The open end question
was used to obtain a deeper understanding of the preference choices made by the participants.

The first multiple question measures the Readability, the second question measures the Accuracy
and lastly the third question measures the Usefulness preference between Report 1 and 2.

The answer options given to the participants was a choice between Report 1 and Report 2. Even
though this was the case, some participants added an answer option of indifference between the two
reports. Even though this was originally not planned, we take the answers as given by the participant
and add this answer choice in out analysis. The data set consist of 14 participants as explained in the
previous subsection.

To analyze the data obtained from the human rating questions we count the preference of each
Report in terms of the three measures. Furthermore, we count the overall preference per report.

5.7. Results 45

Statistical Results
The table below show the results from the multiple choice questions. A percentage analysis is applied
to create a contingency table for report preference.

Table 5.5: Report Preference Measures Results
Measure Report 1 Report 2 Report 1&2
Readability 54% 23% 23%
Accuracy 84% 8% 8%
Usefulness 77% 15% 8%
Overall 72% 15% 13%

Discussion
Readability
The preference in term of readability is presented in row 1 in Table 5.5. It can be observed that
54% of the participants prefer Report 1, 23% of the participants prefer Report 2 and 23% of the
participants are indifferent between the two reports in terms of readability.

Accuracy
The human rating preference results for accuracy are shown in row 2 in Table 5.5. 84% of the par-
ticipants answered that Report 1 is more accurate than Report 2. Furthermore, 8% of the participants
answered that Report 1 is more accurate and finally the rest of the participants (8%) did not notice
any difference between the two reports in terms of accuracy.

Usefulness
In term of usefulness, 77% of the participants answered that Report 1 was more useful than Report
2. Furthermore, 15% of the participants indicated that Report 2 was more useful then Report 1 and
lastly, 8% of the participants did not see any difference between Report 1 and Report 2 in terms of
usefulness. This can be observed in row 3 in Table 5.5.

Overall Preference
Finally, we present the overall preference of the Reports in the last row of Table 5.5. It can be
observed that 72% of the participants prefer Report 1, 15% of the participants prefer Report 2 and
finally 13% of the participants did not indicate a preference between the two reports.

In the next paragraph we analyze the preference measure results based on the answers given by
the participants for the open end questions. These type of questions are often refereed to as comments
questions in literature. As indicated earlier, we can observe that generally, the preference in terms of
readability is higher for Report 1, but compared to accuracy and usefulness, the readability measure
of Report 1 is the lowest. We discuss this performance result based on the comments given by the
participants. As shown and indicated in Figure 4.8 the difference between Report 1 and 2 in terms of
the text presented is that Report 1 shows the active attributes next to where the anomalous state is
shown. On the other hand, this active attributes are not shown in the explanations of Report 2. Few
of the comments from the participants stated that, they are not used to seeing the active attributes
next to the state in question. Some participants indicated that this is useful for them, but as they are
not used to it, the readability when the anomaly is explained in this way is worse. Furthermore, some
participants such as project managers or product owners that are not used to seeing the log files on
daily bases, indicated that the attributes do not add any value for them, and it even confuses them.
Based on this answer, it can be concluded that having the attributes as part of the textual explanation
is useful when people are familiar with the representations. Additionally, people with deeper under-
standing of ASTRIS that are used to seeing the attributes thought that the readability is not negatively
affected when the attributes are included in the text.

On the other hand an interesting observation is that few participants explained that when the at-
tributes are presented as in Report 1, it is easier to relate the textual explanation to the table provided
after each explanation and that indeed the attributes help them understand the anomalies especially

46 5. Evaluation

when the anomaly detected is undefined.

5.8. Summary
In this section the two hypothesis will be answered base on the results presented in section 5.7.

5.8.1. Hypothesis 1
As stated in Section 5.4, the first hypothesis of this research is H1:Report 1 is more understandable
than Report 2. We answer this hypothesis based on the Task Performance results.

Based on the Wilcoxon signed rank test the overall performance of the two reports was not signifi-
cantly different, and therefore this hypothesis is rejected.

