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Abstract
A pentagon is an example of a highly symmetric polygon in two-dimensional
space. The three-and four-dimensional analogue of these polygons are the regular
polyhedra and the regular polytopes. There exist five regular polyhedra in three-
dimensional space and these are called the Platonic solids. These five Platonic
solids are the tetrahedron, cube, octahedron, dodecahedron and the icosahedron.
In four-dimensional space, the regular polytopes are the 5-cell, the 8-cell, also
called the tesseract, the 16-cell, the 24-cell, the 120-cell and the 600-cell.

The aim of this thesis is to give an introduction to some symmetry groups of
the regular polytopes in three and four dimensional space at undergraduate math-
ematical level. The main focus of this thesis is to describe the symmetry group of
the icosahedron, to introduce the Icosians, which are related to the rotation group
of the icosahedron, and to study the action of the symmetries of the 600-cell on
the twenty-five 24-cells it circumscribes.

First, the symmetry groups of the Platonic Solids, the regular polytopes in
three dimensional space, will be established. Then it will be shown that there
exists a two-to-one map from the the group H1 of unit quaternions to the group
SO(3), the group of 3×3 orientation-preserving matrices. This map will be used to
describe the binary groups, which are double covers of the rotation groups of the
Platonic solids. After that, the symmetry group of the tesseract will be studied
both via an isomorphism between G := {±1}4 ×S4 and the symmetry group of the
tesseract as well as geometrically via rotation planes. Then, the 24-cell and the
600-cell will be defined as the four-dimensional regular polytopes whose vertices
are the quaternions from the binary tetrahedral group and the binary icosahedral
group, the Icosians. It will be shown that twenty-five 24-cells inscribe a 600-cell
and that there are 10 ways to decompose the vertices of a 600-cell into the ver-
tices of 5 disjoint 24-cells. Next, it will be shown that these 10 decompositions are
chiral, 5 being ’left-handed’ and 5 being ’right-handed’. Finally, it is shown that
the symmetry group of the 600-cell acts on these 5+5 decompositions by permuta-
tion, each permutation being described by an element from A5 × A5o {±1}, where
−1 acts on A5 × A5 by interchanging the factors of A5 × A5.
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List of symbols
Symbol Description

I the icosahedral rotation group
Ih the full icosahedral group, also denoted H3
H3 Ih
T the tetrahedral rotation group
Td the full tetrahedral symmetry group
O octahedral rotation group
Oh the full octahedral group
H the group of quaternions
H1 the group of unit quaternions
2I the binary icosahedral group, the extension of I
2O the binary octahedral group, the extension of O
2T the binary tetrahedral group, the extension of T
C8 the tesseract, 8-cell, hypercube of dimension 4
O4 the rotation group of the tesseract

O4,h the full symmetry group of the tesseract
Q8 the group of 8 quaternions given by the permutations of (±1,0,0,0)

[3,3,5] The Coxeter notation for the symmetry group of the 600-cell
Sn group of permutations of n elements
An the group of even permutations of n elements
V4 the Klein Vierergruppe
Cn the cyclic group of n elements
C2 the cyclic group of 2 elements, which we view as the multiplicative group {±1}

O(3) the group of orthogonal 3×3 matrices, (determinant ±1)
O(4) the group of orthogonal 4×4 matrices, (determinant ±1)

SO(3) the group of orthogonal and orientation preserving 3×3 matrices,
(determinant 1)

SO(4) the group of orthogonal and orientation preserving 4×4 matrices,
(determinant 1)





1 Introduction

1.1 Symmetries in the branches of science
The world is full of symmetries. Symmetries are often considered to be beautiful
and fascinating as they represent a kind of evenness, sameness, order or regular-
ity. The Greeks, for example, were already fascinated by symmetries. They hoped
the symmetries present in objects would be present in the structure of nature as
well. Plato described some symmetries in mathematics, although he did not have
a formal definition for symmetries nor was he interested in these symmetries in
themselves. For him, the search for Beauty was the motivation to consider sym-
metric objects. [25]

However, throughout the years, symmetries have become highly useful in sci-
entific research as well. Gross even claims that it would be hard to imagine that
much progress could have been made in deducing the laws of nature without the
existence of certain symmetries. [20] Penrose even points out the existence of sym-
metries in quite some important laws in nature. Het writes:

All the successful equations of physics are symmetrical in time. They
can be used equally well in one direction in time as in the other. The fu-
ture and the past seem physically to be on a completely equal footing.
Newton’s laws, Hamilton’s equations, Maxwell’s equations, Einstein’s
general relativity, Dirac’s equation, the Schrödinger’s equation - all
remain effectively unaltered if we reverse the direction of time. [30]

In chemistry, for example, symmetry are found as well. The borohydride-
anion, dodecahedrane and the pure carbon atom, for instance, denoted
by B12H2−

12 ,C20H20 and C60 respectively are said to have icosahedral symmetry. [23]
Icosahedral symmetries can be described by the rotation group of the icosahedron,
a three-dimensional regular polytope. As a matter of fact, the investigation of this
rotation group is one of the subjects of this thesis. Another symmetry appear-
ing in chemistry is found in the organization of protein cells enclosing the DNA
of a virus. Those protein cells form the capsid and are often found to be highly
symmetric. In fact, there are many viruses whose capsids have icosahedral sym-
metry. [9]

Furthermore, the icosahedral symmetries can be described by a group of quater-
nions, called the the Icosians. Those Icosians are closely related to the three- and
four-dimensional regular polytopes. This group seems to be rich and filled with
beautiful symmetries that are not yet fully explored. A possible research area
concering those Icosians lies in the quantum mechanics. Namely, there seems to
be a tantalizing similarity to the structure of the known particles, the Standard
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Model from the particle physics. The understanding of the subgroups and conju-
gacy classes and the root systems of the Icosians, is a step on the way to examine
whether there might exists a meaningful mapping between the (basis states of)
elementary particles and the group of Icosians. [35]. Such a mapping might be
useful to calculate the interactions between particles from the Standard Model
more effectively. At the moment, scattering processes between fundamental par-
ticles must be calculated by summing over all Feynman diagrams that describe the
allowed interactions.

This thesis has without doubt been a great and fascinating learning experi-
ence. However, I hope that the symmetries of the 600-cell that are not yet explored
will contribute to determine the analogies between the Icosians and the Standard
Model in particle physics.

1.2 Thesis outline
The aim of this thesis is to give an account of the regular polytopes in three-
and four-dimensional space by studying their symmetry groups. The study of all
the symmetry groups of these regular polytopes would be beyond the scope of a
bachelor thesis. Therefore, this thesis will mainly be focused on the symmetry
group of the icosahedron and the binary icosahedral group, called the Icosians,
extending the rotation group of the icosahedron. These Icosians form the vertices
of a four-dimensional regular polytope, called the 600-cell. This four-dimensional
regular polytope will be studied extensively in this thesis as well. Although not all
symmetry groups of the regular polytopes in three and four dimensional space are
the main focus of this thesis, an account of the symmetry groups of the Platonic
solids and the tesseract, together with an investigation of the 24-cell and the
binary tetrahedral group and binary octahedral group will be given.

This thesis is written in such a way that it is understandable for any under-
graduate mathematics student familiar with some Algebra and Linear Algebra.
All required knowledge in these fields are included in the Appendix A.1.

This thesis is organised as follows. First of all, the Platonic Solids are in-
troduced in Section 2. Those Platonic Solids are the three-dimensional regular
polytopes: the tetrahedron, cube, octahedron, icosahedron and dodecahedron. The
symmetry groups of these Platonic solids solids will be studied together with their
duality. Also, the inscription of tetrahedra in a cube and cubes in a dodecahedron
will be studied.

In Section 3, the quaternions will be formalized and the Euler’s rotation theorem
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will be given. It will be shown that the rotation in three-dimensional space can be
represented by quaternions. Representing the rotations from the rotations groups
of the Platonic Solids by quaternions, the binary groups of these quaternions will
be studied: the icosahedral group, tetraheral group and the octahedral group.

Next, in Section 4, symmetry groups in four dimensional space will be intro-
duced by investigating the symmetry group of the tesseract. We will show that the
symmetry group of the tesseract is isomorphic with the set G := {±1}4 ×S4. This
set is used to describe the symmetries of the tesseract. Afterwards, the symme-
tries of the tesseract will also be described geometrically using rotations planes.
After that, the 24-cell will be investigated and we will show that there are three
tesseract inscribed in a 24-cell as well as three 16-cells. As crowning achievement
of the investigation of symmetry groups, the 600-cell will be studied. In particular,
we will show that the 600-cell can be decomposed into 5 disjoint 24-cells in 10 dif-
ferent ways. It will be shown that those 10 decompositions are chiral, that is, 5 of
them are ’left-handed’ and 5 are ’right-handed’. It will be shown that the 600-cell
acts on those 5+5 decompositions by permutation. In fact, it will be shown that
a symmetry of the 600-cell maps the left-handed decompositions to left-handed
decompositions and right-handed decompositions to right-handed decompositions
if and only if it preserves the orientation of the 600-cell.

The symmetries of the icosahedron and dodecahedron will run like a thread
through this entire thesis, starting in Section 2, coming back in the binary icosa-
hedral group in Section 3.2 and appearing again in the study of the 600-cell in
Section 4.3. The symmetries of the 600-cell and the appearance of the icosahedral
rotation group over and over again, must make mathematicians agree with Plato
that there is a fascinating amount of beauty in mathematics.

1.3 Preliminary remarks
There are two remarks that need to be made in advance. The first remark con-
cerns the figures used in thesis. Any figure without reference to a source is pro-
duced by myself using either the TikZ-package in LATEX or using Mathematica.
Secondly, some theorems in thesis have been found and been proved computa-
tionally. The Mathematica code used to find those result have been included in
the Appendix B. However, together with my supervisors Dr. J.G. Spandaw and
P.M. Visser, these theorems have been proved using geometry, group theory and
root systems as well. Some of these proofs contain more details. However, these
details are not included in this bachelor’s thesis. The theorems concerned are:
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• Theorem 4.17
• Theorem 4.18
• Theorem 4.20
• Theorem 4.21
• Theorem 4.22
• Remark after Definition 4.23
• Theorem 4.26
• Conjecture 4.27.



2 Three dimensions

2.1 Platonic Solids
Definition 2.1. In three-dimensional space, a Platonic solid is a regular, convex
polyhedron. It is constructed by congruent, regular polygonal faces with the same
number of faces meeting at each vertex. [13]

Figure 1: The five Platonic Solids. [Image retrieved from [5]]

There are exactly five regular, convex polyhedra: the tetrahedron, the cube or
hexahedron, the octahedron, dodecahedron and the icosahedron. The existence of
those Platonic Solids can be shown directly from the definition of the coordinates
of its vertices and the regularity of the polyhedral faces. The converse, the fact
that there are only five Platonic Solids can be obtained from the observation that
for such a solid the sum of the angles between the edges of the faces meeting in a
vertex, has to be strictly smaller than 360°. Indeed, if this sum add up to exactly
360°, the figure obtained is two-dimensional. If the angles add up to a number
smaller than 360 there is space left to fold the faces meeting in a vertex in such a
way that a three-dimensional polyhedron is constructed.

We will prove that there are at most five Platonic Solids. We will not prove the
existence of the Platonic solids. That is, we will not prove that there are at least
five Platonic Solids. However, an elaborate construction of the Platonic Solids can
be found in Propostion 13 to 17 of the thirteenth book of Euclid’s elements [12].

Theorem 2.2. There are at most five Platonic solids: the tetrahedron, the cube, the
octahedron, icosahedron and dodecahedron.

We establish a formula for the edges, vertices and faces that such a solid has
to satisfy. Together with Euler’s polyedral formula in Theorem 2.3, we show that
there are at most five Platonic solids.
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Theorem 2.3 (Euler’s polyhedral formula). The number of vertices V , faces F,
and edges E in a convex three-dimensional polyhedron satisfy

V −E+F = 2.

Any Platonic solid is by definition a convex 3-dimensional polyhedron and thus
satisfies Euler’s polyhedral formula.
Define V to be the number of vertices of a polyhedron, E to be the number of its
edges, F the number of its faces, EF the number of edges of each face and FV
the number of faces that meet at each vertex. Then for any Platonic solid, the
following equations have to be satisfied:{

EF ·F = 2E = FV ·V (1)
V −E+F = 2 (2)

The first equality in Equation (1) comes from the fact that each edge is incident
to two vertices. The number of faces meeting in each vertex is the same as the
number of edges meeting in a vertex. Thus, the product of the number of faces
incident to a vertex and the total number of vertices is exactly twice the number
of edges. The second equality in Equation (1) is derived from the fact that the
each edge is incident to two faces. Thus, counting the total number of faces and
multiplying this number with the number of edges of each face equals twice the
number of edges as well.

Substitution of Equation (1) into Equation (2), dividing the obtained equation
by 2 and taking E outside the brackets, gives the following equality:

E
(

1
FV

− 1
2
+ 1

EF

)
= 1.

Since E > 0, it follows that :
1

FV
+ 1

EF
> 1

2
.

An explicit formula for V ,E and F can also be found from substitutions of
Equation (1) into Equation (2). These formulas for V ,E and F are used to make
Table 1. 

V = 4EF

4− (FV −2)(EF −2)
(3)

E = 2EF ·FV

4− (FV −2)(EF −2)
(4)

F = 4FV

4− (FV −2)(EF −2)
(5)
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Obviously, EF ,FV ≥ 3 to construct a three-dimensional object. If FV ,EF ≥ 5,
Equation (4) implies that E < 0, which is impossible. Thus 3 ≤ FV ,EF ≤ 5. Fur-
thermore, if EF = FV = 4, the system of equations in Equation (1) and Equation (2)
becomes unsolvable. Geometrically, this can be explained as follows. If EF = FV = 4
there are 4 squares meeting at each vertex. Since the total angle meeting at the
vertex equals 4·90= 360°, the constructed object is again two-dimensional. Hence,
EF =VF = 4 flattens the object and is not a Platonic Solid.

After substituting all possible values for EF and FV into the Equations (3),
(4) and (5), we obtain the five Platonic solids: the tetrahedron, cube, octahedron,
dodecahedron and the icosahedron. These Platonic solids, together with the num-
ber V ,E,F,FV and EF , are visualized in Table 1 below. [24]

FV = 3 V = 4

EF = 3
V = 6
F = 4 Tetrahedron

FV = 3 V = 8

EF = 4
E = 12
F = 6 Cube

FV = 3 V = 20

EF = 5
E = 30
F = 12 Dodecahedron

FV = 4 V = 6

EF = 3
E = 12
F = 8 Octahedron

FV = 5 V = 12

EF = 5
E = 30
F = 20 Icosahedron

Table 1: The five regular, convex 3-dimensional polyhedra, known as the Platonic
Solids, with their number of vertices, edges and faces. [Image retrieved from [5]]

2.2 Icosahedron
This chapter is about the icosahedron, one of the five Platonic solids. The number
of vertices, edges, faces as well as the symmetry group is examined. The rotations
and reflections of the icosahedron will be made explicit and we will set up an
isomorphism between the rotation group of the icosahedron and the alternating
group A5.

18



Figure 2: An icosahedron.

2.2.1 Definition of the icosahedron

Definition 2.4 (Icosahedron). The icosahedron is a regular polyhedron whose
faces are 20 equiliteral triangles of which 5 meet in each vertex.

Since the icosahedron is made up of 20 triangles and each triangle is circum-
scribed by 3 edges, the icosahedron has 20·3

2 = 30 edges. In each vertex, 5 edges
meet and each edge is incident to 2 vertices. Hence, the total number of vertices
of the icosahedron is 30·2

5 = 12 vertices. In summary, the icosahedron meets the
following criteria:

Icosahedron
Triangular faces 20

Edges 30
Vertices 12

Another useful representation of the icosahedron is the coordinate represen-
tation of the vertices. Namely, the vertices of the icosahedron lie exactly at the
corner points of three golden frames inscribing the icosahedron (Figure 3). These
golden frames are characterized by the property that the ratio of its sides is given
by the golden ratio, that is 1 :φ, where φ= 1+p5

2 .
The coordinates of an icosahedron can be given using these golden rectangles.

If we take the the length of the golden rectangles to be 2φ, the width of the rectan-
gle is set to 2 and the distance between two adjacent vertices is 2. The coordinates
of the vertices of an icosahedron defined by these golden frames are given by all
possible sign combinations of the coordinates:

(0,±1,±φ), (±φ,±1,0), (±1,±φ,0). (6)

2.2.2 Rotation group of the icosahedron

Before we describe the rotations of the icosahedron by their rotation axis, we
shortly introduce the definition of a rotation in R3.
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Figure 3: Golden frames inscribed in an icosahedron. [Image retrieved from [8]]

Definition 2.5 (Rotation in R3). A rotation in R3 is an orthogonal transformation
that preserves orientation and can be described by an element from the matrix
group O(3).

Intuitively, a rotation rotates about a certain rotation axis with a specified ro-
tation angle. The rotation axis is left invariant under the rotation. This intuitive
definition appears to be equivalent to the definition given. The equivalence can be
found using the matrix defined in Theorem A.40.

The total number of rotations of the icosahedron can be found using a stan-
dard orbit-stabilizer argument. The icosahedron has 20 triangular faces and each
triangle can be mapped to one of the other 20 triangles of the icosahedron. Each
triangular face is fixed by only 3 rotations of the icosahedron. It thus follows that
rotation group of the icosahedron contains 20 ·3= 60 rotations.

These 60 rotations can be split up into four types. One type is the identity
rotation and the other three types distinguish themselves from the other rotations
by the geometric description of the points that get fixed under a rotation. To
be more specific, one of these 59 rotations either fixes two opposite vertices, two
opposite edges or two opposite triangles.

Let us introduce some notation for the rotation group and symmetry group of
the icosahedron.

Definition 2.6 (Icosahedral group). The icosahedral group, denoted I, is the
group consisting of all rotations of the icosahedron and has order 60.

Definition 2.7 (Full icosahedral group). The full icosahedral group, denoted Ih
or H3, is the group consisting of all symmetries of the icosahedron and has or-
der 120.

In the last part of this section we determine the number of rotations for each
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of the three non-trivial rotations described earlier. In Section 2.2.3 we investigate
the conjugacy classes of these four types of rotations.

Consider the rotation of the icosahedron fixing two opposite vertices. It follows
that there are 12

2 possible rotation axes. Those rotations have a rotation angle
of 360°

5 = 72°, since 5 triangles meet in each vertex. This type of rotation can be
seen as rotation of the 5 adjacent triangles over 72°. Notice that after performing
5 rotations about 72° about the same rotation axis and in the same direction of
rotation, places the icosahedron in its original position. Thus, in total there are
6 ·4= 24 non-trivial rotations about an axis through two vertices.

Next, we consider the rotations that fix two triangles of the icosahedron. Since
the icosahedron has 20 triangles, it follows that there are 20

2 possible ways to
pick two opposite triangles from the icosahedron. Since a triangle has three
edges, or equivalently, three adjacent triangles, it follows that these rotations
rotate the adjacent edges or triangles respectively. To place an adjacent triangle
in the positions of an adjacent triangle, the icosahedron needs to be rotated over
120°. Thus, only a rotation about 120° about a rotation axis through two mid-
points of two opposite triangles rotates the icosahedron non-trivially. It follows
that there are 10 ·2= 20 non-trivial rotations that fix two opposite triangles.

Lastly, the rotation group of the icosahedron also contains rotations fixing two
opposite edges. Since each edge is an edge of two triangles, a rotation that fixes
two edges permutes the two triangles sharing such an edge. Since there are
30
2 ways to construct a rotation axis through two opposite edges, it follows that

there are 15 rotations over 180°.
In total we found the 24+ 20+ 15+ 1 = 60 rotations of the icosahedron. A

visualization of the rotations, the number of those rotations, their order, angle
and rotation axis are summarized in Figure 2.

2.2.3 Conjugacy classes of the rotations of the icosahedron

To classify the conjugacy classes of I, we will use that I is a subgroup of SO(3),
the group of all orthogonal and orientation preserving 3×3 matrices. In SO(3), it
is a well-known fact that the rotations of the icosahedron are conjugate iff they
have the same rotational angle. In any subgroup of SO(3) this result has to hold
as well. However, it might be the case that the conjugacy classes from SO(3) fall
apart in multiple conjugacy classes in I. In Section 2.3.3 we will show that the
conjugacy classes of I have sizes 1,12,12,15,20 and thus that rotations are con-
jugate iff they have the same rotational angle. First, we prove that rotations in
SO(3) are conjugate iff they have the same rotational angle. After that, we show
that the conjugacy classes in I do not split up any further. Lastly, we show in Sec-
tion 2.4.4 that the rotation group of the icosahedron is isomorphic to the alternat-
ing group A5, using the inscription of five cubes in the dodecahedron formalized
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Rotation axis Order Angle Number of rotations

1 360° 1

Edges 2 180° 15

Triangles 3 120° 20

Vertices 5 72° 24

1+15+20+24= 60

Table 2: Orders, angles and number of rotations of the icosahedron.

Figure 4: A dodecahedron.

in Section 2.4.2. As the fact that I ∼= A5 is an important result, we already state
this result in the theorem below, although its proof needs to wait till Section 2.4.4.

Theorem 2.8. The rotation group I of the icosahedron is isomorphic to A5.

2.3 Dodecahedron
2.3.1 Definition of the dodecahedron

Definition 2.9 (Dodecahedron). The dodecahedron is a regular convex polyhe-
dron, whose faces are regular pentagons with 3 pentagons meeting in each vertex.
The dodecahedron is the dual of the icosahedron.

The dodecahedron is a Platonic solid and is the dual of the icosahedron. The
relation between dual polyhedra is usually taught as a property of the Platonic
solids, by pointing out that that the number of vertices of the cube and the number
of faces of the octahedron are equal and vice versa. [14] In a same way, the number
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of vertices and faces of the dodecahedron equals the number of faces and vertices
of the icosahedron in that order. Thus, the dodecahedron can be described by:

Dodecahedron
Pentagonal faces 12

Edges 30
Vertices 20

It is also possible to describe the dodecahedron by its coordinates. There are
multiple ways to calculate these coordinates. One way is by taking the midpoints
of the equiliteral triangles of the icosahedron. Alternatively, we can build up a
dodecahedron from a single pentagon. For example, we can take a pentagon with
distance 2 between two non-adjacent vertices. If we take for instance the coordi-
nates (1,1,1) and (1,1,−1), the coordinates of three other vertices of a pentagon
are for example given by:(

0,φ,
1
φ

)
,

(
0,φ,−1

φ

)
,

(
φ,

1
φ

,0
)
.

We can find more vertices of the dodecahedron by calculating the vertices of any of
the adjacent pentagons to this first pentagon. However, a dodecahedron obtained
in this way is not unique. This is not a problem, since any pair of dodecahedra
whose edge have the same length are isomorphic. As mentioned earlier, an elabo-
rate construction of the dodecahedron has been done by Euclid in Proposition 17
of Euclid’s Elements [12].

(1,1,1)

(0,φ, 1
φ

)

(0,φ,− 1
φ

)

(1,1,−1)

(φ, 1
φ

,0)

Figure 5: A regular pentagon.

Both computations lead to 20 vertices of a dodecahedron. The vertices of a
dodecahedron can be described by:

(±1,±1,±1) ,
(
0,±φ,±1

φ

)
,

(
±φ,±1

φ
,0

)
,

(
±1
φ

,0,±φ
)
. (7)
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2.3.2 Symmetry group of the dodecahedron

Because of the duality between the icosahedron and the dodecahedron, they share
their symmetry group. However, the geometrical interpretation of the rotation
axes differs a bit between the icosahedron and dodecahedron. For example, the
rotations fixing two vertices of the icosahedron fix the midpoints of two pentagons
in the dodecahedron.

To describe the full symmetry group of the dodecahedron, Ih, we will first
describe the reflection planes of the dodecahedron and relate it to a reflection in
the center of the dodecahedron plus a consecutive rotation. After that, we consider
the commutativity of composition of rotation and the point reflection. In the end,
we give an overview of all reflections.

To distinguish between reflections in a plane and reflections that arise from a
reflection plus a consecutive rotation, we introduce some terminology.

Definition 2.10 (Reflection). A reflection on the Euclidean space V is a linear
operator sα that sends some nonzero vector v ∈V to −v while each vector lying in
the hyperplane Hα orthogonal to α is fixed. The reflection is given by the formula:

sαv = v− 2< v,α>
<α,α> α,

where <.,.> is the bilinear form of V and v ∈V .

In this section, we work with V = R3. The hyperplane Hα fixed by a reflection
is called the plane of reflection for V = R3. Now, we introduce the notion of a
rotation-reflection.

Definition 2.11 (Rotation-reflection R3). A rotoreflection in R3, also called an
improper rotation or rotation reflection, is a combination of a rotation around an
axis and a reflection through the plane perpendicular to the rotation axis. [6]

With these definitions we can give an account of the reflections and rotore-
flections of the dodecahedron. First of all, fifteen reflection planes are inscribed
in the dodecahedron. Two sides of such reflection plane are described by two op-
posite edges of the dodecahedron. Two examples are given in Figure 6. Another
reflection in the dodecahedron is a reflection in the center point (0,0,0). Interest-
ingly, the reflections through a reflection plane are the same as first reflecting in
(0,0,0) followed by a rotation of order 2. [16] An example is given in Figure 8.

We denote the rotations of the dodecahedron by the set {id,ρ, r,R} where ρ, r,R
have order 2,3,5 respectively. We denote the point reflection, with order 2, by σ.
With this notation, all reflections and rotoreflections of the dodecahedron can be
represented as in Table 3.
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Figure 6: Two reflection planes of the dodecahedron.

Figure 7: The dodecahedron and the reflection in the center point of the dodeca-
hedron.

Dodecahedron Rotation Point reflection Plane reflection
+ rotation

Figure 8: A plane reflection in the dodecahedron is the same as a rotation of
order 2 of the dodecahedron plus the reflection in the center point.
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Reflection type Notation Number of reflections Order
Point symmetry σ 1 2
Plane reflection ρσ 15 2
Rotoreflection rσ 10 6
Rotoreflection r2σ 10 6
Rotoreflection Rσ 6 10
Rotoreflection R2σ 6 10
Rotoreflection R3σ 6 10
Rotoreflection R4σ 6 10

Table 3: The reflections and rotoreflections of the dodecahedron.

An example of the composition of a rotation r of order 3 about 120° with the
reflection in the origin is given in Figure 9. An example of a of a rotation R of
order 5 about 72° plus the reflection in the origin is given in Figure 10.

Dodecahedron Rotation Point symmetry
after rotation

Figure 9: Point symmetry plus rotation r of order 2 about 120°.

Dodecahedron Rotation Point symmetry
after rotation

Figure 10: Point symmetry plus rotation R of order 5 about 72°

Another interesting property of the point reflection is that it commutes with
any order rotation and with each reflection of the dodecahedron. Indeed, for any
R ∈ O(3) and I the identity matrix it holds that −RI =−IR where −I ∈ O(3) acts
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is the reflection in the center point. For a rotation of order 2 the commutativity is
illustrated in Figure 11.

Point symmetry Dodecahedron Point symmetry Rotation
after rotation after point

symmetry

Figure 11: Commuting point symmetry plus a rotation ρ of order 2.

We conclude this chapter with stating that the the full symmetry group of the
icosahedron, Ih, is isomorphic to A5×C2. Since we have not yet shown that I ∼= A5,
we postpone the proof of this result to Section 2.4.4.

Theorem 2.12. Ih is isomorphic to A5 ×C2.

2.3.3 Conjugacy classes of the dodecahedron

In this subsection, we show that the conjugacy classes of the rotation group of
the dodecahedron are given by the rotation angle. This result enables us to prove
that I ∼= A5 and Ih

∼= A5 ×C2.
We start with showing that two elements of SO(3) are conjugate if and only if

their rotation angle is the same.

Theorem 2.13. Let R ∈SO(3) be a rotation with rotation angle α, where 0≤α≤π.
Define the rotation

R0 =
1 0 0

0 cos(α) −sin(α)
0 sin(α) cos(α)

 .

Then R and R0 are conjugate in SO(3). That is, there exist a P ∈ SO(3) such
that R = PR0P−1.

Proof. Take a unit vector b1 = (x, y, z) on the rotation axis of R. As a matter of fact,
this vector is a unit eigenvector corresponding to the eigenvalue 1 of R. Construct
an orthonormal basis B = {b1,b2,b3} of R3. Denote the standard basis in R3 by
E = {e1, e2, e3} where e i is the vector in R3 whose i-th coordinate takes value 1 and
all the others zero. There exist a basis transformation from B to the orthonormal
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basis E . If we denote the matrix representing this transformation by A, we have
that A ∈O(3). Indeed, the columns of A consists of the vectors bi expressed in the
basis E . For example, the first column of A is given by (x, y, z)T . It follows that
A ∈ O(3). If Det(A) = 1 with A ∈ SO(3), we are done. If Det(A) =−1, we swap the
second and third column of A and obtain a basis transformation that maps the
b1 to the rotation axis of R0 but maps b2 to e3 and b3 to e2. Denote the matrix
corresponding to this basis transformation by A′ and note that Det(A′)= 1. Hence,
we now have R = A′R0(A′)−1 which proves the theorem.

Corollary 2.13.1. Suppose R,R′ ∈ SO(3) are both rotations about an angle α,
where 0≤α≤π. Then R and R′ are conjugate.

Proof. Since there exist A1 and A2 such that R = A1R0A−1
1 and R′ = A2R0A−1

2 it
follows that R = A2A1

1R0A1A−1
2 .

The show that the conjugacy classes I are given by the rotation angle as well,
we only need to show that the proof given in Theorem 2.13 and Corollary 2.13.1
works for the rotations in I as well.

Theorem 2.14. The rotations in the icosahedron with same rotation angle ±α are
conjugate.

Proof. To argue as in Theorem 2.13, we need to position the icosahedron in R3

such that one of the rotation axes through two vertices of the icosahedron lies
on the x-axis. Obviously, there exists an orthogonal transformation in SO(3) that
does so.