When performing the performance analysis per case, we can observe that there is no significant
difference for Case 1,2 and 4, but for case 3 a significant difference was noticed. Based on the
qualitative analysis we have observed that Report 1 does perform better. As the sample size of this
research is small, and due to the results of the per case analysis, we believe that this hypothesis is
worth studying further.

5.8.2. Hypothesis 2
The second hypothesis of this research is H2: Report 1 is preferred over Report 2

We answer this hypothesis based on the Human Rating results. H2 is accepted based on both
the qualitative and quantitative analysis. Furthermore, the quantitative results shows that Report 1 is
preferred base on Readability, Accuracy and Usefulness as well as for the overall analysis. Therefore,
we can conclude that Report 1 is preferred over Report2.

5.9. Answering Research Question
The research question that this research answers isWhen reporting anomalies of a train control system,
what degree of detail from the log files should the NLG system use such that the user gets a full
understanding of the anomaly?

Based on two hypothesis answered in Section 5.7 we answer the research question. When de-
veloping an NLG system for a train control system, one should use a more detailed representation of
the system and extract more information available in the log file, specifically, the state names and
state attributes. We can conclude that the NLG system that generates Report 1, which uses all the
main information provided in the log file, the target users get a better understanding of the anomaly
explained. In the case of this research we can establish that the users perform better and prefer to
read the report by the NLG system that uses the attributes over the NLG system that does not use the
attributes.

6
Discussion and Future Work

In this chapter we summarize the research work of this thesis. Furthermore, we present the limitations
and conclude the findings. At last, we give our suggestions for improvements and future work.

6.1. Project Summary
6.1.1. Research goal
Natural Language Generation techniques have not yet been used in the rail domain. The goal of this
research is to design, implement and evaluate a Natural Language Generation system that can pro-
duce human readable summaries for explaining anomalies detected in the train control system based
on analyzing log files. Furthermore, to compare the performance and the preference of the Natural
Language Generation system, when using two different representations for the train control system in
the Data Analysis/Content Determination Task.

The research is completed in 4 stages, which are explained in the following 4 subsections.

6.1.2. Exploratory stage
The research began with getting familiar with the related work on the topic. Papers from the field of
Natural Language Generation and anomaly detection were studied and analyzed to get a solid under-
standing of up-to-date research. Next, the train control system was studied and understood in detailed.

Once the domain knowledge was acquired, two graph representations of the train control system
were designed. One representation used more details to represent the system and get more informa-
tion (states and attributes) from the data (log files). The second representation used less information
(states only).

To design the Natural Language Generation system and to perform a requirement analysis, 2 inter-
views with the software developers of the train control system were conducted. Based on the interview
the functional and not functional requirements were set as follows :

• Functional requirements: whenever an anomaly is detected in the log files, the Natural Language
Generation system should present the user with a summary explaining the anomaly detected

• Non-functional requirements: The summary should always include the exact time when the
anomalous message was logged. Furthermore, the exact route request specification should be
presented to the user. The anomaly should be explained in a textual form in details, including
the exact state names where the anomaly was detected. Lastly, a table with all the log messages
that are concerned with the route request need to be presented to the user. The table needs to
include the cheksum found in the log file, the state of each message and all the attributes with
an indication if they were active/non-active at the moment the message was logged.

47

48 6. Discussion and Future Work

6.1.3. Implementation stage
Once the requirements were known, the implementation started. The design of the system was es-
tablished after which the pre-processing was performed. For the data analysis step, the log files were
cleaned and messages from the same route request were mapped and stored in a csv file. The two
representation of the train control system were hard-coded into state machines which gave each route
request a label which showed if the request was anomalous. If the route was indeed anomalous,
further information were retrieved from the log file and the state where the anomaly occurred was
specified.

Based on the data analysis, the data interpretation, document planning and the microplanning &
realizations steps were performed. A template was designed in a form of a syntax tree for each anomaly
type. The templates were realized using simpleNLG in Java. The output of the realization were the
human readable reports generated by the Natural Language Generation system designed.

6.1.4. Evaluation - Case study
The evaluation of the system was done in a form of a within-subject case study. We designed the case
study by specifying the dependent and independent variables of the experiment.

The independent variables were the cases chosen to be presented in the reports. The choice was
made in such a way that each anomaly type would appear at least once in the reports. Additionally,
each participant was presented with two reports. One generated based on the more detailed repre-
sentation of the train control system, and the other based on the less detailed representation of the
train control system.

The dependent variables were the order in which each participant was presented with the two re-
ports. Furthermore, to reduce biases, the Latin square model was used to change the order in which
each case was presented in each of the reports. This resulted in unique reports for each participant.

Additionally, before the case study was performed, a consent form explaining the case study and
how the information gathered will be used was designed and approved by the TU Delft Ethics commit-
tee.

Lastly, the questions asked during the case study were establish such that they are suitable for the
task performance and human rating evaluation of the system.

6.1.5. Results
The information gathered from the case study were analyzed and the hypothesis were tested. The data
was analyzed by using descriptive statistics and a Wilcoxon Sign Tank test. Based on the hypothesis
testing the research question was answered. The results and the answer of the research question is
discussed in the next subsection (Section 6.2).

6.2. Conclusion
In this research we designed, implemented and evaluated a Natural Language Generation system for
the rail domain.

The research question, When reporting anomalies of a train control system, what degree of detail
from the log files should the NLG system use such that the user gets a full understanding of the
anomaly? was answered based on the results of the two hypothesis below.

• H1: The reports generated by the NLG system that uses the more detailed representation of the
train control system is more understandable compared to the reports generated by NLG system
that uses the less detailed representation of the train control system

• H2: The reports generated by the NLG system that uses the more detailed representation of the
train control system is preferred by the domain experts compared to the reports generated by
the NLG system that uses the less detailed representation of the train control system

6.3. Lamination 49

Hypothesis 1 was rejected as no statistically significant difference was seen when comparing the
performance of the two reports overall. Moreover, we conclude that the performance of both reports
was very high which shows that both reports presented the user with a solid explanation of the anomaly
detected. Even thought the overall performance of the two reports was not significantly different, we
found a significant difference for case 3 - undefined anomaly, that showed a better performance for
the report that was generated based on the more detailed train control system representation. Due to
the small sample size which is further discussed in the Limitations section, we suggest further analysis
and re-testing of this hypothesis.

Hypothesis 2 was accepted. The results from the human rating evaluation showed that the par-
ticipants did prefer the explanations from the report that was generated by using the more detailed
representation of the train control system. From the results, it can be seen that the readability mea-
sure got the lowest score compared to the accuracy and usefulness measure. By analysing the open
questions answers where the participants explained their choices, we saw a trend that suggested that
the readability got a lower score from participants that did not have a deep knowledge of the log files.
Additionally, most of the participants answered that they were not familiar with seeing the attributes
next to the state name, and this new representation would make the explanations more difficult to read.
We assume that once the participants get familiarized with this representation, this will not be the case.

Answering the research question
Based on the results we firstly conclude that both reports presented the user with a solid explanation

of the anomalies. Furthermore, based on hypothesis 2 we conclude that participants preferred the
reports generated by the Natural Language Generation system that uses a more detailed representation
of the train control system. Therefore, we conclude that using both the state names and state attributes
from the log files, gives a better understanding of the anomalies.

6.3. Lamination
This research had a big challenge with the evaluation of the Natural Language Generation system. That
was due to the limitation of the small sample size of domain experts that could take part in the case
study. As explained in the Chapter 5, the number people who were part of the case study was 16.
Furthermore, after cleaning the data and removing the answers that could not be coded, the analysis
of the results was done on 14 participants only. This does not allow us to make strong conclusion.
Additionally, if the sample size was bigger, other hypothesis could be tested. For example, we could
further divide the domain expert in classes of how high their expertise is. As presented in the results
section, based on the open answer question it was noticed that project mangers and project owners
(who have less software development experience in the train control system) found the less detailed
report easier to read due to the fact that they were not used to seeing the attributes as part of the
states. Having the opportunity to evaluate the reports with a bigger sample size, would make it possible
to make additional conclusions about the NLG system.