Furthermore, the entire proofs from Theorem 2.13 and Corollary 2.13.1 still
holds for the rotaitons in I. The only tricky point in these proofs is where we
need to swap the columns of the basis transformation from B to E to get a matrix
representing the basis transformation with determinant 1. In this step we use
and really need that Ih contains the reflection that maps the coordinates (x, y, z)
on the icosahedron to (x, z, y) which again lie on the icosahedron.

We state the consequence of the conjugation of rotations in I whenever the
rotation angle is the same up to their sign in the following theorem.

Theorem 2.15. The rotations in I conjugate if and only if they have the same
rotation angle. Thus, the sizes of the conjugacy classes in I are 1,12,12,15,20.

2.4 Cube
2.4.1 Symmetry group of the cube

In this section, we study the symmetry group of the cube. Also, we formalize the
inscription of five cubes in the dodecahedron. This enables us to prove that I is
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isomorphic to A5. We will denote the full symmetry of the cube, called the full
octahedral group, by Oh, and the octahedral rotation group by O.

We start with the rotations of the cube. The order of O is 24, using the orbit
stabilizer theorem again. Each face of a cube can be mapped to 6 other faces and
each face is mapped to itself by 4 rotations, giving the the 6·4= 24 rotations of the
cube.

The rotations of the cube either fix two vertices or two midpoints of the edges
or two midpoints of the faces. Each rotation of the cube fixing two midpoints of
faces permutes the adjacent 4 faces. It follows that the number of rotations of
the cube with order 4 equals 6

2 ·3 9. Next, the rotations of a cube with rotation
axis through the midpoints of two opposite pair of edges, permutes the adjacent
faces of the edge. This means that there are 12

2 = 6 rotations of order 2. Lastly,
a rotation that fixed two vertices permutes three adjacent faces. Hence, there
are 8

2 ·2 = 8 rotations of order 3. Thus, the rotation group of the cube consists of
9+6+8+1= 24 rotations, since the identity rotation is the last rotation that needs
to be added.

We show that Oh
∼= S4 ×C2 in Theorem 4.14. Before we are able to do so, we

describe the action of the rotations by permutations of the four diagonals of the
cube. Furthermore, we use that the reflections of the cube can be described by
a reflection in the center of the cube followed by a rotation, as we saw for the
dodecahedron as well.

Theorem 2.16. The rotation group of the cube can be described by its action on its
four diagonals.

Proof. We show that each rotation permutes the diagonals and that each rotations
corresponds to a different permutation. If we label the diagonals by colored let-
ters b, g, y and r the rotations through two midpoints of two opposite faces of the
cube give a permutation (b g yr). The rotation with rotation axes perpendicular to
this one permute the diagonals described by the permutation (b yrg) or (b rg y). In
a similar way, one can show that the rotations with rotation axis through the ver-
tices permutes three of the four diagonals, each time fixing a different diagonal.
The rotations with the rotation axis through the midpoints of two opposite edges
permutes two diagonals while leaving the other two invariant. The diagonals that
are swapped are the two diagonals going through the vertices incident to the edge
that intersects the rotation axis. [15]

An example of a rotation of the cube with order 2 that swaps 2 diagonals of the
cube and leaving 2 diagonals invarian is illustrated in Figure 12.

Finally, to prove Theorem 2.17, we write the rotations of the cube as the per-
mutation of the four diagonals as in Table 4. The diagonals are named by their
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Figure 12: Rotation of order 2 of the cube, which swaps 2 diagonals of the cube,
while it leaves the other 2 diagonals invariant.

color in the figure in the last column of the table.

Order Angle Number Representative Figure

1 1 id

2 180° 6 (bg)(y)(r)

3 120,240° 8 (ryg)(b)

4 90,240° 6 (rybg)

4 180° 3 (rb)(yg)

Table 4: Rotations of the cube.

The reflections and rotoreflections of the cube can be obtained using similar
arguments as we used for the dodecahedron. If we denote the rotations of the
cube by the set {id,ρ, r,R } where ρ, r,R are of order 1,2,3,4 respectively, these
reflections and rotoreflections of the cube can be summarized as in Table 5.

Using that the rotations of the cube can be described by its action on the four
diagonals of the cube, this result is not hard to prove. However, in Section 2.4.4,
we will formally introduce the notion of a direct product and how one can show
that a group G is the direct product of two subgroups H1,H2 ⊂ G. The proof of
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Reflection type Notation Number of reflections Order
Point symmetry σ 1 2

Plane reflection
rσ 6 2

R2σ 3 2
Rotoreflection σρ 4 6
Rotoreflection σρ2 4 6
Rotoreflection Rσ 3 4
Rotoreflection R3σ 3 4

1+6+3+4+4+3+3=24

Table 5: Reflections and rotoreflections of the cube.

Theorem 2.17 will therefore be given in Section 2.4.4.

Theorem 2.17. The full symmetry group of the cube is isomorphic to S4 ×C2.

2.4.2 Inscription of five cubes in the dodecahedron

If we look at the vertices of the dodecahedron given in Equation (7), one can see
that the vertices (±1,±1,±1) are precisely the vertices of a cube inscribed in this
dodecahedron. In fact, there exactly 5 cubes are inscribed in any dodecahedron.

Figure 13: The five inscribed cubes of a dodecahedron.
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In Figure 14, the edges of these five cubes are drawn in the dodecahedron.
To show that these cubes are the only five cubes inscribed in a dodecahedron, we
start with a pentagonal face of the dodecahedron. In this pentagon, we draw five
diagonals connecting two different vertices of the face. The position of the cube
inside a fixed dodecahedron is entirely fixed by one such an edge in a pentagon.
Indeed, if we take one such edge in a pentagon of a dodecahedron, there are only
6 vertices of the dodecahedron with distance 2 to a vertex of the edge we began
with. However, only 2 of these vertices can be connected with the vertex on our
original edge, such that the angle between these edges is 90°. Since there are(5
2

)−5= 5 possible ways to choose two non-adjacent vertices in a regular pentagon
and connect them by an edge, this implies that there at most 5 cubes inscribe the
dodecahedron.

Figure 14: Inscribed cubes of the dodecahedron by their edges. [Image retrieved
from [37]]

2.4.3 Rotation group of the icosahedron and its action on the five cubes
in the dodecahedron

Having shown that I ∼= A5, we can describe the rotation group of the icosahedron
by its action on the five cubes inscribed in a dodecahedron. We already know that
each rotation will permute these five cubes according to a permutation of A5.

Firstly, we consider the rotations of order 2. Given a rotation about two edges
with two vertices of one edge called A and B, this rotation is illustrated in Table 6.
Interestingly, the blue and black edges are swapped and so do the yellow and
the green ones. However, the red edges remain unchanged under the rotation.
Since one edge of a cube fixes the orientation of the cube inside the dodecahedron
entirely, it follows that a rotation of order 2 swaps two sets of cubes and leaves the
fifth cube invariant. This permutation can be represented by (bk)(gy)(r).

For a fifth order rotation, it is enough to consider action on a single pentagon
that has its midpoint through the rotation axis.
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Table 6: Permutation of the inscribed cubes of the dodecahedron for a rotation of
order 2.

Figure 15: Permutation of the inscribed cubes of the dodecahedron for a rotation
of order 5.

The action of a fifth order rotation on the cubes inscribed in the dodecahedron,
can be described by the action on the diagonal edges of one of the pentagon that
intersects the rotation axis. Since the vertices are rotated, it follows that the the
rotation maps the diagonal edges of the pentagon to another edge in the same
pentagon. This means that the cubes are permuted in a cycle of length 5. This
permutation can be represented by (rbgky) and is visualized in Figure 15.

Lastly, a rotation of order 3 can be described by the permutation of three ad-
jacent pentagons sharing the same vertex on the rotation axis. In Figure 7, the
rotations are visualized by a projection on the plane of those three adjacent pen-
tagons. Comparing the vertices in Figure 7b with the ones in Figure 7a and ro-
tating about the vertex the pentagons share, the permutation of the cubes can be
read off. For example, in each pentagon, the blue and the black edge are incident
to the rotation vertex and their orientation does not change under the rotation.
However, the green edge takes the place of the red edge after a clockwise rotation
over 120°. The red edge is mapped to the yellow one, which goes to green one. In
other words, a third order rotation permutes three cubes non-trivially and maps
two cubes to itself. The cycle representation of this permutation is given by (gry).
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(a) Projection (b) Rotation (c) Rotation
on the plane 120° 240°

Table 7: Action of a rotation of order 3 of the dodecahedron on 15 edges of the 5
inscribed cubes of the dodecahedron.

2.4.4 Isomorphism between the rotation group of the icosahedron and
the alternating group of elements

After introducing the notion of simpleness of a group, we prove that I is simple
and with that result we prove that I is isomorphic to A5 and Ih to A5 ×C2.

Definition 2.18. (Simple group) A nontrivial group is called simple if it has no
other normal subgroups than the trivial subgroup and the entire group itself.

Theorem 2.19. The rotation group of the icosahedron is simple.

Proof. The Lagrange theorem that states that the order of a subgroup divides the
order of the group. As a consequence, the order of the normal subgroups of I
must divide |I| = 60. Additionally, any subgroup contains the id of I. Since normal
subgroups consists of the union of conjugacy classes, going over all possible unions
of the found conjugacy classes of size 1,12,12,15,20, it follows that there are no
combinations of conjugation classes that with id-rotation added to it divides 60.
Thus, the only normal subgroups of I are id and I itself. Hence, I is a simple
group.

Theorem 2.20. The rotation group I of the icosahedron is isomorphic to A5.

Proof. By describing the rotations of the icosahedron as permutations of the five
inscribed cubes in the dodecahedron, one finds a homomorphism between the ro-
tations of the icosahedron and its action on the five cubes. We denote this homo-
morphism by f : I → S5. Since the kernel of a homomorphism from a group G1 to
a group G2 is a normal subgroup of G1, it follows that ker( f ) is a normal subgroup
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of I (Theorem A.5). Since I is simple by Theorem 2.19, the kernel is either the
id or I itself. However, the cubes are permuted non-trivially, so ker( f ) = id. The
image of I in S5 is a group of order 60. Since A5 is the only subgroup of S5 with
index 2 and order 60 (Theorem A.28), it follows that f (I)= A5.
Another way to conclude that the image of I in S5 is A5 is by using that the per-
mutations of the cubes are all even permutations and are necessarily mapped to
the even permutation in S5.

To show that Ih
∼= A5 ×C2, let us first define what the direct product between

two groups is together with some properties that imply that a group can be written
as the direct product of two sets.

Definition 2.21 (Direct product). If G1 and G2 are groups, then the direct prod-
uct of G1 and G2 is the set

G1 ×G2 := {(g1, g2) : g1 ∈G1, g2 ∈G2}

with the operation
(g1, g2) · (h1,h2)= (g1h1, g2,h2)

for all g1,h2 ∈G1 and g2,h2 ∈G2. In other words, the operation is component-wise
multiplication. [18]

Theorem 2.22. Let G be a group and let H1,H2 ⊂ G be subgroups and e ∈ G the
identify element. Suppose the following properties hold:

1. h1h2 = h2h1 for all h1 ∈ H1 and h2 ∈ H2;

2. H1 ∩H2 = {e};

3. Every g ∈G can be written as g = h1h2, with h1 ∈ H1 and h2 ∈ H2.

Then G ∼= H1 ×H2. [18]

We will now show, using Theorem 2.22, that Ih
∼= A5 ×C2

Theorem 2.23. Ih is isomorphic to A5 ×C2.

Proof. First of all, we identify the symmetry group of the icosahedron with a sub-
group of O(3). From Theorem 2.20 we know that I is a subgroup of SO(3) iso-
morphic to A5. The group {I3,−I3} ⊂ O(3) is isomorphic to C2. So all we need to
show is that the properties from Theorem 2.22 hold. First of all, for any R ∈SO(3),
I3R = RI3 and −RI3 = −I3R. Then second requirement is clearly also satisfied,
as −I3 has determinant −1 and I3 ∈ SO(3). Lastly, any g ∈ Ih is either a rotation,
rotoreflection or reflection in the center point of the icosahedron. A rotation can
can be written as R× I3, a rotoreflection as R×−I3 and the reflection in the center
point as I3 ×−I3. It follows that Ih

∼= A5 ×C2.
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In a similar way as we proved that Ih
∼= A5×C2, we can show that Oh

∼= S4×C2.

Theorem 2.24. The full symmetry group of the cube is isomorphic to S4 ×C2.

Proof. We have a homomorphism f from the action of the rotations of the cube on
the diagonals to S4. From Table 5 in Section 2.4.1 the explicit action of f on O is
given, which shows that the rotation group is isomorphic to S4.
The fact that the full symmetry group is S4 ×C2 follows in a similar way as we
will do for the icosahedron in Theorem 2.23.

2.5 Tetrahedron
2.5.1 Symmetry group of the tetrahedron

In this section, we very briefly study the symmetry group of the tetrahedron Td
and the rotation group of the tetrahedron T, as this symmetry group was already
studied in the Algebra 1 course in [36].

The order of the rotation group T is 4 ·3 = 12, since each face can be mapped
to another face in 3 ways. Those rotations can be described by their rotation
axis. There are 4 rotations that fix a vertex and a midpoint of a face. Those
rotations have order 3. Thus, there are 4 ·2= 8 rotations of this kind. Next, there
are 3 rotations that fixing two edges of a tetrahedron. Those rotations have order
2. Hence, there are 3 rotations of this kind. Together with the identity rotation,
we found all 8+3+1= 12 rotations of the tetrahedron.

The conjugacy classes of these rotations are not given by the rotation angle. In-
deed, as a consequence of Lagrange’s theorem, the order of the conjugation classes
should divide the groups order. That is, the rotations of order 3 in T cannot lie in
the same conjugacy class as 8 does not divide 12. What happens is that the rota-
tions of order 3 are divided over two conjugacy classes, one containing 4 rotations
about 120° and the other conjugacy classes their inverses about 240°.

Another way to describe the rotation group of the tetrahedron is by the action
of the rotations of the tetrahedron on its vertices. We show that each rotation per-
mutes the vertices of the tetrahedron in a different way. It then follows that T acts
on its vertices by permutation. First, label the vertices of the tetrahedron with
numbers 1,2,3,4 (Figure 16). Consider the rotations of order 3. Take the rotation
with rotation axis through vertex with label 1 and the midpoint of the face with
the vertices with labels 2,3,4 as its corner points. This rotation permutes the ver-
tices 2,3,4 while fixing vertex 1. Rotating clockwise gives the permutation (234)
while rotating clockwise permutes the vertices according to the cycle (243). Since
each rotation of order 3 fixes a different vertex, it follows that these rotations de-
scribe different permutations of the vertices. Then, the rotations of order 2 swaps
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Figure 16: A tetrahedron.

two pairs of vertices. That is, these rotations correspond to the permutation cy-
cles (12)(34), (13)(24) and (14)(23) of the vertices. Thus, the group T acts on the
vertices by permutation. In fact, it follows that T ∼= A4. In [36] it was already
shown that Td

∼= S4.

2.5.2 Inscription of two tetrahedra in the cube

In Section 2.4.1 the rotations of the cubes were described by the action on the 4 di-
agonals. We can also consider the action of the cube on the inscribed tetrahedra
in the cube, which were already drawn in Figures 12 and 4. These tetrahedra can
be obtained by alternating labeling of the vertices of the cube.

Figure 17: Alternated labeling giving two tetrahedra inscribed in a cube.

The action of the rotation group of the cube on these two tetrahedra is inter-
esting. Namely, the action of a rotation of the cube on the inscribed tetrahedra
either preserves both inscribed tetrahedra or it permutes these inscribed tetra-
hedra non-trivially. Any rotation of the cube of order 3 preserves the inscribed
tetrahedra, but permutes the vertices of these tetrahedra. The rotation of or-
der 4 over permutes the diagonals in a cycle of length 4. However, applying twice
the same rotation of order 4 preserves the inscribed tetrahedra. The rotations of
order 2 interchange the inscribed tetrahedra. It follows that the even permuta-
tions of the diagonals of the cube are precisely the permutations that leave the
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inscribed tetrahedra invariant. An example of each of these rotations is given in
Figures 18, 19 and 20. In these figures, both the swapping of tetrahedra as the
change in orientation of the tetrahedra is very well visible by the change in color
and its intensity.

Figure 18: Rotation of order 4 of the cube acting on two inscribed tetrahedra.

Figure 19: Rotation of order 3 of the cube acting on two inscribed tetrahedra.

Figure 20: Rotation of order 2 of the cube acting on two inscribed tetrahedra.

2.5.3 Inscription of ten tetrahedra in the dodecahedron

Since 5 cubes inscribe a dodecahedron, it seems that 10 tetrahedra also inscribe
the dodecahedron. Definitely, at least 10 tetrahedra inscribe the dodecahedron.
We now show that at most 10 tetrahedra inscribe the dodecahedron. So, pick a
vertex of the dodecahedron. Take all possible 6 edges to a non-adjacent vertex
in a adjacent pentagon as shown in Figure 21a. From those diagonals, there are
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39

2 · (3
2

) = 6 possible ways to pick two perpendicular edges. Connecting those edges
by a diagonal as in Figure 21b, we constructed a face-diagonal of the tetrahedron.
From this face-diagonal, the opposite face-diagonal can be constructed as well as
done in Figure 21c. The tetrahedron is now uniquely determined by taking the
face-diagonal perpendicular to the opposite face-diagonal. The vertices of those
2 face-diagonals are the vertices of the tetrahedron. Hence, the tetrahedron is
constructed as in Figure 21c. However, 3 of the 6 possible choices for 2 perpen-
dicular edges at the start of the construction, give rise to the same tetrahedron.
Additionally, two vertices are incident to the same face-diagonal, we have a total
of 20·2

2 = 20 ways to inscribe a tetrahedron in the dodecahedron. However, two dis-
tinct face-diagonals describe the same tetrahedron. That means that we counted
each tetrahedron twice again. Thus, there are only 10 tetrahedra inscribed in the
dodecahedron.

(a) (b) (c) (d)

Figure 21: Construction of a tetrahedron inscribed in dodecahedron.

In Section 2.2.2 we established the rotation group of the icosahedron and the
dodecahedron. The length of the orbit of a cube inscribed in the dodecahedron is
5. Thus, the length of the orbit of a tetrahedron inscribed in the dodecahedron
must be of length 5 as well. This implies by Theorem A.19 that the index of the
stabilizer group of a tetrahedron, StabG(x) has order 12 as its index is 5. We know
that StabG(x) is a subgroup of the rotation group of the cube it inscribes. Indeed,
the rotations of the cube permute the diagonals, which determine the action under
rotation of the tetrahedra completely. So, the stabilizer group of a tetrahedron is
a group of order 12 and a subgroup of the group of rotations S4 of the cube. The
only subgroup of order 12 is the group A4 of all even permutation. As we saw in
Section 2.5.2, the even permutations preserve the tetrahedra. Hence, the rota-
tions of the dodecahedra also preserve the tetrahedra. Differently phrased, the
two inscribed tetrahedra of one cube, lie in different orbits in the dodecahedron,
both of length 5.



3 Quaternions and quaternion groups
The rotation groups of the Platonic solids can be represented by sets of quater-
nions. These sets behave pretty beautifully. The quaternion representation of
the rotation group I, for example, describes the vertices of the four-dimensional
regular polytope called the 600-cell. In this section we consider the the sets of
quaternions whose elements are quaternions representing either the rotations of
the tetrahedron, the cube or the icosahedron.

3.1 Quaternions
We start with the definition of quaternions and the relation between the rotations
in three-dimensional space and the quaternions. This definition of the quater-
nions is based on [18] and [21], while the rotation theorem (Theorem 3.11) comes
from [29].

Definition 3.1 (Hamilton quaternion). Hamilton quaternions are expressions
of the form

q = r+ xi+ y j+ zk, with r, x, y, z ∈R.

These Hamilton quaternions can also be denoted by a vector (r, x, y, z) ∈R4.
The real part of quaternion q is r, while the imaginary part, sometimes called
the vector part of a quaternion, is xi+ y j+ zk.

We make the convention to refer to the Hamilton quaternions simply by quater-
nions, implicitly assuming that we work with the quaternions over the field R de-
fined by Hamilton. We define quaternion addition and quaternion multiplication,
the norm of a quaternions and its complex conjugate and show what the inverse
of a quaternions is.

Definition 3.2 (Quaternion addition). Quaternion addition is defined compe-
nentwise. That is,

(r+ xi+ y j+ zk)+ (r′+ x′i+ y′ j+ z′k)= (r+ r′)+ (x+ x′)i+ (y+ y′) j+ (z+ z′)k,

with r, x, y, z, r′, x′, y′, z′ ∈R.

Quaternion multiplication is based on the following calculation rules:

1 i j k
1 1 i j k
i i −1 k − j
j j −k −1 i
k k j i −1

Table 8: Calculation rules for the basis quaternions 1, i, j,k of H.
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Using these rules, we can define quaternion multiplication.

Definition 3.3. (Quaternion multiplication) Quaternion multiplication is given
by:

(r+ xi+ y j+ zk) · (r′+ x′i+ y′ j+ z′k)= (rr′− xx′− yy′− zz′)
+(rx′+ xr′+ yz′− zy′)i
+(ry′− xz′+ yr′+ zx′) j
+(rz′+ xy′− yx′+ zr′)k.

Definition 3.4. (Complex conjugate) The complex conjugate of a quaternion q,
denoted q, is given by:

q = r− xi− y j− zk.

Definition 3.5. (Norm) The norm or length of a quaternion is defined to be

||q||2 = q · q = r2 + x2 + y2 + z2.

Lemma 3.6. (Inverse) The inverse of a quaternion q 6= 0 is given by:

q−1 = q
||q||2 .

This is a consequence of the fact that ||q||2 = q · q.
Since the addition and multiplication of quaternions in distributive and the

inverse quaternion is well-defined for non-zero quaternions, the Hamilton quater-
nions form a division algebra. This division algebra is denoted by H∗. The set of
all Hamilton quaternions is denoted H. In fact, H∗ :=H\{0}.

Definition 3.7 (H∗). The set of Hamilton quaternionsH∗ forms a division algebra.
That is, H∗ is closed under the above defined quaternion addition and quaternion
multiplication. In addition, each non-zero quaternion has a multiplicative inverse.

The quaternions with unit length are the quaternions that we are mainly inter-
sected in. Let us thus define a subgroup of H∗ that consists of these quaternions.

Definition 3.8 (H1). The subgroup of quaternions with unit length is denoted by
H1 and defined as:

H1 = {q ∈H∗ | ||q|| = 1}.

Definition 3.9 (Quaternion group Q8). Q8, called the quaternion group, is a
group consisting of 8 quaternions. The group is defined as:

Q8 = {±1,±i,± j,±k}.
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Theorem 3.10. Given two quaternions q,v ∈ H1, then the quaternion conjuga-
tion qvq−1 preserves Re(v).

Proof. Write q = (r, x, y, z) and v = (r′,a,b, c) for two quaternions in H1. The conju-
gation qvq−1 can be written as qRe(v)q−1 + qIm(v)q−1. It then follows that

Re(qvq−1)= r′qq−1 +Re(qIm(v)q−1)= r′,

where we use that scalar multiplication is commutative in H∗, hence in H1, and
the fact that quaternion conjugation with a pure imaginary quaternion gives an-
other pure imaginary quaternion. Namely, if we denote v = (v0,v1,v2,v3), then
applying the calculation rules the real part is given by:

Re(qIm(v)q−1)=Re(q(0,v1,v2,v3)q−1)= (yz− yz+ xr− xr)v1+
(xz− xz+ ry− ry)v2 + (rz− rz+ xy− xy)v3 = 0

Having defined the quaternions and the division algebra H1, we continue with
Euler’s rotation theorem which will be used extensively to relate the rotation
groups I,T and O to the binary groups 2I,2T and 2O which we introduce in Sec-
tion 3.2, Section 3.3 and Section 3.4.

Theorem 3.11 (Euler’s rotation theorem). For R ∈ SO(3) there is a non-zero
vector v ∈R3 such that Rv = v. [29]

Differently phrased, Euler’s rotation theorem states that any rotation in 3-
dimensional space is a rotation about a certain rotation axis, that may be repre-
sented by a vector that lies on the axis. Since this is a very important and useful
consequence, we will state it in the following Corollary.

Corollary 3.11.1. Any rotation in three-dimensional space can be described by a
unit vector v = (x, y, z) on the rotation axis and a rotation angle θ.

From now on, we make the convention that any reference to a rotation by only
a vector and an angle is a short way to describe a three-dimensional rotation by a
vector on the rotation axis about the given angle.

A very useful way to represent three-dimensional rotations is by quaternions.
The purely imaginary part of the quaternion decribed the rotation axis while the
real part describe the rotation angle.

Definition 3.12 (Representation rotation in R3 by quaternion). Represent
a rotation in three-dimensional space with rotation angle θ and a unit vector
v = (x, y, z) ∈R3 by the unit quaternion:

e
1
2θ(xi+y j+zk) = cos

(1
2θ

)+ (xi+ y j+ zk)sin
(1

2θ
)
.
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The equality follows from the Taylor expansion of the exponential. Further-
more, it follows that conjugation of a purely imaginary quaternion v with a quater-
nion q = (r, x, y, z) ∈ H1 is the three-dimensional rotation of v about (x, y, z) with
angle 2arccos(r). As a consequence of the fact that we can represent a rotation
by a unit quaternion, the rotation angle can be extracted from such a quaternion
q = r +xi +y j +zk ∈ H1 using that θ = 2arccos(r).

Lemma 3.13. For a v ∈ H1 with r = 0 and q ∈ H1, the rotation described by
v 7→ qvq−1 is the same rotation in R3 as the rotation described by v 7→ (−q)v(−q)−1.

Proof. It directly follows from the commutativity of scalars and quaternions that
(−q)v(−q)−1 =−− qvq−1 = qvq−1.

An important consequence of Lemma 3.13 is that H1 is a double cover of SO(3).
That is, each rotation in SO(3) is described by exactly two quaternions in H1.
We state this consequence in Theorem 3.14. Since the proof is a bit tedious, we
included it in Appendix A.4.2 in Theorem A.40.

Theorem 3.14. The map f :H1 → SO(3) given by q 7→ qvq−1 is surjective and H1
is a double cover of SO(3). That is, the map f :H1 → SO(3) is two-to-one.

3.2 Binary icosahedral group
3.2.1 Definition of 2I

The binary icosahedral group is the the group of quaternions obtained from the
double cover of the the rotation group of the icosahedron I under the map from
Theorem 3.14. It is denoted by 2I, has order 120 and is the extension of I.
This group is called 2I. The quaternions in 2I form, when interpreted as four-
dimensional coordinates, the vertices of a 600-cell. This will be shown in Sec-
tion 3.2.2. The 600-cell itself will be discussed in Section 4.3.

3.2.2 Pre-images of the quaternions in 2I in the 3-sphere

In this section, we show that the vertices of a 600-cell indeed describe the 60 ro-
tations in I. To do so, we take the vertices of the 600-cell described by the quater-
nions in 2I as described in [27]. We show that each of these quaternions describes
a rotation in I and that each rotation in I is described twice.

First of all, 16 vertices of the 600-cell are obtained from the coordinates:

1
2 (±1,±1,±1,±1) (8)
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Next, eight quaternions are described by the quaternions from Q8:

(0,0,0,±1), (0,0,±1,0), (0,±1,0,0), (±1,0,0,0). (9)

Lastly, there are 96 quaternions obtained from the coordinates:

1
2

(
±1,±φ,± 1

φ
,0

)
, 1

2

(
±φ,± 1

φ
,±1,0

)
, 1

2

(
±φ,±1,0,± 1

φ

)
, 1

2

(
± 1
φ

,±1,±φ,0
)

1
2

(
0,±1,± 1

φ
,±φ

)
, 1

2

(
±φ,0,± 1

φ
,±1

)
, 1

2

(
0,±φ,±1,± 1

φ

)
, 1

2

(
±1,± 1

φ
,0,±φ

)
1
2

(
0,± 1

φ
,±φ,±1

)
, 1

2

(
± 1
φ

,±φ,0,±1
)
, 1

2

(
± 1
φ

,0,±1,±φ
)
, 1

2

(
±1,±φ,±φ,± 1

φ

)
,

where φ denotes the golden ratio φ= 1+p5
2 .Those quaternions are the odd permu-

tations of
(±φ,±1,±1

2 ,0
)
. One could choose to work with the even permutations

as well, since it is shown in [27] that both sets of vertices form the vertex set of
a 600-cell. Since the Icosians generated in the Mathematica code in Appendix B
are the odd permutations, we work with the odd permutations for consistency.

To show that these 120 quaternions are the double cover of the rotations
in I, we consider the sets of quaternions with same real part. We start with
the 30 quaternions with r = 0. These are given by the quaternions:

(0,0,0,±1), (0,0,±1,0), (0,±1,0,0)

1
2

(
0,±1

φ
,±φ,0

)
, 1

2

(
0,±φ,±1,± 1

φ

)
, 1

2

(
0,±1,± 1

φ
,±φ

)
Half of these lie exactly at the midpoints of the edges joining two vertices of
the icosahedron. The other half represent their antipodals. The rotations those
quaternions described are twice the rotations of order 2 that fix those midpoints
of the edges. The vertices in three-dimensional space, give rise to another poly-
hedron with 20 triangular faces and 12 pentagonal faces. At each vertex, exactly
two triangles and two pentagons meet. This polyhedron is called a icosidodecahe-
dron (Figure 22).

Next we consider the 20 quaternions with r = 1
2 :

1
2 (1,±1,±1,±1) , 1

2

(
1,± 1

φ
,0,±φ

)
, 1

2

(
1,0,±φ,± 1

φ

)
, 1

2

(
1,±φ,± 1

φ
,0

)
.

The imaginary parts of these quaternions describe the 20 vertices of the dodeca-
hedron, or the rotations about 120° in the icosahedron.

For the quaternions with real part equal to −1
2 , again the pre-image is given by

the 20 vertices of the dodecahedron. As we saw in Lemma 3.13, the same rotation
about 120° of the icosahedron is then described by a quaternion q with r = 1

2 and
the quaternion −q with r =−1

2 .
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Figure 22: The icosidodecahedron. [Image retrieved from [4]]

For the quaternions with r = 1
2φ, we get the following quaternions:

1
2

(
φ,±1,0,± 1

φ

)
, 1

2

(
φ,0,± 1

φ
,±1

)
, 1

2

(
φ,± 1

φ
,±1,0

)
.

The imaginary parts of these 12 quaternions represent the vertices of a unit icosa-
hedron. Thus, these quaternions describe the rotations of order 5 about 72°.

For the pre-image of the quaternions with r =−1
2φ, the imaginary part again

describes the vertices of an icosahedron. However, the rotation angle is the solu-
tion of cos

(1
2 r

)=−1
2φ, which is 2

5π.
Taking the quaternions with r = 1

2φ we get the quaternions:

1
2

(
± 1
φ

,0,±1,±φ
)
, 1

2

(
± 1
φ

,±φ,0,±1
)
, 1

2

(
± 1
φ

,±1,±φ,0
)
.

Those 24 quaternions describe the rotations of order 5 about an angle of 144°.
Lastly, we have the quaternions with r =±1:

(±1,0,0,0).

These quaternions correspond to the identity rotation of the icosahedron.
All in all, we found that the vertices of the 600-cell we chose, describe the

rotations in I twice and that each rotation is described.

3.2.3 The conjugacy classes of 2I

We already know that the real part of a quaternion gives the rotation angle and
that each quaternions in 2I represent a rotation of the icosahedron. With our
knowledge from I, we would expect that the quaternions in 2I conjugate iff they
have the same real part and order. It appears that the quaternions with same real
part are conjugate in 2I as well. However, it is not true to conclude that whatever
conjugates in I is conjugate in 2I as 2I is a double cover of I. Actually, there
are conjugacy classes in 2I with a higher order than the conjugacy class of the
corresponding rotation of the icosahedron. A Mathematica script that determines
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Representative in 2I Order Number

(1,0,0,0) 1 1
(91,0,0,0) 2 1

(0, 1
2 , 1

2φ , φ2 ) 4 30

(1
2 , 1

2 , 1
2 , 1

2 ) 6 20

(91
2 , 1

2 , 1
2 , 1

2 ) 3 20

(φ2 , 1
2φ , 1

2 ,0) 10 12

(9φ2 , 1
2φ , 1

2 ,0) 5 12

( 1
2φ , φ2 ,0,1) 5 12

(9 1
2φ , φ2 ,0,1) 10 12

Table 9: Orders of the conjugacy classes in 2I

the conjugacy classes and orders of elements in 2I can be found in Appendix B.1.1.
From these computations it follows that the conjugacy classes in 2I have
sizes 1,1,30,20,20,12,12,12,12 with corresponding orders 1,2,4,6,3,10,5,5,10.
The conjugacy classes of 2I together with the order of the group and the num-
ber of members is summarized in Figure 9.

3.2.4 Normal subgroups of 2I

A normal subgroup of 2I divides the group order 120 and is the union of conjugacy
classes (Theorem A.7). Considering Figure 9, it follows that the only non-trivial
normal subgroup is {±1} with order 2.

However, another way to show that the only normal subgroups of 2I are 2I
itself, the trivial group and the group of order 2, is by using that homomorphisms
map normal subgroups map to normal subgroups.

Theorem 3.15. Let G1 and G2 be groups and N ⊆ G1 a normal subgroup. Let
f : G1 →G2 be a surjective homomorphism. Then f (N) is a normal subgroup of G2.

Proof. For any g ∈ G1 and n ∈ N it holds that there exist a n′ ∈ N such that
n′ = gng−1. Then f (gng−1) = f (g) f (n) f (g)−1 = f (n′). Also, each h ∈ G2 and
n ∈ N satisfies hf (n)h−1 ∈ f (N) as f is surjective.

Now suppose N ⊂ 2I is a normal subgroup. Suppose there is a one-to-one ho-
momorphism, that is an isomorphism, g : 2I → I. Then g(N) is a normal subgroup
of I and we also know that the g preserves the order of the elements in N from
Theorem A.6. The only normal subgroups of I are isomorphic to A5 or to the
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trivial group. That means that g(N) has order 1 or 60. Suppose |g(N)| = 60 and
|N| = 60. Since A5 contains 15 elements of order 2, while 2I has only one such
element, it follows that such an isomorphism g does not exist. In case | f (N)| = 1
and |N| = 1, we can find an isomorphism g, the trivial map. We find that {1} is a
normal subgroup of 2I.

Now suppose that we have the two-to-one homomorphism f from Theorem 3.14
and restrict it to h : 2I → I. We then know that h maps a normal subgroup N ⊂ 2I
to a normal subgroup of I. Thus, N is mapped two-to-one to I or the trivial group.
We already found that 2I maps to I two-to-one. We do find here another subgroup
of 2I. Namely, N = {±1} as {±1} maps two-to-one to the identity rotation in I.

Thus, all the normal subgroups of 2I are 2I itself, the group {±1} and the
trivial group.

From these observations, we can conclude that ker(h) = {±1}. Indeed, the ker-
nel is a normal subgroup of 2I, so there are only three cases to consider. Firstly,
the ker(h) is not trivial, as h is not injective. Next, the kernel is not 2I itself,
as there are elements in 2I that are not mapped to I trivially. For example, h
does not map the quaternion (1

2 , 1
2 , 1

2 , 1
2 ) to the identity rotation of the icosahedron.

Hence, ker(h)= {±1}.

3.3 Binary tetrahedral group 2T

3.3.1 Definition of the binary tetrahedral group 2T

The rotations of the tetrahedron can be represented by quaternions as well. This
set, the binary tetrahedral group, is denoted 2T and is subgroup of 2I. The co-
ordinate representation of the 24 quaternions are given by the permutation of
coordinates given by:

(±1,0,0,0) (±1
2 ,±1

2 ,±1
2 ,±1

2 ).

These coordinates also form the vertices of a 24-cell in our coordinate system.
Indeed, the quaternions with coordinates equal to ±1

2 form a tesseract, while the
quaternions with one coordinate equal to ±1 form a 16-cell. The quaternions that
form the vertices of a tesseract are also called unit Hurwitz quaternions. The
other quaternions are called unit Lipschitz quaternions.

Theorem 3.16. 2T is a subgroup of H1.

Proof. Since 2T = 2I ∩Q4 and both 2T and Q4 are groups, it follows that 2T is a
group. [35]

In Appendix B.1.3, a Mathematica code to compute that 2T is a group is in-
cluded as well.
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3.3.2 Pre-images of the quaternions in 2T in the 3-sphere

Consider a tetrahedron with vertices

(1
2 , 1

2 , 1
2 ), (1

2 ,−1
2 ,−1

2 ), (−1
2 , 1

2 ,−1
2 ), (−1

2 ,−1
2 , 1

2 ).

We show that the image of the quaternions in the binary tetrahedral group 2T as
subgroup of 2I defined in Section 3.2, describe the rotations of the tetrahedron.
The 24 quaternions in 2T are given all permutations of:

(±1,0,0,0), (±1
2 ,±1

2 ,±1
2 ,±1

2 ).

The rotations with r =±1 describe the identity rotation of the tetrahedron under
the map from Theorem 3.14. The quaternions with r = 0 describe the rotations
fixing two edges of the tetrahedron twice. Lastly, the rotations fixing a vertex and
a midpoint of a face of the tetrahedron, are twice described by the quaternions
with r = 1

2 .

3.3.3 Conjugacy classes and normal subgroups of 2T

The order of the elements in 2T need not be the same order as the order of the cor-
responding rotation in the tetrahedron. For example, the quaternions with r =±1

2
are the rotation of about 120° or −120°. In the rotation group of the tetrahedron,
those have order 3. However, one can compute that

(1
2 , 1

2 , 1
2 , 1

2 )3 = (−1,0,0,0) and (−1
2 , 1

2 , 1
2 , 1

2 )3 = (1,0,0,0)

This means that in 2T, the conjugacy class that contains (1
2 , 1

2 , 1
2 , 1

2 ) has order 3,
but the conjugacy class containing (−1

2 , 1
2 , 1

2 , 1
2 ) has order 6.

Before we compute the orders of the elements in the conjugacy classes in 2T,
we need to determine the sizes of those conjugacy classes. It appears that the
quaternions with r = ±1

2 both split into two conjugacy classes. This result is not
too surprising, as the rotation group of the tetrahedron is isomorphic to the alter-
nation group A4. In A4, not all 3-cycles are conjugate as the transpositions in S4,
the elements that conjugate 3-cycles in S4, does not lie in A4.
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Conjugacy class Order in Number in Order in Number in
2T 2T 2I 2I

A (1,0,0,0) 1 1 1 1

B (−1,0,0,0) 2 1 2 1

C
(1

2 , 1
2 , 1

2 , 1
2 ), (1

2 ,−1
2 , 1

2 ,−1
2 )

6 4(1
2 ,−1

2 ,−1
2 , 1

2 ), (1
2 , 1

2 ,−1
2 ,−1

2 )
6 20

D
(1

2 ,−1
2 , 1

2 , 1
2 ), (1

2 , 1
2 ,−1

2 , 1
2 )

6 4(1
2 , 1

2 , 1
2 ,−1

2 ), (1
2 ,−1

2 ,−1
2 ,−1

2 )

E
(−1

2 , 1
2 , 1

2 , 1
2 ), (−1

2 ,−1
2 ,−1

2 , 1
2 )

3 4(−1
2 ,−1

2 , 1
2 ,−1

2 ), (−1
2 , 1

2 ,−1
2 ,−1

2 )
3 20

F
(−1

2 , 1
2 , 1

2 ,−1
2 ), (−1

2 , 1
2 ,−1

2 , 1
2 )

3 4(−1
2 ,−1

2 , 1
2 , 1

2 ), (−1
2 ,−1

2 ,−1
2 ,−1

2 )

G
(0,1,0,0), (0,−1,0,0), (0,0,1,0)

4 6 4 30
(0,0,−1,0), (0,0,0,1), (0,0,0,−1)

Table 10: Conjugacy classes of 2T.

It follows from Table 10 that the normal subgroups of 2T must be the trivial
group, {±1},Q8 and 2T itself. The subgroup {±1} is normal as a consequence of
the fact that quaternion multiplication by purely real quaternions is commuta-
tive. The subgroup Q8 is also normal, since multiplication with a basis quater-
nion gives another basis quaternion as defined in Table 8. A computation is also
included in Section B.1.3.

The algebraic way to prove that T has four normal subgroups, is by considering
the normal subgroups of the T. Since T ∼= A4, the image of a normal subgroup un-
der the homomorphism from 2T to T has to be A4 itself, the Klein Vierergruppe V4
or the trivial group. If we have a homomorphism from 2T to T, we must have that
any normal subgroup N ⊂ 2T maps either two-to-one or one-to-one to T. First,
any subgroup of 2T with index 2 must be normal. Its normal image has either
order 6 or order 12. Since the rotation group of the tetrahedron has no normal
subgroup of order 6, the image should be A4 itself. However, A4 contains 9 ele-
ments of order 2, while 2T only contains one. It follows that 2T cannot contain a
normal subgroup of order 12.

Then, any subgroup of order 8 in 2O maps to a normal subgroup of order 8 or 4.
The Klein Vierergruppe is a normal subgroup of order 4. Hence, the double cover
of the rotations described by the Klein Vierergruppe, that is Q8, is a normal sub-
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group of 2T.
Certainly, the identity rotation of the tetrahedron is described by two quater-

nions of 2T. Those quaternions form a normal subgroup of order 2. Thus, the
normal subgroups of 2T are the trivial group, {±1},Q8 and 2T itself.

3.3.4 2T as subgroup of 2I

2T is a subgroup of 2I, but it is not a normal subgroup. However, we will show that
2I contains five conjugate subgroups of 2T. This is a very useful and important
result, as we will see in Section 4.3.2 when we consider the inscription of 24-cells
in a 600-cell.

Although the reader should be familiar with the following theorems and def-
initions, we state them here again, as we will really need them in the proof of
Theorem 3.20. The theorems and definitions come from [18], unless otherwise
specified.

Definition 3.17 (Stabilizer of an element x). Let G be a group acting on a set
X . The stabilizer of an x ∈ X , denoted StabG(x), is a group and defined by:

StabG(x) := {g ∈G|gx = x}.

Definition 3.18 (Normalizer of a subgroup). Let G be a group and let H be a
subset, not necessarily subgroup, of G. The normalizer of H is then

NG(H) := {g ∈G|ghg−1 ∈ H for all h ∈ H}.

Theorem 3.19. If a group G acts on a subset X of G by conjugation, then the
stabilizer of x ∈ X is equal to the normaliser of x ∈ X . [36]

In particular, the number of conjugate subgroups to H in G equals the index
of the normalizer NG(H). [36]

Theorem 3.20. 2I contains five conjugate subgroups of 2T.

Proof. The idea of the proof is to show that the normalizer N2I(2T) of 2T in 2I
is 2T itself. It then follows that the are five conjugate subgroups of 2T in 2I.

Let 2I act on 2T by conjugation, where 2T is seen as an element in the set of
subgroups of 2I. That is,

Stab2I(2T) := {g ∈ 2I|g2T = 2T}= {g ∈ 2I|gx = x for all x ∈ 2T}.

It follows from Theorem 3.19 that the normalizer N2I(2T) equals the stabilizer
of 2T in 2I. Hence, the N2I(2T) ⊂ 2I, since the stabilizer is a subgroup of 2I.
Therefore, N2I(2T) is subgroup whose index lies between 5, the index of 2T in
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2I, and 1, the index of 2I itself. Since 2T is a subgroup of its normalizer by
definition, it follows that the index of N2I(2T) must divide 5. This implies that
N2I(2T) is either 2T or 2I. However, there are quaternions in 2I whose conju-
gation with quaternions in 2T lie outside 2T. For example, conjugation of the
quaternion (1

2 , 1
2 , 1

2 , 1
2 ) with the quaternion (1

2 , φ2 , 1
2φ ,0) gives (1

2 , φ2 ,− 1
2φ ,0). It follows

that N2I(2T) = 2T. Since the number of conjugate subgroups of 2T equals the
index of its normalizer, we have shown that there are five conjugate subgroups
of 2T in 2I.

3.4 Binary octahedral group 2O

3.4.1 Definition of the binary octahedral group 2O

The binary octahedral group 2O is a set of 48 quaternions. These quaternions
describe the rotations of the octahedron, which we show in Section 3.4.2. Ad-
ditionally, those 48 quaternions form a group, which is proved in Theorem 3.21.
Furthermore, these quaternions form the vertices of the compound of two 24-cells,
which we show in Section 4.2.5. The coordinate representation of the 48 quater-
nions are given by the permutation of the coordinates:

(±1,0,0,0), (±1
2 ,±1

2 ,±1
2 ,±1

2 ), (± 1p
2
,± 1p

2
,0,0).

Theorem 3.21. 2O is a subgroup of H1.

Proof. The inverse of all quaternions in 2O lies in 2O as well. Also, the identity
of H lies in 2O. The computation in Section (B.1.2) shows that all products of
quaternions lie in 2O as well.

3.4.2 Pre-images of the quaternions in 2O in the 3-sphere

A convenient way to show that the quaternions in 2O describe the rotation group
of the octahedron is to use the fact that the dual of the octahedron is the cube. This
duality implies that the rotation group of the cube and the octahedron is the same.
In Figure 23, a cube is inscribed in the octahedron. The rotation axes of the cube
of three non-trivial rotations of different order are represented by three gray axes.
The rotations through the midpoints of the faces of the cube, are rotations through
the vertices of the octahedron. Furthermore, the rotations through the vertices of
the cube are described by the rotation through the midpoints of triangular faces
of the octahedron. Lastly, the rotation axes through the edges of the cube are also
rotations through two midpoints of edges of the octahedron.

Consider an octahedron with vertices

(± 1p
2
,0,0), (0,± 1p

2
,0), (0,0,± 1p

2
).
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We show that the image of the group 2O under the map from Theorem 3.14 is the
rotation group of the octahedron. We describe the rotation the quaternions in 2O
are mapped to and we also consider the conjugacy classes of 2O.

First of all, the quaternions ±1 act as the identity rotation of the octahedron
under the map from Theorem 3.14. The quaternions with r = 1

2 describe the rota-
tions over 120° through the midpoints of the triangular faces of the octahedron.
These midpoints of the triangles of the octahedron with edges of unit length have
coordinates (± 1

3
p

2
,± 1

3
p

2
,± 1

3
p

2
). The quaternions with r = −1

2 describe the same

rotation as the quaternions with real part 1
2 .

Then, the rotations about 90° and 270° with their rotation axis through two
opposite vertices of the octahedron are described by the quaternions with r =± 1p

2
.

The rotations with r = 0 and a single coordinate non-zero, describe the rota-
tions through the vertices of the octahedron with rotation angle 180°. Lastly, the
quaternions with r = 0 and described by the permutations of (0,±1,0,0) describe
the rotations through the midpoints of the edge of the octahedron with unit edge
length.

Figure 23: Inscription of a cube in the octahedron.

3.4.3 Conjugacy classes and normal subgroups of 2O

The conjugacy classes of the quaternions in 2O are given in Table 11. The quater-
nions in 2O are conjugate iff they have the same real part. A computation of these
conjugacy classes can be found in Appendix B.1.2.

Next, we consider the normal subgroups of 2O. First of all, the trivial group,
2O itself and {±1} are normal subgroups of 2T. Furthermore, Q8 and 2T are
normal in 2O as well. The fact that Q8 is normal in 2O follows directly from
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Figure 24: Inscription of two tetrahedra in a cube in an octahedron.

Conjugacy class Order Number
(1,0,0,0) 1 1

(−1,0,0,0) 2 1
(1

2 , 1
2 , 1

2 , 1
2 ) 6 8

(−1
2 , 1

2 , 1
2 , 1

2 ) 3 8

( 1p
2
, 1p

2
,0,0) 8 6

(− 1p
2
, 1p

2
,0,0) 8 6

(0,1,0,0) 4 6
(0, 1p

2
, 1p

2
,0) 4 12

Table 11: Conjugacy classes of 2O.
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the multiplication table in Table 8 and the normality of 2T follows from the fact
that it has index 2 in 2O. A computation of the normality can also be found in
Appendix B.1.2.

However, we can also show that the normal subgroups are given by the trivial
group, {±1},Q8,2T and 2O itself, using the normal subgroups of O. We know
O ∼= S4 and that the normal subgroups of S4 are S4, A4, the Klein Vierergruppe
V4 and the trivial group.

Suppose there were a normal subgroup of 2O isomorphic to a normal subgroup
of O. The number of elements of order 2 in this normal subgroup and in S4 would
be equal. However, S4 contains 9 elements of order 2, while 2O only contains one
such element. Any subgroup of S4 other than the trivial group also contains mroe
than one element with order 2. It follows that 2O cannot have a normal subgroup
other than the trival group, that is isomorphic to normal subgroup of S4, as any
non-trivial isomorphism would not preserve the orders of elements.

However, if we map 2O two-to-one to O ⊂SO(3) via the map from Theorem 3.14,
we can map 2O to the normal subgroup O and 2T to the normal subgroup A4. Fur-
thermore, Q8 can be mapped to the normal subgroup V4 and {±1} to the the trivial
normal subgroup.

It thus follows that 2O contains five normal subgroups which have
orders 1,2,8,24,48 respectively.



4 Four dimensions

4.1 Tesseract
4.1.1 Definition tesseract

Definition 4.1. The tesseract is the four-dimensional regular polytope and it is
the analogue of the cube. The tesseract is also called the hypercube or the 8-cell,
denoted C8.

There are various other ways to describe what a tesseract is, how it can be con-
structed or how one could think of this four-dimensional cube. Each description
gives an interesting insight in the properties or geometry of the tesseract. We will
treat three more descriptions of the tesseract.

A first description of the tesseract is given by explicitly stating 16 vertices
that form a tesseract. A convenient choice for these vertices is all possible combi-
nations of (±1,±1,±1,±1). Any tesseract with different vertices is similar to this
one. The faces of the tesseract are squares and the cells are three-dimensional
cubes.

Another insightful way of describing the relation between the tesseract and the
three-dimensional cube, found amongst others in The Panenmentalist Philosophy
of Science [19] is given as follows:

The cube is to the tesseract what the square is to the cube.

Lastly, the construction of the tesseract by starting with a hypercube of dimen-
sion 0 up tot a hypercube of dimension 4, the tesseract, is very insightful as well.
A hypercube of dimension 0 is nothing more than a single vertex. The hypercube
of dimension 1 is obtained by adding an extra dimension, an edge, starting at each
vertex of the 0-cube. Since an edge must be incident to two vertices, we need to
add an additional vertex as well. Thus, the hypercube of dimension 1 is a line
segment incident to two vertices.

Adding another dimension gives the hypercube of dimensions 2. Again, we
add to each vertex of the hypercube of dimension 1 an edge and add vertices in
such a way that each edge is incident to two vertices. The obtained hypercube of
dimension 2 is, as expected, a square.

For the third dimension, we again add from each vertex of the 2-cube the edges
and necessary vertices to obtain the cube.

Hence, the hypercube of dimension 4, is nothing more than adding to each
vertex of the cube an edge and at the end of such an edge a vertex. In this way,
7 more cubes are formed. Namely, each face of the cube gives rise to a cube of
the tesseract. Together with the original cube and the cube formed by the 8 new
vertices at the end of the edges added to lift the cube to the fourth dimension,
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it follows that the tesseract contains 8 cubes. In Figure 25, this construction is
illustrated.

Figure 25: Construction tesseract from dimension 0 to dimension 4. [Image re-
trieved from [3]]

The number of vertices, edges, faces and cells of the tesseract are given as in
Figure 26. The number of vertices in a tesseract are obtained by adding to each
vertex of a cube in three-dimensional space an edge with each edge incident to a
new vertex. Thus, the tesseract has twice as many vertices as the cube.

The 16 vertices are incident to 4 edges each, for each dimension exactly one.
That means that the total number of edges is given by 16·4

2 = 32.
To determine the number of faces of the tesseract, one should notice that each

set of 2 edges at a vertex describes a face of the tesseract. That means that(4
2

) ·16 = 96 faces are described by the vertices. However, one face is described by
4 edge-pairs and each face is thus counted 4 times. Hence, the total number of
faces of the tesseract is 24.

Lastly, there are 8 cells in the tesseract, as we already reasoned in the con-
struction of the tesseract from a hypercube of dimension 0.

n-cube Name Vertices Edges Faces Cubes Tesseracts
0-cube - 1 - - - -
1-cube - 2 1 - - -
2-cube Square 4 4 1 - -
3-cube Cube 8 12 6 1 -
4-cube Tesseract 16 32 24 8 1

Figure 26: Number of n-cubes in a n-cube for n = 0,1,2,3,4.

The 8 cubes lie in pairs in the tesseract. Namely, each cube give rise to an
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opposite cube of which the vertices lie at the negative coordinates of the original
cube. These 8 cubes are visualized in Figure 27.

(a) Pair of cubes (b) Pair of cubes

(c) Pair of cubes (d) Pair of cubes

Figure 27: 4 pairs of cubes in the tesseract.

There exists a general formula to obtain the number k-cubes inside a n-cube
for k ≤ n (Theorem 4.1.1). Furthermore, the Euler’s polyhedron formula for n-
cubes (Theorem 4.1.1) describes the relation between the number of k-cubes in a
n-cube.

Theorem 4.2. The number of k-cubes in a n-cube is 2n−k · n!
k!(n−k)!

.

Proof. Each k-cube has 2k vertices. Choosing 2k vertices from the total 2n vertices
of the n, gives thus rise to an inscribed k-cube of the n-cube. Choosing 2k ver-
tices can be done by fixing the value of n− k coordinates of a vertex to be either
{−1,1} and varying the other k of the coordinates. The k free coordinates indeed
determine 2k vertices with equal entries for the n− k fixed coordinates. There
are

(n
k
)

ways to choose k coordinates of the n to vary. Since there are 2n−k ways to
choose fixed values for the fixed n− k coordinates, the total number of k-cubes in

a n-cube is the product of these two numbers, 2n−k · n!
k!(n−k)!

.

For example, the number of cubes in the tesseract has to equal 24−3 · 4!
3!·1! = 8,

precisely as we already argued before. Also, the alternating sum over all these
number of k-cubes in a n-cube equals 0 as shown in Theorem 4.3.
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Theorem 4.3 (Euler’s polyhedron formula for n-cubes). The alternating sum
over all k-cubes (k < n) of a n-cube is 0 if n is odd and 2 if n is even.

Proof. The number of k-cubes in a n-cube is 2n−k(n
k
)
. So the sum over all k cubes

is given by:(
n
0

)
2n(−1)0 +

(
n
1

)
2n−1(−1)1 +·· ·+

(
n

n−1

)
21(−1)n−1 =(

n
0

)
2n(−1)0 +

(
n
1

)
2n−1(−1)1 +·· ·+

(
n

n−1

)
21(−1)n−1 +

(
n
n

)
20(−1)n −

(
n
n

)
20(−1)n =

(2−1)n −1 · (−1)n = 1+ (−1)n+1 =
{

0 n odd
2 n even.

4.1.2 Rotation group of the tesseract

We let O4,h denote the symmetry group of the tesseract. Furthermore, we denote
the rotation group of the tesseract by O4.

Theorem 4.4. The order of the symmetry group O4,h of the tesseract is 384.

Proof. This can be proved using the orbit-stabilizer theorem (Theorem A.19). If we
let O4,h act on the set of 8 cubes in the tesseract, it follows that |O4,h| = 8·48= 384,
since the stabilizer of a cube has order 48.

Recalling the definition of a semi-direct product (Definition A.33), we may de-
fine the following set.

Definition 4.5. Define G = {±1}4oρ S4 where ρ : S4 →Aut({±1}4) where ρ acts on
the components {±1} by permutation and {±1}4 = {±1}× {±1}× {±1}× {±1}.

Definition 4.6. Let G act on R4 by

(ε1,ε2,ε3,ε4;σ)(x1, x2, x3, x4)= (ε1xσ−1(1),ε2xσ−1(2),ε3xσ−1(3),ε4xσ−1(4)),

where (x1, x2, x3, x4) ∈R4.

Theorem 4.7. G is isomorphic to O4,h.

Proof. First show that the order of G and the order of O4,h are the same. Next
we show that the map f : G → O4,h where f is as defined in Definition 4.6 maps
injectively to O4,h. It then follows that G ∼=O4,h.
The order of G is 24 · 24 = 384 since |{±1}| = 24 and |S4| = 24. Furthermore,
(ε1,ε2,ε3,ε4;σ) ∈ ker( f ) if and only if ε1 = ε2 = ε3 = ε4 = 1 and σ = id. Hence the
kernel is trivial implying that f injective.
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Definition 4.8. Define χ : C4
2 oS4 → {±1} given by

χ(ε1,ε2,ε3,ε4;σ)= ε1ε2ε3ε4 sgn(σ),

where we identify C2 with the set {±1} and where σ ∈ S4.

Theorem 4.9. χ : C4
2 oS4 → {±1} is a homomorphism.

Proof. We need to show that

(ε1,ε2,ε3,ε4;σ)(ε′1,ε′2,ε′3,ε′4;σ′)= (ε1ε
′
σ(1),ε2ε

′
σ(2),ε3ε

′
σ(3),ε4ε

′
σ(4);σσ

′). (10)

is mapped by χ to ε1ε2ε3ε4sgn(σ)ε′1ε
′
2ε

′
3ε

′
4sgn(σ′). Of course it is:

χ(ε1ε
′
σ(1),ε2ε

′
σ(2),ε3ε

′
σ(3),ε4ε

′
σ(4);σσ

′)= ε1ε
′
σ(1)ε2ε

′
σ(2)ε3ε

′
σ(3)ε4ε

′
σ(4) sgn(σσ′)

which is the same product with its terms in different order and using sgn(σσ′) =
sgn(σ)sgn(σ′).

From Theorem 4.7 we now know that O4,h
∼=G. We now show that the rotation

subgroup O4 of the tesseract is described by ker(χ).

Theorem 4.10. The rotation subgroup O4 is given by O4 = ker(χ).

Proof. The ker(χ) consist of all (ε1,ε2,ε3,ε4;σ) with ε1ε2ε3ε4σ= 1.
It is obvious that the elements (1,1,1,1;σ) = idoσ and

(−1,1,1,1;id)=−1×1×1×1o id, with σ an odd permutation, do not lie in ker( f ).
We show that these elements of O4 describe all reflections. Next, we show that
the index of these reflections in {±1} is 2. Then, it follows that the elements in O4
with ε1ε2ε3ε4σ= 1 are elements of O4.

The element (−1,1,1,1;id) maps a vector (x1, x2, x3, x4) ∈ R4 to (−x1, x2, x3, x4)
which is a reflection. This can be seen from the matrix corresponding to the
transformation (x1, x2, x3, x4) 7→ (−x1, x2, x3, x4) which is matrix with ones on the
diagonals, zeroes in all other entries and the first diagonal place −1. The deter-
minant of this matrix is −1.

The element (1,1,1,1;σ) with σ an odd permutation, permutes an odd num-
ber of coordinates of a vector (x1, x2, x3, x4) ∈ R4. This is again a reflection. The
matrix belonging to this transformation is obtained from the identity matrix by
interchanging an odd number of columns which changes the determinant 1 of the
identity matrix to −1.

Since (−1,1,1,1;id)2 = (−1·−1,1·1,1·1,1·1, id), the index of (−1,1,1,1;id) in {±1}
is 2. Furthermore, (1,1,1,1;σ)2 = (1,1,1,1;σ2) and σ2 is an even permutation. It
follows that the index of (1,1,1,1;σ) in {±1} is 2 as well.
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In Section 4.1.4 it is convenient to work with a different notation for the sym-
metries of the tesseract. Although it is very similar to the definition of the action
of G on R4 from Definition 4.6, we will introduce the notion of signed permutation
cycles already here.