6.4. Future Work
For future research and development on the Natural Language Generation systems in the rail domain
we suggest modifying and testing some of the following aspects:

• Using a different anomaly detection technique for the data analysis/content determination task

• Instead of hard coding the state machine, we suggest other researchers to train the state machine
using machine learning techniques

Furthermore, it has been explained that this research focuses on one component of the train control
system. In the future, there will be added benefit if the other components are further related and other
types of log files are used. This will contribute to a more detailed reports and it will make it possible
to further spot the exact anomaly. For example, when an anomaly Type 1 is detected (signaling that
one or more elements were not able to be set in the requested position), looking at the Element com-
ponent of the train control system and making a relation with the Rijweg component, would give the

50 6. Discussion and Future Work

opportunity to point out exactly which element caused the problem.

Lastly, we mentioned that for Case 4 presented in the reports the performance score was low
compared to the other 3 cases. This was because some of the participants did not agree that case 4
was an anomaly. As explained earlier, case 4 did not necessarily indicate a harsh anomaly, but maybe
a loss in connection between the train control system layers or the components. Another explanation
would be that the log file size limit was reached and some messages of the route request were logged
in another log file. For this case, we suggest to change the explanation in the NLG report as a warning
rather than an anomaly.

Bibliography

[1] SimpleNLG Java. https://github.com/simplenlg/simplenlg. (????). Accessed: 2010-
09-30.

[2] Leman Akoglu, Hanghang Tong, and Danai Koutra. 2015. Graph based anomaly detection and
description: a survey. Data mining and knowledge discovery 29, 3 (2015), 626–688.

[3] Lindsay Victoria Allen. 2010. Verification and Anomaly Detection for Event-Based Control of Man-
ufacturing Systems. (2010).

[4] Hadi Banaee, Mobyen Uddin Ahmed, and Amy Loutfi. 2013. Towards NLG for Physiological Data
Monitoringwith Body Area Networks. In 14th European Workshop on Natural Language Genera-
tion, Sofia, Bulgaria, August 8-9, 2013. 193–197.

[5] Horst Bunke. 1999. Error correcting graph matching: On the influence of the underlying cost
function. IEEE transactions on pattern analysis and machine intelligence 21, 9 (1999), 917–922.

[6] Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly detection: A survey. ACM
computing surveys (CSUR) 41, 3 (2009), 15.

[7] David L Chen and Raymond J Mooney. 2008. Learning to sportscast: a test of grounded language
acquisition. In Proceedings of the 25th international conference on Machine learning. ACM, 128–
135.

[8] José Coch. 1998. SYSTEM DEMONSTRATION INTERACTIVE GENERATION AND KNOWLEDGE
ADMINISTRATION IN MULTIMETEO. Natural Language Generation (1998).

[9] Mirtha-Lina Fernández and Gabriel Valiente. 2001. A graph distance metric combining maximum
common subgraph and minimum common supergraph. Pattern Recognition Letters 22, 6-7 (2001),
753–758.

[10] Albert Gatt and Emiel Krahmer. 2018. Survey of the State of the Art in Natural Language Genera-
tion: Core tasks, applications and evaluation. Journal of Artificial Intelligence Research 61 (2018),
65–170.

[11] James Hunter, Yvonne Freer, Albert Gatt, Ehud Reiter, Somayajulu Sripada, and Cindy Sykes.
2012. Automatic generation of natural language nursing shift summaries in neonatal intensive
care: BT-Nurse. Artificial intelligence in medicine 56, 3 (2012), 157–172.

[12] Richard Kittredge, Myunghee Kim, Eli Goldberg, and Alain Polguere. 1994. Sublanguage engi-
neering in the FOG system. In Proceedings of the fourth conference on Applied natural language
processing. Association for Computational Linguistics, 215–216.

[13] Saad Mahamood and Ehud Reiter. 2011. Generating affective natural language for parents of
neonatal infants. In Proceedings of the 13th European Workshop on Natural Language Generation.
Association for Computational Linguistics, 12–21.

[14] Alexander Maier, Asmir Vodencarevic, Oliver Niggemann, Roman Just, and Michael Jaeger. 2011.
Anomaly detection in production plants using timed automata. In 8th International Conference
on Informatics in Control, Automation and Robotics (ICINCO). 363–369.

[15] Christoph C Michael and Anup Ghosh. 2000. Two state-based approaches to program-based
anomaly detection. In Proceedings 16th Annual Computer Security Applications Conference (AC-
SAC’00). IEEE, 21–30.

[16] Ruslan Mitkov. 1991. Generating public weather reports. Universiti Sains Malaysia.

51

https://github.com/simplenlg/simplenlg

52 Bibliography

[17] Marcello Pelillo. 1999. Replicator equations, maximal cliques, and graph isomorphism. In Advances
in Neural Information Processing Systems. 550–556.

[18] Marcello Pelillo. 2002. Matching free trees, maximal cliques, and monotone game dynamics. IEEE
Transactions on Pattern Analysis and Machine Intelligence 24, 11 (2002), 1535–1541.

[19] François Portet, Ehud Reiter, Albert Gatt, Jim Hunter, Somayajulu Sripada, Yvonne Freer, and
Cindy Sykes. 2009. Automatic generation of textual summaries from neonatal intensive care
data. Artificial Intelligence 173, 7-8 (2009), 789–816.

[20] François Portet, Ehud Reiter, Albert Gatt, Jim Hunter, Somayajulu Sripada, Yvonne Freer, and
Cindy Sykes. 2009. Automatic generation of textual summaries from neonatal intensive care
data. Artificial Intelligence 173, 7-8 (2009), 789–816.

[21] Ehud Reiter. 2007. An architecture for data-to-text systems. In Proceedings of the Eleventh Eu-
ropean Workshop on Natural Language Generation. Association for Computational Linguistics,
97–104.

[22] Ehud Reiter and Robert Dale. 1997. Building applied natural language generation systems. Natural
Language Engineering 3, 1 (1997), 57–87.

[23] Ehud Reiter and Robert Dale. 2000. Building natural language generation systems. Cambridge
university press.

[24] Debajit Sensarma and Samar Sen Sarma. 2015. A survey on different graph based anomaly
detection techniques. Indian Journal of Science and Technology 8, 31 (2015).

[25] Bengt Sigurd, Caroline Willners, Mats Eeg-Olofsson, and Christer Johansson. 1992. Deep com-
prehension, generation and translation of weather forecasts (Weathra). In Proceedings of the
14th conference on Computational linguistics-Volume 2. Association for Computational Linguis-
tics, 749–755.

[26] Somayajulu Sripada, Ehud Reiter, and Ian Davy. 2003. SumTime-Mousam: Configurable marine
weather forecast generator. Expert Update 6, 3 (2003), 4–10.

[27] Somayajulu G Sripada and Feng Gao. 2007. Linguistic Interpretations of Scuba Dive Computer
Data. In Information Visualization, 2007. IV’07. 11th International Conference. IEEE, 436–441.

[28] Somayajulu G Sripada and Feng Gao. 2007. Summarizing dive computer data: A case study in
integrating textual and graphical presentations of numerical data. In MOG 2007 Workshop on
Multimodal Output Generation. 149.

[29] Mariët Theune, Esther Klabbers, Jan-Roelof de Pijper, Emiel Krahmer, and Jan Odijk. 2001. From
data to speech: a general approach. Natural Language Engineering 7, 1 (2001), 47–86.

[30] J Treurniet. 2005. A Finite State Machine Algorithm for Detecting TCP Anomalies. Technical Report.
Technical report, Defence R&D Canada.

[31] Julian R Ullmann. 1976. An algorithm for subgraph isomorphism. Journal of the ACM (JACM) 23,
1 (1976), 31–42.

[32] Marian Van Der Meulen, Robert H Logie, Yvonne Freer, Cindy Sykes, Neil McIntosh, and Jim
Hunter. 2010. When a graph is poorer than 100 words: A comparison of computerised natural
language generation, human generated descriptions and graphical displays in neonatal intensive
care. Applied Cognitive Psychology: The Official Journal of the Society for Applied Research in
Memory and Cognition 24, 1 (2010), 77–89.