Definition 4.11 (Signed (permutation) cycle). A signed permutation cycle of
a signed symmetric group of n elements represent a permutation of the set
{−n,−n+1, . . . ,−1,1, . . . ,n−1,n}.

In Theorem 4.6, we described the action of G on R4 by the coordinates that
a x ∈ R4 is mapped to. Another way of representing the action of G on R4 can
be done by signed permutations cycles. These cycles represent which entries
of a vector v = (r, x, y, z) ∈R4 are permuted and in which entries a minus sign is
added. We choose to work with the letters r, x, y, z rather than x1, x2, x3, x4 for
readability. Let us give an example of a signed cycle representation of the map
(r, x, y, z) 7→ (y, x,−r, z). The signed cycle representation of this map is (r−y) where
the minus sign belongs to the entry in front of it. Thus, we should read the signed
cycle (r− y) as r is send to −y and y to r, while x and z are mapped back to them-
selves. As second example we take the map (r, x, y, z) 7→ (z,−r,−x, y). This map
can be represented by the signed cycle (r 9 x9 yz).

We now describe the 192 rotations of the tesseract. The rotations are given
in Table 12, where we use the result from Theorem 4.10 and denoted the signed
cycle representation of each rotation as well. The rotations in four-dimensional
space can be separated into two different kinds: the simple and non-simple ro-
tations. Simple rotations are rotations that fix one plane pointwise. Non-simple
rotations, on the other hand, first rotate with respect to a first plane of rotation
and afterwards with respect to a second. Those two planes can be chosen to be
orthogonal planes. That is, the normal vectors of these planes are orthogonal.
In four-dimensional space, each plane has two normal vectors. Thus, planes in
four-dimensional space are orthogonal if both normal vectors of both planes are
orthogonal to each other.

The tesseract has 86 simple rotations and 106 non-simple rotations. The
simple rotations can be represented by the following rotations from Table 12:

• 24 rotations (ε1,ε2,ε3,ε4; (12)) of order 2
• 32 rotations (ε1,ε2,ε3,ε4; (123)) of order 3
• 12 rotations (ε1,ε2,ε3,ε4; (12)(34))of order 2
• 12 rotations (ε1,ε2,ε3,ε4; (12)(34)) of order 4
• 6 rotations (ε1,ε2,ε3,ε4; id) of order 2

The cycles used to denoted the σ ∈ S4 are representatives of the cycles in S4 of
that cycle type. In Section 4.1.5, the rotations of the tesseract are considered in a
geometrical way and work with the notions of simple and non-simple rotations.
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σ ∈ S4 Order of (ε,σ) (ε1,ε2,ε3,ε4) Number Signed cycle Signed cycle type

(12) 2
(1,1,91,1)

6 ·4= 24
(r x )(y−)

2−1
(91,91,91,1) (r− x−)(y−)

(12) 4
(91,1,1,1) 6 ·2= 24 (r x−) −2+1+1

(1,91,91,91) 6 ·2= 24 (r− x)(y−)(z−) −2−1−1
(123) 3 (91,1,1,91) 4 ·8= 32 (r y x−)(z−) −3−1
(123) 6 (91,91,1,1) 4 ·8= 32 (r y− x−) 3+1

(1234) 8
(91,1,1,1)

8 ·6= 48
(r z y x−) −4

(91,91,91,1) (r z− y− x−)
(12)(34) 2 (91,91,1,1) 4 ·3= 12 (r− x−) 2+2
(12)(34) 4 (91,1,91,1) 4 ·3= 12 (r x−)(y z−) −2−2

id 2 (91,91,1,1) 6 (r−)(x−) −1−1+1+1
id 2 (91,91,91,91) 1 (r−)(x−)(y−)(z−) −1−1−1−1
id 1 (1,1,1,1) 1 id 1+1+1+1

192

Table 12: Rotations tesseract represented by signed cycles and coordinate maps.

4.1.3 Symmetry group of the tesseract

Using the map from Theorem 4.9, we can construct the full symmetry group of the
tesseract, with order 384. The orientation reversing isometries of the tesseract are
given in Table 13. Table 12 and Table 13 together describe the entire symmetry
group O4,h.

All symmetries of the tesseract, ordered by the order of the symmetries, are
given in Figure 14.

4.1.4 The conjugacy classes and normal subgroups of the symmetry group
of the tesseract.

In the Section 4.1.3, we established the symmetry group O and connected them to
the signed cycle representation. The conjugacy classes of O4,h are given exactly by
those different signed cycle types, which is a consequence of the following theorem.

Theorem 4.12. Two compositions of signed cycles in disjoint cycle decomposition
are conjugate and geometrically similar if and only if their cycles types are the
same. [26]

Since the symmetry group O4,h contains 20 signed cycle types it follows that
O4,h has 20 conjugacy classes. Those conjugacy classes are presented in Figure 15.
The dashed line in the table separates the rotations of the tesseract above the line
from the non-rotational symmetries below it.
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S4 Order (ε1,ε2,ε3,ε4) Number Signed cycle Signed cycle type

(12) 2
(91,91,1,1)

6+6=12
(r− x−)

2+1+1
(1,1,1,1) (r x)

(12) 2
(1,1,91,91)

6+6=12
(r x)(y−)(z−)

29191
(91,91,91,91) (r− x−)(y−)(z−)

(12) 4 (1,91,91,1) 4 ·6= 24 (r− x)(y−) 9291+1

(123) 6
(91,1,1,1)

8 ·3+8= 32
(r y x−)

93+1
(91,91,91,1) (r− y− x−)

(123) 6
(1,1,1,91)

8+8 ·3= 32
(r y x)(z−)

391
(91,91,1,91) (r x− y−)(z−)

(1234) 4
(91,91,1,1)

6 ·6+6+6= 48
(r z y− x−)

4(1,1,1,1) (r z y x)
(91,91,91,91) (r− z− y− x−)

(12)(34) 4
(91,1,1,1)

3 ·4+3 ·4= 24
(r x−)(y z)

92+2
(91,91 91,1) (r− x−)(y z−)

(id) 2 (91,1,1,1) 4 (r−) 91+1+1+1
(id) 2 (91,91 91,1) 4 (r−)(x−)(y−) 919191+1

192

Table 13: Orientation reversing isometries of the tesseract.

Order symmetry Number Rotations
1 1 1
2 69 43
3 32 32
4 138 36
6 96 32
8 48 48

384 192

Table 14: All symmetries of the tesseract sorted by the order of the symmetry.
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Cycle type Order Number
1+1+1+1 1 1
91919191 2 1
9191+1+1 2 6

291+1 2 24
929191 4 12
92+1+1 4 12
9391 6 32
3+1 3 32
94 8 48

2+2 2 12
9292 4 12

−1+1+1+1 2 4
919191+1 2 4

2+1+1 2 12
29191 2 12
9291+1 4 24
93+1 6 32
391 6 32

4 4 48
92+2 4 24

Table 15: All symmetries of the tesseract represented by their conjugacy classes.
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To investigate whether the group O contains normal subgroups, we first con-
sider the normal subgroups of the O4 of order 192. Its divisors are given by:
2,3,4,6,8,12,16,24,32,48,64,96,192. From Figure 15 it follows that there is a
normal subgroup of order 2, containing the signed cycles 1+1+1+1 and −1 −1 −1 −1.
However, due to the sizes of conjugacy classes, it also follows that there cannot be
normal subgroups of order 3,4,6 or 48. To see whether the rotation group has a
subgroup of order 32, 64 or 96, we use the following approach. We consider the
cycle types of products of elements in each conjugacy class. As each normal sub-
group is a group, the product of arbitrary elements in the normal subgroup must
lie in the normal subgroup again. That means that if a normal subgroup contains
a particular conjugacy class, it must necessarily also contain all conjugacy classes
that contain a product of from that particular conjugacy class.

In Figure 28, the conjugacy class of the rotation group are drawn. Each class is
represented by its signed cycle type. If the product of two elements of a conjugacy
class lie in a different nontrivial conjugacy class, a black arrow is drawn pointing
to the conjugacy class the product lies in. The arrow pointing towards the con-
jugacy class of the identity element is represented by a dashed gray arrow, since
each conjugacy class has products of elements that lie in this conjugacy class.

1+1+1+1

91919191

9191+1+1

291+1

929191

92+1+1
94

92922+2

3+1 9391

Figure 28: Product of elements in conjugacy classes of the rotations in O4.

Any subgroup of order 32 consists of a conjugacy class of order 24 together
with the normal subgroup of order 8 or of two conjugacy classes of order 12 to-
gether with the normal subgroup of order 8. The only way to choose conjugation
classes that will form a group is to take the conjugacy classes represented by the
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signed cycles −2−2 and 2+2 together with the normal subgroup of order 8. This
group is indeed normal, since any product of cycles must has an even number
of minus signs and consist of two cycles of length 2 or of four cycles of length 1.
Hence, there is a normal subgroup of order 32.
However, a normal subgroup of order 64 does not exist, although it seems possi-
ble to take the conjugacy classes of cycles with cycle type 3+1 and the normal
subgroup of order 32. However, the product

(x y z)(x y−)(z w−)= (x z w−)(y−)

does not lie in this union of conjugacy classes and the union is therefore not a
group,
Next, a normal subgroup of order 96 exists. Take the conjugacy classes of the
cycles of types

3+1, −3−1, 2+2, −2−2.

and the normal subgroup of order 8. This group consists of even cycles whose cy-
cle types have an even sign. Since both the product of even cycles is even and the
product of cycles with an even number of minus signs is even, it follows that the
product of any cycles in this set of 96 cycles lies in the same set. Furthermore, the
inverses of each cycle lie in the set and the identity lies in it as well. Thus, the
rotation group of the tesseract contains a normal subgroup of order 96.

The normal subgroup of order 96 can directly be related to the sign of the
cycle types of the symmetry in O4,h and the sign of the product of the element
in C4

2 that describes part of the rotation. Define the map χ1 and χ2 that map
from C4

2 o S4 → {±1} by

χ1(ε1,ε2,ε3,ε4;σ))= ε1ε2ε3ε4 χ2(ε1,ε2,ε3,ε4;σ))= sgn(σ).

Then ker(χ1)∩ker(χ2) is the normal subgroup of order 96.

To investigate the normal subgroups of the full symmetry group of the tesser-
act, we need to investigate all 20 conjugacy classes. The conjugacy classes con-
sisting of only products of 1-cycles, but with an arbitrary number of minus signs,
gives rise to a normal subgroup of order 16.

For the other divisors of 384, we cannot form any new normal subgroups. Any
subgroup of order 32 containing some conjugacy class form the non-rotations of
the tesseract, must amongst other conjugacy classes, contain the conjugacy class
of cycle type 2+2. Any normal subgroup of order 64 must contain a conjugacy class
of order 32. However, those conjugacy classes have products lying in a rotation
conjugacy class of order 32. Thus, a normal subgroup of order 64 does not exist.
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1+1+1+1

91919191

9191+1+1

291+1

929191

92+1+1
94

92922+2

3+1 9391

91+1+1+1

919191+1

2+1+1

29191

9291+1

93+1391

4

92+2

Figure 29: Product of elements in conjugacy classes of the orientation-reversing
isometries in O4,h.
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Furthermore, a subgroup of order 96, contains 2 conjugacy classes of order 32.
However, taking the two conjugacy classes of the cycles 93+1 and 391, the normal
subgroup must also contain the conjugacy classes of cycles 3+1 and 9391. Lastly,
a subgroup of order 128 seems to be normal from Figure 29. However, taking the
conjugacy classes with cycle types

391, 3+1, 9191, 2+2, 9292

and the subset of order 8, there are multiple products of elements in the subset
that do not lie in the set. For example,

(x y z−)(x− y− z−)(w−)= (x− z− y)(w−),

lies in the conjugacy classes of the signed cycle 3−1.

In conclusion, we found the 8 normal subgroups of O4,h. We formalize the
result in the following theorem.

Theorem 4.13. The normal subgroups of the symmetry group O4,h of the tesseract
have orders 2,8,16,32,96 and 192. In Table 16, each of these normal subgroups is
represented by the conjugation classes it contains.

Normal subgroup Conjugation classes Order
Trivial 1+1+1+1 1

A 1+1+1+1, 91,91,91,91 2
B A, 9191+1+1 8
C B, 2+2, 9292 32
D C, 3+1,9391 96
E B, 91+1+1+1, 919191+1 16

Rotation group
D, 291+1, 929191

192
92+1+1, −4

Symmetry group All conjugacy classes 384

Table 16: Normal subgroups of the symmetry group O4,h of the tesseract.

4.1.5 Geometrical interpretation of the rotations of the tesseract

To describe the rotation group of the tesseract in a geometrical way, we need to
make an important remark that we will use throughout this section. That is, each
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rotation of the tesseract acts on a pair of cubes: a cube and its opposite defined by
the negatives of the vertices of the first cube (Figure 27).

In three-dimensional space, rotations can be described by the rotation axis. An
alternative way would be to describe the plane that is left invariant under the ro-
tation. For three-dimensional space, the orthogonal complement is the plane that
is left invariant under a rotation. An important remark here is that although the
plane is left invariant, the vectors that lie in the plane are in general not invari-
ant under the rotation. However, the points lying on the rotation axis itself are
pointwise invariant under the rotation corresponding to that particular rotation
axis. That means that any point on the rotation axis is mapped to itself, although
any vector in the orthogonal complement of the rotation axis is mapped to another
vector lying in the same plane.

In four-dimensional space, the rotation axis makes place for a rotation plane.
This rotation plane is a fixed plane for the corresponding rotation, while each
plane perpendicular to the rotation plane is only invariant under the rotation.

The geometrical description of the rotations of the tesseract will be described
by the orthogonal complement of the rotation plane. That means that a rotation
of the tesseract maps each vector in the orthogonal plane we describe has to be
mapped to another point in that plane. We consider the action of a rotation on
the vertices, edges, faces and cubes of the tesseract in the orthogonal plane. This
geometrical account of the rotation group of the tesseract is based on [11]. How-
ever, before we describe O4 by the geometrical description of these vertices, edges,
faces and cubes in an invariant plane, we need to convince ourselves that such an
approach will describe all rotations of the tesseract. This is the case and we state
in in Theorem 4.14 which is proved in [11].

Theorem 4.14. The action on the (n−1)-cubes uniquely determine the symmetry
of the n-cube. [11]

It is convenient to explicitly use the coordinates of the centres of the cubes,
faces, edges and vertices in the standard tesseract with vertices (±1,±1,±1,±1) to
describe the rotations of the tesseract. These coordinates can be described as in
Theorem 4.15 and is proved in [11].

Theorem 4.15. The centre of a k-dimensional cube inside an n-dimensional cube
(k ≤ n) has k of its coordinates equal to 0 and n−k of its coordinates equal to ±1. [11]

It follows that for the standrad tesseract, the centers of the k-cubes are given
by the permutations of the coordinates given in Table 30.

We encounter all rotations of the tesseract by systematically considering those
planes left invariant under a rotation of the tesseract by the k-cubes centers lying
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k-cube Coordinates center k-cube
Vertex (±1,±1,±1,±1)
Edge (±1,±1,±1,0)
Face (±1,±1,0,0
Cube (±1,0,0,0)
Tesseract (0,0,0,0)

Figure 30: Coordinates of the k-cubes of the tesseract.

in the plane. First, we describe the simple rotations of the tesseract. To en-
counter all possible rotation planes, we start describing those planes that contain
3-cube centers. After that, we continue with planes that do not contain any 3-cube
centers, but do contains 2-cube centers. We continue this process until we have
described the last rotation by a plane that only contains vertices of the tesseract.
Furthermore, in our approach we use the remark that k-cube centers lie in the
invariant planes in pairs. That means that if a k-cube center lies in a plane, its
opposite k-cube center must lie in the same plane. This result is very useful to
show that certain planes do not describe a rotation.

An overview of the k-cubes centers in the hyperplane that describe the 86 sim-
ple rotations of the tesseract are given in Table 17. The gray rotations describe
planes in the tesseract, but those planes do not describe a rotation. The full ac-
count of rotations of the tesseract is given in Figure 18. The greenblue-colored
rotation in this table is a transformation of the tesseract that does not describe a
simple rotation. However, together with a rotation about 180°, it does describe a
non-simple rotation of the tesseract.

The first rotation is described by 2 cube-center pairs or four cube-centers. It fol-
lows that the plane spanned by those vectors must contain four face-centers as
well. In the given example, those face-centers are given by (±1,±1,0,0). Since
there are

(4
2

)
ways to pick two cube-face center pairs and each center can be

mapped to three other centers of the same type, these planes gives 18 rotations.
Six of the rotations are about an angle of 90°, six about 180° and six about 270 °.

The next plane to consider is a plane that is describe by one cube-center pair and
one face-centre pair. These planes need to contain two edge-center pairs as well.
Indeed, in the example the coordinates of those edge center pairs are given by
(1,±1,±1,0), (−1,±1,±1). There are four possible ways to choose one cube center
pair and

(3
2

)·2 ways to choose two coordinates that do not overlap with the non-zero
coordinate of the cube-center. However, there are two ways to choose the signs of
the face-centre coordinates, so in total there are 24 rotations described by those
planes.
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k Highest k 0 1 2 3 Overlap Example Number Degree

N
um

be
r

of
k-

cu
be

ce
nt

er
s

3 4 4 λ(1,0,0,0)+µ(0,1,0,0)
(4
2
) ·3= 18 90,180,270°

3 4 2 2 λ(1,0,0,0)+µ(0,1,1,0) 4 · (3
2
) ·2= 24 180°

3 4 2 2 λ(1,0,0,0)+µ(0,1,1,1) 4 ·4= 16 180°
3 2 2 2 λ(1,0,0,0)+µ(1,1,1,1) 180°
2 4 2 2 λ(1,1,0,0)+µ(1,91,0,0) 180°
2 6 - 1 λ(1,1,0,0)+µ(0,1,1,0) 4 ·2 ·3 · 2

3 ·2= 32 120,240°
2 4 4 - 0 λ(1,1,0,0)+µ(0,0,1,1) 3 ·2 ·2= 12 120,180,270°
2 0 2 2 - 2 λ(1,1,0,0)+µ(1,−1,1,0) - 180°
2 4 2 - 1 λ(1,1,0,0)+µ(0,1,1,1) - 180°
2 2 2 - λ(1,1,0,0)+ (1,−1,1,1) - 180°
1 4 1 - 3 λ(1,1,1,0)+µ(1,−1,1,0) - 180°
1 4 - - 2 λ(1,1,1,0)+µ(0,1,−1,1) - 90,180,270°
1 2 2 - - λ(1,1,1,1)+µ(0,−1,1,1) - 180°
0 4 > 0 λ(1,1,1,1)+µ(1,−1,1,−1)

86

Table 17: Geometrical description of the invariant planes of the simple rotations
of the tesseract.

The third plane does not describe a simple rotation of the tesseract. The invari-
ant plane is describe by one cube-centre pair and one edge-centre pair. Such a
plane necessarily contains two more vertices-centres. In the examples, those four
vertices are described by the coordinates (1,±1,±1,±1), (−1,±1,±1,±1). However,
any affine space, parallel to the invariant plane, is also invariant under the ro-
tation. That means that any centre that lies in such an affine space, needs to be
mapped to another centre in the plane or it must lie in the rotation plane that
fixes its points under the rotation pointwise. The 3-cube centers (0,1,0,0) do not
lie in the invariant plane spanned by the vectors (1,0,0,0) and (0,1,1,1). We call
this plane V . The affine plane parallel to V , call it U , is given by

(0,1,0,0)+u(1,0,0,0)+v(0,1,1,1)= (u,1+v,v,v) with u,v ∈R.

Since any 3-cube center has a single non-zero coordinates we must have v = 0. As
a consequence, we find that u = 0. The only 3-cube center that lies in the affine
plane described by u = 0 = v is (0,1,0,0). Thus, (0,1,0,0) gets mapped to itself
under the rotation. That means that the rotation does either not exist or (0,1,0,0)
lies in the rotation plane. The rotation plane is orthogonal to V , but (0,1,0,0)
is not. Thus, (0,1,0,0) does not lie on the rotation plane and thus this rotation
cannot exist.

The fourth invariant plane is described by a cube-centre and a vertex-centre. How-
ever, this plane also contains an edge center. For instance, in the example the
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edge-center (0,1,1,1) lies in the plane as well. As in the previous case, we already
conclude that such a plane cannot give rise to a simple rotation.

The next planes we are going to describe may not include any cube-centers, since
those planes have already been investigated. An invariant plane described by two
face-centers can either have zero or one or two overlapping coordinates. If the
two vectors that describe the invariant plane have two overlapping coordinates,
the plane must contain a cube-centre, which was not allowed. So we continue to
look at an invariant plane spanned by two edge-centres that overlap in a single
coordinate. Those planes contain a third face-centre pair. There are four choices
for the overlapping coordinate, two choices for the relative sign of this overlapping
coordinate, three choices for the second non-zero coordinate of one of the face-
centers and two for a non-overlapping coordinate of the second face-centre-pair.
However, in this way, each plane is counted by three different face-centre pairs.
Together with the fact that each face-centre pair can be mapped to two other face-
centre-pairs in the plane under such rotation, the total number of these rotations
is given by 4 ·2 ·32

3 ·2= 32.

The last invariant plane that describes a rotation is the plane described by two
face-centre pairs. This plane necessarily also includes two vertex-centre pairs. In
the example, their coordinates are given by (1,1,±1,±1), (−1,−1,±1,±1).

For the consecutive two planes, it is enough to consider the affine plane trans-
lated by the vector (0,0,1,0), parallel to the defined invariant plane. This plane
contains no other cube-centers and is not orthogonal to the rotation plane, so those
rotations are ruled out.

Describing those planes which have as highest k-cube an edge-center, the plane
described by two edge-center pairs directly fails to describe a rotation of this kind.
Any plane containing two edge-center-pairs, necessarily contains a face-centre.
Thus, this rotation does not add anything new to the rotation group of the tesser-
act.

For the last three invariant planes, the first two are ruled out considering the
affine plane translated by the vector (1,0,0,0). The last invariant plane spanned
by two vertex-centre pairs contains an edge-centre and is thus ruled out as well.

The rotation planes of the tesseract that are orthogonal to each other add an-
other 105 non-simple rotations to O4. We consider six combinations of invariant
planes of the tesseract which are given by the first six rows in Figure 18.
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The planes described by two cube-centre pairs lie three mutually orthogonal pairs.
Both planes can rotate about four different angles. However the composition of
two rotations about 0° gives the identity and the composition of two rotations
about 180° gives the inversion. Hence, there are 14 rotations left per mutually
orthogonal pair of planes. In total, there are 3 ·14 = 42 rotations of this type, of
which 18 rotations are simple.

Rotations described by one cube-centre pair and one face-centre pair, lie in orthog-
onal pairs, but their composition describes the inversion. So, those rotations only
describe the simple rotations we already found.

The invariant plane described in greenblue in Figure 17, do not describe a simple
rotation. However, the composition with planes described by two face-centre pairs
with a single overlapping coordinate. For each teal plane, the composition with
the rotation about 120° or 240 gives a non-simple rotation of the tesseract. In
total, there are 16 ·2= 32 non-simple rotations of this kind.

The planes spanned by two edge-centre-cubes and described by a face-centre and
a vertex-centre describe 32 and 12 simple rotations respectively. Both types of
planes do not lie in orthogonal pairs.

Lastly there is one type of rotation whose invariant planes do not contain any
k-cubes. This rotation is the cyclic permutation of rotation axes. Since there are
six ways to make distinct 4-cycles and there are four ways to give them a single
minus sign and four ways to give them three minus signs. It follows that there
are 6 ·8= 48 rotations of this type.
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Number of k-cubes Number of rotations
0 1 2 3 Simple Non-simple Total
0 0 4 4 18 24 42
0 4 2 2 24 0 24
4 0 2 2

0 32 32
0 6 0 0
0 6 0 0 32 0 32
4 0 4 0 12 0 12
0 0 0 0 0 48 48

Reflection 0 1 1
Identity 1 0 1

86+1 104+1 190+1+1

Table 18: The simple and non-simple rotations of the tesseract.

4.2 The 24-cell
4.2.1 Definition of the 24-cell

Definition 4.16. The 24-cell is the four-dimensional convex regular polytope con-
structed of 24 octahedral cells. It is denoted C24 and also called the octaplex
or octacube.

At each vertex of the 24-cell, six octahedral cells meet. Furthermore, at each
edge, three octahedral cells meet. Since each octahedron has twelve edges, the
total number of edges is 24·12

3 = 96. Furthermore, each edge lies in three faces,
but each face is also counted by three edges. Thus, the total number of faces in
the 24-cell is 96 as well. Lastly, since a octahedron has six vertices, but the two
vertices incident to an edge are shared by three octahedral cells, the total number
of vertices in a 24-cell is given by 6·24

2·3 = 24. That means that in each vertex 96·2
24 = 8

edges meet. These facts about the 24-cell are summarized in Figure 31.

24-cell
Vertices 24
Edges 96
Faces 96

Octahedra 24

Figure 31: Number of vertices, edges, faces and octahedra in a 24-cell.
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Figure 32: Orthographic projection of the 24-cell.

4.2.2 Demi-hypercubes in a tesseract

As two tetrahedra are inscribed in a cube, two 16-cells inscribe a tesseract. Those
two 16-cells are obtained from the alternation of the vertices of such a tesseract.
The obtained polytope with half of the vertices of a tesseract is called a demi-
tesseract or demi-hypercube. The alternation of the vertices of a unit tesseract
described by the vertices 1

2 (±1,±1,±1,±1), gives two sets of vertices, one contain-
ing the vertices with an even number of minus signs and one set containing the
vertices with an odd number of minus signs. Those two sets both form the ver-
tices of a 16-cell, which we will soon show. The 16-cell is the dual of the tesseract.
In Figure 33, the alternation of the vertices of the tesseract together with the
orthographic projection of a 16-cell is given.

To show that the demi-hypercubes are 16-cells, we show that there exist an iso-
mormphism between the vertices of a standard 16-cell and the vertices obtained
from the alternation labeling of vertices of the unit tesseract described earlier. It
then follows that the alternation labeling of any unit tesseract gives two demi-
tesseracts that are 16-cells isomorphic to the standard 16-cell.
The vertices of a standard 16-cell are given by the coordinates (±1,0,0,0). The

orientation preserving matrix


91

2
1
2

1
2

1
2

1
2 91

2
1
2

1
2

1
2

1
2

1
2 91

2
1
2

1
2 91

2
1
2

 maps these vertices to the ver-

tices of the demi-tesseract with an odd number of minus signs described earlier.
Thus, this demi-tesseract is isomorphic to the standard 16-cell. In a same way is
the demi-tesseract described by the vertices with an even number of minus signs
isomorphic to the standard 16-cell via the orientation preserving map described

by the matrix


91

2
1
2

1
2 91

2
91

2 91
2 91

2 91
2

1
2

1
2 91

2 91
2

1
2 91

2
1
2 91

2

. As the demi-hypercubes are 16-cells, we make
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(a) Tesseract with (b) 16-cell
alternating vertices

Figure 33: Alternated labeling of the vertices of a tesseract. The black and the
white vertices form two 16-cells.

the convention to call a demi-hypercube just a 16-cell.

4.2.3 Inscription of 16-cells in a tesseract and the circumscription of 16-
cells by a tesseract

A tetrahedron uniquely determines the cube it inscribes and its opposite tetra-
hedron inscribed in the same cube. However, this analogue cannot be lifted to
the 16-cell inscribing a tesseract. Namely, each 16-cell is contained in exactly
two tesseracts. We will show that one the one hand each 16-cell describes two
tesseracts and, on the on the other hand, any tesseract is described by two unique
16-cells. Define

• T to be tesseract,
• C to be a 16-cell,
• GT = {g ∈O(4) | g(T)=T}
• GC = {g ∈O(4) | g(C)=C}.

Suppose we have a fixed tesseract and we consider all 16-cells that are inscribed
in that particular tesseract. The stabilizer group StabT(C) in GT is precisely the
set of all orthogonal transformations in O(4) that preserves both the tesseract and
the 16-cell. From the signed cycles in Figure 12 and Figure 14 it follows that
exactly half of the symmetries of the tesseract swaps the two 16-cells inscribed.
Indeed, all transformations with ε1ε2ε3ε4 = −1 do so. For example, the 16-cell
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described by (±1,±1,±1,±1) with an even number of the minus signs in the coor-
dinates gets mapped to the vertices with an odd number of minus signs whenever
ε1ε2ε3ε4 = −1. The other half of the rotations permutes the vertices of a 16-cell,
preserving the vertices having an even or odd number of minus signs. Since any
tesseract is similar to the tesseract with vertices (±1,±1,±1,±1), it follows that
any any 16-cell is either mapped to itself or the other inscribed 16-cell in the fixed
tesseract. Thus, the length of the orbit of a 16-cell in a fixed tesseract is 2. As a
consequence, the index of the StabT(C) is 2. Since there are two 16-cells inscribed
in a fixed tesseract and these cells lie in the same orbit, the action of symmetry
group of the tesseract on the 16-cell is transitive.

Suppose now we have a fixed 16-cell and we consider all those tesseracts that
are acted upon by the symmetry group of this fixed 16-cell. Since the StabC(T)
in GC consists of the orthogonal transformation in O(4) that preserve both the 16-
cell and the tesseract, it equals StabT(C) in GT. Since the symmetry group of the
tesseract is the same as the symmetry group of the 16-cell by duality, it follows
that the stabilizer group of the tesseract in GC has index 2.