A
Appendix A

53

54 A. Appendix A

Fi
gu
re
A.
1:
Sy
nt
ax
tr
ee
us
ed
fo
r
re
al
iz
at
io
n
of
pa
ra
gr
ap
h
2
w
he
n
ex
pl
ai
ni
ng
Ty
pe
1
an
om
al
y
w
ith
N
LG

sy
st
em

th
at
us
es
(S
M

+
A)

Fi
gu
re
A.
2:
Sy
nt
ax
tr
ee
us
ed
fo
r
re
al
iz
at
io
n
of
se
nt
en
ce
5
fo
r
ex
pl
ai
ni
ng
an
om
al
y
ty
pe
5(
un
de
fin
ed
an
om
al
y)
fo
r
bo
th
N
LG

sy
st
em
s

55

THESIS EVALUATION
Report 1

Unusual behavior was detected when setting the route 62:76:LLRR.

One or more elements did not reach the requested position for the route. Consequently, state
'Wordt_voorbereid [IR]' transitioned back to 'Gereserveerd [IR]', instead of transitioning to
the expected state 'Voorbereid [IR]'.

The table below shows all the states visited and the attributes that were active in the particular
state (1 - Actief, 0 - NonActief). Additionally, the time when a state was visited is indicated
in the third column. The unusual state transition is the transition from row 4 to row 5.

1. Which unusual behavior occurred?

2. Please mark in the table the messages that correspond to the explained unusual behavior?

Unusual behavior was detected when setting the route 62:76:LLRR.

BEVNL denied an 'InstellenRijweg' request sent by ASTRIS. Therefore, ASTRIS transitioned from
state 'Instelopdracht_verstuurd []' to 'Instelopdracht_afgekeurd []', instead of transitioning
to state 'Wordt_ingesteld []'.

The table below shows all the states visited and the attributes that were active in the

particular state (1 - Actief, 0 - NonActief). Additionally, the time when a state was visited

is indicated in the third column. The unusual state transition is the transition from row 6 to

row 7.

1. Which unusual behavior occurred?

2. Please mark in the table the messages that correspond to the explained unusual behavior?

Figure A.3: Example Report 1

56 A. Appendix A

Unusual behavior was detected when setting the route 62:76:LLRR.

An undefined state transition occurred. State 'Rust[]' transitioned to state 'Rust[]'. This
transition is not allowed either because the state in row 2 - Rust[] is an undefined state or
the state is defined but it cannot be reached through the state in row 1 - Rust[].

The table below shows all the states visited and the attributes that were active in the

particular state (1 - Actief, 0 - NonActief). Additionally, the time when a state was visited

is indicated in the third column. The unusual state transition is the transition from row 1 to

row 2.

1. Which unusual behavior occurred?

2. Please mark in the table the messages that correspond to the explained unusual behavior?

Unusual behavior was detected when setting the route 62:76:LLRR.

An undefined state transition occurred. State 'Instelopdracht_verstuurd [AU]' transitioned to
state 'Instelopdracht_afgekeurd[AU]'. This transition is not allowed either because the state
in row 7 - Instelopdracht_verstuurd [AU] is an undefined state or the state is defined but it
cannot be reached through the state in row 6 - Instelopdracht_afgekeurd[AU].

The table below shows all the states visited and the attributes that were active in a

particular state (1 - Actief, 0 - NonActief). Additionally, the time when a state was visited

is indicated in the third column. The unusual state transition is the transition from row 6 to
row 7.

1. Which unusual behavior occurred?

2. Please mark in the table the messages that correspond to the explained unusual behavior?

Unusual behavior was detected when setting the route 162:118X:RRRR.

This system did not go back to state 'Rust'. This might be because the log file did not contain
all the messages related to this 'InstellenRijweg' request.

The table below shows all the states visited and the attributes that were active in a
particular state (1 - Actief, 0 - NonActief). Additionally, the time when a state was visited
is indicated in the third column.

Figure A.3: Example Report 1 (cont.)

57

1. Which unusual behavior occurred?

2. Please mark in the table the messages that correspond to the explained unusual behavior?

Figure A.3: Example Report 1 (cont.)

58 A. Appendix A

THESIS EVALUATION
Report 2

Unusual behavior was detected when setting the route 62:76:LLRR.