We now show that there are exactly two tesseracts containing a given 16-cell.
In other words, we will show that the full symmetry group GC of C acts transi-
tively on the set of tesseracts containing C. Let a fixed a 16-cell be given and call
it ∆. Let also two different arbitrary tesseracts sharing half of its vertices with the
16-cell ∆ be given. Those tesseracts will be called T1 and T2. Since T1 and T2 are
isomorphic, there exist a g ∈ O(4) such that g(T1) = T2 and vice versa. Since T1
and T2 are tesseracts, it follows from previous reasoning that they both contain
two 16-cells of which one is ∆ by construction. Call the other two 16-cells ∆1 and
∆2, contained in T1 and in T2 respectively. The orthogonal transformation g maps
∆1 to either ∆ or ∆2 and the same holds for ∆. In case ∆ is mapped to ∆ and ∆1
to ∆2, we are done. Indeed, it follows that two arbitrary tesseracts lie in the same
orbit, thus the action of the 16-cell on a tesseract containing ∆ is transitive. In
the latter case, that is, g maps ∆ to ∆2, we can take an orthogonal transformation
g′ that preserves T1, but swaps the 16-cells inscribed in it. Any symmetry iso-
morphic to the symmetry of the standard tesseract with ε1ε2ε3ε4 = −1 will work.
The composition of g and g′ is an orthogonal transformation again. Since this
orthogonal transformation preserves ∆, it is also an orthogonal transformation of
∆. It follows that the symmetry group of a 16-cell acts transitively on the two
tesseracts it inscribes.

4.2.4 Inscription of a tesseract and 16-cell in a 24-cell

The quaternions in 2T can be split in three disjoint sets such that the elements
in each set are the vertices of 16-cell. The first set is the normal subgroup Q8,
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describing the standard 16-cell. As we saw in Section 4.2.2, the conjugacy classes
C and E from Figure 10 and the conjugacy classes D and F both form a 16-cell
as well.

We have shown that at least three 16-cells are inscribed in a 24-cell. This can
also be seen from the construction of the 24-cell from one tesseract and a 16-cell
as done in [10]. However, we can show that there are no more than three 16-cells
inscribed in a 24-cell in a geometrical way. We work with the 24-cell whose vertices
are the quaternions from 2T. We thus know that the edges of the inscribed 16-
cells have length

p
2. Furthermore, the distance between two opposite vertices,

for example between 1 and −1 is 2. We show that there is only one 16-cell in 2T
containing the quaternion 1. It then follows from symmetry that each vertex lies
in a single 16-cells and thus that there are only 24

8 = 3 16-cells inscribed in each
24-cell. We have that −1 lies 2 away from 1, while the quaternions (1

2 ,±1
2 ,±1

2 ,±1
2 )

all have distance 1 to the quaternion 1 and the quaternions (−1
2 ,±1

2 ,±1
2 ,±1

2 have
distance

p
3 to the quaternion 1. It thus follows that there are only 6 quaternions

that lie
p

2 away from 1 and can lie in the same 16-cell. It thus follows that there is
only a single 16-cell described at each fixed vertex of the 24-cell. Hence, it follows
that only three 16-cells inscribe the 24-cell.

As a consequence, we also know that there are exactly three tesseracts in-
scribed in the 24-cell. We have already seen that each 16-cell gives rise to pre-
cisely two tesseracts and vice versa. Each pair of 16-cells in the 24-cells thus
forms a tesseract in the 24-cell. There cannot be inscribed any more than those
three tesseracts, as that would imply that there was another 16-cell inscribed.

(a) 24-cell (b) Tesseract

Figure 34: An orthographic projection of the inscription of three tesseracts in
green, red and blue in the 24-cell and of a tesseract.
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4.2.5 The compound of a 24-cell and its dual 24-cell

The quaternions in the group 2O are given by:

(±1,0,0,0), (±1
2 ,±1

2 ,±1
2 ,±1

2 ). (±1,±1,0,0).

These quaternions are the vertices of the standard 24-cell and its unscaled dual
and form the roots in the root system F4 [22]. The vertices of the standard
24-cell with the vertices of its scaled dual form the vertices of the compound of
two 24-cells.

One could verify that the dual of the standard 24-cell indeed has as vertices
the permutations of (±1,±1,0,0). In Table 19, the coordinates of a so-called dual
24-cell with vertices (±1,±1,0,0) are summarized. The cell-centres of this 24-cell
are precisely the vertices of the standard 24-cell. As an example to the table, two
octahedra with vertices of the dual 24-cell are drawn in Figure 36.

Figure 35: The root system F4 represented by the 48 vertices of the 24-cell and its
unscaled dual. [1]
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Figure 36: Two possible octahedrons inscribed in a 24-cell with vertices
(±1,±1,0,0). The vertices, a edge-centre, face-centre and the centre of the oc-
tahedron are denoted by coordinates.

24-cell
Coordinates Number

Vertices (±1,±1,0,0)
(4
2

) ·22 = 24

Edge-centres (±1
2 ,±1

2 ,1,0)
(4
1

) · (3
1

) ·23 = 96

Face-centres
(±1

3 ,±1
3 ,±1

3 ,±1)
(4
1

) ·24 = 64

(±2
3 ,±2

3 ,±2
3 ,0)

(4
1

) ·23 = 32

Cell-centre
(±1,0,0,0) 8

(±1
2 ,±1

2 ,±1
2 ,±1

2 ) 8+24 = 24

Table 19: The vertices, edge-centres, face-centres and cell-centres of the 24-cell
with vertices given by the permutations of the coordinates (±1,±1,0,0).
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4.3 The 600-cell
4.3.1 Definition of the 600-cell

The quaternions from 2I describe the vertices of a 600-cell. We make the conven-
tion to refer to the 600-cell with vertices the quaternions from 2I as defined in
Section 3.2, by the 600-cell 2I. At each vertex of a 600-cell, 20 tetrahedra meet.
In total, a 600-cell contains 600 tetrahedra. The 600-cell is the four-dimensional
analogue of the icosahedron. That is, in the icosahedron at each vertex 5 triangles
meet, while in the 600-cell at each edge 5 tetrahedra meet.

Figure 37: An orthographic projection of the 600-cell.

4.3.2 The inscription of 24-cells in a 600-cell

In this section, we will show that there are precisely twenty-five 24-cells inscribed
in a 600-cell. Throughout this entire section, we write decomposition of the
600-cell for the decomposition of the 600-cell into five disjoint 24-cells. This de-
composition is thus a partition of the 120 vertices of the 600-cell in five subsets
that each contain 24 vertices. The main result of this section is that there are are
at least and at most twenty-five 24-cells embedded in a 600-cell.

Theorem 4.17. There are precisely 25 ways to embed a 24-cell in a 600-cell.

To prove this theorem, we proceed as follows. First we show that there are at
least twenty-five 24-cells inscribed in the 600-cell 2I in Theorem 4.18. Then we
show that each vertex of the 600-cell lies in at most five 24-cells in Theorem 4.19.
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Theorem 4.18. There are 25 left cosets and 25 right cosets of H = 2T incribed in
the 600-cell 2I. However, the vertices in the 25 left cosets and the 25 right are the
vertices of the same twenty-five 24-cells.

Proof. The idea of the proof is as follows. We use the fact that there are five
conjugate ways to embed A4 in A5. As a result, the left cosets of these conjugates
of 2T in 2I are 24-cells. Using Mathematica, we show that those 25 left cosets are
different.

First of all, the five conjugate subgroups of A4 in A5 each fix a different ele-
ment of A5. In Figure 20 these conjugate classes of A4 are represented. Each of
these conjugates of A4 are subgroups of A5.

A4 id, (12)(34), (13)(24), (14)(23), (123), (132), (124), (142), (134), (143), (234), (243)

(123)A4(132) id, (23)(45), (24)(35), (25)(34), (234), (243), (235), (253), (245), (254), (345), (354)

(234)A4(243) id, (13)(45), (14)(35), (15)(34), (134), (143), (135), (153), (145), (154), (345), (354)

(345)A4(354) id, (12)(45), (14)(25), (15)(24), (124), (142), (125), (152), (145), (154), (245), (254)

(423)A4(432) id, (12)(35), (13)(25), (15)(23), (123), (132), (125), (152), (135), (153), (235), (253)

Table 20: Conjugate subgroups of A4 fixing the element 5,1,2,3,4 respectively.

The different embeddings of A4 in A5 embed 2T in 2I in five different ways
via the map from Theorem 3.14. The conjugates of 2T can be obtained by taking
an element c ∈ 2I with order 5 and computing the conjutate groups ci2Tc−i. For
notational convenience, denote 2T by H. In the code found in Section B.2.1, we use
the quaternion c =−

(
φ

2 ,0, 1
φ

,−1
2

)
as quaternion of order 5 to compute the conjugate

subgroups of H. In Table 21 it can be read off that the left and right cosets of these
conjugate subgroups of H overlap.1 In the left table the left cosets are represented,
while in the right table the right cosets are represented and the colors denote
which left and right cosets are the same. The fact that none of the 25 left cosets
found in this way are the same, can be found in Section B.2.1.

We now know that there are twenty-five different 24-cells inscribed in a 600-
cell. However, a priori, it might be the case that there are more than twenty-five
24-cells inscribed in any 600-cell. We show that each vertex of a 600-cell lies in
only five 24-cells.

Theorem 4.19. Each vertex of the 600-cell 2I lies in at most 5 distinct 24-cells.
1The conjugate subgroups of 2T by the left action of 2I on 2T give the conjugates ciHc−i and

the left cosets of these conjugates in 2I. However, the right action of 2I on 2T give the conjugates
c−iHci and the right cosets of these conjugates in 2I. In the implementation in Appendix B.2.1
this subtle yet important difference has been used.
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H cHc−1 c2Hc−2 c3Hc−3 c4Hc−4

cH c2Hc−1 c3Hc−2 c4Hc−3 Hc−4

c2H c3Hc−1 c4Hc−2 Hc−3 cHc−4

c3H c4Hc−1 Hc−2 cHc−3 c2Hc−4

c4H Hc−1 cHc−2 c2Hc−3 c3Hc−4

H c−1Hc c−2Hc2 c−3Hc3 c−4Hc4

Hc c−1Hc2 c−2Hc3 c−3Hc4 c−4H
Hc2 c−1Hc3 c−2Hc4 c−3H c−4Hc
Hc3 c−1Hc4 c−2H c−3Hc c−4Hc2

Hc4 c−1H c−2Hc c−3Hc2 c−4Hc3

Table 21: Overlap in left and right cosets of 2T in 2I where the left cosets are
marked in the right cosets and vice versa.
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(c) Projection of the left cosets of 2T in 2I

Figure 38: Projection of 2I, 2T and the left cosets of 2T in 2I on the rx-plane.
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Proof. In this proof we use Mathematica calculations found in Section 4.3. The
idea is to show that there are at most 5 ways to construct a different 24-cell con-
taining the vertex 1 in the 600-cell 2I. We do so by using the distances between
edges in a 24-cell and the distances between all of the vertices in the 600-cell 2I.

Without loss of generality, we may show that the quaternion Q1 = 1 is con-
tained in at most five 24-cells in the 600-cell 2I. a quaternion in 2I and call it Q1.
We want to find 8 vertices that can be connected to Q1 by an edge to construct a
24-cell. The distance between two vertices of the 24-cell that are connected by an
edge is 1. Thus, we start looking for 4 vertices Q2,Q3,Q4,Q5 that can be connected
to Q1 by an edge. The vertices Q2 and Q4 need to satisfy additionally that they
have distance

p
2 to each other and will thus not be connected by an edge. The

same requirement needs to hold for Q3 and Q5. From the calculations in Math-
ematica, it follows that there are 20 ways to choose a vertex Q2 with distance 1
to Q1. Then, there are six possibile choices for a vertex Q3 with distance 1 and

p
2

to Q1 and Q2 respectively. The vertices Q3 and Q5 are then fixed. That is, there
are only two vertices that have distance 1 to Q1,Q2 and Q4, but lie

p
2 apart from

each other.
However, there are four combinations of possible vertices Q2 and Q3 that de-

scribe the same part of an octahedron containing Q1. Furthermore, in each vertex
of a 24-cells 6 octahedra meet. So the extension to a 24-cell containing Q1 from a
single octahedron is the same for at least 6 different otahedra. It follows that at
least 20·6

4·6 = 5 24-cells in a 600-cell contain a fixed vertex Q1.
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(a) 20 possible neighbors Q2 (b) 6 possible opposites Q3

(c) 2 possible neighbors (d) Octahedron defined by
Q3 and Q5 Q1,Q2,Q3,Q4

Figure 39: Construction of an octahedron of a 24-cell in a 600-cell.

Using the results from Theorem 4.18 and Theorem 4.19, we can show that only
twenty-five 24-cells inscribe a 600-cell.

Proof Theorem 4.17. Each vertex of a 600-cell lies in five 24-cells. Furthermore,
each of these 24-cells has 24 edges. Thus, the total number of 24-cells in a 600-cell
is 120·5

24 = 25.

4.3.3 Decompositions of the 600-cell into five disjoint 24-cells

In this section, we will show that there are precisely 5+5 different ways to em-
bed five 24-cells in a 600-cell such that each vertex belongs to exactly one of
these 24-cells. The decompositions are the 5+ 5 columns in the two Tables in
Table 22. However, a priori, it is not immediately clear that these decomposi-
tions are, on the one hand, all distinct and, on the other hand, all the possible
decompositions.

Theorem 4.20. There are precisely 5+5 ways to decompose the 600-cell into five
disjoint 24-cells.
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Proof. This is proved by a computation in Mathematica. The code is found in
Appendix B.2.1.

The Mathematica code is not entirely self-explanatory nor efficient. This code
tries every combination of five 24-cells and checks whether all quaternions from
2I lie in these five 24-cells. From the code it follows that there are 1200 ways to
take five of the twenty-five 24-cells that form a partition the vertices of the 600-
cell. Since each combination of five 24-cells is counted 5! = 120 times, it follows
that the total number of decompositions is 10.

Since the 24-cells in the table for the left and right cosets overlap, it might be
insightful to make one table that both contains all twenty-five 24-cells inscribed
in a 600-cell as an easy way of reading of the 10 decompositions of the 600-cell.
We make a table whose first row and column are the the two decompositions con-
taining H = 2T. Furthermore, we denote the 24-cells obtained by conjugation and
left multiplication with c j and ci respectively by 〈i+ j,− j〉. In this way, the left
and right cosets of the conjugates of H are given by the columns and rows of the
table and represent all decompositions of the 600-cell into five disjoint 24-cells.

〈0,0〉 〈0,1〉 〈0,2〉 〈0,3〉 〈0,4〉
〈1,0〉 〈1,1〉 〈1,2〉 〈1,3〉 〈1,4〉
〈2,0〉 〈2,1〉 〈2,2〉 〈2,3〉 〈2,4〉
〈3,0〉 〈3,1〉 〈3,2〉 〈3,3〉 〈3,4〉
〈4,0〉 〈4,1〉 〈4,2〉 〈4,3〉 〈4,4〉

Table 22: The twenty-five 24-cells in the 600-cell. Each row and column represents
a distinct decomposition of the 600-cell.

4.3.4 Quaternions with real part 1
2 in each 24-cell in the 600-cell 2I

In this subsection, we use the notation ci+ jHci and ciHci+ j for the left and right
cosets of the group H = 2T in 2I. Furthermore, if we say that a quaternion from 2I
lies in the dodecahedron, we mean that its imaginary part describe the coordinate
representation of a vertex in the dodecahedron.

We consider the intersection of each 24-cell in a decomposition of the 600-cell
with the set {r = 1

2 }. A priori, one could think and hope the 20 quaternions lying
in this intersection would divide itself over the 5 subgroups of 2I and its left and
right cosets such that each left cosets describes one of the tetrahedra in the left-
handed compound of 5 tetrahedra in the dodecahedron, while each right cosets
represents one of the tetrahedra from the right-handed compound of tetrahedra.
Although this would relate the 10 inscribed tetrahedra in a dodecahedron beauti-
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fully to the 10 decompositions, it is not what occurs in the group 2I. In this thesis,
this fact was discoverd in Mathematica.

Theorem 4.21. Take a decomposition of the 600-cell 2I into 5 disjoint 24-cells and
intersect with {r = 1

2 }. This decomposition does not decompose the dodecahedron
2I ∩ {r = 1

2 } into 5 disjoint tetrahedra.

This can be read of from the Mathematica code included in Appendix B.2.2.
Interestingly what actually occurs is that intersection of a 24-cell in the 600-cell
2I and the set {r = 1

2 } contains either 3 or 8 vertices of the 24-cell. Only five of
the twenty-five 24-cells in a 600-cell share 8 vertices with the set {r = 1

2 }. Those
8 vertices are the vertices of cube.

Theorem 4.22. Each distinct binary tetrahedral subgroup of 2I intersects {r = 1
2 }

in a distinct cube.

This result can be seen as a consequence of the fact that there are five ways to
embed A4

∼= O in A5
∼= I. Each embedding fixes an element in A5, in this case a

cube. Since 2I is a double cover of I, the rotations that fix a particular cube in the
dodecahedron lie in 2I twice. It is therefore certainly true that the intersection of
a distinct binary tetrahedral subgroup of 2I and {r− 1

2 } is a cube as well.

The cube in H = 2T is given by (±1
2 ,±1

2 ,±1
2 ,±1

2 ). Since the real part of a
unit quaternion is preserved under conjugation in H1 (Theorem 3.10), it follows
that the cubes in the distinct binary tetrahedral subgroups of 2I are given by{
cm (1

2 ,±1
2 ,±1

2 ,±1
2

)
c−m}

where m ∈ {1,2,3,4,5} and c ∈ 2I with order 5.

The question that remains unanswered is what the intersection of a non-trivial
coset of a binary tetrahedral subgroup of 2I and the set {1

2 } describes. We already
mentioned that the 12 quaternions with r = 1

2 are divided over the left cosets of
such a binary tetrahedral subgroup in sets of 3. Surely, the intersection of left
cosets of one binary tetrahedral subgroup of 2I is empty. What is interesting is
that these remaining 12 vertices with r = 1

2 describe three orthogonal frames in
the dodecahedron. It furthermore appears that the quaternions with r = 1

2 in each
coset describe one vertex of each of these orthogonal frames. The division of ver-
tices of the dodecahedron by the quaternions with r = 1

2 is visualized in Figure 41
for the subgroup H = 2T together with its left coset cH, c2H, c3H and c4H.

We can also examine what the difference is between the quaternions with real
part r = 1

2 in the left cosets of H and in the right cosets. These quaternions in the
left and right cosets of H = 2T are represented by the vertices of the dodecahedron
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Figure 40: The three orthogonal frames obtained from the vertices represented by
the imaginary part of the quaternions with real part r = 1

2 in the left cosets of H.
The vertices from H, cH, c2H, c3H and c4H are represented by orange, black, red,
green and blue vertices of the dodecahedron respectively.

in Figure 41. The left cosets are represented by the red vertices and the right
cosets by the blue ones.

The three quaternions with 1
2 in a non-trivial coset of a binary tetrahedral

subgroup are not vertices of a single tetrahedron or cube. Two of these three
vertices do rather represent a cube inside the dodecahedron. In this way, these
three vertices describe three distinct cubes. These cubes are represented by one
of their edges, drawn in the Figure 41 by an edge in the color of the cube as given
in Figure 13.

What is particularly striking is that none of the cosets contains three of the
same cubes. Furthermore, each cube occurs in precisely three of the four cosets
that are no subgroup. There are only

(4
3

) = 4 ways to combine three cubes from a
total of four cubes. The cube fixed by the subgroup is never described by two of
the three quaternions with r = 1

2 in a coset.
What can be seen from Figure 41 as well, is that the left and right cosets

corresponding to the same subgroup of 2I describe the cosets in a very similar
way. The quaternions with r = 1

2 lying in the left cosets are precisely the opposites
of the quaternions with r = 1

2 lying in the right cosets. In fact, the cosets cH
and Hc contain the same vertices of the dodecahedron and icosidodecahedron and
midpoints of edges of the dodecahedron, but they differ in the sign of the real
part. That is, the quaternions describe the opposite rotation of that vertex, edge
or midpoint of the face of the dodecahedron.
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(a) H (b) cH and Hc4

(c) c2H and Hc3 (d) c3H and Hc2 (e) c4H and Hc

Figure 41: The division of the quaternions with r = 1
2 into the left and right cosets

of H. The blue vertices represent the imaginary part of the quaternions with r = 1
2

from the left cosets, while the red vertices are the quaternions with r = 1
2 in the

right cosets.
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We conclude that the left and right cosets of a binary tetrahedral subgroup
differ to the extent that the quaternions with r = 1

2 in a right coset describe the
inverses of the rotations in the left coset containing these quaternions with the
same imaginary part.

4.3.5 The two 600-cells circumscribing a 24-cell

In Section 4.2.3 we showed that each tesseract is described by two unique 16-cell
and that each 16-cell is inscribed in two unique tesseracts. We will now show
that there are two 600-cells that contain a fixed 24-cell. We already showed in
Theorem 4.17 that each fixed 600-cell contains twenty-five 24-cells and we will
use that result. We argue as we did for the tesseract and 16-cell.

Let a 600-cell be given and let a 24-cell lying in this 600-cell be given as well.
Denote the 600-cell by X1 and the 24-cell by X2. Let G1 and G2 denote the sym-
metry group of respectively X1 and X2. That is,

G1 = {R ∈ O(4) | R(X1) = X1}, G2 = {R ∈ O(4) | R(X2)= X2 }.

Define H = G1 ∩G2. H is the stabilizer of X1, where X1 is seen as a point in the
set of subgroups of G2 but also the stabilizer of X2, where X2 is seen as point in
the set of subgroups of G1. Thus, any orthogonal transformation in H preserves
both X1 as X2. Since H is a group and a subgroup of both G1 and G2, it should
divide the group order of both G1 and G2. We have already seen that |G2| = 1152.
Since the 600-cell contains 600 tetrahedra, we have that |G1| = 600 ·24 = 14400.
Thus, the order of H divides ggd(1152,14400)= 576.

We denote the order of H by 576
k for a k ∈ N. The index of H in G1 is then

25k and the order of H in G2 is 2k. Thus, the length of the orbit of X1 under
G2 is 2k and the the length of the orbit of X2 under G1 is 25k. However, from
Theorem 4.17 we know that there are twenty-five 24-cells in a 600-cell. It follows
that k = 1. Apparently is the action of the symmetry group G1 of the 600-cell on
the inscribed 24-cells transitive.

We still need to show that G2 works transitively on the two 600-cells contain-
ing X2 as well. A same argument as used for the tesseract and 16-cells works
here. Suppose we are given a fixed 24-cell that we call ∆1 and two 600-cells Y1
and Y2 containing ∆1. There exist an orthogonal transformation R that maps Y1
to Y2. If R maps ∆1 to ∆1 we are done. If not, ∆1 is mapped to another 24-cell ∆2
in Y2. Then we take a symmetry that preserves Y2 but maps ∆2 to ∆1. Hence, the
symmetry group of a 24-cell works transitively on the two 600-cells containing a
given 24-cell.
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4.3.6 Action symmetry group of the 600-cell on the set of its 10 decompo-
sitions

Definition 4.23 (Chiral objects). An object X ∈Rn is chiral if it cannot be made
incident with any of its mirror images by translations and rotations of Rn. Such
an object is said to have chirality (handedness). [28], [35]

However, there are infinitely many hyperplanes in Rn and thus infinetely
many reflections in hyperplanes. In what sense does chirality depend on this
choice of the reflection hyperplane? The answer is that if an object is chiral with
reflect to one reflection hyperplane, it is chiral with respect to all reflections hy-
perplanes. [35].

It would be beautiful if the orientation reversing symmetries of the symme-
try group of W would reverse chirality of the decompositions. In that case the
600-cell would contain two sets both consisting of 5 compounds of 5 24-cells dif-
fering in chirality like the two chiral compounds of 5 tetrahedra contained in the
dodecahedron. It appears that the left-handed decompositions and right-handed
decompositions are indeed chiral. This result is formalized in Theorem 4.24.

Theorem 4.24. An element of the full symmetry group of the 600-cell preserves
chirality of decompositions, that is, it maps left decompositions to left decomposi-
tions and right decompositions to right decompositions, if and only if it preserves
the orientation.

We only show here that the four generators of the reflection group of the
600-cell does not preserve chirality of the decompositions. We first state the rela-
tions between the four generators of the reflection group W = [3,3,5], which can
be read of from the Coxeter diagram. We then make a choice for these four gener-
ators and compute using Mathematica that each reflection does not preserve the
chirality of the decompositions. Afterwards, we check whether the relations the
generators have to satisfy hold for our particular choice of generators. The imple-
mentation in Mathematica can be found in Appendix B.2.2.

We start with the relations the four generators of the reflection group of the
600-cell have to satisfy. Those relations were not studied by myself, but explained
by my supervisors. [35]. These generators of the symmetry group W = [3,3,5] can
found using the Coxeter diagram. This diagram consist of 4 vertices representing
simple roots α1,α2,α3,α4 of length 1 in 2I with

α1 ·α3 =α1 ·α4 =α2 ·α4 = 0,

α1 ·α2 =α2 ·α3 =−1
2 ,
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and
α3 ·α4 =−1

2φ,

where φ = 1=p5
2 is the golden ratio. The full symmetry group W = [3,3,5] can be

defined as
[3,3,5]= 〈s1, s2, s3.s4|R〉,

where R are the relations generated by

s2
1 = s2

2 = s2
3 = s2

4 = e

(s1s3)2 = (s1s4)2 = (s2s4)2 = e

and
(s1s2)3 = (s2s3)3 = (s3s4)5 = e.

We take α1,α2,α3,α4 to be

α1 = (1,0,0,0)

α2 =−1
2 (1,1,1,1)

α3 = (0,0,0,1)

α4 = 1
2 (0,−1,− 1

φ
,φ).

These roots α1,α2,α3,α4 generate reflections s1, s2, s3, s4 as described already in
Definition 2.10 in Section 2.3.2. The action of the reflections s1, s2, s3, s4 on the sets
of five 24-cells in each decomposition can then be visualized as in
Table 23b-e. In Table 23a, the identity transformation is once more denoted.
The columns of Tables 23b-e are the right decompositions obtained from the re-
flection si of the left decompositions in the columns of Table 23a.

id 〈•,0〉 〈•,1〉 〈•,2〉 〈•,3〉 〈•,4〉
〈0,•〉 〈0,0〉 〈0,1〉 〈0,2〉 〈0,3〉 〈0,4〉
〈1,•〉 〈1,0〉 〈1,1〉 〈1,2〉 〈1,3〉 〈1,4〉
〈2,•〉 〈2,0〉 〈2,1〉 〈2,2〉 〈2,3〉 〈2,4〉
〈3,•〉 〈3,0〉 〈3,1〉 〈3,2〉 〈3,3〉 〈3,4〉
〈4,•〉 〈4,0〉 〈4,1〉 〈4,2〉 〈4,3〉 〈4,4〉

(a) No reflection

s1 〈•,0〉 〈•,1〉 〈•,2〉 〈•,3〉 〈•,4〉
〈0,•〉 〈0,0〉 〈4,0〉 〈3,0〉 〈2,0〉 〈1,0〉
〈1,•〉 〈0,4〉 〈4,4〉 〈3,4〉 〈2,4〉 〈1,4〉
〈2,•〉 〈0,3〉 〈4,3〉 〈3,3〉 〈2,3〉 〈1,3〉
〈3,•〉 〈0,2〉 〈4,2〉 〈3,2〉 〈2,2〉 〈1,2〉
〈4,•〉 〈0,1〉 〈4,1〉 〈3,1〉 〈2,1〉 〈1,1〉

(b) Reflection s1
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s2 〈•,0〉 〈•,1〉 〈•,2〉 〈•,3〉 〈•,4〉
〈0,•〉 〈0,0〉 〈4,0〉 〈1,0〉 〈3,0〉 〈2,0〉
〈1,•〉 〈0,2〉 〈4,2〉 〈1,2〉 〈3,2〉 〈2,2〉
〈2,•〉 〈0,4〉 〈4,4〉 〈1,4〉 〈3,4〉 〈2,4〉
〈3,•〉 〈0,3〉 〈4,3〉 〈1,3〉 〈3,3〉 〈2,3〉
〈4,•〉 〈0,1〉 〈4,1〉 〈1,1〉 〈3,1〉 〈2,1〉

(c) Reflection s2

s3 〈•,0〉 〈•,1〉 〈•,2〉 〈•,3〉 〈•,4〉
〈0,•〉 〈0,0〉 〈3,0〉 〈4,0〉 〈1,0〉 〈2,0〉
〈1,•〉 〈0,3〉 〈3,3〉 〈4,3〉 〈1,3〉 〈2,3〉
〈2,•〉 〈0,2〉 〈3,4〉 〈4,4〉 〈1,4〉 〈2,4〉
〈3,•〉 〈0,1〉 〈3,1〉 〈4,1〉 〈1,1〉 〈2,1〉
〈4,•〉 〈0,2〉 〈3,2〉 〈4,2〉 〈1,2〉 〈2,2〉

(d) Reflection s3

s4 〈•,0〉 〈•,1〉 〈•,2〉 〈•,3〉 〈•,4〉
〈0,•〉 〈4,1〉 〈0,1〉 〈2,1〉 〈3,1〉 〈1,1〉
〈1,•〉 〈4,4〉 〈0,4〉 〈2,4〉 〈3,4〉 〈1,4〉
〈2,•〉 〈4,2〉 〈0,2〉 〈2,2〉 〈3,2〉 〈1,2〉
〈3,•〉 〈4,3〉 〈0,3〉 〈2,3〉 〈3,3〉 〈1,3〉
〈4,•〉 〈4,0〉 〈0,0〉 〈2,0〉 〈3,0〉 〈1,0〉

(e) Reflection s4

Table 23: The image of each of the 25 inscribed 24-cells in a 600-cell after reflection
by the the generating reflections s1, s2, s3, s4 of the 600-cell. Each entry of a table
denotes si(〈 j,k〉) for i ∈ {1,2,3,4} and j,k ∈ {0,1,2,3,4}.

The action of the reflections on the 5+5 decompositions can also be visualized
in a graph. Such a graph is given in Figure 42, where 5+ 5 nodes denote the
5+5 decompositions. An edge is drawn if two decompositions are mapped to each
other by a reflections si. To distinguish between the actions of the four reflec-
tions, each reflection has been given a different color. The edges drawn between
decompositions are given the color of the reflection that maps one to the other.
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< •,0>

< •,1>

< •,2>

< •,3>

< •,4>

< 0,• >

< 1,• >

< 2,• >

< 3,• >

< 4,• >

Figure 42: Graph showing to which decompositions the left and right decomposi-
tions of the 600-cell are mapped after performing a generating reflection s1, s2, s3
and s4 of the 600-cell to each decomposition.

We should remark here that all reflections in Figure 42 have been checked to
satisfy the relations from the Coxeter diagram defined at the beginning of this
section.

In the last part of this section, we formalize the action of the symmetry group
W = [3,3,5] on the decompositions of the 600-cell. To make the description of this
action easier, we will use another notation for the left and right decompositions.

Definition 4.25. Define L j to be the left decomposition 〈i, j〉 for a
fixed j ∈ {0,1,2,3,4}. Define Ri to be the right decomposition 〈i, j〉 for a
fixed i ∈ {0,1,2,3,4}.

Denote a symmetry w ∈ W by (σ,τ;±1) with σ,τ ∈ S5. The element (σ,τ,1) is the
permutation of {L0, . . . ,L4}∪ {R0, . . . ,R4} that maps

L j 7→ Lσ( j), Ri 7→ Rτ(i).

The element (σ,τ;−1) is the permutation of {L0, . . . ,L4}∪ {R0, . . . ,R4} that maps

L j 7→ Rσ( j), Ri 7→ Lτ(i).
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The product of two elements (σ,τ;±1) and (σ′,τ′;±1) is given by the following for-
mulas:

(σ,τ;1)(σ′,τ′;1)= (σσ′,ττ′;1)
(σ,τ;−1)(σ′,τ′;−1)= (τ′σ,σ′τ;1)
(σ,τ;−1)(σ′,τ′;1)= (σ′σ,τ′τ;−1)
(σ,τ;1)(σ′,τ′;−1)= (τ′σ,σ′τ;−1).

Now we can write down the actions of the four generators s1, s2, s3, s4 on the left
and right decompositions L j,Ri as follows:

s′1 = ((14)(23), (14)(23);−1)
s′2 = ((142), (124);−1)
s′3 = ((13)(24), (13)(24);−1)
s′4 = ((041), (014);−1)

Next, the generators sis j of W are rotations of the 600-cell. Indeed, applying a
reflection twice reverses the orientation twice and thus preserves the orientation.
The generators sis j of W act on the decompositions L j and Ri in the following
way:

s′1s′2 = ((243), (132);1)
s′1s′3 = ((12)(34), (12)(34);1)
s′1s′4 = ((01)(23), (04)(23);1)
s′2s′3 = ((132), (134);1)
s′2s′4 = ((01)(24), (04)(12);1)
s′3s′4 = ((02431), (03124);1)) .

Thus, these rotations have order 3,2,2,3,2 and 5 respectively. Those are precisely
the orders of elements sis j of W as described earlier.

From Table 23 and Figure 42 it can be seen that the rotation group W+ = [3,3,5]+

acts on the 5+5 decompositions by permutations from A5× A5. The reflections in
W = [3,3,5] also permute the 5+5 decompositions by a permutation in A5 × A5,
but it additionally swaps the 5 left-handed and 5 right-handed decompositions.
We formalize this result in the following theorem.

Theorem 4.26. The action of the symmetry group W = [3,3,5] on the set of 5+5
decompositions of the a 600-cell defines a map

f : [3,3,5]→ A5 × A5o {±1}⊂ S5+5,

where −1 acts on the normal subgroup A5 × A5 by swapping the factors.
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However, there are only (5·4·3)2 ·2= 7200 symmetries of the 600-cell described
in this way. Indeed, id× ido−1 acts trivially on the sets of 5+5 decompositions,
although it does not act trivially on the vertices of the 600-cell itself. I conjecture
that −1 is the only non-trivial element in the kernel of the map in Theorem 4.26.

Conjecture 4.27. The kernel of f : [3,3,5]→ A5 × A5o {±1}⊂ S5+5 is {±1}.

In particular, f is surjective as there are 2 ·7200 = 14400 symmetries of the
600-cell described in this way. I have not proved this conjecture, but a proof has
been given as mentioned in the Introduction.
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5 Recommendations
In this thesis, the group 2I was established as a double cover of the rotation
group I of the icosahedron and as the vertices of a 600-cell. The arguments used
to describe the rotations group of the regular polytopes were mainly algebraic or
were based on calculations in Mathematica. However, the limitations of these
types of arguments are of course that the larger the size of a symmetry group, the
more time-consuming and complicated the investigation of the symmetry group
becomes. For example, an explicit investigation of the symmetries in the symme-
try group of the 600-cell seems quite cumbersome in Mathematica. However, the
description by the four generators of the reflection group of the 600-cell used in
Section 4.3.6 are highly effective and can be read of from a simple Coxeter dia-
gram.

Since the symmetry group of the 600-cell seems to be rich and filled with beau-
tiful symmetries that are not yet fully explored, it would be a great learning expe-
rience to investigate the symmetry group of the 600-cell starting with the Coxeter
diagrams, root systems and Weyl groups that are related to the 600-cell. Further-
more, there are questions that have remained unanswered during this thesis and
are waiting to be formally investigated and proved.

First of all would it be interesting to continue studying the decompositions of
the 600-cell. A next step in this research could be to describe the action of the
symmetry group of the 600-cell on the twenty-five 24-cells and especially on its
vertices. Some questions that could be researched are summarized below.

• What is the action of the rotation group on the vertices of the individual
twenty-five 24-cells in the 600-cell? For example, which rotations do those
rotations of the 600-cell that map a particular 24-cell back to itself describe?

• What are the orders and conjugacy classes of the symmetries of W , the sym-
metry group of the 600-cell? This question should not be too hard to answer
if the first two are formally proved.

• Using root systems and Weyl groups, one can show that (2I×2I)/{±1}o {±1}
is isomorphic to W(H4), where W(H4) is the Weyl group of the root system H4
and describes the symmetry group of the 600-cell as well. What does this
tell us about the action on the decompositions, individual 24-cells and the
vertices of these 24-cells?

Furthermore, it would be interesting to investigate the relation between the
120 elementary particles in the Standard Model and the group 2I. This bachelor
thesis is a good introduction to the group 2I and the geometry of the 600-cell. The
investigation of root systems and theorems about these systems, might lead to
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new insights, proofs and calculations. Hopefully, this investigation leads to new
insights in the 600-cell or in the relation between the 600-cell and the particles in
the Standard Model. However, roots systems find its application in other part of
physics as well. For example, the classification of symmetric spaces can be done
using Lie algebras and root systems. These symmetric spaces are a special topic
in Riemannian geometry and quantum mechanics. The Lie algebras are used to
classify the particles in quantum physics. For example, Murray Gell-Mann found
could explain both the appearance and connection between many particles using
the Lie Group SU(3).

All in all would it be interesting and insightful to continue studying the 600-
cell using root systems. The study of these root systems might lead to new theo-
rems and proofs, possibly for the 600-cell, or for Lie algebras in general or maybe
for the particles in the Standard Model.
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Appendices
A Groups and Algebra

A.1 Prerequisites
Definition A.1 (Symmetry group). The symmetry group on a set X ⊂Rn is the
group of all orthogonal transformations of Rn that map X to X .

Definition A.2 (Index of subgroup). For a subgroup H of G the index [G : H] is
defined as the cardinality of the set of left cosets of H in G.

Definition A.3. (Conjugacy classes) The conjugacy class of an element a ∈G is
given by

[a]= {b ∈G| ∃g ∈G : b = gag−1}

Definition A.4. (Normal subgroup) A subgroup N of a group G is called a
normal subgroup of G or normal if for all g ∈G and h ∈ N we have that ghg−1 ∈ N.
We use that notation N EG to indicate that N is a normal subgroup of G.

Theorem A.5. Let f : G1 →G2 be a homomorphism from a group G1 to a group G2.
Then ker( f ) is a normal subgroup of G1.

Proof. For any h ∈ ker( f ) and g ∈ G we need to show that ghg−1 ∈ ker( f ). Using
that f is a homomorphism it follows that:

f (ghg−1)= f (g) f (h) f (g−1)= f (g) f (g)−1 = e

where e denotes the identity element of G1.

Theorem A.6. Let G1 and G2 be isomorphic groups and let f : G1 → G2 be the
corresponding isomorphism. Then the order of f (g) in G1 is equal to the order of g
in G1.

Proof. Denote the identity in G1 by id and the identity in G1 by e. Let g ∈ G1.
Suppose α ∈ Z+ is the smallest integer such that gα = id. Then f (g)α) = f (gα) =
f (id)= e.

Now let h ∈ G2 be arbitrary. Suppose that β ∈ Z+ is the smallest integer
such that hβ = e. Since f −1(h) exists, it follows that f ( f −1(h)β) = hβ = e. Since
ker( f )= {id}, it follows that f −1(h)β = id.

Now suppose there exists an integer γ<β with f −1(h)γ = id. Then e = f ( f −1(h)γ = hγ

which contradicts our choice of β. In a similar way one can show that α must be
the order of f (g).
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Theorem A.7. A subgroup of group G is normal if and only if it is the union of
conjugacy classes of G.

Proof. Suppose that N is a normal subgroup of G. For an arbitrary n ∈ N, its
conjugacy class is given by [n] = {b ∈G|∃g ∈G : b = gng−1}. For any g ∈G it holds
that gng−1 ∈ N. Hence, N =⋃

n∈N[n].
Conversely, suppose that H is a subgroup of G satisfying H =⋃

n∈I[n] for some I ⊂G.
Take g ∈ G and h ∈ H arbitrarily. Then ghg−1 ∈ [n] for some n ∈ H and n ∈ I by
definition of H. It follows that ghg−1 ∈ H.

Theorem A.8. A subgroup H of index 2 of a group G is normal.

Proof. Let g ∈ G and h ∈ H. We want to show ghg−1 ∈ H. If g ∈ H this follows
from the fact that H is a subgroup of G. Suppose g 6∈ H. Then g−1 6∈ H and thus
N 6= g−1H. It thus follows that G = H ∪ g−1H. The fact that g−1 6∈ H shows that
hg−1 6∈ H either. Thus, hg−1 ∈ g−1H as it is an element of G. It thus follows that
there is a g−1h′ ∈ g−1N such that hg−1 = gh′ or, equivalently, such that ghg−1 =
h′. Hence, it follows that H is normal. [18]

Theorem A.9. The intersection N1 ∩N2 of two normal subgroups N1 and N2 of a
group G is normal.

Definition A.10 (Left coset). Given a g ∈G and a subgroup H of G, a left coset
of H consist of all n ∈ G such that gh = n for a fixed g ∈ G and h ∈ H. The left
coset, denoted gH is thus given by:

gH := {gh|h ∈ H}

Theorem A.11. A subgroup N of a group G is a normal if and only if gN = N g
for all g ∈G. That is, the left and right cosets overlap.

Theorem A.12. All left cosets of a subgroup H of a group G have the same cardi-
nality.

Proof. Two cosets aH and bH have same cardinality if there exist a bijection
f : aH → bH. Define f by f (ah) = bh such that f multiplies the left coset
aH with ba−1 from the left. This map is clearly bijective.

Theorem A.13 (Lagrange theorem). For any subgroup H of a group G:

|G| = |H| · [G : H]

where [G : N] is the index of the subgroup N in G and |H| denotes the number of
elements in the left cosets H in G.
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Definition A.14 (Action of group G on set X ). Let G be a group, e ∈ G its
identity element and let X be a set. We say that G acts on X from the left if for
every g ∈G and every x ∈ X an element gx ∈ X is given such that

• ex = x for all x ∈ X

• (gh)x = g(hx) for all g,h ∈G and x ∈ X .

If G acts on X then the map G×X → X , given by (g, x) 7→ gx, is the left action of G
on X . [18]

Remark A.15. An action is often referred to as left action. A right action is map
G× X → X , denoted by (g, x) 7→ xg such that:

• xe = x

• x(gh) = (xg)h

for all x ∈ X and g,h ∈G.

Definition A.16 (Orbit of x). Let G be a group acting on a set X . The orbit of an
element x ∈ X , denoted Gx is then given by

Gx := {g ∈G|∃h ∈G : h = gx}.

Thus, the orbit of x consists of all possible elements of the set X to which x can be
moved by the elements of G.

Definition A.17 (Stabilizer of x). Let G be a group acting on a set X . The
stabilizer of an x ∈ X , denoted StabG(x), is a group and defined by:

StabG(x) := {g ∈G|gx = x}.

Definition A.18 (Normalizer of a subgroup). Let G be a group and let H be a
subset, not necessarily subgroup, of G. The normalizer of H is then

NG(H) := {g ∈G|ghg−1 ∈ H for all h ∈ H}.

Theorem A.19 (Orbit stabilizer theorem). Let G be a finite group acting on a set X
and let x ∈ X . Then the order of the orbit of Gx is equal to the index of the stabiliser
group in StabG(x).

Theorem A.20. Let H ⊆G be a subgroup of a group G. Let g ∈G be given. Define
K := gH g−1. Then K is a subgroup of G. Furthermore, the left cosets gH of H in G
correspond to the right cosets of K .



A GROUPS AND ALGEBRA 105

Proof. To show that K is a subgroup of G, we show that the identity an products
of elements of K and their inverses are contained in K . Since id ∈ K it follows
that g id g−1 = id is an element of K . Furthermore, for two gh−1 g−1, gh2 g−1 ∈ K
it follows that their product gh−1g−1 gh2 g−1 = gh1h2 g−1 lies in K . Indeed h1h2
lies in H as it is a subgroup of G. Lastly, the inverse of a ghg−1 ∈ K is given by
gh−1 g−1. Since h−1 ∈ H, gh−1 g−1 ∈ K .

It thus follows that the right cosets of K are equal to the left cosets of H.
Indeed,

K = gH g−1 =⇒ K g = gH.

Definition A.21 (Quotient group). Let N be a normal subgroup of a group G.
Then the quotient is defined to be G/N := {aN : a ∈G}, to be the set of all left cosets
of N in G.

Since N is a normal group, the definition of G/N could have been defined to be
the set of right cosets of N in G as well.

Definition A.22 (Orthogonal group O(n)). O(n) is the group of n×n orthogonal
matrices. More specifically, O(n) is the group of matrices satisfying

AAT = AA−1 = I for all A ∈O(n).

Definition A.23 (Special unitary group SU(n)). The special unitary group of
the group of n×n unitary matrices. More specifically, SU(n) is the group of matri-
ces satisfying

AA∗ = A∗A = I for all A ∈SO(n),

where A∗ denotes the Hermetian transpose of A.

Definition A.24 (Sn). Sn is the group of all permutations on a set of n elements.

As a matter of fact, the group Sn consists of n! elements.

Definition A.25 (An). An is the subgroup of Sn and consists of all even permuta-
tions.

There are exactly n!
2 even permutations in Sn. Hence, An has group order n!

2 .

Theorem A.26. Let σ and τ be two elements of Sn. Suppose that

σ= (a1,a2, · · · ,ak)(b1,b2, · · · ,bl) · · ·
is the cycle decomposition of σ. Then,

(τ(a1),τ(a2), · · · ,τ(ak))(τ(b1),τ(b2), · · · , · · · ,τ(bl))

is the cycle decomposition of τστ−1. [18]
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Theorem A.27. The equivalence classes of the symmetric group Sn are precisely
given by the cycle types. That is, two permutation σ and σ

′
are conjugate in Sn iff

they have the same number of cycles and those are of same length in the disjoint
cycle decomposition.

Representative Order Number of cycles Even or odd
(1)(2)(3)(4)(5) 1 1 even

(12)(34) 2 15 even
(123) 3 20 even

(12345) 5 12 even
(12354) 5 12 even
(1234) 4 30 odd

(12) 2 10 odd
(123)(45) 6 20 odd

Total 60 +60= 120

Theorem A.28. The group A5 is the unique subgroup of S5 with index 2.

Proof. Suppose that there exist another subgroup H of S5 with index 2. Then H
is a normal subgroup by Theorem (A.8). Since H∩A5 is normal by Theorem (A.9),
it follows by the simpleness of A5 that H ∩ A5 = id or H ∩ A5 = A5. Hence, H is
either the trivial subgroup or the whole group S5 or A5. Since S5 and id do not
have index 2, the only subgroup of S5 with index 2 is A5.

Lemma A.29. The group An is generated by 3-cycles.

Proof. This is a consequence of the fact that (abc) = (ab)(bc) together with the
fact that all even permutations can be written as a product of an even number of
2-cycles.

Theorem A.30. The group A5 is simple.

Proof. This follows from the fact there is no combination of conjugation classes of
A5 which include the identity such that the order of the group divides the group
order 60.

A.2 Direct and semi-direct product
Although we already introduced the definition of a direct product in Section 2.4.4,
we include it here as well to stress the difference between a direct and semi-direct
product.
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Definition A.31 (Direct product). If G1 and G2 are groups, then the direct
product of G1 and G2 is the set

G1 ×G2 := {(g1, g2) : g1 ∈G1, g2 ∈G2}

with the operation
(g1, g2) · (h1,h2)= (g1h1, g2,h2)

for all g1,h2 ∈G1 and g2,h2 ∈G2. In other words, the operation is componentwise
multiplication. [18]

Theorem A.32. Let G be a group and let H1,H2 ⊂ G be subgroups and e ∈ G the
identify element. Suppose the following properties hold:

1. h1h2 = h2h1 for all h1 ∈ H1 and h2 ∈ H2;

2. H1 ∩H2 = {e};

3. Every g ∈G can be written as g = h1h2, with h1 ∈ H1 and h2 ∈ H2.

Then G ∼= H1 ×H2. [18]

Definition A.33 (Semi-direct product). Let G be a group with normal sub-
group N and subgroup H. Then G is the semi-direct product of N and H, denoted
G = NoH, if the following requirements hold:

1. N ∩H = {id}
2. G = NH

Furthermore, we may define ρ : H →Aut(N) where ρ(h)(n)= hnh−1. Then, the
group action of G is defined to be:

(Noρ H)(Noρ H) → Noρ H
(n1,h1)(n2,h2) 7→ (n1ρ(h1)(n2),h1h2).

A.3 Roots systems and reflection groups
Definition A.34 (Root system). A root system, denoted Φ, is finite set of nonzero
vectors in V satisfying

• Φ∩Rα= {α,−α}

• sαΦ=Φ for all α ∈Φ. [22]

Definition A.35 (Finite reflection group). A finite reflection group of a Eu-
clidean space V , denoted by the letter W , is the group generated by reflections sα.
W is a finite subgroup of the group of all orthogonal transformations of V . [22]
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Hence, there is a close connection between a root system Φ and the finite re-
flection group W . In fact, any root system gives rise to a finite reflection group W .
However, there are many root systems that give rise to the same reflection group W .

Definition A.36 (Simple system). A subset ∆ of a root system Φ is a simple
system if

1. it is a vector space basis for the subspace of V spanned by Φ

2. each α ∈Φ is a linear combination of ∆ with all its coefficients nonnegative
or nonpositive. [22]

Theorem A.37. Fix a simple system ∆ in Φ. Then W is generated by the set
S := {sα,α ∈∆}, subject to the relations:

sαsm(α,β)
β

= 1, (α,β ∈∆),

where m(α,β) denotes the order of sαsβ in W . [22]

A.4 Additional proofs
A.4.1 Conjugacy classes A5

Theorem A.38. A5 consists of 5 conjugacy classes of size 1,12,12,15,20.

Proof. We prove that the even cycles of order 2 and the 3-cycles lie in an orbit of
length 15 and 20 respectively. We show that the rotations of order 5 are separated
into two conjugacy classes.

First, we consider the rotations of order 5. Take g = (12345) ∈ I. There are
24 elements of order 5, so it directly follows that these rotations of order 5 have
to split up in at least two conjugacy classes as 24 does not divide 60. The possible
sizes for the conjugacy classes are given as follows:

• 2 classes of size 12
• 4 classes of size 6
• 6 classes of size 4
• 12 classes of size 2
• 24 classes of size 1
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If we can find 7 cycles conjugate to (12345), we found that there must be 2 conju-
gacy classes of size 12. We begin with (12345) and take (123), (234), (235) ∈ A5.

(132)(12345)(123)= (12453)
(132)(12453)(123)= (14523)
(243)(12345)(234)= (14235)
(243)(14235)(234)= (13425)
(243)(14523)(234)= (13542)
(253)(12345)(235)= (15243)
(253)(12453)(235)= (15432)

That is, we found 7 different 5-cycles which are conjugate in A5. Hence, the 5-
cycles lie in two conjugacy classes of length 12 in A5. In fact, the conjugacy classes
of these cycles are as given in Figure 24.

Conjugacy class [12345] Conjugacy class [12354)]
(12345) (12354)
(12453) (12435)
(12534) (12543)
(13254) (13245)
(13425) (13452)
(13542) (13542)
(14235) (14253)
(14352) (14325)
(14523) (14532)
(15243) (15234)
(15324) (15342)

Table 24: Conjugacy classes of 5-cycles in A5

Secondly we consider the 3-cycles in A5. To show that those cycles are all
conjugate, we consider two cases:

1. the two cycles have one element in common, for example (123) and (345)
2. the two cycles have two elements in common, for example (123) and (125)

In the first case we can take two 2-cycles that swap the different elements in the
two cycles. For example:

(123)= ((14)(25))−1(345)(14)(25)
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Then, if the two 3-cycles agreeing in two elements, we construct a cycle with as
first element the element that is in the first but not in the second cycle. For the
cycles (123) and (234) this would be 1. As second element we take the element
that is the second, but not in the first. As third we choose the element that is is
neither of the cycles. Letting this cycle act on the first from the left and from the
right on the second, we get for the example with (123) and (234):

(145)(123)= (12345)= (234)(145)

Hence, all 3-cycles are conjugate.

Lastly, we take (12)(34) ∈ A5. There are 15 even permutations of this form.
That means that there are three possibilities for the conjugacy classes:

• 1 class of length 15
• 3 classes of length 5
• 5 classes of length 3
• 15 classes of length 1

Performing some calculations, it follows that at least 6 cycles are conjugate with (12)(34).
That means, the conjugacy class has to consists of all 15 double 2-cycles.

(321)(12)(34)(123)= (13)(24)
(421)(12)(34)(124)= (14)(23)
(521)(12)(34)(125)= (15)(43)
(432)(12)(34)(234)= (14)(32)
(532)(12)(34)(235)= (15)(24)
(531)(12)(34)(135)= (14)(25)

In conclusion, A5 consists of 5 conjugacy classes of sizes 1,12,12,15,20.

A.4.2 Double covering map between the unit quaternions H1 and the
special orthogonal group SO(3)

Theorem A.39. The rotation qvq−1 of a purely imaginary quaternion v = (a,b, c)
by a unit quaternion q = r+ xi+ y j+ zk can be represented by a matrix O ∈SO(3).
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Proof.

qvq−1 =(r+ xi+ y j+ zk)(ai+b j+ ck)(r− xi− y j+ zk)
= [(−yz+ yz+ xr− xr)a+ (xz+ ry− xz− ry)b+ (rz+−xy+ xy− rz)c]+

i · [(r2 + x2 − y2 − z2)a+ (xy− rz− rz+ xy)b+ (ry+ xz+ ry+ xz)c
]

j · [((xy+ rz+ rz+ xy)a+ (−x2 + r2 − z2 + y2)b+ (−rx− rx+ yz+ yz)c
]

k · [(−ry− xz− ry+ xz)a+ (rx+ rx+ yz+ yz)b+ (r2 − x2 − y2 + z2)c
]=

= i
[
(r2 + x2 − y2 − z2)a+ (2xy−2rz)b+ (2ry+2xz)c

]
j · [((2xy+2rz)a+ (−x2 + r2 − z2 + y2)b+ (−2rx+2yz)c

]
k · [(−2ry−2xz)a+ (2rx+2yz)b+ (r2 − x2 − y2 + z2)c

]
This equation is equivalent to the matrix vector multiplication given by:r2 + x2 − y2 − z2 2xy−2rz 2ry+2xz

2xy+2rz r2 − x2 + y2 − z2 −2rx+2yz
−2ry+2xz 2rx+2yz r2 − x2 − y2 + z2

a
b
c

 (11)

What remains to check is whether the matrix in Equation (11) is indeed an ele-
ment of SO(3). We check that its determinant equals 1. The determinant of the
rotation matrix can be calculated in Maple or Mathematica. This calculation in
Maple can be found in Figure 43. Using that q is a unit quaternion and thus√

r2 + x2 + y2 + z2 = 1 this implies that |q|6 = 1 and thus that the determinant of
the rotation matrix equals 1.

Figure 43: Determinant of the rotation matrix and the matrix obtained by multi-
plication with its inverse.
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Theorem A.40. The map f :H1 →SO(3) defined by q 7→ qvq−1 is surjective and H1
is a double cover of SO(3). That is, the map f :H1 → SO(3) is two-to-one.

Proof. From Theorem A.39 it follows that any quaternion q gives rise to a rotation
matrix R ∈ SO(3). To show that any rotation matrix in SO(3) can be obtained by
a p ∈H1, we describe the rotation by a unit vector v = (a,b, c) ∈ R3 and a rotation
angle θ ∈ [0,π]. Note here that a rotation of angle θ ∈ (π,2π) is the same a rotation
about the negative unit vector about an angle −θ.

Define the quaternion p = cos(θ)+ sin(θ)(ui + v j + wk). The rotation matrix
belonging to p is given by cos
( 1

2θ
)2 +sin

( 1
2θ

)
(u2 −v2 −w2) 2sin2( 1

2θ)uv−2cos
( 1

2θ
)
sin

( 1
2θ

)
w 2cos

( 1
2θ

)
sin

( 1
2θ

)
v+2sin2( 1

2θ)uw
2sin2( 1

2θ)uv+2cos
( 1

2θ
)
sin

( 1
2θ

)
w cos

( 1
2θ

)2 −sin
( 1

2θ
)
(u2 −v2 +w2) −2cos

( 1
2θ

)
sin

( 1
2θ

)
u+2sin2( 1

2θ)vw
−2cos

( 1
2θ

)
sin

( 1
2θ

)
v+2sin2( 1

2θ)uw 2cos
( 1

2θ
)
sin

( 1
2θ

)
u+2sin2( 1

2θ)vw cos
( 1

2θ
)2 −sin

( 1
2θ

)
(u2 +v2 −w2)


Its determinant can be calculated and equals (cos2(θ)+ sin2(θ))3 = 1. So the ro-
tation matrix corresponding to the quaternion p belongs to the rotation with
angle θ = 2arccos(cos(θ)) around x. This proves the surjectivity of f .

The fact that f is at least two-to-one can be proved using Equation (11). If
two rotation matrices in SO(3) equal, all the nine entries of those matrices have
to agree. The following system of equations in Equations (13),(14),(15) are ob-
tained by setting the first, fourth and ninth entries of two equal rotation matrices
equal to each other. For the first rotation matrices we describe the rotation by
a vector (x, y, z) and angle r. The second rotation matrix is described by a vec-
tor (u,v,w) and angle θ. Equation (15) is obtained from the fact that (x, y, z) and
(u,v,w) are unit vectors.

r2 + x2 − y2 − z2 = θ2 +u2 −v2 −w2 (12)
r2 − x2 + y2 − z2 = θ2 −u2 +v2 −w2 (13)
r2 − x2 − y2 + z2 = θ2 −u2 −v2 +w2 (14)
x2 + y2 + z2 = u2 +v2 +w2 (15)

Adding Equation (13) and (14) and adding Equation (13) and (15), while substract-
ing Equation (14) from (13) and substracting Equation (15) from (13), we obtain
the following system of equations:


r2 − z2 = θ2 −w2 =⇒ r2 −θ2 = z2 −w2 (16)
r2 − y2 = θ2 −v2 =⇒ r2 −θ2 = y2 −v2 (17)
x2 − y2 = u2 −v2 =⇒ x2 −u2 = y2 −v2 (18)
x2 − z2 = u2 −w2 =⇒ x2 −u2 = z2 −w2 (19)
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From Equation (17), (18), (19) and (19) it follows that

r2 −θ2 = x2 −u2 = y2 −v2 = z2 −w2 (20)

Adding the equations in Equation (20) results in

4(r2 −θ2)= r2 + x2 + y2 + z2 −θ2 −u2 −v2

= w2 = r2 −θ2 + (x2 + y2 + z2)− (u2 +v2 +w2) (21)

= r2 −θ2.

The only solution to Equation (21) is r2 = θ2. This implies that

x2 = u2, y2 = v2, z2 = w2.

So x and u, for example, agree up to a minus sign. That is no problem, since it
was already shown in Theorem 3.13 shows that the positive and negative of the
same rotation vector and rotation angle describe the same rotation. It is good to
note that once we have chosen the sign of one of z and w, the signs of y and z
and v and w are fixed. The second and fourth entry of the rotation matrices, for
instance, require that 2xy−2rz = 2uv−2θz and 2xy+2rz = 2uv+2θz such that
rz = 2θw. Thus, the signs of r and θ follow. In a similar way, the signs of x, y and
u,v are fixed as well.

Hence, f :H1 →SO(3) is at most 2 : 1.

A.4.3 Finite subgroups of SO(3) and H1

The aim of this section is to classify all finite subgroups ofH1. The finite subgroups
of SO(3) can be classified, which we will do in Theorem A.41. Using the map
from SO(3) to H1 from Theorem 3.14 once more, one finds the classification of the
finite subgroups of H1.

Theorem A.41. Every finite subgroup of SO(3) is isomorphic to one of the groups:
• the cyclic group Cn
• the dihedral group Dn
• the tetrahedral group T
• the octahedral group O
• the icosahedral group I.