One or more elements did not reach the requested position for the route. Consequently, state
'Wordt_voorbereid transitioned back to 'Gereserveerd', instead of transitioning to the expected
state 'Voorbereid'.

The table below shows all the states visited and the attributes that were active in a

particular state (1 - Actief, 0 - NonActief). Additionally, the time when a state was visited

is indicated in the third column. The unusual state transition is the transition from row 4 to

row 5.

1. Which unusual behavior occurred?

2. Please mark in the table the messages that correspond to the explained unusual behavior?

Unusual behavior was detected when setting the route 62:76:LLRR.

BEVNL denied an 'InstellenRijweg' request sent by ASTRIS. Therefore, ASTRIS transitioned from
state 'Instelopdracht_verstuurd' to 'Instelopdracht_afgekeurd', instead of transitioning to
state 'Wordt_ingesteld'.

The table below shows all the states visited and the attributes that were active in a
particular state (1 - Actief, 0 - NonActief). Additionally, the time when a state was visited
is indicated in the third column. The unusual state transition is the transition from row 6 to
row 7.

1. Which unusual behavior occurred?

2. Please mark in the table the messages that correspond to the explained unusual behavior?

Figure A.4: Example Report 2

59

Unusual behavior was detected when setting the route 62:76:LLRR.

BEVNL denied an 'InstellenRijweg' request sent by ASTRIS. Therefore, ASTRIS transitioned from
state 'Instelopdracht_verstuurd' to 'Instelopdracht_afgekeurd', instead of transitioning to
state 'Wordt_ingesteld'.

The table below shows all the states visited and the attributes that were active in a

particular state (1 - Actief, 0 - NonActief). Additionally, the time when a state was visited

is indicated in the third column. The unusual state transition is the transition from row 6 to

row 7.

1. Which unusual behavior occurred?

2. Please mark in the table the messages that correspond to the explained unusual behavior?

Unusual behavior was detected when setting the route 162:118X:RRRR.

This system did not go back to state 'Rust'. This might be because the log file did not contain
all the messages related to this 'InstellenRijweg' request.

The table below shows all the states visited and the attributes that were active in a
particular state (1 - Actief, 0 - NonActief). Additionally, the time when a state was visited
is indicated in the third column.

1. Which unusual behavior occurred?

2. Please mark in the table the messages that correspond to the explained unusual behavior?

Figure A.4: Example Report 2 (cont.)

60 A. Appendix A

61

Figure A.5: Example message from an IDCR log file

	List of Figures
	List of Tables
	tudelft-cyanIntroduction
	Motivation
	Research Question and Steps
	Contributions
	Thesis Outline

	tudelft-cyanRelated Work
	tudelft-cyanIntroduction
	tudelft-cyanWhat is Natural Language Generation
	tudelft-cyanChallenges in NLG
	tudelft-cyanThe usage of NLG systems over the year in different fields
	NLG in medical field
	NLG in weather forecasting
	NLG in other fields

	tudelft-cyanEvaluation of NLG systems
	tudelft-cyanGraph Based Anomaly detection
	tudelft-cyanWhat is graph-based anomaly detection?
	tudelft-cyanChallenges of graph based anomaly detection

	Research gaps and Research question
	Summary

	tudelft-cyanProject context
	Background information
	The architecture of the train control system (TCS) & ASTRIS
	The functionality of ASTRIS
	Problem statement

	tudelft-cyanMethodology
	Requirement Analysis
	Interviews
	Functional requirements
	Non-functional requirements

	The architecture of the NLG system
	Data Analysis
	Data Interpretation
	Document Planning
	Microplanning and Realisation

	Summary

	Evaluation
	Evaluation methods
	Independent variables
	Dependent variables
	Hypothesis and Measures
	Materials
	Procedure
	Results
	Participants
	H1 : Report 1 is more understandable than Report 2
	H2 : Report 1 is preferred over Report 2

	Summary
	Hypothesis 1
	Hypothesis 2

	Answering Research Question

	Discussion and Future Work
	Project Summary
	Research goal
	Exploratory stage
	Implementation stage
	Evaluation - Case study
	Results

	Conclusion
	Lamination
	Future Work

	Bibliography
	tudelft-cyanAppendix A