Proof. First of all, this proof will use poles defined by the rotations in SO(3). That
is,each rotation is described by some rotation axis and rotation angle. The rota-
tion axis intersects the unit sphere twice. The points of intersection are called the
poles of the rotation. Furthermore, we will only show what the action is of a finite
group G on the poles it describes. How to relate the description of the orbits to the
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five finite groups of SO(3) can be found in [7].

Consider the action of a non-trivial and non-empty finite group G ⊂ SO(3) on
the set X consisting of sets of two poles of G. This action divides the set X into
orbits. We use that∑

g∈G
|{g ∈G|gx = x}| = |{(g, x) ∈G× X |gx = x}= ∑

x∈X
|{g ∈G : gx = x}| = ∑

x∈X
|StabG(x)|.

Since each non-trivial g ∈ G fixes precisely two poles of X and the identity fixes
all poles, we get the equality:∑

x∈X
|StabG(x)| = 2(|G|−1)+|X |. (22)

However, the number of poles in X equals the total number of elements in all
orbits under the action of G. If we let P be the set containing one pole of each
orbit, it follows that ∑

p∈P
G(p)= |X |. (23)

Taking X to the other side of the equality in Equation (22) we obtain:∑
x∈X

|StabG(x)|− |X | = 2(|G|−1). (24)

We can take X into the sum into two ways. The first way is as follows:∑
x∈X

(|StabG(x)|−1)= 2(|G|−1). (25)

Another way is to rewrite the sum over x as a sum over p as follows:∑
x∈X

|StabG(x)| = ∑
p∈P

|StabG(p)||G(p)|, (26)

Equation (22) can then be rewritten as:∑
p∈P

|G(p)|(StabG(p)−1)= 2(|G|−1). (27)

Using to the Orbit-Stabilizer theorem (Theorem A.19) and dividing both sides
by |G|, Equation (27) can be written as:∑

p∈P
|G|− |G(p)| = 2(|G|−1)

∑
p∈P

1− 1
StabG(p)

= 2− 2
|G| (28)
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We now show that it follows from Equation 28 that |X | 6∈ {2,3} leads to a contra-
diction. First, suppose |X | = 1. The length of StabG(x) equals |G|. Substitution of
these values into Equation (28), gives

1− 1
|G| = 2(1− 1

|G| ) =⇒ |G| = 1.

Since we assumed that G was a non-trivial subgroup of SO(3), it follows that |X | 6= 1.
Then we show that |X | < 4. We know that 1

2 ≤ 1
StabG (x) < 1 for any x ∈ X , as both

the rotation through the poles x and the identity are elements of Stabx. Further-
more, we know that 1≤ 2− 2

|G| ≤ 2. Thus we know that:

|X |(1− 1
|StabG(x)| )< 2.

We thus obtain that:

1
2
|X | < 2 =⇒ |X | < 4.

Thus, it follows that the orbits of X under the rotations in G must have
length 2 or 3. If there are only two orbits, that is |X | = 2, there is only one group
that satisfies Equation (28). If |X | = 3, there are four groups that satisfy this
equation.

If |X | = 2, we get from Equation (28) the equality:

1
|StabG(x)| +

1
|StabG(y)| =

2
|G| .

The group corresponding to these orbits is the cyclic group Cn ⊂SO(2). [26]
For |X | = 3, there are 4 groups that satisfy Equation (28).

|G(x)| = 2, |G(y)| = 2, |G(z)| = n −→ Dn

|G(x)| = 2, |G(y)| = 3, |G(z)| = 3 −→ T
|G(x)| = 2, |G(y)| = 3, |G(z)| = 4 −→ O
|G(x)| = 2, |G(y)| = 3, |G(z)| = 5 −→ I

The full proof of how to obtain the groups corresponding to these orbit sizes
can be found in [7].

Now we can prove that 2I is the largest finite subgroup in 2I such that its im-
age under the map from Theorem 3.14 is not a cyclic of dihedral group
of SO(2)⊂SO(3).
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Theorem A.42. The binary icosahedral group 2I is the largest finite subgroup
of H1 whose rotation group is a subset of SO(3) but not of SO(2).

Proof. Suppose we are given a finite subgroup G ⊂H1. Consider f (G) where f is
as defined as in Theorem 3.14. The image under f is a finite subgroup G′ ⊂SO(3)
as found in Theorem A.41.
First of all, suppose f (G) equals Cn. Since f maps to SO(3) one-to-one or
two-to-one, we distinguish between two cases. Either −1 ∈ G or −1 6∈ G. In the
first case, |G| = 2|G′| and the group is the pullback of the two-to-one map from H1
to SO(3). In the second case the pre-image in H1 of Cn is isomorphic to Cn. The
pre-image in H11 contains precisely the n roots of unity of the equation zn = −1.
This group of quaternions and can be made arbitrarly large, yet still finite, as n
can be any natural number.

Suppose then, we are given a finite subgroup G ⊂H1 such that f (G)= Dn. The
dihedral group has order 2n and contains as a subgroup Cn, which we already con-
sidered. For n ≥ 2,Dn contains more than one element of order 2. It thus follows
that the the pre-image of Dn in H1 cannot be isomormphic to Dn itself. Thus, the
pre-image is the double cover of the rotations in the dihedral group. This group
consists of the quaternions e

2πi
n together with the n rotation axes representing the

reflections in two-dimensional space. For example, the reflection of a square can
be represented by a rotation in three-dimensional space (Figure 44). The rotation
axis is obtained from the reflection line in two-dimensional space.

(a) Reflection (b) Square (c) Rotation
square (2D) square (3D)

Figure 44: The reflection of a square in two-dimensional space represented by a
rotation in three-dimensional space.

Suppose we have a group G ⊂H1 whose image f (G) is not a cyclic or dihedral
group. It then follows that the image is either the tetraheral group, the octahedral
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group or the icosahedral group. The double cover of those groups are 2T,2O and
2O as described in Sections 3.2, 3.3 and 3.4. We also established in these sections
that there are no subgroups of 2T,2O or 2I isomorphic to T , O or I respectively.

All in all, we found that the finite subgroups of H1 are the roots of the equation
zn = −1, the double cover of the dihedral groups and one of the groups 2T, 2O
and 2I. Since 2I is the largest subgroup of H1 whose rotation group does not lie
in SO(2), we are done.

A.4.4 Quaternion conjugation in the special unitary group SU(2)

Theorem A.43. Two matrices A =
(

a1,1 a1,2
−a1,2 a1,1

)
and B =

(
b1,1 b1,2

−b1,2 b1,1

)
with nonzero

determinant and equal distinct eigenvalues are conjugate. In particular, the ma-
trix that conjugates A and B can be chosen to represent a quaternion.

Proof. Since A and B have equal distinct eigenvalues and nonzero determinant,
the can be diagonalized with the same eigenvalues on the diagonal of the diago-
nal matrix. Suppose A = PDP−1 and B =QDQ−1 where D is the diagonal matrix.
Then A = PQ−1DQP−1. However, PQ−1 need not be an matrix that represents a
quaternion.
We show that each matrix of eigenvalues can be written as a matrix of eigenvec-
tors that represents a quaternion. It then follows that PQ−1 is a quaternion, as
the product of quaternions is again a quaternion.

Suppose P =
(
α β

γ δ

)
and choose P ′ =

(
x ·α y ·β
x ·γ y ·δ

)
with x, y ∈C.

To represent a quaternion, P ′ needs to satisfy:

x ·α= y ·δ (29)
y ·β=−x ·γ (30)

Furthermore, if we choose x and y such that P ′ represents a unit quaternion, we
need that

xy(α ·δ−β ·γ)= 1 (31)

Substitution of Equation (31) into Equation (29) determines the complex numbers
x and y up to a factor eiφ with φ ∈ [0,2π).

x = y ·δ
α

= δ

α · x · (αδ−βγ)
⇐⇒ |x|2 = δ

α · (αδ−βγ)

y=
(

xα

δ

)
= 1

x · (αδ−βγ)



(* Construction 2I *)

{one, aai, jay, kay} = IdentityMatrix[4];

Nsub = phi  (Sqrt[5] + 1) / 2;

sub = Sqrt[5]  2 phi - 1;

In[14]:= Quatermult[x_, y_] := Module[{

xQ = {{x[[1]] + I x[[2]], I x[[4]] + x[[3]]}, {I x[[4]] - x[[3]], x[[1]] - I x[[2]]}},

yQ = {{y[[1]] + I y[[2]], I y[[4]] + y[[3]]}, {I y[[4]] - y[[3]], y[[1]] - I y[[2]]}}

},

zQ = xQ.yQ;

Simplify[{Re[zQ[[1, 1]]], Im[zQ[[1, 1]]], Re[zQ[[1, 2]]], Im[zQ[[1, 2]]]}]

]

Quaterconj[x_] := Simplify[{x[[1]], -x[[2]], -x[[3]], -x[[4]]}]

In[22]:= icosians = Expand[{one + aai + jay + kay, -aai + jay (phi - 1) + kay phi} / 2];

done = 0;

length = Length[icosians];

For[i = 1, done < length, i++,

For[j = done + 1, j ≤ length, j++,

x = icosians[[j]];

For[k = 1, k ≤ j, k++,

y = icosians[[k]];

z = Expand[Expand[Quatermult[x, y] /. Nsub] /. sub];

AppendTo[icosians, z];

z = Expand[Expand[Quatermult[y, x] /. Nsub] /. sub];

AppendTo[icosians, z]

]

];

icosians = DeleteDuplicates[icosians];

done = length;

length = Length[icosians];

If[length > 1136, Break[]]

]

length

Out[26]= 120

(* Conjugacy classes 2I *)

B Mathematica code

B.1 Binary groups
B.1.1 Binary icosahedral group 2I



In[27]:= icosians[[1]]

icosians[[2]]

icosians[[3]]

icosians[[6]]

icosians[[14]]

icosians[[110]]

icosians[[22]]

icosians[[27]]

Out[27]= 
1

2
,
1

2
,
1

2
,
1

2


Out[28]= 0, -
1

2
, -

1

2
+
phi

2
,
phi

2


Out[29]= -
1

2
,
1

2
,
1

2
,
1

2


Out[30]= {-1, 0, 0, 0}

Out[31]= -
phi

2
, -

1

2
+
phi

2
, -

1

2
, 0

Out[32]= 
phi

2
,
1

2
-
phi

2
, -

1

2
, 0

Out[33]= -
1

2
+
phi

2
, -

phi

2
, 0,

1

2


Out[34]= 
1

2
-
phi

2
,
phi

2
, 0,

1

2


In[35]:= icosians05conj = {};

For[i = 0, i < 120, i++;

y = icosians[[i]];

AppendTo[icosians05conj, Expand[

Expand[Quatermult[Expand[Quatermult[y, icosians[[1]]]], Quaterconj[y]] /. Nsub] /.

Nsub /. sub]];

icosians05conj = DeleteDuplicates[icosians05conj];

]
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Length[icosians05conj]

Sort[icosians05conj]

20
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In[39]:= icosians0conj = {};

For[i = 0, i < 120, i++;

y = icosians[[i]];

AppendTo[icosians0conj,

Expand[Expand[Quatermult[Expand[Quatermult[y, icosians[[2]]]], Quaterconj[y]] /.

Nsub] /. Nsub /. sub]] /. Nsub /. sub // N;

icosians0conj = DeleteDuplicates[icosians0conj];

]

In[41]:= Length[icosians0conj]

Sort[icosians0conj]

Out[41]= 30
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In[43]:= icosians05negconj = {};

For[i = 0, i < 120, i++;

y = icosians[[i]];

AppendTo[icosians05negconj,

Expand[Expand[Quatermult[Expand[Quatermult[y, icosians[[3]]]], Quaterconj[y]] /.

Nsub] /. Nsub /. sub]] /. Nsub /. sub;

icosians05negconj = DeleteDuplicates[icosians05negconj];

]

In[45]:= Length[icosians05negconj]

Sort[icosians05negconj]

Out[45]= 20
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In[47]:= icosiansphinegconj = {};

For[i = 0, i < 120, i++;

y = icosians[[i]];

AppendTo[icosiansphinegconj,

Expand[Expand[Quatermult[Expand[Quatermult[y, icosians[[14]]]], Quaterconj[y]] /.

Nsub] /. Nsub /. sub]] /. Nsub /. sub;

icosiansphinegconj = DeleteDuplicates[icosiansphinegconj];

]

Length[icosiansphinegconj]

Sort[icosiansphinegconj]

12
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Length[icosiansphiconj]

Sort[icosiansphiconj]

12

In[51]:= icosiansphiinvnegconj = {};

For[i = 0, i < 120, i++;

y = icosians[[i]];

AppendTo[icosiansphiinvnegconj,

Expand[Expand[Quatermult[Expand[Quatermult[y, icosians[[27]]]], Quaterconj[y]] /.

Nsub] /. Nsub /. sub]] /. Nsub /. sub;

icosiansphiinvnegconj = DeleteDuplicates[icosiansphiinvnegconj];

]

Length[icosiansphiinvnegconj]

Sort[icosiansphiinvnegconj]
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In[53]:= icosiansphiinvconj = {};

For[i = 0, i < 120, i++;

y = icosians[[i]];

AppendTo[icosiansphiinvconj,

Expand[Expand[Quatermult[Expand[Quatermult[y, icosians[[22]]]], Quaterconj[y]] /.

Nsub] /. Nsub /. sub]] /. Nsub /. sub;

icosiansphiinvconj = DeleteDuplicates[icosiansphiinvconj];

]

Length[icosiansphiinvconj]

Sort[icosiansphiinvconj]
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In[130]:= (* Orders quaternions in 2I *)

(* Real part 1/2: order 6 *)

z1 =

Quatermult[Expand[Quatermult[icosians05conj[[1]], icosians05conj[[1]]] /. Nsub /.

sub], icosians05conj[[1]]] /. Nsub /. sub

z2 = Quatermult[

z1,

z1]

Out[130]= {-1, 0, 0, 0}

Out[131]= {1, 0, 0, 0}

In[132]:= (* Real part -1/2: order 3 *)

Quatermult[

Expand[Quatermult[icosians05negconj[[1]], icosians05negconj[[1]]] /. Nsub /. sub],

icosians05negconj[[1]]] /. Nsub /. sub

Out[132]= {1, 0, 0, 0}

In[116]:= (* Real part phi: order 10 *)

x2 = Expand[Quatermult[icosiansphiconj[[1]], icosiansphiconj[[1]]] /. sub] /. Nsub /.

sub;

x3 = Expand[Quatermult[icosiansphiconj[[1]], x2] /. Nsub] /. Nsub /. sub;

x4 = Expand[Quatermult[icosiansphiconj[[1]], x3] /. Nsub] /. Nsub /. sub;

x5 = Expand[Quatermult[icosiansphiconj[[1]], x4] /. Nsub] /. Nsub /. sub

x6 = Expand[Quatermult[icosiansphiconj[[1]], x5] /. Nsub] /. Nsub /. sub;

x7 = Expand[Quatermult[icosiansphiconj[[1]], x6] /. Nsub] /. Nsub /. sub;

x8 = Expand[Quatermult[icosiansphiconj[[1]], x7] /. Nsub] /. Nsub /. sub;

x9 = Expand[Quatermult[icosiansphiconj[[1]], x8] /. Nsub] /. Nsub /. sub;

x10 = Expand[Quatermult[icosiansphiconj[[1]], x9] /. Nsub] /. Nsub /. sub

Out[119]= {-1, 0, 0, 0}

Out[124]= {1, 0, 0, 0}

(* Real part -phi: order 5 *)

y2 = Expand[Quatermult[icosiansphinegconj[[1]], icosiansphinegconj[[1]]] /. sub] /.

Nsub /. sub;

y3 = Expand[Quatermult[icosiansphinegconj[[1]], y2] /. Nsub] /. Nsub /. sub;

y4 = Expand[Quatermult[icosiansphinegconj[[1]], y3] /. Nsub] /. Nsub /. sub;

y5 = Expand[Quatermult[icosiansphinegconj[[1]], y4] /. Nsub] /. Nsub /. sub

{1, 0, 0, 0}

(* Real part 1/phi: order 5*)

z2 = Expand[Quatermult[icosiansphiinvconj[[1]], icosiansphiinvconj[[1]]] /. sub] /.

Nsub /. sub;

z3 = Expand[Quatermult[icosiansphiinvconj[[1]], z2] /. Nsub] /. Nsub /. sub;

z4 = Expand[Quatermult[icosiansphiinvconj[[1]], z3] /. Nsub] /. Nsub /. sub;

z5 = Expand[Quatermult[icosiansphiinvconj[[1]], z4] /. Nsub] /. Nsub /. sub

{1, 0, 0, 0}

{1, 0, 0, 0}
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(*Definition multiplication, conjugation,

standard basis vectors and generation of the group 2O *)

(* Define multiplication and conjugation of quaternions *)

Quatermult[x_, y_] := Module[{

xQ = {{x[[1]] + I x[[2]], I x[[4]] + x[[3]]}, {I x[[4]] - x[[3]], x[[1]] - I x[[2]]}},

yQ = {{y[[1]] + I y[[2]], I y[[4]] + y[[3]]}, {I y[[4]] - y[[3]], y[[1]] - I y[[2]]}}

},

zQ = xQ.yQ;

Simplify[{Re[zQ[[1, 1]]], Im[zQ[[1, 1]]], Re[zQ[[1, 2]]], Im[zQ[[1, 2]]]}]

]

Quaterconj[x_] := Simplify[{x[[1]], -x[[2]], -x[[3]], -x[[4]]}]

(* Standard basis vectors in R4 *)

{one, aai, jay, kay} = IdentityMatrix[4];

(* Construction octahedral group by two generators *)

octahedralgroup = Expand[{one + aai + jay + kay} / 2];

AppendTo[octahedralgroup, (1 / Sqrt[2]) * (aai + jay)];

AppendTo[octahedralgroup, (1 / Sqrt[2]) * (one + aai)];

done = 0;

length = Length[octahedralgroup];

For[i = 1, done < length, i++,

For[j = done + 1, j ≤ length, j++,

x = octahedralgroup[[j]];

For[k = 1, k <= j, k++,

y = octahedralgroup[[k]];

z = Expand[Expand[Quatermult[x, y]]];

AppendTo[octahedralgroup, z];

z = Expand[Expand[Quatermult[y, x]]];

AppendTo[octahedralgroup, z];

]

];

octahedralgroup = DeleteDuplicates[octahedralgroup];

done = length;

length = Length[octahedralgroup];

If[length > 500, Break[]];

]

length

Osort = Sort[octahedralgroup]

Out[230]= 48

B.1.2 Binary octahedral group 2O
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In[1235]:= (* 2O is a group *)

product48 = {};

For [i = 0, i < 48, i++;

x = Osort[[i]];

For[j = 0, j < 48, j++;

y = Osort[[j]];

AppendTo[product48, Quatermult[x, y]];

];

product48 = DeleteDuplicates[product48];

];

Length[product48]

product48

Out[1237]= 48
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In[1150]:= (* The conjugacy classes of 2O *)

(* We make sets of quaternions with the same real part. Afterwards,

we calculate whether those sets fall apart in multiple conjugacy classes. *)

O05neg = Osort[[2 ;; 9]];

O1neg = Osort[[1]];

O0 = Osort[[10 ;; 27]];

O05 = Osort[[28 ;; 35]];

O1 = Osort[[36]];

Osqrt2neg = Osort[[37 ;; 42]];

Osqrt2 = Osort[[43 ;; 48]];

In[1157]:= (* Calculation of sizes of the conjugacy classes *)

O05conj = {};

list = {};

For[i = 0, i < Length[O05], i++;

For[j = 0, j < 48, j++;

x = Osort[[j]];

y = O05[[i]];

z = Quatermult[Quatermult[x, y], Quaterconj[x]];

AppendTo[list, z];

];

list = DeleteDuplicates[list];

AppendTo[O05conj, list];

list = {};

];

Length[O05conj[[1]]]

O05conj[[1]]

O05negconj = {};

list = {};

For[i = 0, i < Length[O05neg], i++;

For[j = 0, j < 48, j++;

x = Osort[[j]];

y = O05neg[[i]];

z = Quatermult[Quatermult[x, y], Quaterconj[x]];

AppendTo[list, z];

];

list = DeleteDuplicates[list];

AppendTo[O05negconj, list];

list = {};

];

Length[O05negconj[[1]]]

O05negconj[[1]]

O0conj = {};

list = {};

For[i = 0, i < Length[O0], i++;

For[j = 0, j < 48, j++;

x = Osort[[j]];
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y = O0[[i]];

z = Quatermult[Quatermult[x, y], Quaterconj[x]];

AppendTo[list, z];

];

list = DeleteDuplicates[list];

AppendTo[O0conj, list];

list = {};

];

Length[O0conj[[1]]]

O0conj[[1]]

Osqrt2conj = {};

list = {};

For[i = 0, i < Length[Osqrt2], i++;

For[j = 0, j < 48, j++;

x = Osort[[j]];

y = Osqrt2[[i]];

z = Quatermult[Quatermult[x, y], Quaterconj[x]];

AppendTo[list, z];

];

list = DeleteDuplicates[list];

AppendTo[Osqrt2conj, list];

list = {};

];

Length[Osqrt2conj[[1]]]

Osqrt2conj[[1]]

Osqrt2negconj = {};

list = {};

For[i = 0, i < Length[Osqrt2neg], i++;

For[j = 0, j < 48, j++;

x = Osort[[j]];

y = Osqrt2neg[[i]];

z = Quatermult[Quatermult[x, y], Quaterconj[x]];

AppendTo[list, z];

];

list = DeleteDuplicates[list];

AppendTo[Osqrt2negconj, list];

list = {};

];

Length[Osqrt2negconj[[1]]]

Osqrt2negconj[[1]]

Out[1160]= 8
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Out[1165]= 8
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Out[1170]= 6

Out[1171]= {{0, -1, 0, 0}, {0, 0, -1, 0}, {0, 0, 0, 1}, {0, 0, 0, -1}, {0, 0, 1, 0}, {0, 1, 0, 0}}

Out[1175]= 6
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In[1212]:= (* Normal subgroups *)

(* The conjugacy classes with real part 1/sqrt(2) are all conjugate. However,

any of those quaternions to the power its own order is the identity,

which does not lie in those conjugacy classes. Hence, it is not a grouop. *)

normal8sqrt2 = {};

For [i = 0, i < 48, i++;

y = Osqrt2conj[[1]][[1]];

x = Osort[[i]];

z = Quatermult[Quatermult[x, y], Quaterconj[x]];

AppendTo[normal8sqrt2, z]

];

For[i = 0, i < 6, i++;

z = Quatermult[Osqrt2conj[[1]][[i]], Osqrt2conj[[1]][[i]]];

AppendTo[normal8sqrt2, z];

];

normal8sqrt2 = DeleteDuplicates[normal8sqrt2]

Length[normal8sqrt2];

(* Also this union of conjugacy classes is not a subgroup as the +- i,

j, k do not lie within this union of conjugacy classes,

although it is the product of quaternions in the union *)

normal8sqrt2neg = {};

For [i = 0, i < 48, i++;

y = Osqrt2negconj[[1]][[1]];

x = Osort[[i]];

z = Quatermult[Quatermult[x, y], Quaterconj[x]];

AppendTo[normal8sqrt2neg, z]

];
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For[i = 0, i < 6, i++;

z = Quatermult[Osqrt2negconj[[1]][[i]], Osqrt2negconj[[1]][[i]]];

AppendTo[normal8sqrt2neg, z];

];

normal8sqrt2neg = DeleteDuplicates[normal8sqrt2neg]

Length[normal8sqrt2neg];

(* This is a normal subgroup of order 8 *)

normal80 = {{1, 0, 0, 0}, {-1, 0, 0, 0}};

For [i = 0, i < 48, i++;

y = O0conj[[1]][[1]];

x = Osort[[i]];

z = Quatermult[Quatermult[x, y], Quaterconj[x]];

AppendTo[normal80, z]

];

For [i = 0, i < 48, i++;

x = Osort[[i]];

y1 = O1;

y2 = O1neg;

AppendTo[normal80, Quatermult[Quatermult[x, y1], Quaterconj[x]]];

AppendTo[normal80, Quatermult[Quatermult[x, y2], Quaterconj[x]]];

];

Length[normal80]

normal80 = DeleteDuplicates[normal80]
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Out[1225]= 146

Out[1226]= {{1, 0, 0, 0}, {-1, 0, 0, 0}, {0, -1, 0, 0}, {0, 0, -1, 0},

{0, 0, 0, 1}, {0, 0, 0, -1}, {0, 0, 1, 0}, {0, 1, 0, 0}}
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In[1227]:= (* There is a normal subgroup of order 24 in 2O *)

(* normal24 is the union of all quaternions with real part +-1/2, +-1, 0 *)

normal24 = {};

For [i = 0, i < 48, i++;

If[Osort[[i]][[1]]  1 / 2, AppendTo[normal24, Osort[[i]]], Continue];

If[Osort[[i]][[1]]  -1 / 2, AppendTo[normal24, Osort[[i]]], Continue];

If[Osort[[i]][[1]]  1, AppendTo[normal24, Osort[[i]]], Continue];

If[Osort[[i]][[1]]  -1, AppendTo[normal24, Osort[[i]]], Nothing];

];

For[i = 0, i < Length[O0conj[[1]]], i++;

AppendTo[normal24, O0conj[[1]][[i]]];

];

Length[normal24]

(* The products of all 24 quaternions lies within the set (subgroup) again *)

product24 = {};

For[i = 0, i < 24, i++;

For [j = 0, j < 24, j++;

x = normal24[[i]];

y = normal24[[j]];

AppendTo[product24, Quatermult[x, y]];

];

product24 = DeleteDuplicates[product24];

];

Length[product24]

product24

Out[1230]= 24

Out[1233]= 24
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In[1265]:= (* Definition multiplication, conjugation,

standards basis vectors and generation of the group 2T *)

In[1266]:= (* Define multiplication and conjugation of quaternions *)

Quatermult[x_, y_] := Module[{

xQ = {{x[[1]] + I x[[2]], I x[[4]] + x[[3]]}, {I x[[4]] - x[[3]], x[[1]] - I x[[2]]}},

yQ = {{y[[1]] + I y[[2]], I y[[4]] + y[[3]]}, {I y[[4]] - y[[3]], y[[1]] - I y[[2]]}}

},

zQ = xQ.yQ;

Simplify[{Re[zQ[[1, 1]]], Im[zQ[[1, 1]]], Re[zQ[[1, 2]]], Im[zQ[[1, 2]]]}]

]

Quaterconj[x_] := Simplify[{x[[1]], -x[[2]], -x[[3]], -x[[4]]}]

In[1268]:= (* Standard basis vectors in R4 *)

{one, aai, jay, kay} = IdentityMatrix[4];

B.1.3 Binary tetrahedral group 2T



In[1269]:= (* Construction tetrahedral group by two generators *)

tetrahedralgroup = Expand[{one + aai + jay + kay} / 2];

AppendTo[tetrahedralgroup, aai];

done = 0;

length = Length[tetrahedralgroup];

For[i = 1, done < length, i++,

For[j = done + 1, j ≤ length, j++,

x = tetrahedralgroup[[j]];

For[k = 1, k <= j, k++,

y = tetrahedralgroup[[k]];

z = Expand[Expand[Quatermult[x, y]]];

AppendTo[tetrahedralgroup, z];

z = Expand[Expand[Quatermult[y, x]]];

AppendTo[tetrahedralgroup, z];

]

];

tetrahedralgroup = DeleteDuplicates[tetrahedralgroup];

done = length;

length = Length[tetrahedralgroup];

If[length > 500, Break[]];

]

length

tetrahedralgroup
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In[1341]:= (*2T is a group*)

product = {};

For [i = 1, i < 25, i++,

For [j = 1, j < 25, j++,

x = tetrahedralgroup[[i]];

y = tetrahedralgroup[[j]];

z = Quatermult[x, y];

AppendTo[product, z];

]

];

product = DeleteDuplicates[product];

Length[product]

product

Out[1344]= 24
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In[1281]:= (* Conjugacy classes of 2T. First,

we make sets with quaternions with same real part. Afterwards,

we calculate whether those sets fall apart in smaller conjugacy classes. *)
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In[1346]:= tetra05 = {};

For [i = 0, i < 24, i++;

If[ tetra[[i]][[1]] == 1 / 2, AppendTo[tetra05, tetra[[i]]],

]

]

tetra05neg = {};

For [i = 0, i < 24, i++;

If[ tetra[[i]][[1]]  -1 / 2, AppendTo[tetra05neg, tetra[[i]]], Nothing]

]

tetra0 = {};

For [i = 0, i < 24, i++;

If[ tetra[[i]][[1]]  0, AppendTo[tetra0, tetra[[i]]], Nothing]

]

tetra1 = {};

For [i = 0, i < 24, i++;

If[ tetra[[i]][[1]]  1, AppendTo[tetra1, tetra[[i]]], Nothing]

]

tetra1neg = {};

For [i = 0, i < 24, i++;

If[ tetra[[i]][[1]]  -1, AppendTo[tetra1neg, tetra[[i]]], Nothing]

]

In[1292]:= (* Calculate whether quaternions with

same real part lie in smaller conjugacy classes *)

In[1839]:= tetra0conj = {};

list = {};

For[i = 0, i < 6, i++;

For[j = 0, j < 24, j++;

x = tetra[[j]];

y = tetra0[[i]];

z = Quatermult[Quatermult[x, y], Quaterconj[x]];

AppendTo[list, z];

];

list = DeleteDuplicates[list];

AppendTo[tetra0conj, list];

list = {};

];

Length[tetra0conj[[1]]]

tetra0conj[[1]]

tetra1conj = {};

list = {};

For[i = 0, i < 1, i++;

For[j = 0, j < 24, j++;

list = {};

x = tetra[[j]];

4     tetrahedralgroup3.nb



y = tetra1[[i]];

z = Quatermult[Quatermult[x, y], Quaterconj[x]];

AppendTo[list, z];

];

list = DeleteDuplicates[list];

AppendTo[tetra1conj, list];

list = {};

];

Length[tetra1conj[[1]]]

tetra1negconj = {};

list = {};

For[i = 0, i < 1, i++;

For[j = 0, j < 24, j++;

x = tetra[[j]];

y = tetra1neg[[i]];

z = Quatermult[Quatermult[x, y], Quaterconj[x]];

AppendTo[tetra1negconj, z];

];

tetra1negconj = DeleteDuplicates[tetra1negconj];

];

Length[tetra1negconj]

tetra05negconj = {};

list = {};

For[i = 0, i < 8, i++;

For[j = 0, j < 24, j++;

x = tetra[[j]];

y = tetra05neg[[i]];

z = Quatermult[Quatermult[x, y], Quaterconj[x]];

AppendTo[list, z];

];

list = DeleteDuplicates[list];

AppendTo[tetra05negconj, list];

list = {};

];

Length[tetra05negconj[[1]]]

tetra05negconj[[1]]

tetra05negconj[[2]]

tetra05conj = {};

list = {};

For[i = 0, i < 8, i++;

For[j = 0, j < 24, j++;

x = tetra[[j]];

y = tetra05[[i]];

z = Quatermult[Quatermult[x, y], Quaterconj[x]];

AppendTo[list, z];

];

list = DeleteDuplicates[list];
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AppendTo[tetra05conj, list];

list = {};

];

Length[tetra05conj[[1]]]

tetra05conj[[1]]

tetra05conj[[2]]

Out[1842]= 6

Out[1843]= {{0, -1, 0, 0}, {0, 0, -1, 0}, {0, 0, 0, 1}, {0, 0, 0, -1}, {0, 0, 1, 0}, {0, 1, 0, 0}}
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In[1315]:= (* Normal subgroup order 8 *)

Normal8 = tetra0conj[[1]];

AppendTo[Normal8, tetra1[[1]] ];

AppendTo[Normal8, tetra1neg[[1]]];
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In[1875]:= Normal8conj = {};

For[i = 0, i < 8, i++;

For[j = 0, j < 24, j++;

x = tetra[[j]];

y = Normal8[[i]];

z = Quatermult[Quatermult[x, y], Quaterconj[x]];

AppendTo[Normal8conj, z];

];

Normal8conj = DeleteDuplicates[Normal8conj];

];

For[i = 0, i < 8, i++;

x = Normal8[[i]];

For[j = 0, j < 8, j++;

y = Normal8[[j]];

AppendTo[Normal8conj, Quatermult[x, y]];

];

];

Normal8conj = DeleteDuplicates[Normal8conj]

Out[1878]= {{0, -1, 0, 0}, {0, 0, -1, 0}, {0, 0, 0, 1}, {0, 0, 0, -1},

{0, 0, 1, 0}, {0, 1, 0, 0}, {1, 0, 0, 0}, {-1, 0, 0, 0}}

In[1327]:= list = {tetra05[[1]]};

list2 = {};

For [i = 0, i < 24, i++;

x = tetra[[i]];

y = Quatermult[tetra05[[1]], x];

z = Quatermult[x, tetra05[[1]]];

If [y  z, AppendTo[list, x], AppendTo[list2, x]];

];

list2
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(* Left cosets of 2T*)

(* Left cosets gN where g = (1,0,0,0),

(1/2, -1/2, 1/2, 1/2), (-1/2, -1/2, 1/2, 1/2) *)

tetra05conj[[4]][[1]]

tetra05negconj[[4]][[1]]

nevenklas1 = {};

nevenklas2 = {};

For[i = 0, i < 8, i++;

AppendTo[nevenklas1, Quatermult[tetra05conj[[1]][[1]], Normal8[[i]]]];

AppendTo[nevenklas2, Quatermult[tetra05negconj[[4]][[1]], Normal8[[i]]]];

];

Sort[nevenklas1]

Sort[nevenklas2]
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In[3925]:= (* COPY TO RUN ENTIRE DOCUMENT *)

(* Construction 2I *)

{one, aai, jay, kay} = IdentityMatrix[4];

Nsub = phi → Sqrt[5] + 1  2;

sub = Sqrt[5] → 2 phi - 1;

In[3928]:= Quatermult[x_, y_] := Module[{

xQ = {{x[[1]] + I x[[2]], I x[[4]] + x[[3]]}, {I x[[4]] - x[[3]], x[[1]] - I x[[2]]}},

yQ = {{y[[1]] + I y[[2]], I y[[4]] + y[[3]]}, {I y[[4]] - y[[3]], y[[1]] - I y[[2]]}}

},

zQ = xQ.yQ;

Simplify[{Re[zQ[[1, 1]]], Im[zQ[[1, 1]]], Re[zQ[[1, 2]]], Im[zQ[[1, 2]]]}]

]

Quaterconj[x_] := Simplify[{x[[1]], -x[[2]], -x[[3]], -x[[4]]}]

icosians = Expandone + aai + jay + kay, -aai + jay phi - 1 + kay phi  2;

done = 0;

length = Length[icosians];

For[i = 1, done < length, i++,

For[j = done + 1, j ≤ length, j++,

x = icosians[[j]];

For[k = 1, k ≤ j, k++,

y = icosians[[k]];

z = Expand[Expand[Quatermult[x, y] /. Nsub] /. sub];

AppendTo[icosians, z];

z = Expand[Expand[Quatermult[y, x] /. Nsub] /. sub];

AppendTo[icosians, z]

]

];

icosians = DeleteDuplicates[icosians];

done = length;

length = Length[icosians];

If[length > 1136, Break[]]

]

length

120

Out[3934]= 120

Out[3935]= 120

In[3936]:= icosians05conj = {};

For[i = 0, i < 120, i++;

y = icosians[[i]];

AppendTo[icosians05conj, Expand[

Expand[Quatermult[Expand[Quatermult[y, icosians[[1]]]], Quaterconj[y]] /. Nsub] /.

Nsub /. sub]];

icosians05conj = DeleteDuplicates[icosians05conj];

]

B.2 600-cell
B.2.1 The 24-cells in a 600-cell



In[3938]:= icosians0conj = {};

For[i = 0, i < 120, i++;

y = icosians[[i]];

AppendTo[icosians0conj,

Expand[Expand[Quatermult[Expand[Quatermult[y, icosians[[2]]]], Quaterconj[y]] /.

Nsub] /. Nsub /. sub]] /. Nsub /. sub // N;

icosians0conj = DeleteDuplicates[icosians0conj];

]

In[3940]:= icosians05negconj = {};

For[i = 0, i < 120, i++;

y = icosians[[i]];

AppendTo[icosians05negconj,

Expand[Expand[Quatermult[Expand[Quatermult[y, icosians[[3]]]], Quaterconj[y]] /.

Nsub] /. Nsub /. sub]] /. Nsub /. sub;

icosians05negconj = DeleteDuplicates[icosians05negconj];

]

icosiansphinegconj = {};

For[i = 0, i < 120, i++;

y = icosians[[i]];

AppendTo[icosiansphinegconj,

Expand[Expand[Quatermult[Expand[Quatermult[y, icosians[[14]]]], Quaterconj[y]] /.

Nsub] /. Nsub /. sub]] /. Nsub /. sub;

icosiansphinegconj = DeleteDuplicates[icosiansphinegconj];

]

icosiansphiconj = {};

For[i = 0, i < 120, i++;

y = icosians[[i]];

AppendTo[icosiansphiconj,

Expand[Expand[Quatermult[Expand[Quatermult[y, icosians[[110]]]],

Quaterconj[y]] /. Nsub] /. Nsub /. sub]] /. Nsub /. sub;

icosiansphiconj = DeleteDuplicates[icosiansphiconj];

]

icosiansphiinvnegconj = {};

For[i = 0, i < 120, i++;

y = icosians[[i]];

AppendTo[icosiansphiinvnegconj,

Expand[Expand[Quatermult[Expand[Quatermult[y, icosians[[27]]]], Quaterconj[y]] /.

Nsub] /. Nsub /. sub]] /. Nsub /. sub;

icosiansphiinvnegconj = DeleteDuplicates[icosiansphiinvnegconj];

]

icosiansphiinvconj = {};

For[i = 0, i < 120, i++;

y = icosians[[i]];

AppendTo[icosiansphiinvconj,

Expand[Expand[Quatermult[Expand[Quatermult[y, icosians[[22]]]], Quaterconj[y]] /.

Nsub] /. Nsub /. sub]] /. Nsub /. sub;

icosiansphiinvconj = DeleteDuplicates[icosiansphiinvconj];

]
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In[3950]:= (* 24-CELLS IN THE 600-CELL *)

(* Normalizer 2T in 2I *)

(* There are multiple examples of g in 2I such that for a h in 2T,

ghg^{-1} lies outside 2T *)

normalizer = {};

outside = {};

For[i = 0, i < 24, i++;

For[j = 0, j < 120, j++;

x = Expand[

Quatermult[icosians[[j]] /. Nsub, Quatermult[tetrahedralgroup[[i]] /. Nsub,

Quaterconj[icosians[[j]] /. Nsub]]] /. sub // FullSimplify];

If [ContainsAny[icosians, {{x}}], AppendTo[normalizer, x], AppendTo[outside, x]];

];

normalizer = DeleteDuplicates[normalizer];

outside = DeleteDuplicates[outside];

];

Length[outside]

Out[3953]= 72

In[3954]:= (* Left cosets and conjugation of the subgroup 2T *)

(* Definition c in 2I with c^5 = id. We use the notation c = g1,

c^2 = g2, c^3 = g3, c^4 = g4 *)

H = tetrahedralgroup;

g1 = Expand[icosiansphinegconj[[1]] /. sub // FullSimplify]

g2 = Expand[Quatermult[g1 /. Nsub, g1 /. Nsub] /. sub // FullSimplify]

g3 = Expand[Quatermult[g1 /. Nsub, g2 /. Nsub] /. sub // FullSimplify]

g4 = Expand[Quatermult[g2 /. Nsub, g2 /. Nsub] /. sub // FullSimplify]

Quatermult[g1 /. Nsub, g4 /. Nsub];

Out[3955]= -
phi

2
, 0, -

1

2
+
phi

2
, -

1

2


Out[3956]= -
1

2
+
phi

2
, 0, -

1

2
,
phi

2


Out[3957]= -
1

2
+
phi

2
, 0,

1

2
, -

phi

2


Out[3958]= -
phi

2
, 0,

1

2
-
phi

2
,
1

2


In[3960]:= (* Computation of the conjjugate subgroups of H =

2T and the left cosets of H = 2T and H = c^iHc^{-i}. *)

(* Notation: g1Hg1 represents the conjugate

cHc^{-1} and g1g2Hg1 represents c^3Hc^{-1}. *)

g1Hg1 = {};

g2Hg2 = {};

g3Hg3 = {};

g4Hg4 = {};

For[i = 0, i < 24, i++;

y = tetrahedralgroup2[[i]] /. Nsub;

AppendTo[g1Hg1,

Expand[Quatermult[Quatermult[g1 /. Nsub, y], Quaterconj[g1] /. Nsub] /. sub //

FullSimplify]];
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AppendTo[g2Hg2, Expand[Quatermult[Quatermult[g2 /. Nsub, y],

Quaterconj[g2] /. Nsub] /. sub // FullSimplify]];

AppendTo[g3Hg3, Expand[Quatermult[Quatermult[g3 /. Nsub, y],

Quaterconj[g3] /. Nsub] /. sub // FullSimplify]];

AppendTo[g4Hg4, Expand[Quatermult[Quatermult[g4 /. Nsub, y],

Quaterconj[g4] /. Nsub] /. sub // FullSimplify]];

];

g1H = {};

g2H = {};

g3H = {};

g4H = {};

For[i = 0, i < 24, i++;

y = tetrahedralgroup[[i]] /. Nsub;

AppendTo[g1H, Expand[Quatermult[g1 /. Nsub, y] /. sub // FullSimplify]];

AppendTo[g2H, Expand[Quatermult[g2 /. Nsub, y] /. sub // FullSimplify]];

AppendTo[g3H, Expand[Quatermult[g3 /. Nsub, y] /. sub // FullSimplify]];

AppendTo[g4H, Expand[Quatermult[g4 /. Nsub, y] /. sub // FullSimplify]];

];

g1g1Hg1 = {};

g2g1Hg2 = {};

g3g1Hg3 = {};

g4g1Hg4 = {};

For[i = 0, i < Length[g1H], i++;

AppendTo[g1g1Hg1, Expand[Quatermult[Quatermult[g1 /. Nsub, g1H[[i]] /. Nsub],

Quaterconj[g1] /. Nsub] /. sub // FullSimplify]];

AppendTo[g2g1Hg2, Expand[Quatermult[Quatermult[g2 /. Nsub, g1H[[i]] /. Nsub],

Quaterconj[g2] /. Nsub] /. sub // FullSimplify]];

AppendTo[g3g1Hg3, Expand[Quatermult[Quatermult[g3 /. Nsub, g1H[[i]] /. Nsub],

Quaterconj[g3] /. Nsub] /. sub // FullSimplify]];

AppendTo[g4g1Hg4, Expand[Quatermult[Quatermult[g4 /. Nsub, g1H[[i]] /. Nsub],

Quaterconj[g4] /. Nsub] /. sub // FullSimplify]];

];

g1g2Hg1 = {};

g2g2Hg2 = {};

g3g2Hg3 = {};

g4g2Hg4 = {};

For[i = 0, i < Length[g1H], i++;

AppendTo[g1g2Hg1, Expand[Quatermult[Quatermult[g1 /. Nsub, g2H[[i]] /. Nsub],

Quaterconj[g1] /. Nsub] /. sub // FullSimplify]];

AppendTo[g2g2Hg2, Expand[Quatermult[Quatermult[g2 /. Nsub, g2H[[i]] /. Nsub],

Quaterconj[g2] /. Nsub] /. sub // FullSimplify]];

AppendTo[g3g2Hg3, Expand[Quatermult[Quatermult[g3 /. Nsub, g2H[[i]] /. Nsub],

Quaterconj[g3] /. Nsub] /. sub // FullSimplify]];

AppendTo[g4g2Hg4, Expand[Quatermult[Quatermult[g4 /. Nsub, g2H[[i]] /. Nsub],

Quaterconj[g4] /. Nsub] /. sub // FullSimplify]];

];

g1g3Hg1 = {};

g2g3Hg2 = {};

g3g3Hg3 = {};

g4g3Hg4 = {};

For[i = 0, i < Length[g1H], i++;
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AppendTo[g1g3Hg1, Expand[Quatermult[Quatermult[g1 /. Nsub, g3H[[i]] /. Nsub],

Quaterconj[g1] /. Nsub] /. sub // FullSimplify]];

AppendTo[g2g3Hg2, Expand[Quatermult[Quatermult[g2 /. Nsub, g3H[[i]] /. Nsub],

Quaterconj[g2] /. Nsub] /. sub // FullSimplify]];

AppendTo[g3g3Hg3, Expand[Quatermult[Quatermult[g3 /. Nsub, g3H[[i]] /. Nsub],

Quaterconj[g3] /. Nsub] /. sub // FullSimplify]];

AppendTo[g4g3Hg4, Expand[Quatermult[Quatermult[g4 /. Nsub, g3H[[i]] /. Nsub],

Quaterconj[g4] /. Nsub] /. sub // FullSimplify]];

];

g1g4Hg1 = {};

g2g4Hg2 = {};

g3g4Hg3 = {};

g4g4Hg4 = {};

For[i = 0, i < Length[g1H], i++;

AppendTo[g1g4Hg1, Expand[Quatermult[Quatermult[g1 /. Nsub, g4H[[i]] /. Nsub],

Quaterconj[g1] /. Nsub] /. sub // FullSimplify]];

AppendTo[g2g4Hg2, Expand[Quatermult[Quatermult[g2 /. Nsub, g4H[[i]] /. Nsub],

Quaterconj[g2] /. Nsub] /. sub // FullSimplify]];

AppendTo[g3g4Hg3, Expand[Quatermult[Quatermult[g3 /. Nsub, g4H[[i]] /. Nsub],

Quaterconj[g3] /. Nsub] /. sub // FullSimplify]];

AppendTo[g4g4Hg4, Expand[Quatermult[Quatermult[g4 /. Nsub, g4H[[i]] /. Nsub],

Quaterconj[g4] /. Nsub] /. sub // FullSimplify]];

];

twentyfive = {H , g1Hg1, g2Hg2, g3Hg3, g4Hg4, g1H, g1g1Hg1, g2g1Hg2,

g3g1Hg3, g4g1Hg4, g2H, g1g2Hg1, g2g2Hg2, g3g2Hg3, g4g2Hg4, g3H, g1g3Hg1,

g2g3Hg2, g3g3Hg3, g4g3Hg4, g4H, g1g4Hg1, g2g4Hg2, g3g4Hg3, g4g4Hg4};

In[3991]:= (* All 25 cosets are represent different 24-cells. *)

list = {};

count = 0;

For[i = 0, i < 25, i++;

For[j = 0, j < 25, j++;

If[Length[Intersection[twentyfive[[i]], twentyfive[[j]]]] ⩵ 24,

count = count + 1, Nothing];

AppendTo[list, Length[Intersection[twentyfive[[i]], twentyfive[[j]]]]];

];

];

count (* Intersection[twentyfive[[i]],

twentyfive[[i]] appears, which accounts for the number 25. *)

Out[3994]= 25

In[4059]:= (* Definition of the right cosets of H*)

rightg1Hg1 = {};

rightg2Hg2 = {};

rightg3Hg3 = {};

rightg4Hg4 = {};

For[i = 0, i < 24, i++;

y = tetrahedralgroup2[[i]] /. Nsub;

AppendTo[rightg1Hg1,

Expand[Quatermult[Quatermult[Quaterconj[g1] /. Nsub, y], g1 /. Nsub] /. sub //

FullSimplify]];
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AppendTo[rightg2Hg2, Expand[Quatermult[Quatermult[Quaterconj[g2] /. Nsub, y],

g2 /. Nsub] /. sub // FullSimplify]];

AppendTo[rightg3Hg3, Expand[Quatermult[Quatermult[Quaterconj[g3] /. Nsub, y],

g3 /. Nsub] /. sub // FullSimplify]];

AppendTo[rightg4Hg4, Expand[Quatermult[Quatermult[Quaterconj[g4] /. Nsub, y],

g4 /. Nsub] /. sub // FullSimplify]];

];

Hg1 = {};

Hg2 = {};

Hg3 = {};

Hg4 = {};

For[i = 0, i < 24, i++;

y = tetrahedralgroup[[i]] /. Nsub;

AppendTo[Hg1, Expand[Expand[Quatermult[y, g1 /. Nsub]] /. sub // FullSimplify]];

AppendTo[Hg2, Expand[Expand[Quatermult[y, g2 /. Nsub]] /. sub // FullSimplify]];

AppendTo[Hg3, Expand[Expand[Quatermult[y, g3 /. Nsub]] /. sub // FullSimplify]];

AppendTo[Hg4, Expand[Expand[Quatermult[y, g4 /. Nsub]] /. sub // FullSimplify]];

];

Length[DeleteDuplicates[Union[Union[Union[Union[Hg1, Hg2], Hg3], Hg4], H]]]

g1Hg1g1 = {};

g2Hg1g2 = {};

g3Hg1g3 = {};

g4Hg1g4 = {};

For[i = 0, i < Length[g1H], i++;

AppendTo[g1Hg1g1,

Expand[Quatermult[Quatermult[Quaterconj[g1] /. Nsub, Hg1[[i]] /. Nsub],

g1 /. Nsub] /. sub // FullSimplify]];

AppendTo[g2Hg1g2, Expand[Quatermult[Quatermult[Quaterconj[g2] /. Nsub,

Hg1[[i]] /. Nsub], g2 /. Nsub] /. sub // FullSimplify]];

AppendTo[g3Hg1g3, Expand[Quatermult[Quatermult[Quaterconj[g3] /. Nsub,

Hg1[[i]] /. Nsub], g3 /. Nsub] /. sub // FullSimplify]];

AppendTo[g4Hg1g4, Expand[Quatermult[Quatermult[Quaterconj[g4] /. Nsub,

Hg1[[i]] /. Nsub], g4 /. Nsub] /. sub // FullSimplify]];

];

g1Hg2g1 = {};

g2Hg2g2 = {};

g3Hg2g3 = {};

g4Hg2g4 = {};

For[i = 0, i < Length[g1H], i++;

AppendTo[g1Hg2g1,

Expand[Quatermult[Quatermult[Quaterconj[g1] /. Nsub, Hg2[[i]] /. Nsub],

g1 /. Nsub] /. sub // FullSimplify]];

AppendTo[g2Hg2g2, Expand[Quatermult[Quatermult[Quaterconj[g2] /. Nsub,

Hg2[[i]] /. Nsub], g2 /. Nsub] /. sub // FullSimplify]];

AppendTo[g3Hg2g3, Expand[Quatermult[Quatermult[Quaterconj[g3] /. Nsub,

Hg2[[i]] /. Nsub], g3 /. Nsub] /. sub // FullSimplify]];

AppendTo[g4Hg2g4, Expand[Quatermult[Quatermult[Quaterconj[g4] /. Nsub,

Hg2[[i]] /. Nsub], g4 /. Nsub] /. sub // FullSimplify]];

];

g1Hg3g1 = {};

g2Hg3g2 = {};
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g3Hg3g3 = {};

g4Hg3g4 = {};

For[i = 0, i < Length[g1H], i++;

AppendTo[g1Hg3g1,

Expand[Quatermult[Quatermult[Quaterconj[g1] /. Nsub, Hg3[[i]] /. Nsub],

g1 /. Nsub] /. sub // FullSimplify]];

AppendTo[g2Hg3g2, Expand[Quatermult[Quatermult[Quaterconj[g2] /. Nsub,

Hg3[[i]] /. Nsub], g2 /. Nsub] /. sub // FullSimplify]];

AppendTo[g3Hg3g3, Expand[Quatermult[Quatermult[Quaterconj[g3] /. Nsub,

Hg3[[i]] /. Nsub], g3 /. Nsub] /. sub // FullSimplify]];

AppendTo[g4Hg3g4, Expand[Quatermult[Quatermult[Quaterconj[g4] /. Nsub,

Hg3[[i]] /. Nsub] g4 /. Nsub] /. sub // FullSimplify]];

];

g1Hg4g1 = {};

g2Hg4g2 = {};

g3Hg4g3 = {};

g4Hg4g4 = {};

For[i = 0, i < Length[g1H], i++;

AppendTo[g1Hg4g1,

Expand[Quatermult[Quatermult[Quaterconj[g1] /. Nsub, Hg4[[i]] /. Nsub],

g1 /. Nsub] /. sub // FullSimplify]];

AppendTo[g2Hg4g2, Expand[Quatermult[Quatermult[Quaterconj[g2] /. Nsub,

Hg4[[i]] /. Nsub], g2 /. Nsub] /. sub // FullSimplify]];

AppendTo[g3Hg4g3, Expand[Quatermult[Quatermult[Quaterconj[g3] /. Nsub,

Hg4[[i]] /. Nsub], g3 /. Nsub] /. sub // FullSimplify]];

AppendTo[g4Hg4g4, Expand[Quatermult[Quatermult[Quaterconj[g4] /. Nsub,

Hg4[[i]] /. Nsub], g4 /. Nsub] /. sub // FullSimplify]];

];

Out[4069]= 120

In[4105]:= twentyfive2 = {H, rightg1Hg1, rightg2Hg2, rightg3Hg3, rightg4Hg4, Hg1, g1Hg1g1,

g2Hg1g2, g3Hg1g3, g4Hg1g4, Hg2, g1Hg2g1, g2Hg2g2, g3Hg2g3, g4Hg2g4, Hg3,

g1Hg3g1, g2Hg3g2, g3Hg3g3, g4Hg3g4, Hg4, g1Hg4g1, g2Hg4g2, g3Hg4g3, g4Hg4g4};

In[4106]:= (* Counting the number of times the left and right 24-cells overlap *)

length = {};

overlap = {};

For[i = 0, i < 25, i++;

For[j = 0, j < 25, j++;

AppendTo[length, Length[Intersection[twentyfive[[i]], twentyfive2[[j]]]]];

If[ Length[Intersection[twentyfive[[i]], twentyfive2[[j]]]] ⩵ 24,

AppendTo[overlap, {i, j}], Nothing];

];

];

Count[length, 24]

overlap

Out[4109]= 24

Out[4110]= {{1, 1}, {2, 5}, {3, 4}, {4, 3}, {5, 2}, {6, 10}, {7, 9}, {8, 8}, {9, 7},

{10, 6}, {11, 14}, {12, 13}, {13, 12}, {14, 11}, {15, 15}, {16, 18}, {17, 17},

{18, 16}, {20, 19}, {21, 22}, {22, 21}, {23, 25}, {24, 24}, {25, 23}}
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In[4111]:= (* 5 24-cells at each vertex of the 600-cell *)

dist1 = {};

For[i = 0, i < 120, i++;

id = {1, 0, 0, 0};

x = icosians[[i]] /. Nsub;

dist = Expand[Power[x[[1]] - id[[1]], 2] + Power[x[[2]] - id[[2]], 2] +

Power[x[[3]] - id[[3]], 2] + Power[x[[4]] - id[[4]], 2]];

If [dist == 1, AppendTo[dist1, x /. sub], Nothing];

];

Length[dist1]

Out[4113]= 20

In[4033]:= dist1 = Sort[dist1];

list1 = {};

list2 = {};

distQ2Q3 = {};

distQ2Q4 = {};

lengthQ2Q3 = {};

lengthQ2Q4 = {};

For[i = 0, i < Length[dist1], i++;

For[j = 0, j < 120, j++;

y = dist1[[i]] /. Nsub;

x = icosians[[j]] /. Nsub;

dist = Expand[Power[x[[1]] - y[[1]], 2] + Power[x[[2]] - y[[2]], 2] +

Power[x[[3]] - y[[3]], 2] + Power[x[[4]] - y[[4]], 2]];

If [dist == 1, AppendTo[list1, x /. sub], Nothing];

If[dist ⩵ 2, AppendTo[list2, x /. sub], Nothing];

];

AppendTo[distQ2Q3, Intersection[dist1, list1]];

(* distance 1 from Q2 and 1 from the quaternion 1 *)

AppendTo[distQ2Q4, Intersection[dist1, list2]];

(* distance 2 from Q2 and dist 1 from the quaternion 1 *)

AppendTo[lengthQ2Q3, Length[distQ2Q3[[i]]]];

AppendTo[lengthQ2Q4, Length[distQ2Q4[[i]]]];

list1 = {};

list2 = {};

];

lengthQ2Q3

lengthQ2Q4

Out[4041]= {6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6}

Out[4042]= {6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6}
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In[4114]:= (* Compute neighbours fixed Q4 that lie 1 away from both Q1 and Q2 as well*)

list = {};

Q3Q5 = {};

list2 = {};

For[i = 0, i < Length[dist1], i++;

z = dist1[[i]];

For[j = 0, j < Length[distQ2Q4[[1]]], j++;

y = distQ2Q4[[i]][[j]];

For[k = 0, k < 120, k++;

x = icosians[[k]];

dist = Expand[Power[x[[1]] - y[[1]], 2] + Power[x[[2]] - y[[2]], 2] +

Power[x[[3]] - y[[3]], 2] + Power[x[[4]] - y[[4]], 2]];

If[dist ⩵ 1, AppendTo[list, x /. sub], Nothing];

];

AppendTo[list2, list];

list = {};

];

AppendTo[Q3Q5, list2];

list2 = {};

];

Length[Intersection[Intersection[Q3Q5[[1]][[1]], distQ2Q3[[1]]]]]

Out[4118]= 2

In[4119]:= (* Example construction 24-cell by choice of Q_2,

Q_4, Q_6 yields two different 24-cells *)

q = distQ2Q4[[1]];

distsqrt2 = {};

list = {};

octato24 = {};

For[i = 0, i < 6, i++;

For[j = 0, j < 6, j++;

For[k = 0, k < 6, k++;

x = q[[i]] /. Nsub;

y = q[[j]] /. Nsub;

z = q[[k]] /. Nsub;

dist1 = Expand[Power[x[[1]] - y[[1]], 2] + Power[x[[2]] - y[[2]], 2] +

Power[x[[3]] - y[[3]], 2] + Power[x[[4]] - y[[4]], 2]];

dist2 = Expand[Power[x[[1]] - z[[1]], 2] + Power[x[[2]] - z[[2]], 2] +

Power[x[[3]] - z[[3]], 2] + Power[x[[4]] - z[[4]], 2]];

dist3 = Expand[Power[z[[1]] - y[[1]], 2] + Power[z[[2]] - y[[2]], 2] +

Power[z[[3]] - y[[3]], 2] + Power[z[[4]] - y[[4]], 2]];

If[dist1 ⩵ dist2 ⩵ dist3 ⩵ 2, AppendTo[octato24, {i, j, k}], Nothing];

];

];

];

Length[octato24]

octato24

Out[4124]= 12

Out[4125]= {{1, 3, 4}, {1, 4, 3}, {2, 5, 6}, {2, 6, 5}, {3, 1, 4}, {3, 4, 1},

{4, 1, 3}, {4, 3, 1}, {5, 2, 6}, {5, 6, 2}, {6, 2, 5}, {6, 5, 2}}
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In[4096]:= (* Maximally 10 ways to inscribe 5 disjunt 24-cells in a 600-cell. *)

count = 0;

For[i = 0, i < 25, i++;

For[j = 0, j < 25, j++;

For[k = 0, k < 25, k++;

For[l = 0, l < 25, l++;

For[m = 0, m < 25, m++;

If[Length[

DeleteDuplicates[Union[twentyfive[[i]], twentyfive[[j]], twentyfive[[k]],

twentyfive[[l]], twentyfive[[m]]]]] == 120, count = count + 1, Nothing];

];

];

];

];

];

count

Out[4098]= 1200
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B.2.2 Decompositions 600-cell
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